Files
tantivy/src/query/term_query/term_scorer.rs
PSeitz eea70030bf cleanup top level exports (#2382)
remove some top level exports
2024-05-07 09:59:41 +02:00

337 lines
12 KiB
Rust

use crate::docset::DocSet;
use crate::fieldnorm::FieldNormReader;
use crate::postings::{FreqReadingOption, Postings, SegmentPostings};
use crate::query::bm25::Bm25Weight;
use crate::query::{Explanation, Scorer};
use crate::{DocId, Score};
#[derive(Clone)]
pub struct TermScorer {
postings: SegmentPostings,
fieldnorm_reader: FieldNormReader,
similarity_weight: Bm25Weight,
}
impl TermScorer {
pub fn new(
postings: SegmentPostings,
fieldnorm_reader: FieldNormReader,
similarity_weight: Bm25Weight,
) -> TermScorer {
TermScorer {
postings,
fieldnorm_reader,
similarity_weight,
}
}
pub(crate) fn shallow_seek(&mut self, target_doc: DocId) {
self.postings.block_cursor.shallow_seek(target_doc);
}
#[cfg(test)]
pub fn create_for_test(
doc_and_tfs: &[(DocId, u32)],
fieldnorms: &[u32],
similarity_weight: Bm25Weight,
) -> TermScorer {
assert!(!doc_and_tfs.is_empty());
assert!(
doc_and_tfs
.iter()
.map(|(doc, _tf)| *doc)
.max()
.unwrap_or(0u32)
< fieldnorms.len() as u32
);
let segment_postings =
SegmentPostings::create_from_docs_and_tfs(doc_and_tfs, Some(fieldnorms));
let fieldnorm_reader = FieldNormReader::for_test(fieldnorms);
TermScorer::new(segment_postings, fieldnorm_reader, similarity_weight)
}
/// See `FreqReadingOption`.
pub(crate) fn freq_reading_option(&self) -> FreqReadingOption {
self.postings.block_cursor.freq_reading_option()
}
/// Returns the maximum score for the current block.
///
/// In some rare case, the result may not be exact. In this case a lower value is returned,
/// (and may lead us to return a lesser document).
///
/// At index time, we store the (fieldnorm_id, term frequency) pair that maximizes the
/// score assuming the average fieldnorm computed on this segment.
///
/// Though extremely rare, it is theoretically possible that the actual average fieldnorm
/// is different enough from the current segment average fieldnorm that the maximum over a
/// specific is achieved on a different document.
///
/// (The result is on the other hand guaranteed to be correct if there is only one segment).
pub fn block_max_score(&mut self) -> Score {
self.postings
.block_cursor
.block_max_score(&self.fieldnorm_reader, &self.similarity_weight)
}
pub fn term_freq(&self) -> u32 {
self.postings.term_freq()
}
pub fn fieldnorm_id(&self) -> u8 {
self.fieldnorm_reader.fieldnorm_id(self.doc())
}
pub fn explain(&self) -> Explanation {
let fieldnorm_id = self.fieldnorm_id();
let term_freq = self.term_freq();
self.similarity_weight.explain(fieldnorm_id, term_freq)
}
pub fn max_score(&self) -> Score {
self.similarity_weight.max_score()
}
pub fn last_doc_in_block(&self) -> DocId {
self.postings.block_cursor.skip_reader().last_doc_in_block()
}
}
impl DocSet for TermScorer {
fn advance(&mut self) -> DocId {
self.postings.advance()
}
fn seek(&mut self, target: DocId) -> DocId {
self.postings.seek(target)
}
fn doc(&self) -> DocId {
self.postings.doc()
}
fn size_hint(&self) -> u32 {
self.postings.size_hint()
}
}
impl Scorer for TermScorer {
fn score(&mut self) -> Score {
let fieldnorm_id = self.fieldnorm_id();
let term_freq = self.term_freq();
self.similarity_weight.score(fieldnorm_id, term_freq)
}
}
#[cfg(test)]
mod tests {
use proptest::prelude::*;
use crate::index::SegmentId;
use crate::indexer::index_writer::MEMORY_BUDGET_NUM_BYTES_MIN;
use crate::merge_policy::NoMergePolicy;
use crate::postings::compression::COMPRESSION_BLOCK_SIZE;
use crate::query::term_query::TermScorer;
use crate::query::{Bm25Weight, EnableScoring, Scorer, TermQuery};
use crate::schema::{IndexRecordOption, Schema, TEXT};
use crate::{
assert_nearly_equals, DocId, DocSet, Index, IndexWriter, Score, Searcher, Term, TERMINATED,
};
#[test]
fn test_term_scorer_max_score() -> crate::Result<()> {
let bm25_weight = Bm25Weight::for_one_term(3, 6, 10.0);
let mut term_scorer = TermScorer::create_for_test(
&[(2, 3), (3, 12), (7, 8)],
&[0, 0, 10, 12, 0, 0, 0, 100],
bm25_weight,
);
let max_scorer = term_scorer.max_score();
crate::assert_nearly_equals!(max_scorer, 1.3990127);
assert_eq!(term_scorer.doc(), 2);
assert_eq!(term_scorer.term_freq(), 3);
assert_nearly_equals!(term_scorer.block_max_score(), 1.3676447);
assert_nearly_equals!(term_scorer.score(), 1.0892314);
assert_eq!(term_scorer.advance(), 3);
assert_eq!(term_scorer.doc(), 3);
assert_eq!(term_scorer.term_freq(), 12);
assert_nearly_equals!(term_scorer.score(), 1.3676447);
assert_eq!(term_scorer.advance(), 7);
assert_eq!(term_scorer.doc(), 7);
assert_eq!(term_scorer.term_freq(), 8);
assert_nearly_equals!(term_scorer.score(), 0.72015285);
assert_eq!(term_scorer.advance(), TERMINATED);
Ok(())
}
#[test]
fn test_term_scorer_shallow_advance() -> crate::Result<()> {
let bm25_weight = Bm25Weight::for_one_term(300, 1024, 10.0);
let mut doc_and_tfs = vec![];
for i in 0u32..300u32 {
let doc = i * 10;
doc_and_tfs.push((doc, 1u32 + doc % 3u32));
}
let fieldnorms: Vec<u32> = std::iter::repeat(10u32).take(3_000).collect();
let mut term_scorer = TermScorer::create_for_test(&doc_and_tfs, &fieldnorms, bm25_weight);
assert_eq!(term_scorer.doc(), 0u32);
term_scorer.shallow_seek(1289);
assert_eq!(term_scorer.doc(), 0u32);
term_scorer.seek(1289);
assert_eq!(term_scorer.doc(), 1290);
Ok(())
}
proptest! {
#[test]
fn test_term_scorer_block_max_score(term_freqs_fieldnorms in proptest::collection::vec((1u32..10u32, 0u32..100u32), 80..300)) {
let term_doc_freq = term_freqs_fieldnorms.len();
let doc_tfs: Vec<(u32, u32)> = term_freqs_fieldnorms.iter()
.cloned()
.enumerate()
.map(|(doc, (tf, _))| (doc as u32, tf))
.collect();
let mut fieldnorms: Vec<u32> = vec![];
for item in term_freqs_fieldnorms.iter().take(term_doc_freq) {
let (tf, num_extra_terms) = item;
fieldnorms.push(tf + num_extra_terms);
}
let average_fieldnorm = fieldnorms
.iter()
.cloned()
.sum::<u32>() as Score / term_doc_freq as Score;
// Average fieldnorm is over the entire index,
// not necessarily the docs that are in the posting list.
// For this reason we multiply by 1.1 to make a realistic value.
let bm25_weight = Bm25Weight::for_one_term(term_doc_freq as u64,
term_doc_freq as u64 * 10u64,
average_fieldnorm);
let mut term_scorer =
TermScorer::create_for_test(&doc_tfs[..], &fieldnorms[..], bm25_weight);
let docs: Vec<DocId> = (0..term_doc_freq).map(|doc| doc as DocId).collect();
for block in docs.chunks(COMPRESSION_BLOCK_SIZE) {
let block_max_score: Score = term_scorer.block_max_score();
let mut block_max_score_computed: Score = 0.0;
for &doc in block {
assert_eq!(term_scorer.doc(), doc);
block_max_score_computed = block_max_score_computed.max(term_scorer.score());
term_scorer.advance();
}
assert_nearly_equals!(block_max_score_computed, block_max_score);
}
}
}
#[test]
fn test_block_wand() {
let mut doc_tfs: Vec<(u32, u32)> = vec![];
for doc in 0u32..128u32 {
doc_tfs.push((doc, 1u32));
}
for doc in 128u32..256u32 {
doc_tfs.push((doc, if doc == 200 { 2u32 } else { 1u32 }));
}
doc_tfs.push((256, 1u32));
doc_tfs.push((257, 3u32));
doc_tfs.push((258, 1u32));
let fieldnorms: Vec<u32> = std::iter::repeat(20u32).take(300).collect();
let bm25_weight = Bm25Weight::for_one_term(10, 129, 20.0);
let mut docs = TermScorer::create_for_test(&doc_tfs[..], &fieldnorms[..], bm25_weight);
assert_nearly_equals!(docs.block_max_score(), 2.5161593);
docs.shallow_seek(135);
assert_nearly_equals!(docs.block_max_score(), 3.4597192);
docs.shallow_seek(256);
// the block is not loaded yet.
assert_nearly_equals!(docs.block_max_score(), 5.2971773);
assert_eq!(256, docs.seek(256));
assert_nearly_equals!(docs.block_max_score(), 3.9539647);
}
fn test_block_wand_aux(term_query: &TermQuery, searcher: &Searcher) -> crate::Result<()> {
let term_weight =
term_query.specialized_weight(EnableScoring::enabled_from_searcher(searcher))?;
for reader in searcher.segment_readers() {
let mut block_max_scores = vec![];
let mut block_max_scores_b = vec![];
let mut docs = vec![];
{
let mut term_scorer = term_weight.specialized_scorer(reader, 1.0)?;
while term_scorer.doc() != TERMINATED {
let mut score = term_scorer.score();
docs.push(term_scorer.doc());
for _ in 0..128 {
score = score.max(term_scorer.score());
if term_scorer.advance() == TERMINATED {
break;
}
}
block_max_scores.push(score);
}
}
{
let mut term_scorer = term_weight.specialized_scorer(reader, 1.0)?;
for d in docs {
term_scorer.shallow_seek(d);
block_max_scores_b.push(term_scorer.block_max_score());
}
}
for (l, r) in block_max_scores
.iter()
.cloned()
.zip(block_max_scores_b.iter().cloned())
{
assert_nearly_equals!(l, r);
}
}
Ok(())
}
#[ignore]
#[test]
fn test_block_wand_long_test() -> crate::Result<()> {
let mut schema_builder = Schema::builder();
let text_field = schema_builder.add_text_field("text", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
let mut writer: IndexWriter =
index.writer_with_num_threads(3, 3 * MEMORY_BUDGET_NUM_BYTES_MIN)?;
use rand::Rng;
let mut rng = rand::thread_rng();
writer.set_merge_policy(Box::new(NoMergePolicy));
for _ in 0..3_000 {
let term_freq = rng.gen_range(1..10000);
let words: Vec<&str> = std::iter::repeat("bbbb").take(term_freq).collect();
let text = words.join(" ");
writer.add_document(doc!(text_field=>text))?;
}
writer.commit()?;
let term_query = TermQuery::new(
Term::from_field_text(text_field, "bbbb"),
IndexRecordOption::WithFreqs,
);
let segment_ids: Vec<SegmentId>;
let reader = index.reader()?;
{
let searcher = reader.searcher();
segment_ids = searcher
.segment_readers()
.iter()
.map(|segment| segment.segment_id())
.collect();
test_block_wand_aux(&term_query, &searcher)?;
}
writer.merge(&segment_ids[..]).wait().unwrap();
{
reader.reload()?;
let searcher = reader.searcher();
assert_eq!(searcher.segment_readers().len(), 1);
test_block_wand_aux(&term_query, &searcher)?;
}
Ok(())
}
}