mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2025-12-27 16:32:54 +00:00
feat: implement HistogramFold plan for prometheus histogram type (#2626)
* basic impl of fold plan Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * add schema test Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * fill plan attributes Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * fix styles Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * unify variable names Signed-off-by: Ruihang Xia <waynestxia@gmail.com> --------- Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
This commit is contained in:
1
Cargo.lock
generated
1
Cargo.lock
generated
@@ -7034,6 +7034,7 @@ dependencies = [
|
||||
"common-catalog",
|
||||
"common-error",
|
||||
"common-macro",
|
||||
"common-recordbatch",
|
||||
"common-telemetry",
|
||||
"datafusion",
|
||||
"datatypes",
|
||||
|
||||
@@ -12,6 +12,7 @@ catalog = { workspace = true }
|
||||
common-catalog = { workspace = true }
|
||||
common-error = { workspace = true }
|
||||
common-macro = { workspace = true }
|
||||
common-recordbatch = { workspace = true }
|
||||
common-telemetry = { workspace = true }
|
||||
datafusion.workspace = true
|
||||
datatypes = { workspace = true }
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
// limitations under the License.
|
||||
|
||||
mod empty_metric;
|
||||
mod histogram_fold;
|
||||
mod instant_manipulate;
|
||||
mod normalize;
|
||||
mod planner;
|
||||
|
||||
798
src/promql/src/extension_plan/histogram_fold.rs
Normal file
798
src/promql/src/extension_plan/histogram_fold.rs
Normal file
@@ -0,0 +1,798 @@
|
||||
// Copyright 2023 Greptime Team
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::any::Any;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::Arc;
|
||||
use std::task::Poll;
|
||||
use std::time::Instant;
|
||||
|
||||
use common_recordbatch::RecordBatch as GtRecordBatch;
|
||||
use common_telemetry::warn;
|
||||
use datafusion::arrow::array::AsArray;
|
||||
use datafusion::arrow::compute::{self, concat_batches, SortOptions};
|
||||
use datafusion::arrow::datatypes::{DataType, Field, Float64Type, SchemaRef};
|
||||
use datafusion::arrow::record_batch::RecordBatch;
|
||||
use datafusion::common::{DFField, DFSchema, DFSchemaRef};
|
||||
use datafusion::error::{DataFusionError, Result as DataFusionResult};
|
||||
use datafusion::execution::TaskContext;
|
||||
use datafusion::logical_expr::{LogicalPlan, UserDefinedLogicalNodeCore};
|
||||
use datafusion::physical_expr::{PhysicalSortExpr, PhysicalSortRequirement};
|
||||
use datafusion::physical_plan::expressions::Column as PhyColumn;
|
||||
use datafusion::physical_plan::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
|
||||
use datafusion::physical_plan::{
|
||||
DisplayAs, DisplayFormatType, Distribution, ExecutionPlan, Partitioning, PhysicalExpr,
|
||||
RecordBatchStream, SendableRecordBatchStream, Statistics,
|
||||
};
|
||||
use datafusion::prelude::{Column, Expr};
|
||||
use datatypes::prelude::{ConcreteDataType, DataType as GtDataType};
|
||||
use datatypes::schema::Schema as GtSchema;
|
||||
use datatypes::value::{ListValue, Value};
|
||||
use datatypes::vectors::MutableVector;
|
||||
use futures::{ready, Stream, StreamExt};
|
||||
|
||||
/// `HistogramFold` will fold the conventional (non-native) histogram ([1]) for later
|
||||
/// computing. Specifically, it will transform the `le` and `field` column into a complex
|
||||
/// type, and samples on other tag columns:
|
||||
/// - `le` will become a [ListArray] of [f64]. With each bucket bound parsed
|
||||
/// - `field` will become a [ListArray] of [f64]
|
||||
/// - other columns will be sampled every `bucket_num` element, but their types won't change.
|
||||
///
|
||||
/// Due to the folding or sampling, the output rows number will become `input_rows` / `bucket_num`.
|
||||
///
|
||||
/// # Requirement
|
||||
/// - Input should be sorted on `<tag list>, le ASC, ts`.
|
||||
/// - The value set of `le` should be same. I.e., buckets of every series should be same.
|
||||
///
|
||||
/// [1]: https://prometheus.io/docs/concepts/metric_types/#histogram
|
||||
#[derive(Debug, PartialEq, Eq, Hash)]
|
||||
pub struct HistogramFold {
|
||||
/// Name of the `le` column. It's a special column in prometheus
|
||||
/// for implementing conventional histogram. It's a string column
|
||||
/// with "literal" float value, like "+Inf", "0.001" etc.
|
||||
le_column: String,
|
||||
ts_column: String,
|
||||
input: LogicalPlan,
|
||||
field_column: String,
|
||||
output_schema: DFSchemaRef,
|
||||
}
|
||||
|
||||
impl UserDefinedLogicalNodeCore for HistogramFold {
|
||||
fn name(&self) -> &str {
|
||||
Self::name()
|
||||
}
|
||||
|
||||
fn inputs(&self) -> Vec<&LogicalPlan> {
|
||||
vec![&self.input]
|
||||
}
|
||||
|
||||
fn schema(&self) -> &DFSchemaRef {
|
||||
&self.output_schema
|
||||
}
|
||||
|
||||
fn expressions(&self) -> Vec<Expr> {
|
||||
vec![]
|
||||
}
|
||||
|
||||
fn fmt_for_explain(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"HistogramFold: le={}, field={}",
|
||||
self.le_column, self.field_column
|
||||
)
|
||||
}
|
||||
|
||||
fn from_template(&self, _exprs: &[Expr], inputs: &[LogicalPlan]) -> Self {
|
||||
Self {
|
||||
le_column: self.le_column.clone(),
|
||||
ts_column: self.ts_column.clone(),
|
||||
input: inputs[0].clone(),
|
||||
field_column: self.field_column.clone(),
|
||||
// This method cannot return error. Otherwise we should re-calculate
|
||||
// the output schema
|
||||
output_schema: self.output_schema.clone(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl HistogramFold {
|
||||
#[allow(dead_code)]
|
||||
pub fn new(
|
||||
le_column: String,
|
||||
field_column: String,
|
||||
ts_column: String,
|
||||
input: LogicalPlan,
|
||||
) -> DataFusionResult<Self> {
|
||||
let input_schema = input.schema();
|
||||
Self::check_schema(input_schema, &le_column, &field_column, &ts_column)?;
|
||||
let output_schema = Self::convert_schema(input_schema, &le_column, &field_column)?;
|
||||
Ok(Self {
|
||||
le_column,
|
||||
ts_column,
|
||||
input,
|
||||
field_column,
|
||||
output_schema,
|
||||
})
|
||||
}
|
||||
|
||||
pub const fn name() -> &'static str {
|
||||
"HistogramFold"
|
||||
}
|
||||
|
||||
fn check_schema(
|
||||
input_schema: &DFSchemaRef,
|
||||
le_column: &str,
|
||||
field_column: &str,
|
||||
ts_column: &str,
|
||||
) -> DataFusionResult<()> {
|
||||
let check_column = |col| {
|
||||
if !input_schema.has_column_with_unqualified_name(col) {
|
||||
return Err(DataFusionError::SchemaError(
|
||||
datafusion::common::SchemaError::FieldNotFound {
|
||||
field: Box::new(Column::new(None::<String>, col)),
|
||||
valid_fields: input_schema
|
||||
.fields()
|
||||
.iter()
|
||||
.map(|f| f.qualified_column())
|
||||
.collect(),
|
||||
},
|
||||
));
|
||||
} else {
|
||||
Ok(())
|
||||
}
|
||||
};
|
||||
|
||||
check_column(le_column)?;
|
||||
check_column(ts_column)?;
|
||||
check_column(field_column)
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn to_execution_plan(&self, exec_input: Arc<dyn ExecutionPlan>) -> Arc<dyn ExecutionPlan> {
|
||||
let input_schema = self.input.schema();
|
||||
// safety: those fields are checked in `check_schema()`
|
||||
let le_column_index = input_schema
|
||||
.index_of_column_by_name(None, &self.le_column)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
let field_column_index = input_schema
|
||||
.index_of_column_by_name(None, &self.field_column)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
let ts_column_index = input_schema
|
||||
.index_of_column_by_name(None, &self.ts_column)
|
||||
.unwrap()
|
||||
.unwrap();
|
||||
|
||||
Arc::new(HistogramFoldExec {
|
||||
le_column_index,
|
||||
field_column_index,
|
||||
ts_column_index,
|
||||
input: exec_input,
|
||||
output_schema: Arc::new(self.output_schema.as_ref().into()),
|
||||
metric: ExecutionPlanMetricsSet::new(),
|
||||
})
|
||||
}
|
||||
|
||||
/// Transform the schema
|
||||
///
|
||||
/// - `le` will become a [ListArray] of [f64]. With each bucket bound parsed
|
||||
/// - `field` will become a [ListArray] of [f64]
|
||||
fn convert_schema(
|
||||
input_schema: &DFSchemaRef,
|
||||
le_column: &str,
|
||||
field_column: &str,
|
||||
) -> DataFusionResult<DFSchemaRef> {
|
||||
let mut fields = input_schema.fields().clone();
|
||||
// safety: those fields are checked in `check_schema()`
|
||||
let le_column_idx = input_schema
|
||||
.index_of_column_by_name(None, le_column)?
|
||||
.unwrap();
|
||||
let field_column_idx = input_schema
|
||||
.index_of_column_by_name(None, field_column)?
|
||||
.unwrap();
|
||||
|
||||
// transform `le`
|
||||
let le_field: Field = fields[le_column_idx].field().as_ref().clone();
|
||||
let le_field = le_field.with_data_type(DataType::Float64);
|
||||
let folded_le_datatype = DataType::List(Arc::new(le_field));
|
||||
let folded_le = DFField::new(
|
||||
fields[le_column_idx].qualifier().cloned(),
|
||||
fields[le_column_idx].name(),
|
||||
folded_le_datatype,
|
||||
false,
|
||||
);
|
||||
|
||||
// transform `field`
|
||||
// to avoid ambiguity, that field will be referenced as `the_field` below.
|
||||
let the_field: Field = fields[field_column_idx].field().as_ref().clone();
|
||||
let folded_field_datatype = DataType::List(Arc::new(the_field));
|
||||
let folded_field = DFField::new(
|
||||
fields[field_column_idx].qualifier().cloned(),
|
||||
fields[field_column_idx].name(),
|
||||
folded_field_datatype,
|
||||
false,
|
||||
);
|
||||
|
||||
fields[le_column_idx] = folded_le;
|
||||
fields[field_column_idx] = folded_field;
|
||||
|
||||
Ok(Arc::new(DFSchema::new_with_metadata(
|
||||
fields,
|
||||
HashMap::new(),
|
||||
)?))
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct HistogramFoldExec {
|
||||
/// Index for `le` column in the schema of input.
|
||||
le_column_index: usize,
|
||||
input: Arc<dyn ExecutionPlan>,
|
||||
output_schema: SchemaRef,
|
||||
/// Index for field column in the schema of input.
|
||||
field_column_index: usize,
|
||||
ts_column_index: usize,
|
||||
metric: ExecutionPlanMetricsSet,
|
||||
}
|
||||
|
||||
impl ExecutionPlan for HistogramFoldExec {
|
||||
fn as_any(&self) -> &dyn Any {
|
||||
self
|
||||
}
|
||||
|
||||
fn schema(&self) -> SchemaRef {
|
||||
self.output_schema.clone()
|
||||
}
|
||||
|
||||
fn output_partitioning(&self) -> Partitioning {
|
||||
self.input.output_partitioning()
|
||||
}
|
||||
|
||||
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
|
||||
self.input.output_ordering()
|
||||
}
|
||||
|
||||
fn required_input_ordering(&self) -> Vec<Option<Vec<PhysicalSortRequirement>>> {
|
||||
let mut cols = self
|
||||
.tag_col_exprs()
|
||||
.into_iter()
|
||||
.map(|expr| PhysicalSortRequirement {
|
||||
expr,
|
||||
options: None,
|
||||
})
|
||||
.collect::<Vec<PhysicalSortRequirement>>();
|
||||
// add le ASC
|
||||
cols.push(PhysicalSortRequirement {
|
||||
expr: Arc::new(PhyColumn::new(
|
||||
self.output_schema.field(self.le_column_index).name(),
|
||||
self.le_column_index,
|
||||
)),
|
||||
options: Some(SortOptions {
|
||||
descending: false, // +INF in the last
|
||||
nulls_first: false, // not nullable
|
||||
}),
|
||||
});
|
||||
// add ts
|
||||
cols.push(PhysicalSortRequirement {
|
||||
expr: Arc::new(PhyColumn::new(
|
||||
self.output_schema.field(self.ts_column_index).name(),
|
||||
self.ts_column_index,
|
||||
)),
|
||||
options: None,
|
||||
});
|
||||
|
||||
vec![Some(cols)]
|
||||
}
|
||||
|
||||
fn required_input_distribution(&self) -> Vec<Distribution> {
|
||||
// partition on all tag columns, i.e., non-le, non-ts and non-field columns
|
||||
vec![Distribution::HashPartitioned(self.tag_col_exprs())]
|
||||
}
|
||||
|
||||
fn maintains_input_order(&self) -> Vec<bool> {
|
||||
vec![true; self.children().len()]
|
||||
}
|
||||
|
||||
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
|
||||
vec![self.input.clone()]
|
||||
}
|
||||
|
||||
// cannot change schema with this method
|
||||
fn with_new_children(
|
||||
self: Arc<Self>,
|
||||
children: Vec<Arc<dyn ExecutionPlan>>,
|
||||
) -> DataFusionResult<Arc<dyn ExecutionPlan>> {
|
||||
assert!(!children.is_empty());
|
||||
Ok(Arc::new(Self {
|
||||
input: children[0].clone(),
|
||||
metric: self.metric.clone(),
|
||||
le_column_index: self.le_column_index,
|
||||
ts_column_index: self.ts_column_index,
|
||||
output_schema: self.output_schema.clone(),
|
||||
field_column_index: self.field_column_index,
|
||||
}))
|
||||
}
|
||||
|
||||
fn execute(
|
||||
&self,
|
||||
partition: usize,
|
||||
context: Arc<TaskContext>,
|
||||
) -> DataFusionResult<SendableRecordBatchStream> {
|
||||
let baseline_metric = BaselineMetrics::new(&self.metric, partition);
|
||||
|
||||
let batch_size = context.session_config().batch_size();
|
||||
let input = self.input.execute(partition, context)?;
|
||||
let output_schema = self.output_schema.clone();
|
||||
|
||||
let mut normal_indices = (0..output_schema.fields().len()).collect::<HashSet<_>>();
|
||||
normal_indices.remove(&self.le_column_index);
|
||||
normal_indices.remove(&self.field_column_index);
|
||||
Ok(Box::pin(HistogramFoldStream {
|
||||
le_column_index: self.le_column_index,
|
||||
field_column_index: self.field_column_index,
|
||||
normal_indices: normal_indices.into_iter().collect(),
|
||||
bucket_size: None,
|
||||
input_buffer: vec![],
|
||||
input,
|
||||
output_schema,
|
||||
metric: baseline_metric,
|
||||
batch_size,
|
||||
input_buffered_rows: 0,
|
||||
output_buffer: HistogramFoldStream::empty_output_buffer(&self.output_schema)?,
|
||||
output_buffered_rows: 0,
|
||||
}))
|
||||
}
|
||||
|
||||
fn metrics(&self) -> Option<MetricsSet> {
|
||||
Some(self.metric.clone_inner())
|
||||
}
|
||||
|
||||
fn statistics(&self) -> Statistics {
|
||||
Statistics {
|
||||
num_rows: None,
|
||||
total_byte_size: None,
|
||||
column_statistics: None,
|
||||
is_exact: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl HistogramFoldExec {
|
||||
/// Return all the [PhysicalExpr] of tag columns in order.
|
||||
///
|
||||
/// Tag columns are all columns except `le`, `field` and `ts` columns.
|
||||
pub fn tag_col_exprs(&self) -> Vec<Arc<dyn PhysicalExpr>> {
|
||||
self.input
|
||||
.schema()
|
||||
.fields()
|
||||
.iter()
|
||||
.enumerate()
|
||||
.filter_map(|(idx, field)| {
|
||||
if idx == self.le_column_index
|
||||
|| idx == self.field_column_index
|
||||
|| idx == self.ts_column_index
|
||||
{
|
||||
None
|
||||
} else {
|
||||
Some(Arc::new(PhyColumn::new(field.name(), idx)) as _)
|
||||
}
|
||||
})
|
||||
.collect()
|
||||
}
|
||||
}
|
||||
|
||||
impl DisplayAs for HistogramFoldExec {
|
||||
fn fmt_as(&self, t: DisplayFormatType, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
||||
match t {
|
||||
DisplayFormatType::Default | DisplayFormatType::Verbose => {
|
||||
write!(
|
||||
f,
|
||||
"HistogramFoldExec: le=@{}, field=@{}",
|
||||
self.le_column_index, self.field_column_index
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub struct HistogramFoldStream {
|
||||
// internal states
|
||||
le_column_index: usize,
|
||||
field_column_index: usize,
|
||||
/// Columns need not folding
|
||||
normal_indices: Vec<usize>,
|
||||
bucket_size: Option<usize>,
|
||||
/// Expected output batch size
|
||||
batch_size: usize,
|
||||
output_schema: SchemaRef,
|
||||
|
||||
// buffers
|
||||
input_buffer: Vec<RecordBatch>,
|
||||
input_buffered_rows: usize,
|
||||
output_buffer: Vec<Box<dyn MutableVector>>,
|
||||
output_buffered_rows: usize,
|
||||
|
||||
// runtime things
|
||||
input: SendableRecordBatchStream,
|
||||
metric: BaselineMetrics,
|
||||
}
|
||||
|
||||
impl RecordBatchStream for HistogramFoldStream {
|
||||
fn schema(&self) -> SchemaRef {
|
||||
self.output_schema.clone()
|
||||
}
|
||||
}
|
||||
|
||||
impl Stream for HistogramFoldStream {
|
||||
type Item = DataFusionResult<RecordBatch>;
|
||||
|
||||
fn poll_next(
|
||||
mut self: std::pin::Pin<&mut Self>,
|
||||
cx: &mut std::task::Context<'_>,
|
||||
) -> Poll<Option<Self::Item>> {
|
||||
let poll = loop {
|
||||
match ready!(self.input.poll_next_unpin(cx)) {
|
||||
Some(batch) => {
|
||||
let batch = batch?;
|
||||
let timer = Instant::now();
|
||||
let Some(result) = self.fold_input(batch)? else {
|
||||
self.metric.elapsed_compute().add_elapsed(timer);
|
||||
continue;
|
||||
};
|
||||
self.metric.elapsed_compute().add_elapsed(timer);
|
||||
break Poll::Ready(Some(result));
|
||||
}
|
||||
None => break Poll::Ready(self.take_output_buf()?.map(Ok)),
|
||||
}
|
||||
};
|
||||
self.metric.record_poll(poll)
|
||||
}
|
||||
}
|
||||
|
||||
impl HistogramFoldStream {
|
||||
/// The inner most `Result` is for `poll_next()`
|
||||
pub fn fold_input(
|
||||
&mut self,
|
||||
input: RecordBatch,
|
||||
) -> DataFusionResult<Option<DataFusionResult<RecordBatch>>> {
|
||||
let Some(bucket_num) = self.calculate_bucket_num(&input)? else {
|
||||
return Ok(None);
|
||||
};
|
||||
|
||||
if self.input_buffered_rows + input.num_rows() < bucket_num {
|
||||
// not enough rows to fold
|
||||
self.push_input_buf(input);
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
self.fold_buf(bucket_num, input)?;
|
||||
if self.output_buffered_rows >= self.batch_size {
|
||||
return Ok(self.take_output_buf()?.map(Ok));
|
||||
}
|
||||
|
||||
Ok(None)
|
||||
}
|
||||
|
||||
pub fn empty_output_buffer(
|
||||
schema: &SchemaRef,
|
||||
) -> DataFusionResult<Vec<Box<dyn MutableVector>>> {
|
||||
let mut builders = Vec::with_capacity(schema.fields().len());
|
||||
for field in schema.fields() {
|
||||
let concrete_datatype = ConcreteDataType::try_from(field.data_type()).unwrap();
|
||||
let mutable_vector = concrete_datatype.create_mutable_vector(0);
|
||||
builders.push(mutable_vector);
|
||||
}
|
||||
|
||||
Ok(builders)
|
||||
}
|
||||
|
||||
fn calculate_bucket_num(&mut self, batch: &RecordBatch) -> DataFusionResult<Option<usize>> {
|
||||
if let Some(size) = self.bucket_size {
|
||||
return Ok(Some(size));
|
||||
}
|
||||
|
||||
let inf_pos = self.find_positive_inf(batch)?;
|
||||
if inf_pos == batch.num_rows() {
|
||||
// no positive inf found, append to buffer and wait for next batch
|
||||
self.push_input_buf(batch.clone());
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
// else we found the positive inf.
|
||||
// calculate the bucket size
|
||||
let bucket_size = inf_pos + self.input_buffered_rows + 1;
|
||||
Ok(Some(bucket_size))
|
||||
}
|
||||
|
||||
/// Fold record batches from input buffer and put to output buffer
|
||||
fn fold_buf(&mut self, bucket_num: usize, input: RecordBatch) -> DataFusionResult<()> {
|
||||
self.push_input_buf(input);
|
||||
// TODO(ruihang): this concat is avoidable.
|
||||
let batch = concat_batches(&self.input.schema(), self.input_buffer.drain(..).as_ref())?;
|
||||
let mut remaining_rows = self.input_buffered_rows;
|
||||
let mut cursor = 0;
|
||||
|
||||
let gt_schema = GtSchema::try_from(self.input.schema()).unwrap();
|
||||
let batch = GtRecordBatch::try_from_df_record_batch(Arc::new(gt_schema), batch).unwrap();
|
||||
|
||||
while remaining_rows >= bucket_num {
|
||||
// "sample" normal columns
|
||||
for normal_index in &self.normal_indices {
|
||||
let val = batch.column(*normal_index).get(cursor);
|
||||
self.output_buffer[*normal_index].push_value_ref(val.as_value_ref());
|
||||
}
|
||||
// "fold" `le` and field columns
|
||||
let le_array = batch.column(self.le_column_index);
|
||||
let field_array = batch.column(self.field_column_index);
|
||||
let mut le_item = vec![];
|
||||
let mut field_item = vec![];
|
||||
for bias in 0..bucket_num {
|
||||
let le_str_val = le_array.get(cursor + bias);
|
||||
let le_str_val_ref = le_str_val.as_value_ref();
|
||||
let le_str = le_str_val_ref
|
||||
.as_string()
|
||||
.unwrap()
|
||||
.expect("le column should not be nullable");
|
||||
let le = le_str.parse::<f64>().unwrap();
|
||||
let le_val = Value::from(le);
|
||||
le_item.push(le_val);
|
||||
|
||||
let field = field_array.get(cursor + bias);
|
||||
field_item.push(field);
|
||||
}
|
||||
let le_list_val = Value::List(ListValue::new(
|
||||
Some(Box::new(le_item)),
|
||||
ConcreteDataType::float64_datatype(),
|
||||
));
|
||||
let field_list_val = Value::List(ListValue::new(
|
||||
Some(Box::new(field_item)),
|
||||
ConcreteDataType::float64_datatype(),
|
||||
));
|
||||
self.output_buffer[self.le_column_index].push_value_ref(le_list_val.as_value_ref());
|
||||
self.output_buffer[self.field_column_index]
|
||||
.push_value_ref(field_list_val.as_value_ref());
|
||||
|
||||
cursor += bucket_num;
|
||||
remaining_rows -= bucket_num;
|
||||
self.output_buffered_rows += 1;
|
||||
}
|
||||
|
||||
let remaining_input_batch = batch.into_df_record_batch().slice(cursor, remaining_rows);
|
||||
self.input_buffered_rows = remaining_input_batch.num_rows();
|
||||
self.input_buffer.push(remaining_input_batch);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn push_input_buf(&mut self, batch: RecordBatch) {
|
||||
self.input_buffered_rows += batch.num_rows();
|
||||
self.input_buffer.push(batch);
|
||||
}
|
||||
|
||||
fn take_output_buf(&mut self) -> DataFusionResult<Option<RecordBatch>> {
|
||||
if self.output_buffered_rows == 0 {
|
||||
if self.input_buffered_rows != 0 {
|
||||
warn!(
|
||||
"input buffer is not empty, {} rows remaining",
|
||||
self.input_buffered_rows
|
||||
);
|
||||
}
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let mut output_buf = Self::empty_output_buffer(&self.output_schema)?;
|
||||
std::mem::swap(&mut self.output_buffer, &mut output_buf);
|
||||
let mut columns = Vec::with_capacity(output_buf.len());
|
||||
for builder in output_buf.iter_mut() {
|
||||
columns.push(builder.to_vector().to_arrow_array());
|
||||
}
|
||||
|
||||
// overwrite default list datatype to change field name
|
||||
columns[self.le_column_index] = compute::cast(
|
||||
&columns[self.le_column_index],
|
||||
self.output_schema.field(self.le_column_index).data_type(),
|
||||
)?;
|
||||
columns[self.field_column_index] = compute::cast(
|
||||
&columns[self.field_column_index],
|
||||
self.output_schema
|
||||
.field(self.field_column_index)
|
||||
.data_type(),
|
||||
)?;
|
||||
|
||||
self.output_buffered_rows = 0;
|
||||
RecordBatch::try_new(self.output_schema.clone(), columns)
|
||||
.map(Some)
|
||||
.map_err(DataFusionError::ArrowError)
|
||||
}
|
||||
|
||||
/// Find the first `+Inf` which indicates the end of the bucket group
|
||||
///
|
||||
/// If the return value equals to batch's num_rows means the it's not found
|
||||
/// in this batch
|
||||
fn find_positive_inf(&self, batch: &RecordBatch) -> DataFusionResult<usize> {
|
||||
// fuse this function. It should not be called when the
|
||||
// bucket size is already know.
|
||||
if let Some(bucket_size) = self.bucket_size {
|
||||
return Ok(bucket_size);
|
||||
}
|
||||
let string_le_array = batch.column(self.le_column_index);
|
||||
let float_le_array = compute::cast(&string_le_array, &DataType::Float64).map_err(|e| {
|
||||
DataFusionError::Execution(format!(
|
||||
"cannot cast {} array to float64 array: {:?}",
|
||||
string_le_array.data_type(),
|
||||
e
|
||||
))
|
||||
})?;
|
||||
let le_as_f64_array = float_le_array
|
||||
.as_primitive_opt::<Float64Type>()
|
||||
.ok_or_else(|| {
|
||||
DataFusionError::Execution(format!(
|
||||
"expect a float64 array, but found {}",
|
||||
float_le_array.data_type()
|
||||
))
|
||||
})?;
|
||||
for (i, v) in le_as_f64_array.iter().enumerate() {
|
||||
if let Some(v) = v && v == f64::INFINITY {
|
||||
return Ok(i);
|
||||
}
|
||||
}
|
||||
|
||||
Ok(batch.num_rows())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use std::sync::Arc;
|
||||
|
||||
use datafusion::arrow::array::Float64Array;
|
||||
use datafusion::arrow::datatypes::Schema;
|
||||
use datafusion::common::ToDFSchema;
|
||||
use datafusion::physical_plan::memory::MemoryExec;
|
||||
use datafusion::prelude::SessionContext;
|
||||
use datatypes::arrow_array::StringArray;
|
||||
|
||||
use super::*;
|
||||
|
||||
fn prepare_test_data() -> MemoryExec {
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("host", DataType::Utf8, true),
|
||||
Field::new("le", DataType::Utf8, true),
|
||||
Field::new("val", DataType::Float64, true),
|
||||
]));
|
||||
|
||||
// 12 items
|
||||
let host_column_1 = Arc::new(StringArray::from(vec![
|
||||
"host_1", "host_1", "host_1", "host_1", "host_1", "host_1", "host_1", "host_1",
|
||||
"host_1", "host_1", "host_1", "host_1",
|
||||
])) as _;
|
||||
let le_column_1 = Arc::new(StringArray::from(vec![
|
||||
"0.001", "0.1", "10", "1000", "+Inf", "0.001", "0.1", "10", "1000", "+inf", "0.001",
|
||||
"0.1",
|
||||
])) as _;
|
||||
let val_column_1 = Arc::new(Float64Array::from(vec![
|
||||
0_0.0, 1.0, 1.0, 5.0, 5.0, 0_0.0, 20.0, 60.0, 70.0, 100.0, 0_1.0, 1.0,
|
||||
])) as _;
|
||||
|
||||
// 2 items
|
||||
let host_column_2 = Arc::new(StringArray::from(vec!["host_1", "host_1"])) as _;
|
||||
let le_column_2 = Arc::new(StringArray::from(vec!["10", "1000"])) as _;
|
||||
let val_column_2 = Arc::new(Float64Array::from(vec![1.0, 1.0])) as _;
|
||||
|
||||
// 11 items
|
||||
let host_column_3 = Arc::new(StringArray::from(vec![
|
||||
"host_1", "host_2", "host_2", "host_2", "host_2", "host_2", "host_2", "host_2",
|
||||
"host_2", "host_2", "host_2",
|
||||
])) as _;
|
||||
let le_column_3 = Arc::new(StringArray::from(vec![
|
||||
"+INF", "0.001", "0.1", "10", "1000", "+iNf", "0.001", "0.1", "10", "1000", "+Inf",
|
||||
])) as _;
|
||||
let val_column_3 = Arc::new(Float64Array::from(vec![
|
||||
1.0, 0_0.0, 0.0, 0.0, 0.0, 0.0, 0_0.0, 1.0, 2.0, 3.0, 4.0,
|
||||
])) as _;
|
||||
|
||||
let data_1 = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![host_column_1, le_column_1, val_column_1],
|
||||
)
|
||||
.unwrap();
|
||||
let data_2 = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![host_column_2, le_column_2, val_column_2],
|
||||
)
|
||||
.unwrap();
|
||||
let data_3 = RecordBatch::try_new(
|
||||
schema.clone(),
|
||||
vec![host_column_3, le_column_3, val_column_3],
|
||||
)
|
||||
.unwrap();
|
||||
|
||||
MemoryExec::try_new(&[vec![data_1, data_2, data_3]], schema, None).unwrap()
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn fold_overall() {
|
||||
let memory_exec = Arc::new(prepare_test_data());
|
||||
let output_schema = Arc::new(
|
||||
(*HistogramFold::convert_schema(
|
||||
&Arc::new(memory_exec.schema().to_dfschema().unwrap()),
|
||||
"le",
|
||||
"val",
|
||||
)
|
||||
.unwrap()
|
||||
.as_ref())
|
||||
.clone()
|
||||
.into(),
|
||||
);
|
||||
let fold_exec = Arc::new(HistogramFoldExec {
|
||||
le_column_index: 1,
|
||||
field_column_index: 2,
|
||||
ts_column_index: 9999, // not exist but doesn't matter
|
||||
input: memory_exec,
|
||||
output_schema,
|
||||
metric: ExecutionPlanMetricsSet::new(),
|
||||
});
|
||||
|
||||
let session_context = SessionContext::default();
|
||||
let result = datafusion::physical_plan::collect(fold_exec, session_context.task_ctx())
|
||||
.await
|
||||
.unwrap();
|
||||
let result_literal = datatypes::arrow::util::pretty::pretty_format_batches(&result)
|
||||
.unwrap()
|
||||
.to_string();
|
||||
|
||||
let expected = String::from(
|
||||
"+--------+---------------------------------+--------------------------------+
|
||||
| host | le | val |
|
||||
+--------+---------------------------------+--------------------------------+
|
||||
| host_1 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 1.0, 1.0, 5.0, 5.0] |
|
||||
| host_1 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 20.0, 60.0, 70.0, 100.0] |
|
||||
| host_1 | [0.001, 0.1, 10.0, 1000.0, inf] | [1.0, 1.0, 1.0, 1.0, 1.0] |
|
||||
| host_2 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 0.0, 0.0, 0.0, 0.0] |
|
||||
| host_2 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 1.0, 2.0, 3.0, 4.0] |
|
||||
+--------+---------------------------------+--------------------------------+",
|
||||
);
|
||||
assert_eq!(result_literal, expected);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn confirm_schema() {
|
||||
let input_schema = Schema::new(vec![
|
||||
Field::new("host", DataType::Utf8, true),
|
||||
Field::new("le", DataType::Utf8, true),
|
||||
Field::new("val", DataType::Float64, true),
|
||||
])
|
||||
.to_dfschema_ref()
|
||||
.unwrap();
|
||||
let expected_output_schema = Schema::new(vec![
|
||||
Field::new("host", DataType::Utf8, true),
|
||||
Field::new(
|
||||
"le",
|
||||
DataType::List(Arc::new(Field::new("le", DataType::Float64, true))),
|
||||
false,
|
||||
),
|
||||
Field::new(
|
||||
"val",
|
||||
DataType::List(Arc::new(Field::new("val", DataType::Float64, true))),
|
||||
false,
|
||||
),
|
||||
])
|
||||
.to_dfschema_ref()
|
||||
.unwrap();
|
||||
|
||||
let actual = HistogramFold::convert_schema(&input_schema, "le", "val").unwrap();
|
||||
assert_eq!(actual, expected_output_schema)
|
||||
}
|
||||
}
|
||||
@@ -61,6 +61,8 @@ use crate::functions::{
|
||||
|
||||
/// `time()` function in PromQL.
|
||||
const SPECIAL_TIME_FUNCTION: &str = "time";
|
||||
/// `histogram_quantile` function in PromQL
|
||||
const SPECIAL_HISTOGRAM_QUANTILE: &str = "histogram_quantile";
|
||||
|
||||
const DEFAULT_TIME_INDEX_COLUMN: &str = "time";
|
||||
|
||||
@@ -440,6 +442,10 @@ impl PromPlanner {
|
||||
}));
|
||||
}
|
||||
|
||||
if func.name == SPECIAL_HISTOGRAM_QUANTILE {
|
||||
todo!()
|
||||
}
|
||||
|
||||
let args = self.create_function_args(&args.args)?;
|
||||
let input = self
|
||||
.prom_expr_to_plan(args.input.with_context(|| ExpectExprSnafu {
|
||||
|
||||
Reference in New Issue
Block a user