Files
tantivy/src/query/fuzzy_query.rs
Joshua Dutton 9f74786db2 Update import statements in examples, doctests (#633)
Update import statements to edition 2018, including removing
`extern crate` and  `#[macro_use]`. Alphabetize the statements.
2019-08-19 07:26:35 +09:00

169 lines
5.7 KiB
Rust

use crate::error::TantivyError::InvalidArgument;
use crate::query::{AutomatonWeight, Query, Weight};
use crate::schema::Term;
use crate::Result;
use crate::Searcher;
use levenshtein_automata::{LevenshteinAutomatonBuilder, DFA};
use once_cell::sync::Lazy;
use std::collections::HashMap;
use std::ops::Range;
/// A range of Levenshtein distances that we will build DFAs for our terms
/// The computation is exponential, so best keep it to low single digits
const VALID_LEVENSHTEIN_DISTANCE_RANGE: Range<u8> = (0..3);
static LEV_BUILDER: Lazy<HashMap<(u8, bool), LevenshteinAutomatonBuilder>> = Lazy::new(|| {
let mut lev_builder_cache = HashMap::new();
// TODO make population lazy on a `(distance, val)` basis
for distance in VALID_LEVENSHTEIN_DISTANCE_RANGE {
for &transposition in &[false, true] {
let lev_automaton_builder = LevenshteinAutomatonBuilder::new(distance, transposition);
lev_builder_cache.insert((distance, transposition), lev_automaton_builder);
}
}
lev_builder_cache
});
/// A Fuzzy Query matches all of the documents
/// containing a specific term that is within
/// Levenshtein distance
/// ```rust
/// use tantivy::collector::{Count, TopDocs};
/// use tantivy::query::FuzzyTermQuery;
/// use tantivy::schema::{Schema, TEXT};
/// use tantivy::{doc, Index, Result, Term};
///
/// # fn main() { example().unwrap(); }
/// fn example() -> Result<()> {
/// let mut schema_builder = Schema::builder();
/// let title = schema_builder.add_text_field("title", TEXT);
/// let schema = schema_builder.build();
/// let index = Index::create_in_ram(schema);
/// {
/// let mut index_writer = index.writer(3_000_000)?;
/// index_writer.add_document(doc!(
/// title => "The Name of the Wind",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of Muadib",
/// ));
/// index_writer.add_document(doc!(
/// title => "A Dairy Cow",
/// ));
/// index_writer.add_document(doc!(
/// title => "The Diary of a Young Girl",
/// ));
/// index_writer.commit().unwrap();
/// }
/// let reader = index.reader()?;
/// let searcher = reader.searcher();
///
/// {
///
/// let term = Term::from_field_text(title, "Diary");
/// let query = FuzzyTermQuery::new(term, 1, true);
/// let (top_docs, count) = searcher.search(&query, &(TopDocs::with_limit(2), Count)).unwrap();
/// assert_eq!(count, 2);
/// assert_eq!(top_docs.len(), 2);
/// }
///
/// Ok(())
/// }
/// ```
#[derive(Debug, Clone)]
pub struct FuzzyTermQuery {
/// What term are we searching
term: Term,
/// How many changes are we going to allow
distance: u8,
/// Should a transposition cost 1 or 2?
transposition_cost_one: bool,
///
prefix: bool,
}
impl FuzzyTermQuery {
/// Creates a new Fuzzy Query
pub fn new(term: Term, distance: u8, transposition_cost_one: bool) -> FuzzyTermQuery {
FuzzyTermQuery {
term,
distance,
transposition_cost_one,
prefix: false,
}
}
/// Creates a new Fuzzy Query that treats transpositions as cost one rather than two
pub fn new_prefix(term: Term, distance: u8, transposition_cost_one: bool) -> FuzzyTermQuery {
FuzzyTermQuery {
term,
distance,
transposition_cost_one,
prefix: true,
}
}
fn specialized_weight(&self) -> Result<AutomatonWeight<DFA>> {
// LEV_BUILDER is a HashMap, whose `get` method returns an Option
match LEV_BUILDER.get(&(self.distance, false)) {
// Unwrap the option and build the Ok(AutomatonWeight)
Some(automaton_builder) => {
let automaton = automaton_builder.build_dfa(self.term.text());
Ok(AutomatonWeight::new(self.term.field(), automaton))
}
None => Err(InvalidArgument(format!(
"Levenshtein distance of {} is not allowed. Choose a value in the {:?} range",
self.distance, VALID_LEVENSHTEIN_DISTANCE_RANGE
))),
}
}
}
impl Query for FuzzyTermQuery {
fn weight(&self, _searcher: &Searcher, _scoring_enabled: bool) -> Result<Box<dyn Weight>> {
Ok(Box::new(self.specialized_weight()?))
}
}
#[cfg(test)]
mod test {
use super::FuzzyTermQuery;
use crate::collector::TopDocs;
use crate::schema::Schema;
use crate::schema::TEXT;
use crate::tests::assert_nearly_equals;
use crate::Index;
use crate::Term;
#[test]
pub fn test_fuzzy_term() {
let mut schema_builder = Schema::builder();
let country_field = schema_builder.add_text_field("country", TEXT);
let schema = schema_builder.build();
let index = Index::create_in_ram(schema);
{
let mut index_writer = index.writer_with_num_threads(1, 10_000_000).unwrap();
index_writer.add_document(doc!(
country_field => "japan",
));
index_writer.add_document(doc!(
country_field => "korea",
));
index_writer.commit().unwrap();
}
let reader = index.reader().unwrap();
let searcher = reader.searcher();
{
let term = Term::from_field_text(country_field, "japon");
let fuzzy_query = FuzzyTermQuery::new(term, 1, true);
let top_docs = searcher
.search(&fuzzy_query, &TopDocs::with_limit(2))
.unwrap();
assert_eq!(top_docs.len(), 1, "Expected only 1 document");
let (score, _) = top_docs[0];
assert_nearly_equals(1f32, score);
}
}
}