feat: new datatypes subcrate based on the official arrow (#705)

* feat: Init datatypes2 crate

* chore: Remove some unimplemented types

* feat: Implements PrimitiveType and PrimitiveVector for datatypes2 (#633)

* feat: Implement primitive types and vectors

* feat: Implement a wrapper type

* feat: Remove VectorType from ScalarRef

* feat: Move some trait bound from NativeType to WrapperType

* feat: pub use  primitive vectors and builders

* feat: Returns error in try_from when type mismatch

* feat: Impl PartialEq for some vectors

* test: Pass vector tests

* chore: Add license header

* test: Pass more vector tests

* feat: Implement some methods of vector Helper

* test: Pass more tests

* style: Fix clippy

* chore: Add license header

* feat: Remove IntoValueRef trait

* feat: Add NativeType trait bound to WrapperType::Native

* docs: Explain what is wrapper type

* chore: Fix typos

* refactor: LogicalPrimitiveType::type_name returns str

* feat: Implements DateType and DateVector (#651)

* feat: Implement DateType and DateVector

* test: Pass more value and data type tests

* chore: Address CR comments

* test: Skip list value test

* feat: datatypes2 datetime (#661)

* feat: impl DateTime type and vector

* fix: add license header

* fix: CR comments and add more tests

* fix: customized serialization for wrapper type

* feat: Implements NullType and NullVector (#658)

* feat: Implements NullType and NullVector

* chore: Address CR comment

Co-authored-by: Ruihang Xia <waynestxia@gmail.com>

* chore: Address CR comment

Co-authored-by: Ruihang Xia <waynestxia@gmail.com>

* feat: Implements StringType and StringVector (#659)

* feat: implement string vector

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* add more test and from

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* fix clippy

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* cover NUL

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* feat: impl datatypes2/timestamp (#686)

* feat: add timestamp datatype and vectors

* fix: cr comments and reformat code

* chore: add some tests

* feat: Implements ListType and ListVector (#681)

* feat: Implement ListType and ListVector

* test: Pass more tests

* style: Fix clippy

* chore: Fix comment

* chore: Address CR comments

* feat: impl constant vector (#680)

* feat: impl constant vector

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* fix tests

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* Apply suggestions from code review

Co-authored-by: Yingwen <realevenyag@gmail.com>

* rename fn names

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

* remove println

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: Yingwen <realevenyag@gmail.com>

* feat: Implements Validity (#684)

* feat: Implements Validity

* chore: remove pub from sub mod in vectors

* feat: Implements schema for datatypes2 (#695)

* feat: Add is_timestamp_compatible to DataType

* feat: Implement ColumnSchema and Schema

* feat: Impl RawSchema

* chore: Remove useless codes and run more tests

* chore: Fix clippy

* feat: Impl from_arrow_time_unit and pass schema tests

* chore: add more tests for timestamp (#702)

* chore: add more tests for timestamp

* chore: add replicate test for timestamps

* feat: Implements helper methods for vectors/values (#703)

* feat: Implement helper methods for vectors/values

* chore: Address CR comments

* chore: add more test for timestamp

Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
Co-authored-by: evenyag <realevenyag@gmail.com>
Co-authored-by: Lei, HUANG <6406592+v0y4g3r@users.noreply.github.com>
Co-authored-by: Lei, HUANG <mrsatangel@gmail.com>
This commit is contained in:
Ruihang Xia
2022-12-05 19:59:23 +08:00
committed by GitHub
parent 4275e47bdb
commit beb07fc895
48 changed files with 10493 additions and 34 deletions

248
Cargo.lock generated
View File

@@ -40,6 +40,19 @@ dependencies = [
"version_check",
]
[[package]]
name = "ahash"
version = "0.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "bf6ccdb167abbf410dcb915cabd428929d7f6a04980b54a11f26a39f1c7f7107"
dependencies = [
"cfg-if",
"const-random",
"getrandom 0.2.7",
"once_cell",
"version_check",
]
[[package]]
name = "aho-corasick"
version = "0.7.19"
@@ -182,8 +195,8 @@ dependencies = [
"bitflags",
"chrono",
"csv",
"flatbuffers",
"half",
"flatbuffers 2.1.1",
"half 1.8.2",
"hex",
"indexmap",
"lazy_static",
@@ -197,6 +210,72 @@ dependencies = [
"serde_json",
]
[[package]]
name = "arrow"
version = "26.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e24e2bcd431a4aa0ff003fdd2dc21c78cfb42f31459c89d2312c2746fe17a5ac"
dependencies = [
"ahash 0.8.2",
"arrow-array",
"arrow-buffer",
"arrow-data",
"arrow-schema",
"arrow-select",
"bitflags",
"chrono",
"csv",
"flatbuffers 22.9.29",
"half 2.1.0",
"hashbrown",
"indexmap",
"lazy_static",
"lexical-core",
"multiversion",
"num",
"regex",
"regex-syntax",
"serde_json",
]
[[package]]
name = "arrow-array"
version = "26.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "c9044300874385f19e77cbf90911e239bd23630d8f23bb0f948f9067998a13b7"
dependencies = [
"ahash 0.8.2",
"arrow-buffer",
"arrow-data",
"arrow-schema",
"chrono",
"half 2.1.0",
"hashbrown",
"num",
]
[[package]]
name = "arrow-buffer"
version = "26.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "78476cbe9e3f808dcecab86afe42d573863c63e149c62e6e379ed2522743e626"
dependencies = [
"half 2.1.0",
"num",
]
[[package]]
name = "arrow-data"
version = "26.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "4d916feee158c485dad4f701cba31bc9a90a8db87d9df8e2aa8adc0c20a2bbb9"
dependencies = [
"arrow-buffer",
"arrow-schema",
"half 2.1.0",
"num",
]
[[package]]
name = "arrow-format"
version = "0.4.0"
@@ -207,13 +286,32 @@ dependencies = [
"serde",
]
[[package]]
name = "arrow-schema"
version = "26.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0f9406eb7834ca6bd8350d1baa515d18b9fcec487eddacfb62f5e19511f7bd37"
[[package]]
name = "arrow-select"
version = "26.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6593a01586751c74498495d2f5a01fcd438102b52965c11dd98abf4ebcacef37"
dependencies = [
"arrow-array",
"arrow-buffer",
"arrow-data",
"arrow-schema",
"num",
]
[[package]]
name = "arrow2"
version = "0.10.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2e387b20dd573a96f36b173d9027483898f944d696521afd74e2caa3c813d86e"
dependencies = [
"ahash",
"ahash 0.7.6",
"arrow-format",
"base64",
"bytemuck",
@@ -551,7 +649,7 @@ checksum = "904dfeac50f3cdaba28fc6f57fdcddb75f49ed61346676a78c4ffe55877802fd"
name = "benchmarks"
version = "0.1.0"
dependencies = [
"arrow",
"arrow 10.0.0",
"clap 4.0.18",
"client",
"indicatif",
@@ -961,7 +1059,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "213030a2b5a4e0c0892b6652260cf6ccac84827b83a85a534e178e3906c4cf1b"
dependencies = [
"ciborium-io",
"half",
"half 1.8.2",
]
[[package]]
@@ -1207,7 +1305,7 @@ dependencies = [
"common-function-macro",
"common-query",
"common-time",
"datafusion-common",
"datafusion-common 7.0.0",
"datatypes",
"libc",
"num",
@@ -1283,7 +1381,7 @@ dependencies = [
"common-recordbatch",
"common-time",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-expr",
"datatypes",
"snafu",
@@ -1297,7 +1395,7 @@ version = "0.1.0"
dependencies = [
"common-error",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datatypes",
"futures",
"paste",
@@ -1412,6 +1510,28 @@ dependencies = [
"tracing-subscriber",
]
[[package]]
name = "const-random"
version = "0.1.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "368a7a772ead6ce7e1de82bfb04c485f3db8ec744f72925af5735e29a22cc18e"
dependencies = [
"const-random-macro",
"proc-macro-hack",
]
[[package]]
name = "const-random-macro"
version = "0.1.15"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d7d6ab3c3a2282db210df5f02c4dab6e0a7057af0fb7ebd4070f30fe05c0ddb"
dependencies = [
"getrandom 0.2.7",
"once_cell",
"proc-macro-hack",
"tiny-keccak",
]
[[package]]
name = "constant_time_eq"
version = "0.1.5"
@@ -1724,12 +1844,12 @@ name = "datafusion"
version = "7.0.0"
source = "git+https://github.com/apache/arrow-datafusion.git?branch=arrow2#744b2626081db95a254fc882820fc7812f95aa51"
dependencies = [
"ahash",
"ahash 0.7.6",
"arrow2",
"async-trait",
"chrono",
"comfy-table 5.0.1",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-expr",
"datafusion-physical-expr",
"futures",
@@ -1744,7 +1864,7 @@ dependencies = [
"pin-project-lite",
"rand 0.8.5",
"smallvec",
"sqlparser",
"sqlparser 0.15.0",
"tempfile",
"tokio",
"tokio-stream",
@@ -1758,7 +1878,19 @@ dependencies = [
"arrow2",
"ordered-float 2.10.0",
"parquet2",
"sqlparser",
"sqlparser 0.15.0",
]
[[package]]
name = "datafusion-common"
version = "14.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "15f1ffcbc1f040c9ab99f41db1c743d95aff267bb2e7286aaa010738b7402251"
dependencies = [
"arrow 26.0.0",
"chrono",
"ordered-float 3.1.0",
"sqlparser 0.26.0",
]
[[package]]
@@ -1766,10 +1898,10 @@ name = "datafusion-expr"
version = "7.0.0"
source = "git+https://github.com/apache/arrow-datafusion.git?branch=arrow2#744b2626081db95a254fc882820fc7812f95aa51"
dependencies = [
"ahash",
"ahash 0.7.6",
"arrow2",
"datafusion-common",
"sqlparser",
"datafusion-common 7.0.0",
"sqlparser 0.15.0",
]
[[package]]
@@ -1777,12 +1909,12 @@ name = "datafusion-physical-expr"
version = "7.0.0"
source = "git+https://github.com/apache/arrow-datafusion.git?branch=arrow2#744b2626081db95a254fc882820fc7812f95aa51"
dependencies = [
"ahash",
"ahash 0.7.6",
"arrow2",
"blake2",
"blake3",
"chrono",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-expr",
"hashbrown",
"lazy_static",
@@ -1818,7 +1950,7 @@ dependencies = [
"common-telemetry",
"common-time",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datatypes",
"frontend",
"futures",
@@ -1857,7 +1989,26 @@ dependencies = [
"common-base",
"common-error",
"common-time",
"datafusion-common",
"datafusion-common 7.0.0",
"enum_dispatch",
"num",
"num-traits",
"ordered-float 3.1.0",
"paste",
"serde",
"serde_json",
"snafu",
]
[[package]]
name = "datatypes2"
version = "0.1.0"
dependencies = [
"arrow 26.0.0",
"common-base",
"common-error",
"common-time",
"datafusion-common 14.0.0",
"enum_dispatch",
"num",
"num-traits",
@@ -2159,6 +2310,16 @@ dependencies = [
"thiserror",
]
[[package]]
name = "flatbuffers"
version = "22.9.29"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8ce016b9901aef3579617931fbb2df8fc9a9f7cb95a16eb8acc8148209bb9e70"
dependencies = [
"bitflags",
"thiserror",
]
[[package]]
name = "flate2"
version = "1.0.24"
@@ -2215,7 +2376,7 @@ dependencies = [
"common-telemetry",
"common-time",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-expr",
"datanode",
"datatypes",
@@ -2235,7 +2396,7 @@ dependencies = [
"session",
"snafu",
"sql",
"sqlparser",
"sqlparser 0.15.0",
"store-api",
"table",
"tempdir",
@@ -2517,6 +2678,16 @@ version = "1.8.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eabb4a44450da02c90444cf74558da904edde8fb4e9035a9a6a4e15445af0bd7"
[[package]]
name = "half"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ad6a9459c9c30b177b925162351f97e7d967c7ea8bab3b8352805327daf45554"
dependencies = [
"crunchy",
"num-traits",
]
[[package]]
name = "hash_hasher"
version = "2.0.3"
@@ -2529,7 +2700,7 @@ version = "0.12.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8a9ee70c43aaf417c914396645a0fa852624801b24ebb7ae78fe8272889ac888"
dependencies = [
"ahash",
"ahash 0.7.6",
]
[[package]]
@@ -3218,7 +3389,7 @@ version = "0.20.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7b9b8653cec6897f73b519a43fba5ee3d50f62fe9af80b428accdcc093b4a849"
dependencies = [
"ahash",
"ahash 0.7.6",
"metrics-macros",
"portable-atomic",
]
@@ -3324,7 +3495,7 @@ dependencies = [
"common-telemetry",
"common-time",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datatypes",
"futures",
"log-store",
@@ -3884,7 +4055,7 @@ version = "10.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "53e9c8fc20af9b92d85d42ec86e5217b2eaf1340fbba75c4b4296de764ea7921"
dependencies = [
"arrow",
"arrow 10.0.0",
"base64",
"brotli",
"byteorder",
@@ -4504,7 +4675,7 @@ dependencies = [
"common-telemetry",
"common-time",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-physical-expr",
"datatypes",
"format_num",
@@ -5035,7 +5206,7 @@ name = "rustpython-compiler-core"
version = "0.1.2"
source = "git+https://github.com/RustPython/RustPython?rev=02a1d1d#02a1d1d7db57afbb78049599c2585cc7cd59e6d3"
dependencies = [
"ahash",
"ahash 0.7.6",
"indexmap",
"itertools",
"log",
@@ -5077,7 +5248,7 @@ name = "rustpython-parser"
version = "0.1.2"
source = "git+https://github.com/RustPython/RustPython?rev=02a1d1d#02a1d1d7db57afbb78049599c2585cc7cd59e6d3"
dependencies = [
"ahash",
"ahash 0.7.6",
"lalrpop-util",
"log",
"num-bigint",
@@ -5106,7 +5277,7 @@ version = "0.1.2"
source = "git+https://github.com/RustPython/RustPython?rev=02a1d1d#02a1d1d7db57afbb78049599c2585cc7cd59e6d3"
dependencies = [
"adler32",
"ahash",
"ahash 0.7.6",
"ascii",
"atty",
"bitflags",
@@ -5118,7 +5289,7 @@ dependencies = [
"exitcode",
"flate2",
"getrandom 0.2.7",
"half",
"half 1.8.2",
"hex",
"hexf-parse",
"indexmap",
@@ -5343,7 +5514,7 @@ dependencies = [
"common-time",
"console",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-expr",
"datafusion-physical-expr",
"datatypes",
@@ -5428,7 +5599,7 @@ version = "0.11.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2bef2ebfde456fb76bbcf9f59315333decc4fda0b2b44b420243c11e0f5ec1f5"
dependencies = [
"half",
"half 1.8.2",
"serde",
]
@@ -5775,7 +5946,7 @@ dependencies = [
"mito",
"once_cell",
"snafu",
"sqlparser",
"sqlparser 0.15.0",
]
[[package]]
@@ -5813,6 +5984,15 @@ dependencies = [
"log",
]
[[package]]
name = "sqlparser"
version = "0.26.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "86be66ea0b2b22749cfa157d16e2e84bf793e626a3375f4d378dc289fa03affb"
dependencies = [
"log",
]
[[package]]
name = "sre-engine"
version = "0.1.2"
@@ -6118,7 +6298,7 @@ dependencies = [
"common-recordbatch",
"common-telemetry",
"datafusion",
"datafusion-common",
"datafusion-common 7.0.0",
"datafusion-expr",
"datatypes",
"derive_builder",

View File

@@ -20,6 +20,7 @@ members = [
"src/common/time",
"src/datanode",
"src/datatypes",
"src/datatypes2",
"src/frontend",
"src/log-store",
"src/meta-client",

View File

@@ -23,6 +23,7 @@ use snafu::ResultExt;
use crate::error::{self, Result};
// TODO(yingwen): We should hold vectors in the RecordBatch.
#[derive(Clone, Debug, PartialEq)]
pub struct RecordBatch {
pub schema: SchemaRef,
@@ -103,6 +104,7 @@ impl<'a> Iterator for RecordBatchRowIterator<'a> {
} else {
let mut row = Vec::with_capacity(self.columns);
// TODO(yingwen): Get from the vector if RecordBatch also holds vectors.
for col in 0..self.columns {
let column_array = self.record_batch.df_recordbatch.column(col);
match arrow_array_get(column_array.as_ref(), self.row_cursor)

View File

@@ -147,6 +147,18 @@ impl From<i64> for Timestamp {
}
}
impl From<Timestamp> for i64 {
fn from(t: Timestamp) -> Self {
t.value
}
}
impl From<Timestamp> for serde_json::Value {
fn from(d: Timestamp) -> Self {
serde_json::Value::String(d.to_iso8601_string())
}
}
#[derive(Debug, Default, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub enum TimeUnit {
Second,
@@ -197,6 +209,7 @@ impl Hash for Timestamp {
#[cfg(test)]
mod tests {
use chrono::Offset;
use serde_json::Value;
use super::*;
@@ -318,4 +331,39 @@ mod tests {
let ts = Timestamp::from_millis(ts_millis);
assert_eq!("1969-12-31 23:59:58.999+0000", ts.to_iso8601_string());
}
#[test]
fn test_serialize_to_json_value() {
assert_eq!(
"1970-01-01 00:00:01+0000",
match serde_json::Value::from(Timestamp::new(1, TimeUnit::Second)) {
Value::String(s) => s,
_ => unreachable!(),
}
);
assert_eq!(
"1970-01-01 00:00:00.001+0000",
match serde_json::Value::from(Timestamp::new(1, TimeUnit::Millisecond)) {
Value::String(s) => s,
_ => unreachable!(),
}
);
assert_eq!(
"1970-01-01 00:00:00.000001+0000",
match serde_json::Value::from(Timestamp::new(1, TimeUnit::Microsecond)) {
Value::String(s) => s,
_ => unreachable!(),
}
);
assert_eq!(
"1970-01-01 00:00:00.000000001+0000",
match serde_json::Value::from(Timestamp::new(1, TimeUnit::Nanosecond)) {
Value::String(s) => s,
_ => unreachable!(),
}
);
}
}

24
src/datatypes2/Cargo.toml Normal file
View File

@@ -0,0 +1,24 @@
[package]
name = "datatypes2"
version = "0.1.0"
edition = "2021"
license = "Apache-2.0"
[features]
default = []
test = []
[dependencies]
common-base = { path = "../common/base" }
common-error = { path = "../common/error" }
common-time = { path = "../common/time" }
datafusion-common = "14.0"
enum_dispatch = "0.3"
num = "0.4"
num-traits = "0.2"
ordered-float = { version = "3.0", features = ["serde"] }
paste = "1.0"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
snafu = { version = "0.7", features = ["backtraces"] }
arrow = "26.0"

View File

@@ -0,0 +1,242 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::array::{
Array, BooleanArray, Date32Array, Date64Array, Float32Array, Float64Array, Int16Array,
Int32Array, Int64Array, Int8Array, ListArray, UInt16Array, UInt32Array, UInt64Array,
UInt8Array,
};
use arrow::datatypes::DataType;
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use snafu::OptionExt;
use crate::data_type::ConcreteDataType;
use crate::error::{ConversionSnafu, Result};
use crate::value::{ListValue, Value};
pub type BinaryArray = arrow::array::LargeBinaryArray;
pub type MutableBinaryArray = arrow::array::LargeBinaryBuilder;
pub type StringArray = arrow::array::StringArray;
pub type MutableStringArray = arrow::array::StringBuilder;
macro_rules! cast_array {
($arr: ident, $CastType: ty) => {
$arr.as_any()
.downcast_ref::<$CastType>()
.with_context(|| ConversionSnafu {
from: format!("{:?}", $arr.data_type()),
})?
};
}
// TODO(yingwen): Remove this function.
pub fn arrow_array_get(array: &dyn Array, idx: usize) -> Result<Value> {
if array.is_null(idx) {
return Ok(Value::Null);
}
let result = match array.data_type() {
DataType::Null => Value::Null,
DataType::Boolean => Value::Boolean(cast_array!(array, BooleanArray).value(idx)),
DataType::Binary => Value::Binary(cast_array!(array, BinaryArray).value(idx).into()),
DataType::Int8 => Value::Int8(cast_array!(array, Int8Array).value(idx)),
DataType::Int16 => Value::Int16(cast_array!(array, Int16Array).value(idx)),
DataType::Int32 => Value::Int32(cast_array!(array, Int32Array).value(idx)),
DataType::Int64 => Value::Int64(cast_array!(array, Int64Array).value(idx)),
DataType::UInt8 => Value::UInt8(cast_array!(array, UInt8Array).value(idx)),
DataType::UInt16 => Value::UInt16(cast_array!(array, UInt16Array).value(idx)),
DataType::UInt32 => Value::UInt32(cast_array!(array, UInt32Array).value(idx)),
DataType::UInt64 => Value::UInt64(cast_array!(array, UInt64Array).value(idx)),
DataType::Float32 => Value::Float32(cast_array!(array, Float32Array).value(idx).into()),
DataType::Float64 => Value::Float64(cast_array!(array, Float64Array).value(idx).into()),
DataType::Utf8 => Value::String(cast_array!(array, StringArray).value(idx).into()),
DataType::Date32 => Value::Date(cast_array!(array, Date32Array).value(idx).into()),
DataType::Date64 => Value::DateTime(cast_array!(array, Date64Array).value(idx).into()),
DataType::Timestamp(t, _) => match t {
arrow::datatypes::TimeUnit::Second => Value::Timestamp(Timestamp::new(
cast_array!(array, arrow::array::TimestampSecondArray).value(idx),
TimeUnit::Second,
)),
arrow::datatypes::TimeUnit::Millisecond => Value::Timestamp(Timestamp::new(
cast_array!(array, arrow::array::TimestampMillisecondArray).value(idx),
TimeUnit::Millisecond,
)),
arrow::datatypes::TimeUnit::Microsecond => Value::Timestamp(Timestamp::new(
cast_array!(array, arrow::array::TimestampMicrosecondArray).value(idx),
TimeUnit::Microsecond,
)),
arrow::datatypes::TimeUnit::Nanosecond => Value::Timestamp(Timestamp::new(
cast_array!(array, arrow::array::TimestampNanosecondArray).value(idx),
TimeUnit::Nanosecond,
)),
},
DataType::List(_) => {
let array = cast_array!(array, ListArray).value(idx);
let item_type = ConcreteDataType::try_from(array.data_type())?;
let values = (0..array.len())
.map(|i| arrow_array_get(&*array, i))
.collect::<Result<Vec<Value>>>()?;
Value::List(ListValue::new(Some(Box::new(values)), item_type))
}
_ => unimplemented!("Arrow array datatype: {:?}", array.data_type()),
};
Ok(result)
}
#[cfg(test)]
mod test {
use std::sync::Arc;
use arrow::array::{
BooleanArray, Float32Array, Float64Array, Int16Array, Int32Array, Int64Array, Int8Array,
LargeBinaryArray, TimestampMicrosecondArray, TimestampMillisecondArray,
TimestampNanosecondArray, TimestampSecondArray, UInt16Array, UInt32Array, UInt64Array,
UInt8Array,
};
use arrow::datatypes::Int32Type;
use common_time::timestamp::{TimeUnit, Timestamp};
use paste::paste;
use super::*;
use crate::data_type::ConcreteDataType;
use crate::types::TimestampType;
macro_rules! test_arrow_array_get_for_timestamps {
( $($unit: ident), *) => {
$(
paste! {
let mut builder = arrow::array::[<Timestamp $unit Array>]::builder(3);
builder.append_value(1);
builder.append_value(0);
builder.append_value(-1);
let ts_array = Arc::new(builder.finish()) as Arc<dyn Array>;
let v = arrow_array_get(&ts_array, 1).unwrap();
assert_eq!(
ConcreteDataType::Timestamp(TimestampType::$unit(
$crate::types::[<Timestamp $unit Type>]::default(),
)),
v.data_type()
);
}
)*
};
}
#[test]
fn test_timestamp_array() {
test_arrow_array_get_for_timestamps![Second, Millisecond, Microsecond, Nanosecond];
}
#[test]
fn test_arrow_array_access() {
let array1 = BooleanArray::from(vec![true, true, false, false]);
assert_eq!(Value::Boolean(true), arrow_array_get(&array1, 1).unwrap());
let array1 = Int8Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::Int8(2), arrow_array_get(&array1, 1).unwrap());
let array1 = UInt8Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::UInt8(2), arrow_array_get(&array1, 1).unwrap());
let array1 = Int16Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::Int16(2), arrow_array_get(&array1, 1).unwrap());
let array1 = UInt16Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::UInt16(2), arrow_array_get(&array1, 1).unwrap());
let array1 = Int32Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::Int32(2), arrow_array_get(&array1, 1).unwrap());
let array1 = UInt32Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::UInt32(2), arrow_array_get(&array1, 1).unwrap());
let array = Int64Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::Int64(2), arrow_array_get(&array, 1).unwrap());
let array1 = UInt64Array::from(vec![1, 2, 3, 4]);
assert_eq!(Value::UInt64(2), arrow_array_get(&array1, 1).unwrap());
let array1 = Float32Array::from(vec![1f32, 2f32, 3f32, 4f32]);
assert_eq!(
Value::Float32(2f32.into()),
arrow_array_get(&array1, 1).unwrap()
);
let array1 = Float64Array::from(vec![1f64, 2f64, 3f64, 4f64]);
assert_eq!(
Value::Float64(2f64.into()),
arrow_array_get(&array1, 1).unwrap()
);
let array2 = StringArray::from(vec![Some("hello"), None, Some("world")]);
assert_eq!(
Value::String("hello".into()),
arrow_array_get(&array2, 0).unwrap()
);
assert_eq!(Value::Null, arrow_array_get(&array2, 1).unwrap());
let array3 = LargeBinaryArray::from(vec![
Some("hello".as_bytes()),
None,
Some("world".as_bytes()),
]);
assert_eq!(Value::Null, arrow_array_get(&array3, 1).unwrap());
let array = TimestampSecondArray::from(vec![1, 2, 3]);
let value = arrow_array_get(&array, 1).unwrap();
assert_eq!(value, Value::Timestamp(Timestamp::new(2, TimeUnit::Second)));
let array = TimestampMillisecondArray::from(vec![1, 2, 3]);
let value = arrow_array_get(&array, 1).unwrap();
assert_eq!(
value,
Value::Timestamp(Timestamp::new(2, TimeUnit::Millisecond))
);
let array = TimestampMicrosecondArray::from(vec![1, 2, 3]);
let value = arrow_array_get(&array, 1).unwrap();
assert_eq!(
value,
Value::Timestamp(Timestamp::new(2, TimeUnit::Microsecond))
);
let array = TimestampNanosecondArray::from(vec![1, 2, 3]);
let value = arrow_array_get(&array, 1).unwrap();
assert_eq!(
value,
Value::Timestamp(Timestamp::new(2, TimeUnit::Nanosecond))
);
// test list array
let data = vec![
Some(vec![Some(1), Some(2), Some(3)]),
None,
Some(vec![Some(4), None, Some(6)]),
];
let arrow_array = ListArray::from_iter_primitive::<Int32Type, _, _>(data);
let v0 = arrow_array_get(&arrow_array, 0).unwrap();
match v0 {
Value::List(list) => {
assert!(matches!(list.datatype(), ConcreteDataType::Int32(_)));
let items = list.items().as_ref().unwrap();
assert_eq!(
**items,
vec![Value::Int32(1), Value::Int32(2), Value::Int32(3)]
);
}
_ => unreachable!(),
}
assert_eq!(Value::Null, arrow_array_get(&arrow_array, 1).unwrap());
let v2 = arrow_array_get(&arrow_array, 2).unwrap();
match v2 {
Value::List(list) => {
assert!(matches!(list.datatype(), ConcreteDataType::Int32(_)));
let items = list.items().as_ref().unwrap();
assert_eq!(**items, vec![Value::Int32(4), Value::Null, Value::Int32(6)]);
}
_ => unreachable!(),
}
}
}

View File

@@ -0,0 +1,486 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow::datatypes::{DataType as ArrowDataType, TimeUnit as ArrowTimeUnit};
use common_time::timestamp::TimeUnit;
use paste::paste;
use serde::{Deserialize, Serialize};
use crate::error::{self, Error, Result};
use crate::type_id::LogicalTypeId;
use crate::types::{
BinaryType, BooleanType, DateTimeType, DateType, Float32Type, Float64Type, Int16Type,
Int32Type, Int64Type, Int8Type, ListType, NullType, StringType, TimestampMicrosecondType,
TimestampMillisecondType, TimestampNanosecondType, TimestampSecondType, TimestampType,
UInt16Type, UInt32Type, UInt64Type, UInt8Type,
};
use crate::value::Value;
use crate::vectors::MutableVector;
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
#[enum_dispatch::enum_dispatch(DataType)]
pub enum ConcreteDataType {
Null(NullType),
Boolean(BooleanType),
// Numeric types:
Int8(Int8Type),
Int16(Int16Type),
Int32(Int32Type),
Int64(Int64Type),
UInt8(UInt8Type),
UInt16(UInt16Type),
UInt32(UInt32Type),
UInt64(UInt64Type),
Float32(Float32Type),
Float64(Float64Type),
// String types:
Binary(BinaryType),
String(StringType),
// Date types:
Date(DateType),
DateTime(DateTimeType),
Timestamp(TimestampType),
// Compound types:
List(ListType),
}
// TODO(yingwen): Refactor these `is_xxx()` methods, such as adding a `properties()` method
// returning all these properties to the `DataType` trait
impl ConcreteDataType {
pub fn is_float(&self) -> bool {
matches!(
self,
ConcreteDataType::Float64(_) | ConcreteDataType::Float32(_)
)
}
pub fn is_boolean(&self) -> bool {
matches!(self, ConcreteDataType::Boolean(_))
}
pub fn is_stringifiable(&self) -> bool {
matches!(
self,
ConcreteDataType::String(_)
| ConcreteDataType::Date(_)
| ConcreteDataType::DateTime(_)
| ConcreteDataType::Timestamp(_)
)
}
pub fn is_signed(&self) -> bool {
matches!(
self,
ConcreteDataType::Int8(_)
| ConcreteDataType::Int16(_)
| ConcreteDataType::Int32(_)
| ConcreteDataType::Int64(_)
| ConcreteDataType::Date(_)
| ConcreteDataType::DateTime(_)
| ConcreteDataType::Timestamp(_)
)
}
pub fn is_unsigned(&self) -> bool {
matches!(
self,
ConcreteDataType::UInt8(_)
| ConcreteDataType::UInt16(_)
| ConcreteDataType::UInt32(_)
| ConcreteDataType::UInt64(_)
)
}
pub fn numerics() -> Vec<ConcreteDataType> {
vec![
ConcreteDataType::int8_datatype(),
ConcreteDataType::int16_datatype(),
ConcreteDataType::int32_datatype(),
ConcreteDataType::int64_datatype(),
ConcreteDataType::uint8_datatype(),
ConcreteDataType::uint16_datatype(),
ConcreteDataType::uint32_datatype(),
ConcreteDataType::uint64_datatype(),
ConcreteDataType::float32_datatype(),
ConcreteDataType::float64_datatype(),
]
}
/// Convert arrow data type to [ConcreteDataType].
///
/// # Panics
/// Panic if given arrow data type is not supported.
pub fn from_arrow_type(dt: &ArrowDataType) -> Self {
ConcreteDataType::try_from(dt).expect("Unimplemented type")
}
pub fn is_null(&self) -> bool {
matches!(self, ConcreteDataType::Null(NullType))
}
}
impl TryFrom<&ArrowDataType> for ConcreteDataType {
type Error = Error;
fn try_from(dt: &ArrowDataType) -> Result<ConcreteDataType> {
let concrete_type = match dt {
ArrowDataType::Null => Self::null_datatype(),
ArrowDataType::Boolean => Self::boolean_datatype(),
ArrowDataType::UInt8 => Self::uint8_datatype(),
ArrowDataType::UInt16 => Self::uint16_datatype(),
ArrowDataType::UInt32 => Self::uint32_datatype(),
ArrowDataType::UInt64 => Self::uint64_datatype(),
ArrowDataType::Int8 => Self::int8_datatype(),
ArrowDataType::Int16 => Self::int16_datatype(),
ArrowDataType::Int32 => Self::int32_datatype(),
ArrowDataType::Int64 => Self::int64_datatype(),
ArrowDataType::Float32 => Self::float32_datatype(),
ArrowDataType::Float64 => Self::float64_datatype(),
ArrowDataType::Date32 => Self::date_datatype(),
ArrowDataType::Date64 => Self::datetime_datatype(),
ArrowDataType::Timestamp(u, _) => ConcreteDataType::from_arrow_time_unit(u),
ArrowDataType::Binary | ArrowDataType::LargeBinary => Self::binary_datatype(),
ArrowDataType::Utf8 | ArrowDataType::LargeUtf8 => Self::string_datatype(),
ArrowDataType::List(field) => Self::List(ListType::new(
ConcreteDataType::from_arrow_type(field.data_type()),
)),
_ => {
return error::UnsupportedArrowTypeSnafu {
arrow_type: dt.clone(),
}
.fail()
}
};
Ok(concrete_type)
}
}
macro_rules! impl_new_concrete_type_functions {
($($Type: ident), +) => {
paste! {
impl ConcreteDataType {
$(
pub fn [<$Type:lower _datatype>]() -> ConcreteDataType {
ConcreteDataType::$Type([<$Type Type>]::default())
}
)+
}
}
}
}
impl_new_concrete_type_functions!(
Null, Boolean, UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float32, Float64,
Binary, Date, DateTime, String
);
impl ConcreteDataType {
pub fn timestamp_second_datatype() -> Self {
ConcreteDataType::Timestamp(TimestampType::Second(TimestampSecondType::default()))
}
pub fn timestamp_millisecond_datatype() -> Self {
ConcreteDataType::Timestamp(TimestampType::Millisecond(
TimestampMillisecondType::default(),
))
}
pub fn timestamp_microsecond_datatype() -> Self {
ConcreteDataType::Timestamp(TimestampType::Microsecond(
TimestampMicrosecondType::default(),
))
}
pub fn timestamp_nanosecond_datatype() -> Self {
ConcreteDataType::Timestamp(TimestampType::Nanosecond(TimestampNanosecondType::default()))
}
pub fn timestamp_datatype(unit: TimeUnit) -> Self {
match unit {
TimeUnit::Second => Self::timestamp_second_datatype(),
TimeUnit::Millisecond => Self::timestamp_millisecond_datatype(),
TimeUnit::Microsecond => Self::timestamp_microsecond_datatype(),
TimeUnit::Nanosecond => Self::timestamp_nanosecond_datatype(),
}
}
/// Converts from arrow timestamp unit to
pub fn from_arrow_time_unit(t: &ArrowTimeUnit) -> Self {
match t {
ArrowTimeUnit::Second => Self::timestamp_second_datatype(),
ArrowTimeUnit::Millisecond => Self::timestamp_millisecond_datatype(),
ArrowTimeUnit::Microsecond => Self::timestamp_microsecond_datatype(),
ArrowTimeUnit::Nanosecond => Self::timestamp_nanosecond_datatype(),
}
}
pub fn list_datatype(item_type: ConcreteDataType) -> ConcreteDataType {
ConcreteDataType::List(ListType::new(item_type))
}
}
/// Data type abstraction.
#[enum_dispatch::enum_dispatch]
pub trait DataType: std::fmt::Debug + Send + Sync {
/// Name of this data type.
fn name(&self) -> &str;
/// Returns id of the Logical data type.
fn logical_type_id(&self) -> LogicalTypeId;
/// Returns the default value of this type.
fn default_value(&self) -> Value;
/// Convert this type as [arrow::datatypes::DataType].
fn as_arrow_type(&self) -> ArrowDataType;
/// Creates a mutable vector with given `capacity` of this type.
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector>;
/// Returns true if the data type is compatible with timestamp type so we can
/// use it as a timestamp.
fn is_timestamp_compatible(&self) -> bool;
}
pub type DataTypeRef = Arc<dyn DataType>;
#[cfg(test)]
mod tests {
use arrow::datatypes::Field;
use super::*;
#[test]
fn test_concrete_type_as_datatype_trait() {
let concrete_type = ConcreteDataType::boolean_datatype();
assert_eq!("Boolean", concrete_type.name());
assert_eq!(Value::Boolean(false), concrete_type.default_value());
assert_eq!(LogicalTypeId::Boolean, concrete_type.logical_type_id());
assert_eq!(ArrowDataType::Boolean, concrete_type.as_arrow_type());
}
#[test]
fn test_from_arrow_type() {
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Null),
ConcreteDataType::Null(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Boolean),
ConcreteDataType::Boolean(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Binary),
ConcreteDataType::Binary(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::LargeBinary),
ConcreteDataType::Binary(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Int8),
ConcreteDataType::Int8(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Int16),
ConcreteDataType::Int16(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Int32),
ConcreteDataType::Int32(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Int64),
ConcreteDataType::Int64(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::UInt8),
ConcreteDataType::UInt8(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::UInt16),
ConcreteDataType::UInt16(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::UInt32),
ConcreteDataType::UInt32(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::UInt64),
ConcreteDataType::UInt64(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Float32),
ConcreteDataType::Float32(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Float64),
ConcreteDataType::Float64(_)
));
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Utf8),
ConcreteDataType::String(_)
));
assert_eq!(
ConcreteDataType::from_arrow_type(&ArrowDataType::List(Box::new(Field::new(
"item",
ArrowDataType::Int32,
true,
)))),
ConcreteDataType::List(ListType::new(ConcreteDataType::int32_datatype()))
);
assert!(matches!(
ConcreteDataType::from_arrow_type(&ArrowDataType::Date32),
ConcreteDataType::Date(_)
));
}
#[test]
fn test_from_arrow_timestamp() {
assert_eq!(
ConcreteDataType::timestamp_millisecond_datatype(),
ConcreteDataType::from_arrow_time_unit(&ArrowTimeUnit::Millisecond)
);
assert_eq!(
ConcreteDataType::timestamp_microsecond_datatype(),
ConcreteDataType::from_arrow_time_unit(&ArrowTimeUnit::Microsecond)
);
assert_eq!(
ConcreteDataType::timestamp_nanosecond_datatype(),
ConcreteDataType::from_arrow_time_unit(&ArrowTimeUnit::Nanosecond)
);
assert_eq!(
ConcreteDataType::timestamp_second_datatype(),
ConcreteDataType::from_arrow_time_unit(&ArrowTimeUnit::Second)
);
}
#[test]
fn test_is_timestamp_compatible() {
assert!(ConcreteDataType::timestamp_datatype(TimeUnit::Second).is_timestamp_compatible());
assert!(
ConcreteDataType::timestamp_datatype(TimeUnit::Millisecond).is_timestamp_compatible()
);
assert!(
ConcreteDataType::timestamp_datatype(TimeUnit::Microsecond).is_timestamp_compatible()
);
assert!(
ConcreteDataType::timestamp_datatype(TimeUnit::Nanosecond).is_timestamp_compatible()
);
assert!(ConcreteDataType::timestamp_second_datatype().is_timestamp_compatible());
assert!(ConcreteDataType::timestamp_millisecond_datatype().is_timestamp_compatible());
assert!(ConcreteDataType::timestamp_microsecond_datatype().is_timestamp_compatible());
assert!(ConcreteDataType::timestamp_nanosecond_datatype().is_timestamp_compatible());
assert!(ConcreteDataType::int64_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::null_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::binary_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::boolean_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::date_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::datetime_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::string_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::int32_datatype().is_timestamp_compatible());
assert!(!ConcreteDataType::uint64_datatype().is_timestamp_compatible());
}
#[test]
fn test_is_null() {
assert!(ConcreteDataType::null_datatype().is_null());
assert!(!ConcreteDataType::int32_datatype().is_null());
}
#[test]
fn test_is_float() {
assert!(!ConcreteDataType::int32_datatype().is_float());
assert!(ConcreteDataType::float32_datatype().is_float());
assert!(ConcreteDataType::float64_datatype().is_float());
}
#[test]
fn test_is_boolean() {
assert!(!ConcreteDataType::int32_datatype().is_boolean());
assert!(!ConcreteDataType::float32_datatype().is_boolean());
assert!(ConcreteDataType::boolean_datatype().is_boolean());
}
#[test]
fn test_is_stringifiable() {
assert!(!ConcreteDataType::int32_datatype().is_stringifiable());
assert!(!ConcreteDataType::float32_datatype().is_stringifiable());
assert!(ConcreteDataType::string_datatype().is_stringifiable());
assert!(ConcreteDataType::date_datatype().is_stringifiable());
assert!(ConcreteDataType::datetime_datatype().is_stringifiable());
assert!(ConcreteDataType::timestamp_second_datatype().is_stringifiable());
assert!(ConcreteDataType::timestamp_millisecond_datatype().is_stringifiable());
assert!(ConcreteDataType::timestamp_microsecond_datatype().is_stringifiable());
assert!(ConcreteDataType::timestamp_nanosecond_datatype().is_stringifiable());
}
#[test]
fn test_is_signed() {
assert!(ConcreteDataType::int8_datatype().is_signed());
assert!(ConcreteDataType::int16_datatype().is_signed());
assert!(ConcreteDataType::int32_datatype().is_signed());
assert!(ConcreteDataType::int64_datatype().is_signed());
assert!(ConcreteDataType::date_datatype().is_signed());
assert!(ConcreteDataType::datetime_datatype().is_signed());
assert!(ConcreteDataType::timestamp_second_datatype().is_signed());
assert!(ConcreteDataType::timestamp_millisecond_datatype().is_signed());
assert!(ConcreteDataType::timestamp_microsecond_datatype().is_signed());
assert!(ConcreteDataType::timestamp_nanosecond_datatype().is_signed());
assert!(!ConcreteDataType::uint8_datatype().is_signed());
assert!(!ConcreteDataType::uint16_datatype().is_signed());
assert!(!ConcreteDataType::uint32_datatype().is_signed());
assert!(!ConcreteDataType::uint64_datatype().is_signed());
assert!(!ConcreteDataType::float32_datatype().is_signed());
assert!(!ConcreteDataType::float64_datatype().is_signed());
}
#[test]
fn test_is_unsigned() {
assert!(!ConcreteDataType::int8_datatype().is_unsigned());
assert!(!ConcreteDataType::int16_datatype().is_unsigned());
assert!(!ConcreteDataType::int32_datatype().is_unsigned());
assert!(!ConcreteDataType::int64_datatype().is_unsigned());
assert!(!ConcreteDataType::date_datatype().is_unsigned());
assert!(!ConcreteDataType::datetime_datatype().is_unsigned());
assert!(!ConcreteDataType::timestamp_second_datatype().is_unsigned());
assert!(!ConcreteDataType::timestamp_millisecond_datatype().is_unsigned());
assert!(!ConcreteDataType::timestamp_microsecond_datatype().is_unsigned());
assert!(!ConcreteDataType::timestamp_nanosecond_datatype().is_unsigned());
assert!(ConcreteDataType::uint8_datatype().is_unsigned());
assert!(ConcreteDataType::uint16_datatype().is_unsigned());
assert!(ConcreteDataType::uint32_datatype().is_unsigned());
assert!(ConcreteDataType::uint64_datatype().is_unsigned());
assert!(!ConcreteDataType::float32_datatype().is_unsigned());
assert!(!ConcreteDataType::float64_datatype().is_unsigned());
}
#[test]
fn test_numerics() {
let nums = ConcreteDataType::numerics();
assert_eq!(10, nums.len());
}
}

144
src/datatypes2/src/error.rs Normal file
View File

@@ -0,0 +1,144 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use common_error::prelude::{ErrorCompat, ErrorExt, Snafu, StatusCode};
use snafu::Backtrace;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub))]
pub enum Error {
#[snafu(display("Failed to serialize data, source: {}", source))]
Serialize {
source: serde_json::Error,
backtrace: Backtrace,
},
#[snafu(display("Failed to deserialize data, source: {}, json: {}", source, json))]
Deserialize {
source: serde_json::Error,
backtrace: Backtrace,
json: String,
},
#[snafu(display("Failed to convert datafusion type: {}", from))]
Conversion { from: String, backtrace: Backtrace },
#[snafu(display("Bad array access, Index out of bounds: {}, size: {}", index, size))]
BadArrayAccess {
index: usize,
size: usize,
backtrace: Backtrace,
},
#[snafu(display("Unknown vector, {}", msg))]
UnknownVector { msg: String, backtrace: Backtrace },
#[snafu(display("Unsupported arrow data type, type: {:?}", arrow_type))]
UnsupportedArrowType {
arrow_type: arrow::datatypes::DataType,
backtrace: Backtrace,
},
#[snafu(display("Timestamp column {} not found", name,))]
TimestampNotFound { name: String, backtrace: Backtrace },
#[snafu(display(
"Failed to parse version in schema meta, value: {}, source: {}",
value,
source
))]
ParseSchemaVersion {
value: String,
source: std::num::ParseIntError,
backtrace: Backtrace,
},
#[snafu(display("Invalid timestamp index: {}", index))]
InvalidTimestampIndex { index: usize, backtrace: Backtrace },
#[snafu(display("Duplicate timestamp index, exists: {}, new: {}", exists, new))]
DuplicateTimestampIndex {
exists: usize,
new: usize,
backtrace: Backtrace,
},
#[snafu(display("{}", msg))]
CastType { msg: String, backtrace: Backtrace },
#[snafu(display("Arrow failed to compute, source: {}", source))]
ArrowCompute {
source: arrow::error::ArrowError,
backtrace: Backtrace,
},
#[snafu(display("Unsupported column default constraint expression: {}", expr))]
UnsupportedDefaultExpr { expr: String, backtrace: Backtrace },
#[snafu(display("Default value should not be null for non null column"))]
NullDefault { backtrace: Backtrace },
#[snafu(display("Incompatible default value type, reason: {}", reason))]
DefaultValueType {
reason: String,
backtrace: Backtrace,
},
#[snafu(display("Duplicated metadata for {}", key))]
DuplicateMeta { key: String, backtrace: Backtrace },
}
impl ErrorExt for Error {
fn status_code(&self) -> StatusCode {
// Inner encoding and decoding error should not be exposed to users.
StatusCode::Internal
}
fn backtrace_opt(&self) -> Option<&Backtrace> {
ErrorCompat::backtrace(self)
}
fn as_any(&self) -> &dyn Any {
self
}
}
pub type Result<T> = std::result::Result<T, Error>;
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use snafu::ResultExt;
use super::*;
#[test]
pub fn test_error() {
let mut map = HashMap::new();
map.insert(true, 1);
map.insert(false, 2);
let result = serde_json::to_string(&map).context(SerializeSnafu);
assert!(result.is_err(), "serialize result is: {:?}", result);
let err = serde_json::to_string(&map)
.context(SerializeSnafu)
.err()
.unwrap();
assert!(err.backtrace_opt().is_some());
assert_eq!(StatusCode::Internal, err.status_code());
}
}

33
src/datatypes2/src/lib.rs Normal file
View File

@@ -0,0 +1,33 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![feature(generic_associated_types)]
#![feature(assert_matches)]
pub mod arrow_array;
pub mod data_type;
pub mod error;
pub mod macros;
pub mod prelude;
mod scalars;
pub mod schema;
pub mod serialize;
mod timestamp;
pub mod type_id;
pub mod types;
pub mod value;
pub mod vectors;
pub use arrow;
pub use error::{Error, Result};

View File

@@ -0,0 +1,68 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Some helper macros for datatypes, copied from databend.
/// Apply the macro rules to all primitive types.
#[macro_export]
macro_rules! for_all_primitive_types {
($macro:tt $(, $x:tt)*) => {
$macro! {
[$($x),*],
{ i8 },
{ i16 },
{ i32 },
{ i64 },
{ u8 },
{ u16 },
{ u32 },
{ u64 },
{ f32 },
{ f64 }
}
};
}
/// Match the logical type and apply `$body` to all primitive types and
/// `nbody` to other types.
#[macro_export]
macro_rules! with_match_primitive_type_id {
($key_type:expr, | $_:tt $T:ident | $body:tt, $nbody:tt) => {{
macro_rules! __with_ty__ {
( $_ $T:ident ) => {
$body
};
}
use $crate::type_id::LogicalTypeId;
use $crate::types::{
Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, UInt16Type,
UInt32Type, UInt64Type, UInt8Type,
};
match $key_type {
LogicalTypeId::Int8 => __with_ty__! { Int8Type },
LogicalTypeId::Int16 => __with_ty__! { Int16Type },
LogicalTypeId::Int32 => __with_ty__! { Int32Type },
LogicalTypeId::Int64 => __with_ty__! { Int64Type },
LogicalTypeId::UInt8 => __with_ty__! { UInt8Type },
LogicalTypeId::UInt16 => __with_ty__! { UInt16Type },
LogicalTypeId::UInt32 => __with_ty__! { UInt32Type },
LogicalTypeId::UInt64 => __with_ty__! { UInt64Type },
LogicalTypeId::Float32 => __with_ty__! { Float32Type },
LogicalTypeId::Float64 => __with_ty__! { Float64Type },
_ => $nbody,
}
}};
}

View File

@@ -0,0 +1,20 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub use crate::data_type::{ConcreteDataType, DataType, DataTypeRef};
pub use crate::macros::*;
pub use crate::scalars::{Scalar, ScalarRef, ScalarVector, ScalarVectorBuilder};
pub use crate::type_id::LogicalTypeId;
pub use crate::value::{Value, ValueRef};
pub use crate::vectors::{MutableVector, Validity, Vector, VectorRef};

View File

@@ -0,0 +1,443 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use common_time::{Date, DateTime};
use crate::types::{
Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, UInt16Type, UInt32Type,
UInt64Type, UInt8Type,
};
use crate::value::{ListValue, ListValueRef, Value};
use crate::vectors::{
BinaryVector, BooleanVector, DateTimeVector, DateVector, ListVector, MutableVector,
PrimitiveVector, StringVector, Vector,
};
fn get_iter_capacity<T, I: Iterator<Item = T>>(iter: &I) -> usize {
match iter.size_hint() {
(_lower, Some(upper)) => upper,
(0, None) => 1024,
(lower, None) => lower,
}
}
/// Owned scalar value
/// primitive types, bool, Vec<u8> ...
pub trait Scalar: 'static + Sized + Default + Any
where
for<'a> Self::VectorType: ScalarVector<RefItem<'a> = Self::RefType<'a>>,
{
type VectorType: ScalarVector<OwnedItem = Self>;
type RefType<'a>: ScalarRef<'a, ScalarType = Self>
where
Self: 'a;
/// Get a reference of the current value.
fn as_scalar_ref(&self) -> Self::RefType<'_>;
/// Upcast GAT type's lifetime.
fn upcast_gat<'short, 'long: 'short>(long: Self::RefType<'long>) -> Self::RefType<'short>;
}
pub trait ScalarRef<'a>: std::fmt::Debug + Clone + Copy + Send + 'a {
/// The corresponding [`Scalar`] type.
type ScalarType: Scalar<RefType<'a> = Self>;
/// Convert the reference into an owned value.
fn to_owned_scalar(&self) -> Self::ScalarType;
}
/// A sub trait of Vector to add scalar operation support.
// This implementation refers to Datebend's [ScalarColumn](https://github.com/datafuselabs/databend/blob/main/common/datavalues/src/scalars/type_.rs)
// and skyzh's [type-exercise-in-rust](https://github.com/skyzh/type-exercise-in-rust).
pub trait ScalarVector: Vector + Send + Sync + Sized + 'static
where
for<'a> Self::OwnedItem: Scalar<RefType<'a> = Self::RefItem<'a>>,
{
type OwnedItem: Scalar<VectorType = Self>;
/// The reference item of this vector.
type RefItem<'a>: ScalarRef<'a, ScalarType = Self::OwnedItem>
where
Self: 'a;
/// Iterator type of this vector.
type Iter<'a>: Iterator<Item = Option<Self::RefItem<'a>>>
where
Self: 'a;
/// Builder type to build this vector.
type Builder: ScalarVectorBuilder<VectorType = Self>;
/// Returns the reference to an element at given position.
///
/// Note: `get()` has bad performance, avoid call this function inside loop.
///
/// # Panics
/// Panics if `idx >= self.len()`.
fn get_data(&self, idx: usize) -> Option<Self::RefItem<'_>>;
/// Returns iterator of current vector.
fn iter_data(&self) -> Self::Iter<'_>;
fn from_slice(data: &[Self::RefItem<'_>]) -> Self {
let mut builder = Self::Builder::with_capacity(data.len());
for item in data {
builder.push(Some(*item));
}
builder.finish()
}
fn from_iterator<'a>(it: impl Iterator<Item = Self::RefItem<'a>>) -> Self {
let mut builder = Self::Builder::with_capacity(get_iter_capacity(&it));
for item in it {
builder.push(Some(item));
}
builder.finish()
}
fn from_owned_iterator(it: impl Iterator<Item = Option<Self::OwnedItem>>) -> Self {
let mut builder = Self::Builder::with_capacity(get_iter_capacity(&it));
for item in it {
match item {
Some(item) => builder.push(Some(item.as_scalar_ref())),
None => builder.push(None),
}
}
builder.finish()
}
fn from_vec<I: Into<Self::OwnedItem>>(values: Vec<I>) -> Self {
let it = values.into_iter();
let mut builder = Self::Builder::with_capacity(get_iter_capacity(&it));
for item in it {
builder.push(Some(item.into().as_scalar_ref()));
}
builder.finish()
}
}
/// A trait over all vector builders.
pub trait ScalarVectorBuilder: MutableVector {
type VectorType: ScalarVector<Builder = Self>;
/// Create a new builder with initial `capacity`.
fn with_capacity(capacity: usize) -> Self;
/// Push a value into the builder.
fn push(&mut self, value: Option<<Self::VectorType as ScalarVector>::RefItem<'_>>);
/// Finish build and return a new vector.
fn finish(&mut self) -> Self::VectorType;
}
macro_rules! impl_scalar_for_native {
($Native: ident, $DataType: ident) => {
impl Scalar for $Native {
type VectorType = PrimitiveVector<$DataType>;
type RefType<'a> = $Native;
#[inline]
fn as_scalar_ref(&self) -> $Native {
*self
}
#[allow(clippy::needless_lifetimes)]
#[inline]
fn upcast_gat<'short, 'long: 'short>(long: $Native) -> $Native {
long
}
}
/// Implement [`ScalarRef`] for primitive types. Note that primitive types are both [`Scalar`] and [`ScalarRef`].
impl<'a> ScalarRef<'a> for $Native {
type ScalarType = $Native;
#[inline]
fn to_owned_scalar(&self) -> $Native {
*self
}
}
};
}
impl_scalar_for_native!(u8, UInt8Type);
impl_scalar_for_native!(u16, UInt16Type);
impl_scalar_for_native!(u32, UInt32Type);
impl_scalar_for_native!(u64, UInt64Type);
impl_scalar_for_native!(i8, Int8Type);
impl_scalar_for_native!(i16, Int16Type);
impl_scalar_for_native!(i32, Int32Type);
impl_scalar_for_native!(i64, Int64Type);
impl_scalar_for_native!(f32, Float32Type);
impl_scalar_for_native!(f64, Float64Type);
impl Scalar for bool {
type VectorType = BooleanVector;
type RefType<'a> = bool;
#[inline]
fn as_scalar_ref(&self) -> bool {
*self
}
#[allow(clippy::needless_lifetimes)]
#[inline]
fn upcast_gat<'short, 'long: 'short>(long: bool) -> bool {
long
}
}
impl<'a> ScalarRef<'a> for bool {
type ScalarType = bool;
#[inline]
fn to_owned_scalar(&self) -> bool {
*self
}
}
impl Scalar for String {
type VectorType = StringVector;
type RefType<'a> = &'a str;
#[inline]
fn as_scalar_ref(&self) -> &str {
self
}
#[inline]
fn upcast_gat<'short, 'long: 'short>(long: &'long str) -> &'short str {
long
}
}
impl<'a> ScalarRef<'a> for &'a str {
type ScalarType = String;
#[inline]
fn to_owned_scalar(&self) -> String {
self.to_string()
}
}
impl Scalar for Vec<u8> {
type VectorType = BinaryVector;
type RefType<'a> = &'a [u8];
#[inline]
fn as_scalar_ref(&self) -> &[u8] {
self
}
#[inline]
fn upcast_gat<'short, 'long: 'short>(long: &'long [u8]) -> &'short [u8] {
long
}
}
impl<'a> ScalarRef<'a> for &'a [u8] {
type ScalarType = Vec<u8>;
#[inline]
fn to_owned_scalar(&self) -> Vec<u8> {
self.to_vec()
}
}
impl Scalar for Date {
type VectorType = DateVector;
type RefType<'a> = Date;
fn as_scalar_ref(&self) -> Self::RefType<'_> {
*self
}
fn upcast_gat<'short, 'long: 'short>(long: Self::RefType<'long>) -> Self::RefType<'short> {
long
}
}
impl<'a> ScalarRef<'a> for Date {
type ScalarType = Date;
fn to_owned_scalar(&self) -> Self::ScalarType {
*self
}
}
impl Scalar for DateTime {
type VectorType = DateTimeVector;
type RefType<'a> = DateTime;
fn as_scalar_ref(&self) -> Self::RefType<'_> {
*self
}
fn upcast_gat<'short, 'long: 'short>(long: Self::RefType<'long>) -> Self::RefType<'short> {
long
}
}
impl<'a> ScalarRef<'a> for DateTime {
type ScalarType = DateTime;
fn to_owned_scalar(&self) -> Self::ScalarType {
*self
}
}
// Timestamp types implement Scalar and ScalarRef in `src/timestamp.rs`.
impl Scalar for ListValue {
type VectorType = ListVector;
type RefType<'a> = ListValueRef<'a>;
fn as_scalar_ref(&self) -> Self::RefType<'_> {
ListValueRef::Ref { val: self }
}
fn upcast_gat<'short, 'long: 'short>(long: Self::RefType<'long>) -> Self::RefType<'short> {
long
}
}
impl<'a> ScalarRef<'a> for ListValueRef<'a> {
type ScalarType = ListValue;
fn to_owned_scalar(&self) -> Self::ScalarType {
match self {
ListValueRef::Indexed { vector, idx } => match vector.get(*idx) {
// Normally should not get `Value::Null` if the `ListValueRef` comes
// from the iterator of the ListVector, but we avoid panic and just
// returns a default list value in such case since `ListValueRef` may
// be constructed manually.
Value::Null => ListValue::default(),
Value::List(v) => v,
_ => unreachable!(),
},
ListValueRef::Ref { val } => (*val).clone(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::data_type::ConcreteDataType;
use crate::timestamp::TimestampSecond;
use crate::vectors::{BinaryVector, Int32Vector, ListVectorBuilder, TimestampSecondVector};
fn build_vector_from_slice<T: ScalarVector>(items: &[Option<T::RefItem<'_>>]) -> T {
let mut builder = T::Builder::with_capacity(items.len());
for item in items {
builder.push(*item);
}
builder.finish()
}
fn assert_vector_eq<'a, T: ScalarVector>(expect: &[Option<T::RefItem<'a>>], vector: &'a T)
where
T::RefItem<'a>: PartialEq + std::fmt::Debug,
{
for (a, b) in expect.iter().zip(vector.iter_data()) {
assert_eq!(*a, b);
}
}
#[test]
fn test_build_i32_vector() {
let expect = vec![Some(1), Some(2), Some(3), None, Some(5)];
let vector: Int32Vector = build_vector_from_slice(&expect);
assert_vector_eq(&expect, &vector);
}
#[test]
fn test_build_binary_vector() {
let expect: Vec<Option<&'static [u8]>> = vec![
Some(b"a"),
Some(b"b"),
Some(b"c"),
None,
Some(b"e"),
Some(b""),
];
let vector: BinaryVector = build_vector_from_slice(&expect);
assert_vector_eq(&expect, &vector);
}
#[test]
fn test_build_date_vector() {
let expect: Vec<Option<Date>> = vec![
Some(Date::new(0)),
Some(Date::new(-1)),
None,
Some(Date::new(1)),
];
let vector: DateVector = build_vector_from_slice(&expect);
assert_vector_eq(&expect, &vector);
}
#[test]
fn test_date_scalar() {
let date = Date::new(1);
assert_eq!(date, date.as_scalar_ref());
assert_eq!(date, date.to_owned_scalar());
}
#[test]
fn test_datetime_scalar() {
let dt = DateTime::new(123);
assert_eq!(dt, dt.as_scalar_ref());
assert_eq!(dt, dt.to_owned_scalar());
}
#[test]
fn test_list_value_scalar() {
let list_value = ListValue::new(
Some(Box::new(vec![Value::Int32(123)])),
ConcreteDataType::int32_datatype(),
);
let list_ref = ListValueRef::Ref { val: &list_value };
assert_eq!(list_ref, list_value.as_scalar_ref());
assert_eq!(list_value, list_ref.to_owned_scalar());
let mut builder =
ListVectorBuilder::with_type_capacity(ConcreteDataType::int32_datatype(), 1);
builder.push(None);
builder.push(Some(list_value.as_scalar_ref()));
let vector = builder.finish();
let ref_on_vec = ListValueRef::Indexed {
vector: &vector,
idx: 0,
};
assert_eq!(ListValue::default(), ref_on_vec.to_owned_scalar());
let ref_on_vec = ListValueRef::Indexed {
vector: &vector,
idx: 1,
};
assert_eq!(list_value, ref_on_vec.to_owned_scalar());
}
#[test]
fn test_build_timestamp_vector() {
let expect: Vec<Option<TimestampSecond>> = vec![Some(10.into()), None, Some(42.into())];
let vector: TimestampSecondVector = build_vector_from_slice(&expect);
assert_vector_eq(&expect, &vector);
let val = vector.get_data(0).unwrap();
assert_eq!(val, val.as_scalar_ref());
assert_eq!(TimestampSecond::from(10), val.to_owned_scalar());
}
}

View File

@@ -0,0 +1,430 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod column_schema;
mod constraint;
mod raw;
use std::collections::HashMap;
use std::sync::Arc;
use arrow::datatypes::{Field, Schema as ArrowSchema};
use snafu::{ensure, ResultExt};
use crate::data_type::DataType;
use crate::error::{self, Error, Result};
pub use crate::schema::column_schema::{ColumnSchema, Metadata};
pub use crate::schema::constraint::ColumnDefaultConstraint;
pub use crate::schema::raw::RawSchema;
/// Key used to store version number of the schema in metadata.
const VERSION_KEY: &str = "greptime:version";
/// A common schema, should be immutable.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Schema {
column_schemas: Vec<ColumnSchema>,
name_to_index: HashMap<String, usize>,
arrow_schema: Arc<ArrowSchema>,
/// Index of the timestamp key column.
///
/// Timestamp key column is the column holds the timestamp and forms part of
/// the primary key. None means there is no timestamp key column.
timestamp_index: Option<usize>,
/// Version of the schema.
///
/// Initial value is zero. The version should bump after altering schema.
version: u32,
}
impl Schema {
/// Initial version of the schema.
pub const INITIAL_VERSION: u32 = 0;
/// Create a schema from a vector of [ColumnSchema].
///
/// # Panics
/// Panics when ColumnSchema's `default_constraint` can't be serialized into json.
pub fn new(column_schemas: Vec<ColumnSchema>) -> Schema {
// Builder won't fail in this case
SchemaBuilder::try_from(column_schemas)
.unwrap()
.build()
.unwrap()
}
/// Try to Create a schema from a vector of [ColumnSchema].
pub fn try_new(column_schemas: Vec<ColumnSchema>) -> Result<Schema> {
SchemaBuilder::try_from(column_schemas)?.build()
}
#[inline]
pub fn arrow_schema(&self) -> &Arc<ArrowSchema> {
&self.arrow_schema
}
#[inline]
pub fn column_schemas(&self) -> &[ColumnSchema] {
&self.column_schemas
}
pub fn column_schema_by_name(&self, name: &str) -> Option<&ColumnSchema> {
self.name_to_index
.get(name)
.map(|index| &self.column_schemas[*index])
}
/// Retrieve the column's name by index
/// # Panics
/// This method **may** panic if the index is out of range of column schemas.
#[inline]
pub fn column_name_by_index(&self, idx: usize) -> &str {
&self.column_schemas[idx].name
}
#[inline]
pub fn column_index_by_name(&self, name: &str) -> Option<usize> {
self.name_to_index.get(name).copied()
}
#[inline]
pub fn contains_column(&self, name: &str) -> bool {
self.name_to_index.contains_key(name)
}
#[inline]
pub fn num_columns(&self) -> usize {
self.column_schemas.len()
}
#[inline]
pub fn is_empty(&self) -> bool {
self.column_schemas.is_empty()
}
/// Returns index of the timestamp key column.
#[inline]
pub fn timestamp_index(&self) -> Option<usize> {
self.timestamp_index
}
#[inline]
pub fn timestamp_column(&self) -> Option<&ColumnSchema> {
self.timestamp_index.map(|idx| &self.column_schemas[idx])
}
#[inline]
pub fn version(&self) -> u32 {
self.version
}
#[inline]
pub fn metadata(&self) -> &HashMap<String, String> {
&self.arrow_schema.metadata
}
}
#[derive(Default)]
pub struct SchemaBuilder {
column_schemas: Vec<ColumnSchema>,
name_to_index: HashMap<String, usize>,
fields: Vec<Field>,
timestamp_index: Option<usize>,
version: u32,
metadata: HashMap<String, String>,
}
impl TryFrom<Vec<ColumnSchema>> for SchemaBuilder {
type Error = Error;
fn try_from(column_schemas: Vec<ColumnSchema>) -> Result<SchemaBuilder> {
SchemaBuilder::try_from_columns(column_schemas)
}
}
impl SchemaBuilder {
pub fn try_from_columns(column_schemas: Vec<ColumnSchema>) -> Result<Self> {
let FieldsAndIndices {
fields,
name_to_index,
timestamp_index,
} = collect_fields(&column_schemas)?;
Ok(Self {
column_schemas,
name_to_index,
fields,
timestamp_index,
..Default::default()
})
}
pub fn version(mut self, version: u32) -> Self {
self.version = version;
self
}
/// Add key value pair to metadata.
///
/// Old metadata with same key would be overwritten.
pub fn add_metadata(mut self, key: impl Into<String>, value: impl Into<String>) -> Self {
self.metadata.insert(key.into(), value.into());
self
}
pub fn build(mut self) -> Result<Schema> {
if let Some(timestamp_index) = self.timestamp_index {
validate_timestamp_index(&self.column_schemas, timestamp_index)?;
}
self.metadata
.insert(VERSION_KEY.to_string(), self.version.to_string());
let arrow_schema = ArrowSchema::new(self.fields).with_metadata(self.metadata);
Ok(Schema {
column_schemas: self.column_schemas,
name_to_index: self.name_to_index,
arrow_schema: Arc::new(arrow_schema),
timestamp_index: self.timestamp_index,
version: self.version,
})
}
}
struct FieldsAndIndices {
fields: Vec<Field>,
name_to_index: HashMap<String, usize>,
timestamp_index: Option<usize>,
}
fn collect_fields(column_schemas: &[ColumnSchema]) -> Result<FieldsAndIndices> {
let mut fields = Vec::with_capacity(column_schemas.len());
let mut name_to_index = HashMap::with_capacity(column_schemas.len());
let mut timestamp_index = None;
for (index, column_schema) in column_schemas.iter().enumerate() {
if column_schema.is_time_index() {
ensure!(
timestamp_index.is_none(),
error::DuplicateTimestampIndexSnafu {
exists: timestamp_index.unwrap(),
new: index,
}
);
timestamp_index = Some(index);
}
let field = Field::try_from(column_schema)?;
fields.push(field);
name_to_index.insert(column_schema.name.clone(), index);
}
Ok(FieldsAndIndices {
fields,
name_to_index,
timestamp_index,
})
}
fn validate_timestamp_index(column_schemas: &[ColumnSchema], timestamp_index: usize) -> Result<()> {
ensure!(
timestamp_index < column_schemas.len(),
error::InvalidTimestampIndexSnafu {
index: timestamp_index,
}
);
let column_schema = &column_schemas[timestamp_index];
ensure!(
column_schema.data_type.is_timestamp_compatible(),
error::InvalidTimestampIndexSnafu {
index: timestamp_index,
}
);
ensure!(
column_schema.is_time_index(),
error::InvalidTimestampIndexSnafu {
index: timestamp_index,
}
);
Ok(())
}
pub type SchemaRef = Arc<Schema>;
impl TryFrom<Arc<ArrowSchema>> for Schema {
type Error = Error;
fn try_from(arrow_schema: Arc<ArrowSchema>) -> Result<Schema> {
let mut column_schemas = Vec::with_capacity(arrow_schema.fields.len());
let mut name_to_index = HashMap::with_capacity(arrow_schema.fields.len());
for field in &arrow_schema.fields {
let column_schema = ColumnSchema::try_from(field)?;
name_to_index.insert(field.name().to_string(), column_schemas.len());
column_schemas.push(column_schema);
}
let mut timestamp_index = None;
for (index, column_schema) in column_schemas.iter().enumerate() {
if column_schema.is_time_index() {
validate_timestamp_index(&column_schemas, index)?;
ensure!(
timestamp_index.is_none(),
error::DuplicateTimestampIndexSnafu {
exists: timestamp_index.unwrap(),
new: index,
}
);
timestamp_index = Some(index);
}
}
let version = try_parse_version(&arrow_schema.metadata, VERSION_KEY)?;
Ok(Self {
column_schemas,
name_to_index,
arrow_schema,
timestamp_index,
version,
})
}
}
impl TryFrom<ArrowSchema> for Schema {
type Error = Error;
fn try_from(arrow_schema: ArrowSchema) -> Result<Schema> {
let arrow_schema = Arc::new(arrow_schema);
Schema::try_from(arrow_schema)
}
}
fn try_parse_version(metadata: &HashMap<String, String>, key: &str) -> Result<u32> {
if let Some(value) = metadata.get(key) {
let version = value
.parse()
.context(error::ParseSchemaVersionSnafu { value })?;
Ok(version)
} else {
Ok(Schema::INITIAL_VERSION)
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::data_type::ConcreteDataType;
#[test]
fn test_build_empty_schema() {
let schema = SchemaBuilder::default().build().unwrap();
assert_eq!(0, schema.num_columns());
assert!(schema.is_empty());
}
#[test]
fn test_schema_no_timestamp() {
let column_schemas = vec![
ColumnSchema::new("col1", ConcreteDataType::int32_datatype(), false),
ColumnSchema::new("col2", ConcreteDataType::float64_datatype(), true),
];
let schema = Schema::new(column_schemas.clone());
assert_eq!(2, schema.num_columns());
assert!(!schema.is_empty());
assert!(schema.timestamp_index().is_none());
assert!(schema.timestamp_column().is_none());
assert_eq!(Schema::INITIAL_VERSION, schema.version());
for column_schema in &column_schemas {
let found = schema.column_schema_by_name(&column_schema.name).unwrap();
assert_eq!(column_schema, found);
}
assert!(schema.column_schema_by_name("col3").is_none());
let new_schema = Schema::try_from(schema.arrow_schema().clone()).unwrap();
assert_eq!(schema, new_schema);
assert_eq!(column_schemas, schema.column_schemas());
}
#[test]
fn test_metadata() {
let column_schemas = vec![ColumnSchema::new(
"col1",
ConcreteDataType::int32_datatype(),
false,
)];
let schema = SchemaBuilder::try_from(column_schemas)
.unwrap()
.add_metadata("k1", "v1")
.build()
.unwrap();
assert_eq!("v1", schema.metadata().get("k1").unwrap());
}
#[test]
fn test_schema_with_timestamp() {
let column_schemas = vec![
ColumnSchema::new("col1", ConcreteDataType::int32_datatype(), true),
ColumnSchema::new(
"ts",
ConcreteDataType::timestamp_millisecond_datatype(),
false,
)
.with_time_index(true),
];
let schema = SchemaBuilder::try_from(column_schemas.clone())
.unwrap()
.version(123)
.build()
.unwrap();
assert_eq!(1, schema.timestamp_index().unwrap());
assert_eq!(&column_schemas[1], schema.timestamp_column().unwrap());
assert_eq!(123, schema.version());
let new_schema = Schema::try_from(schema.arrow_schema().clone()).unwrap();
assert_eq!(1, schema.timestamp_index().unwrap());
assert_eq!(schema, new_schema);
}
#[test]
fn test_schema_wrong_timestamp() {
let column_schemas = vec![
ColumnSchema::new("col1", ConcreteDataType::int32_datatype(), true)
.with_time_index(true),
ColumnSchema::new("col2", ConcreteDataType::float64_datatype(), false),
];
assert!(SchemaBuilder::try_from(column_schemas)
.unwrap()
.build()
.is_err());
let column_schemas = vec![
ColumnSchema::new("col1", ConcreteDataType::int32_datatype(), true),
ColumnSchema::new("col2", ConcreteDataType::float64_datatype(), false)
.with_time_index(true),
];
assert!(SchemaBuilder::try_from(column_schemas)
.unwrap()
.build()
.is_err());
}
}

View File

@@ -0,0 +1,305 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::BTreeMap;
use arrow::datatypes::Field;
use serde::{Deserialize, Serialize};
use snafu::{ensure, ResultExt};
use crate::data_type::{ConcreteDataType, DataType};
use crate::error::{self, Error, Result};
use crate::schema::constraint::ColumnDefaultConstraint;
use crate::vectors::VectorRef;
pub type Metadata = BTreeMap<String, String>;
/// Key used to store whether the column is time index in arrow field's metadata.
const TIME_INDEX_KEY: &str = "greptime:time_index";
/// Key used to store default constraint in arrow field's metadata.
const DEFAULT_CONSTRAINT_KEY: &str = "greptime:default_constraint";
/// Schema of a column, used as an immutable struct.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct ColumnSchema {
pub name: String,
pub data_type: ConcreteDataType,
is_nullable: bool,
is_time_index: bool,
default_constraint: Option<ColumnDefaultConstraint>,
metadata: Metadata,
}
impl ColumnSchema {
pub fn new<T: Into<String>>(
name: T,
data_type: ConcreteDataType,
is_nullable: bool,
) -> ColumnSchema {
ColumnSchema {
name: name.into(),
data_type,
is_nullable,
is_time_index: false,
default_constraint: None,
metadata: Metadata::new(),
}
}
#[inline]
pub fn is_time_index(&self) -> bool {
self.is_time_index
}
#[inline]
pub fn is_nullable(&self) -> bool {
self.is_nullable
}
#[inline]
pub fn default_constraint(&self) -> Option<&ColumnDefaultConstraint> {
self.default_constraint.as_ref()
}
#[inline]
pub fn metadata(&self) -> &Metadata {
&self.metadata
}
pub fn with_time_index(mut self, is_time_index: bool) -> Self {
self.is_time_index = is_time_index;
if is_time_index {
self.metadata
.insert(TIME_INDEX_KEY.to_string(), "true".to_string());
} else {
self.metadata.remove(TIME_INDEX_KEY);
}
self
}
pub fn with_default_constraint(
mut self,
default_constraint: Option<ColumnDefaultConstraint>,
) -> Result<Self> {
if let Some(constraint) = &default_constraint {
constraint.validate(&self.data_type, self.is_nullable)?;
}
self.default_constraint = default_constraint;
Ok(self)
}
/// Creates a new [`ColumnSchema`] with given metadata.
pub fn with_metadata(mut self, metadata: Metadata) -> Self {
self.metadata = metadata;
self
}
pub fn create_default_vector(&self, num_rows: usize) -> Result<Option<VectorRef>> {
match &self.default_constraint {
Some(c) => c
.create_default_vector(&self.data_type, self.is_nullable, num_rows)
.map(Some),
None => {
if self.is_nullable {
// No default constraint, use null as default value.
// TODO(yingwen): Use NullVector once it supports setting logical type.
ColumnDefaultConstraint::null_value()
.create_default_vector(&self.data_type, self.is_nullable, num_rows)
.map(Some)
} else {
Ok(None)
}
}
}
}
}
impl TryFrom<&Field> for ColumnSchema {
type Error = Error;
fn try_from(field: &Field) -> Result<ColumnSchema> {
let data_type = ConcreteDataType::try_from(field.data_type())?;
let mut metadata = field.metadata().cloned().unwrap_or_default();
let default_constraint = match metadata.remove(DEFAULT_CONSTRAINT_KEY) {
Some(json) => {
Some(serde_json::from_str(&json).context(error::DeserializeSnafu { json })?)
}
None => None,
};
let is_time_index = metadata.contains_key(TIME_INDEX_KEY);
Ok(ColumnSchema {
name: field.name().clone(),
data_type,
is_nullable: field.is_nullable(),
is_time_index,
default_constraint,
metadata,
})
}
}
impl TryFrom<&ColumnSchema> for Field {
type Error = Error;
fn try_from(column_schema: &ColumnSchema) -> Result<Field> {
let mut metadata = column_schema.metadata.clone();
if let Some(value) = &column_schema.default_constraint {
// Adds an additional metadata to store the default constraint.
let old = metadata.insert(
DEFAULT_CONSTRAINT_KEY.to_string(),
serde_json::to_string(&value).context(error::SerializeSnafu)?,
);
ensure!(
old.is_none(),
error::DuplicateMetaSnafu {
key: DEFAULT_CONSTRAINT_KEY,
}
);
}
Ok(Field::new(
&column_schema.name,
column_schema.data_type.as_arrow_type(),
column_schema.is_nullable(),
)
.with_metadata(Some(metadata)))
}
}
#[cfg(test)]
mod tests {
use arrow::datatypes::DataType as ArrowDataType;
use super::*;
use crate::value::Value;
#[test]
fn test_column_schema() {
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), true);
let field = Field::try_from(&column_schema).unwrap();
assert_eq!("test", field.name());
assert_eq!(ArrowDataType::Int32, *field.data_type());
assert!(field.is_nullable());
let new_column_schema = ColumnSchema::try_from(&field).unwrap();
assert_eq!(column_schema, new_column_schema);
}
#[test]
fn test_column_schema_with_default_constraint() {
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), true)
.with_default_constraint(Some(ColumnDefaultConstraint::Value(Value::from(99))))
.unwrap();
assert!(column_schema
.metadata()
.get(DEFAULT_CONSTRAINT_KEY)
.is_none());
let field = Field::try_from(&column_schema).unwrap();
assert_eq!("test", field.name());
assert_eq!(ArrowDataType::Int32, *field.data_type());
assert!(field.is_nullable());
assert_eq!(
"{\"Value\":{\"Int32\":99}}",
field
.metadata()
.unwrap()
.get(DEFAULT_CONSTRAINT_KEY)
.unwrap()
);
let new_column_schema = ColumnSchema::try_from(&field).unwrap();
assert_eq!(column_schema, new_column_schema);
}
#[test]
fn test_column_schema_with_metadata() {
let mut metadata = Metadata::new();
metadata.insert("k1".to_string(), "v1".to_string());
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), true)
.with_metadata(metadata)
.with_default_constraint(Some(ColumnDefaultConstraint::null_value()))
.unwrap();
assert_eq!("v1", column_schema.metadata().get("k1").unwrap());
assert!(column_schema
.metadata()
.get(DEFAULT_CONSTRAINT_KEY)
.is_none());
let field = Field::try_from(&column_schema).unwrap();
assert_eq!("v1", field.metadata().unwrap().get("k1").unwrap());
assert!(field
.metadata()
.unwrap()
.get(DEFAULT_CONSTRAINT_KEY)
.is_some());
let new_column_schema = ColumnSchema::try_from(&field).unwrap();
assert_eq!(column_schema, new_column_schema);
}
#[test]
fn test_column_schema_with_duplicate_metadata() {
let mut metadata = Metadata::new();
metadata.insert(DEFAULT_CONSTRAINT_KEY.to_string(), "v1".to_string());
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), true)
.with_metadata(metadata)
.with_default_constraint(Some(ColumnDefaultConstraint::null_value()))
.unwrap();
Field::try_from(&column_schema).unwrap_err();
}
#[test]
fn test_column_schema_invalid_default_constraint() {
ColumnSchema::new("test", ConcreteDataType::int32_datatype(), false)
.with_default_constraint(Some(ColumnDefaultConstraint::null_value()))
.unwrap_err();
}
#[test]
fn test_column_default_constraint_try_into_from() {
let default_constraint = ColumnDefaultConstraint::Value(Value::from(42i64));
let bytes: Vec<u8> = default_constraint.clone().try_into().unwrap();
let from_value = ColumnDefaultConstraint::try_from(&bytes[..]).unwrap();
assert_eq!(default_constraint, from_value);
}
#[test]
fn test_column_schema_create_default_null() {
// Implicit default null.
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), true);
let v = column_schema.create_default_vector(5).unwrap().unwrap();
assert_eq!(5, v.len());
assert!(v.only_null());
// Explicit default null.
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), true)
.with_default_constraint(Some(ColumnDefaultConstraint::null_value()))
.unwrap();
let v = column_schema.create_default_vector(5).unwrap().unwrap();
assert_eq!(5, v.len());
assert!(v.only_null());
}
#[test]
fn test_column_schema_no_default() {
let column_schema = ColumnSchema::new("test", ConcreteDataType::int32_datatype(), false);
assert!(column_schema.create_default_vector(5).unwrap().is_none());
}
}

View File

@@ -0,0 +1,306 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::fmt::{Display, Formatter};
use std::sync::Arc;
use common_time::util;
use serde::{Deserialize, Serialize};
use snafu::{ensure, ResultExt};
use crate::data_type::{ConcreteDataType, DataType};
use crate::error::{self, Result};
use crate::value::Value;
use crate::vectors::{Int64Vector, TimestampMillisecondVector, VectorRef};
const CURRENT_TIMESTAMP: &str = "current_timestamp()";
/// Column's default constraint.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub enum ColumnDefaultConstraint {
// A function invocation
// TODO(dennis): we save the function expression here, maybe use a struct in future.
Function(String),
// A value
Value(Value),
}
impl TryFrom<&[u8]> for ColumnDefaultConstraint {
type Error = error::Error;
fn try_from(bytes: &[u8]) -> Result<Self> {
let json = String::from_utf8_lossy(bytes);
serde_json::from_str(&json).context(error::DeserializeSnafu { json })
}
}
impl TryFrom<ColumnDefaultConstraint> for Vec<u8> {
type Error = error::Error;
fn try_from(value: ColumnDefaultConstraint) -> std::result::Result<Self, Self::Error> {
let s = serde_json::to_string(&value).context(error::SerializeSnafu)?;
Ok(s.into_bytes())
}
}
impl Display for ColumnDefaultConstraint {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
ColumnDefaultConstraint::Function(expr) => write!(f, "{}", expr),
ColumnDefaultConstraint::Value(v) => write!(f, "{}", v),
}
}
}
impl ColumnDefaultConstraint {
/// Returns a default null constraint.
pub fn null_value() -> ColumnDefaultConstraint {
ColumnDefaultConstraint::Value(Value::Null)
}
/// Check whether the constraint is valid for columns with given `data_type`
/// and `is_nullable` attributes.
pub fn validate(&self, data_type: &ConcreteDataType, is_nullable: bool) -> Result<()> {
ensure!(is_nullable || !self.maybe_null(), error::NullDefaultSnafu);
match self {
ColumnDefaultConstraint::Function(expr) => {
ensure!(
expr == CURRENT_TIMESTAMP,
error::UnsupportedDefaultExprSnafu { expr }
);
ensure!(
data_type.is_timestamp_compatible(),
error::DefaultValueTypeSnafu {
reason: "return value of the function must has timestamp type",
}
);
}
ColumnDefaultConstraint::Value(v) => {
if !v.is_null() {
// Whether the value could be nullable has been checked before, only need
// to check the type compatibility here.
ensure!(
data_type.logical_type_id() == v.logical_type_id(),
error::DefaultValueTypeSnafu {
reason: format!(
"column has type {:?} but default value has type {:?}",
data_type.logical_type_id(),
v.logical_type_id()
),
}
);
}
}
}
Ok(())
}
/// Create a vector that contains `num_rows` default values for given `data_type`.
///
/// If `is_nullable` is `true`, then this method would returns error if the created
/// default value is null.
///
/// # Panics
/// Panics if `num_rows == 0`.
pub fn create_default_vector(
&self,
data_type: &ConcreteDataType,
is_nullable: bool,
num_rows: usize,
) -> Result<VectorRef> {
assert!(num_rows > 0);
match self {
ColumnDefaultConstraint::Function(expr) => {
// Functions should also ensure its return value is not null when
// is_nullable is true.
match &expr[..] {
// TODO(dennis): we only supports current_timestamp right now,
// it's better to use a expression framework in future.
CURRENT_TIMESTAMP => create_current_timestamp_vector(data_type, num_rows),
_ => error::UnsupportedDefaultExprSnafu { expr }.fail(),
}
}
ColumnDefaultConstraint::Value(v) => {
ensure!(is_nullable || !v.is_null(), error::NullDefaultSnafu);
// TODO(yingwen):
// 1. For null value, we could use NullVector once it supports custom logical type.
// 2. For non null value, we could use ConstantVector, but it would cause all codes
// attempt to downcast the vector fail if they don't check whether the vector is const
// first.
let mut mutable_vector = data_type.create_mutable_vector(1);
mutable_vector.push_value_ref(v.as_value_ref())?;
let base_vector = mutable_vector.to_vector();
Ok(base_vector.replicate(&[num_rows]))
}
}
}
/// Returns true if this constraint might creates NULL.
fn maybe_null(&self) -> bool {
// Once we support more functions, we may return true if given function
// could return null.
matches!(self, ColumnDefaultConstraint::Value(Value::Null))
}
}
fn create_current_timestamp_vector(
data_type: &ConcreteDataType,
num_rows: usize,
) -> Result<VectorRef> {
// FIXME(yingwen): We should implements cast in VectorOp so we could cast the millisecond vector
// to other data type and avoid this match.
match data_type {
ConcreteDataType::Timestamp(_) => Ok(Arc::new(TimestampMillisecondVector::from_values(
std::iter::repeat(util::current_time_millis()).take(num_rows),
))),
ConcreteDataType::Int64(_) => Ok(Arc::new(Int64Vector::from_values(
std::iter::repeat(util::current_time_millis()).take(num_rows),
))),
_ => error::DefaultValueTypeSnafu {
reason: format!(
"Not support to assign current timestamp to {:?} type",
data_type
),
}
.fail(),
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::error::Error;
use crate::vectors::Int32Vector;
#[test]
fn test_null_default_constraint() {
let constraint = ColumnDefaultConstraint::null_value();
assert!(constraint.maybe_null());
let constraint = ColumnDefaultConstraint::Value(Value::Int32(10));
assert!(!constraint.maybe_null());
}
#[test]
fn test_validate_null_constraint() {
let constraint = ColumnDefaultConstraint::null_value();
let data_type = ConcreteDataType::int32_datatype();
constraint.validate(&data_type, false).unwrap_err();
constraint.validate(&data_type, true).unwrap();
}
#[test]
fn test_validate_value_constraint() {
let constraint = ColumnDefaultConstraint::Value(Value::Int32(10));
let data_type = ConcreteDataType::int32_datatype();
constraint.validate(&data_type, false).unwrap();
constraint.validate(&data_type, true).unwrap();
constraint
.validate(&ConcreteDataType::uint32_datatype(), true)
.unwrap_err();
}
#[test]
fn test_validate_function_constraint() {
let constraint = ColumnDefaultConstraint::Function(CURRENT_TIMESTAMP.to_string());
constraint
.validate(&ConcreteDataType::timestamp_millisecond_datatype(), false)
.unwrap();
constraint
.validate(&ConcreteDataType::boolean_datatype(), false)
.unwrap_err();
let constraint = ColumnDefaultConstraint::Function("hello()".to_string());
constraint
.validate(&ConcreteDataType::timestamp_millisecond_datatype(), false)
.unwrap_err();
}
#[test]
fn test_create_default_vector_by_null() {
let constraint = ColumnDefaultConstraint::null_value();
let data_type = ConcreteDataType::int32_datatype();
constraint
.create_default_vector(&data_type, false, 10)
.unwrap_err();
let constraint = ColumnDefaultConstraint::null_value();
let v = constraint
.create_default_vector(&data_type, true, 3)
.unwrap();
assert_eq!(3, v.len());
for i in 0..v.len() {
assert_eq!(Value::Null, v.get(i));
}
}
#[test]
fn test_create_default_vector_by_value() {
let constraint = ColumnDefaultConstraint::Value(Value::Int32(10));
let data_type = ConcreteDataType::int32_datatype();
let v = constraint
.create_default_vector(&data_type, false, 4)
.unwrap();
let expect: VectorRef = Arc::new(Int32Vector::from_values(vec![10; 4]));
assert_eq!(expect, v);
}
#[test]
fn test_create_default_vector_by_func() {
let constraint = ColumnDefaultConstraint::Function(CURRENT_TIMESTAMP.to_string());
// Timestamp type.
let data_type = ConcreteDataType::timestamp_millisecond_datatype();
let v = constraint
.create_default_vector(&data_type, false, 4)
.unwrap();
assert_eq!(4, v.len());
assert!(
matches!(v.get(0), Value::Timestamp(_)),
"v {:?} is not timestamp",
v.get(0)
);
// Int64 type.
let data_type = ConcreteDataType::int64_datatype();
let v = constraint
.create_default_vector(&data_type, false, 4)
.unwrap();
assert_eq!(4, v.len());
assert!(
matches!(v.get(0), Value::Int64(_)),
"v {:?} is not timestamp",
v.get(0)
);
let constraint = ColumnDefaultConstraint::Function("no".to_string());
let data_type = ConcreteDataType::timestamp_millisecond_datatype();
constraint
.create_default_vector(&data_type, false, 4)
.unwrap_err();
}
#[test]
fn test_create_by_func_and_invalid_type() {
let constraint = ColumnDefaultConstraint::Function(CURRENT_TIMESTAMP.to_string());
let data_type = ConcreteDataType::boolean_datatype();
let err = constraint
.create_default_vector(&data_type, false, 4)
.unwrap_err();
assert!(matches!(err, Error::DefaultValueType { .. }), "{:?}", err);
}
}

View File

@@ -0,0 +1,77 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use serde::{Deserialize, Serialize};
use crate::error::{Error, Result};
use crate::schema::{ColumnSchema, Schema, SchemaBuilder};
/// Struct used to serialize and deserialize [`Schema`](crate::schema::Schema).
///
/// This struct only contains necessary data to recover the Schema.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct RawSchema {
pub column_schemas: Vec<ColumnSchema>,
pub timestamp_index: Option<usize>,
pub version: u32,
}
impl TryFrom<RawSchema> for Schema {
type Error = Error;
fn try_from(raw: RawSchema) -> Result<Schema> {
SchemaBuilder::try_from(raw.column_schemas)?
.version(raw.version)
.build()
}
}
impl From<&Schema> for RawSchema {
fn from(schema: &Schema) -> RawSchema {
RawSchema {
column_schemas: schema.column_schemas.clone(),
timestamp_index: schema.timestamp_index,
version: schema.version,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::data_type::ConcreteDataType;
#[test]
fn test_raw_convert() {
let column_schemas = vec![
ColumnSchema::new("col1", ConcreteDataType::int32_datatype(), true),
ColumnSchema::new(
"ts",
ConcreteDataType::timestamp_millisecond_datatype(),
false,
)
.with_time_index(true),
];
let schema = SchemaBuilder::try_from(column_schemas)
.unwrap()
.version(123)
.build()
.unwrap();
let raw = RawSchema::from(&schema);
let schema_new = Schema::try_from(raw).unwrap();
assert_eq!(schema, schema_new);
}
}

View File

@@ -0,0 +1,20 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::error::Result;
pub trait Serializable: Send + Sync {
/// Serialize a column of value with given type to JSON value
fn serialize_to_json(&self) -> Result<Vec<serde_json::Value>>;
}

View File

@@ -0,0 +1,135 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use paste::paste;
use serde::{Deserialize, Serialize};
use crate::prelude::{Scalar, Value, ValueRef};
use crate::scalars::ScalarRef;
use crate::types::{
TimestampMicrosecondType, TimestampMillisecondType, TimestampNanosecondType,
TimestampSecondType, WrapperType,
};
use crate::vectors::{
TimestampMicrosecondVector, TimestampMillisecondVector, TimestampNanosecondVector,
TimestampSecondVector,
};
macro_rules! define_timestamp_with_unit {
($unit: ident) => {
paste! {
#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
pub struct [<Timestamp $unit>](pub Timestamp);
impl [<Timestamp $unit>] {
pub fn new(val: i64) -> Self {
Self(Timestamp::new(val, TimeUnit::$unit))
}
}
impl Default for [<Timestamp $unit>] {
fn default() -> Self {
Self::new(0)
}
}
impl From<[<Timestamp $unit>]> for Value {
fn from(t: [<Timestamp $unit>]) -> Value {
Value::Timestamp(t.0)
}
}
impl From<[<Timestamp $unit>]> for serde_json::Value {
fn from(t: [<Timestamp $unit>]) -> Self {
t.0.into()
}
}
impl From<[<Timestamp $unit>]> for ValueRef<'static> {
fn from(t: [<Timestamp $unit>]) -> Self {
ValueRef::Timestamp(t.0)
}
}
impl Scalar for [<Timestamp $unit>] {
type VectorType = [<Timestamp $unit Vector>];
type RefType<'a> = [<Timestamp $unit>];
fn as_scalar_ref(&self) -> Self::RefType<'_> {
*self
}
fn upcast_gat<'short, 'long: 'short>(
long: Self::RefType<'long>,
) -> Self::RefType<'short> {
long
}
}
impl<'a> ScalarRef<'a> for [<Timestamp $unit>] {
type ScalarType = [<Timestamp $unit>];
fn to_owned_scalar(&self) -> Self::ScalarType {
*self
}
}
impl WrapperType for [<Timestamp $unit>] {
type LogicalType = [<Timestamp $unit Type>];
type Native = i64;
fn from_native(value: Self::Native) -> Self {
Self::new(value)
}
fn into_native(self) -> Self::Native {
self.0.into()
}
}
impl From<i64> for [<Timestamp $unit>] {
fn from(val: i64) -> Self {
[<Timestamp $unit>]::from_native(val)
}
}
}
};
}
define_timestamp_with_unit!(Second);
define_timestamp_with_unit!(Millisecond);
define_timestamp_with_unit!(Microsecond);
define_timestamp_with_unit!(Nanosecond);
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_timestamp_scalar() {
let ts = TimestampSecond::new(123);
assert_eq!(ts, ts.as_scalar_ref());
assert_eq!(ts, ts.to_owned_scalar());
let ts = TimestampMillisecond::new(123);
assert_eq!(ts, ts.as_scalar_ref());
assert_eq!(ts, ts.to_owned_scalar());
let ts = TimestampMicrosecond::new(123);
assert_eq!(ts, ts.as_scalar_ref());
assert_eq!(ts, ts.to_owned_scalar());
let ts = TimestampNanosecond::new(123);
assert_eq!(ts, ts.as_scalar_ref());
assert_eq!(ts, ts.to_owned_scalar());
}
}

View File

@@ -0,0 +1,93 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Unique identifier for logical data type.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum LogicalTypeId {
Null,
// Numeric types:
Boolean,
Int8,
Int16,
Int32,
Int64,
UInt8,
UInt16,
UInt32,
UInt64,
Float32,
Float64,
// String types:
String,
Binary,
// Date & Time types:
/// Date representing the elapsed time since UNIX epoch (1970-01-01)
/// in days (32 bits).
Date,
/// Datetime representing the elapsed time since UNIX epoch (1970-01-01) in
/// seconds/milliseconds/microseconds/nanoseconds, determined by precision.
DateTime,
TimestampSecond,
TimestampMillisecond,
TimestampMicrosecond,
TimestampNanosecond,
List,
}
impl LogicalTypeId {
/// Create ConcreteDataType based on this id. This method is for test only as it
/// would lost some info.
///
/// # Panics
/// Panics if data type is not supported.
#[cfg(any(test, feature = "test"))]
pub fn data_type(&self) -> crate::data_type::ConcreteDataType {
use crate::data_type::ConcreteDataType;
match self {
LogicalTypeId::Null => ConcreteDataType::null_datatype(),
LogicalTypeId::Boolean => ConcreteDataType::boolean_datatype(),
LogicalTypeId::Int8 => ConcreteDataType::int8_datatype(),
LogicalTypeId::Int16 => ConcreteDataType::int16_datatype(),
LogicalTypeId::Int32 => ConcreteDataType::int32_datatype(),
LogicalTypeId::Int64 => ConcreteDataType::int64_datatype(),
LogicalTypeId::UInt8 => ConcreteDataType::uint8_datatype(),
LogicalTypeId::UInt16 => ConcreteDataType::uint16_datatype(),
LogicalTypeId::UInt32 => ConcreteDataType::uint32_datatype(),
LogicalTypeId::UInt64 => ConcreteDataType::uint64_datatype(),
LogicalTypeId::Float32 => ConcreteDataType::float32_datatype(),
LogicalTypeId::Float64 => ConcreteDataType::float64_datatype(),
LogicalTypeId::String => ConcreteDataType::string_datatype(),
LogicalTypeId::Binary => ConcreteDataType::binary_datatype(),
LogicalTypeId::Date => ConcreteDataType::date_datatype(),
LogicalTypeId::DateTime => ConcreteDataType::datetime_datatype(),
LogicalTypeId::TimestampSecond => ConcreteDataType::timestamp_second_datatype(),
LogicalTypeId::TimestampMillisecond => {
ConcreteDataType::timestamp_millisecond_datatype()
}
LogicalTypeId::TimestampMicrosecond => {
ConcreteDataType::timestamp_microsecond_datatype()
}
LogicalTypeId::TimestampNanosecond => ConcreteDataType::timestamp_nanosecond_datatype(),
LogicalTypeId::List => {
ConcreteDataType::list_datatype(ConcreteDataType::null_datatype())
}
}
}
}

View File

@@ -0,0 +1,37 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod binary_type;
mod boolean_type;
mod date_type;
mod datetime_type;
mod list_type;
mod null_type;
mod primitive_type;
mod string_type;
mod timestamp_type;
pub use binary_type::BinaryType;
pub use boolean_type::BooleanType;
pub use date_type::DateType;
pub use datetime_type::DateTimeType;
pub use list_type::ListType;
pub use null_type::NullType;
pub use primitive_type::{
Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, LogicalPrimitiveType,
NativeType, UInt16Type, UInt32Type, UInt64Type, UInt8Type, WrapperType,
};
pub use string_type::StringType;
pub use timestamp_type::*;

View File

@@ -0,0 +1,60 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow::datatypes::DataType as ArrowDataType;
use common_base::bytes::StringBytes;
use serde::{Deserialize, Serialize};
use crate::data_type::{DataType, DataTypeRef};
use crate::scalars::ScalarVectorBuilder;
use crate::type_id::LogicalTypeId;
use crate::value::Value;
use crate::vectors::{BinaryVectorBuilder, MutableVector};
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct BinaryType;
impl BinaryType {
pub fn arc() -> DataTypeRef {
Arc::new(Self)
}
}
impl DataType for BinaryType {
fn name(&self) -> &str {
"Binary"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::Binary
}
fn default_value(&self) -> Value {
StringBytes::default().into()
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::LargeBinary
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(BinaryVectorBuilder::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}

View File

@@ -0,0 +1,59 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow::datatypes::DataType as ArrowDataType;
use serde::{Deserialize, Serialize};
use crate::data_type::{DataType, DataTypeRef};
use crate::scalars::ScalarVectorBuilder;
use crate::type_id::LogicalTypeId;
use crate::value::Value;
use crate::vectors::{BooleanVectorBuilder, MutableVector};
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct BooleanType;
impl BooleanType {
pub fn arc() -> DataTypeRef {
Arc::new(Self)
}
}
impl DataType for BooleanType {
fn name(&self) -> &str {
"Boolean"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::Boolean
}
fn default_value(&self) -> Value {
bool::default().into()
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Boolean
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(BooleanVectorBuilder::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}

View File

@@ -0,0 +1,90 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::datatypes::{DataType as ArrowDataType, Date32Type};
use common_time::Date;
use serde::{Deserialize, Serialize};
use snafu::OptionExt;
use crate::data_type::{ConcreteDataType, DataType};
use crate::error::{self, Result};
use crate::scalars::ScalarVectorBuilder;
use crate::type_id::LogicalTypeId;
use crate::types::LogicalPrimitiveType;
use crate::value::{Value, ValueRef};
use crate::vectors::{DateVector, DateVectorBuilder, MutableVector, Vector};
/// Data type for Date (YYYY-MM-DD).
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct DateType;
impl DataType for DateType {
fn name(&self) -> &str {
"Date"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::Date
}
fn default_value(&self) -> Value {
Value::Date(Default::default())
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Date32
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(DateVectorBuilder::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}
impl LogicalPrimitiveType for DateType {
type ArrowPrimitive = Date32Type;
type Native = i32;
type Wrapper = Date;
fn build_data_type() -> ConcreteDataType {
ConcreteDataType::date_datatype()
}
fn type_name() -> &'static str {
"Date"
}
fn cast_vector(vector: &dyn Vector) -> Result<&DateVector> {
vector
.as_any()
.downcast_ref::<DateVector>()
.with_context(|| error::CastTypeSnafu {
msg: format!("Failed to cast {} to DateVector", vector.vector_type_name(),),
})
}
fn cast_value_ref(value: ValueRef) -> Result<Option<Date>> {
match value {
ValueRef::Null => Ok(None),
ValueRef::Date(v) => Ok(Some(v)),
other => error::CastTypeSnafu {
msg: format!("Failed to cast value {:?} to Date", other,),
}
.fail(),
}
}
}

View File

@@ -0,0 +1,91 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::datatypes::{DataType as ArrowDataType, Date64Type};
use common_time::DateTime;
use serde::{Deserialize, Serialize};
use snafu::OptionExt;
use crate::data_type::{ConcreteDataType, DataType};
use crate::error::{self, Result};
use crate::prelude::{LogicalTypeId, MutableVector, ScalarVectorBuilder, Value, ValueRef, Vector};
use crate::types::LogicalPrimitiveType;
use crate::vectors::{DateTimeVector, DateTimeVectorBuilder, PrimitiveVector};
/// Data type for [`DateTime`].
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct DateTimeType;
impl DataType for DateTimeType {
fn name(&self) -> &str {
"DateTime"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::DateTime
}
fn default_value(&self) -> Value {
Value::DateTime(DateTime::default())
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Date64
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(DateTimeVectorBuilder::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}
impl LogicalPrimitiveType for DateTimeType {
type ArrowPrimitive = Date64Type;
type Native = i64;
type Wrapper = DateTime;
fn build_data_type() -> ConcreteDataType {
ConcreteDataType::datetime_datatype()
}
fn type_name() -> &'static str {
"DateTime"
}
fn cast_vector(vector: &dyn Vector) -> Result<&PrimitiveVector<Self>> {
vector
.as_any()
.downcast_ref::<DateTimeVector>()
.with_context(|| error::CastTypeSnafu {
msg: format!(
"Failed to cast {} to DateTimeVector",
vector.vector_type_name()
),
})
}
fn cast_value_ref(value: ValueRef) -> Result<Option<Self::Wrapper>> {
match value {
ValueRef::Null => Ok(None),
ValueRef::DateTime(v) => Ok(Some(v)),
other => error::CastTypeSnafu {
msg: format!("Failed to cast value {:?} to DateTime", other,),
}
.fail(),
}
}
}

View File

@@ -0,0 +1,95 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::datatypes::{DataType as ArrowDataType, Field};
use serde::{Deserialize, Serialize};
use crate::data_type::{ConcreteDataType, DataType};
use crate::type_id::LogicalTypeId;
use crate::value::{ListValue, Value};
use crate::vectors::{ListVectorBuilder, MutableVector};
/// Used to represent the List datatype.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct ListType {
/// The type of List's item.
// Use Box to avoid recursive dependency, as enum ConcreteDataType depends on ListType.
item_type: Box<ConcreteDataType>,
}
impl Default for ListType {
fn default() -> Self {
ListType::new(ConcreteDataType::null_datatype())
}
}
impl ListType {
/// Create a new `ListType` whose item's data type is `item_type`.
pub fn new(item_type: ConcreteDataType) -> Self {
ListType {
item_type: Box::new(item_type),
}
}
}
impl DataType for ListType {
fn name(&self) -> &str {
"List"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::List
}
fn default_value(&self) -> Value {
Value::List(ListValue::new(None, *self.item_type.clone()))
}
fn as_arrow_type(&self) -> ArrowDataType {
let field = Box::new(Field::new("item", self.item_type.as_arrow_type(), true));
ArrowDataType::List(field)
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(ListVectorBuilder::with_type_capacity(
*self.item_type.clone(),
capacity,
))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::value::ListValue;
#[test]
fn test_list_type() {
let t = ListType::new(ConcreteDataType::boolean_datatype());
assert_eq!("List", t.name());
assert_eq!(LogicalTypeId::List, t.logical_type_id());
assert_eq!(
Value::List(ListValue::new(None, ConcreteDataType::boolean_datatype())),
t.default_value()
);
assert_eq!(
ArrowDataType::List(Box::new(Field::new("item", ArrowDataType::Boolean, true))),
t.as_arrow_type()
);
}
}

View File

@@ -0,0 +1,58 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow::datatypes::DataType as ArrowDataType;
use serde::{Deserialize, Serialize};
use crate::data_type::{DataType, DataTypeRef};
use crate::type_id::LogicalTypeId;
use crate::value::Value;
use crate::vectors::{MutableVector, NullVectorBuilder};
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct NullType;
impl NullType {
pub fn arc() -> DataTypeRef {
Arc::new(NullType)
}
}
impl DataType for NullType {
fn name(&self) -> &str {
"Null"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::Null
}
fn default_value(&self) -> Value {
Value::Null
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Null
}
fn create_mutable_vector(&self, _capacity: usize) -> Box<dyn MutableVector> {
Box::new(NullVectorBuilder::default())
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}

View File

@@ -0,0 +1,358 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp::Ordering;
use arrow::datatypes::{ArrowNativeType, ArrowPrimitiveType, DataType as ArrowDataType};
use common_time::{Date, DateTime};
use num::NumCast;
use serde::{Deserialize, Serialize};
use snafu::OptionExt;
use crate::data_type::{ConcreteDataType, DataType};
use crate::error::{self, Result};
use crate::scalars::{Scalar, ScalarRef, ScalarVectorBuilder};
use crate::type_id::LogicalTypeId;
use crate::types::{DateTimeType, DateType};
use crate::value::{Value, ValueRef};
use crate::vectors::{MutableVector, PrimitiveVector, PrimitiveVectorBuilder, Vector};
/// Data types that can be used as arrow's native type.
pub trait NativeType: ArrowNativeType + NumCast {
/// Largest numeric type this primitive type can be cast to.
type LargestType: NativeType;
}
macro_rules! impl_native_type {
($Type: ident, $LargestType: ident) => {
impl NativeType for $Type {
type LargestType = $LargestType;
}
};
}
impl_native_type!(u8, u64);
impl_native_type!(u16, u64);
impl_native_type!(u32, u64);
impl_native_type!(u64, u64);
impl_native_type!(i8, i64);
impl_native_type!(i16, i64);
impl_native_type!(i32, i64);
impl_native_type!(i64, i64);
impl_native_type!(f32, f64);
impl_native_type!(f64, f64);
/// Represents the wrapper type that wraps a native type using the `newtype pattern`,
/// such as [Date](`common_time::Date`) is a wrapper type for the underlying native
/// type `i32`.
pub trait WrapperType:
Copy
+ Scalar
+ PartialEq
+ Into<Value>
+ Into<ValueRef<'static>>
+ Serialize
+ Into<serde_json::Value>
{
/// Logical primitive type that this wrapper type belongs to.
type LogicalType: LogicalPrimitiveType<Wrapper = Self, Native = Self::Native>;
/// The underlying native type.
type Native: NativeType;
/// Convert native type into this wrapper type.
fn from_native(value: Self::Native) -> Self;
/// Convert this wrapper type into native type.
fn into_native(self) -> Self::Native;
}
/// Trait bridging the logical primitive type with [ArrowPrimitiveType].
pub trait LogicalPrimitiveType: 'static + Sized {
/// Arrow primitive type of this logical type.
type ArrowPrimitive: ArrowPrimitiveType<Native = Self::Native>;
/// Native (physical) type of this logical type.
type Native: NativeType;
/// Wrapper type that the vector returns.
type Wrapper: WrapperType<LogicalType = Self, Native = Self::Native>
+ for<'a> Scalar<VectorType = PrimitiveVector<Self>, RefType<'a> = Self::Wrapper>
+ for<'a> ScalarRef<'a, ScalarType = Self::Wrapper>;
/// Construct the data type struct.
fn build_data_type() -> ConcreteDataType;
/// Return the name of the type.
fn type_name() -> &'static str;
/// Dynamic cast the vector to the concrete vector type.
fn cast_vector(vector: &dyn Vector) -> Result<&PrimitiveVector<Self>>;
/// Cast value ref to the primitive type.
fn cast_value_ref(value: ValueRef) -> Result<Option<Self::Wrapper>>;
}
/// A new type for [WrapperType], complement the `Ord` feature for it. Wrapping non ordered
/// primitive types like `f32` and `f64` in `OrdPrimitive` can make them be used in places that
/// require `Ord`. For example, in `Median` or `Percentile` UDAFs.
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct OrdPrimitive<T: WrapperType>(pub T);
impl<T: WrapperType> OrdPrimitive<T> {
pub fn as_primitive(&self) -> T {
self.0
}
}
impl<T: WrapperType> Eq for OrdPrimitive<T> {}
impl<T: WrapperType> PartialOrd for OrdPrimitive<T> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<T: WrapperType> Ord for OrdPrimitive<T> {
fn cmp(&self, other: &Self) -> Ordering {
Into::<Value>::into(self.0).cmp(&Into::<Value>::into(other.0))
}
}
impl<T: WrapperType> From<OrdPrimitive<T>> for Value {
fn from(p: OrdPrimitive<T>) -> Self {
p.0.into()
}
}
macro_rules! impl_wrapper {
($Type: ident, $LogicalType: ident) => {
impl WrapperType for $Type {
type LogicalType = $LogicalType;
type Native = $Type;
fn from_native(value: Self::Native) -> Self {
value
}
fn into_native(self) -> Self::Native {
self
}
}
};
}
impl_wrapper!(u8, UInt8Type);
impl_wrapper!(u16, UInt16Type);
impl_wrapper!(u32, UInt32Type);
impl_wrapper!(u64, UInt64Type);
impl_wrapper!(i8, Int8Type);
impl_wrapper!(i16, Int16Type);
impl_wrapper!(i32, Int32Type);
impl_wrapper!(i64, Int64Type);
impl_wrapper!(f32, Float32Type);
impl_wrapper!(f64, Float64Type);
impl WrapperType for Date {
type LogicalType = DateType;
type Native = i32;
fn from_native(value: i32) -> Self {
Date::new(value)
}
fn into_native(self) -> i32 {
self.val()
}
}
impl WrapperType for DateTime {
type LogicalType = DateTimeType;
type Native = i64;
fn from_native(value: Self::Native) -> Self {
DateTime::new(value)
}
fn into_native(self) -> Self::Native {
self.val()
}
}
macro_rules! define_logical_primitive_type {
($Native: ident, $TypeId: ident, $DataType: ident) => {
// We need to define it as an empty struct `struct DataType {}` instead of a struct-unit
// `struct DataType;` to ensure the serialized JSON string is compatible with previous
// implementation.
#[derive(Debug, Clone, Default, PartialEq, Eq, Serialize, Deserialize)]
pub struct $DataType {}
impl LogicalPrimitiveType for $DataType {
type ArrowPrimitive = arrow::datatypes::$DataType;
type Native = $Native;
type Wrapper = $Native;
fn build_data_type() -> ConcreteDataType {
ConcreteDataType::$TypeId($DataType::default())
}
fn type_name() -> &'static str {
stringify!($TypeId)
}
fn cast_vector(vector: &dyn Vector) -> Result<&PrimitiveVector<$DataType>> {
vector
.as_any()
.downcast_ref::<PrimitiveVector<$DataType>>()
.with_context(|| error::CastTypeSnafu {
msg: format!(
"Failed to cast {} to vector of primitive type {}",
vector.vector_type_name(),
stringify!($TypeId)
),
})
}
fn cast_value_ref(value: ValueRef) -> Result<Option<$Native>> {
match value {
ValueRef::Null => Ok(None),
ValueRef::$TypeId(v) => Ok(Some(v.into())),
other => error::CastTypeSnafu {
msg: format!(
"Failed to cast value {:?} to primitive type {}",
other,
stringify!($TypeId),
),
}
.fail(),
}
}
}
};
}
macro_rules! define_non_timestamp_primitive {
($Native: ident, $TypeId: ident, $DataType: ident) => {
define_logical_primitive_type!($Native, $TypeId, $DataType);
impl DataType for $DataType {
fn name(&self) -> &str {
stringify!($TypeId)
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::$TypeId
}
fn default_value(&self) -> Value {
$Native::default().into()
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::$TypeId
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(PrimitiveVectorBuilder::<$DataType>::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}
};
}
define_non_timestamp_primitive!(u8, UInt8, UInt8Type);
define_non_timestamp_primitive!(u16, UInt16, UInt16Type);
define_non_timestamp_primitive!(u32, UInt32, UInt32Type);
define_non_timestamp_primitive!(u64, UInt64, UInt64Type);
define_non_timestamp_primitive!(i8, Int8, Int8Type);
define_non_timestamp_primitive!(i16, Int16, Int16Type);
define_non_timestamp_primitive!(i32, Int32, Int32Type);
define_non_timestamp_primitive!(f32, Float32, Float32Type);
define_non_timestamp_primitive!(f64, Float64, Float64Type);
// Timestamp primitive:
define_logical_primitive_type!(i64, Int64, Int64Type);
impl DataType for Int64Type {
fn name(&self) -> &str {
"Int64"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::Int64
}
fn default_value(&self) -> Value {
Value::Int64(0)
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Int64
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(PrimitiveVectorBuilder::<Int64Type>::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
true
}
}
#[cfg(test)]
mod tests {
use std::collections::BinaryHeap;
use super::*;
#[test]
fn test_ord_primitive() {
struct Foo<T>
where
T: WrapperType,
{
heap: BinaryHeap<OrdPrimitive<T>>,
}
impl<T> Foo<T>
where
T: WrapperType,
{
fn push(&mut self, value: T) {
let value = OrdPrimitive::<T>(value);
self.heap.push(value);
}
}
macro_rules! test {
($Type:ident) => {
let mut foo = Foo::<$Type> {
heap: BinaryHeap::new(),
};
foo.push($Type::default());
};
}
test!(u8);
test!(u16);
test!(u32);
test!(u64);
test!(i8);
test!(i16);
test!(i32);
test!(i64);
test!(f32);
test!(f64);
}
}

View File

@@ -0,0 +1,60 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow::datatypes::DataType as ArrowDataType;
use common_base::bytes::StringBytes;
use serde::{Deserialize, Serialize};
use crate::data_type::{DataType, DataTypeRef};
use crate::prelude::ScalarVectorBuilder;
use crate::type_id::LogicalTypeId;
use crate::value::Value;
use crate::vectors::{MutableVector, StringVectorBuilder};
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct StringType;
impl StringType {
pub fn arc() -> DataTypeRef {
Arc::new(Self)
}
}
impl DataType for StringType {
fn name(&self) -> &str {
"String"
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::String
}
fn default_value(&self) -> Value {
StringBytes::default().into()
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Utf8
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new(StringVectorBuilder::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
false
}
}

View File

@@ -0,0 +1,140 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::datatypes::{
DataType as ArrowDataType, TimeUnit as ArrowTimeUnit,
TimestampMicrosecondType as ArrowTimestampMicrosecondType,
TimestampMillisecondType as ArrowTimestampMillisecondType,
TimestampNanosecondType as ArrowTimestampNanosecondType,
TimestampSecondType as ArrowTimestampSecondType,
};
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use enum_dispatch::enum_dispatch;
use paste::paste;
use serde::{Deserialize, Serialize};
use snafu::OptionExt;
use crate::data_type::ConcreteDataType;
use crate::error;
use crate::prelude::{
DataType, LogicalTypeId, MutableVector, ScalarVectorBuilder, Value, ValueRef, Vector,
};
use crate::timestamp::{
TimestampMicrosecond, TimestampMillisecond, TimestampNanosecond, TimestampSecond,
};
use crate::types::LogicalPrimitiveType;
use crate::vectors::{
PrimitiveVector, TimestampMicrosecondVector, TimestampMicrosecondVectorBuilder,
TimestampMillisecondVector, TimestampMillisecondVectorBuilder, TimestampNanosecondVector,
TimestampNanosecondVectorBuilder, TimestampSecondVector, TimestampSecondVectorBuilder,
};
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
#[enum_dispatch(DataType)]
pub enum TimestampType {
Second(TimestampSecondType),
Millisecond(TimestampMillisecondType),
Microsecond(TimestampMicrosecondType),
Nanosecond(TimestampNanosecondType),
}
macro_rules! impl_data_type_for_timestamp {
($unit: ident) => {
paste! {
#[derive(Debug, Default, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct [<Timestamp $unit Type>];
impl DataType for [<Timestamp $unit Type>] {
fn name(&self) -> &str {
stringify!([<Timestamp $unit Type>])
}
fn logical_type_id(&self) -> LogicalTypeId {
LogicalTypeId::[<Timestamp $unit>]
}
fn default_value(&self) -> Value {
Value::Timestamp(Timestamp::new(0, TimeUnit::$unit))
}
fn as_arrow_type(&self) -> ArrowDataType {
ArrowDataType::Timestamp(ArrowTimeUnit::$unit, None)
}
fn create_mutable_vector(&self, capacity: usize) -> Box<dyn MutableVector> {
Box::new([<Timestamp $unit Vector Builder>]::with_capacity(capacity))
}
fn is_timestamp_compatible(&self) -> bool {
true
}
}
impl LogicalPrimitiveType for [<Timestamp $unit Type>] {
type ArrowPrimitive = [<Arrow Timestamp $unit Type>];
type Native = i64;
type Wrapper = [<Timestamp $unit>];
fn build_data_type() -> ConcreteDataType {
ConcreteDataType::Timestamp(TimestampType::$unit(
[<Timestamp $unit Type>]::default(),
))
}
fn type_name() -> &'static str {
stringify!([<Timestamp $unit Type>])
}
fn cast_vector(vector: &dyn Vector) -> crate::Result<&PrimitiveVector<Self>> {
vector
.as_any()
.downcast_ref::<[<Timestamp $unit Vector>]>()
.with_context(|| error::CastTypeSnafu {
msg: format!(
"Failed to cast {} to {}",
vector.vector_type_name(), stringify!([<Timestamp $unit Vector>])
),
})
}
fn cast_value_ref(value: ValueRef) -> crate::Result<Option<Self::Wrapper>> {
match value {
ValueRef::Null => Ok(None),
ValueRef::Timestamp(t) => match t.unit() {
TimeUnit::$unit => Ok(Some([<Timestamp $unit>](t))),
other => error::CastTypeSnafu {
msg: format!(
"Failed to cast Timestamp value with different unit {:?} to {}",
other, stringify!([<Timestamp $unit>])
),
}
.fail(),
},
other => error::CastTypeSnafu {
msg: format!("Failed to cast value {:?} to {}", other, stringify!([<Timestamp $unit>])),
}
.fail(),
}
}
}
}
}
}
impl_data_type_for_timestamp!(Nanosecond);
impl_data_type_for_timestamp!(Second);
impl_data_type_for_timestamp!(Millisecond);
impl_data_type_for_timestamp!(Microsecond);

1275
src/datatypes2/src/value.rs Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,309 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;
use arrow::array::{Array, ArrayRef};
use snafu::ensure;
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::serialize::Serializable;
use crate::value::{Value, ValueRef};
use crate::vectors::operations::VectorOp;
mod binary;
mod boolean;
mod constant;
mod date;
mod datetime;
mod eq;
mod helper;
mod list;
mod null;
mod operations;
mod primitive;
mod string;
mod timestamp;
mod validity;
pub use binary::{BinaryVector, BinaryVectorBuilder};
pub use boolean::{BooleanVector, BooleanVectorBuilder};
pub use constant::ConstantVector;
pub use date::{DateVector, DateVectorBuilder};
pub use datetime::{DateTimeVector, DateTimeVectorBuilder};
pub use helper::Helper;
pub use list::{ListIter, ListVector, ListVectorBuilder};
pub use null::{NullVector, NullVectorBuilder};
pub use primitive::{
Float32Vector, Float32VectorBuilder, Float64Vector, Float64VectorBuilder, Int16Vector,
Int16VectorBuilder, Int32Vector, Int32VectorBuilder, Int64Vector, Int64VectorBuilder,
Int8Vector, Int8VectorBuilder, PrimitiveIter, PrimitiveVector, PrimitiveVectorBuilder,
UInt16Vector, UInt16VectorBuilder, UInt32Vector, UInt32VectorBuilder, UInt64Vector,
UInt64VectorBuilder, UInt8Vector, UInt8VectorBuilder,
};
pub use string::{StringVector, StringVectorBuilder};
pub use timestamp::{
TimestampMicrosecondVector, TimestampMicrosecondVectorBuilder, TimestampMillisecondVector,
TimestampMillisecondVectorBuilder, TimestampNanosecondVector, TimestampNanosecondVectorBuilder,
TimestampSecondVector, TimestampSecondVectorBuilder,
};
pub use validity::Validity;
// TODO(yingwen): arrow 28.0 implements Clone for all arrays, we could upgrade to it and simplify
// some codes in methods such as `to_arrow_array()` and `to_boxed_arrow_array()`.
/// Vector of data values.
pub trait Vector: Send + Sync + Serializable + Debug + VectorOp {
/// Returns the data type of the vector.
///
/// This may require heap allocation.
fn data_type(&self) -> ConcreteDataType;
fn vector_type_name(&self) -> String;
/// Returns the vector as [Any](std::any::Any) so that it can be
/// downcast to a specific implementation.
fn as_any(&self) -> &dyn Any;
/// Returns number of elements in the vector.
fn len(&self) -> usize;
/// Returns whether the vector is empty.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Convert this vector to a new arrow [ArrayRef].
fn to_arrow_array(&self) -> ArrayRef;
/// Convert this vector to a new boxed arrow [Array].
fn to_boxed_arrow_array(&self) -> Box<dyn Array>;
/// Returns the validity of the Array.
fn validity(&self) -> Validity;
/// Returns the memory size of vector.
fn memory_size(&self) -> usize;
/// The number of null slots on this [`Vector`].
/// # Implementation
/// This is `O(1)`.
fn null_count(&self) -> usize;
/// Returns true when it's a ConstantColumn
fn is_const(&self) -> bool {
false
}
/// Returns whether row is null.
fn is_null(&self, row: usize) -> bool;
/// If the only value vector can contain is NULL.
fn only_null(&self) -> bool {
self.null_count() == self.len()
}
/// Slices the `Vector`, returning a new `VectorRef`.
///
/// # Panics
/// This function panics if `offset + length > self.len()`.
fn slice(&self, offset: usize, length: usize) -> VectorRef;
/// Returns the clone of value at `index`.
///
/// # Panics
/// Panic if `index` is out of bound.
fn get(&self, index: usize) -> Value;
/// Returns the clone of value at `index` or error if `index`
/// is out of bound.
fn try_get(&self, index: usize) -> Result<Value> {
ensure!(
index < self.len(),
error::BadArrayAccessSnafu {
index,
size: self.len()
}
);
Ok(self.get(index))
}
/// Returns the reference of value at `index`.
///
/// # Panics
/// Panic if `index` is out of bound.
fn get_ref(&self, index: usize) -> ValueRef;
}
pub type VectorRef = Arc<dyn Vector>;
/// Mutable vector that could be used to build an immutable vector.
pub trait MutableVector: Send + Sync {
/// Returns the data type of the vector.
fn data_type(&self) -> ConcreteDataType;
/// Returns the length of the vector.
fn len(&self) -> usize;
/// Returns whether the vector is empty.
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Convert to Any, to enable dynamic casting.
fn as_any(&self) -> &dyn Any;
/// Convert to mutable Any, to enable dynamic casting.
fn as_mut_any(&mut self) -> &mut dyn Any;
/// Convert `self` to an (immutable) [VectorRef] and reset `self`.
fn to_vector(&mut self) -> VectorRef;
/// Push value ref to this mutable vector.
///
/// Returns error if data type unmatch.
fn push_value_ref(&mut self, value: ValueRef) -> Result<()>;
/// Extend this mutable vector by slice of `vector`.
///
/// Returns error if data type unmatch.
///
/// # Panics
/// Panics if `offset + length > vector.len()`.
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()>;
}
/// Helper to define `try_from_arrow_array(array: arrow::array::ArrayRef)` function.
macro_rules! impl_try_from_arrow_array_for_vector {
($Array: ident, $Vector: ident) => {
impl $Vector {
pub fn try_from_arrow_array(
array: impl AsRef<dyn arrow::array::Array>,
) -> crate::error::Result<$Vector> {
use snafu::OptionExt;
let data = array
.as_ref()
.as_any()
.downcast_ref::<$Array>()
.with_context(|| crate::error::ConversionSnafu {
from: std::format!("{:?}", array.as_ref().data_type()),
})?
.data()
.clone();
let concrete_array = $Array::from(data);
Ok($Vector::from(concrete_array))
}
}
};
}
macro_rules! impl_validity_for_vector {
($array: expr) => {
Validity::from_array_data($array.data())
};
}
macro_rules! impl_get_for_vector {
($array: expr, $index: ident) => {
if $array.is_valid($index) {
// Safety: The index have been checked by `is_valid()`.
unsafe { $array.value_unchecked($index).into() }
} else {
Value::Null
}
};
}
macro_rules! impl_get_ref_for_vector {
($array: expr, $index: ident) => {
if $array.is_valid($index) {
// Safety: The index have been checked by `is_valid()`.
unsafe { $array.value_unchecked($index).into() }
} else {
ValueRef::Null
}
};
}
macro_rules! impl_extend_for_builder {
($mutable_vector: expr, $vector: ident, $VectorType: ident, $offset: ident, $length: ident) => {{
use snafu::OptionExt;
let sliced_vector = $vector.slice($offset, $length);
let concrete_vector = sliced_vector
.as_any()
.downcast_ref::<$VectorType>()
.with_context(|| crate::error::CastTypeSnafu {
msg: format!(
"Failed to cast vector from {} to {}",
$vector.vector_type_name(),
stringify!($VectorType)
),
})?;
for value in concrete_vector.iter_data() {
$mutable_vector.push(value);
}
Ok(())
}};
}
pub(crate) use {
impl_extend_for_builder, impl_get_for_vector, impl_get_ref_for_vector,
impl_try_from_arrow_array_for_vector, impl_validity_for_vector,
};
#[cfg(test)]
pub mod tests {
use arrow::array::{Array, Int32Array, UInt8Array};
use serde_json;
use super::*;
use crate::data_type::DataType;
use crate::types::{Int32Type, LogicalPrimitiveType};
use crate::vectors::helper::Helper;
#[test]
fn test_df_columns_to_vector() {
let df_column: Arc<dyn Array> = Arc::new(Int32Array::from(vec![1, 2, 3]));
let vector = Helper::try_into_vector(df_column).unwrap();
assert_eq!(
Int32Type::build_data_type().as_arrow_type(),
vector.data_type().as_arrow_type()
);
}
#[test]
fn test_serialize_i32_vector() {
let df_column: Arc<dyn Array> = Arc::new(Int32Array::from(vec![1, 2, 3]));
let json_value = Helper::try_into_vector(df_column)
.unwrap()
.serialize_to_json()
.unwrap();
assert_eq!("[1,2,3]", serde_json::to_string(&json_value).unwrap());
}
#[test]
fn test_serialize_i8_vector() {
let df_column: Arc<dyn Array> = Arc::new(UInt8Array::from(vec![1, 2, 3]));
let json_value = Helper::try_into_vector(df_column)
.unwrap()
.serialize_to_json()
.unwrap();
assert_eq!("[1,2,3]", serde_json::to_string(&json_value).unwrap());
}
}

View File

@@ -0,0 +1,353 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::sync::Arc;
use arrow::array::{Array, ArrayBuilder, ArrayData, ArrayIter, ArrayRef};
use snafu::ResultExt;
use crate::arrow_array::{BinaryArray, MutableBinaryArray};
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::scalars::{ScalarVector, ScalarVectorBuilder};
use crate::serialize::Serializable;
use crate::value::{Value, ValueRef};
use crate::vectors::{self, MutableVector, Validity, Vector, VectorRef};
/// Vector of binary strings.
#[derive(Debug, PartialEq)]
pub struct BinaryVector {
array: BinaryArray,
}
impl BinaryVector {
pub(crate) fn as_arrow(&self) -> &dyn Array {
&self.array
}
fn to_array_data(&self) -> ArrayData {
self.array.data().clone()
}
fn from_array_data(data: ArrayData) -> BinaryVector {
BinaryVector {
array: BinaryArray::from(data),
}
}
}
impl From<BinaryArray> for BinaryVector {
fn from(array: BinaryArray) -> Self {
Self { array }
}
}
impl From<Vec<Option<Vec<u8>>>> for BinaryVector {
fn from(data: Vec<Option<Vec<u8>>>) -> Self {
Self {
array: BinaryArray::from_iter(data),
}
}
}
impl Vector for BinaryVector {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::binary_datatype()
}
fn vector_type_name(&self) -> String {
"BinaryVector".to_string()
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.array.len()
}
fn to_arrow_array(&self) -> ArrayRef {
let data = self.to_array_data();
Arc::new(BinaryArray::from(data))
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let data = self.to_array_data();
Box::new(BinaryArray::from(data))
}
fn validity(&self) -> Validity {
vectors::impl_validity_for_vector!(self.array)
}
fn memory_size(&self) -> usize {
self.array.get_buffer_memory_size()
}
fn null_count(&self) -> usize {
self.array.null_count()
}
fn is_null(&self, row: usize) -> bool {
self.array.is_null(row)
}
fn slice(&self, offset: usize, length: usize) -> VectorRef {
let data = self.array.data().slice(offset, length);
Arc::new(Self::from_array_data(data))
}
fn get(&self, index: usize) -> Value {
vectors::impl_get_for_vector!(self.array, index)
}
fn get_ref(&self, index: usize) -> ValueRef {
vectors::impl_get_ref_for_vector!(self.array, index)
}
}
impl ScalarVector for BinaryVector {
type OwnedItem = Vec<u8>;
type RefItem<'a> = &'a [u8];
type Iter<'a> = ArrayIter<&'a BinaryArray>;
type Builder = BinaryVectorBuilder;
fn get_data(&self, idx: usize) -> Option<Self::RefItem<'_>> {
if self.array.is_valid(idx) {
Some(self.array.value(idx))
} else {
None
}
}
fn iter_data(&self) -> Self::Iter<'_> {
self.array.iter()
}
}
pub struct BinaryVectorBuilder {
mutable_array: MutableBinaryArray,
}
impl MutableVector for BinaryVectorBuilder {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::binary_datatype()
}
fn len(&self) -> usize {
self.mutable_array.len()
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_mut_any(&mut self) -> &mut dyn Any {
self
}
fn to_vector(&mut self) -> VectorRef {
Arc::new(self.finish())
}
fn push_value_ref(&mut self, value: ValueRef) -> Result<()> {
match value.as_binary()? {
Some(v) => self.mutable_array.append_value(v),
None => self.mutable_array.append_null(),
}
Ok(())
}
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()> {
vectors::impl_extend_for_builder!(self, vector, BinaryVector, offset, length)
}
}
impl ScalarVectorBuilder for BinaryVectorBuilder {
type VectorType = BinaryVector;
fn with_capacity(capacity: usize) -> Self {
Self {
mutable_array: MutableBinaryArray::with_capacity(capacity, 0),
}
}
fn push(&mut self, value: Option<<Self::VectorType as ScalarVector>::RefItem<'_>>) {
match value {
Some(v) => self.mutable_array.append_value(v),
None => self.mutable_array.append_null(),
}
}
fn finish(&mut self) -> Self::VectorType {
BinaryVector {
array: self.mutable_array.finish(),
}
}
}
impl Serializable for BinaryVector {
fn serialize_to_json(&self) -> Result<Vec<serde_json::Value>> {
self.iter_data()
.map(|v| match v {
None => Ok(serde_json::Value::Null), // if binary vector not present, map to NULL
Some(vec) => serde_json::to_value(vec),
})
.collect::<serde_json::Result<_>>()
.context(error::SerializeSnafu)
}
}
vectors::impl_try_from_arrow_array_for_vector!(BinaryArray, BinaryVector);
#[cfg(test)]
mod tests {
use arrow::datatypes::DataType as ArrowDataType;
use common_base::bytes::Bytes;
use serde_json;
use super::*;
use crate::arrow_array::BinaryArray;
use crate::data_type::DataType;
use crate::serialize::Serializable;
use crate::types::BinaryType;
#[test]
fn test_binary_vector_misc() {
let v = BinaryVector::from(BinaryArray::from_iter_values(&[
vec![1, 2, 3],
vec![1, 2, 3],
]));
assert_eq!(2, v.len());
assert_eq!("BinaryVector", v.vector_type_name());
assert!(!v.is_const());
assert!(v.validity().is_all_valid());
assert!(!v.only_null());
assert_eq!(128, v.memory_size());
for i in 0..2 {
assert!(!v.is_null(i));
assert_eq!(Value::Binary(Bytes::from(vec![1, 2, 3])), v.get(i));
assert_eq!(ValueRef::Binary(&[1, 2, 3]), v.get_ref(i));
}
let arrow_arr = v.to_arrow_array();
assert_eq!(2, arrow_arr.len());
assert_eq!(&ArrowDataType::LargeBinary, arrow_arr.data_type());
}
#[test]
fn test_serialize_binary_vector_to_json() {
let vector = BinaryVector::from(BinaryArray::from_iter_values(&[
vec![1, 2, 3],
vec![1, 2, 3],
]));
let json_value = vector.serialize_to_json().unwrap();
assert_eq!(
"[[1,2,3],[1,2,3]]",
serde_json::to_string(&json_value).unwrap()
);
}
#[test]
fn test_serialize_binary_vector_with_null_to_json() {
let mut builder = BinaryVectorBuilder::with_capacity(4);
builder.push(Some(&[1, 2, 3]));
builder.push(None);
builder.push(Some(&[4, 5, 6]));
let vector = builder.finish();
let json_value = vector.serialize_to_json().unwrap();
assert_eq!(
"[[1,2,3],null,[4,5,6]]",
serde_json::to_string(&json_value).unwrap()
);
}
#[test]
fn test_from_arrow_array() {
let arrow_array = BinaryArray::from_iter_values(&[vec![1, 2, 3], vec![1, 2, 3]]);
let original = BinaryArray::from(arrow_array.data().clone());
let vector = BinaryVector::from(arrow_array);
assert_eq!(original, vector.array);
}
#[test]
fn test_binary_vector_build_get() {
let mut builder = BinaryVectorBuilder::with_capacity(4);
builder.push(Some(b"hello"));
builder.push(Some(b"happy"));
builder.push(Some(b"world"));
builder.push(None);
let vector = builder.finish();
assert_eq!(b"hello", vector.get_data(0).unwrap());
assert_eq!(None, vector.get_data(3));
assert_eq!(Value::Binary(b"hello".as_slice().into()), vector.get(0));
assert_eq!(Value::Null, vector.get(3));
let mut iter = vector.iter_data();
assert_eq!(b"hello", iter.next().unwrap().unwrap());
assert_eq!(b"happy", iter.next().unwrap().unwrap());
assert_eq!(b"world", iter.next().unwrap().unwrap());
assert_eq!(None, iter.next().unwrap());
assert_eq!(None, iter.next());
}
#[test]
fn test_binary_vector_validity() {
let mut builder = BinaryVectorBuilder::with_capacity(4);
builder.push(Some(b"hello"));
builder.push(Some(b"world"));
let vector = builder.finish();
assert_eq!(0, vector.null_count());
assert!(vector.validity().is_all_valid());
let mut builder = BinaryVectorBuilder::with_capacity(3);
builder.push(Some(b"hello"));
builder.push(None);
builder.push(Some(b"world"));
let vector = builder.finish();
assert_eq!(1, vector.null_count());
let validity = vector.validity();
assert!(!validity.is_set(1));
assert_eq!(1, validity.null_count());
assert!(!validity.is_set(1));
}
#[test]
fn test_binary_vector_builder() {
let input = BinaryVector::from_slice(&[b"world", b"one", b"two"]);
let mut builder = BinaryType::default().create_mutable_vector(3);
builder
.push_value_ref(ValueRef::Binary("hello".as_bytes()))
.unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(BinaryVector::from_slice(&[b"hello", b"one", b"two"]));
assert_eq!(expect, vector);
}
}

View File

@@ -0,0 +1,371 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::borrow::Borrow;
use std::sync::Arc;
use arrow::array::{
Array, ArrayBuilder, ArrayData, ArrayIter, ArrayRef, BooleanArray, BooleanBuilder,
};
use snafu::ResultExt;
use crate::data_type::ConcreteDataType;
use crate::error::Result;
use crate::scalars::{ScalarVector, ScalarVectorBuilder};
use crate::serialize::Serializable;
use crate::value::{Value, ValueRef};
use crate::vectors::{self, MutableVector, Validity, Vector, VectorRef};
/// Vector of boolean.
#[derive(Debug, PartialEq)]
pub struct BooleanVector {
array: BooleanArray,
}
impl BooleanVector {
pub(crate) fn as_arrow(&self) -> &dyn Array {
&self.array
}
pub(crate) fn as_boolean_array(&self) -> &BooleanArray {
&self.array
}
fn to_array_data(&self) -> ArrayData {
self.array.data().clone()
}
fn from_array_data(data: ArrayData) -> BooleanVector {
BooleanVector {
array: BooleanArray::from(data),
}
}
pub(crate) fn false_count(&self) -> usize {
self.array.false_count()
}
}
impl From<Vec<bool>> for BooleanVector {
fn from(data: Vec<bool>) -> Self {
BooleanVector {
array: BooleanArray::from(data),
}
}
}
impl From<BooleanArray> for BooleanVector {
fn from(array: BooleanArray) -> Self {
Self { array }
}
}
impl From<Vec<Option<bool>>> for BooleanVector {
fn from(data: Vec<Option<bool>>) -> Self {
BooleanVector {
array: BooleanArray::from(data),
}
}
}
impl<Ptr: Borrow<Option<bool>>> FromIterator<Ptr> for BooleanVector {
fn from_iter<I: IntoIterator<Item = Ptr>>(iter: I) -> Self {
BooleanVector {
array: BooleanArray::from_iter(iter),
}
}
}
impl Vector for BooleanVector {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::boolean_datatype()
}
fn vector_type_name(&self) -> String {
"BooleanVector".to_string()
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.array.len()
}
fn to_arrow_array(&self) -> ArrayRef {
let data = self.to_array_data();
Arc::new(BooleanArray::from(data))
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let data = self.to_array_data();
Box::new(BooleanArray::from(data))
}
fn validity(&self) -> Validity {
vectors::impl_validity_for_vector!(self.array)
}
fn memory_size(&self) -> usize {
self.array.get_buffer_memory_size()
}
fn null_count(&self) -> usize {
self.array.null_count()
}
fn is_null(&self, row: usize) -> bool {
self.array.is_null(row)
}
fn slice(&self, offset: usize, length: usize) -> VectorRef {
let data = self.array.data().slice(offset, length);
Arc::new(Self::from_array_data(data))
}
fn get(&self, index: usize) -> Value {
vectors::impl_get_for_vector!(self.array, index)
}
fn get_ref(&self, index: usize) -> ValueRef {
vectors::impl_get_ref_for_vector!(self.array, index)
}
}
impl ScalarVector for BooleanVector {
type OwnedItem = bool;
type RefItem<'a> = bool;
type Iter<'a> = ArrayIter<&'a BooleanArray>;
type Builder = BooleanVectorBuilder;
fn get_data(&self, idx: usize) -> Option<Self::RefItem<'_>> {
if self.array.is_valid(idx) {
Some(self.array.value(idx))
} else {
None
}
}
fn iter_data(&self) -> Self::Iter<'_> {
self.array.iter()
}
}
pub struct BooleanVectorBuilder {
mutable_array: BooleanBuilder,
}
impl MutableVector for BooleanVectorBuilder {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::boolean_datatype()
}
fn len(&self) -> usize {
self.mutable_array.len()
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_mut_any(&mut self) -> &mut dyn Any {
self
}
fn to_vector(&mut self) -> VectorRef {
Arc::new(self.finish())
}
fn push_value_ref(&mut self, value: ValueRef) -> Result<()> {
match value.as_boolean()? {
Some(v) => self.mutable_array.append_value(v),
None => self.mutable_array.append_null(),
}
Ok(())
}
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()> {
vectors::impl_extend_for_builder!(self, vector, BooleanVector, offset, length)
}
}
impl ScalarVectorBuilder for BooleanVectorBuilder {
type VectorType = BooleanVector;
fn with_capacity(capacity: usize) -> Self {
Self {
mutable_array: BooleanBuilder::with_capacity(capacity),
}
}
fn push(&mut self, value: Option<<Self::VectorType as ScalarVector>::RefItem<'_>>) {
match value {
Some(v) => self.mutable_array.append_value(v),
None => self.mutable_array.append_null(),
}
}
fn finish(&mut self) -> Self::VectorType {
BooleanVector {
array: self.mutable_array.finish(),
}
}
}
impl Serializable for BooleanVector {
fn serialize_to_json(&self) -> Result<Vec<serde_json::Value>> {
self.iter_data()
.map(serde_json::to_value)
.collect::<serde_json::Result<_>>()
.context(crate::error::SerializeSnafu)
}
}
vectors::impl_try_from_arrow_array_for_vector!(BooleanArray, BooleanVector);
#[cfg(test)]
mod tests {
use arrow::datatypes::DataType as ArrowDataType;
use serde_json;
use super::*;
use crate::data_type::DataType;
use crate::serialize::Serializable;
use crate::types::BooleanType;
#[test]
fn test_boolean_vector_misc() {
let bools = vec![true, false, true, true, false, false, true, true, false];
let v = BooleanVector::from(bools.clone());
assert_eq!(9, v.len());
assert_eq!("BooleanVector", v.vector_type_name());
assert!(!v.is_const());
assert!(v.validity().is_all_valid());
assert!(!v.only_null());
assert_eq!(64, v.memory_size());
for (i, b) in bools.iter().enumerate() {
assert!(!v.is_null(i));
assert_eq!(Value::Boolean(*b), v.get(i));
assert_eq!(ValueRef::Boolean(*b), v.get_ref(i));
}
let arrow_arr = v.to_arrow_array();
assert_eq!(9, arrow_arr.len());
assert_eq!(&ArrowDataType::Boolean, arrow_arr.data_type());
}
#[test]
fn test_serialize_boolean_vector_to_json() {
let vector = BooleanVector::from(vec![true, false, true, true, false, false]);
let json_value = vector.serialize_to_json().unwrap();
assert_eq!(
"[true,false,true,true,false,false]",
serde_json::to_string(&json_value).unwrap(),
);
}
#[test]
fn test_serialize_boolean_vector_with_null_to_json() {
let vector = BooleanVector::from(vec![Some(true), None, Some(false)]);
let json_value = vector.serialize_to_json().unwrap();
assert_eq!(
"[true,null,false]",
serde_json::to_string(&json_value).unwrap(),
);
}
#[test]
fn test_boolean_vector_from_vec() {
let input = vec![false, true, false, true];
let vec = BooleanVector::from(input.clone());
assert_eq!(4, vec.len());
for (i, v) in input.into_iter().enumerate() {
assert_eq!(Some(v), vec.get_data(i), "failed at {}", i)
}
}
#[test]
fn test_boolean_vector_from_iter() {
let input = vec![Some(false), Some(true), Some(false), Some(true)];
let vec = input.iter().collect::<BooleanVector>();
assert_eq!(4, vec.len());
for (i, v) in input.into_iter().enumerate() {
assert_eq!(v, vec.get_data(i), "failed at {}", i)
}
}
#[test]
fn test_boolean_vector_from_vec_option() {
let input = vec![Some(false), Some(true), None, Some(true)];
let vec = BooleanVector::from(input.clone());
assert_eq!(4, vec.len());
for (i, v) in input.into_iter().enumerate() {
assert_eq!(v, vec.get_data(i), "failed at {}", i)
}
}
#[test]
fn test_boolean_vector_build_get() {
let input = [Some(true), None, Some(false)];
let mut builder = BooleanVectorBuilder::with_capacity(3);
for v in input {
builder.push(v);
}
let vector = builder.finish();
assert_eq!(input.len(), vector.len());
let res: Vec<_> = vector.iter_data().collect();
assert_eq!(input, &res[..]);
for (i, v) in input.into_iter().enumerate() {
assert_eq!(v, vector.get_data(i));
assert_eq!(Value::from(v), vector.get(i));
}
}
#[test]
fn test_boolean_vector_validity() {
let vector = BooleanVector::from(vec![Some(true), None, Some(false)]);
assert_eq!(1, vector.null_count());
let validity = vector.validity();
assert_eq!(1, validity.null_count());
assert!(!validity.is_set(1));
let vector = BooleanVector::from(vec![true, false, false]);
assert_eq!(0, vector.null_count());
assert!(vector.validity().is_all_valid());
}
#[test]
fn test_boolean_vector_builder() {
let input = BooleanVector::from_slice(&[true, false, true]);
let mut builder = BooleanType::default().create_mutable_vector(3);
builder.push_value_ref(ValueRef::Boolean(true)).unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(BooleanVector::from_slice(&[true, false, true]));
assert_eq!(expect, vector);
}
}

View File

@@ -0,0 +1,218 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::fmt;
use std::sync::Arc;
use arrow::array::{Array, ArrayRef};
use snafu::ResultExt;
use crate::data_type::ConcreteDataType;
use crate::error::{Result, SerializeSnafu};
use crate::serialize::Serializable;
use crate::value::{Value, ValueRef};
use crate::vectors::{BooleanVector, Helper, Validity, Vector, VectorRef};
#[derive(Clone)]
pub struct ConstantVector {
length: usize,
vector: VectorRef,
}
impl ConstantVector {
/// Create a new [ConstantVector].
///
/// # Panics
/// Panics if `vector.len() != 1`.
pub fn new(vector: VectorRef, length: usize) -> Self {
assert_eq!(1, vector.len());
// Avoid const recursion.
if vector.is_const() {
let vec: &ConstantVector = unsafe { Helper::static_cast(&vector) };
return Self::new(vec.inner().clone(), length);
}
Self { vector, length }
}
pub fn inner(&self) -> &VectorRef {
&self.vector
}
/// Returns the constant value.
pub fn get_constant_ref(&self) -> ValueRef {
self.vector.get_ref(0)
}
pub(crate) fn replicate_vector(&self, offsets: &[usize]) -> VectorRef {
assert_eq!(offsets.len(), self.len());
if offsets.is_empty() {
return self.slice(0, 0);
}
Arc::new(ConstantVector::new(
self.vector.clone(),
*offsets.last().unwrap(),
))
}
pub(crate) fn filter_vector(&self, filter: &BooleanVector) -> Result<VectorRef> {
let length = self.len() - filter.false_count();
if length == self.len() {
return Ok(Arc::new(self.clone()));
}
Ok(Arc::new(ConstantVector::new(self.inner().clone(), length)))
}
}
impl Vector for ConstantVector {
fn data_type(&self) -> ConcreteDataType {
self.vector.data_type()
}
fn vector_type_name(&self) -> String {
"ConstantVector".to_string()
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.length
}
fn to_arrow_array(&self) -> ArrayRef {
let v = self.vector.replicate(&[self.length]);
v.to_arrow_array()
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let v = self.vector.replicate(&[self.length]);
v.to_boxed_arrow_array()
}
fn is_const(&self) -> bool {
true
}
fn validity(&self) -> Validity {
if self.vector.is_null(0) {
Validity::all_null(self.length)
} else {
Validity::all_valid(self.length)
}
}
fn memory_size(&self) -> usize {
self.vector.memory_size()
}
fn is_null(&self, _row: usize) -> bool {
self.vector.is_null(0)
}
fn only_null(&self) -> bool {
self.vector.is_null(0)
}
fn slice(&self, _offset: usize, length: usize) -> VectorRef {
Arc::new(Self {
vector: self.vector.clone(),
length,
})
}
fn get(&self, _index: usize) -> Value {
self.vector.get(0)
}
fn get_ref(&self, _index: usize) -> ValueRef {
self.vector.get_ref(0)
}
fn null_count(&self) -> usize {
if self.only_null() {
self.len()
} else {
0
}
}
}
impl fmt::Debug for ConstantVector {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "ConstantVector([{:?}; {}])", self.get(0), self.len())
}
}
impl Serializable for ConstantVector {
fn serialize_to_json(&self) -> Result<Vec<serde_json::Value>> {
std::iter::repeat(self.get(0))
.take(self.len())
.map(serde_json::Value::try_from)
.collect::<serde_json::Result<_>>()
.context(SerializeSnafu)
}
}
#[cfg(test)]
mod tests {
use arrow::datatypes::DataType as ArrowDataType;
use super::*;
use crate::vectors::Int32Vector;
#[test]
fn test_constant_vector_misc() {
let a = Int32Vector::from_slice(vec![1]);
let c = ConstantVector::new(Arc::new(a), 10);
assert_eq!("ConstantVector", c.vector_type_name());
assert!(c.is_const());
assert_eq!(10, c.len());
assert!(c.validity().is_all_valid());
assert!(!c.only_null());
assert_eq!(64, c.memory_size());
for i in 0..10 {
assert!(!c.is_null(i));
assert_eq!(Value::Int32(1), c.get(i));
}
let arrow_arr = c.to_arrow_array();
assert_eq!(10, arrow_arr.len());
assert_eq!(&ArrowDataType::Int32, arrow_arr.data_type());
}
#[test]
fn test_debug_null_array() {
let a = Int32Vector::from_slice(vec![1]);
let c = ConstantVector::new(Arc::new(a), 10);
let s = format!("{:?}", c);
assert_eq!(s, "ConstantVector([Int32(1); 10])");
}
#[test]
fn test_serialize_json() {
let a = Int32Vector::from_slice(vec![1]);
let c = ConstantVector::new(Arc::new(a), 10);
let s = serde_json::to_string(&c.serialize_to_json().unwrap()).unwrap();
assert_eq!(s, "[1,1,1,1,1,1,1,1,1,1]");
}
}

View File

@@ -0,0 +1,103 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::types::DateType;
use crate::vectors::{PrimitiveVector, PrimitiveVectorBuilder};
// Vector for [`Date`](common_time::Date).
pub type DateVector = PrimitiveVector<DateType>;
// Builder to build DateVector.
pub type DateVectorBuilder = PrimitiveVectorBuilder<DateType>;
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow::array::Array;
use common_time::date::Date;
use super::*;
use crate::data_type::DataType;
use crate::scalars::{ScalarVector, ScalarVectorBuilder};
use crate::serialize::Serializable;
use crate::types::DateType;
use crate::value::{Value, ValueRef};
use crate::vectors::{Vector, VectorRef};
#[test]
fn test_build_date_vector() {
let mut builder = DateVectorBuilder::with_capacity(4);
builder.push(Some(Date::new(1)));
builder.push(None);
builder.push(Some(Date::new(-1)));
let vector = builder.finish();
assert_eq!(3, vector.len());
assert_eq!(Value::Date(Date::new(1)), vector.get(0));
assert_eq!(ValueRef::Date(Date::new(1)), vector.get_ref(0));
assert_eq!(Some(Date::new(1)), vector.get_data(0));
assert_eq!(None, vector.get_data(1));
assert_eq!(Value::Null, vector.get(1));
assert_eq!(ValueRef::Null, vector.get_ref(1));
assert_eq!(Some(Date::new(-1)), vector.get_data(2));
let mut iter = vector.iter_data();
assert_eq!(Some(Date::new(1)), iter.next().unwrap());
assert_eq!(None, iter.next().unwrap());
assert_eq!(Some(Date::new(-1)), iter.next().unwrap());
}
#[test]
fn test_date_scalar() {
let vector = DateVector::from_slice(&[1, 2]);
assert_eq!(2, vector.len());
assert_eq!(Some(Date::new(1)), vector.get_data(0));
assert_eq!(Some(Date::new(2)), vector.get_data(1));
}
#[test]
fn test_date_vector_builder() {
let input = DateVector::from_slice(&[1, 2, 3]);
let mut builder = DateType::default().create_mutable_vector(3);
builder
.push_value_ref(ValueRef::Date(Date::new(5)))
.unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(DateVector::from_slice(&[5, 2, 3]));
assert_eq!(expect, vector);
}
#[test]
fn test_date_from_arrow() {
let vector = DateVector::from_slice(&[1, 2]);
let arrow = vector.as_arrow().slice(0, vector.len());
let vector2 = DateVector::try_from_arrow_array(&arrow).unwrap();
assert_eq!(vector, vector2);
}
#[test]
fn test_serialize_date_vector() {
let vector = DateVector::from_slice(&[-1, 0, 1]);
let serialized_json = serde_json::to_string(&vector.serialize_to_json().unwrap()).unwrap();
assert_eq!(
r#"["1969-12-31","1970-01-01","1970-01-02"]"#,
serialized_json
);
}
}

View File

@@ -0,0 +1,116 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::types::DateTimeType;
use crate::vectors::{PrimitiveVector, PrimitiveVectorBuilder};
/// Vector of [`DateTime`](common_time::Date)
pub type DateTimeVector = PrimitiveVector<DateTimeType>;
/// Builder for [`DateTimeVector`].
pub type DateTimeVectorBuilder = PrimitiveVectorBuilder<DateTimeType>;
#[cfg(test)]
mod tests {
use std::sync::Arc;
use arrow::array::{Array, PrimitiveArray};
use common_time::DateTime;
use datafusion_common::from_slice::FromSlice;
use super::*;
use crate::data_type::DataType;
use crate::prelude::{
ConcreteDataType, ScalarVector, ScalarVectorBuilder, Value, ValueRef, Vector, VectorRef,
};
use crate::serialize::Serializable;
#[test]
fn test_datetime_vector() {
let v = DateTimeVector::new(PrimitiveArray::from_slice(&[1, 2, 3]));
assert_eq!(ConcreteDataType::datetime_datatype(), v.data_type());
assert_eq!(3, v.len());
assert_eq!("DateTimeVector", v.vector_type_name());
assert_eq!(
&arrow::datatypes::DataType::Date64,
v.to_arrow_array().data_type()
);
assert_eq!(Some(DateTime::new(1)), v.get_data(0));
assert_eq!(Value::DateTime(DateTime::new(1)), v.get(0));
assert_eq!(ValueRef::DateTime(DateTime::new(1)), v.get_ref(0));
let mut iter = v.iter_data();
assert_eq!(Some(DateTime::new(1)), iter.next().unwrap());
assert_eq!(Some(DateTime::new(2)), iter.next().unwrap());
assert_eq!(Some(DateTime::new(3)), iter.next().unwrap());
assert!(!v.is_null(0));
assert_eq!(64, v.memory_size());
if let Value::DateTime(d) = v.get(0) {
assert_eq!(1, d.val());
} else {
unreachable!()
}
assert_eq!(
"[\"1970-01-01 00:00:01\",\"1970-01-01 00:00:02\",\"1970-01-01 00:00:03\"]",
serde_json::to_string(&v.serialize_to_json().unwrap()).unwrap()
);
}
#[test]
fn test_datetime_vector_builder() {
let mut builder = DateTimeVectorBuilder::with_capacity(3);
builder.push(Some(DateTime::new(1)));
builder.push(None);
builder.push(Some(DateTime::new(-1)));
let v = builder.finish();
assert_eq!(ConcreteDataType::datetime_datatype(), v.data_type());
assert_eq!(Value::DateTime(DateTime::new(1)), v.get(0));
assert_eq!(Value::Null, v.get(1));
assert_eq!(Value::DateTime(DateTime::new(-1)), v.get(2));
let input = DateTimeVector::from_wrapper_slice(&[
DateTime::new(1),
DateTime::new(2),
DateTime::new(3),
]);
let mut builder = DateTimeType::default().create_mutable_vector(3);
builder
.push_value_ref(ValueRef::DateTime(DateTime::new(5)))
.unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(DateTimeVector::from_wrapper_slice(&[
DateTime::new(5),
DateTime::new(2),
DateTime::new(3),
]));
assert_eq!(expect, vector);
}
#[test]
fn test_datetime_from_arrow() {
let vector = DateTimeVector::from_wrapper_slice(&[DateTime::new(1), DateTime::new(2)]);
let arrow = vector.as_arrow().slice(0, vector.len());
let vector2 = DateTimeVector::try_from_arrow_array(&arrow).unwrap();
assert_eq!(vector, vector2);
}
}

View File

@@ -0,0 +1,228 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use crate::data_type::DataType;
use crate::types::TimestampType;
use crate::vectors::constant::ConstantVector;
use crate::vectors::{
BinaryVector, BooleanVector, DateTimeVector, DateVector, ListVector, PrimitiveVector,
StringVector, TimestampMicrosecondVector, TimestampMillisecondVector,
TimestampNanosecondVector, TimestampSecondVector, Vector,
};
use crate::with_match_primitive_type_id;
impl Eq for dyn Vector + '_ {}
impl PartialEq for dyn Vector + '_ {
fn eq(&self, other: &dyn Vector) -> bool {
equal(self, other)
}
}
impl PartialEq<dyn Vector> for Arc<dyn Vector + '_> {
fn eq(&self, other: &dyn Vector) -> bool {
equal(&**self, other)
}
}
macro_rules! is_vector_eq {
($VectorType: ident, $lhs: ident, $rhs: ident) => {{
let lhs = $lhs.as_any().downcast_ref::<$VectorType>().unwrap();
let rhs = $rhs.as_any().downcast_ref::<$VectorType>().unwrap();
lhs == rhs
}};
}
fn equal(lhs: &dyn Vector, rhs: &dyn Vector) -> bool {
if lhs.data_type() != rhs.data_type() || lhs.len() != rhs.len() {
return false;
}
if lhs.is_const() || rhs.is_const() {
// Length has been checked before, so we only need to compare inner
// vector here.
return equal(
&**lhs
.as_any()
.downcast_ref::<ConstantVector>()
.unwrap()
.inner(),
&**lhs
.as_any()
.downcast_ref::<ConstantVector>()
.unwrap()
.inner(),
);
}
use crate::data_type::ConcreteDataType::*;
let lhs_type = lhs.data_type();
match lhs.data_type() {
Null(_) => true,
Boolean(_) => is_vector_eq!(BooleanVector, lhs, rhs),
Binary(_) => is_vector_eq!(BinaryVector, lhs, rhs),
String(_) => is_vector_eq!(StringVector, lhs, rhs),
Date(_) => is_vector_eq!(DateVector, lhs, rhs),
DateTime(_) => is_vector_eq!(DateTimeVector, lhs, rhs),
Timestamp(t) => match t {
TimestampType::Second(_) => {
is_vector_eq!(TimestampSecondVector, lhs, rhs)
}
TimestampType::Millisecond(_) => {
is_vector_eq!(TimestampMillisecondVector, lhs, rhs)
}
TimestampType::Microsecond(_) => {
is_vector_eq!(TimestampMicrosecondVector, lhs, rhs)
}
TimestampType::Nanosecond(_) => {
is_vector_eq!(TimestampNanosecondVector, lhs, rhs)
}
},
List(_) => is_vector_eq!(ListVector, lhs, rhs),
UInt8(_) | UInt16(_) | UInt32(_) | UInt64(_) | Int8(_) | Int16(_) | Int32(_) | Int64(_)
| Float32(_) | Float64(_) => {
with_match_primitive_type_id!(lhs_type.logical_type_id(), |$T| {
let lhs = lhs.as_any().downcast_ref::<PrimitiveVector<$T>>().unwrap();
let rhs = rhs.as_any().downcast_ref::<PrimitiveVector<$T>>().unwrap();
lhs == rhs
},
{
unreachable!("should not compare {} with {}", lhs.vector_type_name(), rhs.vector_type_name())
})
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::vectors::{
list, Float32Vector, Float64Vector, Int16Vector, Int32Vector, Int64Vector, Int8Vector,
NullVector, UInt16Vector, UInt32Vector, UInt64Vector, UInt8Vector, VectorRef,
};
fn assert_vector_ref_eq(vector: VectorRef) {
let rhs = vector.clone();
assert_eq!(vector, rhs);
assert_dyn_vector_eq(&*vector, &*rhs);
}
fn assert_dyn_vector_eq(lhs: &dyn Vector, rhs: &dyn Vector) {
assert_eq!(lhs, rhs);
}
fn assert_vector_ref_ne(lhs: VectorRef, rhs: VectorRef) {
assert_ne!(lhs, rhs);
}
#[test]
fn test_vector_eq() {
assert_vector_ref_eq(Arc::new(BinaryVector::from(vec![
Some(b"hello".to_vec()),
Some(b"world".to_vec()),
])));
assert_vector_ref_eq(Arc::new(BooleanVector::from(vec![true, false])));
assert_vector_ref_eq(Arc::new(ConstantVector::new(
Arc::new(BooleanVector::from(vec![true])),
5,
)));
assert_vector_ref_eq(Arc::new(BooleanVector::from(vec![true, false])));
assert_vector_ref_eq(Arc::new(DateVector::from(vec![Some(100), Some(120)])));
assert_vector_ref_eq(Arc::new(DateTimeVector::from(vec![Some(100), Some(120)])));
assert_vector_ref_eq(Arc::new(TimestampSecondVector::from_values([100, 120])));
assert_vector_ref_eq(Arc::new(TimestampMillisecondVector::from_values([
100, 120,
])));
assert_vector_ref_eq(Arc::new(TimestampMicrosecondVector::from_values([
100, 120,
])));
assert_vector_ref_eq(Arc::new(TimestampNanosecondVector::from_values([100, 120])));
let list_vector = list::tests::new_list_vector(&[
Some(vec![Some(1), Some(2)]),
None,
Some(vec![Some(3), Some(4)]),
]);
assert_vector_ref_eq(Arc::new(list_vector));
assert_vector_ref_eq(Arc::new(NullVector::new(4)));
assert_vector_ref_eq(Arc::new(StringVector::from(vec![
Some("hello"),
Some("world"),
])));
assert_vector_ref_eq(Arc::new(Int8Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(UInt8Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(Int16Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(UInt16Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(Int32Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(UInt32Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(Int64Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(UInt64Vector::from_slice(&[1, 2, 3, 4])));
assert_vector_ref_eq(Arc::new(Float32Vector::from_slice(&[1.0, 2.0, 3.0, 4.0])));
assert_vector_ref_eq(Arc::new(Float64Vector::from_slice(&[1.0, 2.0, 3.0, 4.0])));
}
#[test]
fn test_vector_ne() {
assert_vector_ref_ne(
Arc::new(Int32Vector::from_slice(&[1, 2, 3, 4])),
Arc::new(Int32Vector::from_slice(&[1, 2])),
);
assert_vector_ref_ne(
Arc::new(Int32Vector::from_slice(&[1, 2, 3, 4])),
Arc::new(Int8Vector::from_slice(&[1, 2, 3, 4])),
);
assert_vector_ref_ne(
Arc::new(Int32Vector::from_slice(&[1, 2, 3, 4])),
Arc::new(BooleanVector::from(vec![true, true])),
);
assert_vector_ref_ne(
Arc::new(ConstantVector::new(
Arc::new(BooleanVector::from(vec![true])),
5,
)),
Arc::new(ConstantVector::new(
Arc::new(BooleanVector::from(vec![true])),
4,
)),
);
assert_vector_ref_ne(
Arc::new(ConstantVector::new(
Arc::new(BooleanVector::from(vec![true])),
5,
)),
Arc::new(ConstantVector::new(
Arc::new(BooleanVector::from(vec![false])),
4,
)),
);
assert_vector_ref_ne(
Arc::new(ConstantVector::new(
Arc::new(BooleanVector::from(vec![true])),
5,
)),
Arc::new(ConstantVector::new(
Arc::new(Int32Vector::from_slice(vec![1])),
4,
)),
);
assert_vector_ref_ne(Arc::new(NullVector::new(5)), Arc::new(NullVector::new(8)));
}
}

View File

@@ -0,0 +1,431 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Vector helper functions, inspired by databend Series mod
use std::any::Any;
use std::sync::Arc;
use arrow::array::{Array, ArrayRef, StringArray};
use arrow::compute;
use arrow::compute::kernels::comparison;
use arrow::datatypes::{DataType as ArrowDataType, TimeUnit};
use datafusion_common::ScalarValue;
use snafu::{OptionExt, ResultExt};
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::scalars::{Scalar, ScalarVectorBuilder};
use crate::value::{ListValue, ListValueRef};
use crate::vectors::{
BinaryVector, BooleanVector, ConstantVector, DateTimeVector, DateVector, Float32Vector,
Float64Vector, Int16Vector, Int32Vector, Int64Vector, Int8Vector, ListVector,
ListVectorBuilder, MutableVector, NullVector, StringVector, TimestampMicrosecondVector,
TimestampMillisecondVector, TimestampNanosecondVector, TimestampSecondVector, UInt16Vector,
UInt32Vector, UInt64Vector, UInt8Vector, Vector, VectorRef,
};
/// Helper functions for `Vector`.
pub struct Helper;
impl Helper {
/// Get a pointer to the underlying data of this vectors.
/// Can be useful for fast comparisons.
/// # Safety
/// Assumes that the `vector` is T.
pub unsafe fn static_cast<T: Any>(vector: &VectorRef) -> &T {
let object = vector.as_ref();
debug_assert!(object.as_any().is::<T>());
&*(object as *const dyn Vector as *const T)
}
pub fn check_get_scalar<T: Scalar>(vector: &VectorRef) -> Result<&<T as Scalar>::VectorType> {
let arr = vector
.as_any()
.downcast_ref::<<T as Scalar>::VectorType>()
.with_context(|| error::UnknownVectorSnafu {
msg: format!(
"downcast vector error, vector type: {:?}, expected vector: {:?}",
vector.vector_type_name(),
std::any::type_name::<T>(),
),
});
arr
}
pub fn check_get<T: 'static + Vector>(vector: &VectorRef) -> Result<&T> {
let arr = vector
.as_any()
.downcast_ref::<T>()
.with_context(|| error::UnknownVectorSnafu {
msg: format!(
"downcast vector error, vector type: {:?}, expected vector: {:?}",
vector.vector_type_name(),
std::any::type_name::<T>(),
),
});
arr
}
pub fn check_get_mutable_vector<T: 'static + MutableVector>(
vector: &mut dyn MutableVector,
) -> Result<&mut T> {
let ty = vector.data_type();
let arr = vector
.as_mut_any()
.downcast_mut()
.with_context(|| error::UnknownVectorSnafu {
msg: format!(
"downcast vector error, vector type: {:?}, expected vector: {:?}",
ty,
std::any::type_name::<T>(),
),
});
arr
}
pub fn check_get_scalar_vector<T: Scalar>(
vector: &VectorRef,
) -> Result<&<T as Scalar>::VectorType> {
let arr = vector
.as_any()
.downcast_ref::<<T as Scalar>::VectorType>()
.with_context(|| error::UnknownVectorSnafu {
msg: format!(
"downcast vector error, vector type: {:?}, expected vector: {:?}",
vector.vector_type_name(),
std::any::type_name::<T>(),
),
});
arr
}
/// Try to cast an arrow scalar value into vector
pub fn try_from_scalar_value(value: ScalarValue, length: usize) -> Result<VectorRef> {
let vector = match value {
ScalarValue::Null => ConstantVector::new(Arc::new(NullVector::new(1)), length),
ScalarValue::Boolean(v) => {
ConstantVector::new(Arc::new(BooleanVector::from(vec![v])), length)
}
ScalarValue::Float32(v) => {
ConstantVector::new(Arc::new(Float32Vector::from(vec![v])), length)
}
ScalarValue::Float64(v) => {
ConstantVector::new(Arc::new(Float64Vector::from(vec![v])), length)
}
ScalarValue::Int8(v) => {
ConstantVector::new(Arc::new(Int8Vector::from(vec![v])), length)
}
ScalarValue::Int16(v) => {
ConstantVector::new(Arc::new(Int16Vector::from(vec![v])), length)
}
ScalarValue::Int32(v) => {
ConstantVector::new(Arc::new(Int32Vector::from(vec![v])), length)
}
ScalarValue::Int64(v) => {
ConstantVector::new(Arc::new(Int64Vector::from(vec![v])), length)
}
ScalarValue::UInt8(v) => {
ConstantVector::new(Arc::new(UInt8Vector::from(vec![v])), length)
}
ScalarValue::UInt16(v) => {
ConstantVector::new(Arc::new(UInt16Vector::from(vec![v])), length)
}
ScalarValue::UInt32(v) => {
ConstantVector::new(Arc::new(UInt32Vector::from(vec![v])), length)
}
ScalarValue::UInt64(v) => {
ConstantVector::new(Arc::new(UInt64Vector::from(vec![v])), length)
}
ScalarValue::Utf8(v) | ScalarValue::LargeUtf8(v) => {
ConstantVector::new(Arc::new(StringVector::from(vec![v])), length)
}
ScalarValue::Binary(v)
| ScalarValue::LargeBinary(v)
| ScalarValue::FixedSizeBinary(_, v) => {
ConstantVector::new(Arc::new(BinaryVector::from(vec![v])), length)
}
ScalarValue::List(v, field) => {
let item_type = ConcreteDataType::try_from(field.data_type())?;
let mut builder = ListVectorBuilder::with_type_capacity(item_type.clone(), 1);
if let Some(values) = v {
let values = values
.into_iter()
.map(ScalarValue::try_into)
.collect::<Result<_>>()?;
let list_value = ListValue::new(Some(Box::new(values)), item_type);
builder.push(Some(ListValueRef::Ref { val: &list_value }));
} else {
builder.push(None);
}
let list_vector = builder.to_vector();
ConstantVector::new(list_vector, length)
}
ScalarValue::Date32(v) => {
ConstantVector::new(Arc::new(DateVector::from(vec![v])), length)
}
ScalarValue::Date64(v) => {
ConstantVector::new(Arc::new(DateTimeVector::from(vec![v])), length)
}
ScalarValue::TimestampSecond(v, _) => {
// Timezone is unimplemented now.
ConstantVector::new(Arc::new(TimestampSecondVector::from(vec![v])), length)
}
ScalarValue::TimestampMillisecond(v, _) => {
// Timezone is unimplemented now.
ConstantVector::new(Arc::new(TimestampMillisecondVector::from(vec![v])), length)
}
ScalarValue::TimestampMicrosecond(v, _) => {
// Timezone is unimplemented now.
ConstantVector::new(Arc::new(TimestampMicrosecondVector::from(vec![v])), length)
}
ScalarValue::TimestampNanosecond(v, _) => {
// Timezone is unimplemented now.
ConstantVector::new(Arc::new(TimestampNanosecondVector::from(vec![v])), length)
}
ScalarValue::Decimal128(_, _, _)
| ScalarValue::Time64(_)
| ScalarValue::IntervalYearMonth(_)
| ScalarValue::IntervalDayTime(_)
| ScalarValue::IntervalMonthDayNano(_)
| ScalarValue::Struct(_, _)
| ScalarValue::Dictionary(_, _) => {
return error::ConversionSnafu {
from: format!("Unsupported scalar value: {}", value),
}
.fail()
}
};
Ok(Arc::new(vector))
}
/// Try to cast an arrow array into vector
///
/// # Panics
/// Panic if given arrow data type is not supported.
pub fn try_into_vector(array: impl AsRef<dyn Array>) -> Result<VectorRef> {
Ok(match array.as_ref().data_type() {
ArrowDataType::Null => Arc::new(NullVector::try_from_arrow_array(array)?),
ArrowDataType::Boolean => Arc::new(BooleanVector::try_from_arrow_array(array)?),
ArrowDataType::LargeBinary => Arc::new(BinaryVector::try_from_arrow_array(array)?),
ArrowDataType::Int8 => Arc::new(Int8Vector::try_from_arrow_array(array)?),
ArrowDataType::Int16 => Arc::new(Int16Vector::try_from_arrow_array(array)?),
ArrowDataType::Int32 => Arc::new(Int32Vector::try_from_arrow_array(array)?),
ArrowDataType::Int64 => Arc::new(Int64Vector::try_from_arrow_array(array)?),
ArrowDataType::UInt8 => Arc::new(UInt8Vector::try_from_arrow_array(array)?),
ArrowDataType::UInt16 => Arc::new(UInt16Vector::try_from_arrow_array(array)?),
ArrowDataType::UInt32 => Arc::new(UInt32Vector::try_from_arrow_array(array)?),
ArrowDataType::UInt64 => Arc::new(UInt64Vector::try_from_arrow_array(array)?),
ArrowDataType::Float32 => Arc::new(Float32Vector::try_from_arrow_array(array)?),
ArrowDataType::Float64 => Arc::new(Float64Vector::try_from_arrow_array(array)?),
ArrowDataType::Utf8 => Arc::new(StringVector::try_from_arrow_array(array)?),
ArrowDataType::Date32 => Arc::new(DateVector::try_from_arrow_array(array)?),
ArrowDataType::Date64 => Arc::new(DateTimeVector::try_from_arrow_array(array)?),
ArrowDataType::List(_) => Arc::new(ListVector::try_from_arrow_array(array)?),
ArrowDataType::Timestamp(unit, _) => match unit {
TimeUnit::Second => Arc::new(TimestampSecondVector::try_from_arrow_array(array)?),
TimeUnit::Millisecond => {
Arc::new(TimestampMillisecondVector::try_from_arrow_array(array)?)
}
TimeUnit::Microsecond => {
Arc::new(TimestampMicrosecondVector::try_from_arrow_array(array)?)
}
TimeUnit::Nanosecond => {
Arc::new(TimestampNanosecondVector::try_from_arrow_array(array)?)
}
},
ArrowDataType::Float16
| ArrowDataType::Time32(_)
| ArrowDataType::Time64(_)
| ArrowDataType::Duration(_)
| ArrowDataType::Interval(_)
| ArrowDataType::Binary
| ArrowDataType::FixedSizeBinary(_)
| ArrowDataType::LargeUtf8
| ArrowDataType::LargeList(_)
| ArrowDataType::FixedSizeList(_, _)
| ArrowDataType::Struct(_)
| ArrowDataType::Union(_, _, _)
| ArrowDataType::Dictionary(_, _)
| ArrowDataType::Decimal128(_, _)
| ArrowDataType::Decimal256(_, _)
| ArrowDataType::Map(_, _) => {
unimplemented!("Arrow array datatype: {:?}", array.as_ref().data_type())
}
})
}
/// Try to cast slice of `arrays` to vectors.
pub fn try_into_vectors(arrays: &[ArrayRef]) -> Result<Vec<VectorRef>> {
arrays.iter().map(Self::try_into_vector).collect()
}
/// Perform SQL like operation on `names` and a scalar `s`.
pub fn like_utf8(names: Vec<String>, s: &str) -> Result<VectorRef> {
let array = StringArray::from(names);
let filter = comparison::like_utf8_scalar(&array, s).context(error::ArrowComputeSnafu)?;
let result = compute::filter(&array, &filter).context(error::ArrowComputeSnafu)?;
Helper::try_into_vector(result)
}
}
#[cfg(test)]
mod tests {
use arrow::array::{
ArrayRef, BooleanArray, Date32Array, Date64Array, Float32Array, Float64Array, Int16Array,
Int32Array, Int64Array, Int8Array, LargeBinaryArray, ListArray, NullArray,
TimestampMicrosecondArray, TimestampMillisecondArray, TimestampNanosecondArray,
TimestampSecondArray, UInt16Array, UInt32Array, UInt64Array, UInt8Array,
};
use arrow::datatypes::{Field, Int32Type};
use common_time::{Date, DateTime};
use super::*;
use crate::value::Value;
use crate::vectors::ConcreteDataType;
#[test]
fn test_try_into_vectors() {
let arrays: Vec<ArrayRef> = vec![
Arc::new(Int32Array::from(vec![1])),
Arc::new(Int32Array::from(vec![2])),
Arc::new(Int32Array::from(vec![3])),
];
let vectors = Helper::try_into_vectors(&arrays);
assert!(vectors.is_ok());
let vectors = vectors.unwrap();
vectors.iter().for_each(|v| assert_eq!(1, v.len()));
assert_eq!(Value::Int32(1), vectors[0].get(0));
assert_eq!(Value::Int32(2), vectors[1].get(0));
assert_eq!(Value::Int32(3), vectors[2].get(0));
}
#[test]
fn test_try_into_date_vector() {
let vector = DateVector::from(vec![Some(1), Some(2), None]);
let arrow_array = vector.to_arrow_array();
assert_eq!(&ArrowDataType::Date32, arrow_array.data_type());
let vector_converted = Helper::try_into_vector(arrow_array).unwrap();
assert_eq!(vector.len(), vector_converted.len());
for i in 0..vector_converted.len() {
assert_eq!(vector.get(i), vector_converted.get(i));
}
}
#[test]
fn test_try_from_scalar_date_value() {
let vector = Helper::try_from_scalar_value(ScalarValue::Date32(Some(42)), 3).unwrap();
assert_eq!(ConcreteDataType::date_datatype(), vector.data_type());
assert_eq!(3, vector.len());
for i in 0..vector.len() {
assert_eq!(Value::Date(Date::new(42)), vector.get(i));
}
}
#[test]
fn test_try_from_scalar_datetime_value() {
let vector = Helper::try_from_scalar_value(ScalarValue::Date64(Some(42)), 3).unwrap();
assert_eq!(ConcreteDataType::datetime_datatype(), vector.data_type());
assert_eq!(3, vector.len());
for i in 0..vector.len() {
assert_eq!(Value::DateTime(DateTime::new(42)), vector.get(i));
}
}
#[test]
fn test_try_from_list_value() {
let value = ScalarValue::List(
Some(vec![
ScalarValue::Int32(Some(1)),
ScalarValue::Int32(Some(2)),
]),
Box::new(Field::new("item", ArrowDataType::Int32, true)),
);
let vector = Helper::try_from_scalar_value(value, 3).unwrap();
assert_eq!(
ConcreteDataType::list_datatype(ConcreteDataType::int32_datatype()),
vector.data_type()
);
assert_eq!(3, vector.len());
for i in 0..vector.len() {
let v = vector.get(i);
let items = v.as_list().unwrap().unwrap().items().as_ref().unwrap();
assert_eq!(vec![Value::Int32(1), Value::Int32(2)], **items);
}
}
#[test]
fn test_like_utf8() {
fn assert_vector(expected: Vec<&str>, actual: &VectorRef) {
let actual = actual.as_any().downcast_ref::<StringVector>().unwrap();
assert_eq!(*actual, StringVector::from(expected));
}
let names: Vec<String> = vec!["greptime", "hello", "public", "world"]
.into_iter()
.map(|x| x.to_string())
.collect();
let ret = Helper::like_utf8(names.clone(), "%ll%").unwrap();
assert_vector(vec!["hello"], &ret);
let ret = Helper::like_utf8(names.clone(), "%time").unwrap();
assert_vector(vec!["greptime"], &ret);
let ret = Helper::like_utf8(names.clone(), "%ld").unwrap();
assert_vector(vec!["world"], &ret);
let ret = Helper::like_utf8(names, "%").unwrap();
assert_vector(vec!["greptime", "hello", "public", "world"], &ret);
}
fn check_try_into_vector(array: impl Array + 'static) {
let array: ArrayRef = Arc::new(array);
let vector = Helper::try_into_vector(array.clone()).unwrap();
assert_eq!(&array, &vector.to_arrow_array());
}
#[test]
fn test_try_into_vector() {
check_try_into_vector(NullArray::new(2));
check_try_into_vector(BooleanArray::from(vec![true, false]));
check_try_into_vector(LargeBinaryArray::from(vec![
"hello".as_bytes(),
"world".as_bytes(),
]));
check_try_into_vector(Int8Array::from(vec![1, 2, 3]));
check_try_into_vector(Int16Array::from(vec![1, 2, 3]));
check_try_into_vector(Int32Array::from(vec![1, 2, 3]));
check_try_into_vector(Int64Array::from(vec![1, 2, 3]));
check_try_into_vector(UInt8Array::from(vec![1, 2, 3]));
check_try_into_vector(UInt16Array::from(vec![1, 2, 3]));
check_try_into_vector(UInt32Array::from(vec![1, 2, 3]));
check_try_into_vector(UInt64Array::from(vec![1, 2, 3]));
check_try_into_vector(Float32Array::from(vec![1.0, 2.0, 3.0]));
check_try_into_vector(Float64Array::from(vec![1.0, 2.0, 3.0]));
check_try_into_vector(StringArray::from(vec!["hello", "world"]));
check_try_into_vector(Date32Array::from(vec![1, 2, 3]));
check_try_into_vector(Date64Array::from(vec![1, 2, 3]));
let data = vec![None, Some(vec![Some(6), Some(7)])];
let list_array = ListArray::from_iter_primitive::<Int32Type, _, _>(data);
check_try_into_vector(list_array);
check_try_into_vector(TimestampSecondArray::from(vec![1, 2, 3]));
check_try_into_vector(TimestampMillisecondArray::from(vec![1, 2, 3]));
check_try_into_vector(TimestampMicrosecondArray::from(vec![1, 2, 3]));
check_try_into_vector(TimestampNanosecondArray::from(vec![1, 2, 3]));
}
}

View File

@@ -0,0 +1,747 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::sync::Arc;
use arrow::array::{
Array, ArrayData, ArrayRef, BooleanBufferBuilder, Int32BufferBuilder, ListArray,
};
use arrow::buffer::Buffer;
use arrow::datatypes::DataType as ArrowDataType;
use serde_json::Value as JsonValue;
use crate::data_type::{ConcreteDataType, DataType};
use crate::error::Result;
use crate::scalars::{ScalarVector, ScalarVectorBuilder};
use crate::serialize::Serializable;
use crate::types::ListType;
use crate::value::{ListValue, ListValueRef, Value, ValueRef};
use crate::vectors::{self, Helper, MutableVector, Validity, Vector, VectorRef};
/// Vector of Lists, basically backed by Arrow's `ListArray`.
#[derive(Debug, PartialEq)]
pub struct ListVector {
array: ListArray,
/// The datatype of the items in the list.
item_type: ConcreteDataType,
}
impl ListVector {
/// Iterate elements as [VectorRef].
pub fn values_iter(&self) -> impl Iterator<Item = Result<Option<VectorRef>>> + '_ {
self.array
.iter()
.map(|value_opt| value_opt.map(Helper::try_into_vector).transpose())
}
fn to_array_data(&self) -> ArrayData {
self.array.data().clone()
}
fn from_array_data_and_type(data: ArrayData, item_type: ConcreteDataType) -> Self {
Self {
array: ListArray::from(data),
item_type,
}
}
pub(crate) fn as_arrow(&self) -> &dyn Array {
&self.array
}
}
impl Vector for ListVector {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::List(ListType::new(self.item_type.clone()))
}
fn vector_type_name(&self) -> String {
"ListVector".to_string()
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.array.len()
}
fn to_arrow_array(&self) -> ArrayRef {
let data = self.to_array_data();
Arc::new(ListArray::from(data))
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let data = self.to_array_data();
Box::new(ListArray::from(data))
}
fn validity(&self) -> Validity {
vectors::impl_validity_for_vector!(self.array)
}
fn memory_size(&self) -> usize {
self.array.get_buffer_memory_size()
}
fn null_count(&self) -> usize {
self.array.null_count()
}
fn is_null(&self, row: usize) -> bool {
self.array.is_null(row)
}
fn slice(&self, offset: usize, length: usize) -> VectorRef {
let data = self.array.data().slice(offset, length);
Arc::new(Self::from_array_data_and_type(data, self.item_type.clone()))
}
fn get(&self, index: usize) -> Value {
if !self.array.is_valid(index) {
return Value::Null;
}
let array = &self.array.value(index);
let vector = Helper::try_into_vector(array).unwrap_or_else(|_| {
panic!(
"arrow array with datatype {:?} cannot converted to our vector",
array.data_type()
)
});
let values = (0..vector.len())
.map(|i| vector.get(i))
.collect::<Vec<Value>>();
Value::List(ListValue::new(
Some(Box::new(values)),
self.item_type.clone(),
))
}
fn get_ref(&self, index: usize) -> ValueRef {
ValueRef::List(ListValueRef::Indexed {
vector: self,
idx: index,
})
}
}
impl Serializable for ListVector {
fn serialize_to_json(&self) -> Result<Vec<JsonValue>> {
self.array
.iter()
.map(|v| match v {
None => Ok(JsonValue::Null),
Some(v) => Helper::try_into_vector(v)
.and_then(|v| v.serialize_to_json())
.map(JsonValue::Array),
})
.collect()
}
}
impl From<ListArray> for ListVector {
fn from(array: ListArray) -> Self {
let item_type = ConcreteDataType::from_arrow_type(match array.data_type() {
ArrowDataType::List(field) => field.data_type(),
other => panic!(
"Try to create ListVector from an arrow array with type {:?}",
other
),
});
Self { array, item_type }
}
}
vectors::impl_try_from_arrow_array_for_vector!(ListArray, ListVector);
pub struct ListIter<'a> {
vector: &'a ListVector,
idx: usize,
}
impl<'a> ListIter<'a> {
fn new(vector: &'a ListVector) -> ListIter {
ListIter { vector, idx: 0 }
}
}
impl<'a> Iterator for ListIter<'a> {
type Item = Option<ListValueRef<'a>>;
#[inline]
fn next(&mut self) -> Option<Self::Item> {
if self.idx >= self.vector.len() {
return None;
}
let idx = self.idx;
self.idx += 1;
if self.vector.is_null(idx) {
return Some(None);
}
Some(Some(ListValueRef::Indexed {
vector: self.vector,
idx,
}))
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
(self.vector.len(), Some(self.vector.len()))
}
}
impl ScalarVector for ListVector {
type OwnedItem = ListValue;
type RefItem<'a> = ListValueRef<'a>;
type Iter<'a> = ListIter<'a>;
type Builder = ListVectorBuilder;
fn get_data(&self, idx: usize) -> Option<Self::RefItem<'_>> {
if self.array.is_valid(idx) {
Some(ListValueRef::Indexed { vector: self, idx })
} else {
None
}
}
fn iter_data(&self) -> Self::Iter<'_> {
ListIter::new(self)
}
}
// Ports from arrow's GenericListBuilder.
// See https://github.com/apache/arrow-rs/blob/94565bca99b5d9932a3e9a8e094aaf4e4384b1e5/arrow-array/src/builder/generic_list_builder.rs
/// [ListVector] builder.
pub struct ListVectorBuilder {
item_type: ConcreteDataType,
offsets_builder: Int32BufferBuilder,
null_buffer_builder: NullBufferBuilder,
values_builder: Box<dyn MutableVector>,
}
impl ListVectorBuilder {
/// Creates a new [`ListVectorBuilder`]. `item_type` is the data type of the list item, `capacity`
/// is the number of items to pre-allocate space for in this builder.
pub fn with_type_capacity(item_type: ConcreteDataType, capacity: usize) -> ListVectorBuilder {
let mut offsets_builder = Int32BufferBuilder::new(capacity + 1);
offsets_builder.append(0);
// The actual required capacity might be greater than the capacity of the `ListVector`
// if the child vector has more than one element.
let values_builder = item_type.create_mutable_vector(capacity);
ListVectorBuilder {
item_type,
offsets_builder,
null_buffer_builder: NullBufferBuilder::new(capacity),
values_builder,
}
}
/// Finish the current variable-length list vector slot.
fn finish_list(&mut self, is_valid: bool) {
self.offsets_builder
.append(i32::try_from(self.values_builder.len()).unwrap());
self.null_buffer_builder.append(is_valid);
}
fn push_null(&mut self) {
self.finish_list(false);
}
fn push_list_value(&mut self, list_value: &ListValue) -> Result<()> {
if let Some(items) = list_value.items() {
for item in &**items {
self.values_builder.push_value_ref(item.as_value_ref())?;
}
}
self.finish_list(true);
Ok(())
}
}
impl MutableVector for ListVectorBuilder {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::list_datatype(self.item_type.clone())
}
fn len(&self) -> usize {
self.null_buffer_builder.len()
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_mut_any(&mut self) -> &mut dyn Any {
self
}
fn to_vector(&mut self) -> VectorRef {
Arc::new(self.finish())
}
fn push_value_ref(&mut self, value: ValueRef) -> Result<()> {
if let Some(list_ref) = value.as_list()? {
match list_ref {
ListValueRef::Indexed { vector, idx } => match vector.get(idx).as_list()? {
Some(list_value) => self.push_list_value(list_value)?,
None => self.push_null(),
},
ListValueRef::Ref { val } => self.push_list_value(val)?,
}
} else {
self.push_null();
}
Ok(())
}
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()> {
for idx in offset..offset + length {
let value = vector.get_ref(idx);
self.push_value_ref(value)?;
}
Ok(())
}
}
impl ScalarVectorBuilder for ListVectorBuilder {
type VectorType = ListVector;
fn with_capacity(_capacity: usize) -> Self {
panic!("Must use ListVectorBuilder::with_type_capacity()");
}
fn push(&mut self, value: Option<<Self::VectorType as ScalarVector>::RefItem<'_>>) {
// We expect the input ListValue has the same inner type as the builder when using
// push(), so just panic if `push_value_ref()` returns error, which indicate an
// invalid input value type.
self.push_value_ref(value.into()).unwrap_or_else(|e| {
panic!(
"Failed to push value, expect value type {:?}, err:{}",
self.item_type, e
);
});
}
fn finish(&mut self) -> Self::VectorType {
let len = self.len();
let values_vector = self.values_builder.to_vector();
let values_arr = values_vector.to_arrow_array();
let values_data = values_arr.data();
let offset_buffer = self.offsets_builder.finish();
let null_bit_buffer = self.null_buffer_builder.finish();
// Re-initialize the offsets_builder.
self.offsets_builder.append(0);
let data_type = ConcreteDataType::list_datatype(self.item_type.clone()).as_arrow_type();
let array_data_builder = ArrayData::builder(data_type)
.len(len)
.add_buffer(offset_buffer)
.add_child_data(values_data.clone())
.null_bit_buffer(null_bit_buffer);
let array_data = unsafe { array_data_builder.build_unchecked() };
let array = ListArray::from(array_data);
ListVector {
array,
item_type: self.item_type.clone(),
}
}
}
// Ports from https://github.com/apache/arrow-rs/blob/94565bca99b5d9932a3e9a8e094aaf4e4384b1e5/arrow-array/src/builder/null_buffer_builder.rs
/// Builder for creating the null bit buffer.
/// This builder only materializes the buffer when we append `false`.
/// If you only append `true`s to the builder, what you get will be
/// `None` when calling [`finish`](#method.finish).
/// This optimization is **very** important for the performance.
#[derive(Debug)]
struct NullBufferBuilder {
bitmap_builder: Option<BooleanBufferBuilder>,
/// Store the length of the buffer before materializing.
len: usize,
capacity: usize,
}
impl NullBufferBuilder {
/// Creates a new empty builder.
/// `capacity` is the number of bits in the null buffer.
fn new(capacity: usize) -> Self {
Self {
bitmap_builder: None,
len: 0,
capacity,
}
}
fn len(&self) -> usize {
if let Some(b) = &self.bitmap_builder {
b.len()
} else {
self.len
}
}
/// Appends a `true` into the builder
/// to indicate that this item is not null.
#[inline]
fn append_non_null(&mut self) {
if let Some(buf) = self.bitmap_builder.as_mut() {
buf.append(true)
} else {
self.len += 1;
}
}
/// Appends a `false` into the builder
/// to indicate that this item is null.
#[inline]
fn append_null(&mut self) {
self.materialize_if_needed();
self.bitmap_builder.as_mut().unwrap().append(false);
}
/// Appends a boolean value into the builder.
#[inline]
fn append(&mut self, not_null: bool) {
if not_null {
self.append_non_null()
} else {
self.append_null()
}
}
/// Builds the null buffer and resets the builder.
/// Returns `None` if the builder only contains `true`s.
fn finish(&mut self) -> Option<Buffer> {
let buf = self.bitmap_builder.as_mut().map(|b| b.finish());
self.bitmap_builder = None;
self.len = 0;
buf
}
#[inline]
fn materialize_if_needed(&mut self) {
if self.bitmap_builder.is_none() {
self.materialize()
}
}
#[cold]
fn materialize(&mut self) {
if self.bitmap_builder.is_none() {
let mut b = BooleanBufferBuilder::new(self.len.max(self.capacity));
b.append_n(self.len, true);
self.bitmap_builder = Some(b);
}
}
}
#[cfg(test)]
pub mod tests {
use arrow::array::{Int32Array, Int32Builder, ListBuilder};
use serde_json::json;
use super::*;
use crate::scalars::ScalarRef;
use crate::types::ListType;
use crate::vectors::Int32Vector;
pub fn new_list_vector(data: &[Option<Vec<Option<i32>>>]) -> ListVector {
let mut builder =
ListVectorBuilder::with_type_capacity(ConcreteDataType::int32_datatype(), 8);
for vec_opt in data {
if let Some(vec) = vec_opt {
let values = vec.iter().map(|v| Value::from(*v)).collect();
let values = Some(Box::new(values));
let list_value = ListValue::new(values, ConcreteDataType::int32_datatype());
builder.push(Some(ListValueRef::Ref { val: &list_value }));
} else {
builder.push(None);
}
}
builder.finish()
}
fn new_list_array(data: &[Option<Vec<Option<i32>>>]) -> ListArray {
let mut builder = ListBuilder::new(Int32Builder::new());
for vec_opt in data {
if let Some(vec) = vec_opt {
for value_opt in vec {
builder.values().append_option(*value_opt);
}
builder.append(true);
} else {
builder.append(false);
}
}
builder.finish()
}
#[test]
fn test_list_vector() {
let data = vec![
Some(vec![Some(1), Some(2), Some(3)]),
None,
Some(vec![Some(4), None, Some(6)]),
];
let list_vector = new_list_vector(&data);
assert_eq!(
ConcreteDataType::List(ListType::new(ConcreteDataType::int32_datatype())),
list_vector.data_type()
);
assert_eq!("ListVector", list_vector.vector_type_name());
assert_eq!(3, list_vector.len());
assert!(!list_vector.is_null(0));
assert!(list_vector.is_null(1));
assert!(!list_vector.is_null(2));
let arrow_array = new_list_array(&data);
assert_eq!(
arrow_array,
*list_vector
.to_arrow_array()
.as_any()
.downcast_ref::<ListArray>()
.unwrap()
);
let validity = list_vector.validity();
assert!(!validity.is_all_null());
assert!(!validity.is_all_valid());
assert!(validity.is_set(0));
assert!(!validity.is_set(1));
assert!(validity.is_set(2));
assert_eq!(256, list_vector.memory_size());
let slice = list_vector.slice(0, 2).to_arrow_array();
let sliced_array = slice.as_any().downcast_ref::<ListArray>().unwrap();
assert_eq!(
Int32Array::from_iter_values([1, 2, 3]),
*sliced_array
.value(0)
.as_any()
.downcast_ref::<Int32Array>()
.unwrap()
);
assert!(sliced_array.is_null(1));
assert_eq!(
Value::List(ListValue::new(
Some(Box::new(vec![
Value::Int32(1),
Value::Int32(2),
Value::Int32(3)
])),
ConcreteDataType::int32_datatype()
)),
list_vector.get(0)
);
let value_ref = list_vector.get_ref(0);
assert!(matches!(
value_ref,
ValueRef::List(ListValueRef::Indexed { .. })
));
let value_ref = list_vector.get_ref(1);
if let ValueRef::List(ListValueRef::Indexed { idx, .. }) = value_ref {
assert_eq!(1, idx);
} else {
unreachable!()
}
assert_eq!(Value::Null, list_vector.get(1));
assert_eq!(
Value::List(ListValue::new(
Some(Box::new(vec![
Value::Int32(4),
Value::Null,
Value::Int32(6)
])),
ConcreteDataType::int32_datatype()
)),
list_vector.get(2)
);
}
#[test]
fn test_from_arrow_array() {
let data = vec![
Some(vec![Some(1), Some(2), Some(3)]),
None,
Some(vec![Some(4), None, Some(6)]),
];
let arrow_array = new_list_array(&data);
let array_ref: ArrayRef = Arc::new(arrow_array);
let expect = new_list_vector(&data);
// Test try from ArrayRef
let list_vector = ListVector::try_from_arrow_array(array_ref).unwrap();
assert_eq!(expect, list_vector);
// Test from
let arrow_array = new_list_array(&data);
let list_vector = ListVector::from(arrow_array);
assert_eq!(expect, list_vector);
}
#[test]
fn test_iter_list_vector_values() {
let data = vec![
Some(vec![Some(1), Some(2), Some(3)]),
None,
Some(vec![Some(4), None, Some(6)]),
];
let list_vector = new_list_vector(&data);
assert_eq!(
ConcreteDataType::List(ListType::new(ConcreteDataType::int32_datatype())),
list_vector.data_type()
);
let mut iter = list_vector.values_iter();
assert_eq!(
Arc::new(Int32Vector::from_slice(&[1, 2, 3])) as VectorRef,
*iter.next().unwrap().unwrap().unwrap()
);
assert!(iter.next().unwrap().unwrap().is_none());
assert_eq!(
Arc::new(Int32Vector::from(vec![Some(4), None, Some(6)])) as VectorRef,
*iter.next().unwrap().unwrap().unwrap(),
);
assert!(iter.next().is_none())
}
#[test]
fn test_serialize_to_json() {
let data = vec![
Some(vec![Some(1), Some(2), Some(3)]),
None,
Some(vec![Some(4), None, Some(6)]),
];
let list_vector = new_list_vector(&data);
assert_eq!(
vec![json!([1, 2, 3]), json!(null), json!([4, null, 6]),],
list_vector.serialize_to_json().unwrap()
);
}
#[test]
fn test_list_vector_builder() {
let mut builder =
ListType::new(ConcreteDataType::int32_datatype()).create_mutable_vector(3);
builder
.push_value_ref(ValueRef::List(ListValueRef::Ref {
val: &ListValue::new(
Some(Box::new(vec![
Value::Int32(4),
Value::Null,
Value::Int32(6),
])),
ConcreteDataType::int32_datatype(),
),
}))
.unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
let data = vec![
Some(vec![Some(1), Some(2), Some(3)]),
None,
Some(vec![Some(7), Some(8), None]),
];
let input = new_list_vector(&data);
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(new_list_vector(&[
Some(vec![Some(4), None, Some(6)]),
None,
Some(vec![Some(7), Some(8), None]),
]));
assert_eq!(expect, vector);
}
#[test]
fn test_list_vector_for_scalar() {
let mut builder =
ListVectorBuilder::with_type_capacity(ConcreteDataType::int32_datatype(), 2);
builder.push(None);
builder.push(Some(ListValueRef::Ref {
val: &ListValue::new(
Some(Box::new(vec![
Value::Int32(4),
Value::Null,
Value::Int32(6),
])),
ConcreteDataType::int32_datatype(),
),
}));
let vector = builder.finish();
let expect = new_list_vector(&[None, Some(vec![Some(4), None, Some(6)])]);
assert_eq!(expect, vector);
assert!(vector.get_data(0).is_none());
assert_eq!(
ListValueRef::Indexed {
vector: &vector,
idx: 1
},
vector.get_data(1).unwrap()
);
assert_eq!(
*vector.get(1).as_list().unwrap().unwrap(),
vector.get_data(1).unwrap().to_owned_scalar()
);
let mut iter = vector.iter_data();
assert!(iter.next().unwrap().is_none());
assert_eq!(
ListValueRef::Indexed {
vector: &vector,
idx: 1
},
iter.next().unwrap().unwrap()
);
assert!(iter.next().is_none());
let mut iter = vector.iter_data();
assert_eq!(2, iter.size_hint().0);
assert_eq!(
ListValueRef::Indexed {
vector: &vector,
idx: 1
},
iter.nth(1).unwrap().unwrap()
);
}
}

View File

@@ -0,0 +1,282 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::fmt;
use std::sync::Arc;
use arrow::array::{Array, ArrayData, ArrayRef, NullArray};
use snafu::{ensure, OptionExt};
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::serialize::Serializable;
use crate::types::NullType;
use crate::value::{Value, ValueRef};
use crate::vectors::{self, MutableVector, Validity, Vector, VectorRef};
/// A vector where all elements are nulls.
#[derive(PartialEq)]
pub struct NullVector {
array: NullArray,
}
// TODO(yingwen): Support null vector with other logical types.
impl NullVector {
/// Create a new `NullVector` with `n` elements.
pub fn new(n: usize) -> Self {
Self {
array: NullArray::new(n),
}
}
pub(crate) fn as_arrow(&self) -> &dyn Array {
&self.array
}
fn to_array_data(&self) -> ArrayData {
self.array.data().clone()
}
}
impl From<NullArray> for NullVector {
fn from(array: NullArray) -> Self {
Self { array }
}
}
impl Vector for NullVector {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::Null(NullType::default())
}
fn vector_type_name(&self) -> String {
"NullVector".to_string()
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.array.len()
}
fn to_arrow_array(&self) -> ArrayRef {
// TODO(yingwen): Replaced by clone after upgrading to arrow 28.0.
let data = self.to_array_data();
Arc::new(NullArray::from(data))
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let data = self.to_array_data();
Box::new(NullArray::from(data))
}
fn validity(&self) -> Validity {
Validity::all_null(self.array.len())
}
fn memory_size(&self) -> usize {
0
}
fn null_count(&self) -> usize {
self.array.null_count()
}
fn is_null(&self, _row: usize) -> bool {
true
}
fn only_null(&self) -> bool {
true
}
fn slice(&self, _offset: usize, length: usize) -> VectorRef {
Arc::new(Self::new(length))
}
fn get(&self, _index: usize) -> Value {
// Skips bound check for null array.
Value::Null
}
fn get_ref(&self, _index: usize) -> ValueRef {
// Skips bound check for null array.
ValueRef::Null
}
}
impl fmt::Debug for NullVector {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "NullVector({})", self.len())
}
}
impl Serializable for NullVector {
fn serialize_to_json(&self) -> Result<Vec<serde_json::Value>> {
Ok(std::iter::repeat(serde_json::Value::Null)
.take(self.len())
.collect())
}
}
vectors::impl_try_from_arrow_array_for_vector!(NullArray, NullVector);
#[derive(Default)]
pub struct NullVectorBuilder {
length: usize,
}
impl MutableVector for NullVectorBuilder {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::null_datatype()
}
fn len(&self) -> usize {
self.length
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_mut_any(&mut self) -> &mut dyn Any {
self
}
fn to_vector(&mut self) -> VectorRef {
let vector = Arc::new(NullVector::new(self.length));
self.length = 0;
vector
}
fn push_value_ref(&mut self, value: ValueRef) -> Result<()> {
ensure!(
value.is_null(),
error::CastTypeSnafu {
msg: format!("Failed to cast value ref {:?} to null", value),
}
);
self.length += 1;
Ok(())
}
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()> {
vector
.as_any()
.downcast_ref::<NullVector>()
.with_context(|| error::CastTypeSnafu {
msg: format!(
"Failed to convert vector from {} to NullVector",
vector.vector_type_name()
),
})?;
assert!(
offset + length <= vector.len(),
"offset {} + length {} must less than {}",
offset,
length,
vector.len()
);
self.length += length;
Ok(())
}
}
pub(crate) fn replicate_null(vector: &NullVector, offsets: &[usize]) -> VectorRef {
assert_eq!(offsets.len(), vector.len());
if offsets.is_empty() {
return vector.slice(0, 0);
}
Arc::new(NullVector::new(*offsets.last().unwrap()))
}
#[cfg(test)]
mod tests {
use serde_json;
use super::*;
use crate::data_type::DataType;
#[test]
fn test_null_vector_misc() {
let v = NullVector::new(32);
assert_eq!(v.len(), 32);
assert_eq!(0, v.memory_size());
let arrow_arr = v.to_arrow_array();
assert_eq!(arrow_arr.null_count(), 32);
let array2 = arrow_arr.slice(8, 16);
assert_eq!(array2.len(), 16);
assert_eq!(array2.null_count(), 16);
assert_eq!("NullVector", v.vector_type_name());
assert!(!v.is_const());
assert!(v.validity().is_all_null());
assert!(v.only_null());
for i in 0..32 {
assert!(v.is_null(i));
assert_eq!(Value::Null, v.get(i));
assert_eq!(ValueRef::Null, v.get_ref(i));
}
}
#[test]
fn test_debug_null_vector() {
let array = NullVector::new(1024 * 1024);
assert_eq!(format!("{:?}", array), "NullVector(1048576)");
}
#[test]
fn test_serialize_json() {
let vector = NullVector::new(3);
let json_value = vector.serialize_to_json().unwrap();
assert_eq!(
"[null,null,null]",
serde_json::to_string(&json_value).unwrap()
);
}
#[test]
fn test_null_vector_validity() {
let vector = NullVector::new(5);
assert!(vector.validity().is_all_null());
assert_eq!(5, vector.null_count());
}
#[test]
fn test_null_vector_builder() {
let mut builder = NullType::default().create_mutable_vector(3);
builder.push_value_ref(ValueRef::Null).unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
let input = NullVector::new(3);
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(input);
assert_eq!(expect, vector);
}
}

View File

@@ -0,0 +1,127 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod filter;
mod find_unique;
mod replicate;
use common_base::BitVec;
use crate::error::Result;
use crate::types::LogicalPrimitiveType;
use crate::vectors::constant::ConstantVector;
use crate::vectors::{
BinaryVector, BooleanVector, ListVector, NullVector, PrimitiveVector, StringVector, Vector,
VectorRef,
};
/// Vector compute operations.
pub trait VectorOp {
/// Copies each element according `offsets` parameter.
/// - `i-th` element should be copied `offsets[i] - offsets[i - 1]` times
/// - `0-th` element would be copied `offsets[0]` times
///
/// # Panics
/// Panics if `offsets.len() != self.len()`.
fn replicate(&self, offsets: &[usize]) -> VectorRef;
/// Mark `i-th` bit of `selected` to `true` if the `i-th` element of `self` is unique, which
/// means there is no elements behind it have same value as it.
///
/// The caller should ensure
/// 1. the length of `selected` bitmap is equal to `vector.len()`.
/// 2. `vector` and `prev_vector` are sorted.
///
/// If there are multiple duplicate elements, this function retains the **first** element.
/// The first element is considered as unique if the first element of `self` is different
/// from its previous element, that is the last element of `prev_vector`.
///
/// # Panics
/// Panics if
/// - `selected.len() < self.len()`.
/// - `prev_vector` and `self` have different data types.
fn find_unique(&self, selected: &mut BitVec, prev_vector: Option<&dyn Vector>);
/// Filters the vector, returns elements matching the `filter` (i.e. where the values are true).
///
/// Note that the nulls of `filter` are interpreted as `false` will lead to these elements being masked out.
fn filter(&self, filter: &BooleanVector) -> Result<VectorRef>;
}
macro_rules! impl_scalar_vector_op {
($($VectorType: ident),+) => {$(
impl VectorOp for $VectorType {
fn replicate(&self, offsets: &[usize]) -> VectorRef {
replicate::replicate_scalar(self, offsets)
}
fn find_unique(&self, selected: &mut BitVec, prev_vector: Option<&dyn Vector>) {
let prev_vector = prev_vector.map(|pv| pv.as_any().downcast_ref::<$VectorType>().unwrap());
find_unique::find_unique_scalar(self, selected, prev_vector);
}
fn filter(&self, filter: &BooleanVector) -> Result<VectorRef> {
filter::filter_non_constant!(self, $VectorType, filter)
}
}
)+};
}
impl_scalar_vector_op!(BinaryVector, BooleanVector, ListVector, StringVector);
impl<T: LogicalPrimitiveType> VectorOp for PrimitiveVector<T> {
fn replicate(&self, offsets: &[usize]) -> VectorRef {
std::sync::Arc::new(replicate::replicate_primitive(self, offsets))
}
fn find_unique(&self, selected: &mut BitVec, prev_vector: Option<&dyn Vector>) {
let prev_vector =
prev_vector.and_then(|pv| pv.as_any().downcast_ref::<PrimitiveVector<T>>());
find_unique::find_unique_scalar(self, selected, prev_vector);
}
fn filter(&self, filter: &BooleanVector) -> Result<VectorRef> {
filter::filter_non_constant!(self, PrimitiveVector<T>, filter)
}
}
impl VectorOp for NullVector {
fn replicate(&self, offsets: &[usize]) -> VectorRef {
replicate::replicate_null(self, offsets)
}
fn find_unique(&self, selected: &mut BitVec, prev_vector: Option<&dyn Vector>) {
let prev_vector = prev_vector.and_then(|pv| pv.as_any().downcast_ref::<NullVector>());
find_unique::find_unique_null(self, selected, prev_vector);
}
fn filter(&self, filter: &BooleanVector) -> Result<VectorRef> {
filter::filter_non_constant!(self, NullVector, filter)
}
}
impl VectorOp for ConstantVector {
fn replicate(&self, offsets: &[usize]) -> VectorRef {
self.replicate_vector(offsets)
}
fn find_unique(&self, selected: &mut BitVec, prev_vector: Option<&dyn Vector>) {
let prev_vector = prev_vector.and_then(|pv| pv.as_any().downcast_ref::<ConstantVector>());
find_unique::find_unique_constant(self, selected, prev_vector);
}
fn filter(&self, filter: &BooleanVector) -> Result<VectorRef> {
self.filter_vector(filter)
}
}

View File

@@ -0,0 +1,145 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
macro_rules! filter_non_constant {
($vector: expr, $VectorType: ty, $filter: ident) => {{
use std::sync::Arc;
use arrow::compute;
use snafu::ResultExt;
let arrow_array = $vector.as_arrow();
let filtered = compute::filter(arrow_array, $filter.as_boolean_array())
.context(crate::error::ArrowComputeSnafu)?;
Ok(Arc::new(<$VectorType>::try_from_arrow_array(filtered)?))
}};
}
pub(crate) use filter_non_constant;
#[cfg(test)]
mod tests {
use std::sync::Arc;
use common_time::{Date, DateTime};
use crate::scalars::ScalarVector;
use crate::timestamp::{
TimestampMicrosecond, TimestampMillisecond, TimestampNanosecond, TimestampSecond,
};
use crate::types::WrapperType;
use crate::vectors::constant::ConstantVector;
use crate::vectors::{
BooleanVector, Int32Vector, NullVector, StringVector, VectorOp, VectorRef,
};
fn check_filter_primitive(expect: &[i32], input: &[i32], filter: &[bool]) {
let v = Int32Vector::from_slice(&input);
let filter = BooleanVector::from_slice(filter);
let out = v.filter(&filter).unwrap();
let expect: VectorRef = Arc::new(Int32Vector::from_slice(&expect));
assert_eq!(expect, out);
}
#[test]
fn test_filter_primitive() {
check_filter_primitive(&[], &[], &[]);
check_filter_primitive(&[5], &[5], &[true]);
check_filter_primitive(&[], &[5], &[false]);
check_filter_primitive(&[], &[5, 6], &[false, false]);
check_filter_primitive(&[5, 6], &[5, 6], &[true, true]);
check_filter_primitive(&[], &[5, 6, 7], &[false, false, false]);
check_filter_primitive(&[5], &[5, 6, 7], &[true, false, false]);
check_filter_primitive(&[6], &[5, 6, 7], &[false, true, false]);
check_filter_primitive(&[7], &[5, 6, 7], &[false, false, true]);
check_filter_primitive(&[5, 7], &[5, 6, 7], &[true, false, true]);
}
fn check_filter_constant(expect_length: usize, input_length: usize, filter: &[bool]) {
let v = ConstantVector::new(Arc::new(Int32Vector::from_slice(&[123])), input_length);
let filter = BooleanVector::from_slice(filter);
let out = v.filter(&filter).unwrap();
assert!(out.is_const());
assert_eq!(expect_length, out.len());
}
#[test]
fn test_filter_constant() {
check_filter_constant(0, 0, &[]);
check_filter_constant(1, 1, &[true]);
check_filter_constant(0, 1, &[false]);
check_filter_constant(1, 2, &[false, true]);
check_filter_constant(2, 2, &[true, true]);
check_filter_constant(1, 4, &[false, false, false, true]);
check_filter_constant(2, 4, &[false, true, false, true]);
}
#[test]
fn test_filter_scalar() {
let v = StringVector::from_slice(&["0", "1", "2", "3"]);
let filter = BooleanVector::from_slice(&[false, true, false, true]);
let out = v.filter(&filter).unwrap();
let expect: VectorRef = Arc::new(StringVector::from_slice(&["1", "3"]));
assert_eq!(expect, out);
}
#[test]
fn test_filter_null() {
let v = NullVector::new(5);
let filter = BooleanVector::from_slice(&[false, true, false, true, true]);
let out = v.filter(&filter).unwrap();
let expect: VectorRef = Arc::new(NullVector::new(3));
assert_eq!(expect, out);
}
macro_rules! impl_filter_date_like_test {
($VectorType: ident, $ValueType: ident, $method: ident) => {{
use std::sync::Arc;
use $crate::vectors::{$VectorType, VectorRef};
let v = $VectorType::from_iterator((0..5).map($ValueType::$method));
let filter = BooleanVector::from_slice(&[false, true, false, true, true]);
let out = v.filter(&filter).unwrap();
let expect: VectorRef = Arc::new($VectorType::from_iterator(
[1, 3, 4].into_iter().map($ValueType::$method),
));
assert_eq!(expect, out);
}};
}
#[test]
fn test_filter_date_like() {
impl_filter_date_like_test!(DateVector, Date, new);
impl_filter_date_like_test!(DateTimeVector, DateTime, new);
impl_filter_date_like_test!(TimestampSecondVector, TimestampSecond, from_native);
impl_filter_date_like_test!(
TimestampMillisecondVector,
TimestampMillisecond,
from_native
);
impl_filter_date_like_test!(
TimestampMicrosecondVector,
TimestampMicrosecond,
from_native
);
impl_filter_date_like_test!(TimestampNanosecondVector, TimestampNanosecond, from_native);
}
}

View File

@@ -0,0 +1,367 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use common_base::BitVec;
use crate::scalars::ScalarVector;
use crate::vectors::constant::ConstantVector;
use crate::vectors::{NullVector, Vector};
// To implement `find_unique()` correctly, we need to keep in mind that always marks an element as
// selected when it is different from the previous one, and leaves the `selected` unchanged
// in any other case.
pub(crate) fn find_unique_scalar<'a, T: ScalarVector>(
vector: &'a T,
selected: &'a mut BitVec,
prev_vector: Option<&'a T>,
) where
T::RefItem<'a>: PartialEq,
{
assert!(selected.len() >= vector.len());
if vector.is_empty() {
return;
}
for ((i, current), next) in vector
.iter_data()
.enumerate()
.zip(vector.iter_data().skip(1))
{
if current != next {
// If next element is a different element, we mark it as selected.
selected.set(i + 1, true);
}
}
// Marks first element as selected if it is different from previous element, otherwise
// keep selected bitmap unchanged.
let is_first_not_duplicate = prev_vector
.map(|pv| {
if pv.is_empty() {
true
} else {
let last = pv.get_data(pv.len() - 1);
last != vector.get_data(0)
}
})
.unwrap_or(true);
if is_first_not_duplicate {
selected.set(0, true);
}
}
pub(crate) fn find_unique_null(
vector: &NullVector,
selected: &mut BitVec,
prev_vector: Option<&NullVector>,
) {
if vector.is_empty() {
return;
}
let is_first_not_duplicate = prev_vector.map(NullVector::is_empty).unwrap_or(true);
if is_first_not_duplicate {
selected.set(0, true);
}
}
pub(crate) fn find_unique_constant(
vector: &ConstantVector,
selected: &mut BitVec,
prev_vector: Option<&ConstantVector>,
) {
if vector.is_empty() {
return;
}
let is_first_not_duplicate = prev_vector
.map(|pv| {
if pv.is_empty() {
true
} else {
vector.get_constant_ref() != pv.get_constant_ref()
}
})
.unwrap_or(true);
if is_first_not_duplicate {
selected.set(0, true);
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use common_time::{Date, DateTime};
use super::*;
use crate::timestamp::*;
use crate::vectors::{Int32Vector, StringVector, Vector, VectorOp};
fn check_bitmap(expect: &[bool], selected: &BitVec) {
let actual = selected.iter().collect::<Vec<_>>();
assert_eq!(expect, actual);
}
fn check_find_unique_scalar(expect: &[bool], input: &[i32], prev: Option<&[i32]>) {
check_find_unique_scalar_opt(expect, input.iter().map(|v| Some(*v)), prev);
}
fn check_find_unique_scalar_opt(
expect: &[bool],
input: impl Iterator<Item = Option<i32>>,
prev: Option<&[i32]>,
) {
let input = Int32Vector::from(input.collect::<Vec<_>>());
let prev = prev.map(Int32Vector::from_slice);
let mut selected = BitVec::repeat(false, input.len());
input.find_unique(&mut selected, prev.as_ref().map(|v| v as _));
check_bitmap(expect, &selected);
}
#[test]
fn test_find_unique_scalar() {
check_find_unique_scalar(&[], &[], None);
check_find_unique_scalar(&[true], &[1], None);
check_find_unique_scalar(&[true, false], &[1, 1], None);
check_find_unique_scalar(&[true, true], &[1, 2], None);
check_find_unique_scalar(&[true, true, true, true], &[1, 2, 3, 4], None);
check_find_unique_scalar(&[true, false, true, false], &[1, 1, 3, 3], None);
check_find_unique_scalar(&[true, false, false, false, true], &[2, 2, 2, 2, 3], None);
check_find_unique_scalar(&[true], &[5], Some(&[]));
check_find_unique_scalar(&[true], &[5], Some(&[3]));
check_find_unique_scalar(&[false], &[5], Some(&[5]));
check_find_unique_scalar(&[false], &[5], Some(&[4, 5]));
check_find_unique_scalar(&[false, true], &[5, 6], Some(&[4, 5]));
check_find_unique_scalar(&[false, true, false], &[5, 6, 6], Some(&[4, 5]));
check_find_unique_scalar(
&[false, true, false, true, true],
&[5, 6, 6, 7, 8],
Some(&[4, 5]),
);
check_find_unique_scalar_opt(
&[true, true, false, true, false],
[Some(1), Some(2), Some(2), None, None].into_iter(),
None,
);
}
#[test]
fn test_find_unique_scalar_multi_times_with_prev() {
let prev = Int32Vector::from_slice(&[1]);
let v1 = Int32Vector::from_slice(&[2, 3, 4]);
let mut selected = BitVec::repeat(false, v1.len());
v1.find_unique(&mut selected, Some(&prev));
// Though element in v2 are the same as prev, but we should still keep them.
let v2 = Int32Vector::from_slice(&[1, 1, 1]);
v2.find_unique(&mut selected, Some(&prev));
check_bitmap(&[true, true, true], &selected);
}
fn new_bitmap(bits: &[bool]) -> BitVec {
BitVec::from_iter(bits)
}
#[test]
fn test_find_unique_scalar_with_prev() {
let prev = Int32Vector::from_slice(&[1]);
let mut selected = new_bitmap(&[true, false, true, false]);
let v = Int32Vector::from_slice(&[2, 3, 4, 5]);
v.find_unique(&mut selected, Some(&prev));
// All elements are different.
check_bitmap(&[true, true, true, true], &selected);
let mut selected = new_bitmap(&[true, false, true, false]);
let v = Int32Vector::from_slice(&[1, 2, 3, 4]);
v.find_unique(&mut selected, Some(&prev));
// Though first element is duplicate, but we keep the flag unchanged.
check_bitmap(&[true, true, true, true], &selected);
// Same case as above, but now `prev` is None.
let mut selected = new_bitmap(&[true, false, true, false]);
let v = Int32Vector::from_slice(&[1, 2, 3, 4]);
v.find_unique(&mut selected, None);
check_bitmap(&[true, true, true, true], &selected);
// Same case as above, but now `prev` is empty.
let mut selected = new_bitmap(&[true, false, true, false]);
let v = Int32Vector::from_slice(&[1, 2, 3, 4]);
v.find_unique(&mut selected, Some(&Int32Vector::from_slice(&[])));
check_bitmap(&[true, true, true, true], &selected);
let mut selected = new_bitmap(&[false, false, false, false]);
let v = Int32Vector::from_slice(&[2, 2, 4, 5]);
v.find_unique(&mut selected, Some(&prev));
// only v[1] is duplicate.
check_bitmap(&[true, false, true, true], &selected);
}
fn check_find_unique_null(len: usize) {
let input = NullVector::new(len);
let mut selected = BitVec::repeat(false, input.len());
input.find_unique(&mut selected, None);
let mut expect = vec![false; len];
if !expect.is_empty() {
expect[0] = true;
}
check_bitmap(&expect, &selected);
let mut selected = BitVec::repeat(false, input.len());
let prev = Some(NullVector::new(1));
input.find_unique(&mut selected, prev.as_ref().map(|v| v as _));
let expect = vec![false; len];
check_bitmap(&expect, &selected);
}
#[test]
fn test_find_unique_null() {
for len in 0..5 {
check_find_unique_null(len);
}
}
#[test]
fn test_find_unique_null_with_prev() {
let prev = NullVector::new(1);
// Keep flags unchanged.
let mut selected = new_bitmap(&[true, false, true, false]);
let v = NullVector::new(4);
v.find_unique(&mut selected, Some(&prev));
check_bitmap(&[true, false, true, false], &selected);
// Keep flags unchanged.
let mut selected = new_bitmap(&[false, false, true, false]);
v.find_unique(&mut selected, Some(&prev));
check_bitmap(&[false, false, true, false], &selected);
// Prev is None, select first element.
let mut selected = new_bitmap(&[false, false, true, false]);
v.find_unique(&mut selected, None);
check_bitmap(&[true, false, true, false], &selected);
// Prev is empty, select first element.
let mut selected = new_bitmap(&[false, false, true, false]);
v.find_unique(&mut selected, Some(&NullVector::new(0)));
check_bitmap(&[true, false, true, false], &selected);
}
fn check_find_unique_constant(len: usize) {
let input = ConstantVector::new(Arc::new(Int32Vector::from_slice(&[8])), len);
let mut selected = BitVec::repeat(false, len);
input.find_unique(&mut selected, None);
let mut expect = vec![false; len];
if !expect.is_empty() {
expect[0] = true;
}
check_bitmap(&expect, &selected);
let mut selected = BitVec::repeat(false, len);
let prev = Some(ConstantVector::new(
Arc::new(Int32Vector::from_slice(&[8])),
1,
));
input.find_unique(&mut selected, prev.as_ref().map(|v| v as _));
let expect = vec![false; len];
check_bitmap(&expect, &selected);
}
#[test]
fn test_find_unique_constant() {
for len in 0..5 {
check_find_unique_constant(len);
}
}
#[test]
fn test_find_unique_constant_with_prev() {
let prev = ConstantVector::new(Arc::new(Int32Vector::from_slice(&[1])), 1);
// Keep flags unchanged.
let mut selected = new_bitmap(&[true, false, true, false]);
let v = ConstantVector::new(Arc::new(Int32Vector::from_slice(&[1])), 4);
v.find_unique(&mut selected, Some(&prev));
check_bitmap(&[true, false, true, false], &selected);
// Keep flags unchanged.
let mut selected = new_bitmap(&[false, false, true, false]);
v.find_unique(&mut selected, Some(&prev));
check_bitmap(&[false, false, true, false], &selected);
// Prev is None, select first element.
let mut selected = new_bitmap(&[false, false, true, false]);
v.find_unique(&mut selected, None);
check_bitmap(&[true, false, true, false], &selected);
// Prev is empty, select first element.
let mut selected = new_bitmap(&[false, false, true, false]);
v.find_unique(
&mut selected,
Some(&ConstantVector::new(
Arc::new(Int32Vector::from_slice(&[1])),
0,
)),
);
check_bitmap(&[true, false, true, false], &selected);
// Different constant vector.
let mut selected = new_bitmap(&[false, false, true, false]);
let v = ConstantVector::new(Arc::new(Int32Vector::from_slice(&[2])), 4);
v.find_unique(&mut selected, Some(&prev));
check_bitmap(&[true, false, true, false], &selected);
}
#[test]
fn test_find_unique_string() {
let input = StringVector::from_slice(&["a", "a", "b", "c"]);
let mut selected = BitVec::repeat(false, 4);
input.find_unique(&mut selected, None);
let expect = vec![true, false, true, true];
check_bitmap(&expect, &selected);
}
macro_rules! impl_find_unique_date_like_test {
($VectorType: ident, $ValueType: ident, $method: ident) => {{
use $crate::vectors::$VectorType;
let v = $VectorType::from_iterator([8, 8, 9, 10].into_iter().map($ValueType::$method));
let mut selected = BitVec::repeat(false, 4);
v.find_unique(&mut selected, None);
let expect = vec![true, false, true, true];
check_bitmap(&expect, &selected);
}};
}
#[test]
fn test_find_unique_date_like() {
impl_find_unique_date_like_test!(DateVector, Date, new);
impl_find_unique_date_like_test!(DateTimeVector, DateTime, new);
impl_find_unique_date_like_test!(TimestampSecondVector, TimestampSecond, from);
impl_find_unique_date_like_test!(TimestampMillisecondVector, TimestampMillisecond, from);
impl_find_unique_date_like_test!(TimestampMicrosecondVector, TimestampMicrosecond, from);
impl_find_unique_date_like_test!(TimestampNanosecondVector, TimestampNanosecond, from);
}
}

View File

@@ -0,0 +1,170 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::prelude::*;
pub(crate) use crate::vectors::null::replicate_null;
pub(crate) use crate::vectors::primitive::replicate_primitive;
pub(crate) fn replicate_scalar<C: ScalarVector>(c: &C, offsets: &[usize]) -> VectorRef {
assert_eq!(offsets.len(), c.len());
if offsets.is_empty() {
return c.slice(0, 0);
}
let mut builder = <<C as ScalarVector>::Builder>::with_capacity(c.len());
let mut previous_offset = 0;
for (i, offset) in offsets.iter().enumerate() {
let data = c.get_data(i);
for _ in previous_offset..*offset {
builder.push(data);
}
previous_offset = *offset;
}
builder.to_vector()
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use common_time::timestamp::TimeUnit;
use common_time::{Date, DateTime, Timestamp};
use paste::paste;
use super::*;
use crate::vectors::constant::ConstantVector;
use crate::vectors::{Int32Vector, NullVector, StringVector, VectorOp};
#[test]
fn test_replicate_primitive() {
let v = Int32Vector::from_iterator(0..5);
let offsets = [0, 1, 2, 3, 4];
let v = v.replicate(&offsets);
assert_eq!(4, v.len());
for i in 0..4 {
assert_eq!(Value::Int32(i as i32 + 1), v.get(i));
}
}
#[test]
fn test_replicate_nullable_primitive() {
let v = Int32Vector::from(vec![None, Some(1), None, Some(2)]);
let offsets = [2, 4, 6, 8];
let v = v.replicate(&offsets);
assert_eq!(8, v.len());
let expect: VectorRef = Arc::new(Int32Vector::from(vec![
None,
None,
Some(1),
Some(1),
None,
None,
Some(2),
Some(2),
]));
assert_eq!(expect, v);
}
#[test]
fn test_replicate_scalar() {
let v = StringVector::from_slice(&["0", "1", "2", "3"]);
let offsets = [1, 3, 5, 6];
let v = v.replicate(&offsets);
assert_eq!(6, v.len());
let expect: VectorRef = Arc::new(StringVector::from_slice(&["0", "1", "1", "2", "2", "3"]));
assert_eq!(expect, v);
}
#[test]
fn test_replicate_constant() {
let v = Arc::new(StringVector::from_slice(&["hello"]));
let cv = ConstantVector::new(v.clone(), 2);
let offsets = [1, 4];
let cv = cv.replicate(&offsets);
assert_eq!(4, cv.len());
let expect: VectorRef = Arc::new(ConstantVector::new(v, 4));
assert_eq!(expect, cv);
}
#[test]
fn test_replicate_null() {
let v = NullVector::new(0);
let offsets = [];
let v = v.replicate(&offsets);
assert!(v.is_empty());
let v = NullVector::new(3);
let offsets = [1, 3, 5];
let v = v.replicate(&offsets);
assert_eq!(5, v.len());
}
macro_rules! impl_replicate_date_like_test {
($VectorType: ident, $ValueType: ident, $method: ident) => {{
use $crate::vectors::$VectorType;
let v = $VectorType::from_iterator((0..5).map($ValueType::$method));
let offsets = [0, 1, 2, 3, 4];
let v = v.replicate(&offsets);
assert_eq!(4, v.len());
for i in 0..4 {
assert_eq!(
Value::$ValueType($ValueType::$method((i as i32 + 1).into())),
v.get(i)
);
}
}};
}
macro_rules! impl_replicate_timestamp_test {
($unit: ident) => {{
paste!{
use $crate::vectors::[<Timestamp $unit Vector>];
use $crate::timestamp::[<Timestamp $unit>];
let v = [<Timestamp $unit Vector>]::from_iterator((0..5).map([<Timestamp $unit>]::from));
let offsets = [0, 1, 2, 3, 4];
let v = v.replicate(&offsets);
assert_eq!(4, v.len());
for i in 0..4 {
assert_eq!(
Value::Timestamp(Timestamp::new(i as i64 + 1, TimeUnit::$unit)),
v.get(i)
);
}
}
}};
}
#[test]
fn test_replicate_date_like() {
impl_replicate_date_like_test!(DateVector, Date, new);
impl_replicate_date_like_test!(DateTimeVector, DateTime, new);
impl_replicate_timestamp_test!(Second);
impl_replicate_timestamp_test!(Millisecond);
impl_replicate_timestamp_test!(Microsecond);
impl_replicate_timestamp_test!(Nanosecond);
}
}

View File

@@ -0,0 +1,552 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::fmt;
use std::sync::Arc;
use arrow::array::{
Array, ArrayBuilder, ArrayData, ArrayIter, ArrayRef, PrimitiveArray, PrimitiveBuilder,
};
use serde_json::Value as JsonValue;
use snafu::OptionExt;
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::scalars::{Scalar, ScalarRef, ScalarVector, ScalarVectorBuilder};
use crate::serialize::Serializable;
use crate::types::{
Float32Type, Float64Type, Int16Type, Int32Type, Int64Type, Int8Type, LogicalPrimitiveType,
UInt16Type, UInt32Type, UInt64Type, UInt8Type, WrapperType,
};
use crate::value::{Value, ValueRef};
use crate::vectors::{self, MutableVector, Validity, Vector, VectorRef};
pub type UInt8Vector = PrimitiveVector<UInt8Type>;
pub type UInt16Vector = PrimitiveVector<UInt16Type>;
pub type UInt32Vector = PrimitiveVector<UInt32Type>;
pub type UInt64Vector = PrimitiveVector<UInt64Type>;
pub type Int8Vector = PrimitiveVector<Int8Type>;
pub type Int16Vector = PrimitiveVector<Int16Type>;
pub type Int32Vector = PrimitiveVector<Int32Type>;
pub type Int64Vector = PrimitiveVector<Int64Type>;
pub type Float32Vector = PrimitiveVector<Float32Type>;
pub type Float64Vector = PrimitiveVector<Float64Type>;
/// Vector for primitive data types.
pub struct PrimitiveVector<T: LogicalPrimitiveType> {
array: PrimitiveArray<T::ArrowPrimitive>,
}
impl<T: LogicalPrimitiveType> PrimitiveVector<T> {
pub fn new(array: PrimitiveArray<T::ArrowPrimitive>) -> Self {
Self { array }
}
pub fn try_from_arrow_array(array: impl AsRef<dyn Array>) -> Result<Self> {
let data = array
.as_ref()
.as_any()
.downcast_ref::<PrimitiveArray<T::ArrowPrimitive>>()
.with_context(|| error::ConversionSnafu {
from: format!("{:?}", array.as_ref().data_type()),
})?
.data()
.clone();
let concrete_array = PrimitiveArray::<T::ArrowPrimitive>::from(data);
Ok(Self::new(concrete_array))
}
pub fn from_slice<P: AsRef<[T::Native]>>(slice: P) -> Self {
let iter = slice.as_ref().iter().copied();
Self {
array: PrimitiveArray::from_iter_values(iter),
}
}
pub fn from_wrapper_slice<P: AsRef<[T::Wrapper]>>(slice: P) -> Self {
let iter = slice.as_ref().iter().copied().map(WrapperType::into_native);
Self {
array: PrimitiveArray::from_iter_values(iter),
}
}
pub fn from_vec(array: Vec<T::Native>) -> Self {
Self {
array: PrimitiveArray::from_iter_values(array),
}
}
pub fn from_values<I: IntoIterator<Item = T::Native>>(iter: I) -> Self {
Self {
array: PrimitiveArray::from_iter_values(iter),
}
}
pub(crate) fn as_arrow(&self) -> &PrimitiveArray<T::ArrowPrimitive> {
&self.array
}
fn to_array_data(&self) -> ArrayData {
self.array.data().clone()
}
fn from_array_data(data: ArrayData) -> Self {
Self {
array: PrimitiveArray::from(data),
}
}
// To distinguish with `Vector::slice()`.
fn get_slice(&self, offset: usize, length: usize) -> Self {
let data = self.array.data().slice(offset, length);
Self::from_array_data(data)
}
}
impl<T: LogicalPrimitiveType> Vector for PrimitiveVector<T> {
fn data_type(&self) -> ConcreteDataType {
T::build_data_type()
}
fn vector_type_name(&self) -> String {
format!("{}Vector", T::type_name())
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.array.len()
}
fn to_arrow_array(&self) -> ArrayRef {
let data = self.to_array_data();
Arc::new(PrimitiveArray::<T::ArrowPrimitive>::from(data))
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let data = self.to_array_data();
Box::new(PrimitiveArray::<T::ArrowPrimitive>::from(data))
}
fn validity(&self) -> Validity {
vectors::impl_validity_for_vector!(self.array)
}
fn memory_size(&self) -> usize {
self.array.get_buffer_memory_size()
}
fn null_count(&self) -> usize {
self.array.null_count()
}
fn is_null(&self, row: usize) -> bool {
self.array.is_null(row)
}
fn slice(&self, offset: usize, length: usize) -> VectorRef {
let data = self.array.data().slice(offset, length);
Arc::new(Self::from_array_data(data))
}
fn get(&self, index: usize) -> Value {
if self.array.is_valid(index) {
// Safety: The index have been checked by `is_valid()`.
let wrapper = unsafe { T::Wrapper::from_native(self.array.value_unchecked(index)) };
wrapper.into()
} else {
Value::Null
}
}
fn get_ref(&self, index: usize) -> ValueRef {
if self.array.is_valid(index) {
// Safety: The index have been checked by `is_valid()`.
let wrapper = unsafe { T::Wrapper::from_native(self.array.value_unchecked(index)) };
wrapper.into()
} else {
ValueRef::Null
}
}
}
impl<T: LogicalPrimitiveType> fmt::Debug for PrimitiveVector<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("PrimitiveVector")
.field("array", &self.array)
.finish()
}
}
impl<T: LogicalPrimitiveType> From<PrimitiveArray<T::ArrowPrimitive>> for PrimitiveVector<T> {
fn from(array: PrimitiveArray<T::ArrowPrimitive>) -> Self {
Self { array }
}
}
impl<T: LogicalPrimitiveType> From<Vec<Option<T::Native>>> for PrimitiveVector<T> {
fn from(v: Vec<Option<T::Native>>) -> Self {
Self {
array: PrimitiveArray::from_iter(v),
}
}
}
pub struct PrimitiveIter<'a, T: LogicalPrimitiveType> {
iter: ArrayIter<&'a PrimitiveArray<T::ArrowPrimitive>>,
}
impl<'a, T: LogicalPrimitiveType> Iterator for PrimitiveIter<'a, T> {
type Item = Option<T::Wrapper>;
fn next(&mut self) -> Option<Option<T::Wrapper>> {
self.iter
.next()
.map(|item| item.map(T::Wrapper::from_native))
}
fn size_hint(&self) -> (usize, Option<usize>) {
self.iter.size_hint()
}
}
impl<T: LogicalPrimitiveType> ScalarVector for PrimitiveVector<T> {
type OwnedItem = T::Wrapper;
type RefItem<'a> = T::Wrapper;
type Iter<'a> = PrimitiveIter<'a, T>;
type Builder = PrimitiveVectorBuilder<T>;
fn get_data(&self, idx: usize) -> Option<Self::RefItem<'_>> {
if self.array.is_valid(idx) {
Some(T::Wrapper::from_native(self.array.value(idx)))
} else {
None
}
}
fn iter_data(&self) -> Self::Iter<'_> {
PrimitiveIter {
iter: self.array.iter(),
}
}
}
impl<T: LogicalPrimitiveType> Serializable for PrimitiveVector<T> {
fn serialize_to_json(&self) -> Result<Vec<JsonValue>> {
let res = self
.iter_data()
.map(|v| match v {
None => serde_json::Value::Null,
// use WrapperType's Into<serde_json::Value> bound instead of
// serde_json::to_value to facilitate customized serialization
// for WrapperType
Some(v) => v.into(),
})
.collect::<Vec<_>>();
Ok(res)
}
}
impl<T: LogicalPrimitiveType> PartialEq for PrimitiveVector<T> {
fn eq(&self, other: &PrimitiveVector<T>) -> bool {
self.array == other.array
}
}
pub type UInt8VectorBuilder = PrimitiveVectorBuilder<UInt8Type>;
pub type UInt16VectorBuilder = PrimitiveVectorBuilder<UInt16Type>;
pub type UInt32VectorBuilder = PrimitiveVectorBuilder<UInt32Type>;
pub type UInt64VectorBuilder = PrimitiveVectorBuilder<UInt64Type>;
pub type Int8VectorBuilder = PrimitiveVectorBuilder<Int8Type>;
pub type Int16VectorBuilder = PrimitiveVectorBuilder<Int16Type>;
pub type Int32VectorBuilder = PrimitiveVectorBuilder<Int32Type>;
pub type Int64VectorBuilder = PrimitiveVectorBuilder<Int64Type>;
pub type Float32VectorBuilder = PrimitiveVectorBuilder<Float32Type>;
pub type Float64VectorBuilder = PrimitiveVectorBuilder<Float64Type>;
/// Builder to build a primitive vector.
pub struct PrimitiveVectorBuilder<T: LogicalPrimitiveType> {
mutable_array: PrimitiveBuilder<T::ArrowPrimitive>,
}
impl<T: LogicalPrimitiveType> MutableVector for PrimitiveVectorBuilder<T> {
fn data_type(&self) -> ConcreteDataType {
T::build_data_type()
}
fn len(&self) -> usize {
self.mutable_array.len()
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_mut_any(&mut self) -> &mut dyn Any {
self
}
fn to_vector(&mut self) -> VectorRef {
Arc::new(self.finish())
}
fn push_value_ref(&mut self, value: ValueRef) -> Result<()> {
let primitive = T::cast_value_ref(value)?;
match primitive {
Some(v) => self.mutable_array.append_value(v.into_native()),
None => self.mutable_array.append_null(),
}
Ok(())
}
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()> {
let primitive = T::cast_vector(vector)?;
// Slice the underlying array to avoid creating a new Arc.
let slice = primitive.get_slice(offset, length);
for v in slice.iter_data() {
self.push(v);
}
Ok(())
}
}
impl<T> ScalarVectorBuilder for PrimitiveVectorBuilder<T>
where
T: LogicalPrimitiveType,
T::Wrapper: Scalar<VectorType = PrimitiveVector<T>>,
for<'a> T::Wrapper: ScalarRef<'a, ScalarType = T::Wrapper>,
for<'a> T::Wrapper: Scalar<RefType<'a> = T::Wrapper>,
{
type VectorType = PrimitiveVector<T>;
fn with_capacity(capacity: usize) -> Self {
Self {
mutable_array: PrimitiveBuilder::with_capacity(capacity),
}
}
fn push(&mut self, value: Option<<Self::VectorType as ScalarVector>::RefItem<'_>>) {
self.mutable_array
.append_option(value.map(|v| v.into_native()));
}
fn finish(&mut self) -> Self::VectorType {
PrimitiveVector {
array: self.mutable_array.finish(),
}
}
}
pub(crate) fn replicate_primitive<T: LogicalPrimitiveType>(
vector: &PrimitiveVector<T>,
offsets: &[usize],
) -> PrimitiveVector<T> {
assert_eq!(offsets.len(), vector.len());
if offsets.is_empty() {
return vector.get_slice(0, 0);
}
let mut builder = PrimitiveVectorBuilder::<T>::with_capacity(*offsets.last().unwrap() as usize);
let mut previous_offset = 0;
for (offset, value) in offsets.iter().zip(vector.array.iter()) {
let repeat_times = *offset - previous_offset;
match value {
Some(data) => {
unsafe {
// Safety: std::iter::Repeat and std::iter::Take implement TrustedLen.
builder
.mutable_array
.append_trusted_len_iter(std::iter::repeat(data).take(repeat_times));
}
}
None => {
builder.mutable_array.append_nulls(repeat_times);
}
}
previous_offset = *offset;
}
builder.finish()
}
#[cfg(test)]
mod tests {
use arrow::array::Int32Array;
use arrow::datatypes::DataType as ArrowDataType;
use serde_json;
use super::*;
use crate::data_type::DataType;
use crate::serialize::Serializable;
use crate::types::Int64Type;
fn check_vec(v: Int32Vector) {
assert_eq!(4, v.len());
assert_eq!("Int32Vector", v.vector_type_name());
assert!(!v.is_const());
assert!(v.validity().is_all_valid());
assert!(!v.only_null());
for i in 0..4 {
assert!(!v.is_null(i));
assert_eq!(Value::Int32(i as i32 + 1), v.get(i));
assert_eq!(ValueRef::Int32(i as i32 + 1), v.get_ref(i));
}
let json_value = v.serialize_to_json().unwrap();
assert_eq!("[1,2,3,4]", serde_json::to_string(&json_value).unwrap(),);
let arrow_arr = v.to_arrow_array();
assert_eq!(4, arrow_arr.len());
assert_eq!(&ArrowDataType::Int32, arrow_arr.data_type());
}
#[test]
fn test_from_values() {
let v = Int32Vector::from_values(vec![1, 2, 3, 4]);
check_vec(v);
}
#[test]
fn test_from_vec() {
let v = Int32Vector::from_vec(vec![1, 2, 3, 4]);
check_vec(v);
}
#[test]
fn test_from_slice() {
let v = Int32Vector::from_slice(vec![1, 2, 3, 4]);
check_vec(v);
}
#[test]
fn test_serialize_primitive_vector_with_null_to_json() {
let input = [Some(1i32), Some(2i32), None, Some(4i32), None];
let mut builder = Int32VectorBuilder::with_capacity(input.len());
for v in input {
builder.push(v);
}
let vector = builder.finish();
let json_value = vector.serialize_to_json().unwrap();
assert_eq!(
"[1,2,null,4,null]",
serde_json::to_string(&json_value).unwrap(),
);
}
#[test]
fn test_from_arrow_array() {
let arrow_array = Int32Array::from(vec![1, 2, 3, 4]);
let v = Int32Vector::from(arrow_array);
check_vec(v);
}
#[test]
fn test_primitive_vector_build_get() {
let input = [Some(1i32), Some(2i32), None, Some(4i32), None];
let mut builder = Int32VectorBuilder::with_capacity(input.len());
for v in input {
builder.push(v);
}
let vector = builder.finish();
assert_eq!(input.len(), vector.len());
for (i, v) in input.into_iter().enumerate() {
assert_eq!(v, vector.get_data(i));
assert_eq!(Value::from(v), vector.get(i));
}
let res: Vec<_> = vector.iter_data().collect();
assert_eq!(input, &res[..]);
}
#[test]
fn test_primitive_vector_validity() {
let input = [Some(1i32), Some(2i32), None, None];
let mut builder = Int32VectorBuilder::with_capacity(input.len());
for v in input {
builder.push(v);
}
let vector = builder.finish();
assert_eq!(2, vector.null_count());
let validity = vector.validity();
assert_eq!(2, validity.null_count());
assert!(!validity.is_set(2));
assert!(!validity.is_set(3));
let vector = Int32Vector::from_slice(vec![1, 2, 3, 4]);
assert_eq!(0, vector.null_count());
assert!(vector.validity().is_all_valid());
}
#[test]
fn test_memory_size() {
let v = Int32Vector::from_slice((0..5).collect::<Vec<i32>>());
assert_eq!(64, v.memory_size());
let v = Int64Vector::from(vec![Some(0i64), Some(1i64), Some(2i64), None, None]);
assert_eq!(128, v.memory_size());
}
#[test]
fn test_primitive_vector_builder() {
let mut builder = Int64Type::default().create_mutable_vector(3);
builder.push_value_ref(ValueRef::Int64(123)).unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
let input = Int64Vector::from_slice(&[7, 8, 9]);
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(Int64Vector::from_slice(&[123, 8, 9]));
assert_eq!(expect, vector);
}
#[test]
fn test_from_wrapper_slice() {
macro_rules! test_from_wrapper_slice {
($vec: ident, $ty: ident) => {
let from_wrapper_slice = $vec::from_wrapper_slice(&[
$ty::from_native($ty::MAX),
$ty::from_native($ty::MIN),
]);
let from_slice = $vec::from_slice(&[$ty::MAX, $ty::MIN]);
assert_eq!(from_wrapper_slice, from_slice);
};
}
test_from_wrapper_slice!(UInt8Vector, u8);
test_from_wrapper_slice!(Int8Vector, i8);
test_from_wrapper_slice!(UInt16Vector, u16);
test_from_wrapper_slice!(Int16Vector, i16);
test_from_wrapper_slice!(UInt32Vector, u32);
test_from_wrapper_slice!(Int32Vector, i32);
test_from_wrapper_slice!(UInt64Vector, u64);
test_from_wrapper_slice!(Int64Vector, i64);
test_from_wrapper_slice!(Float32Vector, f32);
test_from_wrapper_slice!(Float64Vector, f64);
}
}

View File

@@ -0,0 +1,370 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::any::Any;
use std::sync::Arc;
use arrow::array::{Array, ArrayBuilder, ArrayData, ArrayIter, ArrayRef};
use snafu::ResultExt;
use crate::arrow_array::{MutableStringArray, StringArray};
use crate::data_type::ConcreteDataType;
use crate::error::{self, Result};
use crate::scalars::{ScalarVector, ScalarVectorBuilder};
use crate::serialize::Serializable;
use crate::value::{Value, ValueRef};
use crate::vectors::{self, MutableVector, Validity, Vector, VectorRef};
/// Vector of strings.
#[derive(Debug, PartialEq)]
pub struct StringVector {
array: StringArray,
}
impl StringVector {
pub(crate) fn as_arrow(&self) -> &dyn Array {
&self.array
}
fn to_array_data(&self) -> ArrayData {
self.array.data().clone()
}
fn from_array_data(data: ArrayData) -> Self {
Self {
array: StringArray::from(data),
}
}
}
impl From<StringArray> for StringVector {
fn from(array: StringArray) -> Self {
Self { array }
}
}
impl From<Vec<Option<String>>> for StringVector {
fn from(data: Vec<Option<String>>) -> Self {
Self {
array: StringArray::from_iter(data),
}
}
}
impl From<Vec<Option<&str>>> for StringVector {
fn from(data: Vec<Option<&str>>) -> Self {
Self {
array: StringArray::from_iter(data),
}
}
}
impl From<&[Option<String>]> for StringVector {
fn from(data: &[Option<String>]) -> Self {
Self {
array: StringArray::from_iter(data),
}
}
}
impl From<&[Option<&str>]> for StringVector {
fn from(data: &[Option<&str>]) -> Self {
Self {
array: StringArray::from_iter(data),
}
}
}
impl From<Vec<String>> for StringVector {
fn from(data: Vec<String>) -> Self {
Self {
array: StringArray::from_iter(data.into_iter().map(Some)),
}
}
}
impl From<Vec<&str>> for StringVector {
fn from(data: Vec<&str>) -> Self {
Self {
array: StringArray::from_iter(data.into_iter().map(Some)),
}
}
}
impl Vector for StringVector {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::string_datatype()
}
fn vector_type_name(&self) -> String {
"StringVector".to_string()
}
fn as_any(&self) -> &dyn Any {
self
}
fn len(&self) -> usize {
self.array.len()
}
fn to_arrow_array(&self) -> ArrayRef {
let data = self.to_array_data();
Arc::new(StringArray::from(data))
}
fn to_boxed_arrow_array(&self) -> Box<dyn Array> {
let data = self.to_array_data();
Box::new(StringArray::from(data))
}
fn validity(&self) -> Validity {
vectors::impl_validity_for_vector!(self.array)
}
fn memory_size(&self) -> usize {
self.array.get_buffer_memory_size()
}
fn null_count(&self) -> usize {
self.array.null_count()
}
fn is_null(&self, row: usize) -> bool {
self.array.is_null(row)
}
fn slice(&self, offset: usize, length: usize) -> VectorRef {
let data = self.array.data().slice(offset, length);
Arc::new(Self::from_array_data(data))
}
fn get(&self, index: usize) -> Value {
vectors::impl_get_for_vector!(self.array, index)
}
fn get_ref(&self, index: usize) -> ValueRef {
vectors::impl_get_ref_for_vector!(self.array, index)
}
}
impl ScalarVector for StringVector {
type OwnedItem = String;
type RefItem<'a> = &'a str;
type Iter<'a> = ArrayIter<&'a StringArray>;
type Builder = StringVectorBuilder;
fn get_data(&self, idx: usize) -> Option<Self::RefItem<'_>> {
if self.array.is_valid(idx) {
Some(self.array.value(idx))
} else {
None
}
}
fn iter_data(&self) -> Self::Iter<'_> {
self.array.iter()
}
}
pub struct StringVectorBuilder {
mutable_array: MutableStringArray,
}
impl MutableVector for StringVectorBuilder {
fn data_type(&self) -> ConcreteDataType {
ConcreteDataType::string_datatype()
}
fn len(&self) -> usize {
self.mutable_array.len()
}
fn as_any(&self) -> &dyn Any {
self
}
fn as_mut_any(&mut self) -> &mut dyn Any {
self
}
fn to_vector(&mut self) -> VectorRef {
Arc::new(self.finish())
}
fn push_value_ref(&mut self, value: ValueRef) -> Result<()> {
match value.as_string()? {
Some(v) => self.mutable_array.append_value(v),
None => self.mutable_array.append_null(),
}
Ok(())
}
fn extend_slice_of(&mut self, vector: &dyn Vector, offset: usize, length: usize) -> Result<()> {
vectors::impl_extend_for_builder!(self, vector, StringVector, offset, length)
}
}
impl ScalarVectorBuilder for StringVectorBuilder {
type VectorType = StringVector;
fn with_capacity(capacity: usize) -> Self {
Self {
mutable_array: MutableStringArray::with_capacity(capacity, 0),
}
}
fn push(&mut self, value: Option<<Self::VectorType as ScalarVector>::RefItem<'_>>) {
match value {
Some(v) => self.mutable_array.append_value(v),
None => self.mutable_array.append_null(),
}
}
fn finish(&mut self) -> Self::VectorType {
StringVector {
array: self.mutable_array.finish(),
}
}
}
impl Serializable for StringVector {
fn serialize_to_json(&self) -> Result<Vec<serde_json::Value>> {
self.iter_data()
.map(serde_json::to_value)
.collect::<serde_json::Result<_>>()
.context(error::SerializeSnafu)
}
}
vectors::impl_try_from_arrow_array_for_vector!(StringArray, StringVector);
#[cfg(test)]
mod tests {
use arrow::datatypes::DataType;
use super::*;
#[test]
fn test_string_vector_build_get() {
let mut builder = StringVectorBuilder::with_capacity(4);
builder.push(Some("hello"));
builder.push(None);
builder.push(Some("world"));
let vector = builder.finish();
assert_eq!(Some("hello"), vector.get_data(0));
assert_eq!(None, vector.get_data(1));
assert_eq!(Some("world"), vector.get_data(2));
// Get out of bound
assert!(vector.try_get(3).is_err());
assert_eq!(Value::String("hello".into()), vector.get(0));
assert_eq!(Value::Null, vector.get(1));
assert_eq!(Value::String("world".into()), vector.get(2));
let mut iter = vector.iter_data();
assert_eq!("hello", iter.next().unwrap().unwrap());
assert_eq!(None, iter.next().unwrap());
assert_eq!("world", iter.next().unwrap().unwrap());
assert_eq!(None, iter.next());
}
#[test]
fn test_string_vector_builder() {
let mut builder = StringVectorBuilder::with_capacity(3);
builder.push_value_ref(ValueRef::String("hello")).unwrap();
assert!(builder.push_value_ref(ValueRef::Int32(123)).is_err());
let input = StringVector::from_slice(&["world", "one", "two"]);
builder.extend_slice_of(&input, 1, 2).unwrap();
assert!(builder
.extend_slice_of(&crate::vectors::Int32Vector::from_slice(&[13]), 0, 1)
.is_err());
let vector = builder.to_vector();
let expect: VectorRef = Arc::new(StringVector::from_slice(&["hello", "one", "two"]));
assert_eq!(expect, vector);
}
#[test]
fn test_string_vector_misc() {
let strs = vec!["hello", "greptime", "rust"];
let v = StringVector::from(strs.clone());
assert_eq!(3, v.len());
assert_eq!("StringVector", v.vector_type_name());
assert!(!v.is_const());
assert!(v.validity().is_all_valid());
assert!(!v.only_null());
assert_eq!(128, v.memory_size());
for (i, s) in strs.iter().enumerate() {
assert_eq!(Value::from(*s), v.get(i));
assert_eq!(ValueRef::from(*s), v.get_ref(i));
assert_eq!(Value::from(*s), v.try_get(i).unwrap());
}
let arrow_arr = v.to_arrow_array();
assert_eq!(3, arrow_arr.len());
assert_eq!(&DataType::Utf8, arrow_arr.data_type());
}
#[test]
fn test_serialize_string_vector() {
let mut builder = StringVectorBuilder::with_capacity(3);
builder.push(Some("hello"));
builder.push(None);
builder.push(Some("world"));
let string_vector = builder.finish();
let serialized =
serde_json::to_string(&string_vector.serialize_to_json().unwrap()).unwrap();
assert_eq!(r#"["hello",null,"world"]"#, serialized);
}
#[test]
fn test_from_arrow_array() {
let mut builder = MutableStringArray::new();
builder.append_option(Some("A"));
builder.append_option(Some("B"));
builder.append_null();
builder.append_option(Some("D"));
let string_array: StringArray = builder.finish();
let vector = StringVector::from(string_array);
assert_eq!(
r#"["A","B",null,"D"]"#,
serde_json::to_string(&vector.serialize_to_json().unwrap()).unwrap(),
);
}
#[test]
fn test_from_non_option_string() {
let nul = String::from_utf8(vec![0]).unwrap();
let corpus = vec!["😅😅😅", "😍😍😍😍", "🥵🥵", nul.as_str()];
let vector = StringVector::from(corpus);
let serialized = serde_json::to_string(&vector.serialize_to_json().unwrap()).unwrap();
assert_eq!(r#"["😅😅😅","😍😍😍😍","🥵🥵","\u0000"]"#, serialized);
let corpus = vec![
"🀀🀀🀀".to_string(),
"🀁🀁🀁".to_string(),
"🀂🀂🀂".to_string(),
"🀃🀃🀃".to_string(),
"🀆🀆".to_string(),
];
let vector = StringVector::from(corpus);
let serialized = serde_json::to_string(&vector.serialize_to_json().unwrap()).unwrap();
assert_eq!(r#"["🀀🀀🀀","🀁🀁🀁","🀂🀂🀂","🀃🀃🀃","🀆🀆"]"#, serialized);
}
}

View File

@@ -0,0 +1,31 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::types::{
TimestampMicrosecondType, TimestampMillisecondType, TimestampNanosecondType,
TimestampSecondType,
};
use crate::vectors::{PrimitiveVector, PrimitiveVectorBuilder};
pub type TimestampSecondVector = PrimitiveVector<TimestampSecondType>;
pub type TimestampSecondVectorBuilder = PrimitiveVectorBuilder<TimestampSecondType>;
pub type TimestampMillisecondVector = PrimitiveVector<TimestampMillisecondType>;
pub type TimestampMillisecondVectorBuilder = PrimitiveVectorBuilder<TimestampMillisecondType>;
pub type TimestampMicrosecondVector = PrimitiveVector<TimestampMicrosecondType>;
pub type TimestampMicrosecondVectorBuilder = PrimitiveVectorBuilder<TimestampMicrosecondType>;
pub type TimestampNanosecondVector = PrimitiveVector<TimestampNanosecondType>;
pub type TimestampNanosecondVectorBuilder = PrimitiveVectorBuilder<TimestampNanosecondType>;

View File

@@ -0,0 +1,159 @@
// Copyright 2022 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::array::ArrayData;
use arrow::bitmap::Bitmap;
#[derive(Debug, PartialEq)]
enum ValidityKind<'a> {
/// Whether the array slot is valid or not (null).
Slots {
bitmap: &'a Bitmap,
len: usize,
null_count: usize,
},
/// All slots are valid.
AllValid { len: usize },
/// All slots are null.
AllNull { len: usize },
}
/// Validity of a vector.
#[derive(Debug, PartialEq)]
pub struct Validity<'a> {
kind: ValidityKind<'a>,
}
impl<'a> Validity<'a> {
/// Creates a `Validity` from [`ArrayData`].
pub fn from_array_data(data: &'a ArrayData) -> Validity<'a> {
match data.null_bitmap() {
Some(bitmap) => Validity {
kind: ValidityKind::Slots {
bitmap,
len: data.len(),
null_count: data.null_count(),
},
},
None => Validity::all_valid(data.len()),
}
}
/// Returns `Validity` that all elements are valid.
pub fn all_valid(len: usize) -> Validity<'a> {
Validity {
kind: ValidityKind::AllValid { len },
}
}
/// Returns `Validity` that all elements are null.
pub fn all_null(len: usize) -> Validity<'a> {
Validity {
kind: ValidityKind::AllNull { len },
}
}
/// Returns whether `i-th` bit is set.
pub fn is_set(&self, i: usize) -> bool {
match self.kind {
ValidityKind::Slots { bitmap, .. } => bitmap.is_set(i),
ValidityKind::AllValid { len } => i < len,
ValidityKind::AllNull { .. } => false,
}
}
/// Returns true if all bits are null.
pub fn is_all_null(&self) -> bool {
match self.kind {
ValidityKind::Slots {
len, null_count, ..
} => len == null_count,
ValidityKind::AllValid { .. } => false,
ValidityKind::AllNull { .. } => true,
}
}
/// Returns true if all bits are valid.
pub fn is_all_valid(&self) -> bool {
match self.kind {
ValidityKind::Slots { null_count, .. } => null_count == 0,
ValidityKind::AllValid { .. } => true,
ValidityKind::AllNull { .. } => false,
}
}
/// The number of null slots on this [`Vector`].
pub fn null_count(&self) -> usize {
match self.kind {
ValidityKind::Slots { null_count, .. } => null_count,
ValidityKind::AllValid { .. } => 0,
ValidityKind::AllNull { len } => len,
}
}
}
#[cfg(test)]
mod tests {
use arrow::array::{Array, Int32Array};
use super::*;
#[test]
fn test_all_valid() {
let validity = Validity::all_valid(5);
assert!(validity.is_all_valid());
assert!(!validity.is_all_null());
assert_eq!(0, validity.null_count());
for i in 0..5 {
assert!(validity.is_set(i));
}
assert!(!validity.is_set(5));
}
#[test]
fn test_all_null() {
let validity = Validity::all_null(5);
assert!(validity.is_all_null());
assert!(!validity.is_all_valid());
assert_eq!(5, validity.null_count());
for i in 0..5 {
assert!(!validity.is_set(i));
}
assert!(!validity.is_set(5));
}
#[test]
fn test_from_array_data() {
let array = Int32Array::from_iter([None, Some(1), None]);
let validity = Validity::from_array_data(array.data());
assert_eq!(2, validity.null_count());
assert!(!validity.is_set(0));
assert!(validity.is_set(1));
assert!(!validity.is_set(2));
assert!(!validity.is_all_null());
assert!(!validity.is_all_valid());
let array = Int32Array::from_iter([None, None]);
let validity = Validity::from_array_data(array.data());
assert!(validity.is_all_null());
assert!(!validity.is_all_valid());
assert_eq!(2, validity.null_count());
let array = Int32Array::from_iter_values([1, 2]);
let validity = Validity::from_array_data(array.data());
assert!(!validity.is_all_null());
assert!(validity.is_all_valid());
assert_eq!(0, validity.null_count());
}
}