mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2025-12-22 22:20:02 +00:00
Compare commits
3 Commits
dashboard/
...
borui_aggr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
540fc92a7c | ||
|
|
1786190235 | ||
|
|
705b2007cf |
2
Cargo.lock
generated
2
Cargo.lock
generated
@@ -5133,7 +5133,7 @@ dependencies = [
|
||||
[[package]]
|
||||
name = "greptime-proto"
|
||||
version = "0.1.0"
|
||||
source = "git+https://github.com/GreptimeTeam/greptime-proto.git?rev=454c52634c3bac27de10bf0d85d5533eed1cf03f#454c52634c3bac27de10bf0d85d5533eed1cf03f"
|
||||
source = "git+https://github.com/GreptimeTeam/greptime-proto.git?rev=2dca1dc67862d7b410838aef81232274c019b3f6#2dca1dc67862d7b410838aef81232274c019b3f6"
|
||||
dependencies = [
|
||||
"prost 0.13.5",
|
||||
"serde",
|
||||
|
||||
@@ -133,7 +133,7 @@ etcd-client = "0.14"
|
||||
fst = "0.4.7"
|
||||
futures = "0.3"
|
||||
futures-util = "0.3"
|
||||
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "454c52634c3bac27de10bf0d85d5533eed1cf03f" }
|
||||
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "2dca1dc67862d7b410838aef81232274c019b3f6" }
|
||||
hex = "0.4"
|
||||
http = "1"
|
||||
humantime = "2.1"
|
||||
|
||||
90
src/common/function/src/adjust_flow.rs
Normal file
90
src/common/function/src/adjust_flow.rs
Normal file
@@ -0,0 +1,90 @@
|
||||
// Copyright 2023 Greptime Team
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use common_macro::admin_fn;
|
||||
use common_query::error::{
|
||||
InvalidFuncArgsSnafu, MissingFlowServiceHandlerSnafu, Result, UnsupportedInputDataTypeSnafu,
|
||||
};
|
||||
use common_query::prelude::Signature;
|
||||
use datafusion::logical_expr::Volatility;
|
||||
use datatypes::value::{Value, ValueRef};
|
||||
use session::context::QueryContextRef;
|
||||
use snafu::ensure;
|
||||
use store_api::storage::ConcreteDataType;
|
||||
|
||||
use crate::handlers::FlowServiceHandlerRef;
|
||||
use crate::helper::parse_catalog_flow;
|
||||
|
||||
fn adjust_signature() -> Signature {
|
||||
Signature::exact(
|
||||
vec![
|
||||
ConcreteDataType::string_datatype(), // flow name
|
||||
ConcreteDataType::uint64_datatype(), // min_run_interval in seconds
|
||||
ConcreteDataType::uint64_datatype(), // max filter number per query
|
||||
],
|
||||
Volatility::Immutable,
|
||||
)
|
||||
}
|
||||
|
||||
#[admin_fn(
|
||||
name = AdjustFlowFunction,
|
||||
display_name = adjust_flow,
|
||||
sig_fn = adjust_signature,
|
||||
ret = uint64
|
||||
)]
|
||||
pub(crate) async fn adjust_flow(
|
||||
flow_service_handler: &FlowServiceHandlerRef,
|
||||
query_ctx: &QueryContextRef,
|
||||
params: &[ValueRef<'_>],
|
||||
) -> Result<Value> {
|
||||
ensure!(
|
||||
params.len() == 3,
|
||||
InvalidFuncArgsSnafu {
|
||||
err_msg: format!(
|
||||
"The length of the args is not correct, expect 3, have: {}",
|
||||
params.len()
|
||||
),
|
||||
}
|
||||
);
|
||||
|
||||
let (flow_name, min_run_interval, max_filter_num) = match (params[0], params[1], params[2]) {
|
||||
(
|
||||
ValueRef::String(flow_name),
|
||||
ValueRef::UInt64(min_run_interval),
|
||||
ValueRef::UInt64(max_filter_num),
|
||||
) => (flow_name, min_run_interval, max_filter_num),
|
||||
_ => {
|
||||
return UnsupportedInputDataTypeSnafu {
|
||||
function: "adjust_flow",
|
||||
datatypes: params.iter().map(|v| v.data_type()).collect::<Vec<_>>(),
|
||||
}
|
||||
.fail();
|
||||
}
|
||||
};
|
||||
|
||||
let (catalog_name, flow_name) = parse_catalog_flow(flow_name, query_ctx)?;
|
||||
|
||||
let res = flow_service_handler
|
||||
.adjust(
|
||||
&catalog_name,
|
||||
&flow_name,
|
||||
min_run_interval,
|
||||
max_filter_num as usize,
|
||||
query_ctx.clone(),
|
||||
)
|
||||
.await?;
|
||||
let affected_rows = res.affected_rows;
|
||||
|
||||
Ok(Value::from(affected_rows))
|
||||
}
|
||||
@@ -26,6 +26,7 @@ use flush_compact_table::{CompactTableFunction, FlushTableFunction};
|
||||
use migrate_region::MigrateRegionFunction;
|
||||
use remove_region_follower::RemoveRegionFollowerFunction;
|
||||
|
||||
use crate::adjust_flow::AdjustFlowFunction;
|
||||
use crate::flush_flow::FlushFlowFunction;
|
||||
use crate::function_registry::FunctionRegistry;
|
||||
|
||||
@@ -43,5 +44,6 @@ impl AdminFunction {
|
||||
registry.register_async(Arc::new(FlushTableFunction));
|
||||
registry.register_async(Arc::new(CompactTableFunction));
|
||||
registry.register_async(Arc::new(FlushFlowFunction));
|
||||
registry.register_async(Arc::new(AdjustFlowFunction));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -12,21 +12,19 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use common_error::ext::BoxedError;
|
||||
use common_macro::admin_fn;
|
||||
use common_query::error::{
|
||||
ExecuteSnafu, InvalidFuncArgsSnafu, MissingFlowServiceHandlerSnafu, Result,
|
||||
UnsupportedInputDataTypeSnafu,
|
||||
InvalidFuncArgsSnafu, MissingFlowServiceHandlerSnafu, Result, UnsupportedInputDataTypeSnafu,
|
||||
};
|
||||
use common_query::prelude::Signature;
|
||||
use datafusion::logical_expr::Volatility;
|
||||
use datatypes::value::{Value, ValueRef};
|
||||
use session::context::QueryContextRef;
|
||||
use snafu::{ensure, ResultExt};
|
||||
use sql::parser::ParserContext;
|
||||
use snafu::ensure;
|
||||
use store_api::storage::ConcreteDataType;
|
||||
|
||||
use crate::handlers::FlowServiceHandlerRef;
|
||||
use crate::helper::parse_catalog_flow;
|
||||
|
||||
fn flush_signature() -> Signature {
|
||||
Signature::uniform(
|
||||
@@ -47,20 +45,6 @@ pub(crate) async fn flush_flow(
|
||||
query_ctx: &QueryContextRef,
|
||||
params: &[ValueRef<'_>],
|
||||
) -> Result<Value> {
|
||||
let (catalog_name, flow_name) = parse_flush_flow(params, query_ctx)?;
|
||||
|
||||
let res = flow_service_handler
|
||||
.flush(&catalog_name, &flow_name, query_ctx.clone())
|
||||
.await?;
|
||||
let affected_rows = res.affected_rows;
|
||||
|
||||
Ok(Value::from(affected_rows))
|
||||
}
|
||||
|
||||
fn parse_flush_flow(
|
||||
params: &[ValueRef<'_>],
|
||||
query_ctx: &QueryContextRef,
|
||||
) -> Result<(String, String)> {
|
||||
ensure!(
|
||||
params.len() == 1,
|
||||
InvalidFuncArgsSnafu {
|
||||
@@ -70,7 +54,6 @@ fn parse_flush_flow(
|
||||
),
|
||||
}
|
||||
);
|
||||
|
||||
let ValueRef::String(flow_name) = params[0] else {
|
||||
return UnsupportedInputDataTypeSnafu {
|
||||
function: "flush_flow",
|
||||
@@ -78,27 +61,14 @@ fn parse_flush_flow(
|
||||
}
|
||||
.fail();
|
||||
};
|
||||
let obj_name = ParserContext::parse_table_name(flow_name, query_ctx.sql_dialect())
|
||||
.map_err(BoxedError::new)
|
||||
.context(ExecuteSnafu)?;
|
||||
let (catalog_name, flow_name) = parse_catalog_flow(flow_name, query_ctx)?;
|
||||
|
||||
let (catalog_name, flow_name) = match &obj_name.0[..] {
|
||||
[flow_name] => (
|
||||
query_ctx.current_catalog().to_string(),
|
||||
flow_name.value.clone(),
|
||||
),
|
||||
[catalog, flow_name] => (catalog.value.clone(), flow_name.value.clone()),
|
||||
_ => {
|
||||
return InvalidFuncArgsSnafu {
|
||||
err_msg: format!(
|
||||
"expect flow name to be <catalog>.<flow-name> or <flow-name>, actual: {}",
|
||||
obj_name
|
||||
),
|
||||
}
|
||||
.fail()
|
||||
}
|
||||
};
|
||||
Ok((catalog_name, flow_name))
|
||||
let res = flow_service_handler
|
||||
.flush(&catalog_name, &flow_name, query_ctx.clone())
|
||||
.await?;
|
||||
let affected_rows = res.affected_rows;
|
||||
|
||||
Ok(Value::from(affected_rows))
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -154,10 +124,7 @@ mod test {
|
||||
("catalog.flow_name", ("catalog", "flow_name")),
|
||||
];
|
||||
for (input, expected) in testcases.iter() {
|
||||
let args = vec![*input];
|
||||
let args = args.into_iter().map(ValueRef::String).collect::<Vec<_>>();
|
||||
|
||||
let result = parse_flush_flow(&args, &QueryContext::arc()).unwrap();
|
||||
let result = parse_catalog_flow(input, &QueryContext::arc()).unwrap();
|
||||
assert_eq!(*expected, (result.0.as_str(), result.1.as_str()));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -87,6 +87,15 @@ pub trait FlowServiceHandler: Send + Sync {
|
||||
flow: &str,
|
||||
ctx: QueryContextRef,
|
||||
) -> Result<api::v1::flow::FlowResponse>;
|
||||
|
||||
async fn adjust(
|
||||
&self,
|
||||
catalog: &str,
|
||||
flow: &str,
|
||||
min_run_interval_secs: u64,
|
||||
max_filter_num_per_query: usize,
|
||||
ctx: QueryContextRef,
|
||||
) -> Result<api::v1::flow::FlowResponse>;
|
||||
}
|
||||
|
||||
pub type TableMutationHandlerRef = Arc<dyn TableMutationHandler>;
|
||||
|
||||
@@ -12,12 +12,15 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use common_query::error::{InvalidInputTypeSnafu, Result};
|
||||
use common_error::ext::BoxedError;
|
||||
use common_query::error::{ExecuteSnafu, InvalidFuncArgsSnafu, InvalidInputTypeSnafu, Result};
|
||||
use common_query::prelude::{Signature, TypeSignature, Volatility};
|
||||
use datatypes::prelude::ConcreteDataType;
|
||||
use datatypes::types::cast::cast;
|
||||
use datatypes::value::ValueRef;
|
||||
use session::context::QueryContextRef;
|
||||
use snafu::ResultExt;
|
||||
use sql::parser::ParserContext;
|
||||
|
||||
/// Create a function signature with oneof signatures of interleaving two arguments.
|
||||
pub fn one_of_sigs2(args1: Vec<ConcreteDataType>, args2: Vec<ConcreteDataType>) -> Signature {
|
||||
@@ -43,3 +46,30 @@ pub fn cast_u64(value: &ValueRef) -> Result<Option<u64>> {
|
||||
})
|
||||
.map(|v| v.as_u64())
|
||||
}
|
||||
|
||||
pub fn parse_catalog_flow(
|
||||
flow_name: &str,
|
||||
query_ctx: &QueryContextRef,
|
||||
) -> Result<(String, String)> {
|
||||
let obj_name = ParserContext::parse_table_name(flow_name, query_ctx.sql_dialect())
|
||||
.map_err(BoxedError::new)
|
||||
.context(ExecuteSnafu)?;
|
||||
|
||||
let (catalog_name, flow_name) = match &obj_name.0[..] {
|
||||
[flow_name] => (
|
||||
query_ctx.current_catalog().to_string(),
|
||||
flow_name.value.clone(),
|
||||
),
|
||||
[catalog, flow_name] => (catalog.value.clone(), flow_name.value.clone()),
|
||||
_ => {
|
||||
return InvalidFuncArgsSnafu {
|
||||
err_msg: format!(
|
||||
"expect flow name to be <catalog>.<flow-name> or <flow-name>, actual: {}",
|
||||
obj_name
|
||||
),
|
||||
}
|
||||
.fail()
|
||||
}
|
||||
};
|
||||
Ok((catalog_name, flow_name))
|
||||
}
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
#![feature(let_chains)]
|
||||
#![feature(try_blocks)]
|
||||
|
||||
mod adjust_flow;
|
||||
mod admin;
|
||||
mod flush_flow;
|
||||
mod macros;
|
||||
|
||||
@@ -148,6 +148,17 @@ impl FunctionState {
|
||||
) -> Result<api::v1::flow::FlowResponse> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
async fn adjust(
|
||||
&self,
|
||||
_catalog: &str,
|
||||
_flow: &str,
|
||||
_min_run_interval_secs: u64,
|
||||
_max_filter_num_per_query: usize,
|
||||
_ctx: QueryContextRef,
|
||||
) -> Result<api::v1::flow::FlowResponse> {
|
||||
todo!()
|
||||
}
|
||||
}
|
||||
|
||||
Self {
|
||||
|
||||
@@ -61,6 +61,7 @@ prost.workspace = true
|
||||
query.workspace = true
|
||||
rand.workspace = true
|
||||
serde.workspace = true
|
||||
serde_json.workspace = true
|
||||
servers.workspace = true
|
||||
session.workspace = true
|
||||
smallvec.workspace = true
|
||||
|
||||
@@ -18,7 +18,7 @@ use std::sync::atomic::AtomicBool;
|
||||
use std::sync::Arc;
|
||||
|
||||
use api::v1::flow::{
|
||||
flow_request, CreateRequest, DropRequest, FlowRequest, FlowResponse, FlushFlow,
|
||||
flow_request, AdjustFlow, CreateRequest, DropRequest, FlowRequest, FlowResponse, FlushFlow,
|
||||
};
|
||||
use api::v1::region::InsertRequests;
|
||||
use catalog::CatalogManager;
|
||||
@@ -32,6 +32,7 @@ use common_telemetry::{error, info, trace, warn};
|
||||
use datatypes::value::Value;
|
||||
use futures::TryStreamExt;
|
||||
use itertools::Itertools;
|
||||
use serde::{Deserialize, Serialize};
|
||||
use session::context::QueryContextBuilder;
|
||||
use snafu::{ensure, IntoError, OptionExt, ResultExt};
|
||||
use store_api::storage::{RegionId, TableId};
|
||||
@@ -809,6 +810,25 @@ impl common_meta::node_manager::Flownode for FlowDualEngine {
|
||||
..Default::default()
|
||||
})
|
||||
}
|
||||
Some(flow_request::Body::Adjust(AdjustFlow { flow_id, options })) => {
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
struct Options {
|
||||
min_run_interval_secs: u64,
|
||||
max_filter_num_per_query: usize,
|
||||
}
|
||||
let options: Options = serde_json::from_str(&options).with_context(|_| {
|
||||
common_meta::error::DeserializeFromJsonSnafu { input: options }
|
||||
})?;
|
||||
self.batching_engine
|
||||
.adjust_flow(
|
||||
flow_id.unwrap().id as u64,
|
||||
options.min_run_interval_secs,
|
||||
options.max_filter_num_per_query,
|
||||
)
|
||||
.await
|
||||
.map_err(to_meta_err(snafu::location!()))?;
|
||||
Ok(Default::default())
|
||||
}
|
||||
other => common_meta::error::InvalidFlowRequestBodySnafu { body: other }.fail(),
|
||||
}
|
||||
}
|
||||
@@ -841,93 +861,6 @@ fn to_meta_err(
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait::async_trait]
|
||||
impl common_meta::node_manager::Flownode for StreamingEngine {
|
||||
async fn handle(&self, request: FlowRequest) -> MetaResult<FlowResponse> {
|
||||
let query_ctx = request
|
||||
.header
|
||||
.and_then(|h| h.query_context)
|
||||
.map(|ctx| ctx.into());
|
||||
match request.body {
|
||||
Some(flow_request::Body::Create(CreateRequest {
|
||||
flow_id: Some(task_id),
|
||||
source_table_ids,
|
||||
sink_table_name: Some(sink_table_name),
|
||||
create_if_not_exists,
|
||||
expire_after,
|
||||
comment,
|
||||
sql,
|
||||
flow_options,
|
||||
or_replace,
|
||||
})) => {
|
||||
let source_table_ids = source_table_ids.into_iter().map(|id| id.id).collect_vec();
|
||||
let sink_table_name = [
|
||||
sink_table_name.catalog_name,
|
||||
sink_table_name.schema_name,
|
||||
sink_table_name.table_name,
|
||||
];
|
||||
let expire_after = expire_after.map(|e| e.value);
|
||||
let args = CreateFlowArgs {
|
||||
flow_id: task_id.id as u64,
|
||||
sink_table_name,
|
||||
source_table_ids,
|
||||
create_if_not_exists,
|
||||
or_replace,
|
||||
expire_after,
|
||||
comment: Some(comment),
|
||||
sql: sql.clone(),
|
||||
flow_options,
|
||||
query_ctx,
|
||||
};
|
||||
let ret = self
|
||||
.create_flow(args)
|
||||
.await
|
||||
.map_err(BoxedError::new)
|
||||
.with_context(|_| CreateFlowSnafu { sql: sql.clone() })
|
||||
.map_err(to_meta_err(snafu::location!()))?;
|
||||
METRIC_FLOW_TASK_COUNT.inc();
|
||||
Ok(FlowResponse {
|
||||
affected_flows: ret
|
||||
.map(|id| greptime_proto::v1::FlowId { id: id as u32 })
|
||||
.into_iter()
|
||||
.collect_vec(),
|
||||
..Default::default()
|
||||
})
|
||||
}
|
||||
Some(flow_request::Body::Drop(DropRequest {
|
||||
flow_id: Some(flow_id),
|
||||
})) => {
|
||||
self.remove_flow(flow_id.id as u64)
|
||||
.await
|
||||
.map_err(to_meta_err(snafu::location!()))?;
|
||||
METRIC_FLOW_TASK_COUNT.dec();
|
||||
Ok(Default::default())
|
||||
}
|
||||
Some(flow_request::Body::Flush(FlushFlow {
|
||||
flow_id: Some(flow_id),
|
||||
})) => {
|
||||
let row = self
|
||||
.flush_flow_inner(flow_id.id as u64)
|
||||
.await
|
||||
.map_err(to_meta_err(snafu::location!()))?;
|
||||
Ok(FlowResponse {
|
||||
affected_flows: vec![flow_id],
|
||||
affected_rows: row as u64,
|
||||
..Default::default()
|
||||
})
|
||||
}
|
||||
other => common_meta::error::InvalidFlowRequestBodySnafu { body: other }.fail(),
|
||||
}
|
||||
}
|
||||
|
||||
async fn handle_inserts(&self, request: InsertRequests) -> MetaResult<FlowResponse> {
|
||||
self.handle_inserts_inner(request)
|
||||
.await
|
||||
.map(|_| Default::default())
|
||||
.map_err(to_meta_err(snafu::location!()))
|
||||
}
|
||||
}
|
||||
|
||||
impl FlowEngine for StreamingEngine {
|
||||
async fn create_flow(&self, args: CreateFlowArgs) -> Result<Option<FlowId>, Error> {
|
||||
self.create_flow_inner(args).await
|
||||
|
||||
@@ -388,6 +388,20 @@ impl BatchingEngine {
|
||||
pub async fn flow_exist_inner(&self, flow_id: FlowId) -> bool {
|
||||
self.tasks.read().await.contains_key(&flow_id)
|
||||
}
|
||||
|
||||
pub async fn adjust_flow(
|
||||
&self,
|
||||
flow_id: FlowId,
|
||||
min_run_interval_secs: u64,
|
||||
max_filter_num_per_query: usize,
|
||||
) -> Result<(), Error> {
|
||||
let task = self.tasks.read().await.get(&flow_id).cloned();
|
||||
let task = task.with_context(|| FlowNotFoundSnafu { id: flow_id })?;
|
||||
debug!("Adjusting flow {flow_id} with min_run_interval_secs={} and max_filter_num_per_query={}", min_run_interval_secs, max_filter_num_per_query);
|
||||
task.adjust(min_run_interval_secs, max_filter_num_per_query);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
impl FlowEngine for BatchingEngine {
|
||||
|
||||
@@ -14,8 +14,9 @@
|
||||
|
||||
//! Frontend client to run flow as batching task which is time-window-aware normal query triggered every tick set by user
|
||||
|
||||
use std::sync::{Arc, Weak};
|
||||
use std::time::SystemTime;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::{Arc, Mutex, Weak};
|
||||
use std::time::{Duration, Instant, SystemTime};
|
||||
|
||||
use api::v1::greptime_request::Request;
|
||||
use api::v1::CreateTableExpr;
|
||||
@@ -26,20 +27,21 @@ use common_meta::cluster::{NodeInfo, NodeInfoKey, Role};
|
||||
use common_meta::peer::Peer;
|
||||
use common_meta::rpc::store::RangeRequest;
|
||||
use common_query::Output;
|
||||
use common_telemetry::warn;
|
||||
use common_telemetry::{debug, warn};
|
||||
use itertools::Itertools;
|
||||
use meta_client::client::MetaClient;
|
||||
use rand::rng;
|
||||
use rand::seq::SliceRandom;
|
||||
use servers::query_handler::grpc::GrpcQueryHandler;
|
||||
use session::context::{QueryContextBuilder, QueryContextRef};
|
||||
use snafu::{OptionExt, ResultExt};
|
||||
|
||||
use crate::batching_mode::task::BatchingTask;
|
||||
use crate::batching_mode::{
|
||||
DEFAULT_BATCHING_ENGINE_QUERY_TIMEOUT, FRONTEND_ACTIVITY_TIMEOUT, GRPC_CONN_TIMEOUT,
|
||||
GRPC_MAX_RETRIES,
|
||||
};
|
||||
use crate::error::{ExternalSnafu, InvalidRequestSnafu, NoAvailableFrontendSnafu, UnexpectedSnafu};
|
||||
use crate::{Error, FlowAuthHeader};
|
||||
use crate::metrics::METRIC_FLOW_BATCHING_ENGINE_GUESS_FE_LOAD;
|
||||
use crate::{Error, FlowAuthHeader, FlowId};
|
||||
|
||||
/// Just like [`GrpcQueryHandler`] but use BoxedError
|
||||
///
|
||||
@@ -74,6 +76,105 @@ impl<
|
||||
|
||||
type HandlerMutable = Arc<std::sync::Mutex<Option<Weak<dyn GrpcQueryHandlerWithBoxedError>>>>;
|
||||
|
||||
/// Statistics about running query on this frontend from flownode
|
||||
#[derive(Debug, Default, Clone)]
|
||||
struct FrontendStat {
|
||||
/// The query for flow id has been running since this timestamp
|
||||
since: HashMap<FlowId, Instant>,
|
||||
/// The average query time for each flow id
|
||||
/// This is used to calculate the average query time for each flow id
|
||||
past_query_avg: HashMap<FlowId, (usize, Duration)>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, Clone)]
|
||||
pub struct FrontendStats {
|
||||
/// The statistics for each flow id
|
||||
stats: Arc<Mutex<HashMap<String, FrontendStat>>>,
|
||||
}
|
||||
|
||||
impl FrontendStats {
|
||||
pub fn observe(&self, frontend_addr: &str, flow_id: FlowId) -> FrontendStatsGuard {
|
||||
let mut stats = self.stats.lock().expect("Failed to lock frontend stats");
|
||||
let stat = stats.entry(frontend_addr.to_string()).or_default();
|
||||
stat.since.insert(flow_id, Instant::now());
|
||||
|
||||
FrontendStatsGuard {
|
||||
stats: self.stats.clone(),
|
||||
frontend_addr: frontend_addr.to_string(),
|
||||
cur: flow_id,
|
||||
}
|
||||
}
|
||||
|
||||
/// return frontend addrs sorted by load, from lightest to heaviest
|
||||
/// The load is calculated as the total average query time for each flow id plus running query's total running time elapsed
|
||||
pub fn sort_by_load(&self) -> Vec<String> {
|
||||
let stats = self.stats.lock().expect("Failed to lock frontend stats");
|
||||
let fe_load_factor = stats
|
||||
.iter()
|
||||
.map(|(node_addr, stat)| {
|
||||
// total expected avg running time for all currently running queries
|
||||
let total_expect_avg_run_time = stat
|
||||
.since
|
||||
.keys()
|
||||
.map(|f| {
|
||||
let (count, total_duration) =
|
||||
stat.past_query_avg.get(f).unwrap_or(&(0, Duration::ZERO));
|
||||
if *count == 0 {
|
||||
0.0
|
||||
} else {
|
||||
total_duration.as_secs_f64() / *count as f64
|
||||
}
|
||||
})
|
||||
.sum::<f64>();
|
||||
let total_cur_running_time = stat
|
||||
.since
|
||||
.values()
|
||||
.map(|since| since.elapsed().as_secs_f64())
|
||||
.sum::<f64>();
|
||||
(
|
||||
node_addr.to_string(),
|
||||
total_expect_avg_run_time + total_cur_running_time,
|
||||
)
|
||||
})
|
||||
.sorted_by(|(_, load_a), (_, load_b)| {
|
||||
load_a
|
||||
.partial_cmp(load_b)
|
||||
.unwrap_or(std::cmp::Ordering::Equal)
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
debug!("Frontend load factor: {:?}", fe_load_factor);
|
||||
for (node_addr, load) in &fe_load_factor {
|
||||
METRIC_FLOW_BATCHING_ENGINE_GUESS_FE_LOAD
|
||||
.with_label_values(&[&node_addr.to_string()])
|
||||
.observe(*load);
|
||||
}
|
||||
fe_load_factor
|
||||
.into_iter()
|
||||
.map(|(addr, _)| addr)
|
||||
.collect::<Vec<_>>()
|
||||
}
|
||||
}
|
||||
|
||||
pub struct FrontendStatsGuard {
|
||||
stats: Arc<Mutex<HashMap<String, FrontendStat>>>,
|
||||
frontend_addr: String,
|
||||
cur: FlowId,
|
||||
}
|
||||
|
||||
impl Drop for FrontendStatsGuard {
|
||||
fn drop(&mut self) {
|
||||
let mut stats = self.stats.lock().expect("Failed to lock frontend stats");
|
||||
if let Some(stat) = stats.get_mut(&self.frontend_addr) {
|
||||
if let Some(since) = stat.since.remove(&self.cur) {
|
||||
let elapsed = since.elapsed();
|
||||
let (count, total_duration) = stat.past_query_avg.entry(self.cur).or_default();
|
||||
*count += 1;
|
||||
*total_duration += elapsed;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// A simple frontend client able to execute sql using grpc protocol
|
||||
///
|
||||
/// This is for computation-heavy query which need to offload computation to frontend, lifting the load from flownode
|
||||
@@ -83,6 +184,7 @@ pub enum FrontendClient {
|
||||
meta_client: Arc<MetaClient>,
|
||||
chnl_mgr: ChannelManager,
|
||||
auth: Option<FlowAuthHeader>,
|
||||
fe_stats: FrontendStats,
|
||||
},
|
||||
Standalone {
|
||||
/// for the sake of simplicity still use grpc even in standalone mode
|
||||
@@ -114,6 +216,7 @@ impl FrontendClient {
|
||||
ChannelManager::with_config(cfg)
|
||||
},
|
||||
auth,
|
||||
fe_stats: Default::default(),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -192,6 +295,7 @@ impl FrontendClient {
|
||||
meta_client: _,
|
||||
chnl_mgr,
|
||||
auth,
|
||||
fe_stats,
|
||||
} = self
|
||||
else {
|
||||
return UnexpectedSnafu {
|
||||
@@ -208,8 +312,21 @@ impl FrontendClient {
|
||||
.duration_since(SystemTime::UNIX_EPOCH)
|
||||
.unwrap()
|
||||
.as_millis() as i64;
|
||||
// shuffle the frontends to avoid always pick the same one
|
||||
frontends.shuffle(&mut rng());
|
||||
let node_addrs_by_load = fe_stats.sort_by_load();
|
||||
// index+1 to load order asc, so that the lightest node has load 1 and non-existent node has load 0
|
||||
let addr2load = node_addrs_by_load
|
||||
.iter()
|
||||
.enumerate()
|
||||
.map(|(i, id)| (id.clone(), i + 1))
|
||||
.collect::<HashMap<_, _>>();
|
||||
// sort frontends by load, from lightest to heaviest
|
||||
frontends.sort_by(|(_, a), (_, b)| {
|
||||
// if not even in stats, treat as 0 load since never been queried
|
||||
let load_a = addr2load.get(&a.peer.addr).unwrap_or(&0);
|
||||
let load_b = addr2load.get(&b.peer.addr).unwrap_or(&0);
|
||||
load_a.cmp(load_b)
|
||||
});
|
||||
debug!("Frontend nodes sorted by load: {:?}", frontends);
|
||||
|
||||
// found node with maximum last_activity_ts
|
||||
for (_, node_info) in frontends
|
||||
@@ -257,6 +374,7 @@ impl FrontendClient {
|
||||
create: CreateTableExpr,
|
||||
catalog: &str,
|
||||
schema: &str,
|
||||
task: Option<&BatchingTask>,
|
||||
) -> Result<u32, Error> {
|
||||
self.handle(
|
||||
Request::Ddl(api::v1::DdlRequest {
|
||||
@@ -265,6 +383,7 @@ impl FrontendClient {
|
||||
catalog,
|
||||
schema,
|
||||
&mut None,
|
||||
task,
|
||||
)
|
||||
.await
|
||||
}
|
||||
@@ -276,15 +395,19 @@ impl FrontendClient {
|
||||
catalog: &str,
|
||||
schema: &str,
|
||||
peer_desc: &mut Option<PeerDesc>,
|
||||
task: Option<&BatchingTask>,
|
||||
) -> Result<u32, Error> {
|
||||
match self {
|
||||
FrontendClient::Distributed { .. } => {
|
||||
FrontendClient::Distributed { fe_stats, .. } => {
|
||||
let db = self.get_random_active_frontend(catalog, schema).await?;
|
||||
|
||||
*peer_desc = Some(PeerDesc::Dist {
|
||||
peer: db.peer.clone(),
|
||||
});
|
||||
|
||||
let flow_id = task.map(|t| t.config.flow_id).unwrap_or_default();
|
||||
let _guard = fe_stats.observe(&db.peer.addr, flow_id);
|
||||
|
||||
db.database
|
||||
.handle_with_retry(req.clone(), GRPC_MAX_RETRIES)
|
||||
.await
|
||||
|
||||
@@ -32,6 +32,7 @@ use crate::batching_mode::MIN_REFRESH_DURATION;
|
||||
use crate::error::{DatatypesSnafu, InternalSnafu, TimeSnafu, UnexpectedSnafu};
|
||||
use crate::metrics::{
|
||||
METRIC_FLOW_BATCHING_ENGINE_QUERY_TIME_RANGE, METRIC_FLOW_BATCHING_ENGINE_QUERY_WINDOW_CNT,
|
||||
METRIC_FLOW_BATCHING_ENGINE_STALLED_QUERY_WINDOW_CNT,
|
||||
};
|
||||
use crate::{Error, FlowId};
|
||||
|
||||
@@ -52,6 +53,11 @@ pub struct TaskState {
|
||||
pub(crate) shutdown_rx: oneshot::Receiver<()>,
|
||||
/// Task handle
|
||||
pub(crate) task_handle: Option<tokio::task::JoinHandle<()>>,
|
||||
|
||||
/// min run interval in seconds
|
||||
pub(crate) min_run_interval: Option<u64>,
|
||||
/// max filter number per query
|
||||
pub(crate) max_filter_num: Option<usize>,
|
||||
}
|
||||
impl TaskState {
|
||||
pub fn new(query_ctx: QueryContextRef, shutdown_rx: oneshot::Receiver<()>) -> Self {
|
||||
@@ -63,6 +69,8 @@ impl TaskState {
|
||||
exec_state: ExecState::Idle,
|
||||
shutdown_rx,
|
||||
task_handle: None,
|
||||
min_run_interval: None,
|
||||
max_filter_num: None,
|
||||
}
|
||||
}
|
||||
|
||||
@@ -87,20 +95,17 @@ impl TaskState {
|
||||
pub fn get_next_start_query_time(
|
||||
&self,
|
||||
flow_id: FlowId,
|
||||
time_window_size: &Option<Duration>,
|
||||
_time_window_size: &Option<Duration>,
|
||||
max_timeout: Option<Duration>,
|
||||
) -> Instant {
|
||||
let last_duration = max_timeout
|
||||
let next_duration = max_timeout
|
||||
.unwrap_or(self.last_query_duration)
|
||||
.min(self.last_query_duration)
|
||||
.max(MIN_REFRESH_DURATION);
|
||||
|
||||
let next_duration = time_window_size
|
||||
.map(|t| {
|
||||
let half = t / 2;
|
||||
half.max(last_duration)
|
||||
})
|
||||
.unwrap_or(last_duration);
|
||||
.max(
|
||||
self.min_run_interval
|
||||
.map(Duration::from_secs)
|
||||
.unwrap_or(MIN_REFRESH_DURATION),
|
||||
);
|
||||
|
||||
// if have dirty time window, execute immediately to clean dirty time window
|
||||
if self.dirty_time_windows.windows.is_empty() {
|
||||
@@ -246,6 +251,10 @@ impl DirtyTimeWindows {
|
||||
.with_label_values(&[flow_id.to_string().as_str()])
|
||||
.observe(first_nth.len() as f64);
|
||||
|
||||
METRIC_FLOW_BATCHING_ENGINE_STALLED_QUERY_WINDOW_CNT
|
||||
.with_label_values(&[flow_id.to_string().as_str()])
|
||||
.observe(self.windows.len() as f64);
|
||||
|
||||
let full_time_range = first_nth
|
||||
.iter()
|
||||
.fold(chrono::Duration::zero(), |acc, (start, end)| {
|
||||
|
||||
@@ -144,6 +144,12 @@ impl BatchingTask {
|
||||
})
|
||||
}
|
||||
|
||||
pub fn adjust(&self, min_run_interval_secs: u64, max_filter_num_per_query: usize) {
|
||||
let mut state = self.state.write().unwrap();
|
||||
state.min_run_interval = Some(min_run_interval_secs);
|
||||
state.max_filter_num = Some(max_filter_num_per_query);
|
||||
}
|
||||
|
||||
/// mark time window range (now - expire_after, now) as dirty (or (0, now) if expire_after not set)
|
||||
///
|
||||
/// useful for flush_flow to flush dirty time windows range
|
||||
@@ -280,7 +286,7 @@ impl BatchingTask {
|
||||
let catalog = &self.config.sink_table_name[0];
|
||||
let schema = &self.config.sink_table_name[1];
|
||||
frontend_client
|
||||
.create(expr.clone(), catalog, schema)
|
||||
.create(expr.clone(), catalog, schema, Some(self))
|
||||
.await?;
|
||||
Ok(())
|
||||
}
|
||||
@@ -361,7 +367,7 @@ impl BatchingTask {
|
||||
};
|
||||
|
||||
frontend_client
|
||||
.handle(req, catalog, schema, &mut peer_desc)
|
||||
.handle(req, catalog, schema, &mut peer_desc, Some(self))
|
||||
.await
|
||||
};
|
||||
|
||||
@@ -580,19 +586,20 @@ impl BatchingTask {
|
||||
),
|
||||
})?;
|
||||
|
||||
let expr = self
|
||||
.state
|
||||
.write()
|
||||
.unwrap()
|
||||
.dirty_time_windows
|
||||
.gen_filter_exprs(
|
||||
let expr = {
|
||||
let mut state = self.state.write().unwrap();
|
||||
let max_window_cnt = state
|
||||
.max_filter_num
|
||||
.unwrap_or(DirtyTimeWindows::MAX_FILTER_NUM);
|
||||
state.dirty_time_windows.gen_filter_exprs(
|
||||
&col_name,
|
||||
Some(l),
|
||||
window_size,
|
||||
DirtyTimeWindows::MAX_FILTER_NUM,
|
||||
max_window_cnt,
|
||||
self.config.flow_id,
|
||||
Some(self),
|
||||
)?;
|
||||
)?
|
||||
};
|
||||
|
||||
debug!(
|
||||
"Flow id={:?}, Generated filter expr: {:?}",
|
||||
|
||||
@@ -42,6 +42,14 @@ lazy_static! {
|
||||
vec![60., 2. * 60., 3. * 60., 5. * 60., 10. * 60.]
|
||||
)
|
||||
.unwrap();
|
||||
pub static ref METRIC_FLOW_BATCHING_ENGINE_STALLED_QUERY_WINDOW_CNT: HistogramVec =
|
||||
register_histogram_vec!(
|
||||
"greptime_flow_batching_engine_stalled_query_window_cnt",
|
||||
"flow batching engine stalled query time window count",
|
||||
&["flow_id"],
|
||||
vec![0.0, 5., 10., 20., 40.]
|
||||
)
|
||||
.unwrap();
|
||||
pub static ref METRIC_FLOW_BATCHING_ENGINE_QUERY_WINDOW_CNT: HistogramVec =
|
||||
register_histogram_vec!(
|
||||
"greptime_flow_batching_engine_query_window_cnt",
|
||||
@@ -58,6 +66,14 @@ lazy_static! {
|
||||
vec![60., 4. * 60., 16. * 60., 64. * 60., 256. * 60.]
|
||||
)
|
||||
.unwrap();
|
||||
pub static ref METRIC_FLOW_BATCHING_ENGINE_GUESS_FE_LOAD: HistogramVec =
|
||||
register_histogram_vec!(
|
||||
"greptime_flow_batching_engine_guess_fe_load",
|
||||
"flow batching engine guessed frontend load",
|
||||
&["fe_addr"],
|
||||
vec![60., 4. * 60., 16. * 60., 64. * 60., 256. * 60.]
|
||||
)
|
||||
.unwrap();
|
||||
pub static ref METRIC_FLOW_RUN_INTERVAL_MS: IntGauge =
|
||||
register_int_gauge!("greptime_flow_run_interval_ms", "flow run interval in ms").unwrap();
|
||||
pub static ref METRIC_FLOW_ROWS: IntCounterVec = register_int_counter_vec!(
|
||||
|
||||
@@ -12,7 +12,7 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use api::v1::flow::FlowRequestHeader;
|
||||
use api::v1::flow::{AdjustFlow, FlowRequestHeader};
|
||||
use async_trait::async_trait;
|
||||
use common_error::ext::BoxedError;
|
||||
use common_function::handlers::FlowServiceHandler;
|
||||
@@ -22,6 +22,7 @@ use common_query::error::Result;
|
||||
use common_telemetry::tracing_context::TracingContext;
|
||||
use futures::stream::FuturesUnordered;
|
||||
use futures::StreamExt;
|
||||
use serde_json::json;
|
||||
use session::context::QueryContextRef;
|
||||
use snafu::{OptionExt, ResultExt};
|
||||
|
||||
@@ -57,9 +58,96 @@ impl FlowServiceHandler for FlowServiceOperator {
|
||||
) -> Result<api::v1::flow::FlowResponse> {
|
||||
self.flush_inner(catalog, flow, ctx).await
|
||||
}
|
||||
|
||||
async fn adjust(
|
||||
&self,
|
||||
catalog: &str,
|
||||
flow: &str,
|
||||
min_run_interval_secs: u64,
|
||||
max_filter_num_per_query: usize,
|
||||
ctx: QueryContextRef,
|
||||
) -> Result<api::v1::flow::FlowResponse> {
|
||||
self.adjust_inner(
|
||||
catalog,
|
||||
flow,
|
||||
min_run_interval_secs,
|
||||
max_filter_num_per_query,
|
||||
ctx,
|
||||
)
|
||||
.await
|
||||
}
|
||||
}
|
||||
|
||||
impl FlowServiceOperator {
|
||||
async fn adjust_inner(
|
||||
&self,
|
||||
catalog: &str,
|
||||
flow: &str,
|
||||
min_run_interval_secs: u64,
|
||||
max_filter_num_per_query: usize,
|
||||
ctx: QueryContextRef,
|
||||
) -> Result<api::v1::flow::FlowResponse> {
|
||||
let id = self
|
||||
.flow_metadata_manager
|
||||
.flow_name_manager()
|
||||
.get(catalog, flow)
|
||||
.await
|
||||
.map_err(BoxedError::new)
|
||||
.context(common_query::error::ExecuteSnafu)?
|
||||
.context(common_meta::error::FlowNotFoundSnafu {
|
||||
flow_name: format!("{}.{}", catalog, flow),
|
||||
})
|
||||
.map_err(BoxedError::new)
|
||||
.context(common_query::error::ExecuteSnafu)?
|
||||
.flow_id();
|
||||
|
||||
let all_flownode_peers = self
|
||||
.flow_metadata_manager
|
||||
.flow_route_manager()
|
||||
.routes(id)
|
||||
.await
|
||||
.map_err(BoxedError::new)
|
||||
.context(common_query::error::ExecuteSnafu)?;
|
||||
|
||||
// order of flownodes doesn't matter here
|
||||
let all_flow_nodes = FuturesUnordered::from_iter(
|
||||
all_flownode_peers
|
||||
.iter()
|
||||
.map(|(_key, peer)| self.node_manager.flownode(peer.peer())),
|
||||
)
|
||||
.collect::<Vec<_>>()
|
||||
.await;
|
||||
|
||||
// TODO(discord9): use proper type for flow options
|
||||
let options = json!({
|
||||
"min_run_interval_secs": min_run_interval_secs,
|
||||
"max_filter_num_per_query": max_filter_num_per_query,
|
||||
});
|
||||
|
||||
for node in all_flow_nodes {
|
||||
let _res = {
|
||||
use api::v1::flow::{flow_request, FlowRequest};
|
||||
let flush_req = FlowRequest {
|
||||
header: Some(FlowRequestHeader {
|
||||
tracing_context: TracingContext::from_current_span().to_w3c(),
|
||||
query_context: Some(
|
||||
common_meta::rpc::ddl::QueryContext::from(ctx.clone()).into(),
|
||||
),
|
||||
}),
|
||||
body: Some(flow_request::Body::Adjust(AdjustFlow {
|
||||
flow_id: Some(api::v1::FlowId { id }),
|
||||
options: options.to_string(),
|
||||
})),
|
||||
};
|
||||
node.handle(flush_req)
|
||||
.await
|
||||
.map_err(BoxedError::new)
|
||||
.context(common_query::error::ExecuteSnafu)?
|
||||
};
|
||||
}
|
||||
Ok(Default::default())
|
||||
}
|
||||
|
||||
/// Flush the flownodes according to the flow id.
|
||||
async fn flush_inner(
|
||||
&self,
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
use std::collections::HashSet;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common_telemetry::debug;
|
||||
use datafusion::datasource::DefaultTableSource;
|
||||
use datafusion::error::Result as DfResult;
|
||||
use datafusion_common::config::ConfigOptions;
|
||||
@@ -154,6 +155,7 @@ struct PlanRewriter {
|
||||
/// Partition columns of the table in current pass
|
||||
partition_cols: Option<Vec<String>>,
|
||||
column_requirements: HashSet<Column>,
|
||||
expand_on_next_call: bool,
|
||||
}
|
||||
|
||||
impl PlanRewriter {
|
||||
@@ -174,6 +176,10 @@ impl PlanRewriter {
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if self.expand_on_next_call {
|
||||
self.expand_on_next_call = false;
|
||||
return true;
|
||||
}
|
||||
match Categorizer::check_plan(plan, self.partition_cols.clone()) {
|
||||
Commutativity::Commutative => {}
|
||||
Commutativity::PartialCommutative => {
|
||||
@@ -190,12 +196,17 @@ impl PlanRewriter {
|
||||
self.stage.push(plan)
|
||||
}
|
||||
}
|
||||
Commutativity::TransformedCommutative(transformer) => {
|
||||
Commutativity::TransformedCommutative {
|
||||
transformer,
|
||||
expand_on_parent,
|
||||
} => {
|
||||
if let Some(transformer) = transformer
|
||||
&& let Some(plan) = transformer(plan)
|
||||
&& let Some(changed_plan) = transformer(plan)
|
||||
{
|
||||
self.update_column_requirements(&plan);
|
||||
self.stage.push(plan)
|
||||
debug!("PlanRewriter: transformed plan: {changed_plan} from {plan}");
|
||||
self.update_column_requirements(&changed_plan);
|
||||
self.stage.push(changed_plan);
|
||||
self.expand_on_next_call = expand_on_parent;
|
||||
}
|
||||
}
|
||||
Commutativity::NonCommutative
|
||||
@@ -391,10 +402,21 @@ impl TreeNodeRewriter for PlanRewriter {
|
||||
return Ok(Transformed::yes(node));
|
||||
};
|
||||
|
||||
let parent = parent.clone();
|
||||
|
||||
// TODO(ruihang): avoid this clone
|
||||
if self.should_expand(&parent.clone()) {
|
||||
if self.should_expand(&parent) {
|
||||
// TODO(ruihang): does this work for nodes with multiple children?;
|
||||
let node = self.expand(node)?;
|
||||
debug!("PlanRewriter: should expand child:\n {node}\n Of Parent: {parent}");
|
||||
let node = self.expand(node);
|
||||
debug!(
|
||||
"PlanRewriter: expanded plan: {}",
|
||||
match &node {
|
||||
Ok(n) => n.to_string(),
|
||||
Err(e) => format!("Error expanding plan: {e}"),
|
||||
}
|
||||
);
|
||||
let node = node?;
|
||||
self.pop_stack();
|
||||
return Ok(Transformed::yes(node));
|
||||
}
|
||||
|
||||
@@ -15,6 +15,9 @@
|
||||
use std::collections::HashSet;
|
||||
use std::sync::Arc;
|
||||
|
||||
use common_function::aggr::{HllState, UddSketchState, HLL_NAME, UDDSKETCH_STATE_NAME};
|
||||
use common_telemetry::debug;
|
||||
use datafusion::functions_aggregate::sum::sum_udaf;
|
||||
use datafusion_expr::{Expr, LogicalPlan, UserDefinedLogicalNode};
|
||||
use promql::extension_plan::{
|
||||
EmptyMetric, InstantManipulate, RangeManipulate, SeriesDivide, SeriesNormalize,
|
||||
@@ -23,12 +26,157 @@ use promql::extension_plan::{
|
||||
use crate::dist_plan::merge_sort::{merge_sort_transformer, MergeSortLogicalPlan};
|
||||
use crate::dist_plan::MergeScanLogicalPlan;
|
||||
|
||||
/// generate the upper aggregation plan that will execute on the frontend.
|
||||
pub fn step_aggr_to_upper_aggr(aggr_plan: &LogicalPlan) -> datafusion_common::Result<LogicalPlan> {
|
||||
let LogicalPlan::Aggregate(aggr) = aggr_plan else {
|
||||
return Err(datafusion_common::DataFusionError::Plan(
|
||||
"step_aggr_to_upper_aggr only accepts Aggregate plan".to_string(),
|
||||
));
|
||||
};
|
||||
if !is_all_aggr_exprs_steppable(&aggr.aggr_expr) {
|
||||
return Err(datafusion_common::DataFusionError::NotImplemented(
|
||||
"Some aggregate expressions are not steppable".to_string(),
|
||||
));
|
||||
}
|
||||
let mut upper_aggr_expr = vec![];
|
||||
for aggr_expr in &aggr.aggr_expr {
|
||||
let Some(aggr_func) = get_aggr_func(aggr_expr) else {
|
||||
return Err(datafusion_common::DataFusionError::NotImplemented(
|
||||
"Aggregate function not found".to_string(),
|
||||
));
|
||||
};
|
||||
let col_name = aggr_expr.name_for_alias()?;
|
||||
let input_column =
|
||||
Expr::Column(datafusion_common::Column::new_unqualified(col_name.clone()));
|
||||
let upper_func = match aggr_func.func.name() {
|
||||
"sum" | "min" | "max" | "last_value" | "first_value" => {
|
||||
// aggr_calc(aggr_merge(input_column))) as col_name
|
||||
let mut new_aggr_func = aggr_func.clone();
|
||||
new_aggr_func.args = vec![input_column.clone()];
|
||||
new_aggr_func
|
||||
}
|
||||
"count" => {
|
||||
// sum(input_column) as col_name
|
||||
let mut new_aggr_func = aggr_func.clone();
|
||||
new_aggr_func.func = sum_udaf();
|
||||
new_aggr_func.args = vec![input_column.clone()];
|
||||
new_aggr_func
|
||||
}
|
||||
UDDSKETCH_STATE_NAME => {
|
||||
// udd_merge(bucket_size, error_rate input_column) as col_name
|
||||
let mut new_aggr_func = aggr_func.clone();
|
||||
new_aggr_func.func = Arc::new(UddSketchState::merge_udf_impl());
|
||||
new_aggr_func.args[2] = input_column.clone();
|
||||
new_aggr_func
|
||||
}
|
||||
HLL_NAME => {
|
||||
// hll_merge(input_column) as col_name
|
||||
let mut new_aggr_func = aggr_func.clone();
|
||||
new_aggr_func.func = Arc::new(HllState::merge_udf_impl());
|
||||
new_aggr_func.args = vec![input_column.clone()];
|
||||
new_aggr_func
|
||||
}
|
||||
_ => {
|
||||
return Err(datafusion_common::DataFusionError::NotImplemented(format!(
|
||||
"Aggregate function {} is not supported for Step aggregation",
|
||||
aggr_func.func.name()
|
||||
)))
|
||||
}
|
||||
};
|
||||
|
||||
// deal with nested alias case
|
||||
let mut new_aggr_expr = aggr_expr.clone();
|
||||
{
|
||||
let new_aggr_func = get_aggr_func_mut(&mut new_aggr_expr).unwrap();
|
||||
*new_aggr_func = upper_func;
|
||||
}
|
||||
|
||||
// make the column name the same, so parent can recognize it
|
||||
upper_aggr_expr.push(new_aggr_expr.alias(col_name));
|
||||
}
|
||||
let mut new_aggr = aggr.clone();
|
||||
new_aggr.aggr_expr = upper_aggr_expr;
|
||||
// group by expr also need alias to avoid duplicated computing
|
||||
|
||||
let mut new_group_expr = new_aggr.group_expr.clone();
|
||||
for expr in &mut new_group_expr {
|
||||
if let Expr::Column(_) = expr {
|
||||
// already a column, no need to change
|
||||
continue;
|
||||
}
|
||||
let col_name = expr.name_for_alias()?;
|
||||
let input_column =
|
||||
Expr::Column(datafusion_common::Column::new_unqualified(col_name.clone()));
|
||||
*expr = input_column.alias(col_name);
|
||||
}
|
||||
new_aggr.group_expr = new_group_expr;
|
||||
// return the new logical plan
|
||||
Ok(LogicalPlan::Aggregate(new_aggr))
|
||||
}
|
||||
|
||||
/// Check if the given aggregate expression is steppable.
|
||||
/// As in if it can be split into multiple steps:
|
||||
/// i.e. on datanode first call `state(input)` then
|
||||
/// on frontend call `calc(merge(state))` to get the final result.
|
||||
///
|
||||
pub fn is_all_aggr_exprs_steppable(aggr_exprs: &[Expr]) -> bool {
|
||||
let step_action = HashSet::from([
|
||||
"sum",
|
||||
"count",
|
||||
"min",
|
||||
"max",
|
||||
"first_value",
|
||||
"last_value",
|
||||
UDDSKETCH_STATE_NAME,
|
||||
HLL_NAME,
|
||||
]);
|
||||
aggr_exprs.iter().all(|expr| {
|
||||
if let Some(aggr_func) = get_aggr_func(expr) {
|
||||
if aggr_func.distinct {
|
||||
// Distinct aggregate functions are not steppable(yet).
|
||||
return false;
|
||||
}
|
||||
step_action.contains(aggr_func.func.name())
|
||||
} else {
|
||||
false
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
pub fn get_aggr_func(expr: &Expr) -> Option<&datafusion_expr::expr::AggregateFunction> {
|
||||
let mut expr_ref = expr;
|
||||
while let Expr::Alias(alias) = expr_ref {
|
||||
expr_ref = &alias.expr;
|
||||
}
|
||||
if let Expr::AggregateFunction(aggr_func) = expr_ref {
|
||||
Some(aggr_func)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
pub fn get_aggr_func_mut(expr: &mut Expr) -> Option<&mut datafusion_expr::expr::AggregateFunction> {
|
||||
let mut expr_ref = expr;
|
||||
while let Expr::Alias(alias) = expr_ref {
|
||||
expr_ref = &mut alias.expr;
|
||||
}
|
||||
if let Expr::AggregateFunction(aggr_func) = expr_ref {
|
||||
Some(aggr_func)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub enum Commutativity {
|
||||
Commutative,
|
||||
PartialCommutative,
|
||||
ConditionalCommutative(Option<Transformer>),
|
||||
TransformedCommutative(Option<Transformer>),
|
||||
TransformedCommutative {
|
||||
transformer: Option<Transformer>,
|
||||
/// whether the transformer changes the child to parent
|
||||
expand_on_parent: bool,
|
||||
},
|
||||
NonCommutative,
|
||||
Unimplemented,
|
||||
/// For unrelated plans like DDL
|
||||
@@ -55,7 +203,18 @@ impl Categorizer {
|
||||
LogicalPlan::Filter(filter) => Self::check_expr(&filter.predicate),
|
||||
LogicalPlan::Window(_) => Commutativity::Unimplemented,
|
||||
LogicalPlan::Aggregate(aggr) => {
|
||||
if !Self::check_partition(&aggr.group_expr, &partition_cols) {
|
||||
let is_all_steppable = is_all_aggr_exprs_steppable(&aggr.aggr_expr);
|
||||
let is_partition = Self::check_partition(&aggr.group_expr, &partition_cols);
|
||||
if !is_partition && is_all_steppable {
|
||||
debug!("Plan is steppable: {plan}");
|
||||
return Commutativity::TransformedCommutative {
|
||||
transformer: Some(Arc::new(|plan: &LogicalPlan| {
|
||||
step_aggr_to_upper_aggr(plan).ok()
|
||||
})),
|
||||
expand_on_parent: true,
|
||||
};
|
||||
}
|
||||
if !is_partition {
|
||||
return Commutativity::NonCommutative;
|
||||
}
|
||||
for expr in &aggr.aggr_expr {
|
||||
|
||||
409
tests/cases/distributed/explain/step_aggr.result
Normal file
409
tests/cases/distributed/explain/step_aggr.result
Normal file
@@ -0,0 +1,409 @@
|
||||
CREATE TABLE integers(
|
||||
host STRING,
|
||||
i BIGINT,
|
||||
ts TIMESTAMP TIME INDEX
|
||||
) PARTITION ON COLUMNS (host) (
|
||||
host < '550-A',
|
||||
host >= '550-A'
|
||||
AND host < '550-W',
|
||||
host >= '550-W'
|
||||
);
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
INSERT INTO integers (host, i, ts) VALUES
|
||||
('550-A', 1, '2023-01-01 00:00:00'),
|
||||
('550-A', 2, '2023-01-01 01:00:00'),
|
||||
('550-W', 3, '2023-01-01 02:00:00'),
|
||||
('550-W', 4, '2023-01-01 03:00:00');
|
||||
|
||||
Affected Rows: 4
|
||||
|
||||
-- count
|
||||
EXPLAIN SELECT
|
||||
count(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[sum(count(integers.i)) AS count(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[count(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[count(integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[count(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[sum(count(integers.i)) AS count(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[count(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[count(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[count(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: count(integers.i) |
|
||||
| | Aggregate: groupBy=[[integers.ts]], aggr=[[sum(count(integers.i)) AS count(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[count(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | ProjectionExec: expr=[count(integers.i)@1 as count(integers.i)] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[count(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[count(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- sum
|
||||
EXPLAIN SELECT
|
||||
sum(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[sum(sum(integers.i)) AS sum(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[sum(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[sum(integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[sum(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
sum(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[sum(sum(integers.i)) AS sum(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[sum(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[sum(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[sum(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
sum(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: sum(integers.i) |
|
||||
| | Aggregate: groupBy=[[integers.ts]], aggr=[[sum(sum(integers.i)) AS sum(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[sum(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | ProjectionExec: expr=[sum(integers.i)@1 as sum(integers.i)] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[sum(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[sum(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- min
|
||||
EXPLAIN SELECT
|
||||
min(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[min(min(integers.i)) AS min(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[min(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[min(integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[min(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
min(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[min(min(integers.i)) AS min(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[min(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[min(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[min(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
min(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: min(integers.i) |
|
||||
| | Aggregate: groupBy=[[integers.ts]], aggr=[[min(min(integers.i)) AS min(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[min(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | ProjectionExec: expr=[min(integers.i)@1 as min(integers.i)] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[min(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[min(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- max
|
||||
EXPLAIN SELECT
|
||||
max(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[max(max(integers.i)) AS max(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[max(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[max(integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[max(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
max(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[max(max(integers.i)) AS max(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[max(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[max(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[max(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
max(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: max(integers.i) |
|
||||
| | Aggregate: groupBy=[[integers.ts]], aggr=[[max(max(integers.i)) AS max(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[max(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | ProjectionExec: expr=[max(integers.i)@1 as max(integers.i)] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[max(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[max(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- uddsketch_state
|
||||
EXPLAIN SELECT
|
||||
uddsketch_state(128, 0.01, i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[uddsketch_merge(Int64(128), Float64(0.01), uddsketch_state(Int64(128),Float64(0.01),integers.i)) AS uddsketch_state(Int64(128),Float64(0.01),integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[uddsketch_state(Int64(128), Float64(0.01), CAST(integers.i AS Float64))]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
uddsketch_state(128, 0.01, i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[uddsketch_merge(Int64(128), Float64(0.01), uddsketch_state(Int64(128),Float64(0.01),integers.i)) AS uddsketch_state(Int64(128),Float64(0.01),integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[uddsketch_state(Int64(128), Float64(0.01), CAST(integers.i AS Float64))]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
uddsketch_state(128, 0.01, i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: uddsketch_state(Int64(128),Float64(0.01),integers.i) |
|
||||
| | Aggregate: groupBy=[[integers.ts]], aggr=[[uddsketch_merge(Int64(128), Float64(0.01), uddsketch_state(Int64(128),Float64(0.01),integers.i)) AS uddsketch_state(Int64(128),Float64(0.01),integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[uddsketch_state(Int64(128), Float64(0.01), CAST(integers.i AS Float64))]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | ProjectionExec: expr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)@1 as uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[uddsketch_state(Int64(128),Float64(0.01),integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
-- hll
|
||||
EXPLAIN SELECT
|
||||
hll(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+----------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+----------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[hll_merge(hll(integers.i)) AS hll(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[hll(CAST(integers.i AS Utf8))]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[hll(integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[hll(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+----------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
hll(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[hll_merge(hll(integers.i)) AS hll(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[hll(CAST(integers.i AS Utf8))]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[hll(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[hll(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
hll(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Projection: hll(integers.i) |
|
||||
| | Aggregate: groupBy=[[integers.ts]], aggr=[[hll_merge(hll(integers.i)) AS hll(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[hll(CAST(integers.i AS Utf8))]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | ProjectionExec: expr=[hll(integers.i)@1 as hll(integers.i)] |
|
||||
| | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[hll(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[hll(integers.i)] |
|
||||
| | MergeScanExec: peers=[4402341478400(1025, 0), 4402341478401(1025, 1), 4402341478402(1025, 2), ] |
|
||||
| | |
|
||||
+---------------+-----------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
DROP TABLE integers;
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
144
tests/cases/distributed/explain/step_aggr.sql
Normal file
144
tests/cases/distributed/explain/step_aggr.sql
Normal file
@@ -0,0 +1,144 @@
|
||||
CREATE TABLE integers(
|
||||
host STRING,
|
||||
i BIGINT,
|
||||
ts TIMESTAMP TIME INDEX
|
||||
) PARTITION ON COLUMNS (host) (
|
||||
host < '550-A',
|
||||
host >= '550-A'
|
||||
AND host < '550-W',
|
||||
host >= '550-W'
|
||||
);
|
||||
|
||||
INSERT INTO integers (host, i, ts) VALUES
|
||||
('550-A', 1, '2023-01-01 00:00:00'),
|
||||
('550-A', 2, '2023-01-01 01:00:00'),
|
||||
('550-W', 3, '2023-01-01 02:00:00'),
|
||||
('550-W', 4, '2023-01-01 03:00:00');
|
||||
|
||||
-- count
|
||||
EXPLAIN SELECT
|
||||
count(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
-- sum
|
||||
EXPLAIN SELECT
|
||||
sum(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
sum(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
sum(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
-- min
|
||||
EXPLAIN SELECT
|
||||
min(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
min(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
min(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
-- max
|
||||
EXPLAIN SELECT
|
||||
max(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
max(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
max(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
-- uddsketch_state
|
||||
EXPLAIN SELECT
|
||||
uddsketch_state(128, 0.01, i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
uddsketch_state(128, 0.01, i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
uddsketch_state(128, 0.01, i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
-- hll
|
||||
EXPLAIN SELECT
|
||||
hll(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
hll(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
hll(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
DROP TABLE integers;
|
||||
80
tests/cases/distributed/explain/step_aggr_basic.result
Normal file
80
tests/cases/distributed/explain/step_aggr_basic.result
Normal file
@@ -0,0 +1,80 @@
|
||||
CREATE TABLE integers(
|
||||
host STRING,
|
||||
i BIGINT,
|
||||
ts TIMESTAMP TIME INDEX
|
||||
) PARTITION ON COLUMNS (host) (
|
||||
host < '550-A',
|
||||
host >= '550-A'
|
||||
AND host < '550-W',
|
||||
host >= '550-W'
|
||||
);
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
-- count
|
||||
EXPLAIN SELECT
|
||||
count(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[]], aggr=[[sum(count(integers.i)) AS count(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[]], aggr=[[count(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=Final, gby=[], aggr=[count(integers.i)] |
|
||||
| | CoalescePartitionsExec |
|
||||
| | AggregateExec: mode=Partial, gby=[], aggr=[count(integers.i)] |
|
||||
| | MergeScanExec: peers=[4398046511104(1024, 0), 4398046511105(1024, 1), 4398046511106(1024, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[integers.ts]], aggr=[[sum(count(integers.i)) AS count(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[integers.ts]], aggr=[[count(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[ts@0 as ts], aggr=[count(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([ts@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[ts@0 as ts], aggr=[count(integers.i)] |
|
||||
| | MergeScanExec: peers=[4398046511104(1024, 0), 4398046511105(1024, 1), 4398046511106(1024, 2), ] |
|
||||
| | |
|
||||
+---------------+---------------------------------------------------------------------------------------------------------+
|
||||
|
||||
EXPLAIN SELECT
|
||||
date_bin('1 hour'::INTERVAL, ts),
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
date_bin('1 hour'::INTERVAL, ts);
|
||||
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| plan_type | plan |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
| logical_plan | Aggregate: groupBy=[[date_bin(Utf8("1 hour"),integers.ts) AS date_bin(Utf8("1 hour"),integers.ts)]], aggr=[[sum(count(integers.i)) AS count(integers.i)]] |
|
||||
| | MergeScan [is_placeholder=false, input=Aggregate: groupBy=[[date_bin(CAST(Utf8("1 hour") AS Interval(MonthDayNano)), integers.ts)]], aggr=[[count(integers.i)]] |
|
||||
| | TableScan: integers] |
|
||||
| physical_plan | AggregateExec: mode=FinalPartitioned, gby=[date_bin(Utf8("1 hour"),integers.ts)@0 as date_bin(Utf8("1 hour"),integers.ts)], aggr=[count(integers.i)] |
|
||||
| | CoalesceBatchesExec: target_batch_size=8192 |
|
||||
| | RepartitionExec: partitioning=Hash([date_bin(Utf8("1 hour"),integers.ts)@0], 20), input_partitions=20 |
|
||||
| | AggregateExec: mode=Partial, gby=[date_bin(Utf8("1 hour"),integers.ts)@0 as date_bin(Utf8("1 hour"),integers.ts)], aggr=[count(integers.i)] |
|
||||
| | MergeScanExec: peers=[4398046511104(1024, 0), 4398046511105(1024, 1), 4398046511106(1024, 2), ] |
|
||||
| | |
|
||||
+---------------+-------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|
||||
|
||||
DROP TABLE integers;
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
34
tests/cases/distributed/explain/step_aggr_basic.sql
Normal file
34
tests/cases/distributed/explain/step_aggr_basic.sql
Normal file
@@ -0,0 +1,34 @@
|
||||
CREATE TABLE integers(
|
||||
host STRING,
|
||||
i BIGINT,
|
||||
ts TIMESTAMP TIME INDEX
|
||||
) PARTITION ON COLUMNS (host) (
|
||||
host < '550-A',
|
||||
host >= '550-A'
|
||||
AND host < '550-W',
|
||||
host >= '550-W'
|
||||
);
|
||||
|
||||
-- count
|
||||
EXPLAIN SELECT
|
||||
count(i)
|
||||
FROM
|
||||
integers;
|
||||
|
||||
EXPLAIN SELECT
|
||||
ts,
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
ts;
|
||||
|
||||
EXPLAIN SELECT
|
||||
date_bin('1 hour'::INTERVAL, ts),
|
||||
count(i)
|
||||
FROM
|
||||
integers
|
||||
GROUP BY
|
||||
date_bin('1 hour'::INTERVAL, ts);
|
||||
|
||||
DROP TABLE integers;
|
||||
Reference in New Issue
Block a user