Files
tantivy/src/aggregation/agg_req_with_accessor.rs
giovannicuccu 1095c9b073 Issue 1787 extended stats (#2247)
* first version of extended stats along with its tests

* using IntermediateExtendStats instead of IntermediateStats with all tests passing

* Created struct for request and response

* first test with extended_stats

* kahan summation and tests with approximate equality

* version ready for merge

* removed approx dependency

* refactor for using ExtendedStats only when needed

* interim version

* refined version with code formatted

* refactored a struct

* cosmetic refactor

* fix after merge

* fix format

* added extended_stat bench

* merge and new benchmark for extended stats

* split stat segment collectors

* wrapped intermediate extended stat with a box to limit memory usage

* Revert "wrapped intermediate extended stat with a box to limit memory usage"

This reverts commit 5b4aa9f393.

* some code reformat, commented kahan summation

* refactor after review

* refactor after code review

* fix after incorrectly restoring kahan summation

* modifications for code review + bug fix in merge_fruit

* refactor assert_nearly_equals macro

* update after code review

---------

Co-authored-by: Giovanni Cuccu <gcuccu@imolainformatica.it>
2024-06-04 14:25:17 +08:00

431 lines
16 KiB
Rust

//! This will enhance the request tree with access to the fastfield and metadata.
use std::collections::HashMap;
use std::io;
use columnar::{Column, ColumnBlockAccessor, ColumnType, DynamicColumn, StrColumn};
use super::agg_limits::ResourceLimitGuard;
use super::agg_req::{Aggregation, AggregationVariants, Aggregations};
use super::bucket::{
DateHistogramAggregationReq, HistogramAggregation, RangeAggregation, TermsAggregation,
};
use super::metric::{
AverageAggregation, CountAggregation, ExtendedStatsAggregation, MaxAggregation, MinAggregation,
StatsAggregation, SumAggregation,
};
use super::segment_agg_result::AggregationLimits;
use super::VecWithNames;
use crate::aggregation::{f64_to_fastfield_u64, Key};
use crate::index::SegmentReader;
use crate::SegmentOrdinal;
#[derive(Default)]
pub(crate) struct AggregationsWithAccessor {
pub aggs: VecWithNames<AggregationWithAccessor>,
}
impl AggregationsWithAccessor {
fn from_data(aggs: VecWithNames<AggregationWithAccessor>) -> Self {
Self { aggs }
}
pub fn is_empty(&self) -> bool {
self.aggs.is_empty()
}
}
pub struct AggregationWithAccessor {
pub(crate) segment_ordinal: SegmentOrdinal,
/// In general there can be buckets without fast field access, e.g. buckets that are created
/// based on search terms. That is not that case currently, but eventually this needs to be
/// Option or moved.
pub(crate) accessor: Column<u64>,
/// Load insert u64 for missing use case
pub(crate) missing_value_for_accessor: Option<u64>,
pub(crate) str_dict_column: Option<StrColumn>,
pub(crate) field_type: ColumnType,
pub(crate) sub_aggregation: AggregationsWithAccessor,
pub(crate) limits: ResourceLimitGuard,
pub(crate) column_block_accessor: ColumnBlockAccessor<u64>,
/// Used for missing term aggregation, which checks all columns for existence.
/// And also for `top_hits` aggregation, which may sort on multiple fields.
/// By convention the missing aggregation is chosen, when this property is set
/// (instead bein set in `agg`).
/// If this needs to used by other aggregations, we need to refactor this.
// NOTE: we can make all other aggregations use this instead of the `accessor` and `field_type`
// (making them obsolete) But will it have a performance impact?
pub(crate) accessors: Vec<(Column<u64>, ColumnType)>,
/// Map field names to all associated column accessors.
/// This field is used for `docvalue_fields`, which is currently only supported for `top_hits`.
pub(crate) value_accessors: HashMap<String, Vec<DynamicColumn>>,
pub(crate) agg: Aggregation,
}
impl AggregationWithAccessor {
/// May return multiple accessors if the aggregation is e.g. on mixed field types.
fn try_from_agg(
agg: &Aggregation,
sub_aggregation: &Aggregations,
reader: &SegmentReader,
segment_ordinal: SegmentOrdinal,
limits: AggregationLimits,
) -> crate::Result<Vec<AggregationWithAccessor>> {
let mut agg = agg.clone();
let add_agg_with_accessor = |agg: &Aggregation,
accessor: Column<u64>,
column_type: ColumnType,
aggs: &mut Vec<AggregationWithAccessor>|
-> crate::Result<()> {
let res = AggregationWithAccessor {
segment_ordinal,
accessor,
accessors: Default::default(),
value_accessors: Default::default(),
field_type: column_type,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
segment_ordinal,
&limits,
)?,
agg: agg.clone(),
limits: limits.new_guard(),
missing_value_for_accessor: None,
str_dict_column: None,
column_block_accessor: Default::default(),
};
aggs.push(res);
Ok(())
};
let add_agg_with_accessors = |agg: &Aggregation,
accessors: Vec<(Column<u64>, ColumnType)>,
aggs: &mut Vec<AggregationWithAccessor>,
value_accessors: HashMap<String, Vec<DynamicColumn>>|
-> crate::Result<()> {
let (accessor, field_type) = accessors.first().expect("at least one accessor");
let res = AggregationWithAccessor {
segment_ordinal,
// TODO: We should do away with the `accessor` field altogether
accessor: accessor.clone(),
value_accessors,
field_type: *field_type,
accessors,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
segment_ordinal,
&limits,
)?,
agg: agg.clone(),
limits: limits.new_guard(),
missing_value_for_accessor: None,
str_dict_column: None,
column_block_accessor: Default::default(),
};
aggs.push(res);
Ok(())
};
let mut res: Vec<AggregationWithAccessor> = Vec::new();
use AggregationVariants::*;
match agg.agg {
Range(RangeAggregation {
field: ref field_name,
..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
}
Histogram(HistogramAggregation {
field: ref field_name,
..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
}
DateHistogram(DateHistogramAggregationReq {
field: ref field_name,
..
}) => {
let (accessor, column_type) =
// Only DateTime is supported for DateHistogram
get_ff_reader(reader, field_name, Some(&[ColumnType::DateTime]))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
}
Terms(TermsAggregation {
field: ref field_name,
ref missing,
..
}) => {
let str_dict_column = reader.fast_fields().str(field_name)?;
let allowed_column_types = [
ColumnType::I64,
ColumnType::U64,
ColumnType::F64,
ColumnType::Str,
ColumnType::DateTime,
ColumnType::Bool,
ColumnType::IpAddr,
// ColumnType::Bytes Unsupported
];
// In case the column is empty we want the shim column to match the missing type
let fallback_type = missing
.as_ref()
.map(|missing| match missing {
Key::Str(_) => ColumnType::Str,
Key::F64(_) => ColumnType::F64,
})
.unwrap_or(ColumnType::U64);
let column_and_types = get_all_ff_reader_or_empty(
reader,
field_name,
Some(&allowed_column_types),
fallback_type,
)?;
let missing_and_more_than_one_col = column_and_types.len() > 1 && missing.is_some();
let text_on_non_text_col = column_and_types.len() == 1
&& column_and_types[0].1.numerical_type().is_some()
&& missing
.as_ref()
.map(|m| matches!(m, Key::Str(_)))
.unwrap_or(false);
// Actually we could convert the text to a number and have the fast path, if it is
// provided in Rfc3339 format. But this use case is probably common
// enough to justify the effort.
let text_on_date_col = column_and_types.len() == 1
&& column_and_types[0].1 == ColumnType::DateTime
&& missing
.as_ref()
.map(|m| matches!(m, Key::Str(_)))
.unwrap_or(false);
let use_special_missing_agg =
missing_and_more_than_one_col || text_on_non_text_col || text_on_date_col;
if use_special_missing_agg {
let column_and_types =
get_all_ff_reader_or_empty(reader, field_name, None, fallback_type)?;
let accessors = column_and_types
.iter()
.map(|c_t| (c_t.0.clone(), c_t.1))
.collect();
add_agg_with_accessors(&agg, accessors, &mut res, Default::default())?;
}
for (accessor, column_type) in column_and_types {
let missing_value_term_agg = if use_special_missing_agg {
None
} else {
missing.clone()
};
let missing_value_for_accessor = if let Some(missing) =
missing_value_term_agg.as_ref()
{
get_missing_val(column_type, missing, agg.agg.get_fast_field_names()[0])?
} else {
None
};
let agg = AggregationWithAccessor {
segment_ordinal,
missing_value_for_accessor,
accessor,
accessors: Default::default(),
value_accessors: Default::default(),
field_type: column_type,
sub_aggregation: get_aggs_with_segment_accessor_and_validate(
sub_aggregation,
reader,
segment_ordinal,
&limits,
)?,
agg: agg.clone(),
str_dict_column: str_dict_column.clone(),
limits: limits.new_guard(),
column_block_accessor: Default::default(),
};
res.push(agg);
}
}
Average(AverageAggregation {
field: ref field_name,
..
})
| Count(CountAggregation {
field: ref field_name,
..
})
| Max(MaxAggregation {
field: ref field_name,
..
})
| Min(MinAggregation {
field: ref field_name,
..
})
| Stats(StatsAggregation {
field: ref field_name,
..
})
| ExtendedStats(ExtendedStatsAggregation {
field: ref field_name,
..
})
| Sum(SumAggregation {
field: ref field_name,
..
}) => {
let (accessor, column_type) =
get_ff_reader(reader, field_name, Some(get_numeric_or_date_column_types()))?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
}
Percentiles(ref percentiles) => {
let (accessor, column_type) = get_ff_reader(
reader,
percentiles.field_name(),
Some(get_numeric_or_date_column_types()),
)?;
add_agg_with_accessor(&agg, accessor, column_type, &mut res)?;
}
TopHits(ref mut top_hits) => {
top_hits.validate_and_resolve_field_names(reader.fast_fields().columnar())?;
let accessors: Vec<(Column<u64>, ColumnType)> = top_hits
.field_names()
.iter()
.map(|field| {
get_ff_reader(reader, field, Some(get_numeric_or_date_column_types()))
})
.collect::<crate::Result<_>>()?;
let value_accessors = top_hits
.value_field_names()
.iter()
.map(|field_name| {
Ok((
field_name.to_string(),
get_dynamic_columns(reader, field_name)?,
))
})
.collect::<crate::Result<_>>()?;
add_agg_with_accessors(&agg, accessors, &mut res, value_accessors)?;
}
};
Ok(res)
}
}
fn get_missing_val(
column_type: ColumnType,
missing: &Key,
field_name: &str,
) -> crate::Result<Option<u64>> {
let missing_val = match missing {
Key::Str(_) if column_type == ColumnType::Str => Some(u64::MAX),
// Allow fallback to number on text fields
Key::F64(_) if column_type == ColumnType::Str => Some(u64::MAX),
Key::F64(val) if column_type.numerical_type().is_some() => {
f64_to_fastfield_u64(*val, &column_type)
}
_ => {
return Err(crate::TantivyError::InvalidArgument(format!(
"Missing value {missing:?} for field {field_name} is not supported for column \
type {column_type:?}"
)));
}
};
Ok(missing_val)
}
fn get_numeric_or_date_column_types() -> &'static [ColumnType] {
&[
ColumnType::F64,
ColumnType::U64,
ColumnType::I64,
ColumnType::DateTime,
]
}
pub(crate) fn get_aggs_with_segment_accessor_and_validate(
aggs: &Aggregations,
reader: &SegmentReader,
segment_ordinal: SegmentOrdinal,
limits: &AggregationLimits,
) -> crate::Result<AggregationsWithAccessor> {
let mut aggss = Vec::new();
for (key, agg) in aggs.iter() {
let aggs = AggregationWithAccessor::try_from_agg(
agg,
agg.sub_aggregation(),
reader,
segment_ordinal,
limits.clone(),
)?;
for agg in aggs {
aggss.push((key.to_string(), agg));
}
}
Ok(AggregationsWithAccessor::from_data(
VecWithNames::from_entries(aggss),
))
}
/// Get fast field reader or empty as default.
fn get_ff_reader(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
) -> crate::Result<(columnar::Column<u64>, ColumnType)> {
let ff_fields = reader.fast_fields();
let ff_field_with_type = ff_fields
.u64_lenient_for_type(allowed_column_types, field_name)?
.unwrap_or_else(|| {
(
Column::build_empty_column(reader.num_docs()),
ColumnType::U64,
)
});
Ok(ff_field_with_type)
}
fn get_dynamic_columns(
reader: &SegmentReader,
field_name: &str,
) -> crate::Result<Vec<columnar::DynamicColumn>> {
let ff_fields = reader.fast_fields().dynamic_column_handles(field_name)?;
let cols = ff_fields
.iter()
.map(|h| h.open())
.collect::<io::Result<_>>()?;
assert!(!ff_fields.is_empty(), "field {field_name} not found");
Ok(cols)
}
/// Get all fast field reader or empty as default.
///
/// Is guaranteed to return at least one column.
fn get_all_ff_reader_or_empty(
reader: &SegmentReader,
field_name: &str,
allowed_column_types: Option<&[ColumnType]>,
fallback_type: ColumnType,
) -> crate::Result<Vec<(columnar::Column<u64>, ColumnType)>> {
let ff_fields = reader.fast_fields();
let mut ff_field_with_type =
ff_fields.u64_lenient_for_type_all(allowed_column_types, field_name)?;
if ff_field_with_type.is_empty() {
ff_field_with_type.push((Column::build_empty_column(reader.num_docs()), fallback_type));
}
Ok(ff_field_with_type)
}