fix: prune primary key with multiple columns may use default value as statistics (#5996)

* test: incorrect test result when filtering pk with multiple columns

* fix: prune non first tag correctly

Distinguish no column and no stats and only use default value when no
column

* test: update test result

* refactor: rename test file

* test: add test for null filter

* fix: use StatValues for null counts

* test: drop table

* test: fix unstable flow test
This commit is contained in:
Yingwen
2025-04-28 12:53:30 +08:00
committed by GitHub
parent ed1ce8438f
commit 86aae6733d
6 changed files with 324 additions and 29 deletions

View File

@@ -134,6 +134,7 @@ impl WriteFormat {
/// Helper for reading the SST format.
pub struct ReadFormat {
/// The metadata stored in the SST.
metadata: RegionMetadataRef,
/// SST file schema.
arrow_schema: SchemaRef,
@@ -305,17 +306,23 @@ impl ReadFormat {
&self,
row_groups: &[impl Borrow<RowGroupMetaData>],
column_id: ColumnId,
) -> Option<ArrayRef> {
let column = self.metadata.column_by_id(column_id)?;
) -> StatValues {
let Some(column) = self.metadata.column_by_id(column_id) else {
// No such column in the SST.
return StatValues::NoColumn;
};
match column.semantic_type {
SemanticType::Tag => self.tag_values(row_groups, column, true),
SemanticType::Field => {
let index = self.field_id_to_index.get(&column_id)?;
Self::column_values(row_groups, column, *index, true)
// Safety: `field_id_to_index` is initialized by the semantic type.
let index = self.field_id_to_index.get(&column_id).unwrap();
let stats = Self::column_values(row_groups, column, *index, true);
StatValues::from_stats_opt(stats)
}
SemanticType::Timestamp => {
let index = self.time_index_position();
Self::column_values(row_groups, column, index, true)
let stats = Self::column_values(row_groups, column, index, true);
StatValues::from_stats_opt(stats)
}
}
}
@@ -325,17 +332,23 @@ impl ReadFormat {
&self,
row_groups: &[impl Borrow<RowGroupMetaData>],
column_id: ColumnId,
) -> Option<ArrayRef> {
let column = self.metadata.column_by_id(column_id)?;
) -> StatValues {
let Some(column) = self.metadata.column_by_id(column_id) else {
// No such column in the SST.
return StatValues::NoColumn;
};
match column.semantic_type {
SemanticType::Tag => self.tag_values(row_groups, column, false),
SemanticType::Field => {
let index = self.field_id_to_index.get(&column_id)?;
Self::column_values(row_groups, column, *index, false)
// Safety: `field_id_to_index` is initialized by the semantic type.
let index = self.field_id_to_index.get(&column_id).unwrap();
let stats = Self::column_values(row_groups, column, *index, false);
StatValues::from_stats_opt(stats)
}
SemanticType::Timestamp => {
let index = self.time_index_position();
Self::column_values(row_groups, column, index, false)
let stats = Self::column_values(row_groups, column, index, false);
StatValues::from_stats_opt(stats)
}
}
}
@@ -345,17 +358,23 @@ impl ReadFormat {
&self,
row_groups: &[impl Borrow<RowGroupMetaData>],
column_id: ColumnId,
) -> Option<ArrayRef> {
let column = self.metadata.column_by_id(column_id)?;
) -> StatValues {
let Some(column) = self.metadata.column_by_id(column_id) else {
// No such column in the SST.
return StatValues::NoColumn;
};
match column.semantic_type {
SemanticType::Tag => None,
SemanticType::Tag => StatValues::NoStats,
SemanticType::Field => {
let index = self.field_id_to_index.get(&column_id)?;
Self::column_null_counts(row_groups, *index)
// Safety: `field_id_to_index` is initialized by the semantic type.
let index = self.field_id_to_index.get(&column_id).unwrap();
let stats = Self::column_null_counts(row_groups, *index);
StatValues::from_stats_opt(stats)
}
SemanticType::Timestamp => {
let index = self.time_index_position();
Self::column_null_counts(row_groups, index)
let stats = Self::column_null_counts(row_groups, index);
StatValues::from_stats_opt(stats)
}
}
}
@@ -390,8 +409,7 @@ impl ReadFormat {
row_groups: &[impl Borrow<RowGroupMetaData>],
column: &ColumnMetadata,
is_min: bool,
) -> Option<ArrayRef> {
let primary_key_encoding = self.metadata.primary_key_encoding;
) -> StatValues {
let is_first_tag = self
.metadata
.primary_key
@@ -400,9 +418,28 @@ impl ReadFormat {
.unwrap_or(false);
if !is_first_tag {
// Only the min-max of the first tag is available in the primary key.
return None;
return StatValues::NoStats;
}
StatValues::from_stats_opt(self.first_tag_values(row_groups, column, is_min))
}
/// Returns min/max values of the first tag.
/// Returns None if the tag does not have statistics.
fn first_tag_values(
&self,
row_groups: &[impl Borrow<RowGroupMetaData>],
column: &ColumnMetadata,
is_min: bool,
) -> Option<ArrayRef> {
debug_assert!(self
.metadata
.primary_key
.first()
.map(|id| *id == column.column_id)
.unwrap_or(false));
let primary_key_encoding = self.metadata.primary_key_encoding;
let converter = build_primary_key_codec_with_fields(
primary_key_encoding,
[(
@@ -452,6 +489,7 @@ impl ReadFormat {
}
/// Returns min/max values of specific non-tag columns.
/// Returns None if the column does not have statistics.
fn column_values(
row_groups: &[impl Borrow<RowGroupMetaData>],
column: &ColumnMetadata,
@@ -544,6 +582,29 @@ impl ReadFormat {
}
}
/// Values of column statistics of the SST.
///
/// It also distinguishes the case that a column is not found and
/// the column exists but has no statistics.
pub enum StatValues {
/// Values of each row group.
Values(ArrayRef),
/// No such column.
NoColumn,
/// Column exists but has no statistics.
NoStats,
}
impl StatValues {
/// Creates a new `StatValues` instance from optional statistics.
pub fn from_stats_opt(stats: Option<ArrayRef>) -> Self {
match stats {
Some(stats) => StatValues::Values(stats),
None => StatValues::NoStats,
}
}
}
#[cfg(test)]
impl ReadFormat {
/// Creates a helper with existing `metadata` and all columns.

View File

@@ -25,7 +25,7 @@ use parquet::file::metadata::RowGroupMetaData;
use store_api::metadata::RegionMetadataRef;
use store_api::storage::ColumnId;
use crate::sst::parquet::format::ReadFormat;
use crate::sst::parquet::format::{ReadFormat, StatValues};
/// Statistics for pruning row groups.
pub(crate) struct RowGroupPruningStats<'a, T> {
@@ -100,16 +100,18 @@ impl<T: Borrow<RowGroupMetaData>> PruningStatistics for RowGroupPruningStats<'_,
fn min_values(&self, column: &Column) -> Option<ArrayRef> {
let column_id = self.column_id_to_prune(&column.name)?;
match self.read_format.min_values(self.row_groups, column_id) {
Some(values) => Some(values),
None => self.compat_default_value(&column.name),
StatValues::Values(values) => Some(values),
StatValues::NoColumn => self.compat_default_value(&column.name),
StatValues::NoStats => None,
}
}
fn max_values(&self, column: &Column) -> Option<ArrayRef> {
let column_id = self.column_id_to_prune(&column.name)?;
match self.read_format.max_values(self.row_groups, column_id) {
Some(values) => Some(values),
None => self.compat_default_value(&column.name),
StatValues::Values(values) => Some(values),
StatValues::NoColumn => self.compat_default_value(&column.name),
StatValues::NoStats => None,
}
}
@@ -118,10 +120,12 @@ impl<T: Borrow<RowGroupMetaData>> PruningStatistics for RowGroupPruningStats<'_,
}
fn null_counts(&self, column: &Column) -> Option<ArrayRef> {
let Some(column_id) = self.column_id_to_prune(&column.name) else {
return self.compat_null_count(&column.name);
};
self.read_format.null_counts(self.row_groups, column_id)
let column_id = self.column_id_to_prune(&column.name)?;
match self.read_format.null_counts(self.row_groups, column_id) {
StatValues::Values(values) => Some(values),
StatValues::NoColumn => self.compat_null_count(&column.name),
StatValues::NoStats => None,
}
}
fn row_counts(&self, _column: &Column) -> Option<ArrayRef> {

View File

@@ -50,6 +50,7 @@ ADMIN FLUSH_FLOW('calc_access_log_10s');
+-----------------------------------------+
-- query should return 3 rows
-- SQLNESS SORT_RESULT 3 1
SELECT "url", time_window FROM access_log_10s
ORDER BY
time_window;
@@ -63,6 +64,7 @@ ORDER BY
+------------+---------------------+
-- use hll_count to query the approximate data in access_log_10s
-- SQLNESS SORT_RESULT 3 1
SELECT "url", time_window, hll_count(state) FROM access_log_10s
ORDER BY
time_window;
@@ -76,6 +78,7 @@ ORDER BY
+------------+---------------------+---------------------------------+
-- further, we can aggregate 10 seconds of data to every minute, by using hll_merge to merge 10 seconds of hyperloglog state
-- SQLNESS SORT_RESULT 3 1
SELECT
"url",
date_bin('1 minute'::INTERVAL, time_window) AS time_window_1m,
@@ -91,8 +94,8 @@ ORDER BY
+------------+---------------------+------------+
| url | time_window_1m | uv_per_min |
+------------+---------------------+------------+
| /not_found | 2025-03-04T00:00:00 | 1 |
| /dashboard | 2025-03-04T00:00:00 | 3 |
| /not_found | 2025-03-04T00:00:00 | 1 |
+------------+---------------------+------------+
DROP FLOW calc_access_log_10s;

View File

@@ -36,16 +36,19 @@ INSERT INTO access_log VALUES
ADMIN FLUSH_FLOW('calc_access_log_10s');
-- query should return 3 rows
-- SQLNESS SORT_RESULT 3 1
SELECT "url", time_window FROM access_log_10s
ORDER BY
time_window;
-- use hll_count to query the approximate data in access_log_10s
-- SQLNESS SORT_RESULT 3 1
SELECT "url", time_window, hll_count(state) FROM access_log_10s
ORDER BY
time_window;
-- further, we can aggregate 10 seconds of data to every minute, by using hll_merge to merge 10 seconds of hyperloglog state
-- SQLNESS SORT_RESULT 3 1
SELECT
"url",
date_bin('1 minute'::INTERVAL, time_window) AS time_window_1m,

View File

@@ -0,0 +1,158 @@
CREATE TABLE IF NOT EXISTS `test_multi_pk_filter` ( `namespace` STRING NULL, `env` STRING NULL DEFAULT 'NULL', `flag` INT NULL, `total` BIGINT NULL, `greptime_timestamp` TIMESTAMP(9) NOT NULL, TIME INDEX (`greptime_timestamp`), PRIMARY KEY (`namespace`, `env`, `flag`) ) ENGINE=mito;
Affected Rows: 0
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 5289, '2023-05-15 10:00:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 0, 421, '2023-05-15 10:05:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'dev', 1, 356, '2023-05-15 10:10:00');
Affected Rows: 1
ADMIN FLUSH_TABLE('test_multi_pk_filter');
+-------------------------------------------+
| ADMIN FLUSH_TABLE('test_multi_pk_filter') |
+-------------------------------------------+
| 0 |
+-------------------------------------------+
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'dev', 1, 412, '2023-05-15 10:15:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'dev', 1, 298, '2023-05-15 10:20:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 5289, '2023-05-15 10:25:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 5874, '2023-05-15 10:30:00');
Affected Rows: 1
ADMIN FLUSH_TABLE('test_multi_pk_filter');
+-------------------------------------------+
| ADMIN FLUSH_TABLE('test_multi_pk_filter') |
+-------------------------------------------+
| 0 |
+-------------------------------------------+
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 6132, '2023-05-15 10:35:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'testing', 1, 1287, '2023-05-15 10:40:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'testing', 1, 1432, '2023-05-15 10:45:00');
Affected Rows: 1
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'testing', 1, 1056, '2023-05-15 10:50:00');
Affected Rows: 1
SELECT greptime_timestamp, namespace, env, total FROM test_multi_pk_filter WHERE
greptime_timestamp BETWEEN '2023-05-15 10:00:00' AND '2023-05-15 11:00:00' AND flag = 1 AND namespace = 'thermostat_v2'
ORDER BY greptime_timestamp;
+---------------------+---------------+------------+-------+
| greptime_timestamp | namespace | env | total |
+---------------------+---------------+------------+-------+
| 2023-05-15T10:00:00 | thermostat_v2 | production | 5289 |
| 2023-05-15T10:10:00 | thermostat_v2 | dev | 356 |
| 2023-05-15T10:15:00 | thermostat_v2 | dev | 412 |
| 2023-05-15T10:20:00 | thermostat_v2 | dev | 298 |
| 2023-05-15T10:25:00 | thermostat_v2 | production | 5289 |
| 2023-05-15T10:30:00 | thermostat_v2 | production | 5874 |
| 2023-05-15T10:35:00 | thermostat_v2 | production | 6132 |
| 2023-05-15T10:40:00 | thermostat_v2 | testing | 1287 |
| 2023-05-15T10:45:00 | thermostat_v2 | testing | 1432 |
| 2023-05-15T10:50:00 | thermostat_v2 | testing | 1056 |
+---------------------+---------------+------------+-------+
SELECT greptime_timestamp, namespace, env, total FROM test_multi_pk_filter WHERE
greptime_timestamp BETWEEN '2023-05-15 10:00:00' AND '2023-05-15 11:00:00' AND flag = 1 AND namespace = 'thermostat_v2' AND env='dev'
ORDER BY greptime_timestamp;
+---------------------+---------------+-----+-------+
| greptime_timestamp | namespace | env | total |
+---------------------+---------------+-----+-------+
| 2023-05-15T10:10:00 | thermostat_v2 | dev | 356 |
| 2023-05-15T10:15:00 | thermostat_v2 | dev | 412 |
| 2023-05-15T10:20:00 | thermostat_v2 | dev | 298 |
+---------------------+---------------+-----+-------+
DROP TABLE test_multi_pk_filter;
Affected Rows: 0
CREATE TABLE IF NOT EXISTS `test_multi_pk_null` ( `namespace` STRING NULL, `env` STRING NULL DEFAULT 'NULL', `total` BIGINT NULL, `greptime_timestamp` TIMESTAMP(9) NOT NULL, TIME INDEX (`greptime_timestamp`), PRIMARY KEY (`namespace`, `env`) ) ENGINE=mito;
Affected Rows: 0
INSERT INTO test_multi_pk_null
(namespace, env, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 5289, '2023-05-15 10:00:00');
Affected Rows: 1
INSERT INTO test_multi_pk_null
(namespace, env, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 421, '2023-05-15 10:05:00');
Affected Rows: 1
ADMIN FLUSH_TABLE('test_multi_pk_null');
+-----------------------------------------+
| ADMIN FLUSH_TABLE('test_multi_pk_null') |
+-----------------------------------------+
| 0 |
+-----------------------------------------+
SELECT * FROM test_multi_pk_null WHERE env IS NOT NULL;
+---------------+------------+-------+---------------------+
| namespace | env | total | greptime_timestamp |
+---------------+------------+-------+---------------------+
| thermostat_v2 | production | 5289 | 2023-05-15T10:00:00 |
| thermostat_v2 | production | 421 | 2023-05-15T10:05:00 |
+---------------+------------+-------+---------------------+
DROP TABLE test_multi_pk_null;
Affected Rows: 0

View File

@@ -0,0 +1,66 @@
CREATE TABLE IF NOT EXISTS `test_multi_pk_filter` ( `namespace` STRING NULL, `env` STRING NULL DEFAULT 'NULL', `flag` INT NULL, `total` BIGINT NULL, `greptime_timestamp` TIMESTAMP(9) NOT NULL, TIME INDEX (`greptime_timestamp`), PRIMARY KEY (`namespace`, `env`, `flag`) ) ENGINE=mito;
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 5289, '2023-05-15 10:00:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 0, 421, '2023-05-15 10:05:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'dev', 1, 356, '2023-05-15 10:10:00');
ADMIN FLUSH_TABLE('test_multi_pk_filter');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'dev', 1, 412, '2023-05-15 10:15:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'dev', 1, 298, '2023-05-15 10:20:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 5289, '2023-05-15 10:25:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 5874, '2023-05-15 10:30:00');
ADMIN FLUSH_TABLE('test_multi_pk_filter');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 1, 6132, '2023-05-15 10:35:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'testing', 1, 1287, '2023-05-15 10:40:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'testing', 1, 1432, '2023-05-15 10:45:00');
INSERT INTO test_multi_pk_filter
(namespace, env, flag, total, greptime_timestamp)
VALUES ('thermostat_v2', 'testing', 1, 1056, '2023-05-15 10:50:00');
SELECT greptime_timestamp, namespace, env, total FROM test_multi_pk_filter WHERE
greptime_timestamp BETWEEN '2023-05-15 10:00:00' AND '2023-05-15 11:00:00' AND flag = 1 AND namespace = 'thermostat_v2'
ORDER BY greptime_timestamp;
SELECT greptime_timestamp, namespace, env, total FROM test_multi_pk_filter WHERE
greptime_timestamp BETWEEN '2023-05-15 10:00:00' AND '2023-05-15 11:00:00' AND flag = 1 AND namespace = 'thermostat_v2' AND env='dev'
ORDER BY greptime_timestamp;
DROP TABLE test_multi_pk_filter;
CREATE TABLE IF NOT EXISTS `test_multi_pk_null` ( `namespace` STRING NULL, `env` STRING NULL DEFAULT 'NULL', `total` BIGINT NULL, `greptime_timestamp` TIMESTAMP(9) NOT NULL, TIME INDEX (`greptime_timestamp`), PRIMARY KEY (`namespace`, `env`) ) ENGINE=mito;
INSERT INTO test_multi_pk_null
(namespace, env, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 5289, '2023-05-15 10:00:00');
INSERT INTO test_multi_pk_null
(namespace, env, total, greptime_timestamp)
VALUES ('thermostat_v2', 'production', 421, '2023-05-15 10:05:00');
ADMIN FLUSH_TABLE('test_multi_pk_null');
SELECT * FROM test_multi_pk_null WHERE env IS NOT NULL;
DROP TABLE test_multi_pk_null;