mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2025-12-22 22:20:02 +00:00
refactor: unify all dashboards and use dac tool to generate intermediate dashboards (#5933)
* refactor: split cluster metrics into multiple dashboards * chore: merge multiple dashboards into one dashboard * refactor: add 'dac' tool to generate a intermediate dashboards * refactor: generate markdown docs for dashboards
This commit is contained in:
30
.github/workflows/grafana.yml
vendored
30
.github/workflows/grafana.yml
vendored
@@ -21,32 +21,6 @@ jobs:
|
||||
run: sudo apt-get install -y jq
|
||||
|
||||
# Make the check.sh script executable
|
||||
- name: Make check.sh executable
|
||||
run: chmod +x grafana/check.sh
|
||||
|
||||
# Run the check.sh script
|
||||
- name: Run check.sh
|
||||
run: ./grafana/check.sh
|
||||
|
||||
# Only run summary.sh for pull_request events (not for merge queues or final pushes)
|
||||
- name: Check if this is a pull request
|
||||
id: check-pr
|
||||
- name: Check grafana dashboards
|
||||
run: |
|
||||
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
|
||||
echo "is_pull_request=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "is_pull_request=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
# Make the summary.sh script executable
|
||||
- name: Make summary.sh executable
|
||||
if: steps.check-pr.outputs.is_pull_request == 'true'
|
||||
run: chmod +x grafana/summary.sh
|
||||
|
||||
# Run the summary.sh script and add its output to the GitHub Job Summary
|
||||
- name: Run summary.sh and add to Job Summary
|
||||
if: steps.check-pr.outputs.is_pull_request == 'true'
|
||||
run: |
|
||||
SUMMARY=$(./grafana/summary.sh)
|
||||
echo "### Summary of Grafana Panels" >> $GITHUB_STEP_SUMMARY
|
||||
echo "$SUMMARY" >> $GITHUB_STEP_SUMMARY
|
||||
make check-dashboards
|
||||
|
||||
10
Makefile
10
Makefile
@@ -222,6 +222,16 @@ start-cluster: ## Start the greptimedb cluster with etcd by using docker compose
|
||||
stop-cluster: ## Stop the greptimedb cluster that created by docker compose.
|
||||
docker compose -f ./docker/docker-compose/cluster-with-etcd.yaml stop
|
||||
|
||||
##@ Grafana
|
||||
|
||||
.PHONY: check-dashboards
|
||||
check-dashboards: ## Check the Grafana dashboards.
|
||||
@./grafana/scripts/check.sh
|
||||
|
||||
.PHONY: dashboards
|
||||
dashboards: ## Generate the Grafana dashboards for standalone mode and intermediate dashboards.
|
||||
@./grafana/scripts/gen-dashboards.sh
|
||||
|
||||
##@ Docs
|
||||
config-docs: ## Generate configuration documentation from toml files.
|
||||
docker run --rm \
|
||||
|
||||
@@ -1,61 +1,83 @@
|
||||
Grafana dashboard for GreptimeDB
|
||||
--------------------------------
|
||||
# Grafana dashboards for GreptimeDB
|
||||
|
||||
GreptimeDB's official Grafana dashboard.
|
||||
## Overview
|
||||
|
||||
Status notify: we are still working on this config. It's expected to change frequently in the recent days. Please feel free to submit your feedback and/or contribution to this dashboard 🤗
|
||||
This repository maintains the Grafana dashboards for GreptimeDB. It has two types of dashboards:
|
||||
|
||||
If you use Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
|
||||
- `cluster/`: The dashboard for the GreptimeDB cluster. Read the [dashboard.md](./dashboards/cluster/dashboard.md) for more details.
|
||||
- `standalone/`: The dashboard for the standalone GreptimeDB instance. Read the [dashboard.md](./dashboards/standalone/dashboard.md) for more details.
|
||||
|
||||
As the rapid development of GreptimeDB, the metrics may be changed, and please feel free to submit your feedback and/or contribution to this dashboard 🤗
|
||||
|
||||
To maintain the dashboards, we use the [`dac`](https://github.com/zyy17/dac) tool to generate the intermediate dashboards and markdown documents:
|
||||
|
||||
- `cluster/dashboard.yaml`: The intermediate dashboard for the GreptimeDB cluster.
|
||||
- `standalone/dashboard.yaml`: The intermediatedashboard for the standalone GreptimeDB instance.
|
||||
|
||||
## Data Sources
|
||||
|
||||
There are two data sources for the dashboards to fetch the metrics:
|
||||
|
||||
- **Prometheus**: Expose the metrics of GreptimeDB.
|
||||
- **Information Schema**: It is the MySQL port of the current monitored instance. The `overview` dashboard will use this datasource to show the information schema of the current instance.
|
||||
|
||||
## Instance Filters
|
||||
|
||||
To deploy the dashboards for multiple scenarios (K8s, bare metal, etc.), we prefer to use the `instance` label when filtering instances.
|
||||
|
||||
Additionally, we recommend including the `pod` label in the legend to make it easier to identify each instance, even though this field will be empty in bare metal scenarios.
|
||||
|
||||
For example, the following query is recommended:
|
||||
|
||||
```promql
|
||||
sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
|
||||
```
|
||||
|
||||
And the legend will be like: `[{{instance}}]-[{{ pod }}]`.
|
||||
|
||||
## Deployment
|
||||
|
||||
### Helm
|
||||
|
||||
If you use the Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy a GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
|
||||
|
||||
- `monitoring.enabled=true`: Deploys a standalone GreptimeDB instance dedicated to monitoring the cluster;
|
||||
- `grafana.enabled=true`: Deploys Grafana and automatically imports the monitoring dashboard;
|
||||
|
||||
The standalone GreptimeDB instance will collect metrics from your cluster and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
|
||||
The standalone GreptimeDB instance will collect metrics from your cluster, and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
|
||||
|
||||
# How to use
|
||||
### Self-host Prometheus and import dashboards manually
|
||||
|
||||
## `greptimedb.json`
|
||||
1. **Configure Prometheus to scrape the cluster**
|
||||
|
||||
Open Grafana Dashboard page, choose `New` -> `Import`. And upload `greptimedb.json` file.
|
||||
The following is an example configuration(**Please modify it according to your actual situation**):
|
||||
|
||||
## `greptimedb-cluster.json`
|
||||
```yml
|
||||
# example config
|
||||
# only to indicate how to assign labels to each target
|
||||
# modify yours accordingly
|
||||
scrape_configs:
|
||||
- job_name: metasrv
|
||||
static_configs:
|
||||
- targets: ['<metasrv-ip>:<port>']
|
||||
|
||||
This cluster dashboard provides a comprehensive view of incoming requests, response statuses, and internal activities such as flush and compaction, with a layered structure from frontend to datanode. Designed with a focus on alert functionality, its primary aim is to highlight any anomalies in metrics, allowing users to quickly pinpoint the cause of errors.
|
||||
- job_name: datanode
|
||||
static_configs:
|
||||
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
|
||||
|
||||
We use Prometheus to scrape off metrics from nodes in GreptimeDB cluster, Grafana to visualize the diagram. Any compatible stack should work too.
|
||||
- job_name: frontend
|
||||
static_configs:
|
||||
- targets: ['<frontend-ip>:<port>']
|
||||
```
|
||||
|
||||
__Note__: This dashboard is still in an early stage of development. Any issue or advice on improvement is welcomed.
|
||||
2. **Configure the data sources in Grafana**
|
||||
|
||||
### Configuration
|
||||
You need to add two data sources in Grafana:
|
||||
|
||||
Please ensure the following configuration before importing the dashboard into Grafana.
|
||||
- Prometheus: It is the Prometheus instance that scrapes the GreptimeDB metrics.
|
||||
- Information Schema: It is the MySQL port of the current monitored instance. The dashboard will use this datasource to show the information schema of the current instance.
|
||||
|
||||
__1. Prometheus scrape config__
|
||||
3. **Import the dashboards based on your deployment scenario**
|
||||
|
||||
Configure Prometheus to scrape the cluster.
|
||||
|
||||
```yml
|
||||
# example config
|
||||
# only to indicate how to assign labels to each target
|
||||
# modify yours accordingly
|
||||
scrape_configs:
|
||||
- job_name: metasrv
|
||||
static_configs:
|
||||
- targets: ['<metasrv-ip>:<port>']
|
||||
|
||||
- job_name: datanode
|
||||
static_configs:
|
||||
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
|
||||
|
||||
- job_name: frontend
|
||||
static_configs:
|
||||
- targets: ['<frontend-ip>:<port>']
|
||||
```
|
||||
|
||||
__2. Grafana config__
|
||||
|
||||
Create a Prometheus data source in Grafana before using this dashboard. We use `datasource` as a variable in Grafana dashboard so that multiple environments are supported.
|
||||
|
||||
### Usage
|
||||
|
||||
Use `datasource` or `instance` on the upper-left corner to filter data from certain node.
|
||||
- **Cluster**: Import the `cluster/dashboard.json` dashboard.
|
||||
- **Standalone**: Import the `standalone/dashboard.json` dashboard.
|
||||
|
||||
@@ -1,19 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
BASEDIR=$(dirname "$0")
|
||||
|
||||
# Use jq to check for panels with empty or missing descriptions
|
||||
invalid_panels=$(cat $BASEDIR/greptimedb-cluster.json | jq -r '
|
||||
.panels[]
|
||||
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))
|
||||
')
|
||||
|
||||
# Check if any invalid panels were found
|
||||
if [[ -n "$invalid_panels" ]]; then
|
||||
echo "Error: The following panels have empty or missing descriptions:"
|
||||
echo "$invalid_panels"
|
||||
exit 1
|
||||
else
|
||||
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
|
||||
exit 0
|
||||
fi
|
||||
7082
grafana/dashboards/cluster/dashboard.json
Normal file
7082
grafana/dashboards/cluster/dashboard.json
Normal file
File diff suppressed because it is too large
Load Diff
96
grafana/dashboards/cluster/dashboard.md
Normal file
96
grafana/dashboards/cluster/dashboard.md
Normal file
@@ -0,0 +1,96 @@
|
||||
# Overview
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `s` | `prometheus` | `__auto` |
|
||||
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | -- | `mysql` | -- |
|
||||
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `rowsps` | `prometheus` | `__auto` |
|
||||
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `decbytes` | `mysql` | -- |
|
||||
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `sishort` | `mysql` | -- |
|
||||
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | -- | `mysql` | -- |
|
||||
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | -- | `mysql` | -- |
|
||||
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `decbytes` | `mysql` | -- |
|
||||
# Ingestion
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `ingestion` |
|
||||
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `http-logs` |
|
||||
# Queries
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `reqps` | `prometheus` | `mysql` |
|
||||
# Resources
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{instance}}]-[{{ pod }}]` |
|
||||
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-cpu` |
|
||||
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-resident` |
|
||||
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
# Frontend Requests
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
|
||||
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
|
||||
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
|
||||
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
|
||||
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `s` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-p99` |
|
||||
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
|
||||
# Frontend to Datanode
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
|
||||
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
|
||||
# Mito Engine
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
|
||||
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
|
||||
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{instance=~"$datanode"}` | `timeseries` | Write Buffer per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
|
||||
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})` | `timeseries` | Write Stall per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
|
||||
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
|
||||
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `ops` | `prometheus` | `[{{ instance }}]-[{{pod}}]` |
|
||||
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
|
||||
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
|
||||
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `bytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
|
||||
| Cached Bytes per Instance | `greptime_mito_cache_bytes{instance=~"$datanode"}` | `timeseries` | Cached Bytes per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
|
||||
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
|
||||
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
|
||||
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
# OpenDAL
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
|
||||
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
|
||||
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
# Metasrv
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `none` | `prometheus` | `from-datanode-{{datanode_id}}` |
|
||||
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `none` | `prometheus` | `__auto` |
|
||||
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `none` | `prometheus` | `__auto` |
|
||||
# Flownode
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | -- | `prometheus` | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
|
||||
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-p95` |
|
||||
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
|
||||
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}]` |
|
||||
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{code}}]` |
|
||||
761
grafana/dashboards/cluster/dashboard.yaml
Normal file
761
grafana/dashboards/cluster/dashboard.yaml
Normal file
@@ -0,0 +1,761 @@
|
||||
groups:
|
||||
- title: Overview
|
||||
panels:
|
||||
- title: Uptime
|
||||
type: stat
|
||||
description: The start time of GreptimeDB.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: time() - process_start_time_seconds
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Version
|
||||
type: stat
|
||||
description: GreptimeDB version.
|
||||
queries:
|
||||
- expr: SELECT pkg_version FROM information_schema.build_info
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Total Ingestion Rate
|
||||
type: stat
|
||||
description: Total ingestion rate.
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Total Storage Size
|
||||
type: stat
|
||||
description: Total number of data file size.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: select SUM(disk_size) from information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Total Rows
|
||||
type: stat
|
||||
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
|
||||
unit: sishort
|
||||
queries:
|
||||
- expr: select SUM(region_rows) from information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Deployment
|
||||
type: stat
|
||||
description: The deployment topology of GreptimeDB.
|
||||
queries:
|
||||
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Database Resources
|
||||
type: stat
|
||||
description: The number of the key resources in GreptimeDB.
|
||||
queries:
|
||||
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Data Size
|
||||
type: stat
|
||||
description: The data size of wal/index/manifest in the GreptimeDB.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Ingestion
|
||||
panels:
|
||||
- title: Total Ingestion Rate
|
||||
type: timeseries
|
||||
description: |
|
||||
Total ingestion rate.
|
||||
|
||||
Here we listed 3 primary protocols:
|
||||
|
||||
- Prometheus remote write
|
||||
- Greptime's gRPC API (when using our ingest SDK)
|
||||
- Log ingestion http API
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: ingestion
|
||||
- title: Ingestion Rate by Type
|
||||
type: timeseries
|
||||
description: |
|
||||
Total ingestion rate.
|
||||
|
||||
Here we listed 3 primary protocols:
|
||||
|
||||
- Prometheus remote write
|
||||
- Greptime's gRPC API (when using our ingest SDK)
|
||||
- Log ingestion http API
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: http-logs
|
||||
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: prometheus-remote-write
|
||||
- title: Queries
|
||||
panels:
|
||||
- title: Total Query Rate
|
||||
type: timeseries
|
||||
description: |-
|
||||
Total rate of query API calls by protocol. This metric is collected from frontends.
|
||||
|
||||
Here we listed 3 main protocols:
|
||||
- MySQL
|
||||
- Postgres
|
||||
- Prometheus API
|
||||
|
||||
Note that there are some other minor query APIs like /sql are not included
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: mysql
|
||||
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: pg
|
||||
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: promql
|
||||
- title: Resources
|
||||
panels:
|
||||
- title: Datanode Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{ pod }}]'
|
||||
- title: Datanode CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Frontend Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Frontend CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
|
||||
- title: Metasrv Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
|
||||
- title: Metasrv CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Flownode Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Flownode CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Frontend Requests
|
||||
panels:
|
||||
- title: HTTP QPS per Instance
|
||||
type: timeseries
|
||||
description: HTTP QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
|
||||
- title: HTTP P99 per Instance
|
||||
type: timeseries
|
||||
description: HTTP P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
|
||||
- title: gRPC QPS per Instance
|
||||
type: timeseries
|
||||
description: gRPC QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
|
||||
- title: gRPC P99 per Instance
|
||||
type: timeseries
|
||||
description: gRPC P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
|
||||
- title: MySQL QPS per Instance
|
||||
type: timeseries
|
||||
description: MySQL QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: MySQL P99 per Instance
|
||||
type: timeseries
|
||||
description: MySQL P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
|
||||
- title: PostgreSQL QPS per Instance
|
||||
type: timeseries
|
||||
description: PostgreSQL QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: PostgreSQL P99 per Instance
|
||||
type: timeseries
|
||||
description: PostgreSQL P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
|
||||
- title: Frontend to Datanode
|
||||
panels:
|
||||
- title: Ingest Rows per Instance
|
||||
type: timeseries
|
||||
description: Ingestion rate by row as in each frontend
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Region Call QPS per Instance
|
||||
type: timeseries
|
||||
description: Region Call QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
|
||||
- title: Region Call P99 per Instance
|
||||
type: timeseries
|
||||
description: Region Call P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
|
||||
- title: Mito Engine
|
||||
panels:
|
||||
- title: Request OPS per Instance
|
||||
type: timeseries
|
||||
description: Request QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
|
||||
- title: Request P99 per Instance
|
||||
type: timeseries
|
||||
description: Request P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
|
||||
- title: Write Buffer per Instance
|
||||
type: timeseries
|
||||
description: Write Buffer per Instance.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: greptime_mito_write_buffer_bytes{instance=~"$datanode"}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Write Rows per Instance
|
||||
type: timeseries
|
||||
description: Ingestion size by row counts.
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Flush OPS per Instance
|
||||
type: timeseries
|
||||
description: Flush QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
|
||||
- title: Write Stall per Instance
|
||||
type: timeseries
|
||||
description: Write Stall per Instance.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Read Stage OPS per Instance
|
||||
type: timeseries
|
||||
description: Read Stage OPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Read Stage P99 per Instance
|
||||
type: timeseries
|
||||
description: Read Stage P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
|
||||
- title: Write Stage P99 per Instance
|
||||
type: timeseries
|
||||
description: Write Stage P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
|
||||
- title: Compaction OPS per Instance
|
||||
type: timeseries
|
||||
description: Compaction OPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{pod}}]'
|
||||
- title: Compaction P99 per Instance by Stage
|
||||
type: timeseries
|
||||
description: Compaction latency by stage
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
|
||||
- title: Compaction P99 per Instance
|
||||
type: timeseries
|
||||
description: Compaction P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
|
||||
- title: WAL write size
|
||||
type: timeseries
|
||||
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
|
||||
unit: bytes
|
||||
queries:
|
||||
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
|
||||
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
|
||||
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
|
||||
- title: Cached Bytes per Instance
|
||||
type: timeseries
|
||||
description: Cached Bytes per Instance.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: greptime_mito_cache_bytes{instance=~"$datanode"}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
|
||||
- title: Inflight Compaction
|
||||
type: timeseries
|
||||
description: Ongoing compaction task count
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_mito_inflight_compaction_count
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: WAL sync duration seconds
|
||||
type: timeseries
|
||||
description: Raft engine (local disk) log store sync latency, p99
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
|
||||
- title: Log Store op duration seconds
|
||||
type: timeseries
|
||||
description: Write-ahead log operations latency at p99
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
|
||||
- title: Inflight Flush
|
||||
type: timeseries
|
||||
description: Ongoing flush task count
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_mito_inflight_flush_count
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: OpenDAL
|
||||
panels:
|
||||
- title: QPS per Instance
|
||||
type: timeseries
|
||||
description: QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Read QPS per Instance
|
||||
type: timeseries
|
||||
description: Read QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: Read P99 per Instance
|
||||
type: timeseries
|
||||
description: Read P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
|
||||
- title: Write QPS per Instance
|
||||
type: timeseries
|
||||
description: Write QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
|
||||
- title: Write P99 per Instance
|
||||
type: timeseries
|
||||
description: Write P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: List QPS per Instance
|
||||
type: timeseries
|
||||
description: List QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: List P99 per Instance
|
||||
type: timeseries
|
||||
description: List P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: Other Requests per Instance
|
||||
type: timeseries
|
||||
description: Other Requests per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read|write|list|stat"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Other Request P99 per Instance
|
||||
type: timeseries
|
||||
description: Other Request P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read|write|list"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Opendal traffic
|
||||
type: timeseries
|
||||
description: Total traffic as in bytes by instance and operation
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Metasrv
|
||||
panels:
|
||||
- title: Region migration datanode
|
||||
type: state-timeline
|
||||
description: Counter of region migration by source and destination
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: from-datanode-{{datanode_id}}
|
||||
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: to-datanode-{{datanode_id}}
|
||||
- title: Region migration error
|
||||
type: timeseries
|
||||
description: Counter of region migration error
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_meta_region_migration_error
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Datanode load
|
||||
type: timeseries
|
||||
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_datanode_load
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Flownode
|
||||
panels:
|
||||
- title: Flow Ingest / Output Rate
|
||||
type: timeseries
|
||||
description: Flow Ingest / Output Rate.
|
||||
queries:
|
||||
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
|
||||
- title: Flow Ingest Latency
|
||||
type: timeseries
|
||||
description: Flow Ingest Latency.
|
||||
queries:
|
||||
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
|
||||
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
|
||||
- title: Flow Operation Latency
|
||||
type: timeseries
|
||||
description: Flow Operation Latency.
|
||||
queries:
|
||||
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
|
||||
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
|
||||
- title: Flow Buffer Size per Instance
|
||||
type: timeseries
|
||||
description: Flow Buffer Size per Instance.
|
||||
queries:
|
||||
- expr: greptime_flow_input_buf_size
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}]'
|
||||
- title: Flow Processing Error per Instance
|
||||
type: timeseries
|
||||
description: Flow Processing Error per Instance.
|
||||
queries:
|
||||
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'
|
||||
7082
grafana/dashboards/standalone/dashboard.json
Normal file
7082
grafana/dashboards/standalone/dashboard.json
Normal file
File diff suppressed because it is too large
Load Diff
96
grafana/dashboards/standalone/dashboard.md
Normal file
96
grafana/dashboards/standalone/dashboard.md
Normal file
@@ -0,0 +1,96 @@
|
||||
# Overview
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `s` | `prometheus` | `__auto` |
|
||||
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | -- | `mysql` | -- |
|
||||
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `rowsps` | `prometheus` | `__auto` |
|
||||
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `decbytes` | `mysql` | -- |
|
||||
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `sishort` | `mysql` | -- |
|
||||
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | -- | `mysql` | -- |
|
||||
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | -- | `mysql` | -- |
|
||||
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `decbytes` | `mysql` | -- |
|
||||
# Ingestion
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `ingestion` |
|
||||
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `http-logs` |
|
||||
# Queries
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `reqps` | `prometheus` | `mysql` |
|
||||
# Resources
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{instance}}]-[{{ pod }}]` |
|
||||
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-cpu` |
|
||||
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-resident` |
|
||||
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
|
||||
# Frontend Requests
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
|
||||
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
|
||||
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
|
||||
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
|
||||
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `s` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-p99` |
|
||||
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
|
||||
# Frontend to Datanode
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
|
||||
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
|
||||
# Mito Engine
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
|
||||
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
|
||||
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{}` | `timeseries` | Write Buffer per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
|
||||
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{})` | `timeseries` | Write Stall per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
|
||||
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
|
||||
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `ops` | `prometheus` | `[{{ instance }}]-[{{pod}}]` |
|
||||
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
|
||||
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
|
||||
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `bytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
|
||||
| Cached Bytes per Instance | `greptime_mito_cache_bytes{}` | `timeseries` | Cached Bytes per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
|
||||
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
|
||||
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
|
||||
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
|
||||
# OpenDAL
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
|
||||
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
|
||||
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
|
||||
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
|
||||
# Metasrv
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `none` | `prometheus` | `from-datanode-{{datanode_id}}` |
|
||||
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `none` | `prometheus` | `__auto` |
|
||||
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `none` | `prometheus` | `__auto` |
|
||||
# Flownode
|
||||
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
|
||||
| --- | --- | --- | --- | --- | --- | --- |
|
||||
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | -- | `prometheus` | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
|
||||
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-p95` |
|
||||
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
|
||||
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}]` |
|
||||
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{code}}]` |
|
||||
761
grafana/dashboards/standalone/dashboard.yaml
Normal file
761
grafana/dashboards/standalone/dashboard.yaml
Normal file
@@ -0,0 +1,761 @@
|
||||
groups:
|
||||
- title: Overview
|
||||
panels:
|
||||
- title: Uptime
|
||||
type: stat
|
||||
description: The start time of GreptimeDB.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: time() - process_start_time_seconds
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Version
|
||||
type: stat
|
||||
description: GreptimeDB version.
|
||||
queries:
|
||||
- expr: SELECT pkg_version FROM information_schema.build_info
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Total Ingestion Rate
|
||||
type: stat
|
||||
description: Total ingestion rate.
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Total Storage Size
|
||||
type: stat
|
||||
description: Total number of data file size.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: select SUM(disk_size) from information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Total Rows
|
||||
type: stat
|
||||
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
|
||||
unit: sishort
|
||||
queries:
|
||||
- expr: select SUM(region_rows) from information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Deployment
|
||||
type: stat
|
||||
description: The deployment topology of GreptimeDB.
|
||||
queries:
|
||||
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Database Resources
|
||||
type: stat
|
||||
description: The number of the key resources in GreptimeDB.
|
||||
queries:
|
||||
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Data Size
|
||||
type: stat
|
||||
description: The data size of wal/index/manifest in the GreptimeDB.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
|
||||
datasource:
|
||||
type: mysql
|
||||
uid: ${information_schema}
|
||||
- title: Ingestion
|
||||
panels:
|
||||
- title: Total Ingestion Rate
|
||||
type: timeseries
|
||||
description: |
|
||||
Total ingestion rate.
|
||||
|
||||
Here we listed 3 primary protocols:
|
||||
|
||||
- Prometheus remote write
|
||||
- Greptime's gRPC API (when using our ingest SDK)
|
||||
- Log ingestion http API
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: ingestion
|
||||
- title: Ingestion Rate by Type
|
||||
type: timeseries
|
||||
description: |
|
||||
Total ingestion rate.
|
||||
|
||||
Here we listed 3 primary protocols:
|
||||
|
||||
- Prometheus remote write
|
||||
- Greptime's gRPC API (when using our ingest SDK)
|
||||
- Log ingestion http API
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: http-logs
|
||||
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: prometheus-remote-write
|
||||
- title: Queries
|
||||
panels:
|
||||
- title: Total Query Rate
|
||||
type: timeseries
|
||||
description: |-
|
||||
Total rate of query API calls by protocol. This metric is collected from frontends.
|
||||
|
||||
Here we listed 3 main protocols:
|
||||
- MySQL
|
||||
- Postgres
|
||||
- Prometheus API
|
||||
|
||||
Note that there are some other minor query APIs like /sql are not included
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: mysql
|
||||
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: pg
|
||||
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: promql
|
||||
- title: Resources
|
||||
panels:
|
||||
- title: Datanode Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{ pod }}]'
|
||||
- title: Datanode CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Frontend Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Frontend CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
|
||||
- title: Metasrv Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
|
||||
- title: Metasrv CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Flownode Memory per Instance
|
||||
type: timeseries
|
||||
description: Current memory usage by instance
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Flownode CPU Usage per Instance
|
||||
type: timeseries
|
||||
description: Current cpu usage by instance
|
||||
unit: none
|
||||
queries:
|
||||
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]'
|
||||
- title: Frontend Requests
|
||||
panels:
|
||||
- title: HTTP QPS per Instance
|
||||
type: timeseries
|
||||
description: HTTP QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health|/metrics"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
|
||||
- title: HTTP P99 per Instance
|
||||
type: timeseries
|
||||
description: HTTP P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health|/metrics"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
|
||||
- title: gRPC QPS per Instance
|
||||
type: timeseries
|
||||
description: gRPC QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
|
||||
- title: gRPC P99 per Instance
|
||||
type: timeseries
|
||||
description: gRPC P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
|
||||
- title: MySQL QPS per Instance
|
||||
type: timeseries
|
||||
description: MySQL QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: MySQL P99 per Instance
|
||||
type: timeseries
|
||||
description: MySQL P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
|
||||
- title: PostgreSQL QPS per Instance
|
||||
type: timeseries
|
||||
description: PostgreSQL QPS per Instance.
|
||||
unit: reqps
|
||||
queries:
|
||||
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: PostgreSQL P99 per Instance
|
||||
type: timeseries
|
||||
description: PostgreSQL P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
|
||||
- title: Frontend to Datanode
|
||||
panels:
|
||||
- title: Ingest Rows per Instance
|
||||
type: timeseries
|
||||
description: Ingestion rate by row as in each frontend
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Region Call QPS per Instance
|
||||
type: timeseries
|
||||
description: Region Call QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
|
||||
- title: Region Call P99 per Instance
|
||||
type: timeseries
|
||||
description: Region Call P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
|
||||
- title: Mito Engine
|
||||
panels:
|
||||
- title: Request OPS per Instance
|
||||
type: timeseries
|
||||
description: Request QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
|
||||
- title: Request P99 per Instance
|
||||
type: timeseries
|
||||
description: Request P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
|
||||
- title: Write Buffer per Instance
|
||||
type: timeseries
|
||||
description: Write Buffer per Instance.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: greptime_mito_write_buffer_bytes{}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Write Rows per Instance
|
||||
type: timeseries
|
||||
description: Ingestion size by row counts.
|
||||
unit: rowsps
|
||||
queries:
|
||||
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Flush OPS per Instance
|
||||
type: timeseries
|
||||
description: Flush QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
|
||||
- title: Write Stall per Instance
|
||||
type: timeseries
|
||||
description: Write Stall per Instance.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{})
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Read Stage OPS per Instance
|
||||
type: timeseries
|
||||
description: Read Stage OPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: Read Stage P99 per Instance
|
||||
type: timeseries
|
||||
description: Read Stage P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
|
||||
- title: Write Stage P99 per Instance
|
||||
type: timeseries
|
||||
description: Write Stage P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
|
||||
- title: Compaction OPS per Instance
|
||||
type: timeseries
|
||||
description: Compaction OPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{ instance }}]-[{{pod}}]'
|
||||
- title: Compaction P99 per Instance by Stage
|
||||
type: timeseries
|
||||
description: Compaction latency by stage
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
|
||||
- title: Compaction P99 per Instance
|
||||
type: timeseries
|
||||
description: Compaction P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
|
||||
- title: WAL write size
|
||||
type: timeseries
|
||||
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
|
||||
unit: bytes
|
||||
queries:
|
||||
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
|
||||
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
|
||||
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
|
||||
- title: Cached Bytes per Instance
|
||||
type: timeseries
|
||||
description: Cached Bytes per Instance.
|
||||
unit: decbytes
|
||||
queries:
|
||||
- expr: greptime_mito_cache_bytes{}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
|
||||
- title: Inflight Compaction
|
||||
type: timeseries
|
||||
description: Ongoing compaction task count
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_mito_inflight_compaction_count
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: WAL sync duration seconds
|
||||
type: timeseries
|
||||
description: Raft engine (local disk) log store sync latency, p99
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
|
||||
- title: Log Store op duration seconds
|
||||
type: timeseries
|
||||
description: Write-ahead log operations latency at p99
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
|
||||
- title: Inflight Flush
|
||||
type: timeseries
|
||||
description: Ongoing flush task count
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_mito_inflight_flush_count
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]'
|
||||
- title: OpenDAL
|
||||
panels:
|
||||
- title: QPS per Instance
|
||||
type: timeseries
|
||||
description: QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Read QPS per Instance
|
||||
type: timeseries
|
||||
description: Read QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: Read P99 per Instance
|
||||
type: timeseries
|
||||
description: Read P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
|
||||
- title: Write QPS per Instance
|
||||
type: timeseries
|
||||
description: Write QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
|
||||
- title: Write P99 per Instance
|
||||
type: timeseries
|
||||
description: Write P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: List QPS per Instance
|
||||
type: timeseries
|
||||
description: List QPS per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: List P99 per Instance
|
||||
type: timeseries
|
||||
description: List P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
|
||||
- title: Other Requests per Instance
|
||||
type: timeseries
|
||||
description: Other Requests per Instance.
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read|write|list|stat"}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Other Request P99 per Instance
|
||||
type: timeseries
|
||||
description: Other Request P99 per Instance.
|
||||
unit: s
|
||||
queries:
|
||||
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read|write|list"}[$__rate_interval])))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Opendal traffic
|
||||
type: timeseries
|
||||
description: Total traffic as in bytes by instance and operation
|
||||
unit: ops
|
||||
queries:
|
||||
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
|
||||
- title: Metasrv
|
||||
panels:
|
||||
- title: Region migration datanode
|
||||
type: state-timeline
|
||||
description: Counter of region migration by source and destination
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: from-datanode-{{datanode_id}}
|
||||
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: to-datanode-{{datanode_id}}
|
||||
- title: Region migration error
|
||||
type: timeseries
|
||||
description: Counter of region migration error
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_meta_region_migration_error
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Datanode load
|
||||
type: timeseries
|
||||
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
|
||||
unit: none
|
||||
queries:
|
||||
- expr: greptime_datanode_load
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: __auto
|
||||
- title: Flownode
|
||||
panels:
|
||||
- title: Flow Ingest / Output Rate
|
||||
type: timeseries
|
||||
description: Flow Ingest / Output Rate.
|
||||
queries:
|
||||
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
|
||||
- title: Flow Ingest Latency
|
||||
type: timeseries
|
||||
description: Flow Ingest Latency.
|
||||
queries:
|
||||
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
|
||||
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
|
||||
- title: Flow Operation Latency
|
||||
type: timeseries
|
||||
description: Flow Operation Latency.
|
||||
queries:
|
||||
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
|
||||
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
|
||||
- title: Flow Buffer Size per Instance
|
||||
type: timeseries
|
||||
description: Flow Buffer Size per Instance.
|
||||
queries:
|
||||
- expr: greptime_flow_input_buf_size
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}]'
|
||||
- title: Flow Processing Error per Instance
|
||||
type: timeseries
|
||||
description: Flow Processing Error per Instance.
|
||||
queries:
|
||||
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
|
||||
datasource:
|
||||
type: prometheus
|
||||
uid: ${metrics}
|
||||
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
54
grafana/scripts/check.sh
Executable file
54
grafana/scripts/check.sh
Executable file
@@ -0,0 +1,54 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
DASHBOARD_DIR=${1:-grafana/dashboards}
|
||||
|
||||
check_dashboard_description() {
|
||||
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
|
||||
echo "Checking $dashboard description"
|
||||
|
||||
# Use jq to check for panels with empty or missing descriptions
|
||||
invalid_panels=$(cat $dashboard | jq -r '
|
||||
.panels[]
|
||||
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))')
|
||||
|
||||
# Check if any invalid panels were found
|
||||
if [[ -n "$invalid_panels" ]]; then
|
||||
echo "Error: The following panels have empty or missing descriptions:"
|
||||
echo "$invalid_panels"
|
||||
exit 1
|
||||
else
|
||||
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
|
||||
fi
|
||||
done
|
||||
}
|
||||
|
||||
check_dashboards_generation() {
|
||||
./grafana/scripts/gen-dashboards.sh
|
||||
|
||||
if [[ -n "$(git diff --name-only grafana/dashboards)" ]]; then
|
||||
echo "Error: The dashboards are not generated correctly. You should execute the `make dashboards` command."
|
||||
exit 1
|
||||
fi
|
||||
}
|
||||
|
||||
check_datasource() {
|
||||
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
|
||||
echo "Checking $dashboard datasource"
|
||||
jq -r '.panels[] | select(.type != "row") | .targets[] | [.datasource.type, .datasource.uid] | @tsv' $dashboard | while read -r type uid; do
|
||||
# if the datasource is prometheus, check if the uid is ${metrics}
|
||||
if [[ "$type" == "prometheus" && "$uid" != "\${metrics}" ]]; then
|
||||
echo "Error: The datasource uid of $dashboard is not valid. It should be \${metrics}, got $uid"
|
||||
exit 1
|
||||
fi
|
||||
# if the datasource is mysql, check if the uid is ${information_schema}
|
||||
if [[ "$type" == "mysql" && "$uid" != "\${information_schema}" ]]; then
|
||||
echo "Error: The datasource uid of $dashboard is not valid. It should be \${information_schema}, got $uid"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
done
|
||||
}
|
||||
|
||||
check_dashboards_generation
|
||||
check_dashboard_description
|
||||
check_datasource
|
||||
18
grafana/scripts/gen-dashboards.sh
Executable file
18
grafana/scripts/gen-dashboards.sh
Executable file
@@ -0,0 +1,18 @@
|
||||
#! /usr/bin/env bash
|
||||
|
||||
CLUSTER_DASHBOARD_DIR=${1:-grafana/dashboards/cluster}
|
||||
STANDALONE_DASHBOARD_DIR=${2:-grafana/dashboards/standalone}
|
||||
DAC_IMAGE=ghcr.io/zyy17/dac:20250422-c9435ce
|
||||
|
||||
remove_instance_filters() {
|
||||
# Remove the instance filters for the standalone dashboards.
|
||||
sed 's/instance=~\\"$datanode\\",//; s/instance=~\\"$datanode\\"//; s/instance=~\\"$frontend\\",//; s/instance=~\\"$frontend\\"//; s/instance=~\\"$metasrv\\",//; s/instance=~\\"$metasrv\\"//; s/instance=~\\"$flownode\\",//; s/instance=~\\"$flownode\\"//;' $CLUSTER_DASHBOARD_DIR/dashboard.json > $STANDALONE_DASHBOARD_DIR/dashboard.json
|
||||
}
|
||||
|
||||
generate_intermediate_dashboards_and_docs() {
|
||||
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} -i /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.json -o /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.yaml -m > $CLUSTER_DASHBOARD_DIR/dashboard.md
|
||||
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} -i /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.json -o /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.yaml -m > $STANDALONE_DASHBOARD_DIR/dashboard.md
|
||||
}
|
||||
|
||||
remove_instance_filters
|
||||
generate_intermediate_dashboards_and_docs
|
||||
@@ -1,11 +0,0 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
BASEDIR=$(dirname "$0")
|
||||
echo '| Title | Description | Expressions |
|
||||
|---|---|---|'
|
||||
|
||||
cat $BASEDIR/greptimedb-cluster.json | jq -r '
|
||||
.panels |
|
||||
map(select(.type == "stat" or .type == "timeseries")) |
|
||||
.[] | "| \(.title) | \(.description | gsub("\n"; "<br>")) | \(.targets | map(.expr // .rawSql | "`\(.|gsub("\n"; "<br>"))`") | join("<br>")) |"
|
||||
'
|
||||
Reference in New Issue
Block a user