mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2026-01-14 01:02:55 +00:00
fix: aggr group by all partition cols use partial commutative (#6534)
* fix: aggr group by all partition cols use partial commutative Signed-off-by: discord9 <discord9@163.com> * test: bugged case Signed-off-by: discord9 <discord9@163.com> * test: sqlness fix Signed-off-by: discord9 <discord9@163.com> * test: more redacted Signed-off-by: discord9 <discord9@163.com> * more cases Signed-off-by: discord9 <discord9@163.com> * even more test cases Signed-off-by: discord9 <discord9@163.com> * join testcase Signed-off-by: discord9 <discord9@163.com> * fix: column requirement added in correct location Signed-off-by: discord9 <discord9@163.com> * fix test Signed-off-by: discord9 <discord9@163.com> * chore: clippy Signed-off-by: discord9 <discord9@163.com> * track col reqs per stack Signed-off-by: discord9 <discord9@163.com> * fix: continue Signed-off-by: discord9 <discord9@163.com> * chore: clippy Signed-off-by: discord9 <discord9@163.com> * refactor: test mod Signed-off-by: discord9 <discord9@163.com> * test utils Signed-off-by: discord9 <discord9@163.com> * test: better test Signed-off-by: discord9 <discord9@163.com> * more testcases Signed-off-by: discord9 <discord9@163.com> * test limit push down Signed-off-by: discord9 <discord9@163.com> * more testcases Signed-off-by: discord9 <discord9@163.com> * more testcase Signed-off-by: discord9 <discord9@163.com> * more test Signed-off-by: discord9 <discord9@163.com> * chore: update sqlness Signed-off-by: discord9 <discord9@163.com> * chore: update commnets Signed-off-by: discord9 <discord9@163.com> * fix: check col reqs from bottom to upper Signed-off-by: discord9 <discord9@163.com> * chore: more comment Signed-off-by: discord9 <discord9@163.com> * docs: more todo Signed-off-by: discord9 <discord9@163.com> * chore: comments Signed-off-by: discord9 <discord9@163.com> * test: a new failing test that should be fixed Signed-off-by: discord9 <discord9@163.com> * fix: part col alias tracking Signed-off-by: discord9 <discord9@163.com> * chore: unused Signed-off-by: discord9 <discord9@163.com> * chore: clippy Signed-off-by: discord9 <discord9@163.com> * docs: comment Signed-off-by: discord9 <discord9@163.com> * mroe testcase Signed-off-by: discord9 <discord9@163.com> * more testcase for step/part aggr combine Signed-off-by: discord9 <discord9@163.com> * FIXME: a new bug Signed-off-by: discord9 <discord9@163.com> * literally unfixable Signed-off-by: discord9 <discord9@163.com> * chore: remove some debug print Signed-off-by: discord9 <discord9@163.com> --------- Signed-off-by: discord9 <discord9@163.com>
This commit is contained in:
@@ -237,7 +237,8 @@ fn create_output_batch(
|
||||
for (node, metric) in sub_stage_metrics.into_iter().enumerate() {
|
||||
builder.append_metric(1, node as _, metrics_to_string(metric, format)?);
|
||||
}
|
||||
return Ok(TreeNodeRecursion::Stop);
|
||||
// might have multiple merge scans, so continue
|
||||
return Ok(TreeNodeRecursion::Continue);
|
||||
}
|
||||
Ok(TreeNodeRecursion::Continue)
|
||||
})?;
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::collections::HashSet;
|
||||
use std::collections::{HashMap, HashSet};
|
||||
use std::sync::Arc;
|
||||
|
||||
use common_telemetry::debug;
|
||||
@@ -38,6 +38,13 @@ use crate::dist_plan::merge_scan::MergeScanLogicalPlan;
|
||||
use crate::plan::ExtractExpr;
|
||||
use crate::query_engine::DefaultSerializer;
|
||||
|
||||
#[cfg(test)]
|
||||
mod test;
|
||||
|
||||
mod utils;
|
||||
|
||||
pub(crate) use utils::{AliasMapping, AliasTracker};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct DistPlannerAnalyzer;
|
||||
|
||||
@@ -154,7 +161,33 @@ struct PlanRewriter {
|
||||
status: RewriterStatus,
|
||||
/// Partition columns of the table in current pass
|
||||
partition_cols: Option<Vec<String>>,
|
||||
column_requirements: HashSet<Column>,
|
||||
alias_tracker: Option<AliasTracker>,
|
||||
/// use stack count as scope to determine column requirements is needed or not
|
||||
/// i.e for a logical plan like:
|
||||
/// ```ignore
|
||||
/// 1: Projection: t.number
|
||||
/// 2: Sort: t.pk1+t.pk2
|
||||
/// 3. Projection: t.number, t.pk1, t.pk2
|
||||
/// ```
|
||||
/// `Sort` will make a column requirement for `t.pk1` at level 2.
|
||||
/// Which making `Projection` at level 1 need to add a ref to `t.pk1` as well.
|
||||
/// So that the expanded plan will be
|
||||
/// ```ignore
|
||||
/// Projection: t.number
|
||||
/// MergeSort: t.pk1
|
||||
/// MergeScan: remote_input=
|
||||
/// Projection: t.number, "t.pk1+t.pk2" <--- the original `Projection` at level 1 get added with `t.pk1+t.pk2`
|
||||
/// Sort: t.pk1+t.pk2
|
||||
/// Projection: t.number, t.pk1, t.pk2
|
||||
/// ```
|
||||
/// Making `MergeSort` can have `t.pk1` as input.
|
||||
/// Meanwhile `Projection` at level 3 doesn't need to add any new column because 3 > 2
|
||||
/// and col requirements at level 2 is not applicable for level 3.
|
||||
///
|
||||
/// see more details in test `expand_proj_step_aggr` and `expand_proj_sort_proj`
|
||||
///
|
||||
/// TODO(discord9): a simpler solution to track column requirements for merge scan
|
||||
column_requirements: Vec<(HashSet<Column>, usize)>,
|
||||
/// Whether to expand on next call
|
||||
/// This is used to handle the case where a plan is transformed, but need to be expanded from it's
|
||||
/// parent node. For example a Aggregate plan is split into two parts in frontend and datanode, and need
|
||||
@@ -164,7 +197,7 @@ struct PlanRewriter {
|
||||
/// This is used to handle the case where a plan is transformed, but still
|
||||
/// need to push down as many node as possible before next partial/conditional/transformed commutative
|
||||
/// plan. I.e.
|
||||
/// ```
|
||||
/// ```ignore
|
||||
/// Limit:
|
||||
/// Sort:
|
||||
/// ```
|
||||
@@ -187,6 +220,15 @@ impl PlanRewriter {
|
||||
|
||||
/// Return true if should stop and expand. The input plan is the parent node of current node
|
||||
fn should_expand(&mut self, plan: &LogicalPlan) -> bool {
|
||||
debug!(
|
||||
"Check should_expand at level: {} with Stack:\n{}, ",
|
||||
self.level,
|
||||
self.stack
|
||||
.iter()
|
||||
.map(|(p, l)| format!("{l}:{}{}", " ".repeat(l - 1), p.display()))
|
||||
.collect::<Vec<String>>()
|
||||
.join("\n"),
|
||||
);
|
||||
if DFLogicalSubstraitConvertor
|
||||
.encode(plan, DefaultSerializer)
|
||||
.is_err()
|
||||
@@ -200,18 +242,21 @@ impl PlanRewriter {
|
||||
}
|
||||
|
||||
if self.expand_on_next_part_cond_trans_commutative {
|
||||
let comm = Categorizer::check_plan(plan, self.partition_cols.clone());
|
||||
let comm = Categorizer::check_plan(plan, self.get_aliased_partition_columns());
|
||||
match comm {
|
||||
Commutativity::PartialCommutative => {
|
||||
// a small difference is that for partial commutative, we still need to
|
||||
// expand on next call(so `Limit` can be pushed down)
|
||||
// push down it(so `Limit` can be pushed down)
|
||||
|
||||
// notice how limit needed to be expanded as well to make sure query is correct
|
||||
// i.e. `Limit fetch=10` need to be pushed down to the leaf node
|
||||
self.expand_on_next_part_cond_trans_commutative = false;
|
||||
self.expand_on_next_call = true;
|
||||
}
|
||||
Commutativity::ConditionalCommutative(_)
|
||||
| Commutativity::TransformedCommutative { .. } => {
|
||||
// for conditional commutative and transformed commutative, we can
|
||||
// expand now
|
||||
// again a new node that can be push down, we should just
|
||||
// do push down now and avoid further expansion
|
||||
self.expand_on_next_part_cond_trans_commutative = false;
|
||||
return true;
|
||||
}
|
||||
@@ -219,11 +264,12 @@ impl PlanRewriter {
|
||||
}
|
||||
}
|
||||
|
||||
match Categorizer::check_plan(plan, self.partition_cols.clone()) {
|
||||
match Categorizer::check_plan(plan, self.get_aliased_partition_columns()) {
|
||||
Commutativity::Commutative => {}
|
||||
Commutativity::PartialCommutative => {
|
||||
if let Some(plan) = partial_commutative_transformer(plan) {
|
||||
self.update_column_requirements(&plan);
|
||||
// notice this plan is parent of current node, so `self.level - 1` when updating column requirements
|
||||
self.update_column_requirements(&plan, self.level - 1);
|
||||
self.expand_on_next_part_cond_trans_commutative = true;
|
||||
self.stage.push(plan)
|
||||
}
|
||||
@@ -232,7 +278,8 @@ impl PlanRewriter {
|
||||
if let Some(transformer) = transformer
|
||||
&& let Some(plan) = transformer(plan)
|
||||
{
|
||||
self.update_column_requirements(&plan);
|
||||
// notice this plan is parent of current node, so `self.level - 1` when updating column requirements
|
||||
self.update_column_requirements(&plan, self.level - 1);
|
||||
self.expand_on_next_part_cond_trans_commutative = true;
|
||||
self.stage.push(plan)
|
||||
}
|
||||
@@ -242,12 +289,22 @@ impl PlanRewriter {
|
||||
&& let Some(transformer_actions) = transformer(plan)
|
||||
{
|
||||
debug!(
|
||||
"PlanRewriter: transformed plan: {:?}\n from {plan}",
|
||||
transformer_actions.extra_parent_plans
|
||||
"PlanRewriter: transformed plan: {}\n from {plan}",
|
||||
transformer_actions
|
||||
.extra_parent_plans
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, p)| format!(
|
||||
"Extra {i}-th parent plan from parent to child = {}",
|
||||
p.display()
|
||||
))
|
||||
.collect::<Vec<_>>()
|
||||
.join("\n")
|
||||
);
|
||||
if let Some(last_stage) = transformer_actions.extra_parent_plans.last() {
|
||||
// update the column requirements from the last stage
|
||||
self.update_column_requirements(last_stage);
|
||||
// notice current plan's parent plan is where we need to apply the column requirements
|
||||
self.update_column_requirements(last_stage, self.level - 1);
|
||||
}
|
||||
self.stage
|
||||
.extend(transformer_actions.extra_parent_plans.into_iter().rev());
|
||||
@@ -265,9 +322,12 @@ impl PlanRewriter {
|
||||
false
|
||||
}
|
||||
|
||||
fn update_column_requirements(&mut self, plan: &LogicalPlan) {
|
||||
/// Update the column requirements for the current plan, plan_level is the level of the plan
|
||||
/// in the stack, which is used to determine if the column requirements are applicable
|
||||
/// for other plans in the stack.
|
||||
fn update_column_requirements(&mut self, plan: &LogicalPlan, plan_level: usize) {
|
||||
debug!(
|
||||
"PlanRewriter: update column requirements for plan: {plan}\n withcolumn_requirements: {:?}",
|
||||
"PlanRewriter: update column requirements for plan: {plan}\n with old column_requirements: {:?}",
|
||||
self.column_requirements
|
||||
);
|
||||
let mut container = HashSet::new();
|
||||
@@ -276,9 +336,7 @@ impl PlanRewriter {
|
||||
let _ = expr_to_columns(&expr, &mut container);
|
||||
}
|
||||
|
||||
for col in container {
|
||||
self.column_requirements.insert(col);
|
||||
}
|
||||
self.column_requirements.push((container, plan_level));
|
||||
debug!(
|
||||
"PlanRewriter: updated column requirements: {:?}",
|
||||
self.column_requirements
|
||||
@@ -297,6 +355,45 @@ impl PlanRewriter {
|
||||
self.status = RewriterStatus::Unexpanded;
|
||||
}
|
||||
|
||||
/// Maybe update alias for original table columns in the plan
|
||||
fn maybe_update_alias(&mut self, node: &LogicalPlan) {
|
||||
if let Some(alias_tracker) = &mut self.alias_tracker {
|
||||
alias_tracker.update_alias(node);
|
||||
debug!(
|
||||
"Current partition columns are: {:?}",
|
||||
self.get_aliased_partition_columns()
|
||||
);
|
||||
} else if let LogicalPlan::TableScan(table_scan) = node {
|
||||
self.alias_tracker = AliasTracker::new(table_scan);
|
||||
debug!(
|
||||
"Initialize partition columns: {:?} with table={}",
|
||||
self.get_aliased_partition_columns(),
|
||||
table_scan.table_name
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
fn get_aliased_partition_columns(&self) -> Option<AliasMapping> {
|
||||
if let Some(part_cols) = self.partition_cols.as_ref() {
|
||||
let Some(alias_tracker) = &self.alias_tracker else {
|
||||
// no alias tracker meaning no table scan encountered
|
||||
return None;
|
||||
};
|
||||
let mut aliased = HashMap::new();
|
||||
for part_col in part_cols {
|
||||
let all_alias = alias_tracker
|
||||
.get_all_alias_for_col(part_col)
|
||||
.cloned()
|
||||
.unwrap_or_default();
|
||||
|
||||
aliased.insert(part_col.clone(), all_alias);
|
||||
}
|
||||
Some(aliased)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
fn maybe_set_partitions(&mut self, plan: &LogicalPlan) {
|
||||
if self.partition_cols.is_some() {
|
||||
// only need to set once
|
||||
@@ -342,10 +439,15 @@ impl PlanRewriter {
|
||||
}
|
||||
// store schema before expand
|
||||
let schema = on_node.schema().clone();
|
||||
let mut rewriter = EnforceDistRequirementRewriter {
|
||||
column_requirements: std::mem::take(&mut self.column_requirements),
|
||||
};
|
||||
let mut rewriter = EnforceDistRequirementRewriter::new(
|
||||
std::mem::take(&mut self.column_requirements),
|
||||
self.level,
|
||||
);
|
||||
debug!("PlanRewriter: enforce column requirements for node: {on_node} with rewriter: {rewriter:?}");
|
||||
on_node = on_node.rewrite(&mut rewriter)?.data;
|
||||
debug!(
|
||||
"PlanRewriter: after enforced column requirements for node: {on_node} with rewriter: {rewriter:?}"
|
||||
);
|
||||
|
||||
// add merge scan as the new root
|
||||
let mut node = MergeScanLogicalPlan::new(
|
||||
@@ -364,7 +466,8 @@ impl PlanRewriter {
|
||||
}
|
||||
self.set_expanded();
|
||||
|
||||
// recover the schema
|
||||
// recover the schema, this make sure after expand the schema is the same as old node
|
||||
// because after expand the raw top node might have extra columns i.e. sorting columns for `Sort` node
|
||||
let node = LogicalPlanBuilder::from(node)
|
||||
.project(schema.iter().map(|(qualifier, field)| {
|
||||
Expr::Column(Column::new(qualifier.cloned(), field.name()))
|
||||
@@ -381,42 +484,96 @@ impl PlanRewriter {
|
||||
/// Requirements enforced by this rewriter:
|
||||
/// - Enforce column requirements for `LogicalPlan::Projection` nodes. Makes sure the
|
||||
/// required columns are available in the sub plan.
|
||||
///
|
||||
#[derive(Debug)]
|
||||
struct EnforceDistRequirementRewriter {
|
||||
column_requirements: HashSet<Column>,
|
||||
/// only enforce column requirements after the expanding node in question,
|
||||
/// meaning only for node with `cur_level` <= `level` will consider adding those column requirements
|
||||
/// TODO(discord9): a simpler solution to track column requirements for merge scan
|
||||
column_requirements: Vec<(HashSet<Column>, usize)>,
|
||||
/// only apply column requirements >= `cur_level`
|
||||
/// this is used to avoid applying column requirements that are not needed
|
||||
/// for the current node, i.e. the node is not in the scope of the column requirements
|
||||
/// i.e, for this plan:
|
||||
/// ```ignore
|
||||
/// Aggregate: min(t.number)
|
||||
/// Projection: t.number
|
||||
/// ```
|
||||
/// when on `Projection` node, we don't need to apply the column requirements of `Aggregate` node
|
||||
/// because the `Projection` node is not in the scope of the `Aggregate` node
|
||||
cur_level: usize,
|
||||
}
|
||||
|
||||
impl EnforceDistRequirementRewriter {
|
||||
fn new(column_requirements: Vec<(HashSet<Column>, usize)>, cur_level: usize) -> Self {
|
||||
Self {
|
||||
column_requirements,
|
||||
cur_level,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl TreeNodeRewriter for EnforceDistRequirementRewriter {
|
||||
type Node = LogicalPlan;
|
||||
|
||||
fn f_down(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
|
||||
if let LogicalPlan::Projection(ref projection) = node {
|
||||
let mut column_requirements = std::mem::take(&mut self.column_requirements);
|
||||
if column_requirements.is_empty() {
|
||||
return Ok(Transformed::no(node));
|
||||
}
|
||||
|
||||
for expr in &projection.expr {
|
||||
let (qualifier, name) = expr.qualified_name();
|
||||
let column = Column::new(qualifier, name);
|
||||
column_requirements.remove(&column);
|
||||
}
|
||||
if column_requirements.is_empty() {
|
||||
return Ok(Transformed::no(node));
|
||||
}
|
||||
|
||||
let mut new_exprs = projection.expr.clone();
|
||||
for col in &column_requirements {
|
||||
new_exprs.push(Expr::Column(col.clone()));
|
||||
}
|
||||
let new_node =
|
||||
node.with_new_exprs(new_exprs, node.inputs().into_iter().cloned().collect())?;
|
||||
return Ok(Transformed::yes(new_node));
|
||||
// check that node doesn't have multiple children, i.e. join/subquery
|
||||
if node.inputs().len() > 1 {
|
||||
return Err(datafusion_common::DataFusionError::Internal(
|
||||
"EnforceDistRequirementRewriter: node with multiple inputs is not supported"
|
||||
.to_string(),
|
||||
));
|
||||
}
|
||||
|
||||
self.cur_level += 1;
|
||||
Ok(Transformed::no(node))
|
||||
}
|
||||
|
||||
fn f_up(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
|
||||
self.cur_level -= 1;
|
||||
// first get all applicable column requirements
|
||||
let mut applicable_column_requirements = self
|
||||
.column_requirements
|
||||
.iter()
|
||||
.filter(|(_, level)| *level >= self.cur_level)
|
||||
.map(|(cols, _)| cols.clone())
|
||||
.reduce(|mut acc, cols| {
|
||||
acc.extend(cols);
|
||||
acc
|
||||
})
|
||||
.unwrap_or_default();
|
||||
|
||||
debug!(
|
||||
"EnforceDistRequirementRewriter: applicable column requirements at level {} = {:?} for node {}",
|
||||
self.cur_level,
|
||||
applicable_column_requirements,
|
||||
node.display()
|
||||
);
|
||||
|
||||
// make sure all projection applicable scope has the required columns
|
||||
if let LogicalPlan::Projection(ref projection) = node {
|
||||
for expr in &projection.expr {
|
||||
let (qualifier, name) = expr.qualified_name();
|
||||
let column = Column::new(qualifier, name);
|
||||
applicable_column_requirements.remove(&column);
|
||||
}
|
||||
if applicable_column_requirements.is_empty() {
|
||||
return Ok(Transformed::no(node));
|
||||
}
|
||||
|
||||
let mut new_exprs = projection.expr.clone();
|
||||
for col in &applicable_column_requirements {
|
||||
new_exprs.push(Expr::Column(col.clone()));
|
||||
}
|
||||
let new_node =
|
||||
node.with_new_exprs(new_exprs, node.inputs().into_iter().cloned().collect())?;
|
||||
debug!(
|
||||
"EnforceDistRequirementRewriter: added missing columns {:?} to projection node from old node: \n{node}\n Making new node: \n{new_node}",
|
||||
applicable_column_requirements
|
||||
);
|
||||
|
||||
// still need to continue for next projection if applicable
|
||||
return Ok(Transformed::yes(new_node));
|
||||
}
|
||||
Ok(Transformed::no(node))
|
||||
}
|
||||
}
|
||||
@@ -432,6 +589,7 @@ impl TreeNodeRewriter for PlanRewriter {
|
||||
self.stage.clear();
|
||||
self.set_unexpanded();
|
||||
self.partition_cols = None;
|
||||
self.alias_tracker = None;
|
||||
Ok(Transformed::no(node))
|
||||
}
|
||||
|
||||
@@ -454,8 +612,19 @@ impl TreeNodeRewriter for PlanRewriter {
|
||||
|
||||
self.maybe_set_partitions(&node);
|
||||
|
||||
self.maybe_update_alias(&node);
|
||||
|
||||
let Some(parent) = self.get_parent() else {
|
||||
let node = self.expand(node)?;
|
||||
debug!("Plan Rewriter: expand now for no parent found for node: {node}");
|
||||
let node = self.expand(node);
|
||||
debug!(
|
||||
"PlanRewriter: expanded plan: {}",
|
||||
match &node {
|
||||
Ok(n) => n.to_string(),
|
||||
Err(e) => format!("Error expanding plan: {e}"),
|
||||
}
|
||||
);
|
||||
let node = node?;
|
||||
self.pop_stack();
|
||||
return Ok(Transformed::yes(node));
|
||||
};
|
||||
@@ -483,168 +652,3 @@ impl TreeNodeRewriter for PlanRewriter {
|
||||
Ok(Transformed::no(node))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod test {
|
||||
use std::sync::Arc;
|
||||
|
||||
use datafusion::datasource::DefaultTableSource;
|
||||
use datafusion::functions_aggregate::expr_fn::avg;
|
||||
use datafusion_common::JoinType;
|
||||
use datafusion_expr::{col, lit, Expr, LogicalPlanBuilder};
|
||||
use table::table::adapter::DfTableProviderAdapter;
|
||||
use table::table::numbers::NumbersTable;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[ignore = "Projection is disabled for https://github.com/apache/arrow-datafusion/issues/6489"]
|
||||
#[test]
|
||||
fn transform_simple_projection_filter() {
|
||||
let numbers_table = NumbersTable::table(0);
|
||||
let table_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(numbers_table),
|
||||
)));
|
||||
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
|
||||
.unwrap()
|
||||
.filter(col("number").lt(lit(10)))
|
||||
.unwrap()
|
||||
.project(vec![col("number")])
|
||||
.unwrap()
|
||||
.distinct()
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let config = ConfigOptions::default();
|
||||
let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
|
||||
let expected = [
|
||||
"Distinct:",
|
||||
" MergeScan [is_placeholder=false]",
|
||||
" Distinct:",
|
||||
" Projection: t.number",
|
||||
" Filter: t.number < Int32(10)",
|
||||
" TableScan: t",
|
||||
]
|
||||
.join("\n");
|
||||
assert_eq!(expected, result.to_string());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn transform_aggregator() {
|
||||
let numbers_table = NumbersTable::table(0);
|
||||
let table_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(numbers_table),
|
||||
)));
|
||||
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
|
||||
.unwrap()
|
||||
.aggregate(Vec::<Expr>::new(), vec![avg(col("number"))])
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let config = ConfigOptions::default();
|
||||
let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
|
||||
let expected = "Projection: avg(t.number)\
|
||||
\n MergeScan [is_placeholder=false, remote_input=[\nAggregate: groupBy=[[]], aggr=[[avg(t.number)]]\n TableScan: t\n]]";
|
||||
assert_eq!(expected, result.to_string());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn transform_distinct_order() {
|
||||
let numbers_table = NumbersTable::table(0);
|
||||
let table_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(numbers_table),
|
||||
)));
|
||||
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
|
||||
.unwrap()
|
||||
.distinct()
|
||||
.unwrap()
|
||||
.sort(vec![col("number").sort(true, false)])
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let config = ConfigOptions::default();
|
||||
let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
|
||||
let expected = [
|
||||
"Projection: t.number",
|
||||
" MergeScan [is_placeholder=false, remote_input=[",
|
||||
"Sort: t.number ASC NULLS LAST",
|
||||
" Distinct:",
|
||||
" TableScan: t",
|
||||
"]]",
|
||||
]
|
||||
.join("\n");
|
||||
assert_eq!(expected, result.to_string());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn transform_single_limit() {
|
||||
let numbers_table = NumbersTable::table(0);
|
||||
let table_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(numbers_table),
|
||||
)));
|
||||
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
|
||||
.unwrap()
|
||||
.limit(0, Some(1))
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let config = ConfigOptions::default();
|
||||
let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
|
||||
let expected = "Projection: t.number\
|
||||
\n MergeScan [is_placeholder=false, remote_input=[\nLimit: skip=0, fetch=1\n TableScan: t\n]]";
|
||||
assert_eq!(expected, result.to_string());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn transform_unalighed_join_with_alias() {
|
||||
let left = NumbersTable::table(0);
|
||||
let right = NumbersTable::table(1);
|
||||
let left_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(left),
|
||||
)));
|
||||
let right_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(right),
|
||||
)));
|
||||
|
||||
let right_plan = LogicalPlanBuilder::scan_with_filters("t", right_source, None, vec![])
|
||||
.unwrap()
|
||||
.alias("right")
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", left_source, None, vec![])
|
||||
.unwrap()
|
||||
.join_on(
|
||||
right_plan,
|
||||
JoinType::LeftSemi,
|
||||
vec![col("t.number").eq(col("right.number"))],
|
||||
)
|
||||
.unwrap()
|
||||
.limit(0, Some(1))
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let config = ConfigOptions::default();
|
||||
let result = DistPlannerAnalyzer {}.analyze(plan, &config).unwrap();
|
||||
let expected = [
|
||||
"Limit: skip=0, fetch=1",
|
||||
" LeftSemi Join: Filter: t.number = right.number",
|
||||
" Projection: t.number",
|
||||
" MergeScan [is_placeholder=false, remote_input=[\nTableScan: t\n]]",
|
||||
" SubqueryAlias: right",
|
||||
" Projection: t.number",
|
||||
" MergeScan [is_placeholder=false, remote_input=[\nTableScan: t\n]]",
|
||||
]
|
||||
.join("\n");
|
||||
assert_eq!(expected, result.to_string());
|
||||
}
|
||||
}
|
||||
|
||||
1310
src/query/src/dist_plan/analyzer/test.rs
Normal file
1310
src/query/src/dist_plan/analyzer/test.rs
Normal file
File diff suppressed because it is too large
Load Diff
318
src/query/src/dist_plan/analyzer/utils.rs
Normal file
318
src/query/src/dist_plan/analyzer/utils.rs
Normal file
@@ -0,0 +1,318 @@
|
||||
// Copyright 2023 Greptime Team
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::collections::{HashMap, HashSet};
|
||||
|
||||
use datafusion::datasource::DefaultTableSource;
|
||||
use datafusion_common::Column;
|
||||
use datafusion_expr::{Expr, LogicalPlan, TableScan};
|
||||
use table::metadata::TableType;
|
||||
use table::table::adapter::DfTableProviderAdapter;
|
||||
|
||||
/// Mapping of original column in table to all the alias at current node
|
||||
pub type AliasMapping = HashMap<String, HashSet<Column>>;
|
||||
|
||||
/// tracking aliases for the source table columns in the plan
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct AliasTracker {
|
||||
/// mapping from the original table name to the alias used in the plan
|
||||
/// notice how one column might have multiple aliases in the plan
|
||||
///
|
||||
pub mapping: AliasMapping,
|
||||
}
|
||||
|
||||
impl AliasTracker {
|
||||
pub fn new(table_scan: &TableScan) -> Option<Self> {
|
||||
if let Some(source) = table_scan
|
||||
.source
|
||||
.as_any()
|
||||
.downcast_ref::<DefaultTableSource>()
|
||||
{
|
||||
if let Some(provider) = source
|
||||
.table_provider
|
||||
.as_any()
|
||||
.downcast_ref::<DfTableProviderAdapter>()
|
||||
{
|
||||
if provider.table().table_type() == TableType::Base {
|
||||
let info = provider.table().table_info();
|
||||
let schema = info.meta.schema.clone();
|
||||
let col_schema = schema.column_schemas();
|
||||
let mapping = col_schema
|
||||
.iter()
|
||||
.map(|col| {
|
||||
(
|
||||
col.name.clone(),
|
||||
HashSet::from_iter(std::iter::once(Column::new_unqualified(
|
||||
col.name.clone(),
|
||||
))),
|
||||
)
|
||||
})
|
||||
.collect();
|
||||
return Some(Self { mapping });
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
None
|
||||
}
|
||||
|
||||
/// update alias for original columns
|
||||
///
|
||||
/// only handle `Alias` with column in `Projection` node
|
||||
pub fn update_alias(&mut self, node: &LogicalPlan) {
|
||||
if let LogicalPlan::Projection(projection) = node {
|
||||
// first collect all the alias mapping, i.e. the col_a AS b AS c AS d become `a->d`
|
||||
// notice one column might have multiple aliases
|
||||
let mut alias_mapping: AliasMapping = HashMap::new();
|
||||
for expr in &projection.expr {
|
||||
if let Expr::Alias(alias) = expr {
|
||||
let outer_alias = alias.clone();
|
||||
let mut cur_alias = alias.clone();
|
||||
while let Expr::Alias(alias) = *cur_alias.expr {
|
||||
cur_alias = alias;
|
||||
}
|
||||
if let Expr::Column(column) = *cur_alias.expr {
|
||||
alias_mapping
|
||||
.entry(column.name.clone())
|
||||
.or_default()
|
||||
.insert(Column::new(outer_alias.relation, outer_alias.name));
|
||||
}
|
||||
} else if let Expr::Column(column) = expr {
|
||||
// identity mapping
|
||||
alias_mapping
|
||||
.entry(column.name.clone())
|
||||
.or_default()
|
||||
.insert(column.clone());
|
||||
}
|
||||
}
|
||||
|
||||
// update mapping using `alias_mapping`
|
||||
let mut new_mapping = HashMap::new();
|
||||
for (table_col_name, cur_columns) in std::mem::take(&mut self.mapping) {
|
||||
let new_aliases = {
|
||||
let mut new_aliases = HashSet::new();
|
||||
for cur_column in &cur_columns {
|
||||
let new_alias_for_cur_column = alias_mapping
|
||||
.get(cur_column.name())
|
||||
.cloned()
|
||||
.unwrap_or_default();
|
||||
|
||||
for new_alias in new_alias_for_cur_column {
|
||||
let is_table_ref_eq = match (&new_alias.relation, &cur_column.relation)
|
||||
{
|
||||
(Some(o), Some(c)) => o.resolved_eq(c),
|
||||
_ => true,
|
||||
};
|
||||
// is the same column if both name and table ref is eq
|
||||
if is_table_ref_eq {
|
||||
new_aliases.insert(new_alias.clone());
|
||||
}
|
||||
}
|
||||
}
|
||||
new_aliases
|
||||
};
|
||||
|
||||
new_mapping.insert(table_col_name, new_aliases);
|
||||
}
|
||||
|
||||
self.mapping = new_mapping;
|
||||
common_telemetry::debug!(
|
||||
"Updating alias tracker to {:?} using node: \n{node}",
|
||||
self.mapping
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_all_alias_for_col(&self, col_name: &str) -> Option<&HashSet<Column>> {
|
||||
self.mapping.get(col_name)
|
||||
}
|
||||
|
||||
#[allow(unused)]
|
||||
pub fn is_alias_for(&self, original_col: &str, cur_col: &Column) -> bool {
|
||||
self.mapping
|
||||
.get(original_col)
|
||||
.map(|cols| cols.contains(cur_col))
|
||||
.unwrap_or(false)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::sync::Arc;
|
||||
|
||||
use common_telemetry::init_default_ut_logging;
|
||||
use datafusion::error::Result as DfResult;
|
||||
use datafusion_common::tree_node::{TreeNode, TreeNodeRecursion, TreeNodeVisitor};
|
||||
use datafusion_expr::{col, LogicalPlanBuilder};
|
||||
|
||||
use super::*;
|
||||
use crate::dist_plan::analyzer::test::TestTable;
|
||||
|
||||
#[derive(Debug)]
|
||||
struct TrackerTester {
|
||||
alias_tracker: Option<AliasTracker>,
|
||||
mapping_at_each_level: Vec<AliasMapping>,
|
||||
}
|
||||
|
||||
impl TreeNodeVisitor<'_> for TrackerTester {
|
||||
type Node = LogicalPlan;
|
||||
|
||||
fn f_up(&mut self, node: &LogicalPlan) -> DfResult<TreeNodeRecursion> {
|
||||
if let Some(alias_tracker) = &mut self.alias_tracker {
|
||||
alias_tracker.update_alias(node);
|
||||
self.mapping_at_each_level.push(
|
||||
self.alias_tracker
|
||||
.as_ref()
|
||||
.map(|a| a.mapping.clone())
|
||||
.unwrap_or_default()
|
||||
.clone(),
|
||||
);
|
||||
} else if let LogicalPlan::TableScan(table_scan) = node {
|
||||
self.alias_tracker = AliasTracker::new(table_scan);
|
||||
self.mapping_at_each_level.push(
|
||||
self.alias_tracker
|
||||
.as_ref()
|
||||
.map(|a| a.mapping.clone())
|
||||
.unwrap_or_default()
|
||||
.clone(),
|
||||
);
|
||||
}
|
||||
Ok(TreeNodeRecursion::Continue)
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn proj_alias_tracker() {
|
||||
// use logging for better debugging
|
||||
init_default_ut_logging();
|
||||
let test_table = TestTable::table_with_name(0, "numbers".to_string());
|
||||
let table_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(test_table),
|
||||
)));
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
|
||||
.unwrap()
|
||||
.project(vec![
|
||||
col("number"),
|
||||
col("pk3").alias("pk1"),
|
||||
col("pk2").alias("pk3"),
|
||||
])
|
||||
.unwrap()
|
||||
.project(vec![
|
||||
col("number"),
|
||||
col("pk1").alias("pk2"),
|
||||
col("pk3").alias("pk1"),
|
||||
])
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let mut tracker_tester = TrackerTester {
|
||||
alias_tracker: None,
|
||||
mapping_at_each_level: Vec::new(),
|
||||
};
|
||||
plan.visit(&mut tracker_tester).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
tracker_tester.mapping_at_each_level,
|
||||
vec![
|
||||
HashMap::from([
|
||||
("number".to_string(), HashSet::from(["number".into()])),
|
||||
("pk1".to_string(), HashSet::from(["pk1".into()])),
|
||||
("pk2".to_string(), HashSet::from(["pk2".into()])),
|
||||
("pk3".to_string(), HashSet::from(["pk3".into()])),
|
||||
("ts".to_string(), HashSet::from(["ts".into()]))
|
||||
]),
|
||||
HashMap::from([
|
||||
("number".to_string(), HashSet::from(["t.number".into()])),
|
||||
("pk1".to_string(), HashSet::from([])),
|
||||
("pk2".to_string(), HashSet::from(["pk3".into()])),
|
||||
("pk3".to_string(), HashSet::from(["pk1".into()])),
|
||||
("ts".to_string(), HashSet::from([]))
|
||||
]),
|
||||
HashMap::from([
|
||||
("number".to_string(), HashSet::from(["t.number".into()])),
|
||||
("pk1".to_string(), HashSet::from([])),
|
||||
("pk2".to_string(), HashSet::from(["pk1".into()])),
|
||||
("pk3".to_string(), HashSet::from(["pk2".into()])),
|
||||
("ts".to_string(), HashSet::from([]))
|
||||
])
|
||||
]
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn proj_multi_alias_tracker() {
|
||||
// use logging for better debugging
|
||||
init_default_ut_logging();
|
||||
let test_table = TestTable::table_with_name(0, "numbers".to_string());
|
||||
let table_source = Arc::new(DefaultTableSource::new(Arc::new(
|
||||
DfTableProviderAdapter::new(test_table),
|
||||
)));
|
||||
let plan = LogicalPlanBuilder::scan_with_filters("t", table_source, None, vec![])
|
||||
.unwrap()
|
||||
.project(vec![
|
||||
col("number"),
|
||||
col("pk3").alias("pk1"),
|
||||
col("pk3").alias("pk2"),
|
||||
])
|
||||
.unwrap()
|
||||
.project(vec![
|
||||
col("number"),
|
||||
col("pk2").alias("pk4"),
|
||||
col("pk1").alias("pk5"),
|
||||
])
|
||||
.unwrap()
|
||||
.build()
|
||||
.unwrap();
|
||||
|
||||
let mut tracker_tester = TrackerTester {
|
||||
alias_tracker: None,
|
||||
mapping_at_each_level: Vec::new(),
|
||||
};
|
||||
plan.visit(&mut tracker_tester).unwrap();
|
||||
|
||||
assert_eq!(
|
||||
tracker_tester.mapping_at_each_level,
|
||||
vec![
|
||||
HashMap::from([
|
||||
("number".to_string(), HashSet::from(["number".into()])),
|
||||
("pk1".to_string(), HashSet::from(["pk1".into()])),
|
||||
("pk2".to_string(), HashSet::from(["pk2".into()])),
|
||||
("pk3".to_string(), HashSet::from(["pk3".into()])),
|
||||
("ts".to_string(), HashSet::from(["ts".into()]))
|
||||
]),
|
||||
HashMap::from([
|
||||
("number".to_string(), HashSet::from(["t.number".into()])),
|
||||
("pk1".to_string(), HashSet::from([])),
|
||||
("pk2".to_string(), HashSet::from([])),
|
||||
(
|
||||
"pk3".to_string(),
|
||||
HashSet::from(["pk1".into(), "pk2".into()])
|
||||
),
|
||||
("ts".to_string(), HashSet::from([]))
|
||||
]),
|
||||
HashMap::from([
|
||||
("number".to_string(), HashSet::from(["t.number".into()])),
|
||||
("pk1".to_string(), HashSet::from([])),
|
||||
("pk2".to_string(), HashSet::from([])),
|
||||
(
|
||||
"pk3".to_string(),
|
||||
HashSet::from(["pk4".into(), "pk5".into()])
|
||||
),
|
||||
("ts".to_string(), HashSet::from([]))
|
||||
])
|
||||
]
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -27,6 +27,7 @@ use promql::extension_plan::{
|
||||
EmptyMetric, InstantManipulate, RangeManipulate, SeriesDivide, SeriesNormalize,
|
||||
};
|
||||
|
||||
use crate::dist_plan::analyzer::AliasMapping;
|
||||
use crate::dist_plan::merge_sort::{merge_sort_transformer, MergeSortLogicalPlan};
|
||||
use crate::dist_plan::MergeScanLogicalPlan;
|
||||
|
||||
@@ -139,9 +140,7 @@ pub fn step_aggr_to_upper_aggr(
|
||||
new_projection_exprs.push(aliased_output_aggr_expr);
|
||||
}
|
||||
let upper_aggr_plan = LogicalPlan::Aggregate(new_aggr);
|
||||
debug!("Before recompute schema: {upper_aggr_plan:?}");
|
||||
let upper_aggr_plan = upper_aggr_plan.recompute_schema()?;
|
||||
debug!("After recompute schema: {upper_aggr_plan:?}");
|
||||
// create a projection on top of the new aggregate plan
|
||||
let new_projection =
|
||||
Projection::try_new(new_projection_exprs, Arc::new(upper_aggr_plan.clone()))?;
|
||||
@@ -222,7 +221,7 @@ pub enum Commutativity {
|
||||
pub struct Categorizer {}
|
||||
|
||||
impl Categorizer {
|
||||
pub fn check_plan(plan: &LogicalPlan, partition_cols: Option<Vec<String>>) -> Commutativity {
|
||||
pub fn check_plan(plan: &LogicalPlan, partition_cols: Option<AliasMapping>) -> Commutativity {
|
||||
let partition_cols = partition_cols.unwrap_or_default();
|
||||
|
||||
match plan {
|
||||
@@ -247,7 +246,6 @@ impl Categorizer {
|
||||
transformer: Some(Arc::new(|plan: &LogicalPlan| {
|
||||
debug!("Before Step optimize: {plan}");
|
||||
let ret = step_aggr_to_upper_aggr(plan);
|
||||
debug!("After Step Optimize: {ret:?}");
|
||||
ret.ok().map(|s| TransformerAction {
|
||||
extra_parent_plans: s.to_vec(),
|
||||
new_child_plan: None,
|
||||
@@ -264,7 +262,11 @@ impl Categorizer {
|
||||
return commutativity;
|
||||
}
|
||||
}
|
||||
Commutativity::Commutative
|
||||
// all group by expressions are partition columns can push down, unless
|
||||
// another push down(including `Limit` or `Sort`) is already in progress(which will then prvent next cond commutative node from being push down).
|
||||
// TODO(discord9): This is a temporary solution(that works), a better description of
|
||||
// commutativity is needed under this situation.
|
||||
Commutativity::ConditionalCommutative(None)
|
||||
}
|
||||
LogicalPlan::Sort(_) => {
|
||||
if partition_cols.is_empty() {
|
||||
@@ -322,17 +324,20 @@ impl Categorizer {
|
||||
|
||||
pub fn check_extension_plan(
|
||||
plan: &dyn UserDefinedLogicalNode,
|
||||
partition_cols: &[String],
|
||||
partition_cols: &AliasMapping,
|
||||
) -> Commutativity {
|
||||
match plan.name() {
|
||||
name if name == SeriesDivide::name() => {
|
||||
let series_divide = plan.as_any().downcast_ref::<SeriesDivide>().unwrap();
|
||||
let tags = series_divide.tags().iter().collect::<HashSet<_>>();
|
||||
for partition_col in partition_cols {
|
||||
if !tags.contains(partition_col) {
|
||||
|
||||
for all_alias in partition_cols.values() {
|
||||
let all_alias = all_alias.iter().map(|c| &c.name).collect::<HashSet<_>>();
|
||||
if tags.intersection(&all_alias).count() == 0 {
|
||||
return Commutativity::NonCommutative;
|
||||
}
|
||||
}
|
||||
|
||||
Commutativity::Commutative
|
||||
}
|
||||
name if name == SeriesNormalize::name()
|
||||
@@ -396,7 +401,7 @@ impl Categorizer {
|
||||
|
||||
/// Return true if the given expr and partition cols satisfied the rule.
|
||||
/// In this case the plan can be treated as fully commutative.
|
||||
fn check_partition(exprs: &[Expr], partition_cols: &[String]) -> bool {
|
||||
fn check_partition(exprs: &[Expr], partition_cols: &AliasMapping) -> bool {
|
||||
let mut ref_cols = HashSet::new();
|
||||
for expr in exprs {
|
||||
expr.add_column_refs(&mut ref_cols);
|
||||
@@ -405,8 +410,14 @@ impl Categorizer {
|
||||
.into_iter()
|
||||
.map(|c| c.name.clone())
|
||||
.collect::<HashSet<_>>();
|
||||
for col in partition_cols {
|
||||
if !ref_cols.contains(col) {
|
||||
for all_alias in partition_cols.values() {
|
||||
let all_alias = all_alias
|
||||
.iter()
|
||||
.map(|c| c.name.clone())
|
||||
.collect::<HashSet<_>>();
|
||||
// check if ref columns intersect with all alias of partition columns
|
||||
// is empty, if it's empty, not all partition columns show up in `exprs`
|
||||
if ref_cols.intersection(&all_alias).count() == 0 {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@@ -424,7 +435,7 @@ pub type StageTransformer = Arc<dyn Fn(&LogicalPlan) -> Option<TransformerAction
|
||||
pub struct TransformerAction {
|
||||
/// list of plans that need to be applied to parent plans, in the order of parent to child.
|
||||
/// i.e. if this returns `[Projection, Aggregate]`, then the parent plan should be transformed to
|
||||
/// ```
|
||||
/// ```ignore
|
||||
/// Original Parent Plan:
|
||||
/// Projection:
|
||||
/// Aggregate:
|
||||
@@ -453,7 +464,7 @@ mod test {
|
||||
fetch: None,
|
||||
});
|
||||
assert!(matches!(
|
||||
Categorizer::check_plan(&plan, Some(vec![])),
|
||||
Categorizer::check_plan(&plan, Some(Default::default())),
|
||||
Commutativity::Commutative
|
||||
));
|
||||
}
|
||||
|
||||
974
tests/cases/distributed/explain/step_aggr_advance.result
Normal file
974
tests/cases/distributed/explain/step_aggr_advance.result
Normal file
@@ -0,0 +1,974 @@
|
||||
CREATE TABLE IF NOT EXISTS aggr_optimize_not (
|
||||
a STRING NULL,
|
||||
b STRING NULL,
|
||||
c STRING NULL,
|
||||
d STRING NULL,
|
||||
greptime_timestamp TIMESTAMP(3) NOT NULL,
|
||||
greptime_value DOUBLE NULL,
|
||||
TIME INDEX (greptime_timestamp),
|
||||
PRIMARY KEY (a, b, c, d)
|
||||
) PARTITION ON COLUMNS (a, b, c) (a < 'b', a >= 'b',);
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
-- Case 0: group by columns are the same as partition columns.
|
||||
-- This query shouldn't push down aggregation even if group by columns are partitioned.
|
||||
-- because sort is already pushed down.
|
||||
-- If it does, it will cause a wrong result.
|
||||
-- explain at 0s, 5s and 10s. No point at 0s.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') max by (a, b, c) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Sort: aggr_optimize_not.a ASC NULLS LAST, aggr_optimize_not.b ASC NULLS LAST, aggr_optimize_not.c ASC NULLS LAST, aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.greptime_timestamp]], aggr=[[max(prom_max_over_time(greptime_timestamp_range,greptime_value))]] |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_max_over_time(greptime_timestamp_range,greptime_value) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range, greptime_value) AS prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | SortPreservingMergeExec: [a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST] |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, greptime_timestamp@3 as greptime_timestamp], aggr=[max(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1, 2]) |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, greptime_timestamp@0 as greptime_timestamp], aggr=[max(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1, 2]) |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), a@2 as a, b@3 as b, c@4 as c] |
|
||||
| | SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') max by (a, b, c) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_SortPreservingMergeExec: [a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST] REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, greptime_timestamp@3 as greptime_timestamp], aggr=[max(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1, 2]) REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, greptime_timestamp@0 as greptime_timestamp], aggr=[max(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1, 2]) REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), a@2 as a, b@3 as b, c@4 as c] REDACTED
|
||||
|_|_|_SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 1: group by columns are prefix of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') sum by (a, b) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Sort: aggr_optimize_not.a ASC NULLS LAST, aggr_optimize_not.b ASC NULLS LAST, aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.greptime_timestamp]], aggr=[[sum(prom_max_over_time(greptime_timestamp_range,greptime_value))]] |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_max_over_time(greptime_timestamp_range,greptime_value) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range, greptime_value) AS prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | SortPreservingMergeExec: [a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, greptime_timestamp@2 ASC NULLS LAST] |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, greptime_timestamp@2 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, greptime_timestamp@2 as greptime_timestamp], aggr=[sum(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1]) |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, greptime_timestamp@0 as greptime_timestamp], aggr=[sum(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1]) |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), a@2 as a, b@3 as b] |
|
||||
| | SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') sum by (a, b) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_SortPreservingMergeExec: [a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, greptime_timestamp@2 ASC NULLS LAST] REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, greptime_timestamp@2 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, greptime_timestamp@2 as greptime_timestamp], aggr=[sum(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1]) REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, greptime_timestamp@0 as greptime_timestamp], aggr=[sum(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0, 1]) REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), a@2 as a, b@3 as b] REDACTED
|
||||
|_|_|_SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 2: group by columns are prefix of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') avg by (a) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Sort: aggr_optimize_not.a ASC NULLS LAST, aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.greptime_timestamp]], aggr=[[avg(prom_max_over_time(greptime_timestamp_range,greptime_value))]] |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_max_over_time(greptime_timestamp_range,greptime_value) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range, greptime_value) AS prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | SortPreservingMergeExec: [a@0 ASC NULLS LAST, greptime_timestamp@1 ASC NULLS LAST] |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, greptime_timestamp@1 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, greptime_timestamp@1 as greptime_timestamp], aggr=[avg(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0]) |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[a@2 as a, greptime_timestamp@0 as greptime_timestamp], aggr=[avg(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0]) |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), a@2 as a] |
|
||||
| | SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') avg by (a) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_SortPreservingMergeExec: [a@0 ASC NULLS LAST, greptime_timestamp@1 ASC NULLS LAST] REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, greptime_timestamp@1 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, greptime_timestamp@1 as greptime_timestamp], aggr=[avg(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0]) REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@2 as a, greptime_timestamp@0 as greptime_timestamp], aggr=[avg(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=PartiallySorted([0]) REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), a@2 as a] REDACTED
|
||||
|_|_|_SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 3: group by columns are superset of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') count by (a, b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Sort: aggr_optimize_not.a ASC NULLS LAST, aggr_optimize_not.b ASC NULLS LAST, aggr_optimize_not.c ASC NULLS LAST, aggr_optimize_not.d ASC NULLS LAST, aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d, aggr_optimize_not.greptime_timestamp]], aggr=[[count(prom_max_over_time(greptime_timestamp_range,greptime_value))]] |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_max_over_time(greptime_timestamp_range,greptime_value) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range, greptime_value) AS prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | SortPreservingMergeExec: [a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, d@3 ASC NULLS LAST, greptime_timestamp@4 ASC NULLS LAST] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, d@3 as d, greptime_timestamp@4 as greptime_timestamp], aggr=[count(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=Sorted |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, d@3 ASC NULLS LAST, greptime_timestamp@4 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, d@5 as d, greptime_timestamp@0 as greptime_timestamp], aggr=[count(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=Sorted |
|
||||
| | SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') count by (a, b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_SortPreservingMergeExec: [a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, d@3 ASC NULLS LAST, greptime_timestamp@4 ASC NULLS LAST] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, d@3 as d, greptime_timestamp@4 as greptime_timestamp], aggr=[count(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=Sorted REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST, d@3 ASC NULLS LAST, greptime_timestamp@4 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, d@5 as d, greptime_timestamp@0 as greptime_timestamp], aggr=[count(prom_max_over_time(greptime_timestamp_range,greptime_value))], ordering_mode=Sorted REDACTED
|
||||
|_|_|_SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 4: group by columns are not prefix of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') min by (b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Sort: aggr_optimize_not.b ASC NULLS LAST, aggr_optimize_not.c ASC NULLS LAST, aggr_optimize_not.d ASC NULLS LAST, aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d, aggr_optimize_not.greptime_timestamp]], aggr=[[min(prom_max_over_time(greptime_timestamp_range,greptime_value))]] |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_max_over_time(greptime_timestamp_range,greptime_value) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_max_over_time(greptime_timestamp_range, greptime_value) AS prom_max_over_time(greptime_timestamp_range,greptime_value), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | SortPreservingMergeExec: [b@0 ASC NULLS LAST, c@1 ASC NULLS LAST, d@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST] |
|
||||
| | SortExec: expr=[b@0 ASC NULLS LAST, c@1 ASC NULLS LAST, d@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[b@0 as b, c@1 as c, d@2 as d, greptime_timestamp@3 as greptime_timestamp], aggr=[min(prom_max_over_time(greptime_timestamp_range,greptime_value))] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[b@2 as b, c@3 as c, d@4 as d, greptime_timestamp@0 as greptime_timestamp], aggr=[min(prom_max_over_time(greptime_timestamp_range,greptime_value))] |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), b@3 as b, c@4 as c, d@5 as d] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') min by (b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_SortPreservingMergeExec: [b@0 ASC NULLS LAST, c@1 ASC NULLS LAST, d@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST] REDACTED
|
||||
|_|_|_SortExec: expr=[b@0 ASC NULLS LAST, c@1 ASC NULLS LAST, d@2 ASC NULLS LAST, greptime_timestamp@3 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[b@0 as b, c@1 as c, d@2 as d, greptime_timestamp@3 as greptime_timestamp], aggr=[min(prom_max_over_time(greptime_timestamp_range,greptime_value))] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[b@2 as b, c@3 as c, d@4 as d, greptime_timestamp@0 as greptime_timestamp], aggr=[min(prom_max_over_time(greptime_timestamp_range,greptime_value))] REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range,greptime_value)@1 as prom_max_over_time(greptime_timestamp_range,greptime_value), b@3 as b, c@4 as c, d@5 as d] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_max_over_time(greptime_timestamp_range,greptime_value)@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_max_over_time(greptime_timestamp_range@6, greptime_value@5) as prom_max_over_time(greptime_timestamp_range,greptime_value), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 5: a simple sum
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain sum(aggr_optimize_not);
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Sort: aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.greptime_timestamp]], aggr=[[sum(aggr_optimize_not.greptime_value)]] |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, aggr_optimize_not.greptime_value |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | PromInstantManipulate: range=[0..0], lookback=[300000], interval=[300000], time index=[greptime_timestamp] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-300000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | SortPreservingMergeExec: [greptime_timestamp@0 ASC NULLS LAST] |
|
||||
| | SortExec: expr=[greptime_timestamp@0 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[greptime_timestamp@0 as greptime_timestamp], aggr=[sum(aggr_optimize_not.greptime_value)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[greptime_timestamp@0 as greptime_timestamp], aggr=[sum(aggr_optimize_not.greptime_value)] |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, greptime_value@5 as greptime_value] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze sum(aggr_optimize_not);
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_SortPreservingMergeExec: [greptime_timestamp@0 ASC NULLS LAST] REDACTED
|
||||
|_|_|_SortExec: expr=[greptime_timestamp@0 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[greptime_timestamp@0 as greptime_timestamp], aggr=[sum(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[greptime_timestamp@0 as greptime_timestamp], aggr=[sum(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, greptime_value@5 as greptime_value] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_PromInstantManipulateExec: range=[0..0], lookback=[300000], interval=[300000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_PromInstantManipulateExec: range=[0..0], lookback=[300000], interval=[300000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- TODO(discord9): more cases for aggr push down interacting with partitioning&tql
|
||||
CREATE TABLE IF NOT EXISTS aggr_optimize_not_count (
|
||||
a STRING NULL,
|
||||
b STRING NULL,
|
||||
c STRING NULL,
|
||||
d STRING NULL,
|
||||
greptime_timestamp TIMESTAMP(3) NOT NULL,
|
||||
greptime_value DOUBLE NULL,
|
||||
TIME INDEX (greptime_timestamp),
|
||||
PRIMARY KEY (a, b, c, d)
|
||||
) PARTITION ON COLUMNS (a, b, c) (a < 'b', a >= 'b',);
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
-- Case 6: Test average rate (sum/count like)
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') sum by (a, b, c) (rate(aggr_optimize_not [2m])) / sum by (a, b, c) (rate(aggr_optimize_not_count [2m]));
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: aggr_optimize_not_count.a, aggr_optimize_not_count.b, aggr_optimize_not_count.c, aggr_optimize_not_count.greptime_timestamp, aggr_optimize_not.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))) / aggr_optimize_not_count.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))) AS aggr_optimize_not.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))) / aggr_optimize_not_count.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))) |
|
||||
| | Inner Join: aggr_optimize_not.a = aggr_optimize_not_count.a, aggr_optimize_not.b = aggr_optimize_not_count.b, aggr_optimize_not.c = aggr_optimize_not_count.c, aggr_optimize_not.greptime_timestamp = aggr_optimize_not_count.greptime_timestamp |
|
||||
| | SubqueryAlias: aggr_optimize_not |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS LAST, aggr_optimize_not.b ASC NULLS LAST, aggr_optimize_not.c ASC NULLS LAST, aggr_optimize_not.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.greptime_timestamp]], aggr=[[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))]] |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c |
|
||||
| | MergeSort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not.greptime_timestamp, prom_rate(greptime_timestamp_range, greptime_value, aggr_optimize_not.greptime_timestamp, Int64(120000)) AS prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not.a ASC NULLS FIRST, aggr_optimize_not.b ASC NULLS FIRST, aggr_optimize_not.c ASC NULLS FIRST, aggr_optimize_not.d ASC NULLS FIRST, aggr_optimize_not.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| | SubqueryAlias: aggr_optimize_not_count |
|
||||
| | Sort: aggr_optimize_not_count.a ASC NULLS LAST, aggr_optimize_not_count.b ASC NULLS LAST, aggr_optimize_not_count.c ASC NULLS LAST, aggr_optimize_not_count.greptime_timestamp ASC NULLS LAST |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not_count.a, aggr_optimize_not_count.b, aggr_optimize_not_count.c, aggr_optimize_not_count.greptime_timestamp]], aggr=[[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))]] |
|
||||
| | Projection: aggr_optimize_not_count.greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), aggr_optimize_not_count.a, aggr_optimize_not_count.b, aggr_optimize_not_count.c |
|
||||
| | MergeSort: aggr_optimize_not_count.a ASC NULLS FIRST, aggr_optimize_not_count.b ASC NULLS FIRST, aggr_optimize_not_count.c ASC NULLS FIRST, aggr_optimize_not_count.d ASC NULLS FIRST, aggr_optimize_not_count.greptime_timestamp ASC NULLS FIRST |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Filter: prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)) IS NOT NULL |
|
||||
| | Projection: aggr_optimize_not_count.greptime_timestamp, prom_rate(greptime_timestamp_range, greptime_value, aggr_optimize_not_count.greptime_timestamp, Int64(120000)) AS prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), aggr_optimize_not_count.a, aggr_optimize_not_count.b, aggr_optimize_not_count.c, aggr_optimize_not_count.d |
|
||||
| | PromRangeManipulate: req range=[0..0], interval=[300000], eval range=[120000], time index=[greptime_timestamp], values=["greptime_value"] |
|
||||
| | PromSeriesNormalize: offset=[0], time index=[greptime_timestamp], filter NaN: [true] |
|
||||
| | PromSeriesDivide: tags=["a", "b", "c", "d"] |
|
||||
| | Sort: aggr_optimize_not_count.a ASC NULLS FIRST, aggr_optimize_not_count.b ASC NULLS FIRST, aggr_optimize_not_count.c ASC NULLS FIRST, aggr_optimize_not_count.d ASC NULLS FIRST, aggr_optimize_not_count.greptime_timestamp ASC NULLS FIRST |
|
||||
| | Filter: aggr_optimize_not_count.greptime_timestamp >= TimestampMillisecond(-420000, None) AND aggr_optimize_not_count.greptime_timestamp <= TimestampMillisecond(300000, None) |
|
||||
| | TableScan: aggr_optimize_not_count |
|
||||
| | ]] |
|
||||
| physical_plan | ProjectionExec: expr=[a@1 as a, b@2 as b, c@3 as c, greptime_timestamp@4 as greptime_timestamp, sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))@0 / sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))@5 as aggr_optimize_not.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))) / aggr_optimize_not_count.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | REDACTED
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, greptime_timestamp@3 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, greptime_timestamp@0 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c] |
|
||||
| | SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, greptime_timestamp@3 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) |
|
||||
| | SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], preserve_partitioning=[true] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=REDACTED
|
||||
| | AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, greptime_timestamp@0 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) |
|
||||
| | ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c] |
|
||||
| | SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') sum by (a, b, c) (rate(aggr_optimize_not [2m])) / sum by (a, b, c) (rate(aggr_optimize_not_count [2m]));
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_ProjectionExec: expr=[a@1 as a, b@2 as b, c@3 as c, greptime_timestamp@4 as greptime_timestamp, sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))@0 / sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))@5 as aggr_optimize_not.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))) / aggr_optimize_not_count.sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, greptime_timestamp@3 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, greptime_timestamp@0 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c] REDACTED
|
||||
|_|_|_SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_CoalescePartitionsExec REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, greptime_timestamp@3 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) REDACTED
|
||||
|_|_|_SortExec: expr=[a@0 ASC NULLS LAST, b@1 ASC NULLS LAST, c@2 ASC NULLS LAST], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@2 as a, b@3 as b, c@4 as c, greptime_timestamp@0 as greptime_timestamp], aggr=[sum(prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)))], ordering_mode=PartiallySorted([0, 1, 2]) REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c] REDACTED
|
||||
|_|_|_SortExec: expr=[a@2 ASC, b@3 ASC, c@4 ASC, d@5 ASC, greptime_timestamp@0 ASC], preserve_partitioning=[true] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not.greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c, d@5 as d] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not.greptime_timestamp,Int64(120000))@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_rate(greptime_timestamp_range@6, greptime_value@5, greptime_timestamp@4, 120000) as prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not.greptime_timestamp,Int64(120000)), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not.greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c, d@5 as d] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not.greptime_timestamp,Int64(120000))@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_rate(greptime_timestamp_range@6, greptime_value@5, greptime_timestamp@4, 120000) as prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not.greptime_timestamp,Int64(120000)), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not_count.greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c, d@5 as d] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not_count.greptime_timestamp,Int64(120000))@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_rate(greptime_timestamp_range@6, greptime_value@5, greptime_timestamp@4, 120000) as prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not_count.greptime_timestamp,Int64(120000)), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_ProjectionExec: expr=[greptime_timestamp@0 as greptime_timestamp, prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not_count.greptime_timestamp,Int64(120000))@1 as prom_rate(greptime_timestamp_range,greptime_value,greptime_timestamp,Int64(120000)), a@2 as a, b@3 as b, c@4 as c, d@5 as d] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_FilterExec: prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not_count.greptime_timestamp,Int64(120000))@1 IS NOT NULL REDACTED
|
||||
|_|_|_ProjectionExec: expr=[greptime_timestamp@4 as greptime_timestamp, prom_rate(greptime_timestamp_range@6, greptime_value@5, greptime_timestamp@4, 120000) as prom_rate(greptime_timestamp_range,greptime_value,aggr_optimize_not_count.greptime_timestamp,Int64(120000)), a@0 as a, b@1 as b, c@2 as c, d@3 as d] REDACTED
|
||||
|_|_|_PromRangeManipulateExec: req range=[1752591864000..1752592164000], interval=[30000], eval range=[120000], time index=[greptime_timestamp] REDACTED
|
||||
|_|_|_PromSeriesNormalizeExec: offset=[0], time index=[greptime_timestamp], filter NaN: [true] REDACTED
|
||||
|_|_|_PromSeriesDivideExec: tags=["a", "b", "c", "d"] REDACTED
|
||||
|_|_|_SeriesScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0}, "distribution":"PerSeries" REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 7: aggregate without sort should be pushed down. This one push down for include all partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c;
|
||||
|
||||
+---------------+----------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+----------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Projection: min(aggr_optimize_not.greptime_value) |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c]], aggr=[[min(aggr_optimize_not.greptime_value)]] |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+----------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c;
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_ProjectionExec: expr=[min(aggr_optimize_not.greptime_value)@3 as min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b, c@2 as c], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_ProjectionExec: expr=[min(aggr_optimize_not.greptime_value)@3 as min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b, c@2 as c], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 8: aggregate without sort should be pushed down. This one push down for include all partition columns then some
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Projection: min(aggr_optimize_not.greptime_value) |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.c, aggr_optimize_not.d]], aggr=[[min(aggr_optimize_not.greptime_value)]] |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d;
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_ProjectionExec: expr=[min(aggr_optimize_not.greptime_value)@4 as min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, d@3 as d], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b, c@2 as c, d@3 as d], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_ProjectionExec: expr=[min(aggr_optimize_not.greptime_value)@4 as min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b, c@2 as c, d@3 as d], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b, c@2 as c, d@3 as d], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 9: aggregate without sort should be pushed down. This one push down for step aggr push down.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
+---------------+------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: min(min(aggr_optimize_not.greptime_value)) AS min(aggr_optimize_not.greptime_value) |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b]], aggr=[[min(min(aggr_optimize_not.greptime_value))]] |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b]], aggr=[[min(aggr_optimize_not.greptime_value)]] |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | ProjectionExec: expr=[min(min(aggr_optimize_not.greptime_value))@2 as min(aggr_optimize_not.greptime_value)] |
|
||||
| | AggregateExec: mode=SinglePartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(min(aggr_optimize_not.greptime_value))] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_ProjectionExec: expr=[min(min(aggr_optimize_not.greptime_value))@2 as min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=SinglePartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(min(aggr_optimize_not.greptime_value))] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 10: aggregate without sort should be pushed down. This one push down for step aggr push down with complex aggr
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value) + max(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: min(min(aggr_optimize_not.greptime_value)) + max(max(aggr_optimize_not.greptime_value)) AS min(aggr_optimize_not.greptime_value) + max(aggr_optimize_not.greptime_value) |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b]], aggr=[[min(min(aggr_optimize_not.greptime_value)), max(max(aggr_optimize_not.greptime_value))]] |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a, aggr_optimize_not.b]], aggr=[[min(aggr_optimize_not.greptime_value), max(aggr_optimize_not.greptime_value)]] |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | ProjectionExec: expr=[min(min(aggr_optimize_not.greptime_value))@2 + max(max(aggr_optimize_not.greptime_value))@3 as min(aggr_optimize_not.greptime_value) + max(aggr_optimize_not.greptime_value)] |
|
||||
| | AggregateExec: mode=SinglePartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(min(aggr_optimize_not.greptime_value)), max(max(aggr_optimize_not.greptime_value))] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value) + max(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_ProjectionExec: expr=[min(min(aggr_optimize_not.greptime_value))@2 + max(max(aggr_optimize_not.greptime_value))@3 as min(aggr_optimize_not.greptime_value) + max(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=SinglePartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(min(aggr_optimize_not.greptime_value)), max(max(aggr_optimize_not.greptime_value))] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value), max(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value), max(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value), max(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a, b@1 as b], aggr=[min(aggr_optimize_not.greptime_value), max(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
-- Case 11: aggregate with subquery
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
a,
|
||||
min(greptime_value)
|
||||
FROM
|
||||
(
|
||||
SELECT
|
||||
a,
|
||||
b,
|
||||
greptime_value
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
ORDER BY
|
||||
a,
|
||||
b
|
||||
)
|
||||
GROUP BY
|
||||
a;
|
||||
|
||||
+---------------+------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: aggr_optimize_not.a, min(min(aggr_optimize_not.greptime_value)) AS min(aggr_optimize_not.greptime_value) |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a]], aggr=[[min(min(aggr_optimize_not.greptime_value))]] |
|
||||
| | MergeScan [is_placeholder=false, remote_input=[ |
|
||||
| | Aggregate: groupBy=[[aggr_optimize_not.a]], aggr=[[min(aggr_optimize_not.greptime_value)]] |
|
||||
| | Projection: aggr_optimize_not.a, aggr_optimize_not.b, aggr_optimize_not.greptime_value |
|
||||
| | TableScan: aggr_optimize_not |
|
||||
| | ]] |
|
||||
| physical_plan | ProjectionExec: expr=[a@0 as a, min(min(aggr_optimize_not.greptime_value))@1 as min(aggr_optimize_not.greptime_value)] |
|
||||
| | AggregateExec: mode=SinglePartitioned, gby=[a@0 as a], aggr=[min(min(aggr_optimize_not.greptime_value))] |
|
||||
| | MergeScanExec: REDACTED
|
||||
| | |
|
||||
+---------------+------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
a,
|
||||
min(greptime_value)
|
||||
FROM
|
||||
(
|
||||
SELECT
|
||||
a,
|
||||
b,
|
||||
greptime_value
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
ORDER BY
|
||||
a,
|
||||
b
|
||||
)
|
||||
GROUP BY
|
||||
a;
|
||||
|
||||
+-+-+-+
|
||||
| stage | node | plan_|
|
||||
+-+-+-+
|
||||
| 0_| 0_|_ProjectionExec: expr=[a@0 as a, min(min(aggr_optimize_not.greptime_value))@1 as min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_AggregateExec: mode=SinglePartitioned, gby=[a@0 as a], aggr=[min(min(aggr_optimize_not.greptime_value))] REDACTED
|
||||
|_|_|_MergeScanExec: REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 0_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
| 1_| 1_|_AggregateExec: mode=FinalPartitioned, gby=[a@0 as a], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_CoalesceBatchesExec: target_batch_size=8192 REDACTED
|
||||
|_|_|_RepartitionExec: partitioning=REDACTED
|
||||
|_|_|_AggregateExec: mode=Partial, gby=[a@0 as a], aggr=[min(aggr_optimize_not.greptime_value)] REDACTED
|
||||
|_|_|_SeqScan: region=REDACTED, "partition_count":{"count":0, "mem_ranges":0, "files":0, "file_ranges":0} REDACTED
|
||||
|_|_|_|
|
||||
|_|_| Total rows: 0_|
|
||||
+-+-+-+
|
||||
|
||||
drop table aggr_optimize_not_count;
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
drop table aggr_optimize_not;
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
307
tests/cases/distributed/explain/step_aggr_advance.sql
Normal file
307
tests/cases/distributed/explain/step_aggr_advance.sql
Normal file
@@ -0,0 +1,307 @@
|
||||
CREATE TABLE IF NOT EXISTS aggr_optimize_not (
|
||||
a STRING NULL,
|
||||
b STRING NULL,
|
||||
c STRING NULL,
|
||||
d STRING NULL,
|
||||
greptime_timestamp TIMESTAMP(3) NOT NULL,
|
||||
greptime_value DOUBLE NULL,
|
||||
TIME INDEX (greptime_timestamp),
|
||||
PRIMARY KEY (a, b, c, d)
|
||||
) PARTITION ON COLUMNS (a, b, c) (a < 'b', a >= 'b',);
|
||||
|
||||
-- Case 0: group by columns are the same as partition columns.
|
||||
-- This query shouldn't push down aggregation even if group by columns are partitioned.
|
||||
-- because sort is already pushed down.
|
||||
-- If it does, it will cause a wrong result.
|
||||
-- explain at 0s, 5s and 10s. No point at 0s.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') max by (a, b, c) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') max by (a, b, c) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- Case 1: group by columns are prefix of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') sum by (a, b) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') sum by (a, b) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- Case 2: group by columns are prefix of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') avg by (a) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') avg by (a) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- Case 3: group by columns are superset of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') count by (a, b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') count by (a, b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- Case 4: group by columns are not prefix of partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') min by (b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') min by (b, c, d) (max_over_time(aggr_optimize_not [2m]));
|
||||
|
||||
-- Case 5: a simple sum
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain sum(aggr_optimize_not);
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze sum(aggr_optimize_not);
|
||||
|
||||
-- TODO(discord9): more cases for aggr push down interacting with partitioning&tql
|
||||
CREATE TABLE IF NOT EXISTS aggr_optimize_not_count (
|
||||
a STRING NULL,
|
||||
b STRING NULL,
|
||||
c STRING NULL,
|
||||
d STRING NULL,
|
||||
greptime_timestamp TIMESTAMP(3) NOT NULL,
|
||||
greptime_value DOUBLE NULL,
|
||||
TIME INDEX (greptime_timestamp),
|
||||
PRIMARY KEY (a, b, c, d)
|
||||
) PARTITION ON COLUMNS (a, b, c) (a < 'b', a >= 'b',);
|
||||
|
||||
-- Case 6: Test average rate (sum/count like)
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
tql explain (1752591864, 1752592164, '30s') sum by (a, b, c) (rate(aggr_optimize_not [2m])) / sum by (a, b, c) (rate(aggr_optimize_not_count [2m]));
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
tql analyze (1752591864, 1752592164, '30s') sum by (a, b, c) (rate(aggr_optimize_not [2m])) / sum by (a, b, c) (rate(aggr_optimize_not_count [2m]));
|
||||
|
||||
-- Case 7: aggregate without sort should be pushed down. This one push down for include all partition columns.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c;
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c;
|
||||
|
||||
-- Case 8: aggregate without sort should be pushed down. This one push down for include all partition columns then some
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d;
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
d;
|
||||
|
||||
-- Case 9: aggregate without sort should be pushed down. This one push down for step aggr push down.
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
-- Case 10: aggregate without sort should be pushed down. This one push down for step aggr push down with complex aggr
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
min(greptime_value) + max(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
min(greptime_value) + max(greptime_value)
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
GROUP BY
|
||||
a,
|
||||
b;
|
||||
|
||||
|
||||
-- Case 11: aggregate with subquery
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
EXPLAIN
|
||||
SELECT
|
||||
a,
|
||||
min(greptime_value)
|
||||
FROM
|
||||
(
|
||||
SELECT
|
||||
a,
|
||||
b,
|
||||
greptime_value
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
ORDER BY
|
||||
a,
|
||||
b
|
||||
)
|
||||
GROUP BY
|
||||
a;
|
||||
|
||||
-- SQLNESS REPLACE (metrics.*) REDACTED
|
||||
-- SQLNESS REPLACE (RoundRobinBatch.*) REDACTED
|
||||
-- SQLNESS REPLACE (Hash.*) REDACTED
|
||||
-- SQLNESS REPLACE (-+) -
|
||||
-- SQLNESS REPLACE (\s\s+) _
|
||||
-- SQLNESS REPLACE (peers.*) REDACTED
|
||||
-- SQLNESS REPLACE region=\d+\(\d+,\s+\d+\) region=REDACTED
|
||||
EXPLAIN ANALYZE
|
||||
SELECT
|
||||
a,
|
||||
min(greptime_value)
|
||||
FROM
|
||||
(
|
||||
SELECT
|
||||
a,
|
||||
b,
|
||||
greptime_value
|
||||
FROM
|
||||
aggr_optimize_not
|
||||
ORDER BY
|
||||
a,
|
||||
b
|
||||
)
|
||||
GROUP BY
|
||||
a;
|
||||
|
||||
drop table aggr_optimize_not_count;
|
||||
|
||||
drop table aggr_optimize_not;
|
||||
Reference in New Issue
Block a user