Files
tantivy/src/query/boolean_query/mod.rs
Paul Masurel c030990d00 fmt
2019-10-02 09:50:20 +09:00

373 lines
15 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

mod boolean_query;
mod boolean_weight;
pub use self::boolean_query::BooleanQuery;
#[cfg(test)]
mod tests {
use super::*;
use crate::collector::tests::TEST_COLLECTOR_WITH_SCORE;
use crate::query::score_combiner::SumWithCoordsCombiner;
use crate::query::term_query::TermScorer;
use crate::query::Intersection;
use crate::query::Occur;
use crate::query::Query;
use crate::query::QueryParser;
use crate::query::RequiredOptionalScorer;
use crate::query::Scorer;
use crate::query::TermQuery;
use crate::schema::*;
use crate::Index;
use crate::{DocAddress, DocId};
fn aux_test_helper() -> (Index, Field) {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
// writing the segment
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
{
let doc = doc!(text_field => "a b c");
index_writer.add_document(doc);
}
{
let doc = doc!(text_field => "a c");
index_writer.add_document(doc);
}
{
let doc = doc!(text_field => "b c");
index_writer.add_document(doc);
}
{
let doc = doc!(text_field => "a b c d");
index_writer.add_document(doc);
}
{
let doc = doc!(text_field => "d");
index_writer.add_document(doc);
}
assert!(index_writer.commit().is_ok());
}
(index, text_field)
}
#[test]
pub fn test_boolean_non_all_term_disjunction() {
let (index, text_field) = aux_test_helper();
let query_parser = QueryParser::for_index(&index, vec![text_field]);
let query = query_parser.parse_query("(+a +b) d").unwrap();
let searcher = index.reader().unwrap().searcher();
assert_eq!(query.count(&searcher).unwrap(), 3);
}
#[test]
pub fn test_boolean_single_must_clause() {
let (index, text_field) = aux_test_helper();
let query_parser = QueryParser::for_index(&index, vec![text_field]);
let query = query_parser.parse_query("+a").unwrap();
let searcher = index.reader().unwrap().searcher();
let weight = query.weight(&searcher, true).unwrap();
let scorer = weight.scorer(searcher.segment_reader(0u32)).unwrap();
assert!(scorer.is::<TermScorer>());
}
#[test]
pub fn test_boolean_termonly_intersection() {
let (index, text_field) = aux_test_helper();
let query_parser = QueryParser::for_index(&index, vec![text_field]);
let searcher = index.reader().unwrap().searcher();
{
let query = query_parser.parse_query("+a +b +c").unwrap();
let weight = query.weight(&searcher, true).unwrap();
let scorer = weight.scorer(searcher.segment_reader(0u32)).unwrap();
assert!(scorer.is::<Intersection<TermScorer>>());
}
{
let query = query_parser.parse_query("+a +(b c)").unwrap();
let weight = query.weight(&searcher, true).unwrap();
let scorer = weight.scorer(searcher.segment_reader(0u32)).unwrap();
assert!(scorer.is::<Intersection<Box<dyn Scorer>>>());
}
}
#[test]
pub fn test_boolean_reqopt() {
let (index, text_field) = aux_test_helper();
let query_parser = QueryParser::for_index(&index, vec![text_field]);
let searcher = index.reader().unwrap().searcher();
{
let query = query_parser.parse_query("+a b").unwrap();
let weight = query.weight(&searcher, true).unwrap();
let scorer = weight.scorer(searcher.segment_reader(0u32)).unwrap();
assert!(scorer.is::<RequiredOptionalScorer<
Box<dyn Scorer>,
Box<dyn Scorer>,
SumWithCoordsCombiner,
>>());
}
{
let query = query_parser.parse_query("+a b").unwrap();
let weight = query.weight(&searcher, false).unwrap();
let scorer = weight.scorer(searcher.segment_reader(0u32)).unwrap();
assert!(scorer.is::<TermScorer>());
}
}
#[test]
pub fn test_boolean_query() {
let (index, text_field) = aux_test_helper();
let make_term_query = |text: &str| {
let term_query = TermQuery::new(
Term::from_field_text(text_field, text),
IndexRecordOption::Basic,
);
let query: Box<dyn Query> = Box::new(term_query);
query
};
let reader = index.reader().unwrap();
let matching_docs = |boolean_query: &dyn Query| {
reader
.searcher()
.search(boolean_query, &TEST_COLLECTOR_WITH_SCORE)
.unwrap()
.docs()
.iter()
.cloned()
.map(|doc| doc.1)
.collect::<Vec<DocId>>()
};
{
let boolean_query = BooleanQuery::from(vec![(Occur::Must, make_term_query("a"))]);
assert_eq!(matching_docs(&boolean_query), vec![0, 1, 3]);
}
{
let boolean_query = BooleanQuery::from(vec![(Occur::Should, make_term_query("a"))]);
assert_eq!(matching_docs(&boolean_query), vec![0, 1, 3]);
}
{
let boolean_query = BooleanQuery::from(vec![
(Occur::Should, make_term_query("a")),
(Occur::Should, make_term_query("b")),
]);
assert_eq!(matching_docs(&boolean_query), vec![0, 1, 2, 3]);
}
{
let boolean_query = BooleanQuery::from(vec![
(Occur::Must, make_term_query("a")),
(Occur::Should, make_term_query("b")),
]);
assert_eq!(matching_docs(&boolean_query), vec![0, 1, 3]);
}
{
let boolean_query = BooleanQuery::from(vec![
(Occur::Must, make_term_query("a")),
(Occur::Should, make_term_query("b")),
(Occur::MustNot, make_term_query("d")),
]);
assert_eq!(matching_docs(&boolean_query), vec![0, 1]);
}
{
let boolean_query = BooleanQuery::from(vec![(Occur::MustNot, make_term_query("d"))]);
assert_eq!(matching_docs(&boolean_query), Vec::<u32>::new());
}
}
#[test]
pub fn test_intersection_score() {
let (index, text_field) = aux_test_helper();
let make_term_query = |text: &str| {
let term_query = TermQuery::new(
Term::from_field_text(text_field, text),
IndexRecordOption::Basic,
);
let query: Box<dyn Query> = Box::new(term_query);
query
};
let reader = index.reader().unwrap();
let score_docs = |boolean_query: &dyn Query| {
let fruit = reader
.searcher()
.search(boolean_query, &TEST_COLLECTOR_WITH_SCORE)
.unwrap();
fruit.scores().to_vec()
};
{
let boolean_query = BooleanQuery::from(vec![
(Occur::Must, make_term_query("a")),
(Occur::Must, make_term_query("b")),
]);
assert_eq!(score_docs(&boolean_query), vec![0.977973, 0.84699446]);
}
}
// motivated by #554
#[test]
fn test_bm25_several_fields() {
let mut schema_builder = Schema::builder();
let title = schema_builder.add_text_field("title", TEXT);
let text = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut index_writer = index.writer_with_num_threads(1, 3_000_000).unwrap();
index_writer.add_document(doc!(
// tf = 1 0
title => "Законы притяжения Оксана Кулакова",
// tf = 1 0
text => "Законы притяжения Оксана Кулакова] \n\nТема: Сексуальное искусство, Женственность\nТип товара: Запись вебинара (аудио)\nПродолжительность: 1,5 часа\n\nСсылка на вебинар:\n ",
));
index_writer.add_document(doc!(
// tf = 1 0
title => "Любимые русские пироги (Оксана Путан)",
// tf = 2 0
text => "http://i95.fastpic.ru/big/2017/0628/9a/615b9c8504d94a3893d7f496ac53539a.jpg \n\nОт издателя\nОксана Путан профессиональный повар, автор кулинарных книг и известный кулинарный блогер. Ее рецепты отличаются практичностью, доступностью и пользуются огромной популярностью в русскоязычном интернете. Это третья книга автора о самом вкусном и ароматном настоящих русских пирогах и выпечке!\nДаже новички на кухне легко готовят по ее рецептам. Оксана описывает процесс приготовления настолько подробно и понятно, что вам остается только наслаждаться готовкой и не тратить время на лишние усилия. Готовьте легко и просто!\n\nhttps://www.ozon.ru/context/detail/id/139872462/"
));
index_writer.add_document(doc!(
// tf = 1 1
title => "PDF Мастер Класс \"Морячок\" (Оксана Лифенко)",
// tf = 0 0
text => "https://i.ibb.co/pzvHrDN/I3d U T6 Gg TM.jpg\nhttps://i.ibb.co/NFrb6v6/N0ls Z9nwjb U.jpg\nВ описание входит штаны, кофта, берет, матросский воротник. Описание продается в формате PDF, состоит из 12 страниц формата А4 и может быть напечатано на любом принтере.\nОписание предназначено для кукол BJD RealPuki от FairyLand, но может подойти и другим подобным куклам. Также вы можете вязать этот наряд из обычной пряжи, и он подойдет для куколок побольше.\nhttps://vk.com/market 95724412?w=product 95724412_2212"
));
for _ in 0..1_000 {
index_writer.add_document(doc!(
title => "a b d e f g",
text => "maitre corbeau sur un arbre perche tenait dans son bec un fromage Maitre rnard par lodeur alleche lui tint a peu pres ce langage."
));
}
index_writer.commit().unwrap();
let reader = index.reader().unwrap();
let searcher = reader.searcher();
let query_parser = QueryParser::for_index(&index, vec![title, text]);
let query = query_parser.parse_query("Оксана Лифенко").unwrap();
let weight = query.weight(&searcher, true).unwrap();
let mut scorer = weight.scorer(searcher.segment_reader(0u32)).unwrap();
scorer.advance();
let explanation = query.explain(&searcher, DocAddress(0u32, 0u32)).unwrap();
assert_eq!(
explanation.to_pretty_json(),
r#"{
"value": 12.997711,
"description": "BooleanClause. Sum of ...",
"details": [
{
"value": 12.997711,
"description": "BooleanClause. Sum of ...",
"details": [
{
"value": 6.551476,
"description": "TermQuery, product of...",
"details": [
{
"value": 2.2,
"description": "(K1+1)"
},
{
"value": 5.658984,
"description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5))",
"details": [
{
"value": 3.0,
"description": "n, number of docs containing this term"
},
{
"value": 1003.0,
"description": "N, total number of docs"
}
]
},
{
"value": 0.5262329,
"description": "freq / (freq + k1 * (1 - b + b * dl / avgdl))",
"details": [
{
"value": 1.0,
"description": "freq, occurrences of term within document"
},
{
"value": 1.2,
"description": "k1, term saturation parameter"
},
{
"value": 0.75,
"description": "b, length normalization parameter"
},
{
"value": 4.0,
"description": "dl, length of field"
},
{
"value": 5.997009,
"description": "avgdl, average length of field"
}
]
}
]
},
{
"value": 6.446235,
"description": "TermQuery, product of...",
"details": [
{
"value": 2.2,
"description": "(K1+1)"
},
{
"value": 5.9954567,
"description": "idf, computed as log(1 + (N - n + 0.5) / (n + 0.5))",
"details": [
{
"value": 2.0,
"description": "n, number of docs containing this term"
},
{
"value": 1003.0,
"description": "N, total number of docs"
}
]
},
{
"value": 0.4887212,
"description": "freq / (freq + k1 * (1 - b + b * dl / avgdl))",
"details": [
{
"value": 1.0,
"description": "freq, occurrences of term within document"
},
{
"value": 1.2,
"description": "k1, term saturation parameter"
},
{
"value": 0.75,
"description": "b, length normalization parameter"
},
{
"value": 20.0,
"description": "dl, length of field"
},
{
"value": 24.123629,
"description": "avgdl, average length of field"
}
]
}
]
}
]
}
]
}"#
);
}
}