Files
tantivy/src/aggregation/accessor_helpers.rs
Paul Masurel c363bbd23d Optimize term aggregation with low cardinality + some refactoring (#2740)
This introduce an optimization of top level term aggregation on field with a low cardinality.

We then use a Vec as the underlying map.
In addition, we buffer subaggregations.

---------

Co-authored-by: Pascal Seitz <pascal.seitz@datadoghq.com>
Co-authored-by: Paul Masurel <paul@quickwit.io>
2025-11-21 14:46:29 +01:00

106 lines
3.7 KiB
Rust

//! This will enhance the request tree with access to the fastfield and metadata.
use std::io;
use columnar::{Column, ColumnType};
use crate::aggregation::{f64_to_fastfield_u64, Key};
use crate::index::SegmentReader;
/// Get the missing value as internal u64 representation
///
/// For terms we use u64::MAX as sentinel value
/// For numerical data we convert the value into the representation
/// we would get from the fast field, when we open it as u64_lenient_for_type.
///
/// That way we can use it the same way as if it would come from the fastfield.
pub(crate) fn get_missing_val_as_u64_lenient(
column_type: ColumnType,
column_max_value: u64,
missing: &Key,
field_name: &str,
) -> crate::Result<Option<u64>> {
let missing_val = match missing {
Key::Str(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
// Allow fallback to number on text fields
Key::F64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
Key::U64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
Key::I64(_) if column_type == ColumnType::Str => Some(column_max_value + 1),
Key::F64(val) if column_type.numerical_type().is_some() => {
f64_to_fastfield_u64(*val, &column_type)
}
// NOTE: We may loose precision of the passed missing value by casting i64 and u64 to f64.
Key::I64(val) if column_type.numerical_type().is_some() => {
f64_to_fastfield_u64(*val as f64, &column_type)
}
Key::U64(val) if column_type.numerical_type().is_some() => {
f64_to_fastfield_u64(*val as f64, &column_type)
}
_ => {
return Err(crate::TantivyError::InvalidArgument(format!(
"Missing value {missing:?} for field {field_name} is not supported for column \
type {column_type:?}"
)));
}
};
Ok(missing_val)
}
pub(crate) fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
&[
ColumnType::F64,
ColumnType::U64,
ColumnType::I64,
ColumnType::DateTime,
]
}
/// Get fast field reader or empty as default.
pub(crate) fn get_ff_reader(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
let ff_fields = reader.fast_fields();
let ff_field_with_type = ff_fields
.u64_lenient_for_type(allowed_column_types, field_name)?
.unwrap_or_else(|| {
(
Column::build_empty_column(reader.num_docs()),
ColumnType::U64,
)
});
Ok(ff_field_with_type)
}
pub(crate) fn get_dynamic_columns(
reader: &SegmentReader,
field_name: &str,
) -> crate::Result<Vec<columnar::DynamicColumn>> {
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
let cols = ff_fields
.iter()
.map(|h| h.open())
.collect::<io::Result<_>>()?;
assert!(!ff_fields.is_empty(), "field {field_name} not found");
Ok(cols)
}
/// Get all fast field reader or empty as default.
///
/// Is guaranteed to return at least one column.
pub(crate) fn get_all_ff_reader_or_empty(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
fallback_type: ColumnType,
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
let ff_fields = reader.fast_fields();
let mut ff_field_with_type =
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
if ff_field_with_type.is_empty() {
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
}
Ok(ff_field_with_type)
}