mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2025-12-22 22:20:02 +00:00
feat(expr): support avg functions on vector (#7146)
* feat(expr): support vec_elem_avg function Signed-off-by: Alan Tang <jmtangcs@gmail.com> * feat: support vec_avg function Signed-off-by: Alan Tang <jmtangcs@gmail.com> * test: add more query test for avg aggregator Signed-off-by: Alan Tang <jmtangcs@gmail.com> * fix: fix the merge batch mode Signed-off-by: Alan Tang <jmtangcs@gmail.com> * refactor: use sum and count as state for avg function Signed-off-by: Alan Tang <jmtangcs@gmail.com> * refactor: refactor merge batch mode for avg function Signed-off-by: Alan Tang <jmtangcs@gmail.com> * feat: add additional vector restrictions for validation Signed-off-by: Alan Tang <jmtangcs@gmail.com> --------- Signed-off-by: Alan Tang <jmtangcs@gmail.com> Co-authored-by: Yingwen <realevenyag@gmail.com>
This commit is contained in:
@@ -12,10 +12,12 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use crate::aggrs::vector::avg::VectorAvg;
|
||||
use crate::aggrs::vector::product::VectorProduct;
|
||||
use crate::aggrs::vector::sum::VectorSum;
|
||||
use crate::function_registry::FunctionRegistry;
|
||||
|
||||
mod avg;
|
||||
mod product;
|
||||
mod sum;
|
||||
|
||||
@@ -25,5 +27,6 @@ impl VectorFunction {
|
||||
pub fn register(registry: &FunctionRegistry) {
|
||||
registry.register_aggr(VectorSum::uadf_impl());
|
||||
registry.register_aggr(VectorProduct::uadf_impl());
|
||||
registry.register_aggr(VectorAvg::uadf_impl());
|
||||
}
|
||||
}
|
||||
|
||||
270
src/common/function/src/aggrs/vector/avg.rs
Normal file
270
src/common/function/src/aggrs/vector/avg.rs
Normal file
@@ -0,0 +1,270 @@
|
||||
// Copyright 2023 Greptime Team
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::borrow::Cow;
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow::array::{Array, ArrayRef, AsArray, BinaryArray, LargeStringArray, StringArray};
|
||||
use arrow::compute::sum;
|
||||
use arrow::datatypes::UInt64Type;
|
||||
use arrow_schema::{DataType, Field};
|
||||
use datafusion_common::{Result, ScalarValue};
|
||||
use datafusion_expr::{
|
||||
Accumulator, AggregateUDF, Signature, SimpleAggregateUDF, TypeSignature, Volatility,
|
||||
};
|
||||
use datafusion_functions_aggregate_common::accumulator::AccumulatorArgs;
|
||||
use nalgebra::{Const, DVector, DVectorView, Dyn, OVector};
|
||||
|
||||
use crate::scalars::vector::impl_conv::{
|
||||
binlit_as_veclit, parse_veclit_from_strlit, veclit_to_binlit,
|
||||
};
|
||||
|
||||
/// The accumulator for the `vec_avg` aggregate function.
|
||||
#[derive(Debug, Default)]
|
||||
pub struct VectorAvg {
|
||||
sum: Option<OVector<f32, Dyn>>,
|
||||
count: u64,
|
||||
}
|
||||
|
||||
impl VectorAvg {
|
||||
/// Create a new `AggregateUDF` for the `vec_avg` aggregate function.
|
||||
pub fn uadf_impl() -> AggregateUDF {
|
||||
let signature = Signature::one_of(
|
||||
vec![
|
||||
TypeSignature::Exact(vec![DataType::Utf8]),
|
||||
TypeSignature::Exact(vec![DataType::LargeUtf8]),
|
||||
TypeSignature::Exact(vec![DataType::Binary]),
|
||||
],
|
||||
Volatility::Immutable,
|
||||
);
|
||||
let udaf = SimpleAggregateUDF::new_with_signature(
|
||||
"vec_avg",
|
||||
signature,
|
||||
DataType::Binary,
|
||||
Arc::new(Self::accumulator),
|
||||
vec![
|
||||
Arc::new(Field::new("sum", DataType::Binary, true)),
|
||||
Arc::new(Field::new("count", DataType::UInt64, true)),
|
||||
],
|
||||
);
|
||||
AggregateUDF::from(udaf)
|
||||
}
|
||||
|
||||
fn accumulator(args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
|
||||
if args.schema.fields().len() != 1 {
|
||||
return Err(datafusion_common::DataFusionError::Internal(format!(
|
||||
"expect creating `VEC_AVG` with only one input field, actual {}",
|
||||
args.schema.fields().len()
|
||||
)));
|
||||
}
|
||||
|
||||
let t = args.schema.field(0).data_type();
|
||||
if !matches!(t, DataType::Utf8 | DataType::LargeUtf8 | DataType::Binary) {
|
||||
return Err(datafusion_common::DataFusionError::Internal(format!(
|
||||
"unexpected input datatype {t} when creating `VEC_AVG`"
|
||||
)));
|
||||
}
|
||||
|
||||
Ok(Box::new(VectorAvg::default()))
|
||||
}
|
||||
|
||||
fn inner(&mut self, len: usize) -> &mut OVector<f32, Dyn> {
|
||||
self.sum
|
||||
.get_or_insert_with(|| OVector::zeros_generic(Dyn(len), Const::<1>))
|
||||
}
|
||||
|
||||
fn update(&mut self, values: &[ArrayRef], is_update: bool) -> Result<()> {
|
||||
if values.is_empty() {
|
||||
return Ok(());
|
||||
};
|
||||
|
||||
let vectors = match values[0].data_type() {
|
||||
DataType::Utf8 => {
|
||||
let arr: &StringArray = values[0].as_string();
|
||||
arr.iter()
|
||||
.filter_map(|x| x.map(|s| parse_veclit_from_strlit(s).map_err(Into::into)))
|
||||
.map(|x| x.map(Cow::Owned))
|
||||
.collect::<Result<Vec<_>>>()?
|
||||
}
|
||||
DataType::LargeUtf8 => {
|
||||
let arr: &LargeStringArray = values[0].as_string();
|
||||
arr.iter()
|
||||
.filter_map(|x| x.map(|s| parse_veclit_from_strlit(s).map_err(Into::into)))
|
||||
.map(|x: Result<Vec<f32>>| x.map(Cow::Owned))
|
||||
.collect::<Result<Vec<_>>>()?
|
||||
}
|
||||
DataType::Binary => {
|
||||
let arr: &BinaryArray = values[0].as_binary();
|
||||
arr.iter()
|
||||
.filter_map(|x| x.map(|b| binlit_as_veclit(b).map_err(Into::into)))
|
||||
.collect::<Result<Vec<_>>>()?
|
||||
}
|
||||
_ => {
|
||||
return Err(datafusion_common::DataFusionError::NotImplemented(format!(
|
||||
"unsupported data type {} for `VEC_AVG`",
|
||||
values[0].data_type()
|
||||
)));
|
||||
}
|
||||
};
|
||||
|
||||
if vectors.is_empty() {
|
||||
return Ok(());
|
||||
}
|
||||
|
||||
let len = if is_update {
|
||||
vectors.len() as u64
|
||||
} else {
|
||||
sum(values[1].as_primitive::<UInt64Type>()).unwrap_or_default()
|
||||
};
|
||||
|
||||
let dims = vectors[0].len();
|
||||
let mut sum = DVector::zeros(dims);
|
||||
for v in vectors {
|
||||
if v.len() != dims {
|
||||
return Err(datafusion_common::DataFusionError::Execution(
|
||||
"vectors length not match: VEC_AVG".to_string(),
|
||||
));
|
||||
}
|
||||
let v_view = DVectorView::from_slice(&v, dims);
|
||||
sum += &v_view;
|
||||
}
|
||||
|
||||
*self.inner(dims) += sum;
|
||||
self.count += len;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl Accumulator for VectorAvg {
|
||||
fn state(&mut self) -> Result<Vec<ScalarValue>> {
|
||||
let vector = match &self.sum {
|
||||
None => ScalarValue::Binary(None),
|
||||
Some(sum) => ScalarValue::Binary(Some(veclit_to_binlit(sum.as_slice()))),
|
||||
};
|
||||
Ok(vec![vector, ScalarValue::from(self.count)])
|
||||
}
|
||||
|
||||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
|
||||
self.update(values, true)
|
||||
}
|
||||
|
||||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
|
||||
self.update(states, false)
|
||||
}
|
||||
|
||||
fn evaluate(&mut self) -> Result<ScalarValue> {
|
||||
match &self.sum {
|
||||
None => Ok(ScalarValue::Binary(None)),
|
||||
Some(sum) => Ok(ScalarValue::Binary(Some(veclit_to_binlit(
|
||||
(sum / self.count as f32).as_slice(),
|
||||
)))),
|
||||
}
|
||||
}
|
||||
|
||||
fn size(&self) -> usize {
|
||||
size_of_val(self)
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow::array::StringArray;
|
||||
use datatypes::scalars::ScalarVector;
|
||||
use datatypes::vectors::{ConstantVector, StringVector, Vector};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_update_batch() {
|
||||
// test update empty batch, expect not updating anything
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
vec_avg.update_batch(&[]).unwrap();
|
||||
assert!(vec_avg.sum.is_none());
|
||||
assert_eq!(ScalarValue::Binary(None), vec_avg.evaluate().unwrap());
|
||||
|
||||
// test update one not-null value
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![
|
||||
Some("[1.0,2.0,3.0]".to_string()),
|
||||
Some("[4.0,5.0,6.0]".to_string()),
|
||||
]))];
|
||||
vec_avg.update_batch(&v).unwrap();
|
||||
assert_eq!(
|
||||
ScalarValue::Binary(Some(veclit_to_binlit(&[2.5, 3.5, 4.5]))),
|
||||
vec_avg.evaluate().unwrap()
|
||||
);
|
||||
|
||||
// test update one null value
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![Option::<String>::None]))];
|
||||
vec_avg.update_batch(&v).unwrap();
|
||||
assert_eq!(ScalarValue::Binary(None), vec_avg.evaluate().unwrap());
|
||||
|
||||
// test update no null-value batch
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![
|
||||
Some("[1.0,2.0,3.0]".to_string()),
|
||||
Some("[4.0,5.0,6.0]".to_string()),
|
||||
Some("[7.0,8.0,9.0]".to_string()),
|
||||
]))];
|
||||
vec_avg.update_batch(&v).unwrap();
|
||||
assert_eq!(
|
||||
ScalarValue::Binary(Some(veclit_to_binlit(&[4.0, 5.0, 6.0]))),
|
||||
vec_avg.evaluate().unwrap()
|
||||
);
|
||||
|
||||
// test update null-value batch
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![
|
||||
Some("[1.0,2.0,3.0]".to_string()),
|
||||
None,
|
||||
Some("[7.0,8.0,9.0]".to_string()),
|
||||
]))];
|
||||
vec_avg.update_batch(&v).unwrap();
|
||||
assert_eq!(
|
||||
ScalarValue::Binary(Some(veclit_to_binlit(&[4.0, 5.0, 6.0]))),
|
||||
vec_avg.evaluate().unwrap()
|
||||
);
|
||||
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
let v: Vec<ArrayRef> = vec![Arc::new(StringArray::from(vec![
|
||||
None,
|
||||
Some("[4.0,5.0,6.0]".to_string()),
|
||||
Some("[7.0,8.0,9.0]".to_string()),
|
||||
]))];
|
||||
vec_avg.update_batch(&v).unwrap();
|
||||
assert_eq!(
|
||||
ScalarValue::Binary(Some(veclit_to_binlit(&[5.5, 6.5, 7.5]))),
|
||||
vec_avg.evaluate().unwrap()
|
||||
);
|
||||
|
||||
// test update with constant vector
|
||||
let mut vec_avg = VectorAvg::default();
|
||||
let v: Vec<ArrayRef> = vec![
|
||||
Arc::new(ConstantVector::new(
|
||||
Arc::new(StringVector::from_vec(vec!["[1.0,2.0,3.0]".to_string()])),
|
||||
4,
|
||||
))
|
||||
.to_arrow_array(),
|
||||
];
|
||||
vec_avg.update_batch(&v).unwrap();
|
||||
assert_eq!(
|
||||
ScalarValue::Binary(Some(veclit_to_binlit(&[1.0, 2.0, 3.0]))),
|
||||
vec_avg.evaluate().unwrap()
|
||||
);
|
||||
}
|
||||
}
|
||||
@@ -14,6 +14,7 @@
|
||||
|
||||
mod convert;
|
||||
mod distance;
|
||||
mod elem_avg;
|
||||
mod elem_product;
|
||||
mod elem_sum;
|
||||
pub mod impl_conv;
|
||||
@@ -64,6 +65,7 @@ impl VectorFunction {
|
||||
registry.register_scalar(vector_subvector::VectorSubvectorFunction::default());
|
||||
registry.register_scalar(elem_sum::ElemSumFunction::default());
|
||||
registry.register_scalar(elem_product::ElemProductFunction::default());
|
||||
registry.register_scalar(elem_avg::ElemAvgFunction::default());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
128
src/common/function/src/scalars/vector/elem_avg.rs
Normal file
128
src/common/function/src/scalars/vector/elem_avg.rs
Normal file
@@ -0,0 +1,128 @@
|
||||
// Copyright 2023 Greptime Team
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::fmt::Display;
|
||||
|
||||
use datafusion::arrow::datatypes::DataType;
|
||||
use datafusion::logical_expr::ColumnarValue;
|
||||
use datafusion_common::ScalarValue;
|
||||
use datafusion_expr::type_coercion::aggregates::{BINARYS, STRINGS};
|
||||
use datafusion_expr::{ScalarFunctionArgs, Signature, TypeSignature, Volatility};
|
||||
use nalgebra::DVectorView;
|
||||
|
||||
use crate::function::Function;
|
||||
use crate::scalars::vector::{VectorCalculator, impl_conv};
|
||||
|
||||
const NAME: &str = "vec_elem_avg";
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub(crate) struct ElemAvgFunction {
|
||||
signature: Signature,
|
||||
}
|
||||
|
||||
impl Default for ElemAvgFunction {
|
||||
fn default() -> Self {
|
||||
Self {
|
||||
signature: Signature::one_of(
|
||||
vec![
|
||||
TypeSignature::Uniform(1, STRINGS.to_vec()),
|
||||
TypeSignature::Uniform(1, BINARYS.to_vec()),
|
||||
TypeSignature::Uniform(1, vec![DataType::BinaryView]),
|
||||
],
|
||||
Volatility::Immutable,
|
||||
),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Function for ElemAvgFunction {
|
||||
fn name(&self) -> &str {
|
||||
NAME
|
||||
}
|
||||
|
||||
fn return_type(&self, _: &[DataType]) -> datafusion_common::Result<DataType> {
|
||||
Ok(DataType::Float32)
|
||||
}
|
||||
|
||||
fn signature(&self) -> &Signature {
|
||||
&self.signature
|
||||
}
|
||||
|
||||
fn invoke_with_args(
|
||||
&self,
|
||||
args: ScalarFunctionArgs,
|
||||
) -> datafusion_common::Result<ColumnarValue> {
|
||||
let body = |v0: &ScalarValue| -> datafusion_common::Result<ScalarValue> {
|
||||
let v0 =
|
||||
impl_conv::as_veclit(v0)?.map(|v0| DVectorView::from_slice(&v0, v0.len()).mean());
|
||||
Ok(ScalarValue::Float32(v0))
|
||||
};
|
||||
|
||||
let calculator = VectorCalculator {
|
||||
name: self.name(),
|
||||
func: body,
|
||||
};
|
||||
calculator.invoke_with_single_argument(args)
|
||||
}
|
||||
}
|
||||
|
||||
impl Display for ElemAvgFunction {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", NAME.to_ascii_uppercase())
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow::array::StringViewArray;
|
||||
use arrow_schema::Field;
|
||||
use datafusion::arrow::array::{Array, AsArray};
|
||||
use datafusion::arrow::datatypes::Float32Type;
|
||||
use datafusion_common::config::ConfigOptions;
|
||||
|
||||
use super::*;
|
||||
|
||||
#[test]
|
||||
fn test_elem_avg() {
|
||||
let func = ElemAvgFunction::default();
|
||||
|
||||
let input = Arc::new(StringViewArray::from(vec![
|
||||
Some("[1.0,2.0,3.0]".to_string()),
|
||||
Some("[4.0,5.0,6.0]".to_string()),
|
||||
Some("[7.0,8.0,9.0]".to_string()),
|
||||
None,
|
||||
]));
|
||||
|
||||
let result = func
|
||||
.invoke_with_args(ScalarFunctionArgs {
|
||||
args: vec![ColumnarValue::Array(input.clone())],
|
||||
arg_fields: vec![],
|
||||
number_rows: input.len(),
|
||||
return_field: Arc::new(Field::new("x", DataType::Float32, true)),
|
||||
config_options: Arc::new(ConfigOptions::new()),
|
||||
})
|
||||
.and_then(|v| ColumnarValue::values_to_arrays(&[v]))
|
||||
.map(|mut a| a.remove(0))
|
||||
.unwrap();
|
||||
let result = result.as_primitive::<Float32Type>();
|
||||
|
||||
assert_eq!(result.len(), 4);
|
||||
assert_eq!(result.value(0), 2.0);
|
||||
assert_eq!(result.value(1), 5.0);
|
||||
assert_eq!(result.value(2), 8.0);
|
||||
assert!(result.is_null(3));
|
||||
}
|
||||
}
|
||||
@@ -26,6 +26,7 @@ mod query_engine_test;
|
||||
mod time_range_filter_test;
|
||||
|
||||
mod function;
|
||||
mod vec_avg_test;
|
||||
mod vec_product_test;
|
||||
mod vec_sum_test;
|
||||
|
||||
|
||||
60
src/query/src/tests/vec_avg_test.rs
Normal file
60
src/query/src/tests/vec_avg_test.rs
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright 2023 Greptime Team
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::ops::AddAssign;
|
||||
|
||||
use common_function::scalars::vector::impl_conv::{as_veclit, veclit_to_binlit};
|
||||
use datafusion_common::ScalarValue;
|
||||
use datatypes::prelude::Value;
|
||||
use nalgebra::{Const, DVectorView, Dyn, OVector};
|
||||
|
||||
use crate::tests::{exec_selection, function};
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_vec_avg_aggregator() -> Result<(), common_query::error::Error> {
|
||||
common_telemetry::init_default_ut_logging();
|
||||
let engine = function::create_query_engine_for_vector10x3();
|
||||
let sql = "select VEC_AVG(vector) as vec_avg from vectors";
|
||||
let result = exec_selection(engine.clone(), sql).await;
|
||||
let value = function::get_value_from_batches("vec_avg", result);
|
||||
|
||||
let mut expected_value = None;
|
||||
|
||||
let sql = "SELECT vector FROM vectors";
|
||||
let vectors = exec_selection(engine, sql).await;
|
||||
|
||||
let column = vectors[0].column(0).to_arrow_array();
|
||||
let len = column.len();
|
||||
for i in 0..column.len() {
|
||||
let v = ScalarValue::try_from_array(&column, i)?;
|
||||
let vector = as_veclit(&v)?;
|
||||
let Some(vector) = vector else {
|
||||
expected_value = None;
|
||||
break;
|
||||
};
|
||||
expected_value
|
||||
.get_or_insert_with(|| OVector::zeros_generic(Dyn(3), Const::<1>))
|
||||
.add_assign(&DVectorView::from_slice(&vector, vector.len()));
|
||||
}
|
||||
let expected_value = match expected_value.map(|mut v| {
|
||||
v /= len as f32;
|
||||
veclit_to_binlit(v.as_slice())
|
||||
}) {
|
||||
None => Value::Null,
|
||||
Some(bytes) => Value::from(bytes),
|
||||
};
|
||||
assert_eq!(value, expected_value);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
@@ -150,6 +150,38 @@ SELECT vec_elem_sum(parse_vec('[-1.0, -2.0, -3.0]'));
|
||||
| -6.0 |
|
||||
+-----------------------------------------------------+
|
||||
|
||||
SELECT vec_elem_avg('[1.0, 2.0, 3.0]');
|
||||
|
||||
+---------------------------------------+
|
||||
| vec_elem_avg(Utf8("[1.0, 2.0, 3.0]")) |
|
||||
+---------------------------------------+
|
||||
| 2.0 |
|
||||
+---------------------------------------+
|
||||
|
||||
SELECT vec_elem_avg('[-1.0, -2.0, -3.0]');
|
||||
|
||||
+------------------------------------------+
|
||||
| vec_elem_avg(Utf8("[-1.0, -2.0, -3.0]")) |
|
||||
+------------------------------------------+
|
||||
| -2.0 |
|
||||
+------------------------------------------+
|
||||
|
||||
SELECT vec_elem_avg(parse_vec('[1.0, 2.0, 3.0]'));
|
||||
|
||||
+--------------------------------------------------+
|
||||
| vec_elem_avg(parse_vec(Utf8("[1.0, 2.0, 3.0]"))) |
|
||||
+--------------------------------------------------+
|
||||
| 2.0 |
|
||||
+--------------------------------------------------+
|
||||
|
||||
SELECT vec_elem_avg(parse_vec('[-1.0, -2.0, -3.0]'));
|
||||
|
||||
+-----------------------------------------------------+
|
||||
| vec_elem_avg(parse_vec(Utf8("[-1.0, -2.0, -3.0]"))) |
|
||||
+-----------------------------------------------------+
|
||||
| -2.0 |
|
||||
+-----------------------------------------------------+
|
||||
|
||||
SELECT vec_to_string(vec_div('[1.0, 2.0]', '[3.0, 4.0]'));
|
||||
|
||||
+---------------------------------------------------------------+
|
||||
@@ -269,6 +301,21 @@ FROM (
|
||||
| [4,5,6] |
|
||||
+---------------------------+
|
||||
|
||||
SELECT vec_to_string(vec_avg(v))
|
||||
FROM (
|
||||
SELECT '[1.0, 2.0, 3.0]' AS v
|
||||
UNION ALL
|
||||
SELECT '[10.0, 11.0, 12.0]' AS v
|
||||
UNION ALL
|
||||
SELECT '[4.0, 5.0, 6.0]' AS v
|
||||
);
|
||||
|
||||
+---------------------------+
|
||||
| vec_to_string(vec_avg(v)) |
|
||||
+---------------------------+
|
||||
| [5,6,7] |
|
||||
+---------------------------+
|
||||
|
||||
SELECT vec_to_string(vec_product(v))
|
||||
FROM (
|
||||
SELECT '[1.0, 2.0, 3.0]' AS v
|
||||
|
||||
@@ -36,6 +36,14 @@ SELECT vec_elem_sum(parse_vec('[1.0, 2.0, 3.0]'));
|
||||
|
||||
SELECT vec_elem_sum(parse_vec('[-1.0, -2.0, -3.0]'));
|
||||
|
||||
SELECT vec_elem_avg('[1.0, 2.0, 3.0]');
|
||||
|
||||
SELECT vec_elem_avg('[-1.0, -2.0, -3.0]');
|
||||
|
||||
SELECT vec_elem_avg(parse_vec('[1.0, 2.0, 3.0]'));
|
||||
|
||||
SELECT vec_elem_avg(parse_vec('[-1.0, -2.0, -3.0]'));
|
||||
|
||||
SELECT vec_to_string(vec_div('[1.0, 2.0]', '[3.0, 4.0]'));
|
||||
|
||||
SELECT vec_to_string(vec_div(parse_vec('[1.0, 2.0]'), '[3.0, 4.0]'));
|
||||
@@ -71,6 +79,15 @@ FROM (
|
||||
SELECT '[4.0, 5.0, 6.0]' AS v
|
||||
);
|
||||
|
||||
SELECT vec_to_string(vec_avg(v))
|
||||
FROM (
|
||||
SELECT '[1.0, 2.0, 3.0]' AS v
|
||||
UNION ALL
|
||||
SELECT '[10.0, 11.0, 12.0]' AS v
|
||||
UNION ALL
|
||||
SELECT '[4.0, 5.0, 6.0]' AS v
|
||||
);
|
||||
|
||||
SELECT vec_to_string(vec_product(v))
|
||||
FROM (
|
||||
SELECT '[1.0, 2.0, 3.0]' AS v
|
||||
|
||||
Reference in New Issue
Block a user