Added masking

This commit is contained in:
Vishal Patil
2025-02-14 20:53:21 -05:00
parent 51d4b2605c
commit 6c5d365007

View File

@@ -7,20 +7,41 @@ use candle_nn::{linear, Linear, Module, VarMap};
struct SelfAttention {
d: usize, // Embedding size
masked: bool,
w_q: Linear,
w_k: Linear,
w_v: Linear,
}
fn get_mask(size: usize, device: &Device) -> CandleResult<Tensor> {
let mask: Vec<_> = (0..size)
.flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
.collect();
Tensor::from_slice(&mask, (size, size), device)
}
fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> CandleResult<Tensor> {
let shape = mask.shape();
let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
let m = mask.where_cond(&on_true, on_false)?;
Ok(m)
}
impl SelfAttention {
fn new(d: usize, vb: VarBuilder) -> Result<Self> {
fn new(d: usize, masked: bool, vb: VarBuilder) -> Result<Self> {
let d = d;
let w_q = linear(d, d, vb.pp("w_q"))?;
let w_k = linear(d, d, vb.pp("w_k"))?;
let w_v = linear(d, d, vb.pp("w_v"))?;
Ok(Self { d, w_q, w_k, w_v })
Ok(Self {
d,
masked,
w_q,
w_k,
w_v,
})
}
}
@@ -30,10 +51,14 @@ impl Module for SelfAttention {
let k = self.w_k.forward(x)?;
let v = self.w_v.forward(x)?;
let qk = q.matmul(&k.transpose(1, 0)?)?;
let scale = Tensor::new((self.d as f32).sqrt(), qk.device())?;
let qk = qk.broadcast_div(&scale)?;
let attn_pct = softmax(&qk, 1)?;
let sims = q.matmul(&k.transpose(1, 0)?)?;
let scale = Tensor::new((self.d as f32).sqrt(), sims.device())?;
let mut scaled_sims = sims.broadcast_div(&scale)?;
if self.masked {
let mask = get_mask(scaled_sims.dims()[0], scaled_sims.device())?;
scaled_sims = masked_fill(&scaled_sims, &mask, f32::NEG_INFINITY)?;
}
let attn_pct = softmax(&scaled_sims, 1)?;
let attn_scores = attn_pct.matmul(&v)?;
Ok(attn_scores)
}
@@ -42,7 +67,7 @@ fn main() -> Result<()> {
let device = Device::cuda_if_available(0)?;
let varmap = VarMap::new();
let vs = VarBuilder::from_varmap(&varmap, DType::F32, &device);
let self_attn = SelfAttention::new(2, vs)?;
let self_attn = SelfAttention::new(2, true, vs)?;
let encoding_matrix = Tensor::new(
vec![