refactor: unify all dashboards and use dac tool to generate intermediate dashboards (#5933)

* refactor: split cluster metrics into multiple dashboards

* chore: merge multiple dashboards into one dashboard

* refactor: add 'dac' tool to generate a intermediate dashboards

* refactor: generate markdown docs for dashboards
This commit is contained in:
zyy17
2025-04-22 14:03:01 +08:00
committed by GitHub
parent 60e4607b64
commit 35f4fa3c3e
15 changed files with 16027 additions and 11778 deletions

View File

@@ -21,32 +21,6 @@ jobs:
run: sudo apt-get install -y jq
# Make the check.sh script executable
- name: Make check.sh executable
run: chmod +x grafana/check.sh
# Run the check.sh script
- name: Run check.sh
run: ./grafana/check.sh
# Only run summary.sh for pull_request events (not for merge queues or final pushes)
- name: Check if this is a pull request
id: check-pr
- name: Check grafana dashboards
run: |
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
echo "is_pull_request=true" >> $GITHUB_OUTPUT
else
echo "is_pull_request=false" >> $GITHUB_OUTPUT
fi
# Make the summary.sh script executable
- name: Make summary.sh executable
if: steps.check-pr.outputs.is_pull_request == 'true'
run: chmod +x grafana/summary.sh
# Run the summary.sh script and add its output to the GitHub Job Summary
- name: Run summary.sh and add to Job Summary
if: steps.check-pr.outputs.is_pull_request == 'true'
run: |
SUMMARY=$(./grafana/summary.sh)
echo "### Summary of Grafana Panels" >> $GITHUB_STEP_SUMMARY
echo "$SUMMARY" >> $GITHUB_STEP_SUMMARY
make check-dashboards

View File

@@ -222,6 +222,16 @@ start-cluster: ## Start the greptimedb cluster with etcd by using docker compose
stop-cluster: ## Stop the greptimedb cluster that created by docker compose.
docker compose -f ./docker/docker-compose/cluster-with-etcd.yaml stop
##@ Grafana
.PHONY: check-dashboards
check-dashboards: ## Check the Grafana dashboards.
@./grafana/scripts/check.sh
.PHONY: dashboards
dashboards: ## Generate the Grafana dashboards for standalone mode and intermediate dashboards.
@./grafana/scripts/gen-dashboards.sh
##@ Docs
config-docs: ## Generate configuration documentation from toml files.
docker run --rm \

View File

@@ -1,61 +1,83 @@
Grafana dashboard for GreptimeDB
--------------------------------
# Grafana dashboards for GreptimeDB
GreptimeDB's official Grafana dashboard.
## Overview
Status notify: we are still working on this config. It's expected to change frequently in the recent days. Please feel free to submit your feedback and/or contribution to this dashboard 🤗
This repository maintains the Grafana dashboards for GreptimeDB. It has two types of dashboards:
If you use Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `cluster/`: The dashboard for the GreptimeDB cluster. Read the [dashboard.md](./dashboards/cluster/dashboard.md) for more details.
- `standalone/`: The dashboard for the standalone GreptimeDB instance. Read the [dashboard.md](./dashboards/standalone/dashboard.md) for more details.
As the rapid development of GreptimeDB, the metrics may be changed, and please feel free to submit your feedback and/or contribution to this dashboard 🤗
To maintain the dashboards, we use the [`dac`](https://github.com/zyy17/dac) tool to generate the intermediate dashboards and markdown documents:
- `cluster/dashboard.yaml`: The intermediate dashboard for the GreptimeDB cluster.
- `standalone/dashboard.yaml`: The intermediatedashboard for the standalone GreptimeDB instance.
## Data Sources
There are two data sources for the dashboards to fetch the metrics:
- **Prometheus**: Expose the metrics of GreptimeDB.
- **Information Schema**: It is the MySQL port of the current monitored instance. The `overview` dashboard will use this datasource to show the information schema of the current instance.
## Instance Filters
To deploy the dashboards for multiple scenarios (K8s, bare metal, etc.), we prefer to use the `instance` label when filtering instances.
Additionally, we recommend including the `pod` label in the legend to make it easier to identify each instance, even though this field will be empty in bare metal scenarios.
For example, the following query is recommended:
```promql
sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
```
And the legend will be like: `[{{instance}}]-[{{ pod }}]`.
## Deployment
### Helm
If you use the Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy a GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `monitoring.enabled=true`: Deploys a standalone GreptimeDB instance dedicated to monitoring the cluster;
- `grafana.enabled=true`: Deploys Grafana and automatically imports the monitoring dashboard;
The standalone GreptimeDB instance will collect metrics from your cluster and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
The standalone GreptimeDB instance will collect metrics from your cluster, and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
# How to use
### Self-host Prometheus and import dashboards manually
## `greptimedb.json`
1. **Configure Prometheus to scrape the cluster**
Open Grafana Dashboard page, choose `New` -> `Import`. And upload `greptimedb.json` file.
The following is an example configuration(**Please modify it according to your actual situation**):
## `greptimedb-cluster.json`
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
This cluster dashboard provides a comprehensive view of incoming requests, response statuses, and internal activities such as flush and compaction, with a layered structure from frontend to datanode. Designed with a focus on alert functionality, its primary aim is to highlight any anomalies in metrics, allowing users to quickly pinpoint the cause of errors.
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
We use Prometheus to scrape off metrics from nodes in GreptimeDB cluster, Grafana to visualize the diagram. Any compatible stack should work too.
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__Note__: This dashboard is still in an early stage of development. Any issue or advice on improvement is welcomed.
2. **Configure the data sources in Grafana**
### Configuration
You need to add two data sources in Grafana:
Please ensure the following configuration before importing the dashboard into Grafana.
- Prometheus: It is the Prometheus instance that scrapes the GreptimeDB metrics.
- Information Schema: It is the MySQL port of the current monitored instance. The dashboard will use this datasource to show the information schema of the current instance.
__1. Prometheus scrape config__
3. **Import the dashboards based on your deployment scenario**
Configure Prometheus to scrape the cluster.
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__2. Grafana config__
Create a Prometheus data source in Grafana before using this dashboard. We use `datasource` as a variable in Grafana dashboard so that multiple environments are supported.
### Usage
Use `datasource` or `instance` on the upper-left corner to filter data from certain node.
- **Cluster**: Import the `cluster/dashboard.json` dashboard.
- **Standalone**: Import the `standalone/dashboard.json` dashboard.

View File

@@ -1,19 +0,0 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))
')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
exit 0
fi

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,96 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `s` | `prometheus` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | -- | `mysql` | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `rowsps` | `prometheus` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `decbytes` | `mysql` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `sishort` | `mysql` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | -- | `mysql` | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | -- | `mysql` | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `decbytes` | `mysql` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `reqps` | `prometheus` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `s` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{instance=~"$datanode"}` | `timeseries` | Write Buffer per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})` | `timeseries` | Write Stall per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `ops` | `prometheus` | `[{{ instance }}]-[{{pod}}]` |
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `bytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{instance=~"$datanode"}` | `timeseries` | Cached Bytes per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `none` | `prometheus` | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `none` | `prometheus` | `__auto` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `none` | `prometheus` | `__auto` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | -- | `prometheus` | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -0,0 +1,761 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
unit: decbytes
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction P99 per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: state-timeline
description: Counter of region migration by source and destination
unit: none
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,96 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `s` | `prometheus` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | -- | `mysql` | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `rowsps` | `prometheus` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `decbytes` | `mysql` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `sishort` | `mysql` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | -- | `mysql` | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | -- | `mysql` | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `decbytes` | `mysql` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `rowsps` | `prometheus` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `reqps` | `prometheus` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `decbytes` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `none` | `prometheus` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `s` | `prometheus` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `reqps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{}` | `timeseries` | Write Buffer per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `rowsps` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{})` | `timeseries` | Write Stall per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `ops` | `prometheus` | `[{{ instance }}]-[{{pod}}]` |
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `bytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{}` | `timeseries` | Cached Bytes per Instance. | `decbytes` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `none` | `prometheus` | `[{{instance}}]-[{{pod}}]` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `s` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `ops` | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `none` | `prometheus` | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `none` | `prometheus` | `__auto` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `none` | `prometheus` | `__auto` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | -- | `prometheus` | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | -- | `prometheus` | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -0,0 +1,761 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
unit: decbytes
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction P99 per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: state-timeline
description: Counter of region migration by source and destination
unit: none
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

54
grafana/scripts/check.sh Executable file
View File

@@ -0,0 +1,54 @@
#!/usr/bin/env bash
DASHBOARD_DIR=${1:-grafana/dashboards}
check_dashboard_description() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard description"
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $dashboard | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
fi
done
}
check_dashboards_generation() {
./grafana/scripts/gen-dashboards.sh
if [[ -n "$(git diff --name-only grafana/dashboards)" ]]; then
echo "Error: The dashboards are not generated correctly. You should execute the `make dashboards` command."
exit 1
fi
}
check_datasource() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard datasource"
jq -r '.panels[] | select(.type != "row") | .targets[] | [.datasource.type, .datasource.uid] | @tsv' $dashboard | while read -r type uid; do
# if the datasource is prometheus, check if the uid is ${metrics}
if [[ "$type" == "prometheus" && "$uid" != "\${metrics}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${metrics}, got $uid"
exit 1
fi
# if the datasource is mysql, check if the uid is ${information_schema}
if [[ "$type" == "mysql" && "$uid" != "\${information_schema}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${information_schema}, got $uid"
exit 1
fi
done
done
}
check_dashboards_generation
check_dashboard_description
check_datasource

View File

@@ -0,0 +1,18 @@
#! /usr/bin/env bash
CLUSTER_DASHBOARD_DIR=${1:-grafana/dashboards/cluster}
STANDALONE_DASHBOARD_DIR=${2:-grafana/dashboards/standalone}
DAC_IMAGE=ghcr.io/zyy17/dac:20250422-c9435ce
remove_instance_filters() {
# Remove the instance filters for the standalone dashboards.
sed 's/instance=~\\"$datanode\\",//; s/instance=~\\"$datanode\\"//; s/instance=~\\"$frontend\\",//; s/instance=~\\"$frontend\\"//; s/instance=~\\"$metasrv\\",//; s/instance=~\\"$metasrv\\"//; s/instance=~\\"$flownode\\",//; s/instance=~\\"$flownode\\"//;' $CLUSTER_DASHBOARD_DIR/dashboard.json > $STANDALONE_DASHBOARD_DIR/dashboard.json
}
generate_intermediate_dashboards_and_docs() {
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} -i /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.json -o /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.yaml -m > $CLUSTER_DASHBOARD_DIR/dashboard.md
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} -i /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.json -o /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.yaml -m > $STANDALONE_DASHBOARD_DIR/dashboard.md
}
remove_instance_filters
generate_intermediate_dashboards_and_docs

View File

@@ -1,11 +0,0 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
echo '| Title | Description | Expressions |
|---|---|---|'
cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels |
map(select(.type == "stat" or .type == "timeseries")) |
.[] | "| \(.title) | \(.description | gsub("\n"; "<br>")) | \(.targets | map(.expr // .rawSql | "`\(.|gsub("\n"; "<br>"))`") | join("<br>")) |"
'