Files
tantivy/src/aggregation/agg_req.rs
2022-09-19 18:10:22 +07:00

370 lines
13 KiB
Rust

//! Contains the aggregation request tree. Used to build an
//! [`AggregationCollector`](super::AggregationCollector).
//!
//! [`Aggregations`] is the top level entry point to create a request, which is a `HashMap<String,
//! Aggregation>`.
//!
//! Requests are compatible with the json format of elasticsearch.
//!
//! # Example
//!
//! ```
//! use tantivy::aggregation::bucket::RangeAggregation;
//! use tantivy::aggregation::agg_req::BucketAggregationType;
//! use tantivy::aggregation::agg_req::{Aggregation, Aggregations};
//! use tantivy::aggregation::agg_req::BucketAggregation;
//! let agg_req1: Aggregations = vec![
//! (
//! "range".to_string(),
//! Aggregation::Bucket(BucketAggregation {
//! bucket_agg: BucketAggregationType::Range(RangeAggregation{
//! field: "score".to_string(),
//! ranges: vec![(3f64..7f64).into(), (7f64..20f64).into()],
//! keyed: false,
//! }),
//! sub_aggregation: Default::default(),
//! }),
//! ),
//! ]
//! .into_iter()
//! .collect();
//!
//! let elasticsearch_compatible_json_req = r#"
//! {
//! "range": {
//! "range": {
//! "field": "score",
//! "ranges": [
//! { "from": 3.0, "to": 7.0 },
//! { "from": 7.0, "to": 20.0 }
//! ]
//! }
//! }
//! }"#;
//! let agg_req2: Aggregations = serde_json::from_str(elasticsearch_compatible_json_req).unwrap();
//! assert_eq!(agg_req1, agg_req2);
//! ```
use std::collections::{HashMap, HashSet};
use serde::{Deserialize, Serialize};
pub use super::bucket::RangeAggregation;
use super::bucket::{HistogramAggregation, TermsAggregation};
use super::metric::{AverageAggregation, StatsAggregation};
use super::VecWithNames;
/// The top-level aggregation request structure, which contains [`Aggregation`] and their user
/// defined names. It is also used in [buckets](BucketAggregation) to define sub-aggregations.
///
/// The key is the user defined name of the aggregation.
pub type Aggregations = HashMap<String, Aggregation>;
/// Like Aggregations, but optimized to work with the aggregation result
#[derive(Clone, Debug)]
pub(crate) struct AggregationsInternal {
pub(crate) metrics: VecWithNames<MetricAggregation>,
pub(crate) buckets: VecWithNames<BucketAggregationInternal>,
}
impl From<Aggregations> for AggregationsInternal {
fn from(aggs: Aggregations) -> Self {
let mut metrics = vec![];
let mut buckets = vec![];
for (key, agg) in aggs {
match agg {
Aggregation::Bucket(bucket) => buckets.push((
key,
BucketAggregationInternal {
bucket_agg: bucket.bucket_agg,
sub_aggregation: bucket.sub_aggregation.into(),
},
)),
Aggregation::Metric(metric) => metrics.push((key, metric)),
}
}
Self {
metrics: VecWithNames::from_entries(metrics),
buckets: VecWithNames::from_entries(buckets),
}
}
}
#[derive(Clone, Debug)]
// Like BucketAggregation, but optimized to work with the result
pub(crate) struct BucketAggregationInternal {
/// Bucket aggregation strategy to group documents.
pub bucket_agg: BucketAggregationType,
/// The sub_aggregations in the buckets. Each bucket will aggregate on the document set in the
/// bucket.
pub sub_aggregation: AggregationsInternal,
}
impl BucketAggregationInternal {
pub(crate) fn as_range(&self) -> Option<&RangeAggregation> {
match &self.bucket_agg {
BucketAggregationType::Range(range) => Some(range),
_ => None,
}
}
pub(crate) fn as_histogram(&self) -> Option<&HistogramAggregation> {
match &self.bucket_agg {
BucketAggregationType::Histogram(histogram) => Some(histogram),
_ => None,
}
}
pub(crate) fn as_term(&self) -> Option<&TermsAggregation> {
match &self.bucket_agg {
BucketAggregationType::Terms(terms) => Some(terms),
_ => None,
}
}
}
/// Extract all fields, where the term directory is used in the tree.
pub fn get_term_dict_field_names(aggs: &Aggregations) -> HashSet<String> {
let mut term_dict_field_names = Default::default();
for el in aggs.values() {
el.get_term_dict_field_names(&mut term_dict_field_names)
}
term_dict_field_names
}
/// Extract all fast field names used in the tree.
pub fn get_fast_field_names(aggs: &Aggregations) -> HashSet<String> {
let mut fast_field_names = Default::default();
for el in aggs.values() {
el.get_fast_field_names(&mut fast_field_names)
}
fast_field_names
}
/// Aggregation request of [`BucketAggregation`] or [`MetricAggregation`].
///
/// An aggregation is either a bucket or a metric.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
#[serde(untagged)]
pub enum Aggregation {
/// Bucket aggregation, see [`BucketAggregation`] for details.
Bucket(BucketAggregation),
/// Metric aggregation, see [`MetricAggregation`] for details.
Metric(MetricAggregation),
}
impl Aggregation {
fn get_term_dict_field_names(&self, term_field_names: &mut HashSet<String>) {
if let Aggregation::Bucket(bucket) = self {
bucket.get_term_dict_field_names(term_field_names)
}
}
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
match self {
Aggregation::Bucket(bucket) => bucket.get_fast_field_names(fast_field_names),
Aggregation::Metric(metric) => metric.get_fast_field_names(fast_field_names),
}
}
}
/// BucketAggregations create buckets of documents. Each bucket is associated with a rule which
/// determines whether or not a document in the falls into it. In other words, the buckets
/// effectively define document sets. Buckets are not necessarily disjunct, therefore a document can
/// fall into multiple buckets. In addition to the buckets themselves, the bucket aggregations also
/// compute and return the number of documents for each bucket. Bucket aggregations, as opposed to
/// metric aggregations, can hold sub-aggregations. These sub-aggregations will be aggregated for
/// the buckets created by their "parent" bucket aggregation. There are different bucket
/// aggregators, each with a different "bucketing" strategy. Some define a single bucket, some
/// define fixed number of multiple buckets, and others dynamically create the buckets during the
/// aggregation process.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub struct BucketAggregation {
/// Bucket aggregation strategy to group documents.
#[serde(flatten)]
pub bucket_agg: BucketAggregationType,
/// The sub_aggregations in the buckets. Each bucket will aggregate on the document set in the
/// bucket.
#[serde(rename = "aggs")]
#[serde(default)]
#[serde(skip_serializing_if = "Aggregations::is_empty")]
pub sub_aggregation: Aggregations,
}
impl BucketAggregation {
fn get_term_dict_field_names(&self, term_dict_field_names: &mut HashSet<String>) {
if let BucketAggregationType::Terms(terms) = &self.bucket_agg {
term_dict_field_names.insert(terms.field.to_string());
}
term_dict_field_names.extend(get_term_dict_field_names(&self.sub_aggregation));
}
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
self.bucket_agg.get_fast_field_names(fast_field_names);
fast_field_names.extend(get_fast_field_names(&self.sub_aggregation));
}
}
/// The bucket aggregation types.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum BucketAggregationType {
/// Put data into buckets of user-defined ranges.
#[serde(rename = "range")]
Range(RangeAggregation),
/// Put data into buckets of user-defined ranges.
#[serde(rename = "histogram")]
Histogram(HistogramAggregation),
/// Put data into buckets of terms.
#[serde(rename = "terms")]
Terms(TermsAggregation),
}
impl BucketAggregationType {
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
match self {
BucketAggregationType::Terms(terms) => fast_field_names.insert(terms.field.to_string()),
BucketAggregationType::Range(range) => fast_field_names.insert(range.field.to_string()),
BucketAggregationType::Histogram(histogram) => {
fast_field_names.insert(histogram.field.to_string())
}
};
}
}
/// The aggregations in this family compute metrics based on values extracted
/// from the documents that are being aggregated. Values are extracted from the fast field of
/// the document.
/// Some aggregations output a single numeric metric (e.g. Average) and are called
/// single-value numeric metrics aggregation, others generate multiple metrics (e.g. Stats) and are
/// called multi-value numeric metrics aggregation.
#[derive(Clone, Debug, PartialEq, Serialize, Deserialize)]
pub enum MetricAggregation {
/// Calculates the average.
#[serde(rename = "avg")]
Average(AverageAggregation),
/// Calculates stats sum, average, min, max, standard_deviation on a field.
#[serde(rename = "stats")]
Stats(StatsAggregation),
}
impl MetricAggregation {
fn get_fast_field_names(&self, fast_field_names: &mut HashSet<String>) {
match self {
MetricAggregation::Average(avg) => fast_field_names.insert(avg.field.to_string()),
MetricAggregation::Stats(stats) => fast_field_names.insert(stats.field.to_string()),
};
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn serialize_to_json_test() {
let agg_req1: Aggregations = vec![(
"range".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "score".to_string(),
ranges: vec![
(f64::MIN..3f64).into(),
(3f64..7f64).into(),
(7f64..20f64).into(),
(20f64..f64::MAX).into(),
],
keyed: true,
}),
sub_aggregation: Default::default(),
}),
)]
.into_iter()
.collect();
let elasticsearch_compatible_json_req = r#"{
"range": {
"range": {
"field": "score",
"ranges": [
{
"to": 3.0
},
{
"from": 3.0,
"to": 7.0
},
{
"from": 7.0,
"to": 20.0
},
{
"from": 20.0
}
],
"keyed": true
}
}
}"#;
let agg_req2: String = serde_json::to_string_pretty(&agg_req1).unwrap();
assert_eq!(agg_req2, elasticsearch_compatible_json_req);
}
#[test]
fn test_get_fast_field_names() {
let agg_req2: Aggregations = vec![
(
"range".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "score2".to_string(),
ranges: vec![
(f64::MIN..3f64).into(),
(3f64..7f64).into(),
(7f64..20f64).into(),
(20f64..f64::MAX).into(),
],
..Default::default()
}),
sub_aggregation: Default::default(),
}),
),
(
"metric".to_string(),
Aggregation::Metric(MetricAggregation::Average(
AverageAggregation::from_field_name("field123".to_string()),
)),
),
]
.into_iter()
.collect();
let agg_req1: Aggregations = vec![(
"range".to_string(),
Aggregation::Bucket(BucketAggregation {
bucket_agg: BucketAggregationType::Range(RangeAggregation {
field: "score".to_string(),
ranges: vec![
(f64::MIN..3f64).into(),
(3f64..7f64).into(),
(7f64..20f64).into(),
(20f64..f64::MAX).into(),
],
..Default::default()
}),
sub_aggregation: agg_req2,
}),
)]
.into_iter()
.collect();
assert_eq!(
get_fast_field_names(&agg_req1),
vec![
"score".to_string(),
"score2".to_string(),
"field123".to_string()
]
.into_iter()
.collect()
)
}
}