Merge branch 'main' into prom-plan-commutativity

This commit is contained in:
Ruihang Xia
2025-04-27 17:40:24 +08:00
445 changed files with 32973 additions and 15741 deletions

View File

@@ -1,15 +0,0 @@
# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json
language: "en-US"
early_access: false
reviews:
profile: "chill"
request_changes_workflow: false
high_level_summary: true
poem: true
review_status: true
collapse_walkthrough: false
auto_review:
enabled: false
drafts: false
chat:
auto_reply: true

View File

@@ -2,13 +2,14 @@ meta:
configData: |-
[runtime]
global_rt_size = 4
[wal]
provider = "kafka"
broker_endpoints = ["kafka.kafka-cluster.svc.cluster.local:9092"]
num_topics = 3
auto_prune_interval = "30s"
trigger_flush_threshold = 100
[datanode]
[datanode.client]
timeout = "120s"
@@ -22,6 +23,7 @@ datanode:
provider = "kafka"
broker_endpoints = ["kafka.kafka-cluster.svc.cluster.local:9092"]
linger = "2ms"
overwrite_entry_start_id = true
frontend:
configData: |-
[runtime]

View File

@@ -10,22 +10,22 @@ set -e
function create_version() {
# Read from envrionment variables.
if [ -z "$GITHUB_EVENT_NAME" ]; then
echo "GITHUB_EVENT_NAME is empty"
echo "GITHUB_EVENT_NAME is empty" >&2
exit 1
fi
if [ -z "$NEXT_RELEASE_VERSION" ]; then
echo "NEXT_RELEASE_VERSION is empty"
exit 1
echo "NEXT_RELEASE_VERSION is empty, use version from Cargo.toml" >&2
export NEXT_RELEASE_VERSION=$(grep '^version = ' Cargo.toml | cut -d '"' -f 2 | head -n 1)
fi
if [ -z "$NIGHTLY_RELEASE_PREFIX" ]; then
echo "NIGHTLY_RELEASE_PREFIX is empty"
echo "NIGHTLY_RELEASE_PREFIX is empty" >&2
exit 1
fi
# Reuse $NEXT_RELEASE_VERSION to identify whether it's a nightly build.
# It will be like 'nigtly-20230808-7d0d8dc6'.
# It will be like 'nightly-20230808-7d0d8dc6'.
if [ "$NEXT_RELEASE_VERSION" = nightly ]; then
echo "$NIGHTLY_RELEASE_PREFIX-$(date "+%Y%m%d")-$(git rev-parse --short HEAD)"
exit 0
@@ -35,7 +35,7 @@ function create_version() {
# It will be like 'dev-2023080819-f0e7216c'.
if [ "$NEXT_RELEASE_VERSION" = dev ]; then
if [ -z "$COMMIT_SHA" ]; then
echo "COMMIT_SHA is empty in dev build"
echo "COMMIT_SHA is empty in dev build" >&2
exit 1
fi
echo "dev-$(date "+%Y%m%d-%s")-$(echo "$COMMIT_SHA" | cut -c1-8)"
@@ -45,7 +45,7 @@ function create_version() {
# Note: Only output 'version=xxx' to stdout when everything is ok, so that it can be used in GitHub Actions Outputs.
if [ "$GITHUB_EVENT_NAME" = push ]; then
if [ -z "$GITHUB_REF_NAME" ]; then
echo "GITHUB_REF_NAME is empty in push event"
echo "GITHUB_REF_NAME is empty in push event" >&2
exit 1
fi
echo "$GITHUB_REF_NAME"
@@ -54,15 +54,15 @@ function create_version() {
elif [ "$GITHUB_EVENT_NAME" = schedule ]; then
echo "$NEXT_RELEASE_VERSION-$NIGHTLY_RELEASE_PREFIX-$(date "+%Y%m%d")"
else
echo "Unsupported GITHUB_EVENT_NAME: $GITHUB_EVENT_NAME"
echo "Unsupported GITHUB_EVENT_NAME: $GITHUB_EVENT_NAME" >&2
exit 1
fi
}
# You can run as following examples:
# GITHUB_EVENT_NAME=push NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly GITHUB_REF_NAME=v0.3.0 ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=nightly NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch COMMIT_SHA=f0e7216c4bb6acce9b29a21ec2d683be2e3f984a NEXT_RELEASE_VERSION=dev NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=push NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly GITHUB_REF_NAME=v0.3.0 ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=nightly NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch COMMIT_SHA=f0e7216c4bb6acce9b29a21ec2d683be2e3f984a NEXT_RELEASE_VERSION=dev NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
create_version

View File

@@ -21,32 +21,6 @@ jobs:
run: sudo apt-get install -y jq
# Make the check.sh script executable
- name: Make check.sh executable
run: chmod +x grafana/check.sh
# Run the check.sh script
- name: Run check.sh
run: ./grafana/check.sh
# Only run summary.sh for pull_request events (not for merge queues or final pushes)
- name: Check if this is a pull request
id: check-pr
- name: Check grafana dashboards
run: |
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
echo "is_pull_request=true" >> $GITHUB_OUTPUT
else
echo "is_pull_request=false" >> $GITHUB_OUTPUT
fi
# Make the summary.sh script executable
- name: Make summary.sh executable
if: steps.check-pr.outputs.is_pull_request == 'true'
run: chmod +x grafana/summary.sh
# Run the summary.sh script and add its output to the GitHub Job Summary
- name: Run summary.sh and add to Job Summary
if: steps.check-pr.outputs.is_pull_request == 'true'
run: |
SUMMARY=$(./grafana/summary.sh)
echo "### Summary of Grafana Panels" >> $GITHUB_STEP_SUMMARY
echo "$SUMMARY" >> $GITHUB_STEP_SUMMARY
make check-dashboards

View File

@@ -90,8 +90,6 @@ env:
# The scheduled version is '${{ env.NEXT_RELEASE_VERSION }}-nightly-YYYYMMDD', like v0.2.0-nigthly-20230313;
NIGHTLY_RELEASE_PREFIX: nightly
# Note: The NEXT_RELEASE_VERSION should be modified manually by every formal release.
NEXT_RELEASE_VERSION: v0.14.0
jobs:
allocate-runners:
@@ -135,7 +133,6 @@ jobs:
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_REF_NAME: ${{ github.ref_name }}
NEXT_RELEASE_VERSION: ${{ env.NEXT_RELEASE_VERSION }}
NIGHTLY_RELEASE_PREFIX: ${{ env.NIGHTLY_RELEASE_PREFIX }}
- name: Allocate linux-amd64 runner
@@ -317,7 +314,7 @@ jobs:
image-registry-username: ${{ secrets.DOCKERHUB_USERNAME }}
image-registry-password: ${{ secrets.DOCKERHUB_TOKEN }}
version: ${{ needs.allocate-runners.outputs.version }}
push-latest-tag: true
push-latest-tag: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
- name: Set build image result
id: set-build-image-result
@@ -364,7 +361,7 @@ jobs:
dev-mode: false
upload-to-s3: true
update-version-info: true
push-latest-tag: true
push-latest-tag: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
publish-github-release:
name: Create GitHub release and upload artifacts

829
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -68,16 +68,16 @@ members = [
resolver = "2"
[workspace.package]
version = "0.14.0"
version = "0.15.0"
edition = "2021"
license = "Apache-2.0"
[workspace.lints]
clippy.print_stdout = "warn"
clippy.print_stderr = "warn"
clippy.dbg_macro = "warn"
clippy.implicit_clone = "warn"
clippy.readonly_write_lock = "allow"
clippy.result_large_err = "allow"
clippy.large_enum_variant = "allow"
clippy.doc_overindented_list_items = "allow"
rust.unknown_lints = "deny"
rust.unexpected_cfgs = { level = "warn", check-cfg = ['cfg(tokio_unstable)'] }
@@ -113,15 +113,15 @@ clap = { version = "4.4", features = ["derive"] }
config = "0.13.0"
crossbeam-utils = "0.8"
dashmap = "6.1"
datafusion = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-common = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-functions = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-optimizer = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-physical-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-physical-plan = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-sql = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion-substrait = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "07dd0bee9e524d83228847c15af6c12f438349ab" }
datafusion = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-common = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-functions = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-optimizer = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-physical-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-physical-plan = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-sql = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
datafusion-substrait = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "e104c7cf62b11dd5fe41461b82514978234326b4" }
deadpool = "0.12"
deadpool-postgres = "0.14"
derive_builder = "0.20"
@@ -130,7 +130,7 @@ etcd-client = "0.14"
fst = "0.4.7"
futures = "0.3"
futures-util = "0.3"
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "dd4a1996982534636734674db66e44464b0c0d83" }
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "e82b0158cd38d4021edb4e4c0ae77f999051e62f" }
hex = "0.4"
http = "1"
humantime = "2.1"
@@ -148,7 +148,7 @@ moka = "0.12"
nalgebra = "0.33"
notify = "8.0"
num_cpus = "1.16"
object_store_opendal = "0.49.0"
object_store_opendal = "0.50"
once_cell = "1.18"
opentelemetry-proto = { version = "0.27", features = [
"gen-tonic",
@@ -162,7 +162,7 @@ parquet = { version = "54.2", default-features = false, features = ["arrow", "as
paste = "1.0"
pin-project = "1.0"
prometheus = { version = "0.13.3", features = ["process"] }
promql-parser = { version = "0.5", features = ["ser"] }
promql-parser = { version = "0.5.1", features = ["ser"] }
prost = "0.13"
raft-engine = { version = "0.4.1", default-features = false }
rand = "0.9"
@@ -192,7 +192,7 @@ simd-json = "0.15"
similar-asserts = "1.6.0"
smallvec = { version = "1", features = ["serde"] }
snafu = "0.8"
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "e98e6b322426a9d397a71efef17075966223c089", features = [
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "0cf6c04490d59435ee965edd2078e8855bd8471e", features = [
"visitor",
"serde",
] } # branch = "v0.54.x"
@@ -270,6 +270,9 @@ metric-engine = { path = "src/metric-engine" }
mito2 = { path = "src/mito2" }
object-store = { path = "src/object-store" }
operator = { path = "src/operator" }
otel-arrow-rust = { git = "https://github.com/open-telemetry/otel-arrow", rev = "5d551412d2a12e689cde4d84c14ef29e36784e51", features = [
"server",
] }
partition = { path = "src/partition" }
pipeline = { path = "src/pipeline" }
plugins = { path = "src/plugins" }

View File

@@ -32,6 +32,10 @@ ifneq ($(strip $(BUILD_JOBS)),)
NEXTEST_OPTS += --build-jobs=${BUILD_JOBS}
endif
ifneq ($(strip $(BUILD_JOBS)),)
SQLNESS_OPTS += --jobs ${BUILD_JOBS}
endif
ifneq ($(strip $(CARGO_PROFILE)),)
CARGO_BUILD_OPTS += --profile ${CARGO_PROFILE}
endif
@@ -218,6 +222,16 @@ start-cluster: ## Start the greptimedb cluster with etcd by using docker compose
stop-cluster: ## Stop the greptimedb cluster that created by docker compose.
docker compose -f ./docker/docker-compose/cluster-with-etcd.yaml stop
##@ Grafana
.PHONY: check-dashboards
check-dashboards: ## Check the Grafana dashboards.
@./grafana/scripts/check.sh
.PHONY: dashboards
dashboards: ## Generate the Grafana dashboards for standalone mode and intermediate dashboards.
@./grafana/scripts/gen-dashboards.sh
##@ Docs
config-docs: ## Generate configuration documentation from toml files.
docker run --rm \

View File

@@ -6,7 +6,7 @@
</picture>
</p>
<h2 align="center">Unified & Cost-Effective Observerability Database for Metrics, Logs, and Events</h2>
<h2 align="center">Real-Time & Cloud-Native Observability Database<br/>for metrics, logs, and traces</h2>
<div align="center">
<h3 align="center">
@@ -62,7 +62,7 @@
## Introduction
**GreptimeDB** is an open-source unified & cost-effective observerability database for **Metrics**, **Logs**, and **Events** (also **Traces** in plan). You can gain real-time insights from Edge to Cloud at Any Scale.
**GreptimeDB** is an open-source, cloud-native, unified & cost-effective observability database for **Metrics**, **Logs**, and **Traces**. You can gain real-time insights from Edge to Cloud at Any Scale.
## News
@@ -70,27 +70,27 @@
## Why GreptimeDB
Our core developers have been building observerability data platforms for years. Based on our best practices, GreptimeDB was born to give you:
Our core developers have been building observability data platforms for years. Based on our best practices, GreptimeDB was born to give you:
* **Unified Processing of Metrics, Logs, and Events**
* **Unified Processing of Observability Data**
GreptimeDB unifies observerability data processing by treating all data - whether metrics, logs, or events - as timestamped events with context. Users can analyze this data using either [SQL](https://docs.greptime.com/user-guide/query-data/sql) or [PromQL](https://docs.greptime.com/user-guide/query-data/promql) and leverage stream processing ([Flow](https://docs.greptime.com/user-guide/flow-computation/overview)) to enable continuous aggregation. [Read more](https://docs.greptime.com/user-guide/concepts/data-model).
A unified database that treats metrics, logs, and traces as timestamped wide events with context, supporting [SQL](https://docs.greptime.com/user-guide/query-data/sql)/[PromQL](https://docs.greptime.com/user-guide/query-data/promql) queries and [stream processing](https://docs.greptime.com/user-guide/flow-computation/overview) to simplify complex data stacks.
* **High Performance and Cost-effective**
Written in Rust, combines a distributed query engine with [rich indexing](https://docs.greptime.com/user-guide/manage-data/data-index) (inverted, fulltext, skip data, and vector) and optimized columnar storage to deliver sub-second responses on petabyte-scale data and high-cost efficiency.
* **Cloud-native Distributed Database**
Built for [Kubernetes](https://docs.greptime.com/user-guide/deployments/deploy-on-kubernetes/greptimedb-operator-management). GreptimeDB achieves seamless scalability with its [cloud-native architecture](https://docs.greptime.com/user-guide/concepts/architecture) of separated compute and storage, built on object storage (AWS S3, Azure Blob Storage, etc.) while enabling cross-cloud deployment through a unified data access layer.
* **Performance and Cost-effective**
* **Developer-Friendly**
Written in pure Rust for superior performance and reliability. GreptimeDB features a distributed query engine with intelligent indexing to handle high cardinality data efficiently. Its optimized columnar storage achieves 50x cost efficiency on cloud object storage through advanced compression. [Benchmark reports](https://www.greptime.com/blogs/2024-09-09-report-summary).
Access standardized SQL/PromQL interfaces through built-in web dashboard, REST API, and MySQL/PostgreSQL protocols. Supports widely adopted data ingestion [protocols](https://docs.greptime.com/user-guide/protocols/overview) for seamless migration and integration.
* **Cloud-Edge Collaboration**
* **Flexible Deployment Options**
GreptimeDB seamlessly operates across cloud and edge (ARM/Android/Linux), providing consistent APIs and control plane for unified data management and efficient synchronization. [Learn how to run on Android](https://docs.greptime.com/user-guide/deployments/run-on-android/).
* **Multi-protocol Ingestion, SQL & PromQL Ready**
Widely adopted database protocols and APIs, including MySQL, PostgreSQL, InfluxDB, OpenTelemetry, Loki and Prometheus, etc. Effortless Adoption & Seamless Migration. [Supported Protocols Overview](https://docs.greptime.com/user-guide/protocols/overview).
Deploy GreptimeDB anywhere from ARM-based edge devices to cloud environments with unified APIs and bandwidth-efficient data synchronization. Query edge and cloud data seamlessly through identical APIs. [Learn how to run on Android](https://docs.greptime.com/user-guide/deployments/run-on-android/).
For more detailed info please read [Why GreptimeDB](https://docs.greptime.com/user-guide/concepts/why-greptimedb).
@@ -233,3 +233,5 @@ Special thanks to all the contributors who have propelled GreptimeDB forward. Fo
- GreptimeDB's query engine is powered by [Apache Arrow DataFusion™](https://arrow.apache.org/datafusion/).
- [Apache OpenDAL™](https://opendal.apache.org) gives GreptimeDB a very general and elegant data access abstraction layer.
- GreptimeDB's meta service is based on [etcd](https://etcd.io/).
<img alt="Known Users" src="https://greptime.com/logo/img/users.png"/>

View File

@@ -96,6 +96,8 @@
| `procedure.max_running_procedures` | Integer | `128` | Max running procedures.<br/>The maximum number of procedures that can be running at the same time.<br/>If the number of running procedures exceeds this limit, the procedure will be rejected. |
| `flow` | -- | -- | flow engine options. |
| `flow.num_workers` | Integer | `0` | The number of flow worker in flownode.<br/>Not setting(or set to 0) this value will use the number of CPU cores divided by 2. |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `storage` | -- | -- | The data storage options. |
| `storage.data_home` | String | `./greptimedb_data/` | The working home directory. |
| `storage.type` | String | `File` | The storage type used to store the data.<br/>- `File`: the data is stored in the local file system.<br/>- `S3`: the data is stored in the S3 object storage.<br/>- `Gcs`: the data is stored in the Google Cloud Storage.<br/>- `Azblob`: the data is stored in the Azure Blob Storage.<br/>- `Oss`: the data is stored in the Aliyun OSS. |
@@ -270,6 +272,8 @@
| `meta_client.metadata_cache_max_capacity` | Integer | `100000` | The configuration about the cache of the metadata. |
| `meta_client.metadata_cache_ttl` | String | `10m` | TTL of the metadata cache. |
| `meta_client.metadata_cache_tti` | String | `5m` | -- |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `datanode` | -- | -- | Datanode options. |
| `datanode.client` | -- | -- | Datanode client options. |
| `datanode.client.connect_timeout` | String | `10s` | -- |
@@ -315,6 +319,7 @@
| `selector` | String | `round_robin` | Datanode selector type.<br/>- `round_robin` (default value)<br/>- `lease_based`<br/>- `load_based`<br/>For details, please see "https://docs.greptime.com/developer-guide/metasrv/selector". |
| `use_memory_store` | Bool | `false` | Store data in memory. |
| `enable_region_failover` | Bool | `false` | Whether to enable region failover.<br/>This feature is only available on GreptimeDB running on cluster mode and<br/>- Using Remote WAL<br/>- Using shared storage (e.g., s3). |
| `allow_region_failover_on_local_wal` | Bool | `false` | Whether to allow region failover on local WAL.<br/>**This option is not recommended to be set to true, because it may lead to data loss during failover.** |
| `node_max_idle_time` | String | `24hours` | Max allowed idle time before removing node info from metasrv memory. |
| `enable_telemetry` | Bool | `true` | Whether to enable greptimedb telemetry. Enabled by default. |
| `runtime` | -- | -- | The runtime options. |
@@ -339,6 +344,9 @@
| `wal.provider` | String | `raft_engine` | -- |
| `wal.broker_endpoints` | Array | -- | The broker endpoints of the Kafka cluster. |
| `wal.auto_create_topics` | Bool | `true` | Automatically create topics for WAL.<br/>Set to `true` to automatically create topics for WAL.<br/>Otherwise, use topics named `topic_name_prefix_[0..num_topics)` |
| `wal.auto_prune_interval` | String | `0s` | Interval of automatically WAL pruning.<br/>Set to `0s` to disable automatically WAL pruning which delete unused remote WAL entries periodically. |
| `wal.trigger_flush_threshold` | Integer | `0` | The threshold to trigger a flush operation of a region in automatically WAL pruning.<br/>Metasrv will send a flush request to flush the region when:<br/>`trigger_flush_threshold` + `prunable_entry_id` < `max_prunable_entry_id`<br/>where:<br/>- `prunable_entry_id` is the maximum entry id that can be pruned of the region.<br/>- `max_prunable_entry_id` is the maximum prunable entry id among all regions in the same topic.<br/>Set to `0` to disable the flush operation. |
| `wal.auto_prune_parallelism` | Integer | `10` | Concurrent task limit for automatically WAL pruning. |
| `wal.num_topics` | Integer | `64` | Number of topics. |
| `wal.selector_type` | String | `round_robin` | Topic selector type.<br/>Available selector types:<br/>- `round_robin` (default) |
| `wal.topic_name_prefix` | String | `greptimedb_wal_topic` | A Kafka topic is constructed by concatenating `topic_name_prefix` and `topic_id`.<br/>Only accepts strings that match the following regular expression pattern:<br/>[a-zA-Z_:-][a-zA-Z0-9_:\-\.@#]*<br/>i.g., greptimedb_wal_topic_0, greptimedb_wal_topic_1. |
@@ -429,6 +437,8 @@
| `wal.create_index` | Bool | `true` | Whether to enable WAL index creation.<br/>**It's only used when the provider is `kafka`**. |
| `wal.dump_index_interval` | String | `60s` | The interval for dumping WAL indexes.<br/>**It's only used when the provider is `kafka`**. |
| `wal.overwrite_entry_start_id` | Bool | `false` | Ignore missing entries during read WAL.<br/>**It's only used when the provider is `kafka`**.<br/><br/>This option ensures that when Kafka messages are deleted, the system<br/>can still successfully replay memtable data without throwing an<br/>out-of-range error.<br/>However, enabling this option might lead to unexpected data loss,<br/>as the system will skip over missing entries instead of treating<br/>them as critical errors. |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `storage` | -- | -- | The data storage options. |
| `storage.data_home` | String | `./greptimedb_data/` | The working home directory. |
| `storage.type` | String | `File` | The storage type used to store the data.<br/>- `File`: the data is stored in the local file system.<br/>- `S3`: the data is stored in the S3 object storage.<br/>- `Gcs`: the data is stored in the Google Cloud Storage.<br/>- `Azblob`: the data is stored in the Azure Blob Storage.<br/>- `Oss`: the data is stored in the Aliyun OSS. |

View File

@@ -243,6 +243,12 @@ overwrite_entry_start_id = false
# credential = "base64-credential"
# endpoint = "https://storage.googleapis.com"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## The data storage options.
[storage]
## The working home directory.

View File

@@ -179,6 +179,12 @@ metadata_cache_ttl = "10m"
# TTI of the metadata cache.
metadata_cache_tti = "5m"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## Datanode options.
[datanode]
## Datanode client options.

View File

@@ -50,6 +50,10 @@ use_memory_store = false
## - Using shared storage (e.g., s3).
enable_region_failover = false
## Whether to allow region failover on local WAL.
## **This option is not recommended to be set to true, because it may lead to data loss during failover.**
allow_region_failover_on_local_wal = false
## Max allowed idle time before removing node info from metasrv memory.
node_max_idle_time = "24hours"
@@ -130,6 +134,22 @@ broker_endpoints = ["127.0.0.1:9092"]
## Otherwise, use topics named `topic_name_prefix_[0..num_topics)`
auto_create_topics = true
## Interval of automatically WAL pruning.
## Set to `0s` to disable automatically WAL pruning which delete unused remote WAL entries periodically.
auto_prune_interval = "0s"
## The threshold to trigger a flush operation of a region in automatically WAL pruning.
## Metasrv will send a flush request to flush the region when:
## `trigger_flush_threshold` + `prunable_entry_id` < `max_prunable_entry_id`
## where:
## - `prunable_entry_id` is the maximum entry id that can be pruned of the region.
## - `max_prunable_entry_id` is the maximum prunable entry id among all regions in the same topic.
## Set to `0` to disable the flush operation.
trigger_flush_threshold = 0
## Concurrent task limit for automatically WAL pruning.
auto_prune_parallelism = 10
## Number of topics.
num_topics = 64

View File

@@ -334,6 +334,12 @@ max_running_procedures = 128
# credential = "base64-credential"
# endpoint = "https://storage.googleapis.com"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## The data storage options.
[storage]
## The working home directory.

View File

@@ -1,6 +1,6 @@
# Profile memory usage of GreptimeDB
This crate provides an easy approach to dump memory profiling info.
This crate provides an easy approach to dump memory profiling info. A set of ready to use scripts is provided in [docs/how-to/memory-profile-scripts](docs/how-to/memory-profile-scripts).
## Prerequisites
### jemalloc

View File

@@ -0,0 +1,52 @@
# Memory Analysis Process
This section will guide you through the process of analyzing memory usage for greptimedb.
1. Get the `jeprof` tool script, see the next section("Getting the `jeprof` tool") for details.
2. After starting `greptimedb`(with env var `MALLOC_CONF=prof:true`), execute the `dump.sh` script with the PID of the `greptimedb` process as an argument. This continuously monitors memory usage and captures profiles when exceeding thresholds (e.g. +20MB within 10 minutes). Outputs `greptime-{timestamp}.gprof` files.
3. With 2-3 gprof files, run `gen_flamegraph.sh` in the same environment to generate flame graphs showing memory allocation call stacks.
4. **NOTE:** The `gen_flamegraph.sh` script requires `jeprof` and optionally `flamegraph.pl` to be in the current directory. If needed to gen flamegraph now, run the `get_flamegraph_tool.sh` script, which downloads the flame graph generation tool `flamegraph.pl` to the current directory.
The usage of `gen_flamegraph.sh` is:
`Usage: ./gen_flamegraph.sh <binary_path> <gprof_directory>`
where `<binary_path>` is the path to the greptimedb binary, `<gprof_directory>` is the directory containing the gprof files(the directory `dump.sh` is dumping profiles to).
Example call: `./gen_flamegraph.sh ./greptime .`
Generating the flame graph might take a few minutes. The generated flame graphs are located in the `<gprof_directory>/flamegraphs` directory. Or if no `flamegraph.pl` is found, it will only contain `.collapse` files which is also fine.
5. You can send the generated flame graphs(the entire folder of `<gprof_directory>/flamegraphs`) to developers for further analysis.
## Getting the `jeprof` tool
there are three ways to get `jeprof`, list in here from simple to complex, using any one of those methods is ok, as long as it's the same environment as the `greptimedb` will be running on:
1. If you are compiling greptimedb from source, then `jeprof` is already produced during compilation. After running `cargo build`, execute `find_compiled_jeprof.sh`. This will copy `jeprof` to the current directory.
2. Or, if you have the Rust toolchain installed locally, simply follow these commands:
```bash
cargo new get_jeprof
cd get_jeprof
```
Then add this line to `Cargo.toml`:
```toml
[dependencies]
tikv-jemalloc-ctl = { version = "0.6", features = ["use_std", "stats"] }
```
then run:
```bash
cargo build
```
after that the `jeprof` tool is produced. Now run `find_compiled_jeprof.sh` in current directory, it will copy the `jeprof` tool to the current directory.
3. compile jemalloc from source
you can first clone this repo, and checkout to this commit:
```bash
git clone https://github.com/tikv/jemalloc.git
cd jemalloc
git checkout e13ca993e8ccb9ba9847cc330696e02839f328f7
```
then run:
```bash
./configure
make
```
and `jeprof` is in `.bin/` directory. Copy it to the current directory.

View File

@@ -0,0 +1,78 @@
#!/bin/bash
# Monitors greptime process memory usage every 10 minutes
# Triggers memory profile capture via `curl -X POST localhost:4000/debug/prof/mem > greptime-{timestamp}.gprof`
# when memory increases by more than 20MB since last check
# Generated profiles can be analyzed using flame graphs as described in `how-to-profile-memory.md`
# (jeprof is compiled with the database - see documentation)
# Alternative: Share binaries + profiles for analysis (Docker images preferred)
# Threshold in Kilobytes (20 MB)
threshold_kb=$((20 * 1024))
sleep_interval=$((10 * 60))
# Variable to store the last measured memory usage in KB
last_mem_kb=0
echo "Starting memory monitoring for 'greptime' process..."
while true; do
# Check if PID is provided as an argument
if [ -z "$1" ]; then
echo "$(date): PID must be provided as a command-line argument."
exit 1
fi
pid="$1"
# Validate that the PID is a number
if ! [[ "$pid" =~ ^[0-9]+$ ]]; then
echo "$(date): Invalid PID: '$pid'. PID must be a number."
exit 1
fi
# Get the current Resident Set Size (RSS) in Kilobytes
current_mem_kb=$(ps -o rss= -p "$pid")
# Check if ps command was successful and returned a number
if ! [[ "$current_mem_kb" =~ ^[0-9]+$ ]]; then
echo "$(date): Failed to get memory usage for PID $pid. Skipping check."
# Keep last_mem_kb to avoid false positives if the process briefly becomes unreadable.
continue
fi
echo "$(date): Current memory usage for PID $pid: ${current_mem_kb} KB"
# Compare with the last measurement
# if it's the first run, also do a baseline dump just to make sure we can dump
diff_kb=$((current_mem_kb - last_mem_kb))
echo "$(date): Memory usage change since last check: ${diff_kb} KB"
if [ "$diff_kb" -gt "$threshold_kb" ]; then
echo "$(date): Memory increase (${diff_kb} KB) exceeded threshold (${threshold_kb} KB). Dumping profile..."
timestamp=$(date +%Y%m%d%H%M%S)
profile_file="greptime-${timestamp}.gprof"
# Execute curl and capture output to file
if curl -sf -X POST localhost:4000/debug/prof/mem > "$profile_file"; then
echo "$(date): Memory profile saved to $profile_file"
else
echo "$(date): Failed to dump memory profile (curl exit code: $?)."
# Remove the potentially empty/failed profile file
rm -f "$profile_file"
fi
else
echo "$(date): Memory increase (${diff_kb} KB) is within the threshold (${threshold_kb} KB)."
fi
# Update the last memory usage
last_mem_kb=$current_mem_kb
# Wait for 5 minutes
echo "$(date): Sleeping for $sleep_interval seconds..."
sleep $sleep_interval
done
echo "Memory monitoring script stopped." # This line might not be reached in normal operation

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Locates compiled jeprof binary (memory analysis tool) after cargo build
# Copies it to current directory from target/ build directories
JPROF_PATH=$(find . -name 'jeprof' -print -quit)
if [ -n "$JPROF_PATH" ]; then
echo "Found jeprof at $JPROF_PATH"
cp "$JPROF_PATH" .
chmod +x jeprof
echo "Copied jeprof to current directory and made it executable."
else
echo "jeprof not found"
exit 1
fi

View File

@@ -0,0 +1,89 @@
#!/bin/bash
# Generate flame graphs from a series of `.gprof` files
# First argument: Path to the binary executable
# Second argument: Path to directory containing gprof files
# Requires `jeprof` and `flamegraph.pl` in current directory
# What this script essentially does is:
# ./jeprof <binary> <gprof> --collapse | ./flamegraph.pl > <output>
# For differential analysis between consecutive profiles:
# ./jeprof <binary> --base <gprof1> <gprof2> --collapse | ./flamegraph.pl > <output_diff>
set -e # Exit immediately if a command exits with a non-zero status.
# Check for required tools
if [ ! -f "./jeprof" ]; then
echo "Error: jeprof not found in the current directory."
exit 1
fi
if [ ! -f "./flamegraph.pl" ]; then
echo "Error: flamegraph.pl not found in the current directory."
exit 1
fi
# Check arguments
if [ "$#" -ne 2 ]; then
echo "Usage: $0 <binary_path> <gprof_directory>"
exit 1
fi
BINARY_PATH=$1
GPROF_DIR=$2
OUTPUT_DIR="${GPROF_DIR}/flamegraphs" # Store outputs in a subdirectory
if [ ! -f "$BINARY_PATH" ]; then
echo "Error: Binary file not found at $BINARY_PATH"
exit 1
fi
if [ ! -d "$GPROF_DIR" ]; then
echo "Error: gprof directory not found at $GPROF_DIR"
exit 1
fi
mkdir -p "$OUTPUT_DIR"
echo "Generating flamegraphs in $OUTPUT_DIR"
# Find and sort gprof files
# Use find + sort -V for natural sort of version numbers if present in filenames
# Use null-terminated strings for safety with find/xargs/sort
mapfile -d $'\0' gprof_files < <(find "$GPROF_DIR" -maxdepth 1 -name '*.gprof' -print0 | sort -zV)
if [ ${#gprof_files[@]} -eq 0 ]; then
echo "No .gprof files found in $GPROF_DIR"
exit 0
fi
prev_gprof=""
# Generate flamegraphs
for gprof_file in "${gprof_files[@]}"; do
# Skip empty entries if any
if [ -z "$gprof_file" ]; then
continue
fi
filename=$(basename "$gprof_file" .gprof)
output_collapse="${OUTPUT_DIR}/${filename}.collapse"
output_svg="${OUTPUT_DIR}/${filename}.svg"
echo "Generating collapse file for $gprof_file -> $output_collapse"
./jeprof "$BINARY_PATH" "$gprof_file" --collapse > "$output_collapse"
echo "Generating flamegraph for $gprof_file -> $output_svg"
./flamegraph.pl "$output_collapse" > "$output_svg" || true
# Generate diff flamegraph if not the first file
if [ -n "$prev_gprof" ]; then
prev_filename=$(basename "$prev_gprof" .gprof)
diff_output_collapse="${OUTPUT_DIR}/${prev_filename}_vs_${filename}_diff.collapse"
diff_output_svg="${OUTPUT_DIR}/${prev_filename}_vs_${filename}_diff.svg"
echo "Generating diff collapse file for $prev_gprof vs $gprof_file -> $diff_output_collapse"
./jeprof "$BINARY_PATH" --base "$prev_gprof" "$gprof_file" --collapse > "$diff_output_collapse"
echo "Generating diff flamegraph for $prev_gprof vs $gprof_file -> $diff_output_svg"
./flamegraph.pl "$diff_output_collapse" > "$diff_output_svg" || true
fi
prev_gprof="$gprof_file"
done
echo "Flamegraph generation complete."

View File

@@ -0,0 +1,44 @@
#!/bin/bash
# Generate flame graphs from .collapse files
# Argument: Path to directory containing collapse files
# Requires `flamegraph.pl` in current directory
# Check if flamegraph.pl exists
if [ ! -f "./flamegraph.pl" ]; then
echo "Error: flamegraph.pl not found in the current directory."
exit 1
fi
# Check if directory argument is provided
if [ -z "$1" ]; then
echo "Usage: $0 <collapse_directory>"
exit 1
fi
COLLAPSE_DIR=$1
# Check if the provided argument is a directory
if [ ! -d "$COLLAPSE_DIR" ]; then
echo "Error: '$COLLAPSE_DIR' is not a valid directory."
exit 1
fi
echo "Generating flame graphs from collapse files in '$COLLAPSE_DIR'..."
# Find and process each .collapse file
find "$COLLAPSE_DIR" -maxdepth 1 -name "*.collapse" -print0 | while IFS= read -r -d $'\0' collapse_file; do
if [ -f "$collapse_file" ]; then
# Construct the output SVG filename
svg_file="${collapse_file%.collapse}.svg"
echo "Generating $svg_file from $collapse_file..."
./flamegraph.pl "$collapse_file" > "$svg_file"
if [ $? -ne 0 ]; then
echo "Error generating flame graph for $collapse_file"
else
echo "Successfully generated $svg_file"
fi
fi
done
echo "Flame graph generation complete."

View File

@@ -0,0 +1,6 @@
#!/bin/bash
# Download flamegraph.pl to current directory - this is the flame graph generation tool script
curl https://raw.githubusercontent.com/brendangregg/FlameGraph/master/flamegraph.pl > ./flamegraph.pl
chmod +x ./flamegraph.pl

18
flake.lock generated
View File

@@ -8,11 +8,11 @@
"rust-analyzer-src": "rust-analyzer-src"
},
"locked": {
"lastModified": 1737613896,
"narHash": "sha256-ldqXIglq74C7yKMFUzrS9xMT/EVs26vZpOD68Sh7OcU=",
"lastModified": 1742452566,
"narHash": "sha256-sVuLDQ2UIWfXUBbctzrZrXM2X05YjX08K7XHMztt36E=",
"owner": "nix-community",
"repo": "fenix",
"rev": "303a062fdd8e89f233db05868468975d17855d80",
"rev": "7d9ba794daf5e8cc7ee728859bc688d8e26d5f06",
"type": "github"
},
"original": {
@@ -41,11 +41,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1737569578,
"narHash": "sha256-6qY0pk2QmUtBT9Mywdvif0i/CLVgpCjMUn6g9vB+f3M=",
"lastModified": 1743576891,
"narHash": "sha256-vXiKURtntURybE6FMNFAVpRPr8+e8KoLPrYs9TGuAKc=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "47addd76727f42d351590c905d9d1905ca895b82",
"rev": "44a69ed688786e98a101f02b712c313f1ade37ab",
"type": "github"
},
"original": {
@@ -65,11 +65,11 @@
"rust-analyzer-src": {
"flake": false,
"locked": {
"lastModified": 1737581772,
"narHash": "sha256-t1P2Pe3FAX9TlJsCZbmJ3wn+C4qr6aSMypAOu8WNsN0=",
"lastModified": 1742296961,
"narHash": "sha256-gCpvEQOrugHWLimD1wTFOJHagnSEP6VYBDspq96Idu0=",
"owner": "rust-lang",
"repo": "rust-analyzer",
"rev": "582af7ee9c8d84f5d534272fc7de9f292bd849be",
"rev": "15d87419f1a123d8f888d608129c3ce3ff8f13d4",
"type": "github"
},
"original": {

View File

@@ -21,7 +21,7 @@
lib = nixpkgs.lib;
rustToolchain = fenix.packages.${system}.fromToolchainName {
name = (lib.importTOML ./rust-toolchain.toml).toolchain.channel;
sha256 = "sha256-f/CVA1EC61EWbh0SjaRNhLL0Ypx2ObupbzigZp8NmL4=";
sha256 = "sha256-i0Sh/ZFFsHlZ3oFZFc24qdk6Cd8Do8OPU4HJQsrKOeM=";
};
in
{

View File

@@ -1,61 +1,89 @@
Grafana dashboard for GreptimeDB
--------------------------------
# Grafana dashboards for GreptimeDB
GreptimeDB's official Grafana dashboard.
## Overview
Status notify: we are still working on this config. It's expected to change frequently in the recent days. Please feel free to submit your feedback and/or contribution to this dashboard 🤗
This repository maintains the Grafana dashboards for GreptimeDB. It has two types of dashboards:
If you use Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `cluster/dashboard.json`: The Grafana dashboard for the GreptimeDB cluster. Read the [dashboard.md](./dashboards/cluster/dashboard.md) for more details.
- `standalone/dashboard.json`: The Grafana dashboard for the standalone GreptimeDB instance. **It's generated from the `cluster/dashboard.json` by removing the instance filter through the `make dashboards` command**. Read the [dashboard.md](./dashboards/standalone/dashboard.md) for more details.
As the rapid development of GreptimeDB, the metrics may be changed, and please feel free to submit your feedback and/or contribution to this dashboard 🤗
**NOTE**:
- The Grafana version should be greater than 9.0.
- If you want to modify the dashboards, you only need to modify the `cluster/dashboard.json` and run the `make dashboards` command to generate the `standalone/dashboard.json` and other related files.
To maintain the dashboards easily, we use the [`dac`](https://github.com/zyy17/dac) tool to generate the intermediate dashboards and markdown documents:
- `cluster/dashboard.yaml`: The intermediate dashboard for the GreptimeDB cluster.
- `standalone/dashboard.yaml`: The intermediate dashboard for the standalone GreptimeDB instance.
## Data Sources
There are two data sources for the dashboards to fetch the metrics:
- **Prometheus**: Expose the metrics of GreptimeDB.
- **Information Schema**: It is the MySQL port of the current monitored instance. The `overview` dashboard will use this datasource to show the information schema of the current instance.
## Instance Filters
To deploy the dashboards for multiple scenarios (K8s, bare metal, etc.), we prefer to use the `instance` label when filtering instances.
Additionally, we recommend including the `pod` label in the legend to make it easier to identify each instance, even though this field will be empty in bare metal scenarios.
For example, the following query is recommended:
```promql
sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
```
And the legend will be like: `[{{instance}}]-[{{ pod }}]`.
## Deployment
### Helm
If you use the Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy a GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `monitoring.enabled=true`: Deploys a standalone GreptimeDB instance dedicated to monitoring the cluster;
- `grafana.enabled=true`: Deploys Grafana and automatically imports the monitoring dashboard;
The standalone GreptimeDB instance will collect metrics from your cluster and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
The standalone GreptimeDB instance will collect metrics from your cluster, and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
# How to use
### Self-host Prometheus and import dashboards manually
## `greptimedb.json`
1. **Configure Prometheus to scrape the cluster**
Open Grafana Dashboard page, choose `New` -> `Import`. And upload `greptimedb.json` file.
The following is an example configuration(**Please modify it according to your actual situation**):
## `greptimedb-cluster.json`
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
This cluster dashboard provides a comprehensive view of incoming requests, response statuses, and internal activities such as flush and compaction, with a layered structure from frontend to datanode. Designed with a focus on alert functionality, its primary aim is to highlight any anomalies in metrics, allowing users to quickly pinpoint the cause of errors.
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
We use Prometheus to scrape off metrics from nodes in GreptimeDB cluster, Grafana to visualize the diagram. Any compatible stack should work too.
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__Note__: This dashboard is still in an early stage of development. Any issue or advice on improvement is welcomed.
2. **Configure the data sources in Grafana**
### Configuration
You need to add two data sources in Grafana:
Please ensure the following configuration before importing the dashboard into Grafana.
- Prometheus: It is the Prometheus instance that scrapes the GreptimeDB metrics.
- Information Schema: It is the MySQL port of the current monitored instance. The dashboard will use this datasource to show the information schema of the current instance.
__1. Prometheus scrape config__
3. **Import the dashboards based on your deployment scenario**
Configure Prometheus to scrape the cluster.
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__2. Grafana config__
Create a Prometheus data source in Grafana before using this dashboard. We use `datasource` as a variable in Grafana dashboard so that multiple environments are supported.
### Usage
Use `datasource` or `instance` on the upper-left corner to filter data from certain node.
- **Cluster**: Import the `cluster/dashboard.json` dashboard.
- **Standalone**: Import the `standalone/dashboard.json` dashboard.

View File

@@ -1,19 +0,0 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))
')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
exit 0
fi

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,97 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `prometheus` | `s` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | `mysql` | -- | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `prometheus` | `rowsps` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `mysql` | `decbytes` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `mysql` | `sishort` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | `mysql` | -- | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | `mysql` | -- | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `mysql` | `decbytes` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `prometheus` | `reqps` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `prometheus` | `s` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{instance=~"$datanode"}` | `timeseries` | Write Buffer per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})` | `timeseries` | Write Stall per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `prometheus` | `ops` | `[{{ instance }}]-[{{pod}}]` |
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{instance=~"$datanode"}` | `timeseries` | Cached Bytes per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| OpenDAL errors per Instance | `sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{instance=~"$datanode", error!="NotFound"}[$__rate_interval]))` | `timeseries` | OpenDAL error counts per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `prometheus` | `none` | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `prometheus` | `none` | `__auto` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `none` | `__auto` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | `prometheus` | -- | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -0,0 +1,769 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction P99 per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: decbytes
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: OpenDAL errors per Instance
type: timeseries
description: OpenDAL error counts per Instance.
queries:
- expr: sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{instance=~"$datanode", error!="NotFound"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: state-timeline
description: Counter of region migration by source and destination
unit: none
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,97 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `prometheus` | `s` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | `mysql` | -- | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `prometheus` | `rowsps` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `mysql` | `decbytes` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `mysql` | `sishort` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | `mysql` | -- | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | `mysql` | -- | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `mysql` | `decbytes` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `prometheus` | `reqps` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `prometheus` | `s` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{}` | `timeseries` | Write Buffer per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{})` | `timeseries` | Write Stall per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `prometheus` | `ops` | `[{{ instance }}]-[{{pod}}]` |
| Compaction P99 per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction latency by stage | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{}` | `timeseries` | Cached Bytes per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| OpenDAL errors per Instance | `sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{ error!="NotFound"}[$__rate_interval]))` | `timeseries` | OpenDAL error counts per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `state-timeline` | Counter of region migration by source and destination | `prometheus` | `none` | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `prometheus` | `none` | `__auto` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `none` | `__auto` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | `prometheus` | -- | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -0,0 +1,769 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction P99 per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: decbytes
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: OpenDAL errors per Instance
type: timeseries
description: OpenDAL error counts per Instance.
queries:
- expr: sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{ error!="NotFound"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: state-timeline
description: Counter of region migration by source and destination
unit: none
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

54
grafana/scripts/check.sh Executable file
View File

@@ -0,0 +1,54 @@
#!/usr/bin/env bash
DASHBOARD_DIR=${1:-grafana/dashboards}
check_dashboard_description() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard description"
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $dashboard | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
fi
done
}
check_dashboards_generation() {
./grafana/scripts/gen-dashboards.sh
if [[ -n "$(git diff --name-only grafana/dashboards)" ]]; then
echo "Error: The dashboards are not generated correctly. You should execute the `make dashboards` command."
exit 1
fi
}
check_datasource() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard datasource"
jq -r '.panels[] | select(.type != "row") | .targets[] | [.datasource.type, .datasource.uid] | @tsv' $dashboard | while read -r type uid; do
# if the datasource is prometheus, check if the uid is ${metrics}
if [[ "$type" == "prometheus" && "$uid" != "\${metrics}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${metrics}, got $uid"
exit 1
fi
# if the datasource is mysql, check if the uid is ${information_schema}
if [[ "$type" == "mysql" && "$uid" != "\${information_schema}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${information_schema}, got $uid"
exit 1
fi
done
done
}
check_dashboards_generation
check_dashboard_description
check_datasource

View File

@@ -0,0 +1,25 @@
#! /usr/bin/env bash
CLUSTER_DASHBOARD_DIR=${1:-grafana/dashboards/cluster}
STANDALONE_DASHBOARD_DIR=${2:-grafana/dashboards/standalone}
DAC_IMAGE=ghcr.io/zyy17/dac:20250423-522bd35
remove_instance_filters() {
# Remove the instance filters for the standalone dashboards.
sed 's/instance=~\\"$datanode\\",//; s/instance=~\\"$datanode\\"//; s/instance=~\\"$frontend\\",//; s/instance=~\\"$frontend\\"//; s/instance=~\\"$metasrv\\",//; s/instance=~\\"$metasrv\\"//; s/instance=~\\"$flownode\\",//; s/instance=~\\"$flownode\\"//;' $CLUSTER_DASHBOARD_DIR/dashboard.json > $STANDALONE_DASHBOARD_DIR/dashboard.json
}
generate_intermediate_dashboards_and_docs() {
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} \
-i /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.json \
-o /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.yaml \
-m /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.md
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} \
-i /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.json \
-o /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.yaml \
-m /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.md
}
remove_instance_filters
generate_intermediate_dashboards_and_docs

View File

@@ -1,11 +0,0 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
echo '| Title | Description | Expressions |
|---|---|---|'
cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels |
map(select(.type == "stat" or .type == "timeseries")) |
.[] | "| \(.title) | \(.description | gsub("\n"; "<br>")) | \(.targets | map(.expr // .rawSql | "`\(.|gsub("\n"; "<br>"))`") | join("<br>")) |"
'

View File

@@ -1,2 +1,2 @@
[toolchain]
channel = "nightly-2024-12-25"
channel = "nightly-2025-04-15"

View File

@@ -514,6 +514,7 @@ fn query_request_type(request: &QueryRequest) -> &'static str {
Some(Query::Sql(_)) => "query.sql",
Some(Query::LogicalPlan(_)) => "query.logical_plan",
Some(Query::PromRangeQuery(_)) => "query.prom_range",
Some(Query::InsertIntoPlan(_)) => "query.insert_into_plan",
None => "query.empty",
}
}

View File

@@ -24,7 +24,7 @@ use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatch
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, MutableVector, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::schema::{ColumnSchema, FulltextBackend, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{ConstantVector, StringVector, StringVectorBuilder, UInt32VectorBuilder};
use futures_util::TryStreamExt;
@@ -47,20 +47,38 @@ pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const COLUMN_NAME: &str = "column_name";
pub const ORDINAL_POSITION: &str = "ordinal_position";
/// The type of the index.
pub const GREPTIME_INDEX_TYPE: &str = "greptime_index_type";
const INIT_CAPACITY: usize = 42;
/// Primary key constraint name
pub(crate) const PRI_CONSTRAINT_NAME: &str = "PRIMARY";
/// Time index constraint name
pub(crate) const TIME_INDEX_CONSTRAINT_NAME: &str = "TIME INDEX";
pub(crate) const CONSTRAINT_NAME_TIME_INDEX: &str = "TIME INDEX";
/// Primary key constraint name
pub(crate) const CONSTRAINT_NAME_PRI: &str = "PRIMARY";
/// Primary key index type
pub(crate) const INDEX_TYPE_PRI: &str = "greptime-primary-key-v1";
/// Inverted index constraint name
pub(crate) const INVERTED_INDEX_CONSTRAINT_NAME: &str = "INVERTED INDEX";
pub(crate) const CONSTRAINT_NAME_INVERTED_INDEX: &str = "INVERTED INDEX";
/// Inverted index type
pub(crate) const INDEX_TYPE_INVERTED_INDEX: &str = "greptime-inverted-index-v1";
/// Fulltext index constraint name
pub(crate) const FULLTEXT_INDEX_CONSTRAINT_NAME: &str = "FULLTEXT INDEX";
pub(crate) const CONSTRAINT_NAME_FULLTEXT_INDEX: &str = "FULLTEXT INDEX";
/// Fulltext index v1 type
pub(crate) const INDEX_TYPE_FULLTEXT_TANTIVY: &str = "greptime-fulltext-index-v1";
/// Fulltext index bloom type
pub(crate) const INDEX_TYPE_FULLTEXT_BLOOM: &str = "greptime-fulltext-index-bloom";
/// Skipping index constraint name
pub(crate) const SKIPPING_INDEX_CONSTRAINT_NAME: &str = "SKIPPING INDEX";
pub(crate) const CONSTRAINT_NAME_SKIPPING_INDEX: &str = "SKIPPING INDEX";
/// Skipping index type
pub(crate) const INDEX_TYPE_SKIPPING_INDEX: &str = "greptime-bloom-filter-v1";
/// The virtual table implementation for `information_schema.KEY_COLUMN_USAGE`.
///
/// Provides an extra column `greptime_index_type` for the index type of the key column.
#[derive(Debug)]
pub(super) struct InformationSchemaKeyColumnUsage {
schema: SchemaRef,
@@ -120,6 +138,11 @@ impl InformationSchemaKeyColumnUsage {
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
GREPTIME_INDEX_TYPE,
ConcreteDataType::string_datatype(),
true,
),
]))
}
@@ -184,6 +207,7 @@ struct InformationSchemaKeyColumnUsageBuilder {
column_name: StringVectorBuilder,
ordinal_position: UInt32VectorBuilder,
position_in_unique_constraint: UInt32VectorBuilder,
greptime_index_type: StringVectorBuilder,
}
impl InformationSchemaKeyColumnUsageBuilder {
@@ -206,6 +230,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
column_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
ordinal_position: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
position_in_unique_constraint: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
greptime_index_type: StringVectorBuilder::with_capacity(INIT_CAPACITY),
}
}
@@ -229,34 +254,47 @@ impl InformationSchemaKeyColumnUsageBuilder {
for (idx, column) in schema.column_schemas().iter().enumerate() {
let mut constraints = vec![];
let mut greptime_index_type = vec![];
if column.is_time_index() {
self.add_key_column_usage(
&predicates,
&schema_name,
TIME_INDEX_CONSTRAINT_NAME,
CONSTRAINT_NAME_TIME_INDEX,
&catalog_name,
&schema_name,
table_name,
&column.name,
1, //always 1 for time index
"",
);
}
// TODO(dimbtp): foreign key constraint not supported yet
if keys.contains(&idx) {
constraints.push(PRI_CONSTRAINT_NAME);
constraints.push(CONSTRAINT_NAME_PRI);
greptime_index_type.push(INDEX_TYPE_PRI);
}
if column.is_inverted_indexed() {
constraints.push(INVERTED_INDEX_CONSTRAINT_NAME);
constraints.push(CONSTRAINT_NAME_INVERTED_INDEX);
greptime_index_type.push(INDEX_TYPE_INVERTED_INDEX);
}
if column.is_fulltext_indexed() {
constraints.push(FULLTEXT_INDEX_CONSTRAINT_NAME);
if let Ok(Some(options)) = column.fulltext_options() {
if options.enable {
constraints.push(CONSTRAINT_NAME_FULLTEXT_INDEX);
let index_type = match options.backend {
FulltextBackend::Bloom => INDEX_TYPE_FULLTEXT_BLOOM,
FulltextBackend::Tantivy => INDEX_TYPE_FULLTEXT_TANTIVY,
};
greptime_index_type.push(index_type);
}
}
if column.is_skipping_indexed() {
constraints.push(SKIPPING_INDEX_CONSTRAINT_NAME);
constraints.push(CONSTRAINT_NAME_SKIPPING_INDEX);
greptime_index_type.push(INDEX_TYPE_SKIPPING_INDEX);
}
if !constraints.is_empty() {
let aggregated_constraints = constraints.join(", ");
let aggregated_index_types = greptime_index_type.join(", ");
self.add_key_column_usage(
&predicates,
&schema_name,
@@ -266,6 +304,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
table_name,
&column.name,
idx as u32 + 1,
&aggregated_index_types,
);
}
}
@@ -288,6 +327,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
table_name: &str,
column_name: &str,
ordinal_position: u32,
index_types: &str,
) {
let row = [
(CONSTRAINT_SCHEMA, &Value::from(constraint_schema)),
@@ -297,6 +337,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
(TABLE_NAME, &Value::from(table_name)),
(COLUMN_NAME, &Value::from(column_name)),
(ORDINAL_POSITION, &Value::from(ordinal_position)),
(GREPTIME_INDEX_TYPE, &Value::from(index_types)),
];
if !predicates.eval(&row) {
@@ -313,6 +354,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
self.column_name.push(Some(column_name));
self.ordinal_position.push(Some(ordinal_position));
self.position_in_unique_constraint.push(None);
self.greptime_index_type.push(Some(index_types));
}
fn finish(&mut self) -> Result<RecordBatch> {
@@ -336,6 +378,7 @@ impl InformationSchemaKeyColumnUsageBuilder {
null_string_vector.clone(),
null_string_vector.clone(),
null_string_vector,
Arc::new(self.greptime_index_type.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}

View File

@@ -36,7 +36,7 @@ use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::key_column_usage::{
PRI_CONSTRAINT_NAME, TIME_INDEX_CONSTRAINT_NAME,
CONSTRAINT_NAME_PRI, CONSTRAINT_NAME_TIME_INDEX,
};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, TABLE_CONSTRAINTS};
@@ -188,7 +188,7 @@ impl InformationSchemaTableConstraintsBuilder {
self.add_table_constraint(
&predicates,
&schema_name,
TIME_INDEX_CONSTRAINT_NAME,
CONSTRAINT_NAME_TIME_INDEX,
&schema_name,
&table.table_info().name,
TIME_INDEX_CONSTRAINT_TYPE,
@@ -199,7 +199,7 @@ impl InformationSchemaTableConstraintsBuilder {
self.add_table_constraint(
&predicates,
&schema_name,
PRI_CONSTRAINT_NAME,
CONSTRAINT_NAME_PRI,
&schema_name,
&table.table_info().name,
PRI_KEY_CONSTRAINT_TYPE,

View File

@@ -84,12 +84,6 @@ mod tests {
let key1 = "3178510";
let key2 = "4215648";
// have collision
assert_eq!(
oid_map.hasher.hash_one(key1) as u32,
oid_map.hasher.hash_one(key2) as u32
);
// insert them into oid_map
let oid1 = oid_map.get_oid(key1);
let oid2 = oid_map.get_oid(key2);

View File

@@ -27,7 +27,7 @@ use session::context::QueryContextRef;
use snafu::{ensure, OptionExt, ResultExt};
use table::metadata::TableType;
use table::table::adapter::DfTableProviderAdapter;
mod dummy_catalog;
pub mod dummy_catalog;
use dummy_catalog::DummyCatalogList;
use table::TableRef;

View File

@@ -17,7 +17,6 @@ use std::any::Any;
use common_error::ext::{BoxedError, ErrorExt};
use common_error::status_code::StatusCode;
use common_macro::stack_trace_debug;
use rustyline::error::ReadlineError;
use snafu::{Location, Snafu};
#[derive(Snafu)]
@@ -105,52 +104,6 @@ pub enum Error {
#[snafu(display("Invalid REPL command: {reason}"))]
InvalidReplCommand { reason: String },
#[snafu(display("Cannot create REPL"))]
ReplCreation {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Error reading command"))]
Readline {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to request database, sql: {sql}"))]
RequestDatabase {
sql: String,
#[snafu(source)]
source: client::Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to collect RecordBatches"))]
CollectRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to pretty print Recordbatches"))]
PrettyPrintRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to start Meta client"))]
StartMetaClient {
#[snafu(implicit)]
location: Location,
source: meta_client::error::Error,
},
#[snafu(display("Failed to parse SQL: {}", sql))]
ParseSql {
sql: String,
@@ -166,13 +119,6 @@ pub enum Error {
source: query::error::Error,
},
#[snafu(display("Failed to encode logical plan in substrait"))]
SubstraitEncodeLogicalPlan {
#[snafu(implicit)]
location: Location,
source: substrait::error::Error,
},
#[snafu(display("Failed to load layered config"))]
LoadLayeredConfig {
#[snafu(source(from(common_config::error::Error, Box::new)))]
@@ -318,17 +264,10 @@ impl ErrorExt for Error {
Error::StartProcedureManager { source, .. }
| Error::StopProcedureManager { source, .. } => source.status_code(),
Error::StartWalOptionsAllocator { source, .. } => source.status_code(),
Error::ReplCreation { .. } | Error::Readline { .. } | Error::HttpQuerySql { .. } => {
StatusCode::Internal
}
Error::RequestDatabase { source, .. } => source.status_code(),
Error::CollectRecordBatches { source, .. }
| Error::PrettyPrintRecordBatches { source, .. } => source.status_code(),
Error::StartMetaClient { source, .. } => source.status_code(),
Error::HttpQuerySql { .. } => StatusCode::Internal,
Error::ParseSql { source, .. } | Error::PlanStatement { source, .. } => {
source.status_code()
}
Error::SubstraitEncodeLogicalPlan { source, .. } => source.status_code(),
Error::SerdeJson { .. }
| Error::FileIo { .. }

View File

@@ -23,15 +23,12 @@ mod helper;
// Wait for https://github.com/GreptimeTeam/greptimedb/issues/2373
mod database;
mod import;
#[allow(unused)]
mod repl;
use async_trait::async_trait;
use clap::Parser;
use common_error::ext::BoxedError;
pub use database::DatabaseClient;
use error::Result;
pub use repl::Repl;
pub use crate::bench::BenchTableMetadataCommand;
pub use crate::export::ExportCommand;

View File

@@ -1,299 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Instant;
use cache::{
build_fundamental_cache_registry, with_default_composite_cache_registry, TABLE_CACHE_NAME,
TABLE_ROUTE_CACHE_NAME,
};
use catalog::information_extension::DistributedInformationExtension;
use catalog::kvbackend::{
CachedKvBackend, CachedKvBackendBuilder, KvBackendCatalogManager, MetaKvBackend,
};
use client::{Client, Database, OutputData, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_base::Plugins;
use common_config::Mode;
use common_error::ext::ErrorExt;
use common_meta::cache::{CacheRegistryBuilder, LayeredCacheRegistryBuilder};
use common_meta::kv_backend::KvBackendRef;
use common_query::Output;
use common_recordbatch::RecordBatches;
use common_telemetry::debug;
use either::Either;
use meta_client::client::{ClusterKvBackend, MetaClientBuilder};
use query::datafusion::DatafusionQueryEngine;
use query::parser::QueryLanguageParser;
use query::query_engine::{DefaultSerializer, QueryEngineState};
use query::QueryEngine;
use rustyline::error::ReadlineError;
use rustyline::Editor;
use session::context::QueryContext;
use snafu::{OptionExt, ResultExt};
use substrait::{DFLogicalSubstraitConvertor, SubstraitPlan};
use crate::cmd::ReplCommand;
use crate::error::{
CollectRecordBatchesSnafu, ParseSqlSnafu, PlanStatementSnafu, PrettyPrintRecordBatchesSnafu,
ReadlineSnafu, ReplCreationSnafu, RequestDatabaseSnafu, Result, StartMetaClientSnafu,
SubstraitEncodeLogicalPlanSnafu,
};
use crate::helper::RustylineHelper;
use crate::{error, AttachCommand};
/// Captures the state of the repl, gathers commands and executes them one by one
pub struct Repl {
/// Rustyline editor for interacting with user on command line
rl: Editor<RustylineHelper>,
/// Current prompt
prompt: String,
/// Client for interacting with GreptimeDB
database: Database,
query_engine: Option<DatafusionQueryEngine>,
}
#[allow(clippy::print_stdout)]
impl Repl {
fn print_help(&self) {
println!("{}", ReplCommand::help())
}
pub(crate) async fn try_new(cmd: &AttachCommand) -> Result<Self> {
let mut rl = Editor::new().context(ReplCreationSnafu)?;
if !cmd.disable_helper {
rl.set_helper(Some(RustylineHelper::default()));
let history_file = history_file();
if let Err(e) = rl.load_history(&history_file) {
debug!(
"failed to load history file on {}, error: {e}",
history_file.display()
);
}
}
let client = Client::with_urls([&cmd.grpc_addr]);
let database = Database::new(DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, client);
let query_engine = if let Some(meta_addr) = &cmd.meta_addr {
create_query_engine(meta_addr).await.map(Some)?
} else {
None
};
Ok(Self {
rl,
prompt: "> ".to_string(),
database,
query_engine,
})
}
/// Parse the next command
fn next_command(&mut self) -> Result<ReplCommand> {
match self.rl.readline(&self.prompt) {
Ok(ref line) => {
let request = line.trim();
let _ = self.rl.add_history_entry(request.to_string());
request.try_into()
}
Err(ReadlineError::Eof) | Err(ReadlineError::Interrupted) => Ok(ReplCommand::Exit),
// Some sort of real underlying error
Err(e) => Err(e).context(ReadlineSnafu),
}
}
/// Read Evaluate Print Loop (interactive command line) for GreptimeDB
///
/// Inspired / based on repl.rs from InfluxDB IOX
pub(crate) async fn run(&mut self) -> Result<()> {
println!("Ready for commands. (Hint: try 'help')");
loop {
match self.next_command()? {
ReplCommand::Help => {
self.print_help();
}
ReplCommand::UseDatabase { db_name } => {
if self.execute_sql(format!("USE {db_name}")).await {
println!("Using {db_name}");
self.database.set_schema(&db_name);
self.prompt = format!("[{db_name}] > ");
}
}
ReplCommand::Sql { sql } => {
let _ = self.execute_sql(sql).await;
}
ReplCommand::Exit => {
return Ok(());
}
}
}
}
async fn execute_sql(&self, sql: String) -> bool {
self.do_execute_sql(sql)
.await
.map_err(|e| {
let status_code = e.status_code();
let root_cause = e.output_msg();
println!("Error: {}({status_code}), {root_cause}", status_code as u32)
})
.is_ok()
}
async fn do_execute_sql(&self, sql: String) -> Result<()> {
let start = Instant::now();
let output = if let Some(query_engine) = &self.query_engine {
let query_ctx = Arc::new(QueryContext::with(
self.database.catalog(),
self.database.schema(),
));
let stmt = QueryLanguageParser::parse_sql(&sql, &query_ctx)
.with_context(|_| ParseSqlSnafu { sql: sql.clone() })?;
let plan = query_engine
.planner()
.plan(&stmt, query_ctx.clone())
.await
.context(PlanStatementSnafu)?;
let plan = query_engine
.optimize(&query_engine.engine_context(query_ctx), &plan)
.context(PlanStatementSnafu)?;
let plan = DFLogicalSubstraitConvertor {}
.encode(&plan, DefaultSerializer)
.context(SubstraitEncodeLogicalPlanSnafu)?;
self.database.logical_plan(plan.to_vec()).await
} else {
self.database.sql(&sql).await
}
.context(RequestDatabaseSnafu { sql: &sql })?;
let either = match output.data {
OutputData::Stream(s) => {
let x = RecordBatches::try_collect(s)
.await
.context(CollectRecordBatchesSnafu)?;
Either::Left(x)
}
OutputData::RecordBatches(x) => Either::Left(x),
OutputData::AffectedRows(rows) => Either::Right(rows),
};
let end = Instant::now();
match either {
Either::Left(recordbatches) => {
let total_rows: usize = recordbatches.iter().map(|x| x.num_rows()).sum();
if total_rows > 0 {
println!(
"{}",
recordbatches
.pretty_print()
.context(PrettyPrintRecordBatchesSnafu)?
);
}
println!("Total Rows: {total_rows}")
}
Either::Right(rows) => println!("Affected Rows: {rows}"),
};
println!("Cost {} ms", (end - start).as_millis());
Ok(())
}
}
impl Drop for Repl {
fn drop(&mut self) {
if self.rl.helper().is_some() {
let history_file = history_file();
if let Err(e) = self.rl.save_history(&history_file) {
debug!(
"failed to save history file on {}, error: {e}",
history_file.display()
);
}
}
}
}
/// Return the location of the history file (defaults to $HOME/".greptimedb_cli_history")
fn history_file() -> PathBuf {
let mut buf = match std::env::var("HOME") {
Ok(home) => PathBuf::from(home),
Err(_) => PathBuf::new(),
};
buf.push(".greptimedb_cli_history");
buf
}
async fn create_query_engine(meta_addr: &str) -> Result<DatafusionQueryEngine> {
let mut meta_client = MetaClientBuilder::default().enable_store().build();
meta_client
.start([meta_addr])
.await
.context(StartMetaClientSnafu)?;
let meta_client = Arc::new(meta_client);
let cached_meta_backend = Arc::new(
CachedKvBackendBuilder::new(Arc::new(MetaKvBackend::new(meta_client.clone()))).build(),
);
let layered_cache_builder = LayeredCacheRegistryBuilder::default().add_cache_registry(
CacheRegistryBuilder::default()
.add_cache(cached_meta_backend.clone())
.build(),
);
let fundamental_cache_registry =
build_fundamental_cache_registry(Arc::new(MetaKvBackend::new(meta_client.clone())));
let layered_cache_registry = Arc::new(
with_default_composite_cache_registry(
layered_cache_builder.add_cache_registry(fundamental_cache_registry),
)
.context(error::BuildCacheRegistrySnafu)?
.build(),
);
let information_extension = Arc::new(DistributedInformationExtension::new(meta_client.clone()));
let catalog_manager = KvBackendCatalogManager::new(
information_extension,
cached_meta_backend.clone(),
layered_cache_registry,
None,
);
let plugins: Plugins = Default::default();
let state = Arc::new(QueryEngineState::new(
catalog_manager,
None,
None,
None,
None,
false,
plugins.clone(),
));
Ok(DatafusionQueryEngine::new(state, plugins))
}

View File

@@ -16,6 +16,7 @@ arc-swap = "1.6"
arrow-flight.workspace = true
async-stream.workspace = true
async-trait.workspace = true
base64.workspace = true
common-catalog.workspace = true
common-error.workspace = true
common-grpc.workspace = true
@@ -25,6 +26,7 @@ common-query.workspace = true
common-recordbatch.workspace = true
common-telemetry.workspace = true
enum_dispatch = "0.3"
futures.workspace = true
futures-util.workspace = true
lazy_static.workspace = true
moka = { workspace = true, features = ["future"] }

View File

@@ -12,36 +12,49 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::pin::Pin;
use std::str::FromStr;
use api::v1::auth_header::AuthScheme;
use api::v1::ddl_request::Expr as DdlExpr;
use api::v1::greptime_database_client::GreptimeDatabaseClient;
use api::v1::greptime_request::Request;
use api::v1::query_request::Query;
use api::v1::{
AlterTableExpr, AuthHeader, CreateTableExpr, DdlRequest, GreptimeRequest, InsertRequests,
QueryRequest, RequestHeader,
AlterTableExpr, AuthHeader, Basic, CreateTableExpr, DdlRequest, GreptimeRequest,
InsertRequests, QueryRequest, RequestHeader,
};
use arrow_flight::Ticket;
use arrow_flight::{FlightData, Ticket};
use async_stream::stream;
use base64::prelude::BASE64_STANDARD;
use base64::Engine;
use common_catalog::build_db_string;
use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_error::ext::{BoxedError, ErrorExt};
use common_grpc::flight::do_put::DoPutResponse;
use common_grpc::flight::{FlightDecoder, FlightMessage};
use common_query::Output;
use common_recordbatch::error::ExternalSnafu;
use common_recordbatch::RecordBatchStreamWrapper;
use common_telemetry::error;
use common_telemetry::tracing_context::W3cTrace;
use futures_util::StreamExt;
use futures::future;
use futures_util::{Stream, StreamExt, TryStreamExt};
use prost::Message;
use snafu::{ensure, ResultExt};
use tonic::metadata::AsciiMetadataKey;
use tonic::metadata::{AsciiMetadataKey, MetadataValue};
use tonic::transport::Channel;
use crate::error::{
ConvertFlightDataSnafu, Error, FlightGetSnafu, IllegalFlightMessagesSnafu, InvalidAsciiSnafu,
ServerSnafu,
InvalidTonicMetadataValueSnafu, ServerSnafu,
};
use crate::{from_grpc_response, Client, Result};
type FlightDataStream = Pin<Box<dyn Stream<Item = FlightData> + Send>>;
type DoPutResponseStream = Pin<Box<dyn Stream<Item = Result<DoPutResponse>>>>;
#[derive(Clone, Debug, Default)]
pub struct Database {
// The "catalog" and "schema" to be used in processing the requests at the server side.
@@ -108,16 +121,24 @@ impl Database {
self.catalog = catalog.into();
}
pub fn catalog(&self) -> &String {
&self.catalog
fn catalog_or_default(&self) -> &str {
if self.catalog.is_empty() {
DEFAULT_CATALOG_NAME
} else {
&self.catalog
}
}
pub fn set_schema(&mut self, schema: impl Into<String>) {
self.schema = schema.into();
}
pub fn schema(&self) -> &String {
&self.schema
fn schema_or_default(&self) -> &str {
if self.schema.is_empty() {
DEFAULT_SCHEMA_NAME
} else {
&self.schema
}
}
pub fn set_timezone(&mut self, timezone: impl Into<String>) {
@@ -310,6 +331,41 @@ impl Database {
}
}
}
/// Ingest a stream of [RecordBatch]es that belong to a table, using Arrow Flight's "`DoPut`"
/// method. The return value is also a stream, produces [DoPutResponse]s.
pub async fn do_put(&self, stream: FlightDataStream) -> Result<DoPutResponseStream> {
let mut request = tonic::Request::new(stream);
if let Some(AuthHeader {
auth_scheme: Some(AuthScheme::Basic(Basic { username, password })),
}) = &self.ctx.auth_header
{
let encoded = BASE64_STANDARD.encode(format!("{username}:{password}"));
let value =
MetadataValue::from_str(&encoded).context(InvalidTonicMetadataValueSnafu)?;
request.metadata_mut().insert("x-greptime-auth", value);
}
let db_to_put = if !self.dbname.is_empty() {
&self.dbname
} else {
&build_db_string(self.catalog_or_default(), self.schema_or_default())
};
request.metadata_mut().insert(
"x-greptime-db-name",
MetadataValue::from_str(db_to_put).context(InvalidTonicMetadataValueSnafu)?,
);
let mut client = self.client.make_flight_client()?;
let response = client.mut_inner().do_put(request).await?;
let response = response
.into_inner()
.map_err(Into::into)
.and_then(|x| future::ready(DoPutResponse::try_from(x).context(ConvertFlightDataSnafu)))
.boxed();
Ok(response)
}
}
#[derive(Default, Debug, Clone)]

View File

@@ -19,6 +19,7 @@ use common_error::status_code::{convert_tonic_code_to_status_code, StatusCode};
use common_error::{GREPTIME_DB_HEADER_ERROR_CODE, GREPTIME_DB_HEADER_ERROR_MSG};
use common_macro::stack_trace_debug;
use snafu::{location, Location, Snafu};
use tonic::metadata::errors::InvalidMetadataValue;
use tonic::{Code, Status};
#[derive(Snafu)]
@@ -115,6 +116,14 @@ pub enum Error {
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Invalid Tonic metadata value"))]
InvalidTonicMetadataValue {
#[snafu(source)]
error: InvalidMetadataValue,
#[snafu(implicit)]
location: Location,
},
}
pub type Result<T> = std::result::Result<T, Error>;
@@ -135,7 +144,9 @@ impl ErrorExt for Error {
| Error::CreateTlsChannel { source, .. } => source.status_code(),
Error::IllegalGrpcClientState { .. } => StatusCode::Unexpected,
Error::InvalidAscii { .. } => StatusCode::InvalidArguments,
Error::InvalidAscii { .. } | Error::InvalidTonicMetadataValue { .. } => {
StatusCode::InvalidArguments
}
}
}

View File

@@ -16,7 +16,7 @@
mod client;
pub mod client_manager;
mod database;
pub mod database;
pub mod error;
pub mod flow;
pub mod load_balance;

View File

@@ -68,7 +68,6 @@ query.workspace = true
rand.workspace = true
regex.workspace = true
reqwest.workspace = true
rustyline = "10.1"
serde.workspace = true
serde_json.workspace = true
servers.workspace = true

View File

@@ -17,7 +17,6 @@ use std::any::Any;
use common_error::ext::{BoxedError, ErrorExt};
use common_error::status_code::StatusCode;
use common_macro::stack_trace_debug;
use rustyline::error::ReadlineError;
use snafu::{Location, Snafu};
#[derive(Snafu)]
@@ -181,52 +180,6 @@ pub enum Error {
#[snafu(display("Invalid REPL command: {reason}"))]
InvalidReplCommand { reason: String },
#[snafu(display("Cannot create REPL"))]
ReplCreation {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Error reading command"))]
Readline {
#[snafu(source)]
error: ReadlineError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to request database, sql: {sql}"))]
RequestDatabase {
sql: String,
#[snafu(source)]
source: client::Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to collect RecordBatches"))]
CollectRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to pretty print Recordbatches"))]
PrettyPrintRecordBatches {
#[snafu(implicit)]
location: Location,
source: common_recordbatch::error::Error,
},
#[snafu(display("Failed to start Meta client"))]
StartMetaClient {
#[snafu(implicit)]
location: Location,
source: meta_client::error::Error,
},
#[snafu(display("Failed to parse SQL: {}", sql))]
ParseSql {
sql: String,
@@ -242,13 +195,6 @@ pub enum Error {
source: query::error::Error,
},
#[snafu(display("Failed to encode logical plan in substrait"))]
SubstraitEncodeLogicalPlan {
#[snafu(implicit)]
location: Location,
source: substrait::error::Error,
},
#[snafu(display("Failed to load layered config"))]
LoadLayeredConfig {
#[snafu(source(from(common_config::error::Error, Box::new)))]
@@ -395,17 +341,10 @@ impl ErrorExt for Error {
| Error::StopProcedureManager { source, .. } => source.status_code(),
Error::BuildWalOptionsAllocator { source, .. }
| Error::StartWalOptionsAllocator { source, .. } => source.status_code(),
Error::ReplCreation { .. } | Error::Readline { .. } | Error::HttpQuerySql { .. } => {
StatusCode::Internal
}
Error::RequestDatabase { source, .. } => source.status_code(),
Error::CollectRecordBatches { source, .. }
| Error::PrettyPrintRecordBatches { source, .. } => source.status_code(),
Error::StartMetaClient { source, .. } => source.status_code(),
Error::HttpQuerySql { .. } => StatusCode::Internal,
Error::ParseSql { source, .. } | Error::PlanStatement { source, .. } => {
source.status_code()
}
Error::SubstraitEncodeLogicalPlan { source, .. } => source.status_code(),
Error::SerdeJson { .. }
| Error::FileIo { .. }

View File

@@ -32,7 +32,9 @@ use common_meta::key::TableMetadataManager;
use common_telemetry::info;
use common_telemetry::logging::TracingOptions;
use common_version::{short_version, version};
use flow::{FlownodeBuilder, FlownodeInstance, FlownodeServiceBuilder, FrontendInvoker};
use flow::{
FlownodeBuilder, FlownodeInstance, FlownodeServiceBuilder, FrontendClient, FrontendInvoker,
};
use meta_client::{MetaClientOptions, MetaClientType};
use snafu::{ensure, OptionExt, ResultExt};
use tracing_appender::non_blocking::WorkerGuard;
@@ -313,12 +315,14 @@ impl StartCommand {
);
let flow_metadata_manager = Arc::new(FlowMetadataManager::new(cached_meta_backend.clone()));
let frontend_client = FrontendClient::from_meta_client(meta_client.clone());
let flownode_builder = FlownodeBuilder::new(
opts.clone(),
Plugins::new(),
table_metadata_manager,
catalog_manager.clone(),
flow_metadata_manager,
Arc::new(frontend_client),
)
.with_heartbeat_task(heartbeat_task);
@@ -341,7 +345,7 @@ impl StartCommand {
let client = Arc::new(NodeClients::new(channel_config));
let invoker = FrontendInvoker::build_from(
flownode.flow_worker_manager().clone(),
flownode.flow_engine().streaming_engine(),
catalog_manager.clone(),
cached_meta_backend.clone(),
layered_cache_registry.clone(),
@@ -351,7 +355,9 @@ impl StartCommand {
.await
.context(StartFlownodeSnafu)?;
flownode
.flow_worker_manager()
.flow_engine()
.streaming_engine()
// TODO(discord9): refactor and avoid circular reference
.set_frontend_invoker(invoker)
.await;

View File

@@ -132,7 +132,7 @@ impl SubCommand {
}
#[derive(Debug, Default, Parser)]
struct StartCommand {
pub struct StartCommand {
/// The address to bind the gRPC server.
#[clap(long, alias = "bind-addr")]
rpc_bind_addr: Option<String>,
@@ -172,7 +172,7 @@ struct StartCommand {
}
impl StartCommand {
fn load_options(&self, global_options: &GlobalOptions) -> Result<MetasrvOptions> {
pub fn load_options(&self, global_options: &GlobalOptions) -> Result<MetasrvOptions> {
let mut opts = MetasrvOptions::load_layered_options(
self.config_file.as_deref(),
self.env_prefix.as_ref(),
@@ -261,7 +261,7 @@ impl StartCommand {
Ok(())
}
async fn build(&self, opts: MetasrvOptions) -> Result<Instance> {
pub async fn build(&self, opts: MetasrvOptions) -> Result<Instance> {
common_runtime::init_global_runtimes(&opts.runtime);
let guard = common_telemetry::init_global_logging(

View File

@@ -56,8 +56,8 @@ use datanode::datanode::{Datanode, DatanodeBuilder};
use datanode::region_server::RegionServer;
use file_engine::config::EngineConfig as FileEngineConfig;
use flow::{
FlowConfig, FlowWorkerManager, FlownodeBuilder, FlownodeInstance, FlownodeOptions,
FrontendInvoker,
FlowConfig, FlownodeBuilder, FlownodeInstance, FlownodeOptions, FrontendClient,
FrontendInvoker, GrpcQueryHandlerWithBoxedError, StreamingEngine,
};
use frontend::frontend::{Frontend, FrontendOptions};
use frontend::instance::builder::FrontendBuilder;
@@ -523,12 +523,18 @@ impl StartCommand {
flow: opts.flow.clone(),
..Default::default()
};
// for standalone not use grpc, but get a handler to frontend grpc client without
// actually make a connection
let (frontend_client, frontend_instance_handler) =
FrontendClient::from_empty_grpc_handler();
let flow_builder = FlownodeBuilder::new(
flownode_options,
plugins.clone(),
table_metadata_manager.clone(),
catalog_manager.clone(),
flow_metadata_manager.clone(),
Arc::new(frontend_client.clone()),
);
let flownode = flow_builder
.build()
@@ -538,15 +544,15 @@ impl StartCommand {
// set the ref to query for the local flow state
{
let flow_worker_manager = flownode.flow_worker_manager();
let flow_streaming_engine = flownode.flow_engine().streaming_engine();
information_extension
.set_flow_worker_manager(flow_worker_manager.clone())
.set_flow_streaming_engine(flow_streaming_engine)
.await;
}
let node_manager = Arc::new(StandaloneDatanodeManager {
region_server: datanode.region_server(),
flow_server: flownode.flow_worker_manager(),
flow_server: flownode.flow_engine(),
});
let table_id_sequence = Arc::new(
@@ -600,10 +606,19 @@ impl StartCommand {
.context(error::StartFrontendSnafu)?;
let fe_instance = Arc::new(fe_instance);
let flow_worker_manager = flownode.flow_worker_manager();
// set the frontend client for flownode
let grpc_handler = fe_instance.clone() as Arc<dyn GrpcQueryHandlerWithBoxedError>;
let weak_grpc_handler = Arc::downgrade(&grpc_handler);
frontend_instance_handler
.lock()
.unwrap()
.replace(weak_grpc_handler);
// set the frontend invoker for flownode
let flow_streaming_engine = flownode.flow_engine().streaming_engine();
// flow server need to be able to use frontend to write insert requests back
let invoker = FrontendInvoker::build_from(
flow_worker_manager.clone(),
flow_streaming_engine.clone(),
catalog_manager.clone(),
kv_backend.clone(),
layered_cache_registry.clone(),
@@ -612,7 +627,7 @@ impl StartCommand {
)
.await
.context(error::StartFlownodeSnafu)?;
flow_worker_manager.set_frontend_invoker(invoker).await;
flow_streaming_engine.set_frontend_invoker(invoker).await;
let export_metrics_task = ExportMetricsTask::try_new(&opts.export_metrics, Some(&plugins))
.context(error::ServersSnafu)?;
@@ -688,7 +703,7 @@ pub struct StandaloneInformationExtension {
region_server: RegionServer,
procedure_manager: ProcedureManagerRef,
start_time_ms: u64,
flow_worker_manager: RwLock<Option<Arc<FlowWorkerManager>>>,
flow_streaming_engine: RwLock<Option<Arc<StreamingEngine>>>,
}
impl StandaloneInformationExtension {
@@ -697,14 +712,14 @@ impl StandaloneInformationExtension {
region_server,
procedure_manager,
start_time_ms: common_time::util::current_time_millis() as u64,
flow_worker_manager: RwLock::new(None),
flow_streaming_engine: RwLock::new(None),
}
}
/// Set the flow worker manager for the standalone instance.
pub async fn set_flow_worker_manager(&self, flow_worker_manager: Arc<FlowWorkerManager>) {
let mut guard = self.flow_worker_manager.write().await;
*guard = Some(flow_worker_manager);
/// Set the flow streaming engine for the standalone instance.
pub async fn set_flow_streaming_engine(&self, flow_streaming_engine: Arc<StreamingEngine>) {
let mut guard = self.flow_streaming_engine.write().await;
*guard = Some(flow_streaming_engine);
}
}
@@ -773,6 +788,8 @@ impl InformationExtension for StandaloneInformationExtension {
sst_size: region_stat.sst_size,
index_size: region_stat.index_size,
region_manifest: region_stat.manifest.into(),
data_topic_latest_entry_id: region_stat.data_topic_latest_entry_id,
metadata_topic_latest_entry_id: region_stat.metadata_topic_latest_entry_id,
}
})
.collect::<Vec<_>>();
@@ -781,7 +798,7 @@ impl InformationExtension for StandaloneInformationExtension {
async fn flow_stats(&self) -> std::result::Result<Option<FlowStat>, Self::Error> {
Ok(Some(
self.flow_worker_manager
self.flow_streaming_engine
.read()
.await
.as_ref()

View File

@@ -1,148 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#[cfg(target_os = "macos")]
mod tests {
use std::path::PathBuf;
use std::process::{Command, Stdio};
use std::time::Duration;
use common_test_util::temp_dir::create_temp_dir;
use rexpect::session::PtyReplSession;
struct Repl {
repl: PtyReplSession,
}
impl Repl {
fn send_line(&mut self, line: &str) {
let _ = self.repl.send_line(line).unwrap();
// read a line to consume the prompt
let _ = self.read_line();
}
fn read_line(&mut self) -> String {
self.repl.read_line().unwrap()
}
fn read_expect(&mut self, expect: &str) {
assert_eq!(self.read_line(), expect);
}
fn read_contains(&mut self, pat: &str) {
assert!(self.read_line().contains(pat));
}
}
// TODO(LFC): Un-ignore this REPL test.
// Ignore this REPL test because some logical plans like create database are not supported yet in Datanode.
#[ignore]
#[test]
fn test_repl() {
let data_home = create_temp_dir("data");
let wal_dir = create_temp_dir("wal");
let mut bin_path = PathBuf::from(env!("CARGO_MANIFEST_DIR"));
bin_path.push("../../target/debug");
let bin_path = bin_path.to_str().unwrap();
let mut datanode = Command::new("./greptime")
.current_dir(bin_path)
.args([
"datanode",
"start",
"--rpc-bind-addr=0.0.0.0:4321",
"--node-id=1",
&format!("--data-home={}", data_home.path().display()),
&format!("--wal-dir={}", wal_dir.path().display()),
])
.stdout(Stdio::null())
.spawn()
.unwrap();
// wait for Datanode actually started
std::thread::sleep(Duration::from_secs(3));
let mut repl_cmd = Command::new("./greptime");
let _ = repl_cmd.current_dir(bin_path).args([
"--log-level=off",
"cli",
"attach",
"--grpc-bind-addr=0.0.0.0:4321",
// history commands can sneaky into stdout and mess up our tests, so disable it
"--disable-helper",
]);
let pty_session = rexpect::session::spawn_command(repl_cmd, Some(5_000)).unwrap();
let repl = PtyReplSession {
prompt: "> ".to_string(),
pty_session,
quit_command: None,
echo_on: false,
};
let repl = &mut Repl { repl };
repl.read_expect("Ready for commands. (Hint: try 'help')");
test_create_database(repl);
test_use_database(repl);
test_create_table(repl);
test_insert(repl);
test_select(repl);
datanode.kill().unwrap();
let _ = datanode.wait().unwrap();
}
fn test_create_database(repl: &mut Repl) {
repl.send_line("CREATE DATABASE db;");
repl.read_expect("Affected Rows: 1");
repl.read_contains("Cost");
}
fn test_use_database(repl: &mut Repl) {
repl.send_line("USE db");
repl.read_expect("Total Rows: 0");
repl.read_contains("Cost");
repl.read_expect("Using db");
}
fn test_create_table(repl: &mut Repl) {
repl.send_line("CREATE TABLE t(x STRING, ts TIMESTAMP TIME INDEX);");
repl.read_expect("Affected Rows: 0");
repl.read_contains("Cost");
}
fn test_insert(repl: &mut Repl) {
repl.send_line("INSERT INTO t(x, ts) VALUES ('hello', 1676895812239);");
repl.read_expect("Affected Rows: 1");
repl.read_contains("Cost");
}
fn test_select(repl: &mut Repl) {
repl.send_line("SELECT * FROM t;");
repl.read_expect("+-------+-------------------------+");
repl.read_expect("| x | ts |");
repl.read_expect("+-------+-------------------------+");
repl.read_expect("| hello | 2023-02-20T12:23:32.239 |");
repl.read_expect("+-------+-------------------------+");
repl.read_expect("Total Rows: 1");
repl.read_contains("Cost");
}
}

View File

@@ -74,6 +74,7 @@ fn test_load_datanode_example_config() {
RegionEngineConfig::File(FileEngineConfig {}),
RegionEngineConfig::Metric(MetricEngineConfig {
experimental_sparse_primary_key_encoding: false,
flush_metadata_region_interval: Duration::from_secs(30),
}),
],
logging: LoggingOptions {
@@ -216,6 +217,7 @@ fn test_load_standalone_example_config() {
RegionEngineConfig::File(FileEngineConfig {}),
RegionEngineConfig::Metric(MetricEngineConfig {
experimental_sparse_primary_key_encoding: false,
flush_metadata_region_interval: Duration::from_secs(30),
}),
],
storage: StorageConfig {

View File

@@ -31,7 +31,8 @@ impl Plugins {
}
pub fn insert<T: 'static + Send + Sync>(&self, value: T) {
let _ = self.write().insert(value);
let last = self.write().insert(value);
assert!(last.is_none(), "each type of plugins must be one and only");
}
pub fn get<T: 'static + Send + Sync + Clone>(&self) -> Option<T> {
@@ -137,4 +138,12 @@ mod tests {
assert_eq!(plugins.len(), 2);
assert!(!plugins.is_empty());
}
#[test]
#[should_panic(expected = "each type of plugins must be one and only")]
fn test_plugin_uniqueness() {
let plugins = Plugins::new();
plugins.insert(1i32);
plugins.insert(2i32);
}
}

View File

@@ -12,3 +12,6 @@ http.workspace = true
snafu.workspace = true
strum.workspace = true
tonic.workspace = true
[dev-dependencies]
common-macro.workspace = true

View File

@@ -42,7 +42,7 @@ pub trait ErrorExt: StackError {
if let Some(external_error) = error.source() {
let external_root = external_error.sources().last().unwrap();
if error.to_string().is_empty() {
if error.transparent() {
format!("{external_root}")
} else {
format!("{error}: {external_root}")
@@ -86,6 +86,14 @@ pub trait StackError: std::error::Error {
}
result
}
/// Indicates whether this error is "transparent", that it delegates its "display" and "source"
/// to the underlying error. Could be useful when you are just wrapping some external error,
/// **AND** can not or would not provide meaningful contextual info. For example, the
/// `DataFusionError`.
fn transparent(&self) -> bool {
false
}
}
impl<T: ?Sized + StackError> StackError for Arc<T> {

View File

@@ -0,0 +1,115 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use common_error::ext::{ErrorExt, PlainError, StackError};
use common_error::status_code::StatusCode;
use common_macro::stack_trace_debug;
use snafu::{Location, ResultExt, Snafu};
#[derive(Snafu)]
#[stack_trace_debug]
enum MyError {
#[snafu(display(r#"A normal error with "display" attribute, message "{}""#, message))]
Normal {
message: String,
#[snafu(source)]
error: PlainError,
#[snafu(implicit)]
location: Location,
},
#[snafu(transparent)]
Transparent {
#[snafu(source)]
error: PlainError,
#[snafu(implicit)]
location: Location,
},
}
impl ErrorExt for MyError {
fn status_code(&self) -> StatusCode {
StatusCode::Unexpected
}
fn as_any(&self) -> &dyn Any {
self
}
}
fn normal_error() -> Result<(), MyError> {
let plain_error = PlainError::new("<root cause>".to_string(), StatusCode::Unexpected);
Err(plain_error).context(NormalSnafu { message: "blabla" })
}
fn transparent_error() -> Result<(), MyError> {
let plain_error = PlainError::new("<root cause>".to_string(), StatusCode::Unexpected);
Err(plain_error)?
}
#[test]
fn test_output_msg() {
let result = normal_error();
assert_eq!(
result.unwrap_err().output_msg(),
r#"A normal error with "display" attribute, message "blabla": <root cause>"#
);
let result = transparent_error();
assert_eq!(result.unwrap_err().output_msg(), "<root cause>");
}
#[test]
fn test_to_string() {
let result = normal_error();
assert_eq!(
result.unwrap_err().to_string(),
r#"A normal error with "display" attribute, message "blabla""#
);
let result = transparent_error();
assert_eq!(result.unwrap_err().to_string(), "<root cause>");
}
#[test]
fn test_debug_format() {
let result = normal_error();
let debug_output = format!("{:?}", result.unwrap_err());
let normalized_output = debug_output.replace('\\', "/");
assert_eq!(
normalized_output,
r#"0: A normal error with "display" attribute, message "blabla", at src/common/error/tests/ext.rs:55:22
1: PlainError { msg: "<root cause>", status_code: Unexpected }"#
);
let result = transparent_error();
let debug_output = format!("{:?}", result.unwrap_err());
let normalized_output = debug_output.replace('\\', "/");
assert_eq!(
normalized_output,
r#"0: <transparent>, at src/common/error/tests/ext.rs:60:5
1: PlainError { msg: "<root cause>", status_code: Unexpected }"#
);
}
#[test]
fn test_transparent_flag() {
let result = normal_error();
assert!(!result.unwrap_err().transparent());
let result = transparent_error();
assert!(result.unwrap_err().transparent());
}

View File

@@ -18,6 +18,7 @@ api.workspace = true
arc-swap = "1.0"
async-trait.workspace = true
bincode = "1.3"
catalog.workspace = true
chrono.workspace = true
common-base.workspace = true
common-catalog.workspace = true

View File

@@ -25,12 +25,13 @@ use session::context::QueryContextRef;
use crate::handlers::ProcedureServiceHandlerRef;
use crate::helper::cast_u64;
const DEFAULT_TIMEOUT_SECS: u64 = 30;
/// The default timeout for migrate region procedure.
const DEFAULT_TIMEOUT_SECS: u64 = 300;
/// A function to migrate a region from source peer to target peer.
/// Returns the submitted procedure id if success. Only available in cluster mode.
///
/// - `migrate_region(region_id, from_peer, to_peer)`, with timeout(30 seconds).
/// - `migrate_region(region_id, from_peer, to_peer)`, with timeout(300 seconds).
/// - `migrate_region(region_id, from_peer, to_peer, timeout(secs))`.
///
/// The parameters:

View File

@@ -15,6 +15,7 @@
use std::sync::Arc;
use async_trait::async_trait;
use catalog::CatalogManagerRef;
use common_base::AffectedRows;
use common_meta::rpc::procedure::{
AddRegionFollowerRequest, MigrateRegionRequest, ProcedureStateResponse,
@@ -72,6 +73,9 @@ pub trait ProcedureServiceHandler: Send + Sync {
/// Remove a region follower from a region.
async fn remove_region_follower(&self, request: RemoveRegionFollowerRequest) -> Result<()>;
/// Get the catalog manager
fn catalog_manager(&self) -> &CatalogManagerRef;
}
/// This flow service handler is only use for flush flow for now.

View File

@@ -12,8 +12,9 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fmt;
use std::iter::repeat_n;
use std::sync::Arc;
use std::{fmt, iter};
use common_query::error::{InvalidFuncArgsSnafu, Result};
use common_query::prelude::Volatility;
@@ -126,9 +127,10 @@ impl Function for MatchesTermFunction {
let term = term_column.get_ref(0).as_string().unwrap();
match term {
None => {
return Ok(Arc::new(BooleanVector::from_iter(
iter::repeat(None).take(text_column.len()),
)));
return Ok(Arc::new(BooleanVector::from_iter(repeat_n(
None,
text_column.len(),
))));
}
Some(term) => Some(MatchesTermFinder::new(term)),
}
@@ -217,7 +219,7 @@ impl MatchesTermFinder {
}
let mut pos = 0;
while let Some(found_pos) = self.finder.find(text[pos..].as_bytes()) {
while let Some(found_pos) = self.finder.find(&text.as_bytes()[pos..]) {
let actual_pos = pos + found_pos;
let prev_ok = self.starts_with_non_alnum

View File

@@ -115,6 +115,13 @@ impl Function for UddSketchCalcFunction {
}
};
// Check if the sketch is empty, if so, return null
// This is important to avoid panics when calling estimate_quantile on an empty sketch
// In practice, this will happen if input is all null
if sketch.bucket_iter().count() == 0 {
builder.push_null();
continue;
}
// Compute the estimated quantile from the sketch
let result = sketch.estimate_quantile(perc);
builder.push(Some(result));

View File

@@ -34,6 +34,7 @@ impl FunctionState {
use api::v1::meta::ProcedureStatus;
use async_trait::async_trait;
use catalog::CatalogManagerRef;
use common_base::AffectedRows;
use common_meta::rpc::procedure::{
AddRegionFollowerRequest, MigrateRegionRequest, ProcedureStateResponse,
@@ -80,6 +81,10 @@ impl FunctionState {
) -> Result<()> {
Ok(())
}
fn catalog_manager(&self) -> &CatalogManagerRef {
unimplemented!()
}
}
#[async_trait]

View File

@@ -23,8 +23,11 @@ flatbuffers = "24"
hyper.workspace = true
lazy_static.workspace = true
prost.workspace = true
serde.workspace = true
serde_json.workspace = true
snafu.workspace = true
tokio.workspace = true
tokio-util.workspace = true
tonic.workspace = true
tower.workspace = true

View File

@@ -22,6 +22,7 @@ use dashmap::mapref::entry::Entry;
use dashmap::DashMap;
use lazy_static::lazy_static;
use snafu::{OptionExt, ResultExt};
use tokio_util::sync::CancellationToken;
use tonic::transport::{
Certificate, Channel as InnerChannel, ClientTlsConfig, Endpoint, Identity, Uri,
};
@@ -39,18 +40,48 @@ lazy_static! {
static ref ID: AtomicU64 = AtomicU64::new(0);
}
#[derive(Clone, Debug)]
#[derive(Clone, Debug, Default)]
pub struct ChannelManager {
inner: Arc<Inner>,
}
#[derive(Debug)]
struct Inner {
id: u64,
config: ChannelConfig,
client_tls_config: Option<ClientTlsConfig>,
pool: Arc<Pool>,
channel_recycle_started: Arc<AtomicBool>,
channel_recycle_started: AtomicBool,
cancel: CancellationToken,
}
impl Default for ChannelManager {
impl Default for Inner {
fn default() -> Self {
ChannelManager::with_config(ChannelConfig::default())
Self::with_config(ChannelConfig::default())
}
}
impl Drop for Inner {
fn drop(&mut self) {
// Cancel the channel recycle task.
self.cancel.cancel();
}
}
impl Inner {
fn with_config(config: ChannelConfig) -> Self {
let id = ID.fetch_add(1, Ordering::Relaxed);
let pool = Arc::new(Pool::default());
let cancel = CancellationToken::new();
Self {
id,
config,
client_tls_config: None,
pool,
channel_recycle_started: AtomicBool::new(false),
cancel,
}
}
}
@@ -60,19 +91,14 @@ impl ChannelManager {
}
pub fn with_config(config: ChannelConfig) -> Self {
let id = ID.fetch_add(1, Ordering::Relaxed);
let pool = Arc::new(Pool::default());
let inner = Inner::with_config(config);
Self {
id,
config,
client_tls_config: None,
pool,
channel_recycle_started: Arc::new(AtomicBool::new(false)),
inner: Arc::new(inner),
}
}
pub fn with_tls_config(config: ChannelConfig) -> Result<Self> {
let mut cm = Self::with_config(config.clone());
let mut inner = Inner::with_config(config.clone());
// setup tls
let path_config = config.client_tls.context(InvalidTlsConfigSnafu {
@@ -88,17 +114,23 @@ impl ChannelManager {
.context(InvalidConfigFilePathSnafu)?;
let client_identity = Identity::from_pem(client_cert, client_key);
cm.client_tls_config = Some(
inner.client_tls_config = Some(
ClientTlsConfig::new()
.ca_certificate(server_root_ca_cert)
.identity(client_identity),
);
Ok(cm)
Ok(Self {
inner: Arc::new(inner),
})
}
pub fn config(&self) -> &ChannelConfig {
&self.config
&self.inner.config
}
fn pool(&self) -> &Arc<Pool> {
&self.inner.pool
}
pub fn get(&self, addr: impl AsRef<str>) -> Result<InnerChannel> {
@@ -106,12 +138,12 @@ impl ChannelManager {
let addr = addr.as_ref();
// It will acquire the read lock.
if let Some(inner_ch) = self.pool.get(addr) {
if let Some(inner_ch) = self.pool().get(addr) {
return Ok(inner_ch);
}
// It will acquire the write lock.
let entry = match self.pool.entry(addr.to_string()) {
let entry = match self.pool().entry(addr.to_string()) {
Entry::Occupied(entry) => {
entry.get().increase_access();
entry.into_ref()
@@ -150,7 +182,7 @@ impl ChannelManager {
access: AtomicUsize::new(1),
use_default_connector: false,
};
self.pool.put(addr, channel);
self.pool().put(addr, channel);
Ok(inner_channel)
}
@@ -159,11 +191,11 @@ impl ChannelManager {
where
F: FnMut(&String, &mut Channel) -> bool,
{
self.pool.retain_channel(f);
self.pool().retain_channel(f);
}
fn build_endpoint(&self, addr: &str) -> Result<Endpoint> {
let http_prefix = if self.client_tls_config.is_some() {
let http_prefix = if self.inner.client_tls_config.is_some() {
"https"
} else {
"http"
@@ -172,51 +204,52 @@ impl ChannelManager {
let mut endpoint =
Endpoint::new(format!("{http_prefix}://{addr}")).context(CreateChannelSnafu)?;
if let Some(dur) = self.config.timeout {
if let Some(dur) = self.config().timeout {
endpoint = endpoint.timeout(dur);
}
if let Some(dur) = self.config.connect_timeout {
if let Some(dur) = self.config().connect_timeout {
endpoint = endpoint.connect_timeout(dur);
}
if let Some(limit) = self.config.concurrency_limit {
if let Some(limit) = self.config().concurrency_limit {
endpoint = endpoint.concurrency_limit(limit);
}
if let Some((limit, dur)) = self.config.rate_limit {
if let Some((limit, dur)) = self.config().rate_limit {
endpoint = endpoint.rate_limit(limit, dur);
}
if let Some(size) = self.config.initial_stream_window_size {
if let Some(size) = self.config().initial_stream_window_size {
endpoint = endpoint.initial_stream_window_size(size);
}
if let Some(size) = self.config.initial_connection_window_size {
if let Some(size) = self.config().initial_connection_window_size {
endpoint = endpoint.initial_connection_window_size(size);
}
if let Some(dur) = self.config.http2_keep_alive_interval {
if let Some(dur) = self.config().http2_keep_alive_interval {
endpoint = endpoint.http2_keep_alive_interval(dur);
}
if let Some(dur) = self.config.http2_keep_alive_timeout {
if let Some(dur) = self.config().http2_keep_alive_timeout {
endpoint = endpoint.keep_alive_timeout(dur);
}
if let Some(enabled) = self.config.http2_keep_alive_while_idle {
if let Some(enabled) = self.config().http2_keep_alive_while_idle {
endpoint = endpoint.keep_alive_while_idle(enabled);
}
if let Some(enabled) = self.config.http2_adaptive_window {
if let Some(enabled) = self.config().http2_adaptive_window {
endpoint = endpoint.http2_adaptive_window(enabled);
}
if let Some(tls_config) = &self.client_tls_config {
if let Some(tls_config) = &self.inner.client_tls_config {
endpoint = endpoint
.tls_config(tls_config.clone())
.context(CreateChannelSnafu)?;
}
endpoint = endpoint
.tcp_keepalive(self.config.tcp_keepalive)
.tcp_nodelay(self.config.tcp_nodelay);
.tcp_keepalive(self.config().tcp_keepalive)
.tcp_nodelay(self.config().tcp_nodelay);
Ok(endpoint)
}
fn trigger_channel_recycling(&self) {
if self
.inner
.channel_recycle_started
.compare_exchange(false, true, Ordering::Relaxed, Ordering::Relaxed)
.is_err()
@@ -224,13 +257,15 @@ impl ChannelManager {
return;
}
let pool = self.pool.clone();
let _handle = common_runtime::spawn_global(async {
recycle_channel_in_loop(pool, RECYCLE_CHANNEL_INTERVAL_SECS).await;
let pool = self.pool().clone();
let cancel = self.inner.cancel.clone();
let id = self.inner.id;
let _handle = common_runtime::spawn_global(async move {
recycle_channel_in_loop(pool, id, cancel, RECYCLE_CHANNEL_INTERVAL_SECS).await;
});
info!(
"ChannelManager: {}, channel recycle is started, running in the background!",
self.id
self.inner.id
);
}
}
@@ -443,11 +478,23 @@ impl Pool {
}
}
async fn recycle_channel_in_loop(pool: Arc<Pool>, interval_secs: u64) {
async fn recycle_channel_in_loop(
pool: Arc<Pool>,
id: u64,
cancel: CancellationToken,
interval_secs: u64,
) {
let mut interval = tokio::time::interval(Duration::from_secs(interval_secs));
loop {
let _ = interval.tick().await;
tokio::select! {
_ = cancel.cancelled() => {
info!("Stop channel recycle, ChannelManager id: {}", id);
break;
},
_ = interval.tick() => {}
}
pool.retain_channel(|_, c| c.access.swap(0, Ordering::Relaxed) != 0)
}
}
@@ -461,11 +508,7 @@ mod tests {
#[should_panic]
#[test]
fn test_invalid_addr() {
let pool = Arc::new(Pool::default());
let mgr = ChannelManager {
pool,
..Default::default()
};
let mgr = ChannelManager::default();
let addr = "http://test";
let _ = mgr.get(addr).unwrap();
@@ -475,7 +518,9 @@ mod tests {
async fn test_access_count() {
let mgr = ChannelManager::new();
// Do not start recycle
mgr.channel_recycle_started.store(true, Ordering::Relaxed);
mgr.inner
.channel_recycle_started
.store(true, Ordering::Relaxed);
let mgr = Arc::new(mgr);
let addr = "test_uri";
@@ -493,12 +538,12 @@ mod tests {
join.await.unwrap();
}
assert_eq!(1000, mgr.pool.get_access(addr).unwrap());
assert_eq!(1000, mgr.pool().get_access(addr).unwrap());
mgr.pool
mgr.pool()
.retain_channel(|_, c| c.access.swap(0, Ordering::Relaxed) != 0);
assert_eq!(0, mgr.pool.get_access(addr).unwrap());
assert_eq!(0, mgr.pool().get_access(addr).unwrap());
}
#[test]
@@ -624,4 +669,49 @@ mod tests {
true
});
}
#[tokio::test]
async fn test_pool_release_with_channel_recycle() {
let mgr = ChannelManager::new();
let pool_holder = mgr.pool().clone();
// start channel recycle task
let addr = "test_addr";
let _ = mgr.get(addr);
let mgr_clone_1 = mgr.clone();
let mgr_clone_2 = mgr.clone();
assert_eq!(3, Arc::strong_count(mgr.pool()));
drop(mgr_clone_1);
drop(mgr_clone_2);
assert_eq!(3, Arc::strong_count(mgr.pool()));
drop(mgr);
// wait for the channel recycle task to finish
tokio::time::sleep(Duration::from_millis(10)).await;
assert_eq!(1, Arc::strong_count(&pool_holder));
}
#[tokio::test]
async fn test_pool_release_without_channel_recycle() {
let mgr = ChannelManager::new();
let pool_holder = mgr.pool().clone();
let mgr_clone_1 = mgr.clone();
let mgr_clone_2 = mgr.clone();
assert_eq!(2, Arc::strong_count(mgr.pool()));
drop(mgr_clone_1);
drop(mgr_clone_2);
assert_eq!(2, Arc::strong_count(mgr.pool()));
drop(mgr);
assert_eq!(1, Arc::strong_count(&pool_holder));
}
}

View File

@@ -97,6 +97,14 @@ pub enum Error {
#[snafu(display("Not supported: {}", feat))]
NotSupported { feat: String },
#[snafu(display("Failed to serde Json"))]
SerdeJson {
#[snafu(source)]
error: serde_json::error::Error,
#[snafu(implicit)]
location: Location,
},
}
impl ErrorExt for Error {
@@ -110,7 +118,8 @@ impl ErrorExt for Error {
Error::CreateChannel { .. }
| Error::Conversion { .. }
| Error::DecodeFlightData { .. } => StatusCode::Internal,
| Error::DecodeFlightData { .. }
| Error::SerdeJson { .. } => StatusCode::Internal,
Error::CreateRecordBatch { source, .. } => source.status_code(),
Error::ConvertArrowSchema { source, .. } => source.status_code(),

View File

@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod do_put;
use std::collections::HashMap;
use std::sync::Arc;

View File

@@ -0,0 +1,93 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_flight::PutResult;
use common_base::AffectedRows;
use serde::{Deserialize, Serialize};
use snafu::ResultExt;
use crate::error::{Error, SerdeJsonSnafu};
/// The metadata for "DoPut" requests and responses.
///
/// Currently, there's only a "request_id", for coordinating requests and responses in the streams.
/// Client can set a unique request id in this metadata, and the server will return the same id in
/// the corresponding response. In doing so, a client can know how to do with its pending requests.
#[derive(Serialize, Deserialize)]
pub struct DoPutMetadata {
request_id: i64,
}
impl DoPutMetadata {
pub fn new(request_id: i64) -> Self {
Self { request_id }
}
pub fn request_id(&self) -> i64 {
self.request_id
}
}
/// The response in the "DoPut" returned stream.
#[derive(Serialize, Deserialize)]
pub struct DoPutResponse {
/// The same "request_id" in the request; see the [DoPutMetadata].
request_id: i64,
/// The successfully ingested rows number.
affected_rows: AffectedRows,
}
impl DoPutResponse {
pub fn new(request_id: i64, affected_rows: AffectedRows) -> Self {
Self {
request_id,
affected_rows,
}
}
pub fn request_id(&self) -> i64 {
self.request_id
}
pub fn affected_rows(&self) -> AffectedRows {
self.affected_rows
}
}
impl TryFrom<PutResult> for DoPutResponse {
type Error = Error;
fn try_from(value: PutResult) -> Result<Self, Self::Error> {
serde_json::from_slice(&value.app_metadata).context(SerdeJsonSnafu)
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_serde_do_put_metadata() {
let serialized = r#"{"request_id":42}"#;
let metadata = serde_json::from_str::<DoPutMetadata>(serialized).unwrap();
assert_eq!(metadata.request_id(), 42);
}
#[test]
fn test_serde_do_put_response() {
let x = DoPutResponse::new(42, 88);
let serialized = serde_json::to_string(&x).unwrap();
assert_eq!(serialized, r#"{"request_id":42,"affected_rows":88}"#);
}
}

View File

@@ -14,7 +14,7 @@
//! implement `::common_error::ext::StackError`
use proc_macro2::{Span, TokenStream as TokenStream2};
use proc_macro2::{Literal, Span, TokenStream as TokenStream2, TokenTree};
use quote::{quote, quote_spanned};
use syn::spanned::Spanned;
use syn::{parenthesized, Attribute, Ident, ItemEnum, Variant};
@@ -32,6 +32,7 @@ pub fn stack_trace_style_impl(args: TokenStream2, input: TokenStream2) -> TokenS
variants.push(variant);
}
let transparent_fn = build_transparent_fn(enum_name.clone(), &variants);
let debug_fmt_fn = build_debug_fmt_impl(enum_name.clone(), variants.clone());
let next_fn = build_next_impl(enum_name.clone(), variants);
let debug_impl = build_debug_impl(enum_name.clone());
@@ -43,6 +44,7 @@ pub fn stack_trace_style_impl(args: TokenStream2, input: TokenStream2) -> TokenS
impl ::common_error::ext::StackError for #enum_name {
#debug_fmt_fn
#next_fn
#transparent_fn
}
#debug_impl
@@ -115,6 +117,7 @@ struct ErrorVariant {
has_source: bool,
has_external_cause: bool,
display: TokenStream2,
transparent: bool,
span: Span,
cfg_attr: Option<Attribute>,
}
@@ -140,6 +143,7 @@ impl ErrorVariant {
}
let mut display = None;
let mut transparent = false;
let mut cfg_attr = None;
for attr in variant.attrs {
if attr.path().is_ident("snafu") {
@@ -150,17 +154,29 @@ impl ErrorVariant {
let display_ts: TokenStream2 = content.parse()?;
display = Some(display_ts);
Ok(())
} else if meta.path.is_ident("transparent") {
display = Some(TokenStream2::from(TokenTree::Literal(Literal::string(
"<transparent>",
))));
transparent = true;
Ok(())
} else {
Err(meta.error("unrecognized repr"))
}
})
.expect("Each error should contains a display attribute");
.unwrap_or_else(|e| panic!("{e}"));
}
if attr.path().is_ident("cfg") {
cfg_attr = Some(attr);
}
}
let display = display.unwrap_or_else(|| {
panic!(
r#"Error "{}" must be annotated with attribute "display" or "transparent"."#,
variant.ident,
)
});
let field_ident = variant
.fields
@@ -174,7 +190,8 @@ impl ErrorVariant {
has_location,
has_source,
has_external_cause,
display: display.unwrap(),
display,
transparent,
span,
cfg_attr,
}
@@ -275,4 +292,44 @@ impl ErrorVariant {
}
}
}
fn build_transparent_match_arm(&self) -> TokenStream2 {
let cfg = if let Some(cfg) = &self.cfg_attr {
quote_spanned!(cfg.span() => #cfg)
} else {
quote! {}
};
let name = &self.name;
let fields = &self.fields;
if self.transparent {
quote_spanned! {
self.span => #cfg #[allow(unused_variables)] #name { #(#fields),* } => {
true
},
}
} else {
quote_spanned! {
self.span => #cfg #[allow(unused_variables)] #name { #(#fields),* } =>{
false
}
}
}
}
}
fn build_transparent_fn(enum_name: Ident, variants: &[ErrorVariant]) -> TokenStream2 {
let match_arms = variants
.iter()
.map(|v| v.build_transparent_match_arm())
.collect::<Vec<_>>();
quote! {
fn transparent(&self) -> bool {
use #enum_name::*;
match self {
#(#match_arms)*
}
}
}
}

View File

@@ -187,6 +187,7 @@ mod tests {
},
flownode_ids: BTreeMap::from([(0, 1), (1, 2), (2, 3)]),
catalog_name: DEFAULT_CATALOG_NAME.to_string(),
query_context: None,
flow_name: "my_flow".to_string(),
raw_sql: "sql".to_string(),
expire_after: Some(300),

View File

@@ -94,6 +94,13 @@ pub struct RegionStat {
pub index_size: u64,
/// The manifest infoof the region.
pub region_manifest: RegionManifestInfo,
/// The latest entry id of topic used by data.
/// **Only used by remote WAL prune.**
pub data_topic_latest_entry_id: u64,
/// The latest entry id of topic used by metadata.
/// **Only used by remote WAL prune.**
/// In mito engine, this is the same as `data_topic_latest_entry_id`.
pub metadata_topic_latest_entry_id: u64,
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
@@ -142,6 +149,43 @@ impl Stat {
self.wcus = self.region_stats.iter().map(|s| s.wcus).sum();
self.region_num = self.region_stats.len() as u64;
}
pub fn memory_size(&self) -> usize {
// timestamp_millis, rcus, wcus
std::mem::size_of::<i64>() * 3 +
// id, region_num, node_epoch
std::mem::size_of::<u64>() * 3 +
// addr
std::mem::size_of::<String>() + self.addr.capacity() +
// region_stats
self.region_stats.iter().map(|s| s.memory_size()).sum::<usize>()
}
}
impl RegionStat {
pub fn memory_size(&self) -> usize {
// role
std::mem::size_of::<RegionRole>() +
// id
std::mem::size_of::<RegionId>() +
// rcus, wcus, approximate_bytes, num_rows
std::mem::size_of::<i64>() * 4 +
// memtable_size, manifest_size, sst_size, index_size
std::mem::size_of::<u64>() * 4 +
// engine
std::mem::size_of::<String>() + self.engine.capacity() +
// region_manifest
self.region_manifest.memory_size()
}
}
impl RegionManifestInfo {
pub fn memory_size(&self) -> usize {
match self {
RegionManifestInfo::Mito { .. } => std::mem::size_of::<u64>() * 2,
RegionManifestInfo::Metric { .. } => std::mem::size_of::<u64>() * 4,
}
}
}
impl TryFrom<&HeartbeatRequest> for Stat {
@@ -227,6 +271,8 @@ impl From<&api::v1::meta::RegionStat> for RegionStat {
sst_size: region_stat.sst_size,
index_size: region_stat.index_size,
region_manifest: region_stat.manifest.into(),
data_topic_latest_entry_id: region_stat.data_topic_latest_entry_id,
metadata_topic_latest_entry_id: region_stat.metadata_topic_latest_entry_id,
}
}
}

View File

@@ -18,10 +18,12 @@ mod region_request;
mod table_cache_keys;
mod update_metadata;
use api::region::RegionResponse;
use async_trait::async_trait;
use common_catalog::format_full_table_name;
use common_procedure::error::{FromJsonSnafu, Result as ProcedureResult, ToJsonSnafu};
use common_procedure::{Context, LockKey, Procedure, Status};
use common_telemetry::{info, warn};
use common_telemetry::{error, info, warn};
use futures_util::future;
use serde::{Deserialize, Serialize};
use snafu::{ensure, ResultExt};
@@ -30,7 +32,7 @@ use store_api::metric_engine_consts::ALTER_PHYSICAL_EXTENSION_KEY;
use strum::AsRefStr;
use table::metadata::TableId;
use crate::ddl::utils::add_peer_context_if_needed;
use crate::ddl::utils::{add_peer_context_if_needed, sync_follower_regions};
use crate::ddl::DdlContext;
use crate::error::{DecodeJsonSnafu, Error, MetadataCorruptionSnafu, Result};
use crate::key::table_info::TableInfoValue;
@@ -39,7 +41,7 @@ use crate::key::DeserializedValueWithBytes;
use crate::lock_key::{CatalogLock, SchemaLock, TableLock};
use crate::metrics;
use crate::rpc::ddl::AlterTableTask;
use crate::rpc::router::find_leaders;
use crate::rpc::router::{find_leaders, RegionRoute};
pub struct AlterLogicalTablesProcedure {
pub context: DdlContext,
@@ -125,14 +127,20 @@ impl AlterLogicalTablesProcedure {
});
}
// Collects responses from datanodes.
let phy_raw_schemas = future::join_all(alter_region_tasks)
let mut results = future::join_all(alter_region_tasks)
.await
.into_iter()
.map(|res| res.map(|mut res| res.extensions.remove(ALTER_PHYSICAL_EXTENSION_KEY)))
.collect::<Result<Vec<_>>>()?;
// Collects responses from datanodes.
let phy_raw_schemas = results
.iter_mut()
.map(|res| res.extensions.remove(ALTER_PHYSICAL_EXTENSION_KEY))
.collect::<Vec<_>>();
if phy_raw_schemas.is_empty() {
self.submit_sync_region_requests(results, &physical_table_route.region_routes)
.await;
self.data.state = AlterTablesState::UpdateMetadata;
return Ok(Status::executing(true));
}
@@ -155,10 +163,34 @@ impl AlterLogicalTablesProcedure {
warn!("altering logical table result doesn't contains extension key `{ALTER_PHYSICAL_EXTENSION_KEY}`,leaving the physical table's schema unchanged");
}
self.submit_sync_region_requests(results, &physical_table_route.region_routes)
.await;
self.data.state = AlterTablesState::UpdateMetadata;
Ok(Status::executing(true))
}
async fn submit_sync_region_requests(
&self,
results: Vec<RegionResponse>,
region_routes: &[RegionRoute],
) {
let table_info = &self.data.physical_table_info.as_ref().unwrap().table_info;
if let Err(err) = sync_follower_regions(
&self.context,
self.data.physical_table_id,
results,
region_routes,
table_info.meta.engine.as_str(),
)
.await
{
error!(err; "Failed to sync regions for table {}, table_id: {}",
format_full_table_name(&table_info.catalog_name, &table_info.schema_name, &table_info.name),
self.data.physical_table_id
);
}
}
pub(crate) async fn on_update_metadata(&mut self) -> Result<Status> {
self.update_physical_table_metadata().await?;
self.update_logical_tables_metadata().await?;

View File

@@ -19,6 +19,7 @@ mod update_metadata;
use std::vec;
use api::region::RegionResponse;
use api::v1::alter_table_expr::Kind;
use api::v1::RenameTable;
use async_trait::async_trait;
@@ -29,7 +30,7 @@ use common_procedure::{
PoisonKeys, Procedure, ProcedureId, Status, StringKey,
};
use common_telemetry::{debug, error, info};
use futures::future;
use futures::future::{self};
use serde::{Deserialize, Serialize};
use snafu::{ensure, ResultExt};
use store_api::storage::RegionId;
@@ -38,7 +39,9 @@ use table::metadata::{RawTableInfo, TableId, TableInfo};
use table::table_reference::TableReference;
use crate::cache_invalidator::Context;
use crate::ddl::utils::{add_peer_context_if_needed, handle_multiple_results, MultipleResults};
use crate::ddl::utils::{
add_peer_context_if_needed, handle_multiple_results, sync_follower_regions, MultipleResults,
};
use crate::ddl::DdlContext;
use crate::error::{AbortProcedureSnafu, Error, NoLeaderSnafu, PutPoisonSnafu, Result};
use crate::instruction::CacheIdent;
@@ -48,7 +51,7 @@ use crate::lock_key::{CatalogLock, SchemaLock, TableLock, TableNameLock};
use crate::metrics;
use crate::poison_key::table_poison_key;
use crate::rpc::ddl::AlterTableTask;
use crate::rpc::router::{find_leader_regions, find_leaders, region_distribution};
use crate::rpc::router::{find_leader_regions, find_leaders, region_distribution, RegionRoute};
/// The alter table procedure
pub struct AlterTableProcedure {
@@ -194,7 +197,9 @@ impl AlterTableProcedure {
// Just returns the error, and wait for the next try.
Err(error)
}
MultipleResults::Ok => {
MultipleResults::Ok(results) => {
self.submit_sync_region_requests(results, &physical_table_route.region_routes)
.await;
self.data.state = AlterTableState::UpdateMetadata;
Ok(Status::executing_with_clean_poisons(true))
}
@@ -211,6 +216,26 @@ impl AlterTableProcedure {
}
}
async fn submit_sync_region_requests(
&mut self,
results: Vec<RegionResponse>,
region_routes: &[RegionRoute],
) {
// Safety: filled in `prepare` step.
let table_info = self.data.table_info().unwrap();
if let Err(err) = sync_follower_regions(
&self.context,
self.data.table_id(),
results,
region_routes,
table_info.meta.engine.as_str(),
)
.await
{
error!(err; "Failed to sync regions for table {}, table_id: {}", self.data.table_ref(), self.data.table_id());
}
}
/// Update table metadata.
pub(crate) async fn on_update_metadata(&mut self) -> Result<Status> {
let table_id = self.data.table_id();

View File

@@ -38,7 +38,7 @@ use table::metadata::TableId;
use crate::cache_invalidator::Context;
use crate::ddl::utils::{add_peer_context_if_needed, handle_retry_error};
use crate::ddl::DdlContext;
use crate::error::{self, Result};
use crate::error::{self, Result, UnexpectedSnafu};
use crate::instruction::{CacheIdent, CreateFlow};
use crate::key::flow::flow_info::FlowInfoValue;
use crate::key::flow::flow_route::FlowRouteValue;
@@ -171,7 +171,7 @@ impl CreateFlowProcedure {
}
self.data.state = CreateFlowState::CreateFlows;
// determine flow type
self.data.flow_type = Some(determine_flow_type(&self.data.task));
self.data.flow_type = Some(get_flow_type_from_options(&self.data.task)?);
Ok(Status::executing(true))
}
@@ -196,8 +196,8 @@ impl CreateFlowProcedure {
});
}
info!(
"Creating flow({:?}) on flownodes with peers={:?}",
self.data.flow_id, self.data.peers
"Creating flow({:?}, type={:?}) on flownodes with peers={:?}",
self.data.flow_id, self.data.flow_type, self.data.peers
);
join_all(create_flow)
.await
@@ -306,8 +306,20 @@ impl Procedure for CreateFlowProcedure {
}
}
pub fn determine_flow_type(_flow_task: &CreateFlowTask) -> FlowType {
FlowType::Batching
pub fn get_flow_type_from_options(flow_task: &CreateFlowTask) -> Result<FlowType> {
let flow_type = flow_task
.flow_options
.get(FlowType::FLOW_TYPE_KEY)
.map(|s| s.as_str());
match flow_type {
Some(FlowType::BATCHING) => Ok(FlowType::Batching),
Some(FlowType::STREAMING) => Ok(FlowType::Streaming),
Some(unknown) => UnexpectedSnafu {
err_msg: format!("Unknown flow type: {}", unknown),
}
.fail(),
None => Ok(FlowType::Batching),
}
}
/// The state of [CreateFlowProcedure].
@@ -324,7 +336,7 @@ pub enum CreateFlowState {
}
/// The type of flow.
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
pub enum FlowType {
/// The flow is a batching task.
Batching,
@@ -437,6 +449,7 @@ impl From<&CreateFlowData> for (FlowInfoValue, Vec<(FlowPartitionId, FlowRouteVa
sink_table_name,
flownode_ids,
catalog_name,
query_context: Some(value.query_context.clone()),
flow_name,
raw_sql: sql,
expire_after,

View File

@@ -17,12 +17,14 @@ mod metadata;
mod region_request;
mod update_metadata;
use api::region::RegionResponse;
use api::v1::CreateTableExpr;
use async_trait::async_trait;
use common_catalog::consts::METRIC_ENGINE;
use common_procedure::error::{FromJsonSnafu, Result as ProcedureResult, ToJsonSnafu};
use common_procedure::{Context as ProcedureContext, LockKey, Procedure, Status};
use common_telemetry::{debug, warn};
use futures_util::future::join_all;
use common_telemetry::{debug, error, warn};
use futures::future;
use serde::{Deserialize, Serialize};
use snafu::{ensure, ResultExt};
use store_api::metadata::ColumnMetadata;
@@ -31,7 +33,7 @@ use store_api::storage::{RegionId, RegionNumber};
use strum::AsRefStr;
use table::metadata::{RawTableInfo, TableId};
use crate::ddl::utils::{add_peer_context_if_needed, handle_retry_error};
use crate::ddl::utils::{add_peer_context_if_needed, handle_retry_error, sync_follower_regions};
use crate::ddl::DdlContext;
use crate::error::{DecodeJsonSnafu, MetadataCorruptionSnafu, Result};
use crate::key::table_route::TableRouteValue;
@@ -156,14 +158,20 @@ impl CreateLogicalTablesProcedure {
});
}
// Collects response from datanodes.
let phy_raw_schemas = join_all(create_region_tasks)
let mut results = future::join_all(create_region_tasks)
.await
.into_iter()
.map(|res| res.map(|mut res| res.extensions.remove(ALTER_PHYSICAL_EXTENSION_KEY)))
.collect::<Result<Vec<_>>>()?;
// Collects response from datanodes.
let phy_raw_schemas = results
.iter_mut()
.map(|res| res.extensions.remove(ALTER_PHYSICAL_EXTENSION_KEY))
.collect::<Vec<_>>();
if phy_raw_schemas.is_empty() {
self.submit_sync_region_requests(results, region_routes)
.await;
self.data.state = CreateTablesState::CreateMetadata;
return Ok(Status::executing(false));
}
@@ -186,10 +194,30 @@ impl CreateLogicalTablesProcedure {
warn!("creating logical table result doesn't contains extension key `{ALTER_PHYSICAL_EXTENSION_KEY}`,leaving the physical table's schema unchanged");
}
self.submit_sync_region_requests(results, region_routes)
.await;
self.data.state = CreateTablesState::CreateMetadata;
Ok(Status::executing(true))
}
async fn submit_sync_region_requests(
&self,
results: Vec<RegionResponse>,
region_routes: &[RegionRoute],
) {
if let Err(err) = sync_follower_regions(
&self.context,
self.data.physical_table_id,
results,
region_routes,
METRIC_ENGINE,
)
.await
{
error!(err; "Failed to sync regions for physical table_id: {}",self.data.physical_table_id);
}
}
}
#[async_trait]

View File

@@ -15,12 +15,13 @@
use std::collections::HashMap;
use api::v1::region::{
region_request, DropRequest as PbDropRegionRequest, RegionRequest, RegionRequestHeader,
region_request, CloseRequest as PbCloseRegionRequest, DropRequest as PbDropRegionRequest,
RegionRequest, RegionRequestHeader,
};
use common_error::ext::ErrorExt;
use common_error::status_code::StatusCode;
use common_telemetry::debug;
use common_telemetry::tracing_context::TracingContext;
use common_telemetry::{debug, error};
use common_wal::options::WalOptions;
use futures::future::join_all;
use snafu::ensure;
@@ -36,7 +37,8 @@ use crate::instruction::CacheIdent;
use crate::key::table_name::TableNameKey;
use crate::key::table_route::TableRouteValue;
use crate::rpc::router::{
find_leader_regions, find_leaders, operating_leader_regions, RegionRoute,
find_follower_regions, find_followers, find_leader_regions, find_leaders,
operating_leader_regions, RegionRoute,
};
/// [Control] indicated to the caller whether to go to the next step.
@@ -210,10 +212,10 @@ impl DropTableExecutor {
region_routes: &[RegionRoute],
fast_path: bool,
) -> Result<()> {
// Drops leader regions on datanodes.
let leaders = find_leaders(region_routes);
let mut drop_region_tasks = Vec::with_capacity(leaders.len());
let table_id = self.table_id;
for datanode in leaders {
let requester = ctx.node_manager.datanode(&datanode).await;
let regions = find_leader_regions(region_routes, &datanode);
@@ -252,6 +254,53 @@ impl DropTableExecutor {
.into_iter()
.collect::<Result<Vec<_>>>()?;
// Drops follower regions on datanodes.
let followers = find_followers(region_routes);
let mut close_region_tasks = Vec::with_capacity(followers.len());
for datanode in followers {
let requester = ctx.node_manager.datanode(&datanode).await;
let regions = find_follower_regions(region_routes, &datanode);
let region_ids = regions
.iter()
.map(|region_number| RegionId::new(table_id, *region_number))
.collect::<Vec<_>>();
for region_id in region_ids {
debug!("Closing region {region_id} on Datanode {datanode:?}");
let request = RegionRequest {
header: Some(RegionRequestHeader {
tracing_context: TracingContext::from_current_span().to_w3c(),
..Default::default()
}),
body: Some(region_request::Body::Close(PbCloseRegionRequest {
region_id: region_id.as_u64(),
})),
};
let datanode = datanode.clone();
let requester = requester.clone();
close_region_tasks.push(async move {
if let Err(err) = requester.handle(request).await {
if err.status_code() != StatusCode::RegionNotFound {
return Err(add_peer_context_if_needed(datanode)(err));
}
}
Ok(())
});
}
}
// Failure to close follower regions is not critical.
// When a leader region is dropped, follower regions will be unable to renew their leases via metasrv.
// Eventually, these follower regions will be automatically closed by the region livekeeper.
if let Err(err) = join_all(close_region_tasks)
.await
.into_iter()
.collect::<Result<Vec<_>>>()
{
error!(err; "Failed to close follower regions on datanodes, table_id: {}", table_id);
}
// Deletes the leader region from registry.
let region_ids = operating_leader_regions(region_routes);
ctx.leader_region_registry

View File

@@ -18,7 +18,9 @@ use api::v1::column_def::try_as_column_schema;
use api::v1::meta::Partition;
use api::v1::{ColumnDataType, ColumnDef, CreateTableExpr, SemanticType};
use chrono::DateTime;
use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, MITO2_ENGINE};
use common_catalog::consts::{
DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, MITO2_ENGINE, MITO_ENGINE,
};
use datatypes::schema::RawSchema;
use derive_builder::Builder;
use store_api::storage::TableId;
@@ -164,6 +166,7 @@ pub fn test_create_table_task(name: &str, table_id: TableId) -> CreateTableTask
.time_index("ts")
.primary_keys(["host".into()])
.table_name(name)
.engine(MITO_ENGINE)
.build()
.unwrap()
.into();

View File

@@ -45,14 +45,41 @@ impl MockDatanodeHandler for () {
}
#[derive(Clone)]
pub struct DatanodeWatcher(pub mpsc::Sender<(Peer, RegionRequest)>);
pub struct DatanodeWatcher {
sender: mpsc::Sender<(Peer, RegionRequest)>,
handler: Option<fn(Peer, RegionRequest) -> Result<RegionResponse>>,
}
impl DatanodeWatcher {
pub fn new(sender: mpsc::Sender<(Peer, RegionRequest)>) -> Self {
Self {
sender,
handler: None,
}
}
pub fn with_handler(
mut self,
user_handler: fn(Peer, RegionRequest) -> Result<RegionResponse>,
) -> Self {
self.handler = Some(user_handler);
self
}
}
#[async_trait::async_trait]
impl MockDatanodeHandler for DatanodeWatcher {
async fn handle(&self, peer: &Peer, request: RegionRequest) -> Result<RegionResponse> {
debug!("Returning Ok(0) for request: {request:?}, peer: {peer:?}");
self.0.send((peer.clone(), request)).await.unwrap();
Ok(RegionResponse::new(0))
self.sender
.send((peer.clone(), request.clone()))
.await
.unwrap();
if let Some(handler) = self.handler {
handler(peer.clone(), request)
} else {
Ok(RegionResponse::new(0))
}
}
async fn handle_query(

View File

@@ -15,19 +15,33 @@
use std::assert_matches::assert_matches;
use std::sync::Arc;
use api::region::RegionResponse;
use api::v1::meta::Peer;
use api::v1::region::sync_request::ManifestInfo;
use api::v1::region::{region_request, MetricManifestInfo, RegionRequest, SyncRequest};
use api::v1::{ColumnDataType, SemanticType};
use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_procedure::{Procedure, ProcedureId, Status};
use common_procedure_test::MockContextProvider;
use store_api::metric_engine_consts::MANIFEST_INFO_EXTENSION_KEY;
use store_api::region_engine::RegionManifestInfo;
use store_api::storage::RegionId;
use tokio::sync::mpsc;
use crate::ddl::alter_logical_tables::AlterLogicalTablesProcedure;
use crate::ddl::test_util::alter_table::TestAlterTableExprBuilder;
use crate::ddl::test_util::columns::TestColumnDefBuilder;
use crate::ddl::test_util::datanode_handler::NaiveDatanodeHandler;
use crate::ddl::test_util::{create_logical_table, create_physical_table};
use crate::ddl::test_util::datanode_handler::{DatanodeWatcher, NaiveDatanodeHandler};
use crate::ddl::test_util::{
create_logical_table, create_physical_table, create_physical_table_metadata,
test_create_physical_table_task,
};
use crate::error::Error::{AlterLogicalTablesInvalidArguments, TableNotFound};
use crate::error::Result;
use crate::key::table_name::TableNameKey;
use crate::key::table_route::{PhysicalTableRouteValue, TableRouteValue};
use crate::rpc::ddl::AlterTableTask;
use crate::rpc::router::{Region, RegionRoute};
use crate::test_util::{new_ddl_context, MockDatanodeManager};
fn make_alter_logical_table_add_column_task(
@@ -407,3 +421,78 @@ async fn test_on_part_duplicate_alter_request() {
]
);
}
fn alters_request_handler(_peer: Peer, request: RegionRequest) -> Result<RegionResponse> {
if let region_request::Body::Alters(_) = request.body.unwrap() {
let mut response = RegionResponse::new(0);
// Default region id for physical table.
let region_id = RegionId::new(1000, 1);
response.extensions.insert(
MANIFEST_INFO_EXTENSION_KEY.to_string(),
RegionManifestInfo::encode_list(&[(region_id, RegionManifestInfo::metric(1, 0, 2, 0))])
.unwrap(),
);
return Ok(response);
}
Ok(RegionResponse::new(0))
}
#[tokio::test]
async fn test_on_submit_alter_region_request() {
common_telemetry::init_default_ut_logging();
let (tx, mut rx) = mpsc::channel(8);
let handler = DatanodeWatcher::new(tx).with_handler(alters_request_handler);
let node_manager = Arc::new(MockDatanodeManager::new(handler));
let ddl_context = new_ddl_context(node_manager);
let mut create_physical_table_task = test_create_physical_table_task("phy");
let phy_id = 1000u32;
let region_routes = vec![RegionRoute {
region: Region::new_test(RegionId::new(phy_id, 1)),
leader_peer: Some(Peer::empty(1)),
follower_peers: vec![Peer::empty(5)],
leader_state: None,
leader_down_since: None,
}];
create_physical_table_task.set_table_id(phy_id);
create_physical_table_metadata(
&ddl_context,
create_physical_table_task.table_info.clone(),
TableRouteValue::Physical(PhysicalTableRouteValue::new(region_routes)),
)
.await;
create_logical_table(ddl_context.clone(), phy_id, "table1").await;
create_logical_table(ddl_context.clone(), phy_id, "table2").await;
let tasks = vec![
make_alter_logical_table_add_column_task(None, "table1", vec!["new_col".to_string()]),
make_alter_logical_table_add_column_task(None, "table2", vec!["mew_col".to_string()]),
];
let mut procedure = AlterLogicalTablesProcedure::new(tasks, phy_id, ddl_context);
procedure.on_prepare().await.unwrap();
procedure.on_submit_alter_region_requests().await.unwrap();
let mut results = Vec::new();
for _ in 0..2 {
let result = rx.try_recv().unwrap();
results.push(result);
}
rx.try_recv().unwrap_err();
let (peer, request) = results.remove(0);
assert_eq!(peer.id, 1);
assert_matches!(request.body.unwrap(), region_request::Body::Alters(_));
let (peer, request) = results.remove(0);
assert_eq!(peer.id, 5);
assert_matches!(
request.body.unwrap(),
region_request::Body::Sync(SyncRequest {
manifest_info: Some(ManifestInfo::MetricManifestInfo(MetricManifestInfo {
data_manifest_version: 1,
metadata_manifest_version: 2,
..
})),
..
})
);
}

View File

@@ -16,7 +16,9 @@ use std::assert_matches::assert_matches;
use std::collections::HashMap;
use std::sync::Arc;
use api::region::RegionResponse;
use api::v1::alter_table_expr::Kind;
use api::v1::region::sync_request::ManifestInfo;
use api::v1::region::{region_request, RegionRequest};
use api::v1::{
AddColumn, AddColumns, AlterTableExpr, ColumnDataType, ColumnDef as PbColumnDef, DropColumn,
@@ -28,6 +30,8 @@ use common_error::status_code::StatusCode;
use common_procedure::store::poison_store::PoisonStore;
use common_procedure::{ProcedureId, Status};
use common_procedure_test::MockContextProvider;
use store_api::metric_engine_consts::MANIFEST_INFO_EXTENSION_KEY;
use store_api::region_engine::RegionManifestInfo;
use store_api::storage::RegionId;
use table::requests::TTL_KEY;
use tokio::sync::mpsc::{self};
@@ -39,7 +43,7 @@ use crate::ddl::test_util::datanode_handler::{
AllFailureDatanodeHandler, DatanodeWatcher, PartialSuccessDatanodeHandler,
RequestOutdatedErrorDatanodeHandler,
};
use crate::error::Error;
use crate::error::{Error, Result};
use crate::key::datanode_table::DatanodeTableKey;
use crate::key::table_name::TableNameKey;
use crate::key::table_route::TableRouteValue;
@@ -120,10 +124,71 @@ async fn test_on_prepare_table_not_exists_err() {
assert_matches!(err.status_code(), StatusCode::TableNotFound);
}
fn test_alter_table_task(table_name: &str) -> AlterTableTask {
AlterTableTask {
alter_table: AlterTableExpr {
catalog_name: DEFAULT_CATALOG_NAME.to_string(),
schema_name: DEFAULT_SCHEMA_NAME.to_string(),
table_name: table_name.to_string(),
kind: Some(Kind::DropColumns(DropColumns {
drop_columns: vec![DropColumn {
name: "cpu".to_string(),
}],
})),
},
}
}
fn assert_alter_request(
peer: Peer,
request: RegionRequest,
expected_peer_id: u64,
expected_region_id: RegionId,
) {
assert_eq!(peer.id, expected_peer_id);
let Some(region_request::Body::Alter(req)) = request.body else {
unreachable!();
};
assert_eq!(req.region_id, expected_region_id);
}
fn assert_sync_request(
peer: Peer,
request: RegionRequest,
expected_peer_id: u64,
expected_region_id: RegionId,
expected_manifest_version: u64,
) {
assert_eq!(peer.id, expected_peer_id);
let Some(region_request::Body::Sync(req)) = request.body else {
unreachable!();
};
let Some(ManifestInfo::MitoManifestInfo(info)) = req.manifest_info else {
unreachable!();
};
assert_eq!(info.data_manifest_version, expected_manifest_version);
assert_eq!(req.region_id, expected_region_id);
}
fn alter_request_handler(_peer: Peer, request: RegionRequest) -> Result<RegionResponse> {
if let region_request::Body::Alter(req) = request.body.unwrap() {
let mut response = RegionResponse::new(0);
let region_id = RegionId::from(req.region_id);
response.extensions.insert(
MANIFEST_INFO_EXTENSION_KEY.to_string(),
RegionManifestInfo::encode_list(&[(region_id, RegionManifestInfo::mito(1, 1))])
.unwrap(),
);
return Ok(response);
}
Ok(RegionResponse::new(0))
}
#[tokio::test]
async fn test_on_submit_alter_request() {
let (tx, mut rx) = mpsc::channel(8);
let datanode_handler = DatanodeWatcher(tx);
let datanode_handler = DatanodeWatcher::new(tx).with_handler(alter_request_handler);
let node_manager = Arc::new(MockDatanodeManager::new(datanode_handler));
let ddl_context = new_ddl_context(node_manager);
let table_id = 1024;
@@ -140,18 +205,7 @@ async fn test_on_submit_alter_request() {
.await
.unwrap();
let alter_table_task = AlterTableTask {
alter_table: AlterTableExpr {
catalog_name: DEFAULT_CATALOG_NAME.to_string(),
schema_name: DEFAULT_SCHEMA_NAME.to_string(),
table_name: table_name.to_string(),
kind: Some(Kind::DropColumns(DropColumns {
drop_columns: vec![DropColumn {
name: "cpu".to_string(),
}],
})),
},
};
let alter_table_task = test_alter_table_task(table_name);
let procedure_id = ProcedureId::random();
let provider = Arc::new(MockContextProvider::default());
let mut procedure =
@@ -162,30 +216,72 @@ async fn test_on_submit_alter_request() {
.await
.unwrap();
let check = |peer: Peer,
request: RegionRequest,
expected_peer_id: u64,
expected_region_id: RegionId| {
assert_eq!(peer.id, expected_peer_id);
let Some(region_request::Body::Alter(req)) = request.body else {
unreachable!();
};
assert_eq!(req.region_id, expected_region_id);
};
let mut results = Vec::new();
for _ in 0..5 {
let result = rx.try_recv().unwrap();
results.push(result);
}
rx.try_recv().unwrap_err();
results.sort_unstable_by(|(a, _), (b, _)| a.id.cmp(&b.id));
let (peer, request) = results.remove(0);
assert_alter_request(peer, request, 1, RegionId::new(table_id, 1));
let (peer, request) = results.remove(0);
assert_alter_request(peer, request, 2, RegionId::new(table_id, 2));
let (peer, request) = results.remove(0);
assert_alter_request(peer, request, 3, RegionId::new(table_id, 3));
let (peer, request) = results.remove(0);
assert_sync_request(peer, request, 4, RegionId::new(table_id, 2), 1);
let (peer, request) = results.remove(0);
assert_sync_request(peer, request, 5, RegionId::new(table_id, 1), 1);
}
#[tokio::test]
async fn test_on_submit_alter_request_without_sync_request() {
let (tx, mut rx) = mpsc::channel(8);
// without use `alter_request_handler`, so no sync request will be sent.
let datanode_handler = DatanodeWatcher::new(tx);
let node_manager = Arc::new(MockDatanodeManager::new(datanode_handler));
let ddl_context = new_ddl_context(node_manager);
let table_id = 1024;
let table_name = "foo";
let task = test_create_table_task(table_name, table_id);
// Puts a value to table name key.
ddl_context
.table_metadata_manager
.create_table_metadata(
task.table_info.clone(),
prepare_table_route(table_id),
HashMap::new(),
)
.await
.unwrap();
let alter_table_task = test_alter_table_task(table_name);
let procedure_id = ProcedureId::random();
let provider = Arc::new(MockContextProvider::default());
let mut procedure =
AlterTableProcedure::new(table_id, alter_table_task, ddl_context.clone()).unwrap();
procedure.on_prepare().await.unwrap();
procedure
.submit_alter_region_requests(procedure_id, provider.as_ref())
.await
.unwrap();
let mut results = Vec::new();
for _ in 0..3 {
let result = rx.try_recv().unwrap();
results.push(result);
}
rx.try_recv().unwrap_err();
results.sort_unstable_by(|(a, _), (b, _)| a.id.cmp(&b.id));
let (peer, request) = results.remove(0);
check(peer, request, 1, RegionId::new(table_id, 1));
assert_alter_request(peer, request, 1, RegionId::new(table_id, 1));
let (peer, request) = results.remove(0);
check(peer, request, 2, RegionId::new(table_id, 2));
assert_alter_request(peer, request, 2, RegionId::new(table_id, 2));
let (peer, request) = results.remove(0);
check(peer, request, 3, RegionId::new(table_id, 3));
assert_alter_request(peer, request, 3, RegionId::new(table_id, 3));
}
#[tokio::test]

View File

@@ -46,7 +46,7 @@ pub(crate) fn test_create_flow_task(
create_if_not_exists,
expire_after: Some(300),
comment: "".to_string(),
sql: "raw_sql".to_string(),
sql: "select 1".to_string(),
flow_options: Default::default(),
}
}

View File

@@ -15,20 +15,28 @@
use std::assert_matches::assert_matches;
use std::sync::Arc;
use api::region::RegionResponse;
use api::v1::meta::Peer;
use api::v1::region::sync_request::ManifestInfo;
use api::v1::region::{region_request, MetricManifestInfo, RegionRequest, SyncRequest};
use common_error::ext::ErrorExt;
use common_error::status_code::StatusCode;
use common_procedure::{Context as ProcedureContext, Procedure, ProcedureId, Status};
use common_procedure_test::MockContextProvider;
use store_api::metric_engine_consts::MANIFEST_INFO_EXTENSION_KEY;
use store_api::region_engine::RegionManifestInfo;
use store_api::storage::RegionId;
use tokio::sync::mpsc;
use crate::ddl::create_logical_tables::CreateLogicalTablesProcedure;
use crate::ddl::test_util::datanode_handler::NaiveDatanodeHandler;
use crate::ddl::test_util::datanode_handler::{DatanodeWatcher, NaiveDatanodeHandler};
use crate::ddl::test_util::{
create_physical_table_metadata, test_create_logical_table_task, test_create_physical_table_task,
};
use crate::ddl::TableMetadata;
use crate::error::Error;
use crate::key::table_route::TableRouteValue;
use crate::error::{Error, Result};
use crate::key::table_route::{PhysicalTableRouteValue, TableRouteValue};
use crate::rpc::router::{Region, RegionRoute};
use crate::test_util::{new_ddl_context, MockDatanodeManager};
#[tokio::test]
@@ -390,3 +398,76 @@ async fn test_on_create_metadata_err() {
let error = procedure.execute(&ctx).await.unwrap_err();
assert!(!error.is_retry_later());
}
fn creates_request_handler(_peer: Peer, request: RegionRequest) -> Result<RegionResponse> {
if let region_request::Body::Creates(_) = request.body.unwrap() {
let mut response = RegionResponse::new(0);
// Default region id for physical table.
let region_id = RegionId::new(1024, 1);
response.extensions.insert(
MANIFEST_INFO_EXTENSION_KEY.to_string(),
RegionManifestInfo::encode_list(&[(region_id, RegionManifestInfo::metric(1, 0, 2, 0))])
.unwrap(),
);
return Ok(response);
}
Ok(RegionResponse::new(0))
}
#[tokio::test]
async fn test_on_submit_create_request() {
common_telemetry::init_default_ut_logging();
let (tx, mut rx) = mpsc::channel(8);
let handler = DatanodeWatcher::new(tx).with_handler(creates_request_handler);
let node_manager = Arc::new(MockDatanodeManager::new(handler));
let ddl_context = new_ddl_context(node_manager);
let mut create_physical_table_task = test_create_physical_table_task("phy_table");
let table_id = 1024u32;
let region_routes = vec![RegionRoute {
region: Region::new_test(RegionId::new(table_id, 1)),
leader_peer: Some(Peer::empty(1)),
follower_peers: vec![Peer::empty(5)],
leader_state: None,
leader_down_since: None,
}];
create_physical_table_task.set_table_id(table_id);
create_physical_table_metadata(
&ddl_context,
create_physical_table_task.table_info.clone(),
TableRouteValue::Physical(PhysicalTableRouteValue::new(region_routes)),
)
.await;
let physical_table_id = table_id;
let task = test_create_logical_table_task("foo");
let yet_another_task = test_create_logical_table_task("bar");
let mut procedure = CreateLogicalTablesProcedure::new(
vec![task, yet_another_task],
physical_table_id,
ddl_context,
);
procedure.on_prepare().await.unwrap();
procedure.on_datanode_create_regions().await.unwrap();
let mut results = Vec::new();
for _ in 0..2 {
let result = rx.try_recv().unwrap();
results.push(result);
}
rx.try_recv().unwrap_err();
let (peer, request) = results.remove(0);
assert_eq!(peer.id, 1);
assert_matches!(request.body.unwrap(), region_request::Body::Creates(_));
let (peer, request) = results.remove(0);
assert_eq!(peer.id, 5);
assert_matches!(
request.body.unwrap(),
region_request::Body::Sync(SyncRequest {
manifest_info: Some(ManifestInfo::MetricManifestInfo(MetricManifestInfo {
data_manifest_version: 1,
metadata_manifest_version: 2,
..
})),
..
})
);
}

View File

@@ -100,7 +100,7 @@ async fn test_on_prepare_table() {
#[tokio::test]
async fn test_on_datanode_drop_regions() {
let (tx, mut rx) = mpsc::channel(8);
let datanode_handler = DatanodeWatcher(tx);
let datanode_handler = DatanodeWatcher::new(tx);
let node_manager = Arc::new(MockDatanodeManager::new(datanode_handler));
let ddl_context = new_ddl_context(node_manager);
let table_id = 1024;
@@ -148,27 +148,39 @@ async fn test_on_datanode_drop_regions() {
let check = |peer: Peer,
request: RegionRequest,
expected_peer_id: u64,
expected_region_id: RegionId| {
expected_region_id: RegionId,
follower: bool| {
assert_eq!(peer.id, expected_peer_id);
let Some(region_request::Body::Drop(req)) = request.body else {
unreachable!();
if follower {
let Some(region_request::Body::Close(req)) = request.body else {
unreachable!();
};
assert_eq!(req.region_id, expected_region_id);
} else {
let Some(region_request::Body::Drop(req)) = request.body else {
unreachable!();
};
assert_eq!(req.region_id, expected_region_id);
};
assert_eq!(req.region_id, expected_region_id);
};
let mut results = Vec::new();
for _ in 0..3 {
for _ in 0..5 {
let result = rx.try_recv().unwrap();
results.push(result);
}
results.sort_unstable_by(|(a, _), (b, _)| a.id.cmp(&b.id));
let (peer, request) = results.remove(0);
check(peer, request, 1, RegionId::new(table_id, 1));
check(peer, request, 1, RegionId::new(table_id, 1), false);
let (peer, request) = results.remove(0);
check(peer, request, 2, RegionId::new(table_id, 2));
check(peer, request, 2, RegionId::new(table_id, 2), false);
let (peer, request) = results.remove(0);
check(peer, request, 3, RegionId::new(table_id, 3));
check(peer, request, 3, RegionId::new(table_id, 3), false);
let (peer, request) = results.remove(0);
check(peer, request, 4, RegionId::new(table_id, 2), true);
let (peer, request) = results.remove(0);
check(peer, request, 5, RegionId::new(table_id, 1), true);
}
#[tokio::test]

View File

@@ -15,27 +15,37 @@
use std::collections::HashMap;
use std::fmt::Debug;
use common_catalog::consts::METRIC_ENGINE;
use api::region::RegionResponse;
use api::v1::region::sync_request::ManifestInfo;
use api::v1::region::{
region_request, MetricManifestInfo, MitoManifestInfo, RegionRequest, RegionRequestHeader,
SyncRequest,
};
use common_catalog::consts::{METRIC_ENGINE, MITO_ENGINE};
use common_error::ext::BoxedError;
use common_procedure::error::Error as ProcedureError;
use common_telemetry::{error, warn};
use common_telemetry::tracing_context::TracingContext;
use common_telemetry::{error, info, warn};
use common_wal::options::WalOptions;
use futures::future::join_all;
use snafu::{ensure, OptionExt, ResultExt};
use store_api::metric_engine_consts::LOGICAL_TABLE_METADATA_KEY;
use store_api::storage::RegionNumber;
use store_api::metric_engine_consts::{LOGICAL_TABLE_METADATA_KEY, MANIFEST_INFO_EXTENSION_KEY};
use store_api::region_engine::RegionManifestInfo;
use store_api::storage::{RegionId, RegionNumber};
use table::metadata::TableId;
use table::table_reference::TableReference;
use crate::ddl::DetectingRegion;
use crate::ddl::{DdlContext, DetectingRegion};
use crate::error::{
Error, OperateDatanodeSnafu, ParseWalOptionsSnafu, Result, TableNotFoundSnafu, UnsupportedSnafu,
self, Error, OperateDatanodeSnafu, ParseWalOptionsSnafu, Result, TableNotFoundSnafu,
UnsupportedSnafu,
};
use crate::key::datanode_table::DatanodeTableValue;
use crate::key::table_name::TableNameKey;
use crate::key::TableMetadataManagerRef;
use crate::peer::Peer;
use crate::rpc::ddl::CreateTableTask;
use crate::rpc::router::RegionRoute;
use crate::rpc::router::{find_follower_regions, find_followers, RegionRoute};
/// Adds [Peer] context if the error is unretryable.
pub fn add_peer_context_if_needed(datanode: Peer) -> impl FnOnce(Error) -> Error {
@@ -192,8 +202,8 @@ pub fn extract_region_wal_options(
/// - PartialNonRetryable: if any operation is non retryable, the result is non retryable.
/// - AllRetryable: all operations are retryable.
/// - AllNonRetryable: all operations are not retryable.
pub enum MultipleResults {
Ok,
pub enum MultipleResults<T> {
Ok(Vec<T>),
PartialRetryable(Error),
PartialNonRetryable(Error),
AllRetryable(Error),
@@ -205,9 +215,9 @@ pub enum MultipleResults {
/// For partial success, we need to check if the errors are retryable.
/// If all the errors are retryable, we return a retryable error.
/// Otherwise, we return the first error.
pub fn handle_multiple_results<T: Debug>(results: Vec<Result<T>>) -> MultipleResults {
pub fn handle_multiple_results<T: Debug>(results: Vec<Result<T>>) -> MultipleResults<T> {
if results.is_empty() {
return MultipleResults::Ok;
return MultipleResults::Ok(Vec::new());
}
let num_results = results.len();
let mut retryable_results = Vec::new();
@@ -216,7 +226,7 @@ pub fn handle_multiple_results<T: Debug>(results: Vec<Result<T>>) -> MultipleRes
for result in results {
match result {
Ok(_) => ok_results.push(result),
Ok(value) => ok_results.push(value),
Err(err) => {
if err.is_retry_later() {
retryable_results.push(err);
@@ -243,7 +253,7 @@ pub fn handle_multiple_results<T: Debug>(results: Vec<Result<T>>) -> MultipleRes
}
return MultipleResults::AllNonRetryable(non_retryable_results.into_iter().next().unwrap());
} else if ok_results.len() == num_results {
return MultipleResults::Ok;
return MultipleResults::Ok(ok_results);
} else if !retryable_results.is_empty()
&& !ok_results.is_empty()
&& non_retryable_results.is_empty()
@@ -264,6 +274,125 @@ pub fn handle_multiple_results<T: Debug>(results: Vec<Result<T>>) -> MultipleRes
MultipleResults::PartialNonRetryable(non_retryable_results.into_iter().next().unwrap())
}
/// Parses manifest infos from extensions.
pub fn parse_manifest_infos_from_extensions(
extensions: &HashMap<String, Vec<u8>>,
) -> Result<Vec<(RegionId, RegionManifestInfo)>> {
let data_manifest_version =
extensions
.get(MANIFEST_INFO_EXTENSION_KEY)
.context(error::UnexpectedSnafu {
err_msg: "manifest info extension not found",
})?;
let data_manifest_version =
RegionManifestInfo::decode_list(data_manifest_version).context(error::SerdeJsonSnafu {})?;
Ok(data_manifest_version)
}
/// Sync follower regions on datanodes.
pub async fn sync_follower_regions(
context: &DdlContext,
table_id: TableId,
results: Vec<RegionResponse>,
region_routes: &[RegionRoute],
engine: &str,
) -> Result<()> {
if engine != MITO_ENGINE && engine != METRIC_ENGINE {
info!(
"Skip submitting sync region requests for table_id: {}, engine: {}",
table_id, engine
);
return Ok(());
}
let results = results
.into_iter()
.map(|response| parse_manifest_infos_from_extensions(&response.extensions))
.collect::<Result<Vec<_>>>()?
.into_iter()
.flatten()
.collect::<HashMap<_, _>>();
let is_mito_engine = engine == MITO_ENGINE;
let followers = find_followers(region_routes);
if followers.is_empty() {
return Ok(());
}
let mut sync_region_tasks = Vec::with_capacity(followers.len());
for datanode in followers {
let requester = context.node_manager.datanode(&datanode).await;
let regions = find_follower_regions(region_routes, &datanode);
for region in regions {
let region_id = RegionId::new(table_id, region);
let manifest_info = if is_mito_engine {
let region_manifest_info =
results.get(&region_id).context(error::UnexpectedSnafu {
err_msg: format!("No manifest info found for region {}", region_id),
})?;
ensure!(
region_manifest_info.is_mito(),
error::UnexpectedSnafu {
err_msg: format!("Region {} is not a mito region", region_id)
}
);
ManifestInfo::MitoManifestInfo(MitoManifestInfo {
data_manifest_version: region_manifest_info.data_manifest_version(),
})
} else {
let region_manifest_info =
results.get(&region_id).context(error::UnexpectedSnafu {
err_msg: format!("No manifest info found for region {}", region_id),
})?;
ensure!(
region_manifest_info.is_metric(),
error::UnexpectedSnafu {
err_msg: format!("Region {} is not a metric region", region_id)
}
);
ManifestInfo::MetricManifestInfo(MetricManifestInfo {
data_manifest_version: region_manifest_info.data_manifest_version(),
metadata_manifest_version: region_manifest_info
.metadata_manifest_version()
.unwrap_or_default(),
})
};
let request = RegionRequest {
header: Some(RegionRequestHeader {
tracing_context: TracingContext::from_current_span().to_w3c(),
..Default::default()
}),
body: Some(region_request::Body::Sync(SyncRequest {
region_id: region_id.as_u64(),
manifest_info: Some(manifest_info),
})),
};
let datanode = datanode.clone();
let requester = requester.clone();
sync_region_tasks.push(async move {
requester
.handle(request)
.await
.map_err(add_peer_context_if_needed(datanode))
});
}
}
// Failure to sync region is not critical.
// We try our best to sync the regions.
if let Err(err) = join_all(sync_region_tasks)
.await
.into_iter()
.collect::<Result<Vec<_>>>()
{
error!(err; "Failed to sync follower regions on datanodes, table_id: {}", table_id);
}
info!("Sync follower regions on datanodes, table_id: {}", table_id);
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;

View File

@@ -401,6 +401,13 @@ pub enum Error {
location: Location,
},
#[snafu(display("Invalid flow request body: {:?}", body))]
InvalidFlowRequestBody {
body: Box<Option<api::v1::flow::flow_request::Body>>,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to get kv cache, err: {}", err_msg))]
GetKvCache { err_msg: String },
@@ -783,6 +790,14 @@ pub enum Error {
#[snafu(source)]
source: common_procedure::error::Error,
},
#[snafu(display("Failed to parse timezone"))]
InvalidTimeZone {
#[snafu(implicit)]
location: Location,
#[snafu(source)]
error: common_time::error::Error,
},
}
pub type Result<T> = std::result::Result<T, Error>;
@@ -853,7 +868,9 @@ impl ErrorExt for Error {
| TlsConfig { .. }
| InvalidSetDatabaseOption { .. }
| InvalidUnsetDatabaseOption { .. }
| InvalidTopicNamePrefix { .. } => StatusCode::InvalidArguments,
| InvalidTopicNamePrefix { .. }
| InvalidTimeZone { .. } => StatusCode::InvalidArguments,
InvalidFlowRequestBody { .. } => StatusCode::InvalidArguments,
FlowNotFound { .. } => StatusCode::FlowNotFound,
FlowRouteNotFound { .. } => StatusCode::Unexpected,

View File

@@ -57,6 +57,8 @@ impl Display for RegionIdent {
pub struct DowngradeRegionReply {
/// Returns the `last_entry_id` if available.
pub last_entry_id: Option<u64>,
/// Returns the `metadata_last_entry_id` if available (Only available for metric engine).
pub metadata_last_entry_id: Option<u64>,
/// Indicates whether the region exists.
pub exists: bool,
/// Return error if any during the operation.
@@ -136,16 +138,14 @@ pub struct DowngradeRegion {
/// `None` stands for don't flush before downgrading the region.
#[serde(default)]
pub flush_timeout: Option<Duration>,
/// Rejects all write requests after flushing.
pub reject_write: bool,
}
impl Display for DowngradeRegion {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(
f,
"DowngradeRegion(region_id={}, flush_timeout={:?}, rejct_write={})",
self.region_id, self.flush_timeout, self.reject_write
"DowngradeRegion(region_id={}, flush_timeout={:?})",
self.region_id, self.flush_timeout,
)
}
}
@@ -157,6 +157,8 @@ pub struct UpgradeRegion {
pub region_id: RegionId,
/// The `last_entry_id` of old leader region.
pub last_entry_id: Option<u64>,
/// The `last_entry_id` of old leader metadata region (Only used for metric engine).
pub metadata_last_entry_id: Option<u64>,
/// The timeout of waiting for a wal replay.
///
/// `None` stands for no wait,

View File

@@ -452,6 +452,7 @@ mod tests {
};
FlowInfoValue {
catalog_name: catalog_name.to_string(),
query_context: None,
flow_name: flow_name.to_string(),
source_table_ids,
sink_table_name,
@@ -625,6 +626,7 @@ mod tests {
};
let flow_value = FlowInfoValue {
catalog_name: "greptime".to_string(),
query_context: None,
flow_name: "flow".to_string(),
source_table_ids: vec![1024, 1025, 1026],
sink_table_name: another_sink_table_name,
@@ -864,6 +866,7 @@ mod tests {
};
let flow_value = FlowInfoValue {
catalog_name: "greptime".to_string(),
query_context: None,
flow_name: "flow".to_string(),
source_table_ids: vec![1024, 1025, 1026],
sink_table_name: another_sink_table_name,

View File

@@ -121,6 +121,13 @@ pub struct FlowInfoValue {
pub(crate) flownode_ids: BTreeMap<FlowPartitionId, FlownodeId>,
/// The catalog name.
pub(crate) catalog_name: String,
/// The query context used when create flow.
/// Although flow doesn't belong to any schema, this query_context is needed to remember
/// the query context when `create_flow` is executed
/// for recovering flow using the same sql&query_context after db restart.
/// if none, should use default query context
#[serde(default)]
pub(crate) query_context: Option<crate::rpc::ddl::QueryContext>,
/// The flow name.
pub(crate) flow_name: String,
/// The raw sql.
@@ -155,6 +162,10 @@ impl FlowInfoValue {
&self.catalog_name
}
pub fn query_context(&self) -> &Option<crate::rpc::ddl::QueryContext> {
&self.query_context
}
pub fn flow_name(&self) -> &String {
&self.flow_name
}

View File

@@ -15,8 +15,6 @@
#![feature(assert_matches)]
#![feature(btree_extract_if)]
#![feature(let_chains)]
#![feature(extract_if)]
#![feature(hash_extract_if)]
pub mod cache;
pub mod cache_invalidator;

View File

@@ -19,7 +19,7 @@ use std::sync::{Arc, RwLock};
use common_telemetry::warn;
use store_api::storage::RegionId;
use crate::datanode::RegionManifestInfo;
use crate::datanode::{RegionManifestInfo, RegionStat};
/// Represents information about a leader region in the cluster.
/// Contains the datanode id where the leader is located,
@@ -35,25 +35,22 @@ pub enum LeaderRegionManifestInfo {
Mito {
manifest_version: u64,
flushed_entry_id: u64,
topic_latest_entry_id: u64,
},
Metric {
data_manifest_version: u64,
data_flushed_entry_id: u64,
data_topic_latest_entry_id: u64,
metadata_manifest_version: u64,
metadata_flushed_entry_id: u64,
metadata_topic_latest_entry_id: u64,
},
}
impl From<RegionManifestInfo> for LeaderRegionManifestInfo {
fn from(value: RegionManifestInfo) -> Self {
match value {
RegionManifestInfo::Mito {
manifest_version,
flushed_entry_id,
} => LeaderRegionManifestInfo::Mito {
manifest_version,
flushed_entry_id,
},
impl LeaderRegionManifestInfo {
/// Generate a [LeaderRegionManifestInfo] from [RegionStat].
pub fn from_region_stat(region_stat: &RegionStat) -> LeaderRegionManifestInfo {
match region_stat.region_manifest {
RegionManifestInfo::Metric {
data_manifest_version,
data_flushed_entry_id,
@@ -62,14 +59,22 @@ impl From<RegionManifestInfo> for LeaderRegionManifestInfo {
} => LeaderRegionManifestInfo::Metric {
data_manifest_version,
data_flushed_entry_id,
data_topic_latest_entry_id: region_stat.data_topic_latest_entry_id,
metadata_manifest_version,
metadata_flushed_entry_id,
metadata_topic_latest_entry_id: region_stat.metadata_topic_latest_entry_id,
},
RegionManifestInfo::Mito {
manifest_version,
flushed_entry_id,
} => LeaderRegionManifestInfo::Mito {
manifest_version,
flushed_entry_id,
topic_latest_entry_id: region_stat.data_topic_latest_entry_id,
},
}
}
}
impl LeaderRegionManifestInfo {
/// Returns the manifest version of the leader region.
pub fn manifest_version(&self) -> u64 {
match self {
@@ -96,18 +101,35 @@ impl LeaderRegionManifestInfo {
}
}
/// Returns the minimum flushed entry id of the leader region.
/// It is used to determine the minimum flushed entry id that can be pruned in remote wal.
pub fn min_flushed_entry_id(&self) -> u64 {
/// Returns prunable entry id of the leader region.
/// It is used to determine the entry id that can be pruned in remote wal.
///
/// For a mito region, the prunable entry id should max(flushed_entry_id, latest_entry_id_since_flush).
///
/// For a metric region, the prunable entry id should min(
/// max(data_flushed_entry_id, data_latest_entry_id_since_flush),
/// max(metadata_flushed_entry_id, metadata_latest_entry_id_since_flush)
/// ).
pub fn prunable_entry_id(&self) -> u64 {
match self {
LeaderRegionManifestInfo::Mito {
flushed_entry_id, ..
} => *flushed_entry_id,
flushed_entry_id,
topic_latest_entry_id,
..
} => (*flushed_entry_id).max(*topic_latest_entry_id),
LeaderRegionManifestInfo::Metric {
data_flushed_entry_id,
data_topic_latest_entry_id,
metadata_flushed_entry_id,
metadata_topic_latest_entry_id,
..
} => (*data_flushed_entry_id).min(*metadata_flushed_entry_id),
} => {
let data_prunable_entry_id =
(*data_flushed_entry_id).max(*data_topic_latest_entry_id);
let metadata_prunable_entry_id =
(*metadata_flushed_entry_id).max(*metadata_topic_latest_entry_id);
data_prunable_entry_id.min(metadata_prunable_entry_id)
}
}
}
}

View File

@@ -35,17 +35,20 @@ use api::v1::{
};
use base64::engine::general_purpose;
use base64::Engine as _;
use common_time::DatabaseTimeToLive;
use common_time::{DatabaseTimeToLive, Timezone};
use prost::Message;
use serde::{Deserialize, Serialize};
use serde_with::{serde_as, DefaultOnNull};
use session::context::QueryContextRef;
use session::context::{QueryContextBuilder, QueryContextRef};
use snafu::{OptionExt, ResultExt};
use table::metadata::{RawTableInfo, TableId};
use table::table_name::TableName;
use table::table_reference::TableReference;
use crate::error::{self, InvalidSetDatabaseOptionSnafu, InvalidUnsetDatabaseOptionSnafu, Result};
use crate::error::{
self, InvalidSetDatabaseOptionSnafu, InvalidTimeZoneSnafu, InvalidUnsetDatabaseOptionSnafu,
Result,
};
use crate::key::FlowId;
/// DDL tasks
@@ -1202,7 +1205,7 @@ impl From<DropFlowTask> for PbDropFlowTask {
}
}
#[derive(Debug, Clone, Serialize, Deserialize)]
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
pub struct QueryContext {
current_catalog: String,
current_schema: String,
@@ -1223,6 +1226,19 @@ impl From<QueryContextRef> for QueryContext {
}
}
impl TryFrom<QueryContext> for session::context::QueryContext {
type Error = error::Error;
fn try_from(value: QueryContext) -> std::result::Result<Self, Self::Error> {
Ok(QueryContextBuilder::default()
.current_catalog(value.current_catalog)
.current_schema(value.current_schema)
.timezone(Timezone::from_tz_string(&value.timezone).context(InvalidTimeZoneSnafu)?)
.extensions(value.extensions)
.channel((value.channel as u32).into())
.build())
}
}
impl From<QueryContext> for PbQueryContext {
fn from(
QueryContext {

View File

@@ -32,6 +32,10 @@ use crate::key::RegionDistribution;
use crate::peer::Peer;
use crate::DatanodeId;
/// Returns the distribution of regions to datanodes.
///
/// The distribution is a map of datanode id to a list of region ids.
/// The list of region ids is sorted in ascending order.
pub fn region_distribution(region_routes: &[RegionRoute]) -> RegionDistribution {
let mut regions_id_map = RegionDistribution::new();
for route in region_routes.iter() {
@@ -39,6 +43,10 @@ pub fn region_distribution(region_routes: &[RegionRoute]) -> RegionDistribution
let region_id = route.region.id.region_number();
regions_id_map.entry(peer.id).or_default().push(region_id);
}
for peer in route.follower_peers.iter() {
let region_id = route.region.id.region_number();
regions_id_map.entry(peer.id).or_default().push(region_id);
}
}
for (_, regions) in regions_id_map.iter_mut() {
// id asc
@@ -54,6 +62,7 @@ pub struct TableRoute {
region_leaders: HashMap<RegionNumber, Option<Peer>>,
}
/// Returns the leader peers of the table.
pub fn find_leaders(region_routes: &[RegionRoute]) -> HashSet<Peer> {
region_routes
.iter()
@@ -62,6 +71,15 @@ pub fn find_leaders(region_routes: &[RegionRoute]) -> HashSet<Peer> {
.collect()
}
/// Returns the followers of the table.
pub fn find_followers(region_routes: &[RegionRoute]) -> HashSet<Peer> {
region_routes
.iter()
.flat_map(|x| &x.follower_peers)
.cloned()
.collect()
}
/// Returns the operating leader regions with corresponding [DatanodeId].
pub fn operating_leader_regions(region_routes: &[RegionRoute]) -> Vec<(RegionId, DatanodeId)> {
region_routes
@@ -100,6 +118,7 @@ pub fn find_region_leader(
.cloned()
}
/// Returns the region numbers of the leader regions on the target datanode.
pub fn find_leader_regions(region_routes: &[RegionRoute], datanode: &Peer) -> Vec<RegionNumber> {
region_routes
.iter()
@@ -114,6 +133,19 @@ pub fn find_leader_regions(region_routes: &[RegionRoute], datanode: &Peer) -> Ve
.collect()
}
/// Returns the region numbers of the follower regions on the target datanode.
pub fn find_follower_regions(region_routes: &[RegionRoute], datanode: &Peer) -> Vec<RegionNumber> {
region_routes
.iter()
.filter_map(|x| {
if x.follower_peers.contains(datanode) {
return Some(x.region.id.region_number());
}
None
})
.collect()
}
impl TableRoute {
pub fn new(table: Table, region_routes: Vec<RegionRoute>) -> Self {
let region_leaders = region_routes
@@ -144,15 +176,12 @@ impl TableRoute {
})?
.into();
let leader_peer = peers
.get(region_route.leader_peer_index as usize)
.cloned()
.map(Into::into);
let leader_peer = peers.get(region_route.leader_peer_index as usize).cloned();
let follower_peers = region_route
.follower_peer_indexes
.into_iter()
.filter_map(|x| peers.get(x as usize).cloned().map(Into::into))
.filter_map(|x| peers.get(x as usize).cloned())
.collect::<Vec<_>>();
region_routes.push(RegionRoute {
@@ -550,4 +579,40 @@ mod tests {
assert_eq!(got, p);
}
#[test]
fn test_region_distribution() {
let region_routes = vec![
RegionRoute {
region: Region {
id: RegionId::new(1, 1),
name: "r1".to_string(),
partition: None,
attrs: BTreeMap::new(),
},
leader_peer: Some(Peer::new(1, "a1")),
follower_peers: vec![Peer::new(2, "a2"), Peer::new(3, "a3")],
leader_state: None,
leader_down_since: None,
},
RegionRoute {
region: Region {
id: RegionId::new(1, 2),
name: "r2".to_string(),
partition: None,
attrs: BTreeMap::new(),
},
leader_peer: Some(Peer::new(2, "a2")),
follower_peers: vec![Peer::new(1, "a1"), Peer::new(3, "a3")],
leader_state: None,
leader_down_since: None,
},
];
let distribution = region_distribution(&region_routes);
assert_eq!(distribution.len(), 3);
assert_eq!(distribution[&1], vec![1, 2]);
assert_eq!(distribution[&2], vec![1, 2]);
assert_eq!(distribution[&3], vec![1, 2]);
}
}

View File

@@ -30,7 +30,9 @@ use crate::error::{EncodeWalOptionsSnafu, InvalidTopicNamePrefixSnafu, Result};
use crate::key::NAME_PATTERN_REGEX;
use crate::kv_backend::KvBackendRef;
use crate::leadership_notifier::LeadershipChangeListener;
pub use crate::wal_options_allocator::topic_creator::build_kafka_topic_creator;
pub use crate::wal_options_allocator::topic_creator::{
build_kafka_client, build_kafka_topic_creator,
};
use crate::wal_options_allocator::topic_pool::KafkaTopicPool;
/// Allocates wal options in region granularity.

View File

@@ -12,8 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use common_telemetry::{error, info};
use common_wal::config::kafka::common::DEFAULT_BACKOFF_CONFIG;
use common_wal::config::kafka::MetasrvKafkaConfig;
@@ -34,11 +32,9 @@ use crate::error::{
// The `DEFAULT_PARTITION` refers to the index of the partition.
const DEFAULT_PARTITION: i32 = 0;
type KafkaClientRef = Arc<Client>;
/// Creates topics in kafka.
pub struct KafkaTopicCreator {
client: KafkaClientRef,
client: Client,
/// The number of partitions per topic.
num_partitions: i32,
/// The replication factor of each topic.
@@ -48,7 +44,7 @@ pub struct KafkaTopicCreator {
}
impl KafkaTopicCreator {
pub fn client(&self) -> &KafkaClientRef {
pub fn client(&self) -> &Client {
&self.client
}
@@ -133,7 +129,8 @@ impl KafkaTopicCreator {
}
}
pub async fn build_kafka_topic_creator(config: &MetasrvKafkaConfig) -> Result<KafkaTopicCreator> {
/// Builds a kafka [Client](rskafka::client::Client).
pub async fn build_kafka_client(config: &MetasrvKafkaConfig) -> Result<Client> {
// Builds an kafka controller client for creating topics.
let broker_endpoints = common_wal::resolve_to_ipv4(&config.connection.broker_endpoints)
.await
@@ -145,15 +142,19 @@ pub async fn build_kafka_topic_creator(config: &MetasrvKafkaConfig) -> Result<Ka
if let Some(tls) = &config.connection.tls {
builder = builder.tls_config(tls.to_tls_config().await.context(TlsConfigSnafu)?)
};
let client = builder
builder
.build()
.await
.with_context(|_| BuildKafkaClientSnafu {
broker_endpoints: config.connection.broker_endpoints.clone(),
})?;
})
}
/// Builds a [KafkaTopicCreator].
pub async fn build_kafka_topic_creator(config: &MetasrvKafkaConfig) -> Result<KafkaTopicCreator> {
let client = build_kafka_client(config).await?;
Ok(KafkaTopicCreator {
client: Arc::new(client),
client,
num_partitions: config.kafka_topic.num_partitions,
replication_factor: config.kafka_topic.replication_factor,
create_topic_timeout: config.kafka_topic.create_topic_timeout.as_millis() as i32,

View File

@@ -137,6 +137,7 @@ impl StateStore for ObjectStateStore {
))
})
.context(PutStateSnafu { key })
.map(|_| ())
}
async fn walk_top_down(&self, path: &str) -> Result<KeyValueStream> {

View File

@@ -18,16 +18,19 @@ mod udaf;
use std::sync::Arc;
use api::v1::TableName;
use datafusion::catalog::CatalogProviderList;
use datafusion::error::Result as DatafusionResult;
use datafusion::logical_expr::{LogicalPlan, LogicalPlanBuilder};
use datafusion_common::Column;
use datafusion_expr::col;
use datafusion_common::{Column, TableReference};
use datafusion_expr::dml::InsertOp;
use datafusion_expr::{col, DmlStatement, WriteOp};
pub use expr::{build_filter_from_timestamp, build_same_type_ts_filter};
use snafu::ResultExt;
pub use self::accumulator::{Accumulator, AggregateFunctionCreator, AggregateFunctionCreatorRef};
pub use self::udaf::AggregateFunction;
use crate::error::Result;
use crate::error::{GeneralDataFusionSnafu, Result};
use crate::logical_plan::accumulator::*;
use crate::signature::{Signature, Volatility};
@@ -79,6 +82,74 @@ pub fn rename_logical_plan_columns(
LogicalPlanBuilder::from(plan).project(projection)?.build()
}
/// Convert a insert into logical plan to an (table_name, logical_plan)
/// where table_name is the name of the table to insert into.
/// logical_plan is the plan to be executed.
///
/// if input logical plan is not `insert into table_name <input>`, return None
///
/// Returned TableName will use provided catalog and schema if not specified in the logical plan,
/// if table scan in logical plan have full table name, will **NOT** override it.
pub fn breakup_insert_plan(
plan: &LogicalPlan,
default_catalog: &str,
default_schema: &str,
) -> Option<(TableName, Arc<LogicalPlan>)> {
if let LogicalPlan::Dml(dml) = plan {
if dml.op != WriteOp::Insert(InsertOp::Append) {
return None;
}
let table_name = &dml.table_name;
let table_name = match table_name {
TableReference::Bare { table } => TableName {
catalog_name: default_catalog.to_string(),
schema_name: default_schema.to_string(),
table_name: table.to_string(),
},
TableReference::Partial { schema, table } => TableName {
catalog_name: default_catalog.to_string(),
schema_name: schema.to_string(),
table_name: table.to_string(),
},
TableReference::Full {
catalog,
schema,
table,
} => TableName {
catalog_name: catalog.to_string(),
schema_name: schema.to_string(),
table_name: table.to_string(),
},
};
let logical_plan = dml.input.clone();
Some((table_name, logical_plan))
} else {
None
}
}
/// create a `insert into table_name <input>` logical plan
pub fn add_insert_to_logical_plan(
table_name: TableName,
table_schema: datafusion_common::DFSchemaRef,
input: LogicalPlan,
) -> Result<LogicalPlan> {
let table_name = TableReference::Full {
catalog: table_name.catalog_name.into(),
schema: table_name.schema_name.into(),
table: table_name.table_name.into(),
};
let plan = LogicalPlan::Dml(DmlStatement::new(
table_name,
table_schema,
WriteOp::Insert(InsertOp::Append),
Arc::new(input),
));
let plan = plan.recompute_schema().context(GeneralDataFusionSnafu)?;
Ok(plan)
}
/// The datafusion `[LogicalPlan]` decoder.
#[async_trait::async_trait]
pub trait SubstraitPlanDecoder {

View File

@@ -24,7 +24,7 @@ use datatypes::prelude::*;
use datatypes::vectors::{Helper as VectorHelper, VectorRef};
use snafu::ResultExt;
use crate::error::{self, Error, FromScalarValueSnafu, IntoVectorSnafu, Result};
use crate::error::{self, FromScalarValueSnafu, IntoVectorSnafu, Result};
use crate::prelude::*;
pub type AggregateFunctionCreatorRef = Arc<dyn AggregateFunctionCreator>;
@@ -166,8 +166,7 @@ impl DfAccumulator for DfAccumulatorAdaptor {
let output_type = self.creator.output_type()?;
let scalar_value = value
.try_to_scalar_value(&output_type)
.context(error::ToScalarValueSnafu)
.map_err(Error::from)?;
.context(error::ToScalarValueSnafu)?;
Ok(scalar_value)
}

Some files were not shown because too many files have changed in this diff Show More