Files
tantivy/common/src/lib.rs
2025-08-01 11:54:29 +09:00

211 lines
5.9 KiB
Rust

// manual divceil actually generates code that is not optimal (to accept the full range of u32) and
// perf matters here.
#![allow(clippy::len_without_is_empty, clippy::manual_div_ceil)]
use std::ops::Deref;
pub use byteorder::LittleEndian as Endianness;
mod bitset;
pub mod bounds;
mod byte_count;
mod datetime;
pub mod file_slice;
mod group_by;
pub mod json_path_writer;
mod serialize;
mod vint;
mod writer;
pub use bitset::*;
pub use byte_count::ByteCount;
pub use datetime::{DateTime, DateTimePrecision};
pub use group_by::GroupByIteratorExtended;
pub use json_path_writer::JsonPathWriter;
pub use ownedbytes::{OwnedBytes, StableDeref};
pub use serialize::{BinarySerializable, DeserializeFrom, FixedSize};
pub use vint::{
VInt, VIntU128, read_u32_vint, read_u32_vint_no_advance, serialize_vint_u32, write_u32_vint,
};
pub use writer::{AntiCallToken, CountingWriter, TerminatingWrite};
/// Has length trait
pub trait HasLen {
/// Return length
fn len(&self) -> usize;
/// Returns true iff empty.
fn is_empty(&self) -> bool {
self.len() == 0
}
}
impl<T: Deref<Target = [u8]>> HasLen for T {
fn len(&self) -> usize {
self.deref().len()
}
}
const HIGHEST_BIT: u64 = 1 << 63;
/// Maps a `i64` to `u64`
///
/// For simplicity, tantivy internally handles `i64` as `u64`.
/// The mapping is defined by this function.
///
/// Maps `i64` to `u64` so that
/// `-2^63 .. 2^63-1` is mapped
/// to
/// `0 .. 2^64-1`
/// in that order.
///
/// This is more suited than simply casting (`val as u64`)
/// because of bitpacking.
///
/// Imagine a list of `i64` ranging from -10 to 10.
/// When casting negative values, the negative values are projected
/// to values over 2^63, and all values end up requiring 64 bits.
///
/// # See also
/// The reverse mapping is [`u64_to_i64()`].
#[inline]
pub fn i64_to_u64(val: i64) -> u64 {
(val as u64) ^ HIGHEST_BIT
}
/// Reverse the mapping given by [`i64_to_u64()`].
#[inline]
pub fn u64_to_i64(val: u64) -> i64 {
(val ^ HIGHEST_BIT) as i64
}
/// Maps a `f64` to `u64`
///
/// For simplicity, tantivy internally handles `f64` as `u64`.
/// The mapping is defined by this function.
///
/// Maps `f64` to `u64` in a monotonic manner, so that bytes lexical order is preserved.
///
/// This is more suited than simply casting (`val as u64`)
/// which would truncate the result
///
/// # Reference
///
/// Daniel Lemire's [blog post](https://lemire.me/blog/2020/12/14/converting-floating-point-numbers-to-integers-while-preserving-order/)
/// explains the mapping in a clear manner.
///
/// # See also
/// The reverse mapping is [`u64_to_f64()`].
#[inline]
pub fn f64_to_u64(val: f64) -> u64 {
let bits = val.to_bits();
if val.is_sign_positive() {
bits ^ HIGHEST_BIT
} else {
!bits
}
}
/// Reverse the mapping given by [`f64_to_u64()`].
#[inline]
pub fn u64_to_f64(val: u64) -> f64 {
f64::from_bits(if val & HIGHEST_BIT != 0 {
val ^ HIGHEST_BIT
} else {
!val
})
}
/// Replaces a given byte in the `bytes` slice of bytes.
///
/// This function assumes that the needle is rarely contained in the bytes string
/// and offers a fast path if the needle is not present.
#[inline]
pub fn replace_in_place(needle: u8, replacement: u8, bytes: &mut [u8]) {
if !bytes.contains(&needle) {
return;
}
for b in bytes {
if *b == needle {
*b = replacement;
}
}
}
#[cfg(test)]
pub(crate) mod test {
use proptest::prelude::*;
use super::{f64_to_u64, i64_to_u64, u64_to_f64, u64_to_i64};
fn test_i64_converter_helper(val: i64) {
assert_eq!(u64_to_i64(i64_to_u64(val)), val);
}
fn test_f64_converter_helper(val: f64) {
assert_eq!(u64_to_f64(f64_to_u64(val)), val);
}
proptest! {
#[test]
fn test_f64_converter_monotonicity_proptest((left, right) in (proptest::num::f64::NORMAL, proptest::num::f64::NORMAL)) {
let left_u64 = f64_to_u64(left);
let right_u64 = f64_to_u64(right);
assert_eq!(left_u64 < right_u64, left < right);
}
}
#[test]
fn test_i64_converter() {
assert_eq!(i64_to_u64(i64::MIN), u64::MIN);
assert_eq!(i64_to_u64(i64::MAX), u64::MAX);
test_i64_converter_helper(0i64);
test_i64_converter_helper(i64::MIN);
test_i64_converter_helper(i64::MAX);
for i in -1000i64..1000i64 {
test_i64_converter_helper(i);
}
}
#[test]
fn test_f64_converter() {
test_f64_converter_helper(f64::INFINITY);
test_f64_converter_helper(f64::NEG_INFINITY);
test_f64_converter_helper(0.0);
test_f64_converter_helper(-0.0);
test_f64_converter_helper(1.0);
test_f64_converter_helper(-1.0);
}
#[test]
fn test_f64_order() {
assert!(
!(f64_to_u64(f64::NEG_INFINITY)..f64_to_u64(f64::INFINITY))
.contains(&f64_to_u64(f64::NAN))
); // nan is not a number
assert!(f64_to_u64(1.5) > f64_to_u64(1.0)); // same exponent, different mantissa
assert!(f64_to_u64(2.0) > f64_to_u64(1.0)); // same mantissa, different exponent
assert!(f64_to_u64(2.0) > f64_to_u64(1.5)); // different exponent and mantissa
assert!(f64_to_u64(1.0) > f64_to_u64(-1.0)); // pos > neg
assert!(f64_to_u64(-1.5) < f64_to_u64(-1.0));
assert!(f64_to_u64(-2.0) < f64_to_u64(1.0));
assert!(f64_to_u64(-2.0) < f64_to_u64(-1.5));
}
#[test]
fn test_replace_in_place() {
let test_aux = |before_replacement: &[u8], expected: &[u8]| {
let mut bytes: Vec<u8> = before_replacement.to_vec();
super::replace_in_place(b'b', b'c', &mut bytes);
assert_eq!(&bytes[..], expected);
};
test_aux(b"", b"");
test_aux(b"b", b"c");
test_aux(b"baaa", b"caaa");
test_aux(b"aaab", b"aaac");
test_aux(b"aaabaa", b"aaacaa");
test_aux(b"aaaaaa", b"aaaaaa");
test_aux(b"bbbb", b"cccc");
}
}