Compare commits

..

1 Commits

Author SHA1 Message Date
discord9
b6e7fb5e08 feat: async decode 2025-03-14 13:48:19 +08:00
1313 changed files with 36448 additions and 109081 deletions

15
.coderabbit.yaml Normal file
View File

@@ -0,0 +1,15 @@
# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json
language: "en-US"
early_access: false
reviews:
profile: "chill"
request_changes_workflow: false
high_level_summary: true
poem: true
review_status: true
collapse_walkthrough: false
auto_review:
enabled: false
drafts: false
chat:
auto_reply: true

2
.github/CODEOWNERS vendored
View File

@@ -4,7 +4,7 @@
* @GreptimeTeam/db-approver
## [Module] Database Engine
## [Module] Databse Engine
/src/index @zhongzc
/src/mito2 @evenyag @v0y4g3r @waynexia
/src/query @evenyag

View File

@@ -52,7 +52,7 @@ runs:
uses: ./.github/actions/build-greptime-binary
with:
base-image: ubuntu
features: servers/dashboard
features: servers/dashboard,pg_kvbackend,mysql_kvbackend
cargo-profile: ${{ inputs.cargo-profile }}
artifacts-dir: greptime-linux-${{ inputs.arch }}-${{ inputs.version }}
version: ${{ inputs.version }}
@@ -70,7 +70,7 @@ runs:
if: ${{ inputs.arch == 'amd64' && inputs.dev-mode == 'false' }} # Builds greptime for centos if the host machine is amd64.
with:
base-image: centos
features: servers/dashboard
features: servers/dashboard,pg_kvbackend,mysql_kvbackend
cargo-profile: ${{ inputs.cargo-profile }}
artifacts-dir: greptime-linux-${{ inputs.arch }}-centos-${{ inputs.version }}
version: ${{ inputs.version }}

View File

@@ -47,6 +47,7 @@ runs:
shell: pwsh
run: make test sqlness-test
env:
RUSTUP_WINDOWS_PATH_ADD_BIN: 1 # Workaround for https://github.com/nextest-rs/nextest/issues/1493
RUST_BACKTRACE: 1
SQLNESS_OPTS: "--preserve-state"

View File

@@ -64,11 +64,11 @@ inputs:
upload-max-retry-times:
description: Max retry times for uploading artifacts to S3
required: false
default: "30"
default: "20"
upload-retry-timeout:
description: Timeout for uploading artifacts to S3
required: false
default: "120" # minutes
default: "30" # minutes
runs:
using: composite
steps:

View File

@@ -8,15 +8,15 @@ inputs:
default: 2
description: "Number of Datanode replicas"
meta-replicas:
default: 2
default: 1
description: "Number of Metasrv replicas"
image-registry:
image-registry:
default: "docker.io"
description: "Image registry"
image-repository:
image-repository:
default: "greptime/greptimedb"
description: "Image repository"
image-tag:
image-tag:
default: "latest"
description: 'Image tag'
etcd-endpoints:
@@ -32,12 +32,12 @@ runs:
steps:
- name: Install GreptimeDB operator
uses: nick-fields/retry@v3
with:
with:
timeout_minutes: 3
max_attempts: 3
shell: bash
command: |
helm repo add greptime https://greptimeteam.github.io/helm-charts/
helm repo add greptime https://greptimeteam.github.io/helm-charts/
helm repo update
helm upgrade \
--install \
@@ -48,10 +48,10 @@ runs:
--wait-for-jobs
- name: Install GreptimeDB cluster
shell: bash
run: |
run: |
helm upgrade \
--install my-greptimedb \
--set meta.backendStorage.etcd.endpoints=${{ inputs.etcd-endpoints }} \
--set meta.etcdEndpoints=${{ inputs.etcd-endpoints }} \
--set meta.enableRegionFailover=${{ inputs.enable-region-failover }} \
--set image.registry=${{ inputs.image-registry }} \
--set image.repository=${{ inputs.image-repository }} \
@@ -59,7 +59,7 @@ runs:
--set base.podTemplate.main.resources.requests.cpu=50m \
--set base.podTemplate.main.resources.requests.memory=256Mi \
--set base.podTemplate.main.resources.limits.cpu=2000m \
--set base.podTemplate.main.resources.limits.memory=3Gi \
--set base.podTemplate.main.resources.limits.memory=2Gi \
--set frontend.replicas=${{ inputs.frontend-replicas }} \
--set datanode.replicas=${{ inputs.datanode-replicas }} \
--set meta.replicas=${{ inputs.meta-replicas }} \
@@ -72,7 +72,7 @@ runs:
- name: Wait for GreptimeDB
shell: bash
run: |
while true; do
while true; do
PHASE=$(kubectl -n my-greptimedb get gtc my-greptimedb -o jsonpath='{.status.clusterPhase}')
if [ "$PHASE" == "Running" ]; then
echo "Cluster is ready"
@@ -86,10 +86,10 @@ runs:
- name: Print GreptimeDB info
if: always()
shell: bash
run: |
run: |
kubectl get all --show-labels -n my-greptimedb
- name: Describe Nodes
if: always()
shell: bash
run: |
run: |
kubectl describe nodes

View File

@@ -2,14 +2,13 @@ meta:
configData: |-
[runtime]
global_rt_size = 4
[wal]
provider = "kafka"
broker_endpoints = ["kafka.kafka-cluster.svc.cluster.local:9092"]
num_topics = 3
auto_prune_interval = "30s"
trigger_flush_threshold = 100
[datanode]
[datanode.client]
timeout = "120s"
@@ -22,7 +21,7 @@ datanode:
[wal]
provider = "kafka"
broker_endpoints = ["kafka.kafka-cluster.svc.cluster.local:9092"]
overwrite_entry_start_id = true
linger = "2ms"
frontend:
configData: |-
[runtime]

15
.github/labeler.yaml vendored
View File

@@ -1,15 +0,0 @@
ci:
- changed-files:
- any-glob-to-any-file: .github/**
docker:
- changed-files:
- any-glob-to-any-file: docker/**
documentation:
- changed-files:
- any-glob-to-any-file: docs/**
dashboard:
- changed-files:
- any-glob-to-any-file: grafana/**

View File

@@ -8,25 +8,24 @@ set -e
# - If it's a nightly build, the version is 'nightly-YYYYMMDD-$(git rev-parse --short HEAD)', like 'nightly-20230712-e5b243c'.
# create_version ${GIHUB_EVENT_NAME} ${NEXT_RELEASE_VERSION} ${NIGHTLY_RELEASE_PREFIX}
function create_version() {
# Read from environment variables.
# Read from envrionment variables.
if [ -z "$GITHUB_EVENT_NAME" ]; then
echo "GITHUB_EVENT_NAME is empty" >&2
echo "GITHUB_EVENT_NAME is empty"
exit 1
fi
if [ -z "$NEXT_RELEASE_VERSION" ]; then
echo "NEXT_RELEASE_VERSION is empty, use version from Cargo.toml" >&2
# NOTE: Need a `v` prefix for the version string.
export NEXT_RELEASE_VERSION=v$(grep '^version = ' Cargo.toml | cut -d '"' -f 2 | head -n 1)
echo "NEXT_RELEASE_VERSION is empty"
exit 1
fi
if [ -z "$NIGHTLY_RELEASE_PREFIX" ]; then
echo "NIGHTLY_RELEASE_PREFIX is empty" >&2
echo "NIGHTLY_RELEASE_PREFIX is empty"
exit 1
fi
# Reuse $NEXT_RELEASE_VERSION to identify whether it's a nightly build.
# It will be like 'nightly-20230808-7d0d8dc6'.
# It will be like 'nigtly-20230808-7d0d8dc6'.
if [ "$NEXT_RELEASE_VERSION" = nightly ]; then
echo "$NIGHTLY_RELEASE_PREFIX-$(date "+%Y%m%d")-$(git rev-parse --short HEAD)"
exit 0
@@ -36,7 +35,7 @@ function create_version() {
# It will be like 'dev-2023080819-f0e7216c'.
if [ "$NEXT_RELEASE_VERSION" = dev ]; then
if [ -z "$COMMIT_SHA" ]; then
echo "COMMIT_SHA is empty in dev build" >&2
echo "COMMIT_SHA is empty in dev build"
exit 1
fi
echo "dev-$(date "+%Y%m%d-%s")-$(echo "$COMMIT_SHA" | cut -c1-8)"
@@ -46,7 +45,7 @@ function create_version() {
# Note: Only output 'version=xxx' to stdout when everything is ok, so that it can be used in GitHub Actions Outputs.
if [ "$GITHUB_EVENT_NAME" = push ]; then
if [ -z "$GITHUB_REF_NAME" ]; then
echo "GITHUB_REF_NAME is empty in push event" >&2
echo "GITHUB_REF_NAME is empty in push event"
exit 1
fi
echo "$GITHUB_REF_NAME"
@@ -55,15 +54,15 @@ function create_version() {
elif [ "$GITHUB_EVENT_NAME" = schedule ]; then
echo "$NEXT_RELEASE_VERSION-$NIGHTLY_RELEASE_PREFIX-$(date "+%Y%m%d")"
else
echo "Unsupported GITHUB_EVENT_NAME: $GITHUB_EVENT_NAME" >&2
echo "Unsupported GITHUB_EVENT_NAME: $GITHUB_EVENT_NAME"
exit 1
fi
}
# You can run as following examples:
# GITHUB_EVENT_NAME=push NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly GITHUB_REF_NAME=v0.3.0 ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=nightly NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch COMMIT_SHA=f0e7216c4bb6acce9b29a21ec2d683be2e3f984a NEXT_RELEASE_VERSION=dev NIGHTLY_RELEASE_PREFIX=nightly ./create-version.sh
# GITHUB_EVENT_NAME=push NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly GITHUB_REF_NAME=v0.3.0 ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=v0.4.0 NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=schedule NEXT_RELEASE_VERSION=nightly NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
# GITHUB_EVENT_NAME=workflow_dispatch COMMIT_SHA=f0e7216c4bb6acce9b29a21ec2d683be2e3f984a NEXT_RELEASE_VERSION=dev NIGHTLY_RELEASE_PREFIX=nigtly ./create-version.sh
create_version

View File

@@ -10,7 +10,7 @@ GREPTIMEDB_IMAGE_TAG=${GREPTIMEDB_IMAGE_TAG:-latest}
ETCD_CHART="oci://registry-1.docker.io/bitnamicharts/etcd"
GREPTIME_CHART="https://greptimeteam.github.io/helm-charts/"
# Create a cluster with 1 control-plane node and 5 workers.
# Ceate a cluster with 1 control-plane node and 5 workers.
function create_kind_cluster() {
cat <<EOF | kind create cluster --name "${CLUSTER}" --image kindest/node:"$KUBERNETES_VERSION" --config=-
kind: Cluster
@@ -68,7 +68,7 @@ function deploy_greptimedb_cluster() {
helm install "$cluster_name" greptime/greptimedb-cluster \
--set image.tag="$GREPTIMEDB_IMAGE_TAG" \
--set meta.backendStorage.etcd.endpoints="etcd.$install_namespace:2379" \
--set meta.etcdEndpoints="etcd.$install_namespace:2379" \
-n "$install_namespace"
# Wait for greptimedb cluster to be ready.
@@ -103,7 +103,7 @@ function deploy_greptimedb_cluster_with_s3_storage() {
helm install "$cluster_name" greptime/greptimedb-cluster -n "$install_namespace" \
--set image.tag="$GREPTIMEDB_IMAGE_TAG" \
--set meta.backendStorage.etcd.endpoints="etcd.$install_namespace:2379" \
--set meta.etcdEndpoints="etcd.$install_namespace:2379" \
--set storage.s3.bucket="$AWS_CI_TEST_BUCKET" \
--set storage.s3.region="$AWS_REGION" \
--set storage.s3.root="$DATA_ROOT" \

View File

@@ -1,37 +0,0 @@
#!/bin/bash
DEV_BUILDER_IMAGE_TAG=$1
update_dev_builder_version() {
if [ -z "$DEV_BUILDER_IMAGE_TAG" ]; then
echo "Error: Should specify the dev-builder image tag"
exit 1
fi
# Configure Git configs.
git config --global user.email greptimedb-ci@greptime.com
git config --global user.name greptimedb-ci
# Checkout a new branch.
BRANCH_NAME="ci/update-dev-builder-$(date +%Y%m%d%H%M%S)"
git checkout -b $BRANCH_NAME
# Update the dev-builder image tag in the Makefile.
sed -i "s/DEV_BUILDER_IMAGE_TAG ?=.*/DEV_BUILDER_IMAGE_TAG ?= ${DEV_BUILDER_IMAGE_TAG}/g" Makefile
# Commit the changes.
git add Makefile
git commit -m "ci: update dev-builder image tag"
git push origin $BRANCH_NAME
# Create a Pull Request.
gh pr create \
--title "ci: update dev-builder image tag" \
--body "This PR updates the dev-builder image tag" \
--base main \
--head $BRANCH_NAME \
--reviewer zyy17 \
--reviewer daviderli614
}
update_dev_builder_version

View File

@@ -1,46 +0,0 @@
#!/bin/bash
set -e
VERSION=${VERSION}
GITHUB_TOKEN=${GITHUB_TOKEN}
update_helm_charts_version() {
# Configure Git configs.
git config --global user.email update-helm-charts-version@greptime.com
git config --global user.name update-helm-charts-version
# Clone helm-charts repository.
git clone "https://x-access-token:${GITHUB_TOKEN}@github.com/GreptimeTeam/helm-charts.git"
cd helm-charts
# Set default remote for gh CLI
gh repo set-default GreptimeTeam/helm-charts
# Checkout a new branch.
BRANCH_NAME="chore/greptimedb-${VERSION}"
git checkout -b $BRANCH_NAME
# Update version.
make update-version CHART=greptimedb-cluster VERSION=${VERSION}
make update-version CHART=greptimedb-standalone VERSION=${VERSION}
# Update docs.
make docs
# Commit the changes.
git add .
git commit -s -m "chore: Update GreptimeDB version to ${VERSION}"
git push origin $BRANCH_NAME
# Create a Pull Request.
gh pr create \
--title "chore: Update GreptimeDB version to ${VERSION}" \
--body "This PR updates the GreptimeDB version." \
--base main \
--head $BRANCH_NAME \
--reviewer zyy17 \
--reviewer daviderli614
}
update_helm_charts_version

View File

@@ -1,42 +0,0 @@
#!/bin/bash
set -e
VERSION=${VERSION}
GITHUB_TOKEN=${GITHUB_TOKEN}
update_homebrew_greptime_version() {
# Configure Git configs.
git config --global user.email update-greptime-version@greptime.com
git config --global user.name update-greptime-version
# Clone helm-charts repository.
git clone "https://x-access-token:${GITHUB_TOKEN}@github.com/GreptimeTeam/homebrew-greptime.git"
cd homebrew-greptime
# Set default remote for gh CLI
gh repo set-default GreptimeTeam/homebrew-greptime
# Checkout a new branch.
BRANCH_NAME="chore/greptimedb-${VERSION}"
git checkout -b $BRANCH_NAME
# Update version.
make update-greptime-version VERSION=${VERSION}
# Commit the changes.
git add .
git commit -s -m "chore: Update GreptimeDB version to ${VERSION}"
git push origin $BRANCH_NAME
# Create a Pull Request.
gh pr create \
--title "chore: Update GreptimeDB version to ${VERSION}" \
--body "This PR updates the GreptimeDB version." \
--base main \
--head $BRANCH_NAME \
--reviewer zyy17 \
--reviewer daviderli614
}
update_homebrew_greptime_version

View File

@@ -41,7 +41,7 @@ function upload_artifacts() {
# Updates the latest version information in AWS S3 if UPDATE_VERSION_INFO is true.
function update_version_info() {
if [ "$UPDATE_VERSION_INFO" == "true" ]; then
# If it's the official release(like v1.0.0, v1.0.1, v1.0.2, etc.), update latest-version.txt.
# If it's the officail release(like v1.0.0, v1.0.1, v1.0.2, etc.), update latest-version.txt.
if [[ "$VERSION" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]]; then
echo "Updating latest-version.txt"
echo "$VERSION" > latest-version.txt

View File

@@ -55,11 +55,6 @@ on:
description: Build and push images to DockerHub and ACR
required: false
default: true
upload_artifacts_to_s3:
type: boolean
description: Whether upload artifacts to s3
required: false
default: false
cargo_profile:
type: choice
description: The cargo profile to use in building GreptimeDB.
@@ -243,7 +238,7 @@ jobs:
version: ${{ needs.allocate-runners.outputs.version }}
push-latest-tag: false # Don't push the latest tag to registry.
dev-mode: true # Only build the standard images.
- name: Echo Docker image tag to step summary
run: |
echo "## Docker Image Tag" >> $GITHUB_STEP_SUMMARY
@@ -286,7 +281,7 @@ jobs:
aws-cn-access-key-id: ${{ secrets.AWS_CN_ACCESS_KEY_ID }}
aws-cn-secret-access-key: ${{ secrets.AWS_CN_SECRET_ACCESS_KEY }}
aws-cn-region: ${{ vars.AWS_RELEASE_BUCKET_REGION }}
upload-to-s3: ${{ inputs.upload_artifacts_to_s3 }}
upload-to-s3: false
dev-mode: true # Only build the standard images(exclude centos images).
push-latest-tag: false # Don't push the latest tag to registry.
update-version-info: false # Don't update the version info in S3.

View File

@@ -22,7 +22,6 @@ concurrency:
jobs:
check-typos-and-docs:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Check typos and docs
runs-on: ubuntu-latest
steps:
@@ -37,7 +36,6 @@ jobs:
|| (echo "'config/config.md' is not up-to-date, please run 'make config-docs'." && exit 1)
license-header-check:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
name: Check License Header
steps:
@@ -47,7 +45,6 @@ jobs:
- uses: korandoru/hawkeye@v5
check:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Check
runs-on: ${{ matrix.os }}
strategy:
@@ -74,7 +71,6 @@ jobs:
run: cargo check --locked --workspace --all-targets
toml:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Toml Check
runs-on: ubuntu-latest
timeout-minutes: 60
@@ -89,7 +85,6 @@ jobs:
run: taplo format --check
build:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Build GreptimeDB binaries
runs-on: ${{ matrix.os }}
strategy:
@@ -132,7 +127,6 @@ jobs:
version: current
fuzztest:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Fuzz Test
needs: build
runs-on: ubuntu-latest
@@ -189,13 +183,11 @@ jobs:
max-total-time: 120
unstable-fuzztest:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Unstable Fuzz Test
needs: build-greptime-ci
runs-on: ubuntu-latest
timeout-minutes: 60
strategy:
fail-fast: false
matrix:
target: [ "unstable_fuzz_create_table_standalone" ]
steps:
@@ -223,12 +215,12 @@ jobs:
run: |
sudo apt update && sudo apt install -y libfuzzer-14-dev
cargo install cargo-fuzz cargo-gc-bin --force
- name: Download pre-built binary
- name: Download pre-built binariy
uses: actions/download-artifact@v4
with:
name: bin
path: .
- name: Unzip binary
- name: Unzip bianry
run: |
tar -xvf ./bin.tar.gz
rm ./bin.tar.gz
@@ -250,14 +242,8 @@ jobs:
name: unstable-fuzz-logs
path: /tmp/unstable-greptime/
retention-days: 3
- name: Describe pods
if: failure()
shell: bash
run: |
kubectl describe pod -n my-greptimedb
build-greptime-ci:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Build GreptimeDB binary (profile-CI)
runs-on: ${{ matrix.os }}
strategy:
@@ -281,7 +267,7 @@ jobs:
- name: Install cargo-gc-bin
shell: bash
run: cargo install cargo-gc-bin --force
- name: Build greptime binary
- name: Build greptime bianry
shell: bash
# `cargo gc` will invoke `cargo build` with specified args
run: cargo gc --profile ci -- --bin greptime --features "pg_kvbackend,mysql_kvbackend"
@@ -299,13 +285,11 @@ jobs:
version: current
distributed-fuzztest:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Fuzz Test (Distributed, ${{ matrix.mode.name }}, ${{ matrix.target }})
runs-on: ubuntu-latest
needs: build-greptime-ci
timeout-minutes: 60
strategy:
fail-fast: false
matrix:
target: [ "fuzz_create_table", "fuzz_alter_table", "fuzz_create_database", "fuzz_create_logical_table", "fuzz_alter_logical_table", "fuzz_insert", "fuzz_insert_logical_table" ]
mode:
@@ -335,9 +319,9 @@ jobs:
name: Setup Minio
uses: ./.github/actions/setup-minio
- if: matrix.mode.kafka
name: Setup Kafka cluster
name: Setup Kafka cluser
uses: ./.github/actions/setup-kafka-cluster
- name: Setup Etcd cluster
- name: Setup Etcd cluser
uses: ./.github/actions/setup-etcd-cluster
# Prepares for fuzz tests
- uses: arduino/setup-protoc@v3
@@ -410,11 +394,6 @@ jobs:
shell: bash
run: |
kubectl describe nodes
- name: Describe pod
if: failure()
shell: bash
run: |
kubectl describe pod -n my-greptimedb
- name: Export kind logs
if: failure()
shell: bash
@@ -437,13 +416,11 @@ jobs:
docker system prune -f
distributed-fuzztest-with-chaos:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Fuzz Test with Chaos (Distributed, ${{ matrix.mode.name }}, ${{ matrix.target }})
runs-on: ubuntu-latest
needs: build-greptime-ci
timeout-minutes: 60
strategy:
fail-fast: false
matrix:
target: ["fuzz_migrate_mito_regions", "fuzz_migrate_metric_regions", "fuzz_failover_mito_regions", "fuzz_failover_metric_regions"]
mode:
@@ -488,9 +465,9 @@ jobs:
name: Setup Minio
uses: ./.github/actions/setup-minio
- if: matrix.mode.kafka
name: Setup Kafka cluster
name: Setup Kafka cluser
uses: ./.github/actions/setup-kafka-cluster
- name: Setup Etcd cluster
- name: Setup Etcd cluser
uses: ./.github/actions/setup-etcd-cluster
# Prepares for fuzz tests
- uses: arduino/setup-protoc@v3
@@ -564,11 +541,6 @@ jobs:
shell: bash
run: |
kubectl describe nodes
- name: Describe pods
if: failure()
shell: bash
run: |
kubectl describe pod -n my-greptimedb
- name: Export kind logs
if: failure()
shell: bash
@@ -591,12 +563,10 @@ jobs:
docker system prune -f
sqlness:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Sqlness Test (${{ matrix.mode.name }})
needs: build
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [ ubuntu-latest ]
mode:
@@ -606,12 +576,9 @@ jobs:
- name: "Remote WAL"
opts: "-w kafka -k 127.0.0.1:9092"
kafka: true
- name: "PostgreSQL KvBackend"
- name: "Pg Kvbackend"
opts: "--setup-pg"
kafka: false
- name: "MySQL Kvbackend"
opts: "--setup-mysql"
kafka: false
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -639,7 +606,6 @@ jobs:
retention-days: 3
fmt:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Rustfmt
runs-on: ubuntu-latest
timeout-minutes: 60
@@ -657,7 +623,6 @@ jobs:
run: make fmt-check
clippy:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Clippy
runs-on: ubuntu-latest
timeout-minutes: 60
@@ -683,7 +648,6 @@ jobs:
run: make clippy
conflict-check:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
name: Check for conflict
runs-on: ubuntu-latest
steps:
@@ -694,7 +658,7 @@ jobs:
uses: olivernybroe/action-conflict-finder@v4.0
test:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' && github.event_name != 'merge_group' }}
if: github.event_name != 'merge_group'
runs-on: ubuntu-22.04-arm
timeout-minutes: 60
needs: [conflict-check, clippy, fmt]
@@ -746,7 +710,7 @@ jobs:
UNITTEST_LOG_DIR: "__unittest_logs"
coverage:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' && github.event_name == 'merge_group' }}
if: github.event_name == 'merge_group'
runs-on: ubuntu-22.04-8-cores
timeout-minutes: 60
steps:
@@ -806,7 +770,6 @@ jobs:
verbose: true
# compat:
# if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
# name: Compatibility Test
# needs: build
# runs-on: ubuntu-22.04

View File

@@ -21,6 +21,32 @@ jobs:
run: sudo apt-get install -y jq
# Make the check.sh script executable
- name: Check grafana dashboards
- name: Make check.sh executable
run: chmod +x grafana/check.sh
# Run the check.sh script
- name: Run check.sh
run: ./grafana/check.sh
# Only run summary.sh for pull_request events (not for merge queues or final pushes)
- name: Check if this is a pull request
id: check-pr
run: |
make check-dashboards
if [[ "${{ github.event_name }}" == "pull_request" ]]; then
echo "is_pull_request=true" >> $GITHUB_OUTPUT
else
echo "is_pull_request=false" >> $GITHUB_OUTPUT
fi
# Make the summary.sh script executable
- name: Make summary.sh executable
if: steps.check-pr.outputs.is_pull_request == 'true'
run: chmod +x grafana/summary.sh
# Run the summary.sh script and add its output to the GitHub Job Summary
- name: Run summary.sh and add to Job Summary
if: steps.check-pr.outputs.is_pull_request == 'true'
run: |
SUMMARY=$(./grafana/summary.sh)
echo "### Summary of Grafana Panels" >> $GITHUB_STEP_SUMMARY
echo "$SUMMARY" >> $GITHUB_STEP_SUMMARY

View File

@@ -107,6 +107,7 @@ jobs:
CARGO_BUILD_RUSTFLAGS: "-C linker=lld-link"
RUST_BACKTRACE: 1
CARGO_INCREMENTAL: 0
RUSTUP_WINDOWS_PATH_ADD_BIN: 1 # Workaround for https://github.com/nextest-rs/nextest/issues/1493
GT_S3_BUCKET: ${{ vars.AWS_CI_TEST_BUCKET }}
GT_S3_ACCESS_KEY_ID: ${{ secrets.AWS_CI_TEST_ACCESS_KEY_ID }}
GT_S3_ACCESS_KEY: ${{ secrets.AWS_CI_TEST_SECRET_ACCESS_KEY }}
@@ -117,16 +118,16 @@ jobs:
name: Run clean build on Linux
runs-on: ubuntu-latest
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
timeout-minutes: 45
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- uses: cachix/install-nix-action@v31
- run: nix develop --command cargo check --bin greptime
env:
CARGO_BUILD_RUSTFLAGS: "-C link-arg=-fuse-ld=mold"
- uses: cachix/install-nix-action@v27
with:
nix_path: nixpkgs=channel:nixos-24.11
- run: nix develop --command cargo build
check-status:
name: Check status

View File

@@ -1,42 +0,0 @@
name: 'PR Labeling'
on:
pull_request_target:
types:
- opened
- synchronize
- reopened
permissions:
contents: read
pull-requests: write
issues: write
jobs:
labeler:
runs-on: ubuntu-latest
steps:
- name: Checkout sources
uses: actions/checkout@v4
- uses: actions/labeler@v5
with:
configuration-path: ".github/labeler.yaml"
repo-token: "${{ secrets.GITHUB_TOKEN }}"
size-label:
runs-on: ubuntu-latest
steps:
- uses: pascalgn/size-label-action@v0.5.5
env:
GITHUB_TOKEN: "${{ secrets.GITHUB_TOKEN }}"
with:
sizes: >
{
"0": "XS",
"100": "S",
"300": "M",
"1000": "L",
"1500": "XL",
"2000": "XXL"
}

View File

@@ -24,19 +24,11 @@ on:
description: Release dev-builder-android image
required: false
default: false
update_dev_builder_image_tag:
type: boolean
description: Update the DEV_BUILDER_IMAGE_TAG in Makefile and create a PR
required: false
default: false
jobs:
release-dev-builder-images:
name: Release dev builder images
# The jobs are triggered by the following events:
# 1. Manually triggered workflow_dispatch event
# 2. Push event when the PR that modifies the `rust-toolchain.toml` or `docker/dev-builder/**` is merged to main
if: ${{ github.event_name == 'push' || inputs.release_dev_builder_ubuntu_image || inputs.release_dev_builder_centos_image || inputs.release_dev_builder_android_image }}
if: ${{ inputs.release_dev_builder_ubuntu_image || inputs.release_dev_builder_centos_image || inputs.release_dev_builder_android_image }} # Only manually trigger this job.
runs-on: ubuntu-latest
outputs:
version: ${{ steps.set-version.outputs.version }}
@@ -65,9 +57,9 @@ jobs:
version: ${{ env.VERSION }}
dockerhub-image-registry-username: ${{ secrets.DOCKERHUB_USERNAME }}
dockerhub-image-registry-token: ${{ secrets.DOCKERHUB_TOKEN }}
build-dev-builder-ubuntu: ${{ inputs.release_dev_builder_ubuntu_image || github.event_name == 'push' }}
build-dev-builder-centos: ${{ inputs.release_dev_builder_centos_image || github.event_name == 'push' }}
build-dev-builder-android: ${{ inputs.release_dev_builder_android_image || github.event_name == 'push' }}
build-dev-builder-ubuntu: ${{ inputs.release_dev_builder_ubuntu_image }}
build-dev-builder-centos: ${{ inputs.release_dev_builder_centos_image }}
build-dev-builder-android: ${{ inputs.release_dev_builder_android_image }}
release-dev-builder-images-ecr:
name: Release dev builder images to AWS ECR
@@ -93,7 +85,7 @@ jobs:
- name: Push dev-builder-ubuntu image
shell: bash
if: ${{ inputs.release_dev_builder_ubuntu_image || github.event_name == 'push' }}
if: ${{ inputs.release_dev_builder_ubuntu_image }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -114,7 +106,7 @@ jobs:
- name: Push dev-builder-centos image
shell: bash
if: ${{ inputs.release_dev_builder_centos_image || github.event_name == 'push' }}
if: ${{ inputs.release_dev_builder_centos_image }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -135,7 +127,7 @@ jobs:
- name: Push dev-builder-android image
shell: bash
if: ${{ inputs.release_dev_builder_android_image || github.event_name == 'push' }}
if: ${{ inputs.release_dev_builder_android_image }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -170,7 +162,7 @@ jobs:
- name: Push dev-builder-ubuntu image
shell: bash
if: ${{ inputs.release_dev_builder_ubuntu_image || github.event_name == 'push' }}
if: ${{ inputs.release_dev_builder_ubuntu_image }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -184,7 +176,7 @@ jobs:
- name: Push dev-builder-centos image
shell: bash
if: ${{ inputs.release_dev_builder_centos_image || github.event_name == 'push' }}
if: ${{ inputs.release_dev_builder_centos_image }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -198,7 +190,7 @@ jobs:
- name: Push dev-builder-android image
shell: bash
if: ${{ inputs.release_dev_builder_android_image || github.event_name == 'push' }}
if: ${{ inputs.release_dev_builder_android_image }}
env:
IMAGE_VERSION: ${{ needs.release-dev-builder-images.outputs.version }}
IMAGE_NAMESPACE: ${{ vars.IMAGE_NAMESPACE }}
@@ -209,24 +201,3 @@ jobs:
quay.io/skopeo/stable:latest \
copy -a docker://docker.io/$IMAGE_NAMESPACE/dev-builder-android:$IMAGE_VERSION \
docker://$ACR_IMAGE_REGISTRY/$IMAGE_NAMESPACE/dev-builder-android:$IMAGE_VERSION
update-dev-builder-image-tag:
name: Update dev-builder image tag
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
if: ${{ github.event_name == 'push' || inputs.update_dev_builder_image_tag }}
needs: [
release-dev-builder-images
]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Update dev-builder image tag
shell: bash
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
./.github/scripts/update-dev-builder-version.sh ${{ needs.release-dev-builder-images.outputs.version }}

View File

@@ -88,8 +88,10 @@ env:
# Controls whether to run tests, include unit-test, integration-test and sqlness.
DISABLE_RUN_TESTS: ${{ inputs.skip_test || vars.DEFAULT_SKIP_TEST }}
# The scheduled version is '${{ env.NEXT_RELEASE_VERSION }}-nightly-YYYYMMDD', like v0.2.0-nightly-20230313;
# The scheduled version is '${{ env.NEXT_RELEASE_VERSION }}-nightly-YYYYMMDD', like v0.2.0-nigthly-20230313;
NIGHTLY_RELEASE_PREFIX: nightly
# Note: The NEXT_RELEASE_VERSION should be modified manually by every formal release.
NEXT_RELEASE_VERSION: v0.13.0
jobs:
allocate-runners:
@@ -124,7 +126,7 @@ jobs:
# The create-version will create a global variable named 'version' in the global workflows.
# - If it's a tag push release, the version is the tag name(${{ github.ref_name }});
# - If it's a scheduled release, the version is '${{ env.NEXT_RELEASE_VERSION }}-nightly-$buildTime', like v0.2.0-nightly-20230313;
# - If it's a scheduled release, the version is '${{ env.NEXT_RELEASE_VERSION }}-nightly-$buildTime', like v0.2.0-nigthly-20230313;
# - If it's a manual release, the version is '${{ env.NEXT_RELEASE_VERSION }}-<short-git-sha>-YYYYMMDDSS', like v0.2.0-e5b243c-2023071245;
- name: Create version
id: create-version
@@ -133,6 +135,7 @@ jobs:
env:
GITHUB_EVENT_NAME: ${{ github.event_name }}
GITHUB_REF_NAME: ${{ github.ref_name }}
NEXT_RELEASE_VERSION: ${{ env.NEXT_RELEASE_VERSION }}
NIGHTLY_RELEASE_PREFIX: ${{ env.NIGHTLY_RELEASE_PREFIX }}
- name: Allocate linux-amd64 runner
@@ -314,7 +317,7 @@ jobs:
image-registry-username: ${{ secrets.DOCKERHUB_USERNAME }}
image-registry-password: ${{ secrets.DOCKERHUB_TOKEN }}
version: ${{ needs.allocate-runners.outputs.version }}
push-latest-tag: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
push-latest-tag: true
- name: Set build image result
id: set-build-image-result
@@ -361,7 +364,7 @@ jobs:
dev-mode: false
upload-to-s3: true
update-version-info: true
push-latest-tag: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
push-latest-tag: true
publish-github-release:
name: Create GitHub release and upload artifacts
@@ -388,7 +391,7 @@ jobs:
### Stop runners ###
# It's very necessary to split the job of releasing runners into 'stop-linux-amd64-runner' and 'stop-linux-arm64-runner'.
# Because we can terminate the specified EC2 instance immediately after the job is finished without unnecessary waiting.
# Because we can terminate the specified EC2 instance immediately after the job is finished without uncessary waiting.
stop-linux-amd64-runner: # It's always run as the last job in the workflow to make sure that the runner is released.
name: Stop linux-amd64 runner
# Only run this job when the runner is allocated.
@@ -441,10 +444,10 @@ jobs:
aws-region: ${{ vars.EC2_RUNNER_REGION }}
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
bump-downstream-repo-versions:
name: Bump downstream repo versions
bump-doc-version:
name: Bump doc version
if: ${{ github.event_name == 'push' || github.event_name == 'schedule' }}
needs: [allocate-runners, publish-github-release]
needs: [allocate-runners]
runs-on: ubuntu-latest
# Permission reference: https://docs.github.com/en/actions/using-jobs/assigning-permissions-to-jobs
permissions:
@@ -456,58 +459,13 @@ jobs:
fetch-depth: 0
persist-credentials: false
- uses: ./.github/actions/setup-cyborg
- name: Bump downstream repo versions
- name: Bump doc version
working-directory: cyborg
run: pnpm tsx bin/bump-versions.ts
run: pnpm tsx bin/bump-doc-version.ts
env:
TARGET_REPOS: website,docs,demo
VERSION: ${{ needs.allocate-runners.outputs.version }}
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
WEBSITE_REPO_TOKEN: ${{ secrets.WEBSITE_REPO_TOKEN }}
DOCS_REPO_TOKEN: ${{ secrets.DOCS_REPO_TOKEN }}
DEMO_REPO_TOKEN: ${{ secrets.DEMO_REPO_TOKEN }}
bump-helm-charts-version:
name: Bump helm charts version
if: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
needs: [allocate-runners, publish-github-release]
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Bump helm charts version
env:
GITHUB_TOKEN: ${{ secrets.HELM_CHARTS_REPO_TOKEN }}
VERSION: ${{ needs.allocate-runners.outputs.version }}
run: |
./.github/scripts/update-helm-charts-version.sh
bump-homebrew-greptime-version:
name: Bump homebrew greptime version
if: ${{ github.ref_type == 'tag' && !contains(github.ref_name, 'nightly') && github.event_name != 'schedule' }}
needs: [allocate-runners, publish-github-release]
runs-on: ubuntu-latest
permissions:
contents: write
pull-requests: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Bump homebrew greptime version
env:
GITHUB_TOKEN: ${{ secrets.HOMEBREW_GREPTIME_REPO_TOKEN }}
VERSION: ${{ needs.allocate-runners.outputs.version }}
run: |
./.github/scripts/update-homebrew-greptme-version.sh
notification:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' && (github.event_name == 'push' || github.event_name == 'schedule') && always() }}

View File

@@ -14,9 +14,6 @@ concurrency:
jobs:
check:
runs-on: ubuntu-latest
permissions:
pull-requests: write # Add permissions to modify PRs
issues: write
timeout-minutes: 10
steps:
- uses: actions/checkout@v4

7
.gitignore vendored
View File

@@ -28,7 +28,6 @@ debug/
# Logs
**/__unittest_logs
logs/
!grafana/dashboards/logs/
# cpython's generated python byte code
**/__pycache__/
@@ -55,9 +54,3 @@ tests-fuzz/corpus/
# Nix
.direnv
.envrc
## default data home
greptimedb_data
# github
!/.github

View File

@@ -108,7 +108,7 @@ of what you were trying to do and what went wrong. You can also reach for help i
The core team will be thrilled if you would like to participate in any way you like. When you are stuck, try to ask for help by filing an issue, with a detailed description of what you were trying to do and what went wrong. If you have any questions or if you would like to get involved in our community, please check out:
- [GreptimeDB Community Slack](https://greptime.com/slack)
- [GreptimeDB GitHub Discussions](https://github.com/GreptimeTeam/greptimedb/discussions)
- [GreptimeDB Github Discussions](https://github.com/GreptimeTeam/greptimedb/discussions)
Also, see some extra GreptimeDB content:

4383
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -29,15 +29,12 @@ members = [
"src/common/query",
"src/common/recordbatch",
"src/common/runtime",
"src/common/session",
"src/common/stat",
"src/common/substrait",
"src/common/telemetry",
"src/common/test-util",
"src/common/time",
"src/common/version",
"src/common/wal",
"src/common/workload",
"src/datanode",
"src/datatypes",
"src/file-engine",
@@ -49,7 +46,6 @@ members = [
"src/meta-client",
"src/meta-srv",
"src/metric-engine",
"src/mito-codec",
"src/mito2",
"src/object-store",
"src/operator",
@@ -71,17 +67,16 @@ members = [
resolver = "2"
[workspace.package]
version = "0.15.0"
version = "0.13.0"
edition = "2021"
license = "Apache-2.0"
[workspace.lints]
clippy.print_stdout = "warn"
clippy.print_stderr = "warn"
clippy.dbg_macro = "warn"
clippy.implicit_clone = "warn"
clippy.result_large_err = "allow"
clippy.large_enum_variant = "allow"
clippy.doc_overindented_list_items = "allow"
clippy.uninlined_format_args = "allow"
clippy.readonly_write_lock = "allow"
rust.unknown_lints = "deny"
rust.unexpected_cfgs = { level = "warn", check-cfg = ['cfg(tokio_unstable)'] }
@@ -93,20 +88,20 @@ rust.unexpected_cfgs = { level = "warn", check-cfg = ['cfg(tokio_unstable)'] }
#
# See for more detaiils: https://github.com/rust-lang/cargo/issues/11329
ahash = { version = "0.8", features = ["compile-time-rng"] }
aquamarine = "0.6"
arrow = { version = "54.2", features = ["prettyprint"] }
arrow-array = { version = "54.2", default-features = false, features = ["chrono-tz"] }
arrow-flight = "54.2"
arrow-ipc = { version = "54.2", default-features = false, features = ["lz4", "zstd"] }
arrow-schema = { version = "54.2", features = ["serde"] }
aquamarine = "0.3"
arrow = { version = "53.0.0", features = ["prettyprint"] }
arrow-array = { version = "53.0.0", default-features = false, features = ["chrono-tz"] }
arrow-flight = "53.0"
arrow-ipc = { version = "53.0.0", default-features = false, features = ["lz4", "zstd"] }
arrow-schema = { version = "53.0", features = ["serde"] }
async-stream = "0.3"
async-trait = "0.1"
# Remember to update axum-extra, axum-macros when updating axum
axum = "0.8"
axum-extra = "0.10"
axum-macros = "0.5"
axum-macros = "0.4"
backon = "1"
base64 = "0.22"
base64 = "0.21"
bigdecimal = "0.4.2"
bitflags = "2.4.1"
bytemuck = "1.12"
@@ -116,45 +111,43 @@ chrono-tz = "0.10.1"
clap = { version = "4.4", features = ["derive"] }
config = "0.13.0"
crossbeam-utils = "0.8"
dashmap = "6.1"
datafusion = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-common = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-functions = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-functions-aggregate-common = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-optimizer = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-physical-expr = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-physical-plan = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-sql = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
datafusion-substrait = { git = "https://github.com/waynexia/arrow-datafusion.git", rev = "12c0381babd52c681043957e9d6ee083a03f7646" }
deadpool = "0.12"
deadpool-postgres = "0.14"
derive_builder = "0.20"
dashmap = "5.4"
datafusion = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-common = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-expr = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-functions = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-optimizer = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-physical-expr = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-physical-plan = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-sql = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
datafusion-substrait = { git = "https://github.com/apache/datafusion.git", rev = "2464703c84c400a09cc59277018813f0e797bb4e" }
deadpool = "0.10"
deadpool-postgres = "0.12"
derive_builder = "0.12"
dotenv = "0.15"
etcd-client = "0.14"
flate2 = { version = "1.1.0", default-features = false, features = ["zlib-rs"] }
fst = "0.4.7"
futures = "0.3"
futures-util = "0.3"
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "464226cf8a4a22696503536a123d0b9e318582f4" }
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "c5419bbd20cb42e568ec325a4d71a3c94cc327e1" }
hex = "0.4"
http = "1"
humantime = "2.1"
humantime-serde = "1.1"
hyper = "1.1"
hyper-util = "0.1"
itertools = "0.14"
itertools = "0.10"
jsonb = { git = "https://github.com/databendlabs/jsonb.git", rev = "8c8d2fc294a39f3ff08909d60f718639cfba3875", default-features = false }
lazy_static = "1.4"
local-ip-address = "0.6"
loki-proto = { git = "https://github.com/GreptimeTeam/loki-proto.git", rev = "1434ecf23a2654025d86188fb5205e7a74b225d3" }
meter-core = { git = "https://github.com/GreptimeTeam/greptime-meter.git", rev = "5618e779cf2bb4755b499c630fba4c35e91898cb" }
mockall = "0.13"
mockall = "0.11.4"
moka = "0.12"
nalgebra = "0.33"
nix = { version = "0.30.1", default-features = false, features = ["event", "fs", "process"] }
notify = "8.0"
notify = "6.1"
num_cpus = "1.16"
object_store_opendal = "0.50"
once_cell = "1.18"
opentelemetry-proto = { version = "0.27", features = [
"gen-tonic",
@@ -164,17 +157,15 @@ opentelemetry-proto = { version = "0.27", features = [
"logs",
] }
parking_lot = "0.12"
parquet = { version = "54.2", default-features = false, features = ["arrow", "async", "object_store"] }
parquet = { version = "53.0.0", default-features = false, features = ["arrow", "async", "object_store"] }
paste = "1.0"
pin-project = "1.0"
prometheus = { version = "0.13.3", features = ["process"] }
promql-parser = { git = "https://github.com/GreptimeTeam/promql-parser.git", rev = "0410e8b459dda7cb222ce9596f8bf3971bd07bd2", features = [
"ser",
] }
prost = { version = "0.13", features = ["no-recursion-limit"] }
promql-parser = { version = "0.5", features = ["ser"] }
prost = "0.13"
raft-engine = { version = "0.4.1", default-features = false }
rand = "0.9"
ratelimit = "0.10"
rand = "0.8"
ratelimit = "0.9"
regex = "1.8"
regex-automata = "0.4"
reqwest = { version = "0.12", default-features = false, features = [
@@ -183,39 +174,36 @@ reqwest = { version = "0.12", default-features = false, features = [
"stream",
"multipart",
] }
rskafka = { git = "https://github.com/influxdata/rskafka.git", rev = "8dbd01ed809f5a791833a594e85b144e36e45820", features = [
rskafka = { git = "https://github.com/influxdata/rskafka.git", rev = "75535b5ad9bae4a5dbb582c82e44dfd81ec10105", features = [
"transport-tls",
] }
rstest = "0.25"
rstest = "0.21"
rstest_reuse = "0.7"
rust_decimal = "1.33"
rustc-hash = "2.0"
# It is worth noting that we should try to avoid using aws-lc-rs until it can be compiled on various platforms.
rustls = { version = "0.23.25", default-features = false }
rustls = { version = "0.23.20", default-features = false } # override by patch, see [patch.crates-io]
serde = { version = "1.0", features = ["derive"] }
serde_json = { version = "1.0", features = ["float_roundtrip"] }
serde_with = "3"
shadow-rs = "1.1"
simd-json = "0.15"
shadow-rs = "0.38"
similar-asserts = "1.6.0"
smallvec = { version = "1", features = ["serde"] }
snafu = "0.8"
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "0cf6c04490d59435ee965edd2078e8855bd8471e", features = [
"visitor",
"serde",
] } # branch = "v0.54.x"
sqlx = { version = "0.8", features = [
"runtime-tokio-rustls",
"mysql",
"postgres",
"chrono",
] }
strum = { version = "0.27", features = ["derive"] }
sysinfo = "0.33"
sysinfo = "0.30"
# on branch v0.52.x
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "71dd86058d2af97b9925093d40c4e03360403170", features = [
"visitor",
"serde",
] } # on branch v0.44.x
strum = { version = "0.25", features = ["derive"] }
tempfile = "3"
tokio = { version = "1.40", features = ["full"] }
tokio-postgres = "0.7"
tokio-rustls = { version = "0.26.2", default-features = false }
tokio-rustls = { version = "0.26.0", default-features = false } # override by patch, see [patch.crates-io]
tokio-stream = "0.1"
tokio-util = { version = "0.7", features = ["io-util", "compat"] }
toml = "0.8.8"
@@ -258,13 +246,11 @@ common-procedure-test = { path = "src/common/procedure-test" }
common-query = { path = "src/common/query" }
common-recordbatch = { path = "src/common/recordbatch" }
common-runtime = { path = "src/common/runtime" }
common-session = { path = "src/common/session" }
common-telemetry = { path = "src/common/telemetry" }
common-test-util = { path = "src/common/test-util" }
common-time = { path = "src/common/time" }
common-version = { path = "src/common/version" }
common-wal = { path = "src/common/wal" }
common-workload = { path = "src/common/workload" }
datanode = { path = "src/datanode" }
datatypes = { path = "src/datatypes" }
file-engine = { path = "src/file-engine" }
@@ -276,13 +262,9 @@ log-store = { path = "src/log-store" }
meta-client = { path = "src/meta-client" }
meta-srv = { path = "src/meta-srv" }
metric-engine = { path = "src/metric-engine" }
mito-codec = { path = "src/mito-codec" }
mito2 = { path = "src/mito2" }
object-store = { path = "src/object-store" }
operator = { path = "src/operator" }
otel-arrow-rust = { git = "https://github.com/open-telemetry/otel-arrow", rev = "5d551412d2a12e689cde4d84c14ef29e36784e51", features = [
"server",
] }
partition = { path = "src/partition" }
pipeline = { path = "src/pipeline" }
plugins = { path = "src/plugins" }
@@ -292,11 +274,19 @@ query = { path = "src/query" }
servers = { path = "src/servers" }
session = { path = "src/session" }
sql = { path = "src/sql" }
stat = { path = "src/common/stat" }
store-api = { path = "src/store-api" }
substrait = { path = "src/common/substrait" }
table = { path = "src/table" }
[patch.crates-io]
# change all rustls dependencies to use our fork to default to `ring` to make it "just work"
hyper-rustls = { git = "https://github.com/GreptimeTeam/hyper-rustls", rev = "a951e03" } # version = "0.27.5" with ring patch
rustls = { git = "https://github.com/GreptimeTeam/rustls", rev = "34fd0c6" } # version = "0.23.20" with ring patch
tokio-rustls = { git = "https://github.com/GreptimeTeam/tokio-rustls", rev = "4604ca6" } # version = "0.26.0" with ring patch
# This is commented, since we are not using aws-lc-sys, if we need to use it, we need to uncomment this line or use a release after this commit, or it wouldn't compile with gcc < 8.1
# see https://github.com/aws/aws-lc-rs/pull/526
# aws-lc-sys = { git ="https://github.com/aws/aws-lc-rs", rev = "556558441e3494af4b156ae95ebc07ebc2fd38aa" }
[workspace.dependencies.meter-macros]
git = "https://github.com/GreptimeTeam/greptime-meter.git"
rev = "5618e779cf2bb4755b499c630fba4c35e91898cb"

View File

@@ -8,7 +8,7 @@ CARGO_BUILD_OPTS := --locked
IMAGE_REGISTRY ?= docker.io
IMAGE_NAMESPACE ?= greptime
IMAGE_TAG ?= latest
DEV_BUILDER_IMAGE_TAG ?= 2025-05-19-b2377d4b-20250520045554
DEV_BUILDER_IMAGE_TAG ?= 2024-12-25-a71b93dd-20250305072908
BUILDX_MULTI_PLATFORM_BUILD ?= false
BUILDX_BUILDER_NAME ?= gtbuilder
BASE_IMAGE ?= ubuntu
@@ -32,10 +32,6 @@ ifneq ($(strip $(BUILD_JOBS)),)
NEXTEST_OPTS += --build-jobs=${BUILD_JOBS}
endif
ifneq ($(strip $(BUILD_JOBS)),)
SQLNESS_OPTS += --jobs ${BUILD_JOBS}
endif
ifneq ($(strip $(CARGO_PROFILE)),)
CARGO_BUILD_OPTS += --profile ${CARGO_PROFILE}
endif
@@ -197,7 +193,6 @@ fix-clippy: ## Fix clippy violations.
fmt-check: ## Check code format.
cargo fmt --all -- --check
python3 scripts/check-snafu.py
python3 scripts/check-super-imports.py
.PHONY: start-etcd
start-etcd: ## Start single node etcd for testing purpose.
@@ -222,16 +217,6 @@ start-cluster: ## Start the greptimedb cluster with etcd by using docker compose
stop-cluster: ## Stop the greptimedb cluster that created by docker compose.
docker compose -f ./docker/docker-compose/cluster-with-etcd.yaml stop
##@ Grafana
.PHONY: check-dashboards
check-dashboards: ## Check the Grafana dashboards.
@./grafana/scripts/check.sh
.PHONY: dashboards
dashboards: ## Generate the Grafana dashboards for standalone mode and intermediate dashboards.
@./grafana/scripts/gen-dashboards.sh
##@ Docs
config-docs: ## Generate configuration documentation from toml files.
docker run --rm \

191
README.md
View File

@@ -6,9 +6,7 @@
</picture>
</p>
<h2 align="center">Real-Time & Cloud-Native Observability Database<br/>for metrics, logs, and traces</h2>
> Delivers sub-second querying at PB scale and exceptional cost efficiency from edge to cloud.
<h2 align="center">Unified & Cost-Effective Time Series Database for Metrics, Logs, and Events</h2>
<div align="center">
<h3 align="center">
@@ -51,77 +49,70 @@
</div>
- [Introduction](#introduction)
- [⭐ Key Features](#features)
- [Quick Comparison](#quick-comparison)
- [Architecture](#architecture)
- [Try GreptimeDB](#try-greptimedb)
- [**Features: Why GreptimeDB**](#why-greptimedb)
- [Architecture](https://docs.greptime.com/contributor-guide/overview/#architecture)
- [Try it for free](#try-greptimedb)
- [Getting Started](#getting-started)
- [Build From Source](#build-from-source)
- [Tools & Extensions](#tools--extensions)
- [Project Status](#project-status)
- [Community](#community)
- [Join the community](#community)
- [Contributing](#contributing)
- [Tools & Extensions](#tools--extensions)
- [License](#license)
- [Commercial Support](#commercial-support)
- [Contributing](#contributing)
- [Acknowledgement](#acknowledgement)
## Introduction
**GreptimeDB** is an open-source, cloud-native database purpose-built for the unified collection and analysis of observability data (metrics, logs, and traces). Whether youre operating on the edge, in the cloud, or across hybrid environments, GreptimeDB empowers real-time insights at massive scale — all in one system.
**GreptimeDB** is an open-source unified & cost-effective time-series database for **Metrics**, **Logs**, and **Events** (also **Traces** in plan). You can gain real-time insights from Edge to Cloud at Any Scale.
## Features
## Why GreptimeDB
| Feature | Description |
| --------- | ----------- |
| [Unified Observability Data](https://docs.greptime.com/user-guide/concepts/why-greptimedb) | Store metrics, logs, and traces as timestamped, contextual wide events. Query via [SQL](https://docs.greptime.com/user-guide/query-data/sql), [PromQL](https://docs.greptime.com/user-guide/query-data/promql), and [streaming](https://docs.greptime.com/user-guide/flow-computation/overview). |
| [High Performance & Cost Effective](https://docs.greptime.com/user-guide/manage-data/data-index) | Written in Rust, with a distributed query engine, [rich indexing](https://docs.greptime.com/user-guide/manage-data/data-index), and optimized columnar storage, delivering sub-second responses at PB scale. |
| [Cloud-Native Architecture](https://docs.greptime.com/user-guide/concepts/architecture) | Designed for [Kubernetes](https://docs.greptime.com/user-guide/deployments/deploy-on-kubernetes/greptimedb-operator-management), with compute/storage separation, native object storage (AWS S3, Azure Blob, etc.) and seamless cross-cloud access. |
| [Developer-Friendly](https://docs.greptime.com/user-guide/protocols/overview) | Access via SQL/PromQL interfaces, REST API, MySQL/PostgreSQL protocols, and popular ingestion [protocols](https://docs.greptime.com/user-guide/protocols/overview). |
| [Flexible Deployment](https://docs.greptime.com/user-guide/deployments/overview) | Deploy anywhere: edge (including ARM/[Android](https://docs.greptime.com/user-guide/deployments/run-on-android)) or cloud, with unified APIs and efficient data sync. |
Our core developers have been building time-series data platforms for years. Based on our best practices, GreptimeDB was born to give you:
Learn more in [Why GreptimeDB](https://docs.greptime.com/user-guide/concepts/why-greptimedb) and [Observability 2.0 and the Database for It](https://greptime.com/blogs/2025-04-25-greptimedb-observability2-new-database).
* **Unified Processing of Metrics, Logs, and Events**
## Quick Comparison
GreptimeDB unifies time series data processing by treating all data - whether metrics, logs, or events - as timestamped events with context. Users can analyze this data using either [SQL](https://docs.greptime.com/user-guide/query-data/sql) or [PromQL](https://docs.greptime.com/user-guide/query-data/promql) and leverage stream processing ([Flow](https://docs.greptime.com/user-guide/flow-computation/overview)) to enable continuous aggregation. [Read more](https://docs.greptime.com/user-guide/concepts/data-model).
| Feature | GreptimeDB | Traditional TSDB | Log Stores |
|----------------------------------|-----------------------|--------------------|-----------------|
| Data Types | Metrics, Logs, Traces | Metrics only | Logs only |
| Query Language | SQL, PromQL, Streaming| Custom/PromQL | Custom/DSL |
| Deployment | Edge + Cloud | Cloud/On-prem | Mostly central |
| Indexing & Performance | PB-Scale, Sub-second | Varies | Varies |
| Integration | REST, SQL, Common protocols | Varies | Varies |
* **Cloud-native Distributed Database**
**Performance:**
* [GreptimeDB tops JSONBench's billion-record cold run test!](https://greptime.com/blogs/2025-03-18-jsonbench-greptimedb-performance)
* [TSBS Benchmark](https://github.com/GreptimeTeam/greptimedb/tree/main/docs/benchmarks/tsbs)
Built for [Kubernetes](https://docs.greptime.com/user-guide/deployments/deploy-on-kubernetes/greptimedb-operator-management). GreptimeDB achieves seamless scalability with its [cloud-native architecture](https://docs.greptime.com/user-guide/concepts/architecture) of separated compute and storage, built on object storage (AWS S3, Azure Blob Storage, etc.) while enabling cross-cloud deployment through a unified data access layer.
Read [more benchmark reports](https://docs.greptime.com/user-guide/concepts/features-that-you-concern#how-is-greptimedbs-performance-compared-to-other-solutions).
* **Performance and Cost-effective**
## Architecture
Written in pure Rust for superior performance and reliability. GreptimeDB features a distributed query engine with intelligent indexing to handle high cardinality data efficiently. Its optimized columnar storage achieves 50x cost efficiency on cloud object storage through advanced compression. [Benchmark reports](https://www.greptime.com/blogs/2024-09-09-report-summary).
* Read the [architecture](https://docs.greptime.com/contributor-guide/overview/#architecture) document.
* [DeepWiki](https://deepwiki.com/GreptimeTeam/greptimedb/1-overview) provides an in-depth look at GreptimeDB:
<img alt="GreptimeDB System Overview" src="docs/architecture.png">
* **Cloud-Edge Collaboration**
GreptimeDB seamlessly operates across cloud and edge (ARM/Android/Linux), providing consistent APIs and control plane for unified data management and efficient synchronization. [Learn how to run on Android](https://docs.greptime.com/user-guide/deployments/run-on-android/).
* **Multi-protocol Ingestion, SQL & PromQL Ready**
Widely adopted database protocols and APIs, including MySQL, PostgreSQL, InfluxDB, OpenTelemetry, Loki and Prometheus, etc. Effortless Adoption & Seamless Migration. [Supported Protocols Overview](https://docs.greptime.com/user-guide/protocols/overview).
For more detailed info please read [Why GreptimeDB](https://docs.greptime.com/user-guide/concepts/why-greptimedb).
## Try GreptimeDB
### 1. [Live Demo](https://greptime.com/playground)
Experience GreptimeDB directly in your browser.
Try out the features of GreptimeDB right from your browser.
### 2. [GreptimeCloud](https://console.greptime.cloud/)
Start instantly with a free cluster.
### 3. Docker (Local Quickstart)
### 3. Docker Image
To install GreptimeDB locally, the recommended way is via Docker:
```shell
docker pull greptime/greptimedb
```
Start a GreptimeDB container with:
```shell
docker run -p 127.0.0.1:4000-4003:4000-4003 \
-v "$(pwd)/greptimedb_data:/greptimedb_data" \
-v "$(pwd)/greptimedb:/tmp/greptimedb" \
--name greptime --rm \
greptime/greptimedb:latest standalone start \
--http-addr 0.0.0.0:4000 \
@@ -129,90 +120,112 @@ docker run -p 127.0.0.1:4000-4003:4000-4003 \
--mysql-addr 0.0.0.0:4002 \
--postgres-addr 0.0.0.0:4003
```
Dashboard: [http://localhost:4000/dashboard](http://localhost:4000/dashboard)
[Full Install Guide](https://docs.greptime.com/getting-started/installation/overview)
**Troubleshooting:**
* Cannot connect to the database? Ensure that ports `4000`, `4001`, `4002`, and `4003` are not blocked by a firewall or used by other services.
* Failed to start? Check the container logs with `docker logs greptime` for further details.
Access the dashboard via `http://localhost:4000/dashboard`.
Read more about [Installation](https://docs.greptime.com/getting-started/installation/overview) on docs.
## Getting Started
- [Quickstart](https://docs.greptime.com/getting-started/quick-start)
- [User Guide](https://docs.greptime.com/user-guide/overview)
- [Demo Scenes](https://github.com/GreptimeTeam/demo-scene)
- [FAQ](https://docs.greptime.com/faq-and-others/faq)
* [Quickstart](https://docs.greptime.com/getting-started/quick-start)
* [User Guide](https://docs.greptime.com/user-guide/overview)
* [Demos](https://github.com/GreptimeTeam/demo-scene)
* [FAQ](https://docs.greptime.com/faq-and-others/faq)
## Build From Source
## Build
Check the prerequisite:
**Prerequisites:**
* [Rust toolchain](https://www.rust-lang.org/tools/install) (nightly)
* [Protobuf compiler](https://grpc.io/docs/protoc-installation/) (>= 3.15)
* C/C++ building essentials, including `gcc`/`g++`/`autoconf` and glibc library (eg. `libc6-dev` on Ubuntu and `glibc-devel` on Fedora)
* Python toolchain (optional): Required only if using some test scripts.
**Build and Run:**
```bash
Build GreptimeDB binary:
```shell
make
```
Run a standalone server:
```shell
cargo run -- standalone start
```
## Tools & Extensions
- **Kubernetes:** [GreptimeDB Operator](https://github.com/GrepTimeTeam/greptimedb-operator)
- **Helm Charts:** [Greptime Helm Charts](https://github.com/GreptimeTeam/helm-charts)
- **Dashboard:** [Web UI](https://github.com/GreptimeTeam/dashboard)
- **SDKs/Ingester:** [Go](https://github.com/GreptimeTeam/greptimedb-ingester-go), [Java](https://github.com/GreptimeTeam/greptimedb-ingester-java), [C++](https://github.com/GreptimeTeam/greptimedb-ingester-cpp), [Erlang](https://github.com/GreptimeTeam/greptimedb-ingester-erl), [Rust](https://github.com/GreptimeTeam/greptimedb-ingester-rust), [JS](https://github.com/GreptimeTeam/greptimedb-ingester-js)
- **Grafana**: [Official Dashboard](https://github.com/GreptimeTeam/greptimedb/blob/main/grafana/README.md)
### Kubernetes
- [GreptimeDB Operator](https://github.com/GrepTimeTeam/greptimedb-operator)
### Dashboard
- [The dashboard UI for GreptimeDB](https://github.com/GreptimeTeam/dashboard)
### SDK
- [GreptimeDB Go Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-go)
- [GreptimeDB Java Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-java)
- [GreptimeDB C++ Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-cpp)
- [GreptimeDB Erlang Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-erl)
- [GreptimeDB Rust Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-rust)
- [GreptimeDB JavaScript Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-js)
### Grafana Dashboard
Our official Grafana dashboard for monitoring GreptimeDB is available at [grafana](grafana/README.md) directory.
## Project Status
> **Status:** Beta.
> **GA (v1.0):** Targeted for mid 2025.
GreptimeDB is currently in Beta. We are targeting GA (General Availability) with v1.0 release by Early 2025.
- Being used in production by early adopters
- Stable, actively maintained, with regular releases ([version info](https://docs.greptime.com/nightly/reference/about-greptimedb-version))
- Suitable for evaluation and pilot deployments
While in Beta, GreptimeDB is already:
* Being used in production by early adopters
* Actively maintained with regular releases, [about version number](https://docs.greptime.com/nightly/reference/about-greptimedb-version)
* Suitable for testing and evaluation
For production use, we recommend using the latest stable release.
[![Star History Chart](https://api.star-history.com/svg?repos=GreptimeTeam/GreptimeDB&type=Date)](https://www.star-history.com/#GreptimeTeam/GreptimeDB&Date)
If you find this project useful, a ⭐ would mean a lot to us!
<img alt="Known Users" src="https://greptime.com/logo/img/users.png"/>
## Community
We invite you to engage and contribute!
Our core team is thrilled to see you participate in any ways you like. When you are stuck, try to
ask for help by filling an issue with a detailed description of what you were trying to do
and what went wrong. If you have any questions or if you would like to get involved in our
community, please check out:
- [Slack](https://greptime.com/slack)
- [Discussions](https://github.com/GreptimeTeam/greptimedb/discussions)
- [Official Website](https://greptime.com/)
- [Blog](https://greptime.com/blogs/)
- [LinkedIn](https://www.linkedin.com/company/greptime/)
- [X (Twitter)](https://X.com/greptime)
- [YouTube](https://www.youtube.com/@greptime)
- GreptimeDB Community on [Slack](https://greptime.com/slack)
- GreptimeDB [GitHub Discussions forum](https://github.com/GreptimeTeam/greptimedb/discussions)
- Greptime official [website](https://greptime.com)
## License
In addition, you may:
GreptimeDB is licensed under the [Apache License 2.0](https://apache.org/licenses/LICENSE-2.0.txt).
- View our official [Blog](https://greptime.com/blogs/)
- Connect us with [Linkedin](https://www.linkedin.com/company/greptime/)
- Follow us on [Twitter](https://twitter.com/greptime)
## Commercial Support
Running GreptimeDB in your organization?
We offer enterprise add-ons, services, training, and consulting.
[Contact us](https://greptime.com/contactus) for details.
If you are running GreptimeDB OSS in your organization, we offer additional
enterprise add-ons, installation services, training, and consulting. [Contact
us](https://greptime.com/contactus) and we will reach out to you with more
detail of our commercial license.
## License
GreptimeDB uses the [Apache License 2.0](https://apache.org/licenses/LICENSE-2.0.txt) to strike a balance between
open contributions and allowing you to use the software however you want.
## Contributing
- Read our [Contribution Guidelines](https://github.com/GreptimeTeam/greptimedb/blob/main/CONTRIBUTING.md).
- Explore [Internal Concepts](https://docs.greptime.com/contributor-guide/overview.html) and [DeepWiki](https://deepwiki.com/GreptimeTeam/greptimedb).
- Pick up a [good first issue](https://github.com/GreptimeTeam/greptimedb/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22) and join the #contributors [Slack](https://greptime.com/slack) channel.
Please refer to [contribution guidelines](CONTRIBUTING.md) and [internal concepts docs](https://docs.greptime.com/contributor-guide/overview.html) for more information.
## Acknowledgement
Special thanks to all contributors! See [AUTHORS.md](https://github.com/GreptimeTeam/greptimedb/blob/main/AUTHOR.md).
Special thanks to all the contributors who have propelled GreptimeDB forward. For a complete list of contributors, please refer to [AUTHOR.md](AUTHOR.md).
- Uses [Apache Arrow™](https://arrow.apache.org/) (memory model)
- [Apache Parquet](https://parquet.apache.org/) (file storage)
- [Apache Arrow DataFusion](https://arrow.apache.org/datafusion/) (query engine)
- [Apache OpenDAL™](https://opendal.apache.org/) (data access abstraction)
- GreptimeDB uses [Apache Arrow™](https://arrow.apache.org/) as the memory model and [Apache Parquet™](https://parquet.apache.org/) as the persistent file format.
- GreptimeDB's query engine is powered by [Apache Arrow DataFusion](https://arrow.apache.org/datafusion/).
- [Apache OpenDAL](https://opendal.apache.org) gives GreptimeDB a very general and elegant data access abstraction layer.
- GreptimeDB's meta service is based on [etcd](https://etcd.io/).

View File

@@ -12,6 +12,7 @@
| Key | Type | Default | Descriptions |
| --- | -----| ------- | ----------- |
| `mode` | String | `standalone` | The running mode of the datanode. It can be `standalone` or `distributed`. |
| `default_timezone` | String | Unset | The default timezone of the server. |
| `init_regions_in_background` | Bool | `false` | Initialize all regions in the background during the startup.<br/>By default, it provides services after all regions have been initialized. |
| `init_regions_parallelism` | Integer | `16` | Parallelism of initializing regions. |
@@ -23,11 +24,10 @@
| `runtime.compact_rt_size` | Integer | `4` | The number of threads to execute the runtime for global write operations. |
| `http` | -- | -- | The HTTP server options. |
| `http.addr` | String | `127.0.0.1:4000` | The address to bind the HTTP server. |
| `http.timeout` | String | `0s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.timeout` | String | `30s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.body_limit` | String | `64MB` | HTTP request body limit.<br/>The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.<br/>Set to 0 to disable limit. |
| `http.enable_cors` | Bool | `true` | HTTP CORS support, it's turned on by default<br/>This allows browser to access http APIs without CORS restrictions |
| `http.cors_allowed_origins` | Array | Unset | Customize allowed origins for HTTP CORS. |
| `http.prom_validation_mode` | String | `strict` | Whether to enable validation for Prometheus remote write requests.<br/>Available options:<br/>- strict: deny invalid UTF-8 strings (default).<br/>- lossy: allow invalid UTF-8 strings, replace invalid characters with REPLACEMENT_CHARACTER(U+FFFD).<br/>- unchecked: do not valid strings. |
| `grpc` | -- | -- | The gRPC server options. |
| `grpc.bind_addr` | String | `127.0.0.1:4001` | The address to bind the gRPC server. |
| `grpc.runtime_size` | Integer | `8` | The number of server worker threads. |
@@ -86,6 +86,10 @@
| `wal.create_topic_timeout` | String | `30s` | Above which a topic creation operation will be cancelled.<br/>**It's only used when the provider is `kafka`**. |
| `wal.max_batch_bytes` | String | `1MB` | The max size of a single producer batch.<br/>Warning: Kafka has a default limit of 1MB per message in a topic.<br/>**It's only used when the provider is `kafka`**. |
| `wal.consumer_wait_timeout` | String | `100ms` | The consumer wait timeout.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_init` | String | `500ms` | The initial backoff delay.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_max` | String | `10s` | The maximum backoff delay.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_base` | Integer | `2` | The exponential backoff rate, i.e. next backoff = base * current backoff.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_deadline` | String | `5mins` | The deadline of retries.<br/>**It's only used when the provider is `kafka`**. |
| `wal.overwrite_entry_start_id` | Bool | `false` | Ignore missing entries during read WAL.<br/>**It's only used when the provider is `kafka`**.<br/><br/>This option ensures that when Kafka messages are deleted, the system<br/>can still successfully replay memtable data without throwing an<br/>out-of-range error.<br/>However, enabling this option might lead to unexpected data loss,<br/>as the system will skip over missing entries instead of treating<br/>them as critical errors. |
| `metadata_store` | -- | -- | Metadata storage options. |
| `metadata_store.file_size` | String | `64MB` | The size of the metadata store log file. |
@@ -94,13 +98,10 @@
| `procedure` | -- | -- | Procedure storage options. |
| `procedure.max_retry_times` | Integer | `3` | Procedure max retry time. |
| `procedure.retry_delay` | String | `500ms` | Initial retry delay of procedures, increases exponentially |
| `procedure.max_running_procedures` | Integer | `128` | Max running procedures.<br/>The maximum number of procedures that can be running at the same time.<br/>If the number of running procedures exceeds this limit, the procedure will be rejected. |
| `flow` | -- | -- | flow engine options. |
| `flow.num_workers` | Integer | `0` | The number of flow worker in flownode.<br/>Not setting(or set to 0) this value will use the number of CPU cores divided by 2. |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `storage` | -- | -- | The data storage options. |
| `storage.data_home` | String | `./greptimedb_data` | The working home directory. |
| `storage.data_home` | String | `/tmp/greptimedb/` | The working home directory. |
| `storage.type` | String | `File` | The storage type used to store the data.<br/>- `File`: the data is stored in the local file system.<br/>- `S3`: the data is stored in the S3 object storage.<br/>- `Gcs`: the data is stored in the Google Cloud Storage.<br/>- `Azblob`: the data is stored in the Azure Blob Storage.<br/>- `Oss`: the data is stored in the Aliyun OSS. |
| `storage.cache_path` | String | Unset | Read cache configuration for object storage such as 'S3' etc, it's configured by default when using object storage. It is recommended to configure it when using object storage for better performance.<br/>A local file directory, defaults to `{data_home}`. An empty string means disabling. |
| `storage.cache_capacity` | String | Unset | The local file cache capacity in bytes. If your disk space is sufficient, it is recommended to set it larger. |
@@ -123,7 +124,6 @@
| `storage.http_client.connect_timeout` | String | `30s` | The timeout for only the connect phase of a http client. |
| `storage.http_client.timeout` | String | `30s` | The total request timeout, applied from when the request starts connecting until the response body has finished.<br/>Also considered a total deadline. |
| `storage.http_client.pool_idle_timeout` | String | `90s` | The timeout for idle sockets being kept-alive. |
| `storage.http_client.skip_ssl_validation` | Bool | `false` | To skip the ssl verification<br/>**Security Notice**: Setting `skip_ssl_validation = true` disables certificate verification, making connections vulnerable to man-in-the-middle attacks. Only use this in development or trusted private networks. |
| `[[region_engine]]` | -- | -- | The region engine options. You can configure multiple region engines. |
| `region_engine.mito` | -- | -- | The Mito engine options. |
| `region_engine.mito.num_workers` | Integer | `8` | Number of region workers. |
@@ -156,7 +156,6 @@
| `region_engine.mito.index.metadata_cache_size` | String | `64MiB` | Cache size for inverted index metadata. |
| `region_engine.mito.index.content_cache_size` | String | `128MiB` | Cache size for inverted index content. |
| `region_engine.mito.index.content_cache_page_size` | String | `64KiB` | Page size for inverted index content cache. |
| `region_engine.mito.index.result_cache_size` | String | `128MiB` | Cache size for index result. |
| `region_engine.mito.inverted_index` | -- | -- | The options for inverted index in Mito engine. |
| `region_engine.mito.inverted_index.create_on_flush` | String | `auto` | Whether to create the index on flush.<br/>- `auto`: automatically (default)<br/>- `disable`: never |
| `region_engine.mito.inverted_index.create_on_compaction` | String | `auto` | Whether to create the index on compaction.<br/>- `auto`: automatically (default)<br/>- `disable`: never |
@@ -182,28 +181,26 @@
| `region_engine.metric` | -- | -- | Metric engine options. |
| `region_engine.metric.experimental_sparse_primary_key_encoding` | Bool | `false` | Whether to enable the experimental sparse primary key encoding. |
| `logging` | -- | -- | The logging options. |
| `logging.dir` | String | `./greptimedb_data/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.dir` | String | `/tmp/greptimedb/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.level` | String | Unset | The log level. Can be `info`/`debug`/`warn`/`error`. |
| `logging.enable_otlp_tracing` | Bool | `false` | Enable OTLP tracing. |
| `logging.otlp_endpoint` | String | `http://localhost:4318` | The OTLP tracing endpoint. |
| `logging.otlp_endpoint` | String | `http://localhost:4317` | The OTLP tracing endpoint. |
| `logging.append_stdout` | Bool | `true` | Whether to append logs to stdout. |
| `logging.log_format` | String | `text` | The log format. Can be `text`/`json`. |
| `logging.max_log_files` | Integer | `720` | The maximum amount of log files. |
| `logging.otlp_export_protocol` | String | `http` | The OTLP tracing export protocol. Can be `grpc`/`http`. |
| `logging.tracing_sample_ratio` | -- | -- | The percentage of tracing will be sampled and exported.<br/>Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.<br/>ratio > 1 are treated as 1. Fractions < 0 are treated as 0 |
| `logging.tracing_sample_ratio.default_ratio` | Float | `1.0` | -- |
| `slow_query` | -- | -- | The slow query log options. |
| `slow_query.enable` | Bool | `false` | Whether to enable slow query log. |
| `slow_query.record_type` | String | Unset | The record type of slow queries. It can be `system_table` or `log`. |
| `slow_query.threshold` | String | Unset | The threshold of slow query. |
| `slow_query.sample_ratio` | Float | Unset | The sampling ratio of slow query log. The value should be in the range of (0, 1]. |
| `export_metrics` | -- | -- | The standalone can export its metrics and send to Prometheus compatible service (e.g. `greptimedb`) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `logging.slow_query` | -- | -- | The slow query log options. |
| `logging.slow_query.enable` | Bool | `false` | Whether to enable slow query log. |
| `logging.slow_query.threshold` | String | Unset | The threshold of slow query. |
| `logging.slow_query.sample_ratio` | Float | Unset | The sampling ratio of slow query log. The value should be in the range of (0, 1]. |
| `export_metrics` | -- | -- | The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `export_metrics.enable` | Bool | `false` | whether enable export metrics. |
| `export_metrics.write_interval` | String | `30s` | The interval of export metrics. |
| `export_metrics.self_import` | -- | -- | For `standalone` mode, `self_import` is recommended to collect metrics generated by itself<br/>You must create the database before enabling it. |
| `export_metrics.self_import.db` | String | Unset | -- |
| `export_metrics.remote_write` | -- | -- | -- |
| `export_metrics.remote_write.url` | String | `""` | The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.url` | String | `""` | The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.headers` | InlineTable | -- | HTTP headers of Prometheus remote-write carry. |
| `tracing` | -- | -- | The tracing options. Only effect when compiled with `tokio-console` feature. |
| `tracing.tokio_console_addr` | String | Unset | The tokio console address. |
@@ -225,16 +222,14 @@
| `heartbeat.retry_interval` | String | `3s` | Interval for retrying to send heartbeat messages to the metasrv. |
| `http` | -- | -- | The HTTP server options. |
| `http.addr` | String | `127.0.0.1:4000` | The address to bind the HTTP server. |
| `http.timeout` | String | `0s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.timeout` | String | `30s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.body_limit` | String | `64MB` | HTTP request body limit.<br/>The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.<br/>Set to 0 to disable limit. |
| `http.enable_cors` | Bool | `true` | HTTP CORS support, it's turned on by default<br/>This allows browser to access http APIs without CORS restrictions |
| `http.cors_allowed_origins` | Array | Unset | Customize allowed origins for HTTP CORS. |
| `http.prom_validation_mode` | String | `strict` | Whether to enable validation for Prometheus remote write requests.<br/>Available options:<br/>- strict: deny invalid UTF-8 strings (default).<br/>- lossy: allow invalid UTF-8 strings, replace invalid characters with REPLACEMENT_CHARACTER(U+FFFD).<br/>- unchecked: do not valid strings. |
| `grpc` | -- | -- | The gRPC server options. |
| `grpc.bind_addr` | String | `127.0.0.1:4001` | The address to bind the gRPC server. |
| `grpc.server_addr` | String | `127.0.0.1:4001` | The address advertised to the metasrv, and used for connections from outside the host.<br/>If left empty or unset, the server will automatically use the IP address of the first network interface<br/>on the host, with the same port number as the one specified in `grpc.bind_addr`. |
| `grpc.runtime_size` | Integer | `8` | The number of server worker threads. |
| `grpc.flight_compression` | String | `arrow_ipc` | Compression mode for frontend side Arrow IPC service. Available options:<br/>- `none`: disable all compression<br/>- `transport`: only enable gRPC transport compression (zstd)<br/>- `arrow_ipc`: only enable Arrow IPC compression (lz4)<br/>- `all`: enable all compression.<br/>Default to `none` |
| `grpc.tls` | -- | -- | gRPC server TLS options, see `mysql.tls` section. |
| `grpc.tls.mode` | String | `disable` | TLS mode. |
| `grpc.tls.cert_path` | String | Unset | Certificate file path. |
@@ -279,34 +274,31 @@
| `meta_client.metadata_cache_max_capacity` | Integer | `100000` | The configuration about the cache of the metadata. |
| `meta_client.metadata_cache_ttl` | String | `10m` | TTL of the metadata cache. |
| `meta_client.metadata_cache_tti` | String | `5m` | -- |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `datanode` | -- | -- | Datanode options. |
| `datanode.client` | -- | -- | Datanode client options. |
| `datanode.client.connect_timeout` | String | `10s` | -- |
| `datanode.client.tcp_nodelay` | Bool | `true` | -- |
| `logging` | -- | -- | The logging options. |
| `logging.dir` | String | `./greptimedb_data/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.dir` | String | `/tmp/greptimedb/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.level` | String | Unset | The log level. Can be `info`/`debug`/`warn`/`error`. |
| `logging.enable_otlp_tracing` | Bool | `false` | Enable OTLP tracing. |
| `logging.otlp_endpoint` | String | `http://localhost:4318` | The OTLP tracing endpoint. |
| `logging.otlp_endpoint` | String | `http://localhost:4317` | The OTLP tracing endpoint. |
| `logging.append_stdout` | Bool | `true` | Whether to append logs to stdout. |
| `logging.log_format` | String | `text` | The log format. Can be `text`/`json`. |
| `logging.max_log_files` | Integer | `720` | The maximum amount of log files. |
| `logging.otlp_export_protocol` | String | `http` | The OTLP tracing export protocol. Can be `grpc`/`http`. |
| `logging.tracing_sample_ratio` | -- | -- | The percentage of tracing will be sampled and exported.<br/>Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.<br/>ratio > 1 are treated as 1. Fractions < 0 are treated as 0 |
| `logging.tracing_sample_ratio.default_ratio` | Float | `1.0` | -- |
| `slow_query` | -- | -- | The slow query log options. |
| `slow_query.enable` | Bool | `true` | Whether to enable slow query log. |
| `slow_query.record_type` | String | `system_table` | The record type of slow queries. It can be `system_table` or `log`.<br/>If `system_table` is selected, the slow queries will be recorded in a system table `greptime_private.slow_queries`.<br/>If `log` is selected, the slow queries will be logged in a log file `greptimedb-slow-queries.*`. |
| `slow_query.threshold` | String | `30s` | The threshold of slow query. It can be human readable time string, for example: `10s`, `100ms`, `1s`. |
| `slow_query.sample_ratio` | Float | `1.0` | The sampling ratio of slow query log. The value should be in the range of (0, 1]. For example, `0.1` means 10% of the slow queries will be logged and `1.0` means all slow queries will be logged. |
| `slow_query.ttl` | String | `30d` | The TTL of the `slow_queries` system table. Default is `30d` when `record_type` is `system_table`. |
| `export_metrics` | -- | -- | The frontend can export its metrics and send to Prometheus compatible service (e.g. `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `logging.slow_query` | -- | -- | The slow query log options. |
| `logging.slow_query.enable` | Bool | `false` | Whether to enable slow query log. |
| `logging.slow_query.threshold` | String | Unset | The threshold of slow query. |
| `logging.slow_query.sample_ratio` | Float | Unset | The sampling ratio of slow query log. The value should be in the range of (0, 1]. |
| `export_metrics` | -- | -- | The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `export_metrics.enable` | Bool | `false` | whether enable export metrics. |
| `export_metrics.write_interval` | String | `30s` | The interval of export metrics. |
| `export_metrics.self_import` | -- | -- | For `standalone` mode, `self_import` is recommend to collect metrics generated by itself<br/>You must create the database before enabling it. |
| `export_metrics.self_import.db` | String | Unset | -- |
| `export_metrics.remote_write` | -- | -- | -- |
| `export_metrics.remote_write.url` | String | `""` | The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.url` | String | `""` | The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.headers` | InlineTable | -- | HTTP headers of Prometheus remote-write carry. |
| `tracing` | -- | -- | The tracing options. Only effect when compiled with `tokio-console` feature. |
| `tracing.tokio_console_addr` | String | Unset | The tokio console address. |
@@ -316,37 +308,26 @@
| Key | Type | Default | Descriptions |
| --- | -----| ------- | ----------- |
| `data_home` | String | `./greptimedb_data` | The working home directory. |
| `data_home` | String | `/tmp/metasrv/` | The working home directory. |
| `bind_addr` | String | `127.0.0.1:3002` | The bind address of metasrv. |
| `server_addr` | String | `127.0.0.1:3002` | The communication server address for the frontend and datanode to connect to metasrv.<br/>If left empty or unset, the server will automatically use the IP address of the first network interface<br/>on the host, with the same port number as the one specified in `bind_addr`. |
| `store_addrs` | Array | -- | Store server address default to etcd store.<br/>For postgres store, the format is:<br/>"password=password dbname=postgres user=postgres host=localhost port=5432"<br/>For etcd store, the format is:<br/>"127.0.0.1:2379" |
| `store_key_prefix` | String | `""` | If it's not empty, the metasrv will store all data with this key prefix. |
| `backend` | String | `etcd_store` | The datastore for meta server.<br/>Available values:<br/>- `etcd_store` (default value)<br/>- `memory_store`<br/>- `postgres_store`<br/>- `mysql_store` |
| `backend` | String | `etcd_store` | The datastore for meta server.<br/>Available values:<br/>- `etcd_store` (default value)<br/>- `memory_store`<br/>- `postgres_store` |
| `meta_table_name` | String | `greptime_metakv` | Table name in RDS to store metadata. Effect when using a RDS kvbackend.<br/>**Only used when backend is `postgres_store`.** |
| `meta_election_lock_id` | Integer | `1` | Advisory lock id in PostgreSQL for election. Effect when using PostgreSQL as kvbackend<br/>Only used when backend is `postgres_store`. |
| `selector` | String | `round_robin` | Datanode selector type.<br/>- `round_robin` (default value)<br/>- `lease_based`<br/>- `load_based`<br/>For details, please see "https://docs.greptime.com/developer-guide/metasrv/selector". |
| `use_memory_store` | Bool | `false` | Store data in memory. |
| `enable_region_failover` | Bool | `false` | Whether to enable region failover.<br/>This feature is only available on GreptimeDB running on cluster mode and<br/>- Using Remote WAL<br/>- Using shared storage (e.g., s3). |
| `region_failure_detector_initialization_delay` | String | `10m` | Delay before initializing region failure detectors.<br/>This delay helps prevent premature initialization of region failure detectors in cases where<br/>cluster maintenance mode is enabled right after metasrv starts, especially when the cluster<br/>is not deployed via the recommended GreptimeDB Operator. Without this delay, early detector registration<br/>may trigger unnecessary region failovers during datanode startup. |
| `allow_region_failover_on_local_wal` | Bool | `false` | Whether to allow region failover on local WAL.<br/>**This option is not recommended to be set to true, because it may lead to data loss during failover.** |
| `node_max_idle_time` | String | `24hours` | Max allowed idle time before removing node info from metasrv memory. |
| `enable_telemetry` | Bool | `true` | Whether to enable greptimedb telemetry. Enabled by default. |
| `runtime` | -- | -- | The runtime options. |
| `runtime.global_rt_size` | Integer | `8` | The number of threads to execute the runtime for global read operations. |
| `runtime.compact_rt_size` | Integer | `4` | The number of threads to execute the runtime for global write operations. |
| `grpc` | -- | -- | The gRPC server options. |
| `grpc.bind_addr` | String | `127.0.0.1:3002` | The address to bind the gRPC server. |
| `grpc.server_addr` | String | `127.0.0.1:3002` | The communication server address for the frontend and datanode to connect to metasrv.<br/>If left empty or unset, the server will automatically use the IP address of the first network interface<br/>on the host, with the same port number as the one specified in `bind_addr`. |
| `grpc.runtime_size` | Integer | `8` | The number of server worker threads. |
| `grpc.max_recv_message_size` | String | `512MB` | The maximum receive message size for gRPC server. |
| `grpc.max_send_message_size` | String | `512MB` | The maximum send message size for gRPC server. |
| `http` | -- | -- | The HTTP server options. |
| `http.addr` | String | `127.0.0.1:4000` | The address to bind the HTTP server. |
| `http.timeout` | String | `0s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.body_limit` | String | `64MB` | HTTP request body limit.<br/>The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.<br/>Set to 0 to disable limit. |
| `procedure` | -- | -- | Procedure storage options. |
| `procedure.max_retry_times` | Integer | `12` | Procedure max retry time. |
| `procedure.retry_delay` | String | `500ms` | Initial retry delay of procedures, increases exponentially |
| `procedure.max_metadata_value_size` | String | `1500KiB` | Auto split large value<br/>GreptimeDB procedure uses etcd as the default metadata storage backend.<br/>The etcd the maximum size of any request is 1.5 MiB<br/>1500KiB = 1536KiB (1.5MiB) - 36KiB (reserved size of key)<br/>Comments out the `max_metadata_value_size`, for don't split large value (no limit). |
| `procedure.max_running_procedures` | Integer | `128` | Max running procedures.<br/>The maximum number of procedures that can be running at the same time.<br/>If the number of running procedures exceeds this limit, the procedure will be rejected. |
| `failure_detector` | -- | -- | -- |
| `failure_detector.threshold` | Float | `8.0` | The threshold value used by the failure detector to determine failure conditions. |
| `failure_detector.min_std_deviation` | String | `100ms` | The minimum standard deviation of the heartbeat intervals, used to calculate acceptable variations. |
@@ -361,30 +342,36 @@
| `wal.provider` | String | `raft_engine` | -- |
| `wal.broker_endpoints` | Array | -- | The broker endpoints of the Kafka cluster. |
| `wal.auto_create_topics` | Bool | `true` | Automatically create topics for WAL.<br/>Set to `true` to automatically create topics for WAL.<br/>Otherwise, use topics named `topic_name_prefix_[0..num_topics)` |
| `wal.auto_prune_interval` | String | `0s` | Interval of automatically WAL pruning.<br/>Set to `0s` to disable automatically WAL pruning which delete unused remote WAL entries periodically. |
| `wal.trigger_flush_threshold` | Integer | `0` | The threshold to trigger a flush operation of a region in automatically WAL pruning.<br/>Metasrv will send a flush request to flush the region when:<br/>`trigger_flush_threshold` + `prunable_entry_id` < `max_prunable_entry_id`<br/>where:<br/>- `prunable_entry_id` is the maximum entry id that can be pruned of the region.<br/>- `max_prunable_entry_id` is the maximum prunable entry id among all regions in the same topic.<br/>Set to `0` to disable the flush operation. |
| `wal.auto_prune_parallelism` | Integer | `10` | Concurrent task limit for automatically WAL pruning. |
| `wal.num_topics` | Integer | `64` | Number of topics. |
| `wal.selector_type` | String | `round_robin` | Topic selector type.<br/>Available selector types:<br/>- `round_robin` (default) |
| `wal.topic_name_prefix` | String | `greptimedb_wal_topic` | A Kafka topic is constructed by concatenating `topic_name_prefix` and `topic_id`.<br/>Only accepts strings that match the following regular expression pattern:<br/>[a-zA-Z_:-][a-zA-Z0-9_:\-\.@#]*<br/>i.g., greptimedb_wal_topic_0, greptimedb_wal_topic_1. |
| `wal.replication_factor` | Integer | `1` | Expected number of replicas of each partition. |
| `wal.create_topic_timeout` | String | `30s` | Above which a topic creation operation will be cancelled. |
| `wal.backoff_init` | String | `500ms` | The initial backoff for kafka clients. |
| `wal.backoff_max` | String | `10s` | The maximum backoff for kafka clients. |
| `wal.backoff_base` | Integer | `2` | Exponential backoff rate, i.e. next backoff = base * current backoff. |
| `wal.backoff_deadline` | String | `5mins` | Stop reconnecting if the total wait time reaches the deadline. If this config is missing, the reconnecting won't terminate. |
| `logging` | -- | -- | The logging options. |
| `logging.dir` | String | `./greptimedb_data/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.dir` | String | `/tmp/greptimedb/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.level` | String | Unset | The log level. Can be `info`/`debug`/`warn`/`error`. |
| `logging.enable_otlp_tracing` | Bool | `false` | Enable OTLP tracing. |
| `logging.otlp_endpoint` | String | `http://localhost:4318` | The OTLP tracing endpoint. |
| `logging.otlp_endpoint` | String | `http://localhost:4317` | The OTLP tracing endpoint. |
| `logging.append_stdout` | Bool | `true` | Whether to append logs to stdout. |
| `logging.log_format` | String | `text` | The log format. Can be `text`/`json`. |
| `logging.max_log_files` | Integer | `720` | The maximum amount of log files. |
| `logging.otlp_export_protocol` | String | `http` | The OTLP tracing export protocol. Can be `grpc`/`http`. |
| `logging.tracing_sample_ratio` | -- | -- | The percentage of tracing will be sampled and exported.<br/>Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.<br/>ratio > 1 are treated as 1. Fractions < 0 are treated as 0 |
| `logging.tracing_sample_ratio.default_ratio` | Float | `1.0` | -- |
| `export_metrics` | -- | -- | The metasrv can export its metrics and send to Prometheus compatible service (e.g. `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `logging.slow_query` | -- | -- | The slow query log options. |
| `logging.slow_query.enable` | Bool | `false` | Whether to enable slow query log. |
| `logging.slow_query.threshold` | String | Unset | The threshold of slow query. |
| `logging.slow_query.sample_ratio` | Float | Unset | The sampling ratio of slow query log. The value should be in the range of (0, 1]. |
| `export_metrics` | -- | -- | The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `export_metrics.enable` | Bool | `false` | whether enable export metrics. |
| `export_metrics.write_interval` | String | `30s` | The interval of export metrics. |
| `export_metrics.self_import` | -- | -- | For `standalone` mode, `self_import` is recommend to collect metrics generated by itself<br/>You must create the database before enabling it. |
| `export_metrics.self_import.db` | String | Unset | -- |
| `export_metrics.remote_write` | -- | -- | -- |
| `export_metrics.remote_write.url` | String | `""` | The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.url` | String | `""` | The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.headers` | InlineTable | -- | HTTP headers of Prometheus remote-write carry. |
| `tracing` | -- | -- | The tracing options. Only effect when compiled with `tokio-console` feature. |
| `tracing.tokio_console_addr` | String | Unset | The tokio console address. |
@@ -394,6 +381,7 @@
| Key | Type | Default | Descriptions |
| --- | -----| ------- | ----------- |
| `mode` | String | `standalone` | The running mode of the datanode. It can be `standalone` or `distributed`. |
| `node_id` | Integer | Unset | The datanode identifier and should be unique in the cluster. |
| `require_lease_before_startup` | Bool | `false` | Start services after regions have obtained leases.<br/>It will block the datanode start if it can't receive leases in the heartbeat from metasrv. |
| `init_regions_in_background` | Bool | `false` | Initialize all regions in the background during the startup.<br/>By default, it provides services after all regions have been initialized. |
@@ -402,7 +390,7 @@
| `enable_telemetry` | Bool | `true` | Enable telemetry to collect anonymous usage data. Enabled by default. |
| `http` | -- | -- | The HTTP server options. |
| `http.addr` | String | `127.0.0.1:4000` | The address to bind the HTTP server. |
| `http.timeout` | String | `0s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.timeout` | String | `30s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.body_limit` | String | `64MB` | HTTP request body limit.<br/>The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.<br/>Set to 0 to disable limit. |
| `grpc` | -- | -- | The gRPC server options. |
| `grpc.bind_addr` | String | `127.0.0.1:3001` | The address to bind the gRPC server. |
@@ -410,7 +398,6 @@
| `grpc.runtime_size` | Integer | `8` | The number of server worker threads. |
| `grpc.max_recv_message_size` | String | `512MB` | The maximum receive message size for gRPC server. |
| `grpc.max_send_message_size` | String | `512MB` | The maximum send message size for gRPC server. |
| `grpc.flight_compression` | String | `arrow_ipc` | Compression mode for datanode side Arrow IPC service. Available options:<br/>- `none`: disable all compression<br/>- `transport`: only enable gRPC transport compression (zstd)<br/>- `arrow_ipc`: only enable Arrow IPC compression (lz4)<br/>- `all`: enable all compression.<br/>Default to `none` |
| `grpc.tls` | -- | -- | gRPC server TLS options, see `mysql.tls` section. |
| `grpc.tls.mode` | String | `disable` | TLS mode. |
| `grpc.tls.cert_path` | String | Unset | Certificate file path. |
@@ -447,13 +434,15 @@
| `wal.broker_endpoints` | Array | -- | The Kafka broker endpoints.<br/>**It's only used when the provider is `kafka`**. |
| `wal.max_batch_bytes` | String | `1MB` | The max size of a single producer batch.<br/>Warning: Kafka has a default limit of 1MB per message in a topic.<br/>**It's only used when the provider is `kafka`**. |
| `wal.consumer_wait_timeout` | String | `100ms` | The consumer wait timeout.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_init` | String | `500ms` | The initial backoff delay.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_max` | String | `10s` | The maximum backoff delay.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_base` | Integer | `2` | The exponential backoff rate, i.e. next backoff = base * current backoff.<br/>**It's only used when the provider is `kafka`**. |
| `wal.backoff_deadline` | String | `5mins` | The deadline of retries.<br/>**It's only used when the provider is `kafka`**. |
| `wal.create_index` | Bool | `true` | Whether to enable WAL index creation.<br/>**It's only used when the provider is `kafka`**. |
| `wal.dump_index_interval` | String | `60s` | The interval for dumping WAL indexes.<br/>**It's only used when the provider is `kafka`**. |
| `wal.overwrite_entry_start_id` | Bool | `false` | Ignore missing entries during read WAL.<br/>**It's only used when the provider is `kafka`**.<br/><br/>This option ensures that when Kafka messages are deleted, the system<br/>can still successfully replay memtable data without throwing an<br/>out-of-range error.<br/>However, enabling this option might lead to unexpected data loss,<br/>as the system will skip over missing entries instead of treating<br/>them as critical errors. |
| `query` | -- | -- | The query engine options. |
| `query.parallelism` | Integer | `0` | Parallelism of the query engine.<br/>Default to 0, which means the number of CPU cores. |
| `storage` | -- | -- | The data storage options. |
| `storage.data_home` | String | `./greptimedb_data` | The working home directory. |
| `storage.data_home` | String | `/tmp/greptimedb/` | The working home directory. |
| `storage.type` | String | `File` | The storage type used to store the data.<br/>- `File`: the data is stored in the local file system.<br/>- `S3`: the data is stored in the S3 object storage.<br/>- `Gcs`: the data is stored in the Google Cloud Storage.<br/>- `Azblob`: the data is stored in the Azure Blob Storage.<br/>- `Oss`: the data is stored in the Aliyun OSS. |
| `storage.cache_path` | String | Unset | Read cache configuration for object storage such as 'S3' etc, it's configured by default when using object storage. It is recommended to configure it when using object storage for better performance.<br/>A local file directory, defaults to `{data_home}`. An empty string means disabling. |
| `storage.cache_capacity` | String | Unset | The local file cache capacity in bytes. If your disk space is sufficient, it is recommended to set it larger. |
@@ -476,7 +465,6 @@
| `storage.http_client.connect_timeout` | String | `30s` | The timeout for only the connect phase of a http client. |
| `storage.http_client.timeout` | String | `30s` | The total request timeout, applied from when the request starts connecting until the response body has finished.<br/>Also considered a total deadline. |
| `storage.http_client.pool_idle_timeout` | String | `90s` | The timeout for idle sockets being kept-alive. |
| `storage.http_client.skip_ssl_validation` | Bool | `false` | To skip the ssl verification<br/>**Security Notice**: Setting `skip_ssl_validation = true` disables certificate verification, making connections vulnerable to man-in-the-middle attacks. Only use this in development or trusted private networks. |
| `[[region_engine]]` | -- | -- | The region engine options. You can configure multiple region engines. |
| `region_engine.mito` | -- | -- | The Mito engine options. |
| `region_engine.mito.num_workers` | Integer | `8` | Number of region workers. |
@@ -509,7 +497,6 @@
| `region_engine.mito.index.metadata_cache_size` | String | `64MiB` | Cache size for inverted index metadata. |
| `region_engine.mito.index.content_cache_size` | String | `128MiB` | Cache size for inverted index content. |
| `region_engine.mito.index.content_cache_page_size` | String | `64KiB` | Page size for inverted index content cache. |
| `region_engine.mito.index.result_cache_size` | String | `128MiB` | Cache size for index result. |
| `region_engine.mito.inverted_index` | -- | -- | The options for inverted index in Mito engine. |
| `region_engine.mito.inverted_index.create_on_flush` | String | `auto` | Whether to create the index on flush.<br/>- `auto`: automatically (default)<br/>- `disable`: never |
| `region_engine.mito.inverted_index.create_on_compaction` | String | `auto` | Whether to create the index on compaction.<br/>- `auto`: automatically (default)<br/>- `disable`: never |
@@ -535,21 +522,26 @@
| `region_engine.metric` | -- | -- | Metric engine options. |
| `region_engine.metric.experimental_sparse_primary_key_encoding` | Bool | `false` | Whether to enable the experimental sparse primary key encoding. |
| `logging` | -- | -- | The logging options. |
| `logging.dir` | String | `./greptimedb_data/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.dir` | String | `/tmp/greptimedb/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.level` | String | Unset | The log level. Can be `info`/`debug`/`warn`/`error`. |
| `logging.enable_otlp_tracing` | Bool | `false` | Enable OTLP tracing. |
| `logging.otlp_endpoint` | String | `http://localhost:4318` | The OTLP tracing endpoint. |
| `logging.otlp_endpoint` | String | `http://localhost:4317` | The OTLP tracing endpoint. |
| `logging.append_stdout` | Bool | `true` | Whether to append logs to stdout. |
| `logging.log_format` | String | `text` | The log format. Can be `text`/`json`. |
| `logging.max_log_files` | Integer | `720` | The maximum amount of log files. |
| `logging.otlp_export_protocol` | String | `http` | The OTLP tracing export protocol. Can be `grpc`/`http`. |
| `logging.tracing_sample_ratio` | -- | -- | The percentage of tracing will be sampled and exported.<br/>Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.<br/>ratio > 1 are treated as 1. Fractions < 0 are treated as 0 |
| `logging.tracing_sample_ratio.default_ratio` | Float | `1.0` | -- |
| `export_metrics` | -- | -- | The datanode can export its metrics and send to Prometheus compatible service (e.g. `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `logging.slow_query` | -- | -- | The slow query log options. |
| `logging.slow_query.enable` | Bool | `false` | Whether to enable slow query log. |
| `logging.slow_query.threshold` | String | Unset | The threshold of slow query. |
| `logging.slow_query.sample_ratio` | Float | Unset | The sampling ratio of slow query log. The value should be in the range of (0, 1]. |
| `export_metrics` | -- | -- | The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.<br/>This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape. |
| `export_metrics.enable` | Bool | `false` | whether enable export metrics. |
| `export_metrics.write_interval` | String | `30s` | The interval of export metrics. |
| `export_metrics.self_import` | -- | -- | For `standalone` mode, `self_import` is recommend to collect metrics generated by itself<br/>You must create the database before enabling it. |
| `export_metrics.self_import.db` | String | Unset | -- |
| `export_metrics.remote_write` | -- | -- | -- |
| `export_metrics.remote_write.url` | String | `""` | The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.url` | String | `""` | The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`. |
| `export_metrics.remote_write.headers` | InlineTable | -- | HTTP headers of Prometheus remote-write carry. |
| `tracing` | -- | -- | The tracing options. Only effect when compiled with `tokio-console` feature. |
| `tracing.tokio_console_addr` | String | Unset | The tokio console address. |
@@ -559,6 +551,7 @@
| Key | Type | Default | Descriptions |
| --- | -----| ------- | ----------- |
| `mode` | String | `distributed` | The running mode of the flownode. It can be `standalone` or `distributed`. |
| `node_id` | Integer | Unset | The flownode identifier and should be unique in the cluster. |
| `flow` | -- | -- | flow engine options. |
| `flow.num_workers` | Integer | `0` | The number of flow worker in flownode.<br/>Not setting(or set to 0) this value will use the number of CPU cores divided by 2. |
@@ -570,7 +563,7 @@
| `grpc.max_send_message_size` | String | `512MB` | The maximum send message size for gRPC server. |
| `http` | -- | -- | The HTTP server options. |
| `http.addr` | String | `127.0.0.1:4000` | The address to bind the HTTP server. |
| `http.timeout` | String | `0s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.timeout` | String | `30s` | HTTP request timeout. Set to 0 to disable timeout. |
| `http.body_limit` | String | `64MB` | HTTP request body limit.<br/>The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.<br/>Set to 0 to disable limit. |
| `meta_client` | -- | -- | The metasrv client options. |
| `meta_client.metasrv_addrs` | Array | -- | The addresses of the metasrv. |
@@ -586,15 +579,18 @@
| `heartbeat.interval` | String | `3s` | Interval for sending heartbeat messages to the metasrv. |
| `heartbeat.retry_interval` | String | `3s` | Interval for retrying to send heartbeat messages to the metasrv. |
| `logging` | -- | -- | The logging options. |
| `logging.dir` | String | `./greptimedb_data/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.dir` | String | `/tmp/greptimedb/logs` | The directory to store the log files. If set to empty, logs will not be written to files. |
| `logging.level` | String | Unset | The log level. Can be `info`/`debug`/`warn`/`error`. |
| `logging.enable_otlp_tracing` | Bool | `false` | Enable OTLP tracing. |
| `logging.otlp_endpoint` | String | `http://localhost:4318` | The OTLP tracing endpoint. |
| `logging.otlp_endpoint` | String | `http://localhost:4317` | The OTLP tracing endpoint. |
| `logging.append_stdout` | Bool | `true` | Whether to append logs to stdout. |
| `logging.log_format` | String | `text` | The log format. Can be `text`/`json`. |
| `logging.max_log_files` | Integer | `720` | The maximum amount of log files. |
| `logging.otlp_export_protocol` | String | `http` | The OTLP tracing export protocol. Can be `grpc`/`http`. |
| `logging.tracing_sample_ratio` | -- | -- | The percentage of tracing will be sampled and exported.<br/>Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.<br/>ratio > 1 are treated as 1. Fractions < 0 are treated as 0 |
| `logging.tracing_sample_ratio.default_ratio` | Float | `1.0` | -- |
| `logging.slow_query` | -- | -- | The slow query log options. |
| `logging.slow_query.enable` | Bool | `false` | Whether to enable slow query log. |
| `logging.slow_query.threshold` | String | Unset | The threshold of slow query. |
| `logging.slow_query.sample_ratio` | Float | Unset | The sampling ratio of slow query log. The value should be in the range of (0, 1]. |
| `tracing` | -- | -- | The tracing options. Only effect when compiled with `tokio-console` feature. |
| `tracing.tokio_console_addr` | String | Unset | The tokio console address. |

View File

@@ -1,3 +1,6 @@
## The running mode of the datanode. It can be `standalone` or `distributed`.
mode = "standalone"
## The datanode identifier and should be unique in the cluster.
## @toml2docs:none-default
node_id = 42
@@ -24,7 +27,7 @@ max_concurrent_queries = 0
## The address to bind the HTTP server.
addr = "127.0.0.1:4000"
## HTTP request timeout. Set to 0 to disable timeout.
timeout = "0s"
timeout = "30s"
## HTTP request body limit.
## The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.
## Set to 0 to disable limit.
@@ -44,13 +47,6 @@ runtime_size = 8
max_recv_message_size = "512MB"
## The maximum send message size for gRPC server.
max_send_message_size = "512MB"
## Compression mode for datanode side Arrow IPC service. Available options:
## - `none`: disable all compression
## - `transport`: only enable gRPC transport compression (zstd)
## - `arrow_ipc`: only enable Arrow IPC compression (lz4)
## - `all`: enable all compression.
## Default to `none`
flight_compression = "arrow_ipc"
## gRPC server TLS options, see `mysql.tls` section.
[grpc.tls]
@@ -123,7 +119,7 @@ provider = "raft_engine"
## The directory to store the WAL files.
## **It's only used when the provider is `raft_engine`**.
## @toml2docs:none-default
dir = "./greptimedb_data/wal"
dir = "/tmp/greptimedb/wal"
## The size of the WAL segment file.
## **It's only used when the provider is `raft_engine`**.
@@ -173,6 +169,22 @@ max_batch_bytes = "1MB"
## **It's only used when the provider is `kafka`**.
consumer_wait_timeout = "100ms"
## The initial backoff delay.
## **It's only used when the provider is `kafka`**.
backoff_init = "500ms"
## The maximum backoff delay.
## **It's only used when the provider is `kafka`**.
backoff_max = "10s"
## The exponential backoff rate, i.e. next backoff = base * current backoff.
## **It's only used when the provider is `kafka`**.
backoff_base = 2
## The deadline of retries.
## **It's only used when the provider is `kafka`**.
backoff_deadline = "5mins"
## Whether to enable WAL index creation.
## **It's only used when the provider is `kafka`**.
create_index = true
@@ -250,16 +262,10 @@ overwrite_entry_start_id = false
# credential = "base64-credential"
# endpoint = "https://storage.googleapis.com"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## The data storage options.
[storage]
## The working home directory.
data_home = "./greptimedb_data"
data_home = "/tmp/greptimedb/"
## The storage type used to store the data.
## - `File`: the data is stored in the local file system.
@@ -367,10 +373,6 @@ timeout = "30s"
## The timeout for idle sockets being kept-alive.
pool_idle_timeout = "90s"
## To skip the ssl verification
## **Security Notice**: Setting `skip_ssl_validation = true` disables certificate verification, making connections vulnerable to man-in-the-middle attacks. Only use this in development or trusted private networks.
skip_ssl_validation = false
# Custom storage options
# [[storage.providers]]
# name = "S3"
@@ -510,9 +512,6 @@ content_cache_size = "128MiB"
## Page size for inverted index content cache.
content_cache_page_size = "64KiB"
## Cache size for index result.
result_cache_size = "128MiB"
## The options for inverted index in Mito engine.
[region_engine.mito.inverted_index]
@@ -619,7 +618,7 @@ experimental_sparse_primary_key_encoding = false
## The logging options.
[logging]
## The directory to store the log files. If set to empty, logs will not be written to files.
dir = "./greptimedb_data/logs"
dir = "/tmp/greptimedb/logs"
## The log level. Can be `info`/`debug`/`warn`/`error`.
## @toml2docs:none-default
@@ -629,7 +628,7 @@ level = "info"
enable_otlp_tracing = false
## The OTLP tracing endpoint.
otlp_endpoint = "http://localhost:4318"
otlp_endpoint = "http://localhost:4317"
## Whether to append logs to stdout.
append_stdout = true
@@ -640,25 +639,43 @@ log_format = "text"
## The maximum amount of log files.
max_log_files = 720
## The OTLP tracing export protocol. Can be `grpc`/`http`.
otlp_export_protocol = "http"
## The percentage of tracing will be sampled and exported.
## Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.
## ratio > 1 are treated as 1. Fractions < 0 are treated as 0
[logging.tracing_sample_ratio]
default_ratio = 1.0
## The datanode can export its metrics and send to Prometheus compatible service (e.g. `greptimedb` itself) from remote-write API.
## The slow query log options.
[logging.slow_query]
## Whether to enable slow query log.
enable = false
## The threshold of slow query.
## @toml2docs:none-default
threshold = "10s"
## The sampling ratio of slow query log. The value should be in the range of (0, 1].
## @toml2docs:none-default
sample_ratio = 1.0
## The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.
## This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape.
[export_metrics]
## whether enable export metrics.
enable = false
## The interval of export metrics.
write_interval = "30s"
## For `standalone` mode, `self_import` is recommend to collect metrics generated by itself
## You must create the database before enabling it.
[export_metrics.self_import]
## @toml2docs:none-default
db = "greptime_metrics"
[export_metrics.remote_write]
## The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
## The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
url = ""
## HTTP headers of Prometheus remote-write carry.

View File

@@ -1,3 +1,6 @@
## The running mode of the flownode. It can be `standalone` or `distributed`.
mode = "distributed"
## The flownode identifier and should be unique in the cluster.
## @toml2docs:none-default
node_id = 14
@@ -27,7 +30,7 @@ max_send_message_size = "512MB"
## The address to bind the HTTP server.
addr = "127.0.0.1:4000"
## HTTP request timeout. Set to 0 to disable timeout.
timeout = "0s"
timeout = "30s"
## HTTP request body limit.
## The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.
## Set to 0 to disable limit.
@@ -73,7 +76,7 @@ retry_interval = "3s"
## The logging options.
[logging]
## The directory to store the log files. If set to empty, logs will not be written to files.
dir = "./greptimedb_data/logs"
dir = "/tmp/greptimedb/logs"
## The log level. Can be `info`/`debug`/`warn`/`error`.
## @toml2docs:none-default
@@ -83,7 +86,7 @@ level = "info"
enable_otlp_tracing = false
## The OTLP tracing endpoint.
otlp_endpoint = "http://localhost:4318"
otlp_endpoint = "http://localhost:4317"
## Whether to append logs to stdout.
append_stdout = true
@@ -94,17 +97,28 @@ log_format = "text"
## The maximum amount of log files.
max_log_files = 720
## The OTLP tracing export protocol. Can be `grpc`/`http`.
otlp_export_protocol = "http"
## The percentage of tracing will be sampled and exported.
## Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.
## ratio > 1 are treated as 1. Fractions < 0 are treated as 0
[logging.tracing_sample_ratio]
default_ratio = 1.0
## The slow query log options.
[logging.slow_query]
## Whether to enable slow query log.
enable = false
## The threshold of slow query.
## @toml2docs:none-default
threshold = "10s"
## The sampling ratio of slow query log. The value should be in the range of (0, 1].
## @toml2docs:none-default
sample_ratio = 1.0
## The tracing options. Only effect when compiled with `tokio-console` feature.
#+ [tracing]
## The tokio console address.
## @toml2docs:none-default
#+ tokio_console_addr = "127.0.0.1"

View File

@@ -26,7 +26,7 @@ retry_interval = "3s"
## The address to bind the HTTP server.
addr = "127.0.0.1:4000"
## HTTP request timeout. Set to 0 to disable timeout.
timeout = "0s"
timeout = "30s"
## HTTP request body limit.
## The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.
## Set to 0 to disable limit.
@@ -37,12 +37,6 @@ enable_cors = true
## Customize allowed origins for HTTP CORS.
## @toml2docs:none-default
cors_allowed_origins = ["https://example.com"]
## Whether to enable validation for Prometheus remote write requests.
## Available options:
## - strict: deny invalid UTF-8 strings (default).
## - lossy: allow invalid UTF-8 strings, replace invalid characters with REPLACEMENT_CHARACTER(U+FFFD).
## - unchecked: do not valid strings.
prom_validation_mode = "strict"
## The gRPC server options.
[grpc]
@@ -54,13 +48,6 @@ bind_addr = "127.0.0.1:4001"
server_addr = "127.0.0.1:4001"
## The number of server worker threads.
runtime_size = 8
## Compression mode for frontend side Arrow IPC service. Available options:
## - `none`: disable all compression
## - `transport`: only enable gRPC transport compression (zstd)
## - `arrow_ipc`: only enable Arrow IPC compression (lz4)
## - `all`: enable all compression.
## Default to `none`
flight_compression = "arrow_ipc"
## gRPC server TLS options, see `mysql.tls` section.
[grpc.tls]
@@ -192,12 +179,6 @@ metadata_cache_ttl = "10m"
# TTI of the metadata cache.
metadata_cache_tti = "5m"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## Datanode options.
[datanode]
## Datanode client options.
@@ -208,7 +189,7 @@ tcp_nodelay = true
## The logging options.
[logging]
## The directory to store the log files. If set to empty, logs will not be written to files.
dir = "./greptimedb_data/logs"
dir = "/tmp/greptimedb/logs"
## The log level. Can be `info`/`debug`/`warn`/`error`.
## @toml2docs:none-default
@@ -218,7 +199,7 @@ level = "info"
enable_otlp_tracing = false
## The OTLP tracing endpoint.
otlp_endpoint = "http://localhost:4318"
otlp_endpoint = "http://localhost:4317"
## Whether to append logs to stdout.
append_stdout = true
@@ -229,9 +210,6 @@ log_format = "text"
## The maximum amount of log files.
max_log_files = 720
## The OTLP tracing export protocol. Can be `grpc`/`http`.
otlp_export_protocol = "http"
## The percentage of tracing will be sampled and exported.
## Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.
## ratio > 1 are treated as 1. Fractions < 0 are treated as 0
@@ -239,34 +217,36 @@ otlp_export_protocol = "http"
default_ratio = 1.0
## The slow query log options.
[slow_query]
[logging.slow_query]
## Whether to enable slow query log.
enable = true
enable = false
## The record type of slow queries. It can be `system_table` or `log`.
## If `system_table` is selected, the slow queries will be recorded in a system table `greptime_private.slow_queries`.
## If `log` is selected, the slow queries will be logged in a log file `greptimedb-slow-queries.*`.
record_type = "system_table"
## The threshold of slow query.
## @toml2docs:none-default
threshold = "10s"
## The threshold of slow query. It can be human readable time string, for example: `10s`, `100ms`, `1s`.
threshold = "30s"
## The sampling ratio of slow query log. The value should be in the range of (0, 1]. For example, `0.1` means 10% of the slow queries will be logged and `1.0` means all slow queries will be logged.
## The sampling ratio of slow query log. The value should be in the range of (0, 1].
## @toml2docs:none-default
sample_ratio = 1.0
## The TTL of the `slow_queries` system table. Default is `30d` when `record_type` is `system_table`.
ttl = "30d"
## The frontend can export its metrics and send to Prometheus compatible service (e.g. `greptimedb` itself) from remote-write API.
## The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.
## This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape.
[export_metrics]
## whether enable export metrics.
enable = false
## The interval of export metrics.
write_interval = "30s"
## For `standalone` mode, `self_import` is recommend to collect metrics generated by itself
## You must create the database before enabling it.
[export_metrics.self_import]
## @toml2docs:none-default
db = "greptime_metrics"
[export_metrics.remote_write]
## The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
## The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
url = ""
## HTTP headers of Prometheus remote-write carry.

View File

@@ -1,5 +1,13 @@
## The working home directory.
data_home = "./greptimedb_data"
data_home = "/tmp/metasrv/"
## The bind address of metasrv.
bind_addr = "127.0.0.1:3002"
## The communication server address for the frontend and datanode to connect to metasrv.
## If left empty or unset, the server will automatically use the IP address of the first network interface
## on the host, with the same port number as the one specified in `bind_addr`.
server_addr = "127.0.0.1:3002"
## Store server address default to etcd store.
## For postgres store, the format is:
@@ -16,7 +24,6 @@ store_key_prefix = ""
## - `etcd_store` (default value)
## - `memory_store`
## - `postgres_store`
## - `mysql_store`
backend = "etcd_store"
## Table name in RDS to store metadata. Effect when using a RDS kvbackend.
@@ -43,17 +50,6 @@ use_memory_store = false
## - Using shared storage (e.g., s3).
enable_region_failover = false
## Delay before initializing region failure detectors.
## This delay helps prevent premature initialization of region failure detectors in cases where
## cluster maintenance mode is enabled right after metasrv starts, especially when the cluster
## is not deployed via the recommended GreptimeDB Operator. Without this delay, early detector registration
## may trigger unnecessary region failovers during datanode startup.
region_failure_detector_initialization_delay = '10m'
## Whether to allow region failover on local WAL.
## **This option is not recommended to be set to true, because it may lead to data loss during failover.**
allow_region_failover_on_local_wal = false
## Max allowed idle time before removing node info from metasrv memory.
node_max_idle_time = "24hours"
@@ -67,32 +63,6 @@ node_max_idle_time = "24hours"
## The number of threads to execute the runtime for global write operations.
#+ compact_rt_size = 4
## The gRPC server options.
[grpc]
## The address to bind the gRPC server.
bind_addr = "127.0.0.1:3002"
## The communication server address for the frontend and datanode to connect to metasrv.
## If left empty or unset, the server will automatically use the IP address of the first network interface
## on the host, with the same port number as the one specified in `bind_addr`.
server_addr = "127.0.0.1:3002"
## The number of server worker threads.
runtime_size = 8
## The maximum receive message size for gRPC server.
max_recv_message_size = "512MB"
## The maximum send message size for gRPC server.
max_send_message_size = "512MB"
## The HTTP server options.
[http]
## The address to bind the HTTP server.
addr = "127.0.0.1:4000"
## HTTP request timeout. Set to 0 to disable timeout.
timeout = "0s"
## HTTP request body limit.
## The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.
## Set to 0 to disable limit.
body_limit = "64MB"
## Procedure storage options.
[procedure]
@@ -109,11 +79,6 @@ retry_delay = "500ms"
## Comments out the `max_metadata_value_size`, for don't split large value (no limit).
max_metadata_value_size = "1500KiB"
## Max running procedures.
## The maximum number of procedures that can be running at the same time.
## If the number of running procedures exceeds this limit, the procedure will be rejected.
max_running_procedures = 128
# Failure detectors options.
[failure_detector]
@@ -160,22 +125,6 @@ broker_endpoints = ["127.0.0.1:9092"]
## Otherwise, use topics named `topic_name_prefix_[0..num_topics)`
auto_create_topics = true
## Interval of automatically WAL pruning.
## Set to `0s` to disable automatically WAL pruning which delete unused remote WAL entries periodically.
auto_prune_interval = "0s"
## The threshold to trigger a flush operation of a region in automatically WAL pruning.
## Metasrv will send a flush request to flush the region when:
## `trigger_flush_threshold` + `prunable_entry_id` < `max_prunable_entry_id`
## where:
## - `prunable_entry_id` is the maximum entry id that can be pruned of the region.
## - `max_prunable_entry_id` is the maximum prunable entry id among all regions in the same topic.
## Set to `0` to disable the flush operation.
trigger_flush_threshold = 0
## Concurrent task limit for automatically WAL pruning.
auto_prune_parallelism = 10
## Number of topics.
num_topics = 64
@@ -195,6 +144,17 @@ replication_factor = 1
## Above which a topic creation operation will be cancelled.
create_topic_timeout = "30s"
## The initial backoff for kafka clients.
backoff_init = "500ms"
## The maximum backoff for kafka clients.
backoff_max = "10s"
## Exponential backoff rate, i.e. next backoff = base * current backoff.
backoff_base = 2
## Stop reconnecting if the total wait time reaches the deadline. If this config is missing, the reconnecting won't terminate.
backoff_deadline = "5mins"
# The Kafka SASL configuration.
# **It's only used when the provider is `kafka`**.
@@ -217,7 +177,7 @@ create_topic_timeout = "30s"
## The logging options.
[logging]
## The directory to store the log files. If set to empty, logs will not be written to files.
dir = "./greptimedb_data/logs"
dir = "/tmp/greptimedb/logs"
## The log level. Can be `info`/`debug`/`warn`/`error`.
## @toml2docs:none-default
@@ -227,7 +187,7 @@ level = "info"
enable_otlp_tracing = false
## The OTLP tracing endpoint.
otlp_endpoint = "http://localhost:4318"
otlp_endpoint = "http://localhost:4317"
## Whether to append logs to stdout.
append_stdout = true
@@ -238,25 +198,43 @@ log_format = "text"
## The maximum amount of log files.
max_log_files = 720
## The OTLP tracing export protocol. Can be `grpc`/`http`.
otlp_export_protocol = "http"
## The percentage of tracing will be sampled and exported.
## Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.
## ratio > 1 are treated as 1. Fractions < 0 are treated as 0
[logging.tracing_sample_ratio]
default_ratio = 1.0
## The metasrv can export its metrics and send to Prometheus compatible service (e.g. `greptimedb` itself) from remote-write API.
## The slow query log options.
[logging.slow_query]
## Whether to enable slow query log.
enable = false
## The threshold of slow query.
## @toml2docs:none-default
threshold = "10s"
## The sampling ratio of slow query log. The value should be in the range of (0, 1].
## @toml2docs:none-default
sample_ratio = 1.0
## The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.
## This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape.
[export_metrics]
## whether enable export metrics.
enable = false
## The interval of export metrics.
write_interval = "30s"
## For `standalone` mode, `self_import` is recommend to collect metrics generated by itself
## You must create the database before enabling it.
[export_metrics.self_import]
## @toml2docs:none-default
db = "greptime_metrics"
[export_metrics.remote_write]
## The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
## The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
url = ""
## HTTP headers of Prometheus remote-write carry.

View File

@@ -1,3 +1,6 @@
## The running mode of the datanode. It can be `standalone` or `distributed`.
mode = "standalone"
## The default timezone of the server.
## @toml2docs:none-default
default_timezone = "UTC"
@@ -31,7 +34,7 @@ max_concurrent_queries = 0
## The address to bind the HTTP server.
addr = "127.0.0.1:4000"
## HTTP request timeout. Set to 0 to disable timeout.
timeout = "0s"
timeout = "30s"
## HTTP request body limit.
## The following units are supported: `B`, `KB`, `KiB`, `MB`, `MiB`, `GB`, `GiB`, `TB`, `TiB`, `PB`, `PiB`.
## Set to 0 to disable limit.
@@ -43,13 +46,6 @@ enable_cors = true
## @toml2docs:none-default
cors_allowed_origins = ["https://example.com"]
## Whether to enable validation for Prometheus remote write requests.
## Available options:
## - strict: deny invalid UTF-8 strings (default).
## - lossy: allow invalid UTF-8 strings, replace invalid characters with REPLACEMENT_CHARACTER(U+FFFD).
## - unchecked: do not valid strings.
prom_validation_mode = "strict"
## The gRPC server options.
[grpc]
## The address to bind the gRPC server.
@@ -168,7 +164,7 @@ provider = "raft_engine"
## The directory to store the WAL files.
## **It's only used when the provider is `raft_engine`**.
## @toml2docs:none-default
dir = "./greptimedb_data/wal"
dir = "/tmp/greptimedb/wal"
## The size of the WAL segment file.
## **It's only used when the provider is `raft_engine`**.
@@ -246,6 +242,22 @@ max_batch_bytes = "1MB"
## **It's only used when the provider is `kafka`**.
consumer_wait_timeout = "100ms"
## The initial backoff delay.
## **It's only used when the provider is `kafka`**.
backoff_init = "500ms"
## The maximum backoff delay.
## **It's only used when the provider is `kafka`**.
backoff_max = "10s"
## The exponential backoff rate, i.e. next backoff = base * current backoff.
## **It's only used when the provider is `kafka`**.
backoff_base = 2
## The deadline of retries.
## **It's only used when the provider is `kafka`**.
backoff_deadline = "5mins"
## Ignore missing entries during read WAL.
## **It's only used when the provider is `kafka`**.
##
@@ -290,10 +302,6 @@ purge_interval = "1m"
max_retry_times = 3
## Initial retry delay of procedures, increases exponentially
retry_delay = "500ms"
## Max running procedures.
## The maximum number of procedures that can be running at the same time.
## If the number of running procedures exceeds this limit, the procedure will be rejected.
max_running_procedures = 128
## flow engine options.
[flow]
@@ -341,16 +349,10 @@ max_running_procedures = 128
# credential = "base64-credential"
# endpoint = "https://storage.googleapis.com"
## The query engine options.
[query]
## Parallelism of the query engine.
## Default to 0, which means the number of CPU cores.
parallelism = 0
## The data storage options.
[storage]
## The working home directory.
data_home = "./greptimedb_data"
data_home = "/tmp/greptimedb/"
## The storage type used to store the data.
## - `File`: the data is stored in the local file system.
@@ -458,10 +460,6 @@ timeout = "30s"
## The timeout for idle sockets being kept-alive.
pool_idle_timeout = "90s"
## To skip the ssl verification
## **Security Notice**: Setting `skip_ssl_validation = true` disables certificate verification, making connections vulnerable to man-in-the-middle attacks. Only use this in development or trusted private networks.
skip_ssl_validation = false
# Custom storage options
# [[storage.providers]]
# name = "S3"
@@ -601,9 +599,6 @@ content_cache_size = "128MiB"
## Page size for inverted index content cache.
content_cache_page_size = "64KiB"
## Cache size for index result.
result_cache_size = "128MiB"
## The options for inverted index in Mito engine.
[region_engine.mito.inverted_index]
@@ -710,7 +705,7 @@ experimental_sparse_primary_key_encoding = false
## The logging options.
[logging]
## The directory to store the log files. If set to empty, logs will not be written to files.
dir = "./greptimedb_data/logs"
dir = "/tmp/greptimedb/logs"
## The log level. Can be `info`/`debug`/`warn`/`error`.
## @toml2docs:none-default
@@ -720,7 +715,7 @@ level = "info"
enable_otlp_tracing = false
## The OTLP tracing endpoint.
otlp_endpoint = "http://localhost:4318"
otlp_endpoint = "http://localhost:4317"
## Whether to append logs to stdout.
append_stdout = true
@@ -731,9 +726,6 @@ log_format = "text"
## The maximum amount of log files.
max_log_files = 720
## The OTLP tracing export protocol. Can be `grpc`/`http`.
otlp_export_protocol = "http"
## The percentage of tracing will be sampled and exported.
## Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1.
## ratio > 1 are treated as 1. Fractions < 0 are treated as 0
@@ -741,27 +733,25 @@ otlp_export_protocol = "http"
default_ratio = 1.0
## The slow query log options.
[slow_query]
[logging.slow_query]
## Whether to enable slow query log.
#+ enable = false
## The record type of slow queries. It can be `system_table` or `log`.
## @toml2docs:none-default
#+ record_type = "system_table"
enable = false
## The threshold of slow query.
## @toml2docs:none-default
#+ threshold = "10s"
threshold = "10s"
## The sampling ratio of slow query log. The value should be in the range of (0, 1].
## @toml2docs:none-default
#+ sample_ratio = 1.0
sample_ratio = 1.0
## The standalone can export its metrics and send to Prometheus compatible service (e.g. `greptimedb`) from remote-write API.
## The datanode can export its metrics and send to Prometheus compatible service (e.g. send to `greptimedb` itself) from remote-write API.
## This is only used for `greptimedb` to export its own metrics internally. It's different from prometheus scrape.
[export_metrics]
## whether enable export metrics.
enable = false
## The interval of export metrics.
write_interval = "30s"
@@ -772,7 +762,7 @@ write_interval = "30s"
db = "greptime_metrics"
[export_metrics.remote_write]
## The prometheus remote write endpoint that the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
## The url the metrics send to. The url example can be: `http://127.0.0.1:4000/v1/prometheus/write?db=greptime_metrics`.
url = ""
## HTTP headers of Prometheus remote-write carry.

View File

@@ -0,0 +1,75 @@
/*
* Copyright 2023 Greptime Team
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import * as core from "@actions/core";
import {obtainClient} from "@/common";
async function triggerWorkflow(workflowId: string, version: string) {
const docsClient = obtainClient("DOCS_REPO_TOKEN")
try {
await docsClient.rest.actions.createWorkflowDispatch({
owner: "GreptimeTeam",
repo: "docs",
workflow_id: workflowId,
ref: "main",
inputs: {
version,
},
});
console.log(`Successfully triggered ${workflowId} workflow with version ${version}`);
} catch (error) {
core.setFailed(`Failed to trigger workflow: ${error.message}`);
}
}
function determineWorkflow(version: string): [string, string] {
// Check if it's a nightly version
if (version.includes('nightly')) {
return ['bump-nightly-version.yml', version];
}
const parts = version.split('.');
if (parts.length !== 3) {
throw new Error('Invalid version format');
}
// If patch version (last number) is 0, it's a major version
// Return only major.minor version
if (parts[2] === '0') {
return ['bump-version.yml', `${parts[0]}.${parts[1]}`];
}
// Otherwise it's a patch version, use full version
return ['bump-patch-version.yml', version];
}
const version = process.env.VERSION;
if (!version) {
core.setFailed("VERSION environment variable is required");
process.exit(1);
}
// Remove 'v' prefix if exists
const cleanVersion = version.startsWith('v') ? version.slice(1) : version;
try {
const [workflowId, apiVersion] = determineWorkflow(cleanVersion);
triggerWorkflow(workflowId, apiVersion);
} catch (error) {
core.setFailed(`Error processing version: ${error.message}`);
process.exit(1);
}

View File

@@ -1,156 +0,0 @@
/*
* Copyright 2023 Greptime Team
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
import * as core from "@actions/core";
import {obtainClient} from "@/common";
interface RepoConfig {
tokenEnv: string;
repo: string;
workflowLogic: (version: string) => [string, string] | null;
}
const REPO_CONFIGS: Record<string, RepoConfig> = {
website: {
tokenEnv: "WEBSITE_REPO_TOKEN",
repo: "website",
workflowLogic: (version: string) => {
// Skip nightly versions for website
if (version.includes('nightly')) {
console.log('Nightly version detected for website, skipping workflow trigger.');
return null;
}
return ['bump-patch-version.yml', version];
}
},
demo: {
tokenEnv: "DEMO_REPO_TOKEN",
repo: "demo-scene",
workflowLogic: (version: string) => {
// Skip nightly versions for demo
if (version.includes('nightly')) {
console.log('Nightly version detected for demo, skipping workflow trigger.');
return null;
}
return ['bump-patch-version.yml', version];
}
},
docs: {
tokenEnv: "DOCS_REPO_TOKEN",
repo: "docs",
workflowLogic: (version: string) => {
// Check if it's a nightly version
if (version.includes('nightly')) {
return ['bump-nightly-version.yml', version];
}
const parts = version.split('.');
if (parts.length !== 3) {
throw new Error('Invalid version format');
}
// If patch version (last number) is 0, it's a major version
// Return only major.minor version
if (parts[2] === '0') {
return ['bump-version.yml', `${parts[0]}.${parts[1]}`];
}
// Otherwise it's a patch version, use full version
return ['bump-patch-version.yml', version];
}
}
};
async function triggerWorkflow(repoConfig: RepoConfig, workflowId: string, version: string) {
const client = obtainClient(repoConfig.tokenEnv);
try {
await client.rest.actions.createWorkflowDispatch({
owner: "GreptimeTeam",
repo: repoConfig.repo,
workflow_id: workflowId,
ref: "main",
inputs: {
version,
},
});
console.log(`Successfully triggered ${workflowId} workflow for ${repoConfig.repo} with version ${version}`);
} catch (error) {
core.setFailed(`Failed to trigger workflow for ${repoConfig.repo}: ${error.message}`);
throw error;
}
}
async function processRepo(repoName: string, version: string) {
const repoConfig = REPO_CONFIGS[repoName];
if (!repoConfig) {
throw new Error(`Unknown repository: ${repoName}`);
}
try {
const workflowResult = repoConfig.workflowLogic(version);
if (workflowResult === null) {
// Skip this repo (e.g., nightly version for website)
return;
}
const [workflowId, apiVersion] = workflowResult;
await triggerWorkflow(repoConfig, workflowId, apiVersion);
} catch (error) {
core.setFailed(`Error processing ${repoName} with version ${version}: ${error.message}`);
throw error;
}
}
async function main() {
const version = process.env.VERSION;
if (!version) {
core.setFailed("VERSION environment variable is required");
process.exit(1);
}
// Remove 'v' prefix if exists
const cleanVersion = version.startsWith('v') ? version.slice(1) : version;
// Get target repositories from environment variable
// Default to both if not specified
const targetRepos = process.env.TARGET_REPOS?.split(',').map(repo => repo.trim()) || ['website', 'docs'];
console.log(`Processing version ${cleanVersion} for repositories: ${targetRepos.join(', ')}`);
const errors: string[] = [];
// Process each repository
for (const repo of targetRepos) {
try {
await processRepo(repo, cleanVersion);
} catch (error) {
errors.push(`${repo}: ${error.message}`);
}
}
if (errors.length > 0) {
core.setFailed(`Failed to process some repositories: ${errors.join('; ')}`);
process.exit(1);
}
console.log('All repositories processed successfully');
}
// Execute main function
main().catch((error) => {
core.setFailed(`Unexpected error: ${error.message}`);
process.exit(1);
});

View File

@@ -25,7 +25,7 @@ services:
- --initial-cluster-state=new
- *etcd_initial_cluster_token
volumes:
- ./greptimedb-cluster-docker-compose/etcd0:/var/lib/etcd
- /tmp/greptimedb-cluster-docker-compose/etcd0:/var/lib/etcd
healthcheck:
test: [ "CMD", "etcdctl", "--endpoints=http://etcd0:2379", "endpoint", "health" ]
interval: 5s
@@ -68,13 +68,12 @@ services:
- datanode
- start
- --node-id=0
- --data-home=/greptimedb_data
- --rpc-bind-addr=0.0.0.0:3001
- --rpc-server-addr=datanode0:3001
- --metasrv-addrs=metasrv:3002
- --http-addr=0.0.0.0:5000
volumes:
- ./greptimedb-cluster-docker-compose/datanode0:/greptimedb_data
- /tmp/greptimedb-cluster-docker-compose/datanode0:/tmp/greptimedb
healthcheck:
test: [ "CMD", "curl", "-fv", "http://datanode0:5000/health" ]
interval: 5s

Binary file not shown.

Before

Width:  |  Height:  |  Size: 173 KiB

View File

@@ -11,6 +11,6 @@ And database will reply with something like:
Log Level changed from Some("info") to "trace,flow=debug"%
```
The data is a string in the format of `global_level,module1=level1,module2=level2,...` that follows the same rule of `RUST_LOG`.
The data is a string in the format of `global_level,module1=level1,module2=level2,...` that follow the same rule of `RUST_LOG`.
The module is the module name of the log, and the level is the log level. The log level can be one of the following: `trace`, `debug`, `info`, `warn`, `error`, `off`(case insensitive).

View File

@@ -14,7 +14,7 @@ impl SqlQueryHandler for Instance {
```
Normally, when a SQL query arrives at GreptimeDB, the `do_query` method will be called. After some parsing work, the SQL
will be fed into `StatementExecutor`:
will be feed into `StatementExecutor`:
```rust
// in Frontend Instance:
@@ -27,7 +27,7 @@ an example.
Now, what if the statements should be handled differently for GreptimeDB Standalone and Cluster? You can see there's
a `SqlStatementExecutor` field in `StatementExecutor`. Each GreptimeDB Standalone and Cluster has its own implementation
of `SqlStatementExecutor`. If you are going to implement the statements differently in the two modes (
of `SqlStatementExecutor`. If you are going to implement the statements differently in the two mode (
like `CREATE TABLE`), you have to implement them in their own `SqlStatementExecutor`s.
Summarize as the diagram below:

View File

@@ -1,6 +1,6 @@
# Profile memory usage of GreptimeDB
This crate provides an easy approach to dump memory profiling info. A set of ready to use scripts is provided in [docs/how-to/memory-profile-scripts](./memory-profile-scripts/scripts).
This crate provides an easy approach to dump memory profiling info.
## Prerequisites
### jemalloc
@@ -44,10 +44,6 @@ Dump memory profiling data through HTTP API:
```bash
curl -X POST localhost:4000/debug/prof/mem > greptime.hprof
# or output flamegraph directly
curl -X POST "localhost:4000/debug/prof/mem?output=flamegraph" > greptime.svg
# or output pprof format
curl -X POST "localhost:4000/debug/prof/mem?output=proto" > greptime.pprof
```
You can periodically dump profiling data and compare them to find the delta memory usage.

View File

@@ -1,8 +1,8 @@
Currently, our query engine is based on DataFusion, so all aggregate function is executed by DataFusion, through its UDAF interface. You can find DataFusion's UDAF example [here](https://github.com/apache/arrow-datafusion/blob/arrow2/datafusion-examples/examples/simple_udaf.rs). Basically, we provide the same way as DataFusion to write aggregate functions: both are centered in a struct called "Accumulator" to accumulates states along the way in aggregation.
However, DataFusion's UDAF implementation has a huge restriction, that it requires user to provide a concrete "Accumulator". Take `Median` aggregate function for example, to aggregate a `u32` datatype column, you have to write a `MedianU32`, and use `SELECT MEDIANU32(x)` in SQL. `MedianU32` cannot be used to aggregate a `i32` datatype column. Or, there's another way: you can use a special type that can hold all kinds of data (like our `Value` enum or Arrow's `ScalarValue`), and `match` all the way up to do aggregate calculations. It might work, though rather tedious. (But I think it's DataFusion's preferred way to write UDAF.)
However, DataFusion's UDAF implementation has a huge restriction, that it requires user to provide a concrete "Accumulator". Take `Median` aggregate function for example, to aggregate a `u32` datatype column, you have to write a `MedianU32`, and use `SELECT MEDIANU32(x)` in SQL. `MedianU32` cannot be used to aggregate a `i32` datatype column. Or, there's another way: you can use a special type that can hold all kinds of data (like our `Value` enum or Arrow's `ScalarValue`), and `match` all the way up to do aggregate calculations. It might work, though rather tedious. (But I think it's DataFusion's prefer way to write UDAF.)
So is there a way we can make an aggregate function that automatically match the input data's type? For example, a `Median` aggregator that can work on both `u32` column and `i32`? The answer is yes until we find a way to bypass DataFusion's restriction, a restriction that DataFusion simply doesn't pass the input data's type when creating an Accumulator.
So is there a way we can make an aggregate function that automatically match the input data's type? For example, a `Median` aggregator that can work on both `u32` column and `i32`? The answer is yes until we found a way to bypassing DataFusion's restriction, a restriction that DataFusion simply don't pass the input data's type when creating an Accumulator.
> There's an example in `my_sum_udaf_example.rs`, take that as quick start.
@@ -16,7 +16,7 @@ You must first define a struct that will be used to create your accumulator. For
struct MySumAccumulatorCreator {}
```
Attribute macro `#[as_aggr_func_creator]` and derive macro `#[derive(Debug, AggrFuncTypeStore)]` must both be annotated on the struct. They work together to provide a storage of aggregate function's input data types, which are needed for creating generic accumulator later.
Attribute macro `#[as_aggr_func_creator]` and derive macro `#[derive(Debug, AggrFuncTypeStore)]` must both annotated on the struct. They work together to provide a storage of aggregate function's input data types, which are needed for creating generic accumulator later.
> Note that the `as_aggr_func_creator` macro will add fields to the struct, so the struct cannot be defined as an empty struct without field like `struct Foo;`, neither as a new type like `struct Foo(bar)`.
@@ -32,11 +32,11 @@ pub trait AggregateFunctionCreator: Send + Sync + Debug {
You can use input data's type in methods that return output type and state types (just invoke `input_types()`).
The output type is aggregate function's output data's type. For example, `SUM` aggregate function's output type is `u64` for a `u32` datatype column. The state types are accumulator's internal states' types. Take `AVG` aggregate function on a `i32` column as example, its state types are `i64` (for sum) and `u64` (for count).
The output type is aggregate function's output data's type. For example, `SUM` aggregate function's output type is `u64` for a `u32` datatype column. The state types are accumulator's internal states' types. Take `AVG` aggregate function on a `i32` column as example, it's state types are `i64` (for sum) and `u64` (for count).
The `creator` function is where you define how an accumulator (that will be used in DataFusion) is created. You define "how" to create the accumulator (instead of "what" to create), using the input data's type as arguments. With input datatype known, you can create accumulator generically.
# 2. Impl `Accumulator` trait for your accumulator.
# 2. Impl `Accumulator` trait for you accumulator.
The accumulator is where you store the aggregate calculation states and evaluate a result. You must impl `Accumulator` trait for it. The trait's definition is:
@@ -49,7 +49,7 @@ pub trait Accumulator: Send + Sync + Debug {
}
```
The DataFusion basically executes aggregate like this:
The DataFusion basically execute aggregate like this:
1. Partitioning all input data for aggregate. Create an accumulator for each part.
2. Call `update_batch` on each accumulator with partitioned data, to let you update your aggregate calculation.
@@ -57,16 +57,16 @@ The DataFusion basically executes aggregate like this:
4. Call `merge_batch` to merge all accumulator's internal state to one.
5. Execute `evaluate` on the chosen one to get the final calculation result.
Once you know the meaning of each method, you can easily write your accumulator. You can refer to `Median` accumulator or `SUM` accumulator defined in file `my_sum_udaf_example.rs` for more details.
Once you know the meaning of each method, you can easily write your accumulator. You can refer to `Median` accumulator or `SUM` accumulator defined in file `my_sum_udaf_example.rs` for more details.
# 3. Register your aggregate function to our query engine.
You can call `register_aggregate_function` method in query engine to register your aggregate function. To do that, you have to new an instance of struct `AggregateFunctionMeta`. The struct has three fields, first is the name of your aggregate function's name. The function name is case-sensitive due to DataFusion's restriction. We strongly recommend using lowercase for your name. If you have to use uppercase name, wrap your aggregate function with quotation marks. For example, if you define an aggregate function named "my_aggr", you can use "`SELECT MY_AGGR(x)`"; if you define "my_AGGR", you have to use "`SELECT "my_AGGR"(x)`".
The second field is arg_counts ,the count of the arguments. Like accumulator `percentile`, calculating the p_number of the column. We need to input the value of column and the value of p to calculate, and so the count of the arguments is two.
The second field is arg_counts ,the count of the arguments. Like accumulator `percentile`, calculating the p_number of the column. We need to input the value of column and the value of p to cacalate, and so the count of the arguments is two.
The third field is a function about how to create your accumulator creator that you defined in step 1 above. Create creator, that's a bit intertwined, but it is how we make DataFusion use a newly created aggregate function each time it executes a SQL, preventing the stored input types from affecting each other. The key detail can be starting looking at our `DfContextProviderAdapter` struct's `get_aggregate_meta` method.
# (Optional) 4. Make your aggregate function automatically registered.
If you've written a great aggregate function that wants to let everyone use it, you can make it automatically register to our query engine at start time. It's quick and simple, just refer to the `AggregateFunctions::register` function in `common/function/src/scalars/aggregate/mod.rs`.
If you've written a great aggregate function that want to let everyone use it, you can make it automatically registered to our query engine at start time. It's quick simple, just refer to the `AggregateFunctions::register` function in `common/function/src/scalars/aggregate/mod.rs`.

View File

@@ -3,7 +3,7 @@
This document introduces how to write fuzz tests in GreptimeDB.
## What is a fuzz test
Fuzz test is tool that leverages deterministic random generation to assist in finding bugs. The goal of fuzz tests is to identify inputs generated by the fuzzer that cause system panics, crashes, or unexpected behaviors to occur. And we are using the [cargo-fuzz](https://github.com/rust-fuzz/cargo-fuzz) to run our fuzz test targets.
Fuzz test is tool that leverage deterministic random generation to assist in finding bugs. The goal of fuzz tests is to identify inputs generated by the fuzzer that cause system panics, crashes, or unexpected behaviors to occur. And we are using the [cargo-fuzz](https://github.com/rust-fuzz/cargo-fuzz) to run our fuzz test targets.
## Why we need them
- Find bugs by leveraging random generation
@@ -13,7 +13,7 @@ Fuzz test is tool that leverages deterministic random generation to assist in fi
All fuzz test-related resources are located in the `/tests-fuzz` directory.
There are two types of resources: (1) fundamental components and (2) test targets.
### Fundamental components
### Fundamental components
They are located in the `/tests-fuzz/src` directory. The fundamental components define how to generate SQLs (including dialects for different protocols) and validate execution results (e.g., column attribute validation), etc.
### Test targets
@@ -21,25 +21,25 @@ They are located in the `/tests-fuzz/targets` directory, with each file represen
Figure 1 illustrates the fundamental components of the fuzz test provide the ability to generate random SQLs. It utilizes a Random Number Generator (Rng) to generate the Intermediate Representation (IR), then employs a DialectTranslator to produce specified dialects for different protocols. Finally, the fuzz tests send the generated SQL via the specified protocol and verify that the execution results meet expectations.
```
Rng
|
|
v
ExprGenerator
|
|
v
Intermediate representation (IR)
|
|
+----------------------+----------------------+
| | |
v v v
Rng
|
|
v
ExprGenerator
|
|
v
Intermediate representation (IR)
|
|
+----------------------+----------------------+
| | |
v v v
MySQLTranslator PostgreSQLTranslator OtherDialectTranslator
| | |
| | |
v v v
SQL(MySQL Dialect) ..... .....
| | |
| | |
v v v
SQL(MySQL Dialect) ..... .....
|
|
v
@@ -133,4 +133,4 @@ fuzz_target!(|input: FuzzInput| {
cargo fuzz run <fuzz-target> --fuzz-dir tests-fuzz
```
For more details, please refer to this [document](/tests-fuzz/README.md).
For more details, please refer to this [document](/tests-fuzz/README.md).

View File

@@ -1,52 +0,0 @@
# Memory Analysis Process
This section will guide you through the process of analyzing memory usage for greptimedb.
1. Get the `jeprof` tool script, see the next section("Getting the `jeprof` tool") for details.
2. After starting `greptimedb`(with env var `MALLOC_CONF=prof:true`), execute the `dump.sh` script with the PID of the `greptimedb` process as an argument. This continuously monitors memory usage and captures profiles when exceeding thresholds (e.g. +20MB within 10 minutes). Outputs `greptime-{timestamp}.gprof` files.
3. With 2-3 gprof files, run `gen_flamegraph.sh` in the same environment to generate flame graphs showing memory allocation call stacks.
4. **NOTE:** The `gen_flamegraph.sh` script requires `jeprof` and optionally `flamegraph.pl` to be in the current directory. If needed to gen flamegraph now, run the `get_flamegraph_tool.sh` script, which downloads the flame graph generation tool `flamegraph.pl` to the current directory.
The usage of `gen_flamegraph.sh` is:
`Usage: ./gen_flamegraph.sh <binary_path> <gprof_directory>`
where `<binary_path>` is the path to the greptimedb binary, `<gprof_directory>` is the directory containing the gprof files(the directory `dump.sh` is dumping profiles to).
Example call: `./gen_flamegraph.sh ./greptime .`
Generating the flame graph might take a few minutes. The generated flame graphs are located in the `<gprof_directory>/flamegraphs` directory. Or if no `flamegraph.pl` is found, it will only contain `.collapse` files which is also fine.
5. You can send the generated flame graphs(the entire folder of `<gprof_directory>/flamegraphs`) to developers for further analysis.
## Getting the `jeprof` tool
there are three ways to get `jeprof`, list in here from simple to complex, using any one of those methods is ok, as long as it's the same environment as the `greptimedb` will be running on:
1. If you are compiling greptimedb from source, then `jeprof` is already produced during compilation. After running `cargo build`, execute `find_compiled_jeprof.sh`. This will copy `jeprof` to the current directory.
2. Or, if you have the Rust toolchain installed locally, simply follow these commands:
```bash
cargo new get_jeprof
cd get_jeprof
```
Then add this line to `Cargo.toml`:
```toml
[dependencies]
tikv-jemalloc-ctl = { version = "0.6", features = ["use_std", "stats"] }
```
then run:
```bash
cargo build
```
after that the `jeprof` tool is produced. Now run `find_compiled_jeprof.sh` in current directory, it will copy the `jeprof` tool to the current directory.
3. compile jemalloc from source
you can first clone this repo, and checkout to this commit:
```bash
git clone https://github.com/tikv/jemalloc.git
cd jemalloc
git checkout e13ca993e8ccb9ba9847cc330696e02839f328f7
```
then run:
```bash
./configure
make
```
and `jeprof` is in `.bin/` directory. Copy it to the current directory.

View File

@@ -1,78 +0,0 @@
#!/bin/bash
# Monitors greptime process memory usage every 10 minutes
# Triggers memory profile capture via `curl -X POST localhost:4000/debug/prof/mem > greptime-{timestamp}.gprof`
# when memory increases by more than 20MB since last check
# Generated profiles can be analyzed using flame graphs as described in `how-to-profile-memory.md`
# (jeprof is compiled with the database - see documentation)
# Alternative: Share binaries + profiles for analysis (Docker images preferred)
# Threshold in Kilobytes (20 MB)
threshold_kb=$((20 * 1024))
sleep_interval=$((10 * 60))
# Variable to store the last measured memory usage in KB
last_mem_kb=0
echo "Starting memory monitoring for 'greptime' process..."
while true; do
# Check if PID is provided as an argument
if [ -z "$1" ]; then
echo "$(date): PID must be provided as a command-line argument."
exit 1
fi
pid="$1"
# Validate that the PID is a number
if ! [[ "$pid" =~ ^[0-9]+$ ]]; then
echo "$(date): Invalid PID: '$pid'. PID must be a number."
exit 1
fi
# Get the current Resident Set Size (RSS) in Kilobytes
current_mem_kb=$(ps -o rss= -p "$pid")
# Check if ps command was successful and returned a number
if ! [[ "$current_mem_kb" =~ ^[0-9]+$ ]]; then
echo "$(date): Failed to get memory usage for PID $pid. Skipping check."
# Keep last_mem_kb to avoid false positives if the process briefly becomes unreadable.
continue
fi
echo "$(date): Current memory usage for PID $pid: ${current_mem_kb} KB"
# Compare with the last measurement
# if it's the first run, also do a baseline dump just to make sure we can dump
diff_kb=$((current_mem_kb - last_mem_kb))
echo "$(date): Memory usage change since last check: ${diff_kb} KB"
if [ "$diff_kb" -gt "$threshold_kb" ]; then
echo "$(date): Memory increase (${diff_kb} KB) exceeded threshold (${threshold_kb} KB). Dumping profile..."
timestamp=$(date +%Y%m%d%H%M%S)
profile_file="greptime-${timestamp}.gprof"
# Execute curl and capture output to file
if curl -sf -X POST localhost:4000/debug/prof/mem > "$profile_file"; then
echo "$(date): Memory profile saved to $profile_file"
else
echo "$(date): Failed to dump memory profile (curl exit code: $?)."
# Remove the potentially empty/failed profile file
rm -f "$profile_file"
fi
else
echo "$(date): Memory increase (${diff_kb} KB) is within the threshold (${threshold_kb} KB)."
fi
# Update the last memory usage
last_mem_kb=$current_mem_kb
# Wait for 5 minutes
echo "$(date): Sleeping for $sleep_interval seconds..."
sleep $sleep_interval
done
echo "Memory monitoring script stopped." # This line might not be reached in normal operation

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Locates compiled jeprof binary (memory analysis tool) after cargo build
# Copies it to current directory from target/ build directories
JPROF_PATH=$(find . -name 'jeprof' -print -quit)
if [ -n "$JPROF_PATH" ]; then
echo "Found jeprof at $JPROF_PATH"
cp "$JPROF_PATH" .
chmod +x jeprof
echo "Copied jeprof to current directory and made it executable."
else
echo "jeprof not found"
exit 1
fi

View File

@@ -1,89 +0,0 @@
#!/bin/bash
# Generate flame graphs from a series of `.gprof` files
# First argument: Path to the binary executable
# Second argument: Path to directory containing gprof files
# Requires `jeprof` and `flamegraph.pl` in current directory
# What this script essentially does is:
# ./jeprof <binary> <gprof> --collapse | ./flamegraph.pl > <output>
# For differential analysis between consecutive profiles:
# ./jeprof <binary> --base <gprof1> <gprof2> --collapse | ./flamegraph.pl > <output_diff>
set -e # Exit immediately if a command exits with a non-zero status.
# Check for required tools
if [ ! -f "./jeprof" ]; then
echo "Error: jeprof not found in the current directory."
exit 1
fi
if [ ! -f "./flamegraph.pl" ]; then
echo "Error: flamegraph.pl not found in the current directory."
exit 1
fi
# Check arguments
if [ "$#" -ne 2 ]; then
echo "Usage: $0 <binary_path> <gprof_directory>"
exit 1
fi
BINARY_PATH=$1
GPROF_DIR=$2
OUTPUT_DIR="${GPROF_DIR}/flamegraphs" # Store outputs in a subdirectory
if [ ! -f "$BINARY_PATH" ]; then
echo "Error: Binary file not found at $BINARY_PATH"
exit 1
fi
if [ ! -d "$GPROF_DIR" ]; then
echo "Error: gprof directory not found at $GPROF_DIR"
exit 1
fi
mkdir -p "$OUTPUT_DIR"
echo "Generating flamegraphs in $OUTPUT_DIR"
# Find and sort gprof files
# Use find + sort -V for natural sort of version numbers if present in filenames
# Use null-terminated strings for safety with find/xargs/sort
mapfile -d $'\0' gprof_files < <(find "$GPROF_DIR" -maxdepth 1 -name '*.gprof' -print0 | sort -zV)
if [ ${#gprof_files[@]} -eq 0 ]; then
echo "No .gprof files found in $GPROF_DIR"
exit 0
fi
prev_gprof=""
# Generate flamegraphs
for gprof_file in "${gprof_files[@]}"; do
# Skip empty entries if any
if [ -z "$gprof_file" ]; then
continue
fi
filename=$(basename "$gprof_file" .gprof)
output_collapse="${OUTPUT_DIR}/${filename}.collapse"
output_svg="${OUTPUT_DIR}/${filename}.svg"
echo "Generating collapse file for $gprof_file -> $output_collapse"
./jeprof "$BINARY_PATH" "$gprof_file" --collapse > "$output_collapse"
echo "Generating flamegraph for $gprof_file -> $output_svg"
./flamegraph.pl "$output_collapse" > "$output_svg" || true
# Generate diff flamegraph if not the first file
if [ -n "$prev_gprof" ]; then
prev_filename=$(basename "$prev_gprof" .gprof)
diff_output_collapse="${OUTPUT_DIR}/${prev_filename}_vs_${filename}_diff.collapse"
diff_output_svg="${OUTPUT_DIR}/${prev_filename}_vs_${filename}_diff.svg"
echo "Generating diff collapse file for $prev_gprof vs $gprof_file -> $diff_output_collapse"
./jeprof "$BINARY_PATH" --base "$prev_gprof" "$gprof_file" --collapse > "$diff_output_collapse"
echo "Generating diff flamegraph for $prev_gprof vs $gprof_file -> $diff_output_svg"
./flamegraph.pl "$diff_output_collapse" > "$diff_output_svg" || true
fi
prev_gprof="$gprof_file"
done
echo "Flamegraph generation complete."

View File

@@ -1,44 +0,0 @@
#!/bin/bash
# Generate flame graphs from .collapse files
# Argument: Path to directory containing collapse files
# Requires `flamegraph.pl` in current directory
# Check if flamegraph.pl exists
if [ ! -f "./flamegraph.pl" ]; then
echo "Error: flamegraph.pl not found in the current directory."
exit 1
fi
# Check if directory argument is provided
if [ -z "$1" ]; then
echo "Usage: $0 <collapse_directory>"
exit 1
fi
COLLAPSE_DIR=$1
# Check if the provided argument is a directory
if [ ! -d "$COLLAPSE_DIR" ]; then
echo "Error: '$COLLAPSE_DIR' is not a valid directory."
exit 1
fi
echo "Generating flame graphs from collapse files in '$COLLAPSE_DIR'..."
# Find and process each .collapse file
find "$COLLAPSE_DIR" -maxdepth 1 -name "*.collapse" -print0 | while IFS= read -r -d $'\0' collapse_file; do
if [ -f "$collapse_file" ]; then
# Construct the output SVG filename
svg_file="${collapse_file%.collapse}.svg"
echo "Generating $svg_file from $collapse_file..."
./flamegraph.pl "$collapse_file" > "$svg_file"
if [ $? -ne 0 ]; then
echo "Error generating flame graph for $collapse_file"
else
echo "Successfully generated $svg_file"
fi
fi
done
echo "Flame graph generation complete."

View File

@@ -1,6 +0,0 @@
#!/bin/bash
# Download flamegraph.pl to current directory - this is the flame graph generation tool script
curl https://raw.githubusercontent.com/brendangregg/FlameGraph/master/flamegraph.pl > ./flamegraph.pl
chmod +x ./flamegraph.pl

View File

@@ -1,77 +0,0 @@
---
Feature Name: Remote WAL Purge
Tracking Issue: https://github.com/GreptimeTeam/greptimedb/issues/5474
Date: 2025-02-06
Author: "Yuhan Wang <profsyb@gmail.com>"
---
# Summary
This RFC proposes a method for purging remote WAL in the database.
# Motivation
Currently only local wal entries are purged when flushing, while remote wal does nothing.
# Details
```mermaid
sequenceDiagram
Region0->>Kafka: Last entry id of the topic in use
Region0->>WALPruner: Heartbeat with last entry id
WALPruner->>+WALPruner: Time Loop
WALPruner->>+ProcedureManager: Submit purge procedure
ProcedureManager->>Region0: Flush request
ProcedureManager->>Kafka: Prune WAL entries
Region0->>Region0: Flush
```
## Steps
### Before purge
Before purging remote WAL, metasrv needs to know:
1. `last_entry_id` of each region.
2. `kafka_topic_last_entry_id` which is the last entry id of the topic in use. Can be lazily updated and needed when region has empty memtable.
3. Kafka topics that each region uses.
The states are maintained through:
1. Heartbeat: Datanode sends `last_entry_id` to metasrv in heartbeat. As for regions with empty memtable, `last_entry_id` should equals to `kafka_topic_last_entry_id`.
2. Metasrv maintains a topic-region map to know which region uses which topic.
`kafka_topic_last_entry_id` will be maintained by the region itself. Region will update the value after `k` heartbeats if the memtable is empty.
### Purge procedure
We can better handle locks utilizing current procedure. It's quite similar to the region migration procedure.
After a period of time, metasrv will submit a purge procedure to ProcedureManager. The purge will apply to all topics.
The procedure is divided into following stages:
1. Preparation:
- Retrieve `last_entry_id` of each region kvbackend.
- Choose regions that have a relatively small `last_entry_id` as candidate regions, which means we need to send a flush request to these regions.
2. Communication:
- Send flush requests to candidate regions.
3. Purge:
- Choose proper entry id to delete for each topic. The entry should be the smallest `last_entry_id - 1` among all regions.
- Delete legacy entries in Kafka.
- Store the `last_purged_entry_id` in kvbackend. It should be locked to prevent other regions from replaying the purged entries.
### After purge
After purge, there may be some regions that have `last_entry_id` smaller than the entry we just deleted. It's legal since we only delete the entries that are not needed anymore.
When restarting a region, it should query the `last_purged_entry_id` from metasrv and replay from `min(last_entry_id, last_purged_entry_id)`.
### Error handling
No persisted states are needed since all states are maintained in kvbackend.
Retry when failed to retrieving metadata from kvbackend.
# Alternatives
Purge time can depend on the size of the WAL entries instead of a fixed period of time, which may be more efficient.

20
flake.lock generated
View File

@@ -8,11 +8,11 @@
"rust-analyzer-src": "rust-analyzer-src"
},
"locked": {
"lastModified": 1745735608,
"narHash": "sha256-L0jzm815XBFfF2wCFmR+M1CF+beIEFj6SxlqVKF59Ec=",
"lastModified": 1737613896,
"narHash": "sha256-ldqXIglq74C7yKMFUzrS9xMT/EVs26vZpOD68Sh7OcU=",
"owner": "nix-community",
"repo": "fenix",
"rev": "c39a78eba6ed2a022cc3218db90d485077101496",
"rev": "303a062fdd8e89f233db05868468975d17855d80",
"type": "github"
},
"original": {
@@ -41,16 +41,16 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1748162331,
"narHash": "sha256-rqc2RKYTxP3tbjA+PB3VMRQNnjesrT0pEofXQTrMsS8=",
"lastModified": 1737569578,
"narHash": "sha256-6qY0pk2QmUtBT9Mywdvif0i/CLVgpCjMUn6g9vB+f3M=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "7c43f080a7f28b2774f3b3f43234ca11661bf334",
"rev": "47addd76727f42d351590c905d9d1905ca895b82",
"type": "github"
},
"original": {
"owner": "NixOS",
"ref": "nixos-25.05",
"ref": "nixos-24.11",
"repo": "nixpkgs",
"type": "github"
}
@@ -65,11 +65,11 @@
"rust-analyzer-src": {
"flake": false,
"locked": {
"lastModified": 1745694049,
"narHash": "sha256-fxvRYH/tS7hGQeg9zCVh5RBcSWT+JGJet7RA8Ss+rC0=",
"lastModified": 1737581772,
"narHash": "sha256-t1P2Pe3FAX9TlJsCZbmJ3wn+C4qr6aSMypAOu8WNsN0=",
"owner": "rust-lang",
"repo": "rust-analyzer",
"rev": "d8887c0758bbd2d5f752d5bd405d4491e90e7ed6",
"rev": "582af7ee9c8d84f5d534272fc7de9f292bd849be",
"type": "github"
},
"original": {

View File

@@ -2,7 +2,7 @@
description = "Development environment flake";
inputs = {
nixpkgs.url = "github:NixOS/nixpkgs/nixos-25.05";
nixpkgs.url = "github:NixOS/nixpkgs/nixos-24.11";
fenix = {
url = "github:nix-community/fenix";
inputs.nixpkgs.follows = "nixpkgs";
@@ -21,7 +21,7 @@
lib = nixpkgs.lib;
rustToolchain = fenix.packages.${system}.fromToolchainName {
name = (lib.importTOML ./rust-toolchain.toml).toolchain.channel;
sha256 = "sha256-tJJr8oqX3YD+ohhPK7jlt/7kvKBnBqJVjYtoFr520d4=";
sha256 = "sha256-f/CVA1EC61EWbh0SjaRNhLL0Ypx2ObupbzigZp8NmL4=";
};
in
{
@@ -51,7 +51,6 @@
];
LD_LIBRARY_PATH = pkgs.lib.makeLibraryPath buildInputs;
NIX_HARDENING_ENABLE = "";
};
});
}

View File

@@ -1,122 +1,61 @@
# Grafana dashboards for GreptimeDB
Grafana dashboard for GreptimeDB
--------------------------------
## Overview
GreptimeDB's official Grafana dashboard.
This repository contains Grafana dashboards for visualizing metrics and logs of GreptimeDB instances running in either cluster or standalone mode. **The Grafana version should be greater than 9.0**.
Status notify: we are still working on this config. It's expected to change frequently in the recent days. Please feel free to submit your feedback and/or contribution to this dashboard 🤗
We highly recommend using the self-monitoring feature provided by [GreptimeDB Operator](https://github.com/GrepTimeTeam/greptimedb-operator) to automatically collect metrics and logs from your GreptimeDB instances and store them in a dedicated GreptimeDB instance.
- **Metrics Dashboards**
- `dashboards/metrics/cluster/dashboard.json`: The Grafana dashboard for the GreptimeDB cluster. Read the [dashboard.md](./dashboards/metrics/cluster/dashboard.md) for more details.
- `dashboards/metrics/standalone/dashboard.json`: The Grafana dashboard for the standalone GreptimeDB instance. **It's generated from the `cluster/dashboard.json` by removing the instance filter through the `make dashboards` command**. Read the [dashboard.md](./dashboards/metrics/standalone/dashboard.md) for more details.
- **Logs Dashboard**
The `dashboards/logs/dashboard.json` provides a comprehensive Grafana dashboard for visualizing GreptimeDB logs. To utilize this dashboard effectively, you need to collect logs in JSON format from your GreptimeDB instances and store them in a dedicated GreptimeDB instance.
For proper integration, the logs table must adhere to the following schema design with the table name `_gt_logs`:
```sql
CREATE TABLE IF NOT EXISTS `_gt_logs` (
`pod_ip` STRING NULL,
`namespace` STRING NULL,
`cluster` STRING NULL,
`file` STRING NULL,
`module_path` STRING NULL,
`level` STRING NULL,
`target` STRING NULL,
`role` STRING NULL,
`pod` STRING NULL SKIPPING INDEX WITH(granularity = '10240', type = 'BLOOM'),
`message` STRING NULL FULLTEXT INDEX WITH(analyzer = 'English', backend = 'bloom', case_sensitive = 'false'),
`err` STRING NULL FULLTEXT INDEX WITH(analyzer = 'English', backend = 'bloom', case_sensitive = 'false'),
`timestamp` TIMESTAMP(9) NOT NULL,
TIME INDEX (`timestamp`),
PRIMARY KEY (`level`, `target`, `role`)
)
ENGINE=mito
WITH (
append_mode = 'true'
)
```
## Development
As GreptimeDB evolves rapidly, metrics may change over time. We welcome your feedback and contributions to improve these dashboards 🤗
To modify the metrics dashboards, simply edit the `dashboards/metrics/cluster/dashboard.json` file and run the `make dashboards` command. This will automatically generate the updated `dashboards/metrics/standalone/dashboard.json` and other related files.
For easier dashboard maintenance, we utilize the [`dac`](https://github.com/zyy17/dac) tool to generate human-readable intermediate dashboards and documentation:
- `dashboards/metrics/cluster/dashboard.yaml`: The intermediate dashboard file for the GreptimeDB cluster.
- `dashboards/metrics/standalone/dashboard.yaml`: The intermediate dashboard file for standalone GreptimeDB instances.
## Data Sources
The following data sources are used to fetch metrics and logs:
- **`${metrics}`**: Prometheus data source for providing the GreptimeDB metrics.
- **`${logs}`**: MySQL data source for providing the GreptimeDB logs.
- **`${information_schema}`**: MySQL data source for providing the information schema of the current instance and used for the `overview` panel. It is the MySQL port of the current monitored instance.
## Instance Filters
To deploy the dashboards for multiple scenarios (K8s, bare metal, etc.), we prefer to use the `instance` label when filtering instances.
Additionally, we recommend including the `pod` label in the legend to make it easier to identify each instance, even though this field will be empty in bare metal scenarios.
For example, the following query is recommended:
```promql
sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
```
And the legend will be like: `[{{instance}}]-[{{ pod }}]`.
## Deployment
### (Recommended) Helm Chart
If you use the [Helm Chart](https://github.com/GreptimeTeam/helm-charts) to deploy a GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
If you use Helm [chart](https://github.com/GreptimeTeam/helm-charts) to deploy GreptimeDB cluster, you can enable self-monitoring by setting the following values in your Helm chart:
- `monitoring.enabled=true`: Deploys a standalone GreptimeDB instance dedicated to monitoring the cluster;
- `grafana.enabled=true`: Deploys Grafana and automatically imports the monitoring dashboard;
The standalone GreptimeDB instance will collect metrics from your cluster, and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/user-guide/deployments-administration/deploy-on-kubernetes/getting-started).
The standalone GreptimeDB instance will collect metrics from your cluster and the dashboard will be available in the Grafana UI. For detailed deployment instructions, please refer to our [Kubernetes deployment guide](https://docs.greptime.com/nightly/user-guide/deployments/deploy-on-kubernetes/getting-started).
### Self-host Prometheus and import dashboards manually
# How to use
1. **Configure Prometheus to scrape the cluster**
## `greptimedb.json`
The following is an example configuration(**Please modify it according to your actual situation**):
Open Grafana Dashboard page, choose `New` -> `Import`. And upload `greptimedb.json` file.
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
## `greptimedb-cluster.json`
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
This cluster dashboard provides a comprehensive view of incoming requests, response statuses, and internal activities such as flush and compaction, with a layered structure from frontend to datanode. Designed with a focus on alert functionality, its primary aim is to highlight any anomalies in metrics, allowing users to quickly pinpoint the cause of errors.
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
We use Prometheus to scrape off metrics from nodes in GreptimeDB cluster, Grafana to visualize the diagram. Any compatible stack should work too.
2. **Configure the data sources in Grafana**
__Note__: This dashboard is still in an early stage of development. Any issue or advice on improvement is welcomed.
You need to add two data sources in Grafana:
### Configuration
- Prometheus: It is the Prometheus instance that scrapes the GreptimeDB metrics.
- Information Schema: It is the MySQL port of the current monitored instance. The dashboard will use this datasource to show the information schema of the current instance.
Please ensure the following configuration before importing the dashboard into Grafana.
3. **Import the dashboards based on your deployment scenario**
__1. Prometheus scrape config__
- **Cluster**: Import the `dashboards/metrics/cluster/dashboard.json` dashboard.
- **Standalone**: Import the `dashboards/metrics/standalone/dashboard.json` dashboard.
Configure Prometheus to scrape the cluster.
```yml
# example config
# only to indicate how to assign labels to each target
# modify yours accordingly
scrape_configs:
- job_name: metasrv
static_configs:
- targets: ['<metasrv-ip>:<port>']
- job_name: datanode
static_configs:
- targets: ['<datanode0-ip>:<port>', '<datanode1-ip>:<port>', '<datanode2-ip>:<port>']
- job_name: frontend
static_configs:
- targets: ['<frontend-ip>:<port>']
```
__2. Grafana config__
Create a Prometheus data source in Grafana before using this dashboard. We use `datasource` as a variable in Grafana dashboard so that multiple environments are supported.
### Usage
Use `datasource` or `instance` on the upper-left corner to filter data from certain node.

19
grafana/check.sh Executable file
View File

@@ -0,0 +1,19 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))
')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
exit 0
fi

View File

@@ -1,292 +0,0 @@
{
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"type": "dashboard"
}
]
},
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": 12,
"links": [],
"panels": [
{
"datasource": {
"default": false,
"type": "mysql",
"uid": "${datasource}"
},
"fieldConfig": {
"defaults": {},
"overrides": []
},
"gridPos": {
"h": 20,
"w": 24,
"x": 0,
"y": 0
},
"id": 1,
"options": {
"dedupStrategy": "none",
"enableInfiniteScrolling": true,
"enableLogDetails": true,
"prettifyLogMessage": false,
"showCommonLabels": false,
"showLabels": false,
"showTime": true,
"sortOrder": "Descending",
"wrapLogMessage": false
},
"pluginVersion": "11.6.0",
"targets": [
{
"dataset": "greptime_private",
"datasource": {
"type": "mysql",
"uid": "${datasource}"
},
"editorMode": "code",
"format": "table",
"rawQuery": true,
"rawSql": "SELECT `timestamp`, CONCAT('[', `level`, ']', ' ', '<', `target`, '>', ' ', `message`),\n `role`,\n `pod`,\n `pod_ip`,\n `namespace`,\n `cluster`,\n `err`,\n `file`,\n `module_path`\nFROM\n `_gt_logs`\nWHERE\n (\n \"$level\" = \"'all'\"\n OR `level` IN ($level)\n ) \n AND (\n \"$role\" = \"'all'\"\n OR `role` IN ($role)\n )\n AND (\n \"$pod\" = \"\"\n OR `pod` = '$pod'\n )\n AND (\n \"$target\" = \"\"\n OR `target` = '$target'\n )\n AND (\n \"$search\" = \"\"\n OR matches_term(`message`, '$search')\n )\n AND (\n \"$exclude\" = \"\"\n OR NOT matches_term(`message`, '$exclude')\n )\n AND $__timeFilter(`timestamp`)\nORDER BY `timestamp` DESC\nLIMIT $limit;\n",
"refId": "A",
"sql": {
"columns": [
{
"parameters": [],
"type": "function"
}
],
"groupBy": [
{
"property": {
"type": "string"
},
"type": "groupBy"
}
],
"limit": 50
}
}
],
"title": "Logs",
"type": "logs"
}
],
"preload": false,
"refresh": "",
"schemaVersion": 41,
"tags": [],
"templating": {
"list": [
{
"current": {
"text": "logs",
"value": "P98F38F12DB221A8C"
},
"includeAll": false,
"name": "datasource",
"options": [],
"query": "mysql",
"refresh": 1,
"regex": "",
"type": "datasource"
},
{
"allValue": "'all'",
"current": {
"text": [
"$__all"
],
"value": [
"$__all"
]
},
"includeAll": true,
"label": "level",
"multi": true,
"name": "level",
"options": [
{
"selected": false,
"text": "INFO",
"value": "INFO"
},
{
"selected": false,
"text": "ERROR",
"value": "ERROR"
},
{
"selected": false,
"text": "WARN",
"value": "WARN"
},
{
"selected": false,
"text": "DEBUG",
"value": "DEBUG"
},
{
"selected": false,
"text": "TRACE",
"value": "TRACE"
}
],
"query": "INFO,ERROR,WARN,DEBUG,TRACE",
"type": "custom"
},
{
"allValue": "'all'",
"current": {
"text": [
"$__all"
],
"value": [
"$__all"
]
},
"includeAll": true,
"label": "role",
"multi": true,
"name": "role",
"options": [
{
"selected": false,
"text": "datanode",
"value": "datanode"
},
{
"selected": false,
"text": "frontend",
"value": "frontend"
},
{
"selected": false,
"text": "meta",
"value": "meta"
}
],
"query": "datanode,frontend,meta",
"type": "custom"
},
{
"current": {
"text": "",
"value": ""
},
"label": "pod",
"name": "pod",
"options": [
{
"selected": true,
"text": "",
"value": ""
}
],
"query": "",
"type": "textbox"
},
{
"current": {
"text": "",
"value": ""
},
"label": "target",
"name": "target",
"options": [
{
"selected": true,
"text": "",
"value": ""
}
],
"query": "",
"type": "textbox"
},
{
"current": {
"text": "",
"value": ""
},
"label": "search",
"name": "search",
"options": [
{
"selected": true,
"text": "",
"value": ""
}
],
"query": "",
"type": "textbox"
},
{
"current": {
"text": "",
"value": ""
},
"label": "exclude",
"name": "exclude",
"options": [
{
"selected": true,
"text": "",
"value": ""
}
],
"query": "",
"type": "textbox"
},
{
"current": {
"text": "2000",
"value": "2000"
},
"includeAll": false,
"label": "limit",
"name": "limit",
"options": [
{
"selected": true,
"text": "2000",
"value": "2000"
},
{
"selected": false,
"text": "5000",
"value": "5000"
},
{
"selected": false,
"text": "8000",
"value": "8000"
}
],
"query": "2000,5000,8000",
"type": "custom"
}
]
},
"time": {
"from": "now-6h",
"to": "now"
},
"timepicker": {},
"timezone": "browser",
"title": "GreptimeDB Logs",
"uid": "edx5veo4rd3wge2",
"version": 1
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,112 +0,0 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `prometheus` | `s` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | `mysql` | -- | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `prometheus` | `rowsps` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `mysql` | `decbytes` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `mysql` | `sishort` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | `mysql` | -- | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | `mysql` | -- | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `mysql` | `decbytes` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `prometheus` | `reqps` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `prometheus` | `s` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Frontend Handle Bulk Insert Elapsed Time | `sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_sum[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_count[$__rate_interval]))`<br/>`histogram_quantile(0.99, sum by(instance, pod, stage, le) (rate(greptime_table_operator_handle_bulk_insert_bucket[$__rate_interval])))` | `timeseries` | Per-stage time for frontend to handle bulk insert requests | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{instance=~"$datanode"}` | `timeseries` | Write Buffer per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})` | `timeseries` | Write Stall per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `prometheus` | `ops` | `[{{ instance }}]-[{{pod}}]` |
| Compaction Elapsed Time per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))`<br/>`sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_sum{instance=~"$datanode"}[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Compaction latency by stage | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{instance=~"$datanode"}` | `timeseries` | Cached Bytes per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| Compaction Input/Output Bytes | `sum by(instance, pod) (greptime_mito_compaction_input_bytes)`<br/>`sum by(instance, pod) (greptime_mito_compaction_output_bytes)` | `timeseries` | Compaction oinput output bytes | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-input` |
| Region Worker Handle Bulk Insert Requests | `histogram_quantile(0.95, sum by(le,instance, stage, pod) (rate(greptime_region_worker_handle_write_bucket[$__rate_interval])))`<br/>`sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_sum[$__rate_interval]))/sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_count[$__rate_interval]))` | `timeseries` | Per-stage elapsed time for region worker to handle bulk insert region requests. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-P95` |
| Active Series and Field Builders Count | `sum by(instance, pod) (greptime_mito_memtable_active_series_count)`<br/>`sum by(instance, pod) (greptime_mito_memtable_field_builder_count)` | `timeseries` | Compaction oinput output bytes | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]-series` |
| Region Worker Convert Requests | `histogram_quantile(0.95, sum by(le, instance, stage, pod) (rate(greptime_datanode_convert_region_request_bucket[$__rate_interval])))`<br/>`sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_sum[$__rate_interval]))/sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_count[$__rate_interval]))` | `timeseries` | Per-stage elapsed time for region worker to decode requests. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-P95` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| OpenDAL errors per Instance | `sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{instance=~"$datanode", error!="NotFound"}[$__rate_interval]))` | `timeseries` | OpenDAL error counts per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `status-history` | Counter of region migration by source and destination | `prometheus` | -- | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `prometheus` | `none` | `{{pod}}-{{state}}-{{error_type}}` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `binBps` | `Datanode-{{datanode_id}}-writeload` |
| Rate of SQL Executions (RDS) | `rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_count[$__rate_interval])` | `timeseries` | Displays the rate of SQL executions processed by the Meta service using the RDS backend. | `prometheus` | `none` | `{{pod}} {{op}} {{type}} {{result}} ` |
| SQL Execution Latency (RDS) | `histogram_quantile(0.90, sum by(pod, op, type, result, le) (rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_bucket[$__rate_interval])))` | `timeseries` | Measures the response time of SQL executions via the RDS backend. | `prometheus` | `ms` | `{{pod}} {{op}} {{type}} {{result}} p90` |
| Handler Execution Latency | `histogram_quantile(0.90, sum by(pod, le, name) (
rate(greptime_meta_handler_execute_bucket[$__rate_interval])
))` | `timeseries` | Shows latency of Meta handlers by pod and handler name, useful for monitoring handler performance and detecting latency spikes.<br/> | `prometheus` | `s` | `{{pod}} {{name}} p90` |
| Heartbeat Packet Size | `histogram_quantile(0.9, sum by(pod, le) (greptime_meta_heartbeat_stat_memory_size_bucket))` | `timeseries` | Shows p90 heartbeat message sizes, helping track network usage and identify anomalies in heartbeat payload.<br/> | `prometheus` | `bytes` | `{{pod}}` |
| Meta Heartbeat Receive Rate | `rate(greptime_meta_heartbeat_rate[$__rate_interval])` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `s` | `{{pod}}` |
| Meta KV Ops Latency | `histogram_quantile(0.99, sum by(pod, le, op, target) (greptime_meta_kv_request_elapsed_bucket))` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `s` | `{{pod}}-{{op}} p99` |
| Rate of meta KV Ops | `rate(greptime_meta_kv_request_elapsed_count[$__rate_interval])` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `none` | `{{pod}}-{{op}} p99` |
| DDL Latency | `histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_tables_bucket))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_table))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_view))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_flow))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_drop_table))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_alter_table))` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `s` | `CreateLogicalTables-{{step}} p90` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | `prometheus` | -- | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -1,958 +0,0 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$datanode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$datanode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$frontend"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$frontend"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$metasrv"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$metasrv"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{instance=~"$flownode"}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{instance=~"$flownode"}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{instance=~"$frontend",path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{instance=~"$frontend"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{instance=~"$frontend"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: 'Frontend Handle Bulk Insert Elapsed Time '
type: timeseries
description: Per-stage time for frontend to handle bulk insert requests
unit: s
queries:
- expr: sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_sum[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_count[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG'
- expr: histogram_quantile(0.99, sum by(instance, pod, stage, le) (rate(greptime_table_operator_handle_bulk_insert_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-P95'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{instance=~"$datanode"})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{instance=~"$datanode", stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction Elapsed Time per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- expr: sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_sum{instance=~"$datanode"}[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-avg'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{instance=~"$datanode"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{instance=~"$datanode"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Compaction Input/Output Bytes
type: timeseries
description: Compaction oinput output bytes
unit: bytes
queries:
- expr: sum by(instance, pod) (greptime_mito_compaction_input_bytes)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-input'
- expr: sum by(instance, pod) (greptime_mito_compaction_output_bytes)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-output'
- title: Region Worker Handle Bulk Insert Requests
type: timeseries
description: Per-stage elapsed time for region worker to handle bulk insert region requests.
unit: s
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, stage, pod) (rate(greptime_region_worker_handle_write_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-P95'
- expr: sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_sum[$__rate_interval]))/sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_count[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG'
- title: Active Series and Field Builders Count
type: timeseries
description: Compaction oinput output bytes
unit: none
queries:
- expr: sum by(instance, pod) (greptime_mito_memtable_active_series_count)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-series'
- expr: sum by(instance, pod) (greptime_mito_memtable_field_builder_count)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-field_builders'
- title: Region Worker Convert Requests
type: timeseries
description: Per-stage elapsed time for region worker to decode requests.
unit: s
queries:
- expr: histogram_quantile(0.95, sum by(le, instance, stage, pod) (rate(greptime_datanode_convert_region_request_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-P95'
- expr: sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_sum[$__rate_interval]))/sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_count[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode",operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode", operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{instance=~"$datanode",operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{instance=~"$datanode", operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: decbytes
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{instance=~"$datanode"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: OpenDAL errors per Instance
type: timeseries
description: OpenDAL error counts per Instance.
queries:
- expr: sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{instance=~"$datanode", error!="NotFound"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: status-history
description: Counter of region migration by source and destination
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}-{{state}}-{{error_type}}'
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: binBps
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: Datanode-{{datanode_id}}-writeload
- title: Rate of SQL Executions (RDS)
type: timeseries
description: Displays the rate of SQL executions processed by the Meta service using the RDS backend.
unit: none
queries:
- expr: rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_count[$__rate_interval])
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}} {{op}} {{type}} {{result}} '
- title: SQL Execution Latency (RDS)
type: timeseries
description: 'Measures the response time of SQL executions via the RDS backend. '
unit: ms
queries:
- expr: histogram_quantile(0.90, sum by(pod, op, type, result, le) (rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}} {{op}} {{type}} {{result}} p90'
- title: Handler Execution Latency
type: timeseries
description: |
Shows latency of Meta handlers by pod and handler name, useful for monitoring handler performance and detecting latency spikes.
unit: s
queries:
- expr: |-
histogram_quantile(0.90, sum by(pod, le, name) (
rate(greptime_meta_handler_execute_bucket[$__rate_interval])
))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}} {{name}} p90'
- title: Heartbeat Packet Size
type: timeseries
description: |
Shows p90 heartbeat message sizes, helping track network usage and identify anomalies in heartbeat payload.
unit: bytes
queries:
- expr: histogram_quantile(0.9, sum by(pod, le) (greptime_meta_heartbeat_stat_memory_size_bucket))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}'
- title: Meta Heartbeat Receive Rate
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: s
queries:
- expr: rate(greptime_meta_heartbeat_rate[$__rate_interval])
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}'
- title: Meta KV Ops Latency
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, le, op, target) (greptime_meta_kv_request_elapsed_bucket))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}-{{op}} p99'
- title: Rate of meta KV Ops
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: rate(greptime_meta_kv_request_elapsed_count[$__rate_interval])
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}-{{op}} p99'
- title: DDL Latency
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: s
queries:
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_tables_bucket))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateLogicalTables-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_table))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateTable-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_view))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateView-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_flow))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateFlow-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_drop_table))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: DropTable-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_alter_table))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: AlterTable-{{step}} p90
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

View File

@@ -1,112 +0,0 @@
# Overview
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Uptime | `time() - process_start_time_seconds` | `stat` | The start time of GreptimeDB. | `prometheus` | `s` | `__auto` |
| Version | `SELECT pkg_version FROM information_schema.build_info` | `stat` | GreptimeDB version. | `mysql` | -- | -- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))` | `stat` | Total ingestion rate. | `prometheus` | `rowsps` | `__auto` |
| Total Storage Size | `select SUM(disk_size) from information_schema.region_statistics;` | `stat` | Total number of data file size. | `mysql` | `decbytes` | -- |
| Total Rows | `select SUM(region_rows) from information_schema.region_statistics;` | `stat` | Total number of data rows in the cluster. Calculated by sum of rows from each region. | `mysql` | `sishort` | -- |
| Deployment | `SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';`<br/>`SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';`<br/>`SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';`<br/>`SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';` | `stat` | The deployment topology of GreptimeDB. | `mysql` | -- | -- |
| Database Resources | `SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')`<br/>`SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'`<br/>`SELECT COUNT(region_id) as regions FROM information_schema.region_peers`<br/>`SELECT COUNT(*) as flows FROM information_schema.flows` | `stat` | The number of the key resources in GreptimeDB. | `mysql` | -- | -- |
| Data Size | `SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;`<br/>`SELECT SUM(index_size) as index FROM information_schema.region_statistics;`<br/>`SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;` | `stat` | The data size of wal/index/manifest in the GreptimeDB. | `mysql` | `decbytes` | -- |
# Ingestion
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Ingestion Rate | `sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `ingestion` |
| Ingestion Rate by Type | `sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))`<br/>`sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))` | `timeseries` | Total ingestion rate.<br/><br/>Here we listed 3 primary protocols:<br/><br/>- Prometheus remote write<br/>- Greptime's gRPC API (when using our ingest SDK)<br/>- Log ingestion http API<br/> | `prometheus` | `rowsps` | `http-logs` |
# Queries
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Total Query Rate | `sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))`<br/>`sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))` | `timeseries` | Total rate of query API calls by protocol. This metric is collected from frontends.<br/><br/>Here we listed 3 main protocols:<br/>- MySQL<br/>- Postgres<br/>- Prometheus API<br/><br/>Note that there are some other minor query APIs like /sql are not included | `prometheus` | `reqps` | `mysql` |
# Resources
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Datanode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{instance}}]-[{{ pod }}]` |
| Datanode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Frontend CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]-cpu` |
| Metasrv Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]-resident` |
| Metasrv CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode Memory per Instance | `sum(process_resident_memory_bytes{}) by (instance, pod)` | `timeseries` | Current memory usage by instance | `prometheus` | `decbytes` | `[{{ instance }}]-[{{ pod }}]` |
| Flownode CPU Usage per Instance | `sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)` | `timeseries` | Current cpu usage by instance | `prometheus` | `none` | `[{{ instance }}]-[{{ pod }}]` |
# Frontend Requests
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| HTTP QPS per Instance | `sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health\|/metrics"}[$__rate_interval]))` | `timeseries` | HTTP QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]` |
| HTTP P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health\|/metrics"}[$__rate_interval])))` | `timeseries` | HTTP P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| gRPC QPS per Instance | `sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))` | `timeseries` | gRPC QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]` |
| gRPC P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | gRPC P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99` |
| MySQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | MySQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| MySQL P99 per Instance | `histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | MySQL P99 per Instance. | `prometheus` | `s` | `[{{ instance }}]-[{{ pod }}]-p99` |
| PostgreSQL QPS per Instance | `sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))` | `timeseries` | PostgreSQL QPS per Instance. | `prometheus` | `reqps` | `[{{instance}}]-[{{pod}}]` |
| PostgreSQL P99 per Instance | `histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | PostgreSQL P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
# Frontend to Datanode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Ingest Rows per Instance | `sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))` | `timeseries` | Ingestion rate by row as in each frontend | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Region Call QPS per Instance | `sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))` | `timeseries` | Region Call QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Region Call P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))` | `timeseries` | Region Call P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{request_type}}]` |
| Frontend Handle Bulk Insert Elapsed Time | `sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_sum[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_count[$__rate_interval]))`<br/>`histogram_quantile(0.99, sum by(instance, pod, stage, le) (rate(greptime_table_operator_handle_bulk_insert_bucket[$__rate_interval])))` | `timeseries` | Per-stage time for frontend to handle bulk insert requests | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG` |
# Mito Engine
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Request OPS per Instance | `sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))` | `timeseries` | Request QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Write Buffer per Instance | `greptime_mito_write_buffer_bytes{}` | `timeseries` | Write Buffer per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]` |
| Write Rows per Instance | `sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))` | `timeseries` | Ingestion size by row counts. | `prometheus` | `rowsps` | `[{{instance}}]-[{{pod}}]` |
| Flush OPS per Instance | `sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))` | `timeseries` | Flush QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{reason}}]` |
| Write Stall per Instance | `sum by(instance, pod) (greptime_mito_write_stall_total{})` | `timeseries` | Write Stall per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]` |
| Read Stage OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))` | `timeseries` | Read Stage OPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]` |
| Read Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Read Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Write Stage P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Write Stage P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]` |
| Compaction OPS per Instance | `sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))` | `timeseries` | Compaction OPS per Instance. | `prometheus` | `ops` | `[{{ instance }}]-[{{pod}}]` |
| Compaction Elapsed Time per Instance by Stage | `histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))`<br/>`sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_sum{}[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_count{}[$__rate_interval]))` | `timeseries` | Compaction latency by stage | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-p99` |
| Compaction P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))` | `timeseries` | Compaction P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction` |
| WAL write size | `histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))`<br/>`sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))` | `timeseries` | Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate. | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-req-size-p95` |
| Cached Bytes per Instance | `greptime_mito_cache_bytes{}` | `timeseries` | Cached Bytes per Instance. | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{type}}]` |
| Inflight Compaction | `greptime_mito_inflight_compaction_count` | `timeseries` | Ongoing compaction task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| WAL sync duration seconds | `histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))` | `timeseries` | Raft engine (local disk) log store sync latency, p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-p99` |
| Log Store op duration seconds | `histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))` | `timeseries` | Write-ahead log operations latency at p99 | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99` |
| Inflight Flush | `greptime_mito_inflight_flush_count` | `timeseries` | Ongoing flush task count | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]` |
| Compaction Input/Output Bytes | `sum by(instance, pod) (greptime_mito_compaction_input_bytes)`<br/>`sum by(instance, pod) (greptime_mito_compaction_output_bytes)` | `timeseries` | Compaction oinput output bytes | `prometheus` | `bytes` | `[{{instance}}]-[{{pod}}]-input` |
| Region Worker Handle Bulk Insert Requests | `histogram_quantile(0.95, sum by(le,instance, stage, pod) (rate(greptime_region_worker_handle_write_bucket[$__rate_interval])))`<br/>`sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_sum[$__rate_interval]))/sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_count[$__rate_interval]))` | `timeseries` | Per-stage elapsed time for region worker to handle bulk insert region requests. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-P95` |
| Active Series and Field Builders Count | `sum by(instance, pod) (greptime_mito_memtable_active_series_count)`<br/>`sum by(instance, pod) (greptime_mito_memtable_field_builder_count)` | `timeseries` | Compaction oinput output bytes | `prometheus` | `none` | `[{{instance}}]-[{{pod}}]-series` |
| Region Worker Convert Requests | `histogram_quantile(0.95, sum by(le, instance, stage, pod) (rate(greptime_datanode_convert_region_request_bucket[$__rate_interval])))`<br/>`sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_sum[$__rate_interval]))/sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_count[$__rate_interval]))` | `timeseries` | Per-stage elapsed time for region worker to decode requests. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{stage}}]-P95` |
# OpenDAL
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| QPS per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))` | `timeseries` | QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Read QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))` | `timeseries` | Read QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Read P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))` | `timeseries` | Read P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))` | `timeseries` | Write QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-{{scheme}}` |
| Write P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))` | `timeseries` | Write P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List QPS per Instance | `sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))` | `timeseries` | List QPS per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| List P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))` | `timeseries` | List P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]` |
| Other Requests per Instance | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read\|write\|list\|stat"}[$__rate_interval]))` | `timeseries` | Other Requests per Instance. | `prometheus` | `ops` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Other Request P99 per Instance | `histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read\|write\|list"}[$__rate_interval])))` | `timeseries` | Other Request P99 per Instance. | `prometheus` | `s` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| Opendal traffic | `sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))` | `timeseries` | Total traffic as in bytes by instance and operation | `prometheus` | `decbytes` | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]` |
| OpenDAL errors per Instance | `sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{ error!="NotFound"}[$__rate_interval]))` | `timeseries` | OpenDAL error counts per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]` |
# Metasrv
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Region migration datanode | `greptime_meta_region_migration_stat{datanode_type="src"}`<br/>`greptime_meta_region_migration_stat{datanode_type="desc"}` | `status-history` | Counter of region migration by source and destination | `prometheus` | -- | `from-datanode-{{datanode_id}}` |
| Region migration error | `greptime_meta_region_migration_error` | `timeseries` | Counter of region migration error | `prometheus` | `none` | `{{pod}}-{{state}}-{{error_type}}` |
| Datanode load | `greptime_datanode_load` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `binBps` | `Datanode-{{datanode_id}}-writeload` |
| Rate of SQL Executions (RDS) | `rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_count[$__rate_interval])` | `timeseries` | Displays the rate of SQL executions processed by the Meta service using the RDS backend. | `prometheus` | `none` | `{{pod}} {{op}} {{type}} {{result}} ` |
| SQL Execution Latency (RDS) | `histogram_quantile(0.90, sum by(pod, op, type, result, le) (rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_bucket[$__rate_interval])))` | `timeseries` | Measures the response time of SQL executions via the RDS backend. | `prometheus` | `ms` | `{{pod}} {{op}} {{type}} {{result}} p90` |
| Handler Execution Latency | `histogram_quantile(0.90, sum by(pod, le, name) (
rate(greptime_meta_handler_execute_bucket[$__rate_interval])
))` | `timeseries` | Shows latency of Meta handlers by pod and handler name, useful for monitoring handler performance and detecting latency spikes.<br/> | `prometheus` | `s` | `{{pod}} {{name}} p90` |
| Heartbeat Packet Size | `histogram_quantile(0.9, sum by(pod, le) (greptime_meta_heartbeat_stat_memory_size_bucket))` | `timeseries` | Shows p90 heartbeat message sizes, helping track network usage and identify anomalies in heartbeat payload.<br/> | `prometheus` | `bytes` | `{{pod}}` |
| Meta Heartbeat Receive Rate | `rate(greptime_meta_heartbeat_rate[$__rate_interval])` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `s` | `{{pod}}` |
| Meta KV Ops Latency | `histogram_quantile(0.99, sum by(pod, le, op, target) (greptime_meta_kv_request_elapsed_bucket))` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `s` | `{{pod}}-{{op}} p99` |
| Rate of meta KV Ops | `rate(greptime_meta_kv_request_elapsed_count[$__rate_interval])` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `none` | `{{pod}}-{{op}} p99` |
| DDL Latency | `histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_tables_bucket))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_table))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_view))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_flow))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_drop_table))`<br/>`histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_alter_table))` | `timeseries` | Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads. | `prometheus` | `s` | `CreateLogicalTables-{{step}} p90` |
# Flownode
| Title | Query | Type | Description | Datasource | Unit | Legend Format |
| --- | --- | --- | --- | --- | --- | --- |
| Flow Ingest / Output Rate | `sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))` | `timeseries` | Flow Ingest / Output Rate. | `prometheus` | -- | `[{{pod}}]-[{{instance}}]-[{{direction}}]` |
| Flow Ingest Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))` | `timeseries` | Flow Ingest Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-p95` |
| Flow Operation Latency | `histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))`<br/>`histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))` | `timeseries` | Flow Operation Latency. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{type}}]-p95` |
| Flow Buffer Size per Instance | `greptime_flow_input_buf_size` | `timeseries` | Flow Buffer Size per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}]` |
| Flow Processing Error per Instance | `sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))` | `timeseries` | Flow Processing Error per Instance. | `prometheus` | -- | `[{{instance}}]-[{{pod}}]-[{{code}}]` |

View File

@@ -1,958 +0,0 @@
groups:
- title: Overview
panels:
- title: Uptime
type: stat
description: The start time of GreptimeDB.
unit: s
queries:
- expr: time() - process_start_time_seconds
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Version
type: stat
description: GreptimeDB version.
queries:
- expr: SELECT pkg_version FROM information_schema.build_info
datasource:
type: mysql
uid: ${information_schema}
- title: Total Ingestion Rate
type: stat
description: Total ingestion rate.
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: __auto
- title: Total Storage Size
type: stat
description: Total number of data file size.
unit: decbytes
queries:
- expr: select SUM(disk_size) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Total Rows
type: stat
description: Total number of data rows in the cluster. Calculated by sum of rows from each region.
unit: sishort
queries:
- expr: select SUM(region_rows) from information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Deployment
type: stat
description: The deployment topology of GreptimeDB.
queries:
- expr: SELECT count(*) as datanode FROM information_schema.cluster_info WHERE peer_type = 'DATANODE';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as frontend FROM information_schema.cluster_info WHERE peer_type = 'FRONTEND';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as metasrv FROM information_schema.cluster_info WHERE peer_type = 'METASRV';
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT count(*) as flownode FROM information_schema.cluster_info WHERE peer_type = 'FLOWNODE';
datasource:
type: mysql
uid: ${information_schema}
- title: Database Resources
type: stat
description: The number of the key resources in GreptimeDB.
queries:
- expr: SELECT COUNT(*) as databases FROM information_schema.schemata WHERE schema_name NOT IN ('greptime_private', 'information_schema')
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as tables FROM information_schema.tables WHERE table_schema != 'information_schema'
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(region_id) as regions FROM information_schema.region_peers
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT COUNT(*) as flows FROM information_schema.flows
datasource:
type: mysql
uid: ${information_schema}
- title: Data Size
type: stat
description: The data size of wal/index/manifest in the GreptimeDB.
unit: decbytes
queries:
- expr: SELECT SUM(memtable_size) * 0.42825 as WAL FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(index_size) as index FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- expr: SELECT SUM(manifest_size) as manifest FROM information_schema.region_statistics;
datasource:
type: mysql
uid: ${information_schema}
- title: Ingestion
panels:
- title: Total Ingestion Rate
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: ingestion
- title: Ingestion Rate by Type
type: timeseries
description: |
Total ingestion rate.
Here we listed 3 primary protocols:
- Prometheus remote write
- Greptime's gRPC API (when using our ingest SDK)
- Log ingestion http API
unit: rowsps
queries:
- expr: sum(rate(greptime_servers_http_logs_ingestion_counter[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: http-logs
- expr: sum(rate(greptime_servers_prometheus_remote_write_samples[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: prometheus-remote-write
- title: Queries
panels:
- title: Total Query Rate
type: timeseries
description: |-
Total rate of query API calls by protocol. This metric is collected from frontends.
Here we listed 3 main protocols:
- MySQL
- Postgres
- Prometheus API
Note that there are some other minor query APIs like /sql are not included
unit: reqps
queries:
- expr: sum (rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: mysql
- expr: sum (rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: pg
- expr: sum (rate(greptime_servers_http_promql_elapsed_counte{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: promql
- title: Resources
panels:
- title: Datanode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{ pod }}]'
- title: Datanode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-cpu'
- title: Metasrv Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-resident'
- title: Metasrv CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode Memory per Instance
type: timeseries
description: Current memory usage by instance
unit: decbytes
queries:
- expr: sum(process_resident_memory_bytes{}) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Flownode CPU Usage per Instance
type: timeseries
description: Current cpu usage by instance
unit: none
queries:
- expr: sum(rate(process_cpu_seconds_total{}[$__rate_interval]) * 1000) by (instance, pod)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]'
- title: Frontend Requests
panels:
- title: HTTP QPS per Instance
type: timeseries
description: HTTP QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, method, code) (rate(greptime_servers_http_requests_elapsed_count{path!~"/health|/metrics"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]'
- title: HTTP P99 per Instance
type: timeseries
description: HTTP P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, method, code) (rate(greptime_servers_http_requests_elapsed_bucket{path!~"/health|/metrics"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: gRPC QPS per Instance
type: timeseries
description: gRPC QPS per Instance.
unit: reqps
queries:
- expr: sum by(instance, pod, path, code) (rate(greptime_servers_grpc_requests_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{code}}]'
- title: gRPC P99 per Instance
type: timeseries
description: gRPC P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, path, code) (rate(greptime_servers_grpc_requests_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{path}}]-[{{method}}]-[{{code}}]-p99'
- title: MySQL QPS per Instance
type: timeseries
description: MySQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_mysql_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: MySQL P99 per Instance
type: timeseries
description: MySQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, instance, le) (rate(greptime_servers_mysql_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{ pod }}]-p99'
- title: PostgreSQL QPS per Instance
type: timeseries
description: PostgreSQL QPS per Instance.
unit: reqps
queries:
- expr: sum by(pod, instance)(rate(greptime_servers_postgres_query_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: PostgreSQL P99 per Instance
type: timeseries
description: PostgreSQL P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod,instance,le) (rate(greptime_servers_postgres_query_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Frontend to Datanode
panels:
- title: Ingest Rows per Instance
type: timeseries
description: Ingestion rate by row as in each frontend
unit: rowsps
queries:
- expr: sum by(instance, pod)(rate(greptime_table_operator_ingest_rows{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Region Call QPS per Instance
type: timeseries
description: Region Call QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, request_type) (rate(greptime_grpc_region_request_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: Region Call P99 per Instance
type: timeseries
description: Region Call P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, request_type) (rate(greptime_grpc_region_request_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{request_type}}]'
- title: 'Frontend Handle Bulk Insert Elapsed Time '
type: timeseries
description: Per-stage time for frontend to handle bulk insert requests
unit: s
queries:
- expr: sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_sum[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_table_operator_handle_bulk_insert_count[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG'
- expr: histogram_quantile(0.99, sum by(instance, pod, stage, le) (rate(greptime_table_operator_handle_bulk_insert_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-P95'
- title: Mito Engine
panels:
- title: Request OPS per Instance
type: timeseries
description: Request QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, type) (rate(greptime_mito_handle_request_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Request P99 per Instance
type: timeseries
description: Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, type) (rate(greptime_mito_handle_request_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Write Buffer per Instance
type: timeseries
description: Write Buffer per Instance.
unit: decbytes
queries:
- expr: greptime_mito_write_buffer_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Write Rows per Instance
type: timeseries
description: Ingestion size by row counts.
unit: rowsps
queries:
- expr: sum by (instance, pod) (rate(greptime_mito_write_rows_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Flush OPS per Instance
type: timeseries
description: Flush QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, reason) (rate(greptime_mito_flush_requests_total{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{reason}}]'
- title: Write Stall per Instance
type: timeseries
description: Write Stall per Instance.
queries:
- expr: sum by(instance, pod) (greptime_mito_write_stall_total{})
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage OPS per Instance
type: timeseries
description: Read Stage OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_read_stage_elapsed_count{ stage="total"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Read Stage P99 per Instance
type: timeseries
description: Read Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_read_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Write Stage P99 per Instance
type: timeseries
description: Write Stage P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_write_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]'
- title: Compaction OPS per Instance
type: timeseries
description: Compaction OPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod) (rate(greptime_mito_compaction_total_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{ instance }}]-[{{pod}}]'
- title: Compaction Elapsed Time per Instance by Stage
type: timeseries
description: Compaction latency by stage
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, stage) (rate(greptime_mito_compaction_stage_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-p99'
- expr: sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_sum{}[$__rate_interval]))/sum by(instance, pod, stage) (rate(greptime_mito_compaction_stage_elapsed_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-avg'
- title: Compaction P99 per Instance
type: timeseries
description: Compaction P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le,stage) (rate(greptime_mito_compaction_total_elapsed_bucket{}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-compaction'
- title: WAL write size
type: timeseries
description: Write-ahead logs write size as bytes. This chart includes stats of p95 and p99 size by instance, total WAL write rate.
unit: bytes
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p95'
- expr: histogram_quantile(0.99, sum by(le,instance,pod) (rate(raft_engine_write_size_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-req-size-p99'
- expr: sum by (instance, pod)(rate(raft_engine_write_size_sum[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-throughput'
- title: Cached Bytes per Instance
type: timeseries
description: Cached Bytes per Instance.
unit: decbytes
queries:
- expr: greptime_mito_cache_bytes{}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]'
- title: Inflight Compaction
type: timeseries
description: Ongoing compaction task count
unit: none
queries:
- expr: greptime_mito_inflight_compaction_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: WAL sync duration seconds
type: timeseries
description: Raft engine (local disk) log store sync latency, p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le, type, node, instance, pod) (rate(raft_engine_sync_log_duration_seconds_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Log Store op duration seconds
type: timeseries
description: Write-ahead log operations latency at p99
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(le,logstore,optype,instance, pod) (rate(greptime_logstore_op_elapsed_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{logstore}}]-[{{optype}}]-p99'
- title: Inflight Flush
type: timeseries
description: Ongoing flush task count
unit: none
queries:
- expr: greptime_mito_inflight_flush_count
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]'
- title: Compaction Input/Output Bytes
type: timeseries
description: Compaction oinput output bytes
unit: bytes
queries:
- expr: sum by(instance, pod) (greptime_mito_compaction_input_bytes)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-input'
- expr: sum by(instance, pod) (greptime_mito_compaction_output_bytes)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-output'
- title: Region Worker Handle Bulk Insert Requests
type: timeseries
description: Per-stage elapsed time for region worker to handle bulk insert region requests.
unit: s
queries:
- expr: histogram_quantile(0.95, sum by(le,instance, stage, pod) (rate(greptime_region_worker_handle_write_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-P95'
- expr: sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_sum[$__rate_interval]))/sum by(instance, stage, pod) (rate(greptime_region_worker_handle_write_count[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG'
- title: Active Series and Field Builders Count
type: timeseries
description: Compaction oinput output bytes
unit: none
queries:
- expr: sum by(instance, pod) (greptime_mito_memtable_active_series_count)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-series'
- expr: sum by(instance, pod) (greptime_mito_memtable_field_builder_count)
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-field_builders'
- title: Region Worker Convert Requests
type: timeseries
description: Per-stage elapsed time for region worker to decode requests.
unit: s
queries:
- expr: histogram_quantile(0.95, sum by(le, instance, stage, pod) (rate(greptime_datanode_convert_region_request_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-P95'
- expr: sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_sum[$__rate_interval]))/sum by(le,instance, stage, pod) (rate(greptime_datanode_convert_region_request_count[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{stage}}]-AVG'
- title: OpenDAL
panels:
- title: QPS per Instance
type: timeseries
description: QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Read QPS per Instance
type: timeseries
description: Read QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="read"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Read P99 per Instance
type: timeseries
description: Read P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{operation="read"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write QPS per Instance
type: timeseries
description: Write QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="write"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-{{scheme}}'
- title: Write P99 per Instance
type: timeseries
description: Write P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="write"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List QPS per Instance
type: timeseries
description: List QPS per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme) (rate(opendal_operation_duration_seconds_count{ operation="list"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: List P99 per Instance
type: timeseries
description: List P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme) (rate(opendal_operation_duration_seconds_bucket{ operation="list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]'
- title: Other Requests per Instance
type: timeseries
description: Other Requests per Instance.
unit: ops
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_duration_seconds_count{operation!~"read|write|list|stat"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Other Request P99 per Instance
type: timeseries
description: Other Request P99 per Instance.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(instance, pod, le, scheme, operation) (rate(opendal_operation_duration_seconds_bucket{ operation!~"read|write|list"}[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: Opendal traffic
type: timeseries
description: Total traffic as in bytes by instance and operation
unit: decbytes
queries:
- expr: sum by(instance, pod, scheme, operation) (rate(opendal_operation_bytes_sum{}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]'
- title: OpenDAL errors per Instance
type: timeseries
description: OpenDAL error counts per Instance.
queries:
- expr: sum by(instance, pod, scheme, operation, error) (rate(opendal_operation_errors_total{ error!="NotFound"}[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{scheme}}]-[{{operation}}]-[{{error}}]'
- title: Metasrv
panels:
- title: Region migration datanode
type: status-history
description: Counter of region migration by source and destination
queries:
- expr: greptime_meta_region_migration_stat{datanode_type="src"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: from-datanode-{{datanode_id}}
- expr: greptime_meta_region_migration_stat{datanode_type="desc"}
datasource:
type: prometheus
uid: ${metrics}
legendFormat: to-datanode-{{datanode_id}}
- title: Region migration error
type: timeseries
description: Counter of region migration error
unit: none
queries:
- expr: greptime_meta_region_migration_error
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}-{{state}}-{{error_type}}'
- title: Datanode load
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: binBps
queries:
- expr: greptime_datanode_load
datasource:
type: prometheus
uid: ${metrics}
legendFormat: Datanode-{{datanode_id}}-writeload
- title: Rate of SQL Executions (RDS)
type: timeseries
description: Displays the rate of SQL executions processed by the Meta service using the RDS backend.
unit: none
queries:
- expr: rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_count[$__rate_interval])
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}} {{op}} {{type}} {{result}} '
- title: SQL Execution Latency (RDS)
type: timeseries
description: 'Measures the response time of SQL executions via the RDS backend. '
unit: ms
queries:
- expr: histogram_quantile(0.90, sum by(pod, op, type, result, le) (rate(greptime_meta_rds_pg_sql_execute_elapsed_ms_bucket[$__rate_interval])))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}} {{op}} {{type}} {{result}} p90'
- title: Handler Execution Latency
type: timeseries
description: |
Shows latency of Meta handlers by pod and handler name, useful for monitoring handler performance and detecting latency spikes.
unit: s
queries:
- expr: |-
histogram_quantile(0.90, sum by(pod, le, name) (
rate(greptime_meta_handler_execute_bucket[$__rate_interval])
))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}} {{name}} p90'
- title: Heartbeat Packet Size
type: timeseries
description: |
Shows p90 heartbeat message sizes, helping track network usage and identify anomalies in heartbeat payload.
unit: bytes
queries:
- expr: histogram_quantile(0.9, sum by(pod, le) (greptime_meta_heartbeat_stat_memory_size_bucket))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}'
- title: Meta Heartbeat Receive Rate
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: s
queries:
- expr: rate(greptime_meta_heartbeat_rate[$__rate_interval])
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}'
- title: Meta KV Ops Latency
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: s
queries:
- expr: histogram_quantile(0.99, sum by(pod, le, op, target) (greptime_meta_kv_request_elapsed_bucket))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}-{{op}} p99'
- title: Rate of meta KV Ops
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: none
queries:
- expr: rate(greptime_meta_kv_request_elapsed_count[$__rate_interval])
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '{{pod}}-{{op}} p99'
- title: DDL Latency
type: timeseries
description: Gauge of load information of each datanode, collected via heartbeat between datanode and metasrv. This information is for metasrv to schedule workloads.
unit: s
queries:
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_tables_bucket))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateLogicalTables-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_table))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateTable-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_view))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateView-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_create_flow))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: CreateFlow-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_drop_table))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: DropTable-{{step}} p90
- expr: histogram_quantile(0.9, sum by(le, pod, step) (greptime_meta_procedure_alter_table))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: AlterTable-{{step}} p90
- title: Flownode
panels:
- title: Flow Ingest / Output Rate
type: timeseries
description: Flow Ingest / Output Rate.
queries:
- expr: sum by(instance, pod, direction) (rate(greptime_flow_processed_rows[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{pod}}]-[{{instance}}]-[{{direction}}]'
- title: Flow Ingest Latency
type: timeseries
description: Flow Ingest Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_insert_elapsed_bucket[$__rate_interval])) by (le, instance, pod))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-p99'
- title: Flow Operation Latency
type: timeseries
description: Flow Operation Latency.
queries:
- expr: histogram_quantile(0.95, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p95'
- expr: histogram_quantile(0.99, sum(rate(greptime_flow_processing_time_bucket[$__rate_interval])) by (le,instance,pod,type))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{type}}]-p99'
- title: Flow Buffer Size per Instance
type: timeseries
description: Flow Buffer Size per Instance.
queries:
- expr: greptime_flow_input_buf_size
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}]'
- title: Flow Processing Error per Instance
type: timeseries
description: Flow Processing Error per Instance.
queries:
- expr: sum by(instance,pod,code) (rate(greptime_flow_errors[$__rate_interval]))
datasource:
type: prometheus
uid: ${metrics}
legendFormat: '[{{instance}}]-[{{pod}}]-[{{code}}]'

File diff suppressed because it is too large Load Diff

4159
grafana/greptimedb.json Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,54 +0,0 @@
#!/usr/bin/env bash
DASHBOARD_DIR=${1:-grafana/dashboards/metrics}
check_dashboard_description() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard description"
# Use jq to check for panels with empty or missing descriptions
invalid_panels=$(cat $dashboard | jq -r '
.panels[]
| select((.type == "stats" or .type == "timeseries") and (.description == "" or .description == null))')
# Check if any invalid panels were found
if [[ -n "$invalid_panels" ]]; then
echo "Error: The following panels have empty or missing descriptions:"
echo "$invalid_panels"
exit 1
else
echo "All panels with type 'stats' or 'timeseries' have valid descriptions."
fi
done
}
check_dashboards_generation() {
./grafana/scripts/gen-dashboards.sh
if [[ -n "$(git diff --name-only grafana/dashboards/metrics)" ]]; then
echo "Error: The dashboards are not generated correctly. You should execute the `make dashboards` command."
exit 1
fi
}
check_datasource() {
for dashboard in $(find $DASHBOARD_DIR -name "*.json"); do
echo "Checking $dashboard datasource"
jq -r '.panels[] | select(.type != "row") | .targets[] | [.datasource.type, .datasource.uid] | @tsv' $dashboard | while read -r type uid; do
# if the datasource is prometheus, check if the uid is ${metrics}
if [[ "$type" == "prometheus" && "$uid" != "\${metrics}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${metrics}, got $uid"
exit 1
fi
# if the datasource is mysql, check if the uid is ${information_schema}
if [[ "$type" == "mysql" && "$uid" != "\${information_schema}" ]]; then
echo "Error: The datasource uid of $dashboard is not valid. It should be \${information_schema}, got $uid"
exit 1
fi
done
done
}
check_dashboards_generation
check_dashboard_description
check_datasource

View File

@@ -1,25 +0,0 @@
#! /usr/bin/env bash
CLUSTER_DASHBOARD_DIR=${1:-grafana/dashboards/metrics/cluster}
STANDALONE_DASHBOARD_DIR=${2:-grafana/dashboards/metrics/standalone}
DAC_IMAGE=ghcr.io/zyy17/dac:20250423-522bd35
remove_instance_filters() {
# Remove the instance filters for the standalone dashboards.
sed -E 's/instance=~\\"(\$datanode|\$frontend|\$metasrv|\$flownode)\\",?//g' "$CLUSTER_DASHBOARD_DIR/dashboard.json" > "$STANDALONE_DASHBOARD_DIR/dashboard.json"
}
generate_intermediate_dashboards_and_docs() {
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} \
-i /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.json \
-o /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.yaml \
-m /greptimedb/$CLUSTER_DASHBOARD_DIR/dashboard.md
docker run -v ${PWD}:/greptimedb --rm ${DAC_IMAGE} \
-i /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.json \
-o /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.yaml \
-m /greptimedb/$STANDALONE_DASHBOARD_DIR/dashboard.md
}
remove_instance_filters
generate_intermediate_dashboards_and_docs

11
grafana/summary.sh Executable file
View File

@@ -0,0 +1,11 @@
#!/usr/bin/env bash
BASEDIR=$(dirname "$0")
echo '| Title | Description | Expressions |
|---|---|---|'
cat $BASEDIR/greptimedb-cluster.json | jq -r '
.panels |
map(select(.type == "stat" or .type == "timeseries")) |
.[] | "| \(.title) | \(.description | gsub("\n"; "<br>")) | \(.targets | map(.expr // .rawSql | "`\(.|gsub("\n"; "<br>"))`") | join("<br>")) |"
'

View File

@@ -26,14 +26,6 @@ excludes = [
"src/common/base/src/secrets.rs",
"src/servers/src/repeated_field.rs",
"src/servers/src/http/test_helpers.rs",
# enterprise
"src/common/meta/src/rpc/ddl/trigger.rs",
"src/operator/src/expr_helper/trigger.rs",
"src/sql/src/statements/create/trigger.rs",
"src/sql/src/statements/show/trigger.rs",
"src/sql/src/statements/drop/trigger.rs",
"src/sql/src/parsers/create_parser/trigger.rs",
"src/sql/src/parsers/show_parser/trigger.rs",
]
[properties]

View File

@@ -1,2 +1,2 @@
[toolchain]
channel = "nightly-2025-05-19"
channel = "nightly-2024-12-25"

View File

@@ -1,74 +0,0 @@
# Copyright 2023 Greptime Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import re
from multiprocessing import Pool
def find_rust_files(directory):
rust_files = []
for root, _, files in os.walk(directory):
# Skip files with "test" in the path
if "test" in root.lower():
continue
for file in files:
# Skip files with "test" in the filename
if "test" in file.lower():
continue
if file.endswith(".rs"):
rust_files.append(os.path.join(root, file))
return rust_files
def check_file_for_super_import(file_path):
with open(file_path, "r") as file:
lines = file.readlines()
violations = []
for line_number, line in enumerate(lines, 1):
# Check for "use super::" without leading tab
if line.startswith("use super::"):
violations.append((line_number, line.strip()))
if violations:
return file_path, violations
return None
def main():
rust_files = find_rust_files(".")
with Pool() as pool:
results = pool.map(check_file_for_super_import, rust_files)
# Filter out None results
violations = [result for result in results if result]
if violations:
print("Found 'use super::' without leading tab in the following files:")
counter = 1
for file_path, file_violations in violations:
for line_number, line in file_violations:
print(f"{counter:>5} {file_path}:{line_number} - {line}")
counter += 1
raise SystemExit(1)
else:
print("No 'use super::' without leading tab found. All files are compliant.")
if __name__ == "__main__":
main()

View File

@@ -514,7 +514,6 @@ fn query_request_type(request: &QueryRequest) -> &'static str {
Some(Query::Sql(_)) => "query.sql",
Some(Query::LogicalPlan(_)) => "query.logical_plan",
Some(Query::PromRangeQuery(_)) => "query.prom_range",
Some(Query::InsertIntoPlan(_)) => "query.insert_into_plan",
None => "query.empty",
}
}
@@ -1050,7 +1049,7 @@ pub fn value_to_grpc_value(value: Value) -> GrpcValue {
Value::Int64(v) => Some(ValueData::I64Value(v)),
Value::Float32(v) => Some(ValueData::F32Value(*v)),
Value::Float64(v) => Some(ValueData::F64Value(*v)),
Value::String(v) => Some(ValueData::StringValue(v.into_string())),
Value::String(v) => Some(ValueData::StringValue(v.as_utf8().to_string())),
Value::Binary(v) => Some(ValueData::BinaryValue(v.to_vec())),
Value::Date(v) => Some(ValueData::DateValue(v.val())),
Value::Timestamp(v) => Some(match v.unit() {

View File

@@ -22,7 +22,6 @@ use greptime_proto::v1::region::RegionResponse as RegionResponseV1;
pub struct RegionResponse {
pub affected_rows: AffectedRows,
pub extensions: HashMap<String, Vec<u8>>,
pub metadata: Vec<u8>,
}
impl RegionResponse {
@@ -30,7 +29,6 @@ impl RegionResponse {
Self {
affected_rows: region_response.affected_rows as _,
extensions: region_response.extensions,
metadata: region_response.metadata,
}
}
@@ -39,16 +37,6 @@ impl RegionResponse {
Self {
affected_rows,
extensions: Default::default(),
metadata: Vec::new(),
}
}
/// Creates one response with metadata.
pub fn from_metadata(metadata: Vec<u8>) -> Self {
Self {
affected_rows: 0,
extensions: Default::default(),
metadata,
}
}
}

View File

@@ -15,13 +15,10 @@
use std::collections::HashMap;
use datatypes::schema::{
ColumnDefaultConstraint, ColumnSchema, FulltextAnalyzer, FulltextBackend, FulltextOptions,
SkippingIndexOptions, SkippingIndexType, COMMENT_KEY, FULLTEXT_KEY, INVERTED_INDEX_KEY,
SKIPPING_INDEX_KEY,
};
use greptime_proto::v1::{
Analyzer, FulltextBackend as PbFulltextBackend, SkippingIndexType as PbSkippingIndexType,
ColumnDefaultConstraint, ColumnSchema, FulltextAnalyzer, FulltextOptions, SkippingIndexOptions,
SkippingIndexType, COMMENT_KEY, FULLTEXT_KEY, INVERTED_INDEX_KEY, SKIPPING_INDEX_KEY,
};
use greptime_proto::v1::{Analyzer, SkippingIndexType as PbSkippingIndexType};
use snafu::ResultExt;
use crate::error::{self, Result};
@@ -145,21 +142,13 @@ pub fn options_from_inverted() -> ColumnOptions {
}
/// Tries to construct a `FulltextAnalyzer` from the given analyzer.
pub fn as_fulltext_option_analyzer(analyzer: Analyzer) -> FulltextAnalyzer {
pub fn as_fulltext_option(analyzer: Analyzer) -> FulltextAnalyzer {
match analyzer {
Analyzer::English => FulltextAnalyzer::English,
Analyzer::Chinese => FulltextAnalyzer::Chinese,
}
}
/// Tries to construct a `FulltextBackend` from the given backend.
pub fn as_fulltext_option_backend(backend: PbFulltextBackend) -> FulltextBackend {
match backend {
PbFulltextBackend::Bloom => FulltextBackend::Bloom,
PbFulltextBackend::Tantivy => FulltextBackend::Tantivy,
}
}
/// Tries to construct a `SkippingIndexType` from the given skipping index type.
pub fn as_skipping_index_type(skipping_index_type: PbSkippingIndexType) -> SkippingIndexType {
match skipping_index_type {
@@ -171,7 +160,7 @@ pub fn as_skipping_index_type(skipping_index_type: PbSkippingIndexType) -> Skipp
mod tests {
use datatypes::data_type::ConcreteDataType;
use datatypes::schema::{FulltextAnalyzer, FulltextBackend};
use datatypes::schema::FulltextAnalyzer;
use super::*;
use crate::v1::ColumnDataType;
@@ -230,14 +219,13 @@ mod tests {
enable: true,
analyzer: FulltextAnalyzer::English,
case_sensitive: false,
backend: FulltextBackend::Bloom,
})
.unwrap();
schema.set_inverted_index(true);
let options = options_from_column_schema(&schema).unwrap();
assert_eq!(
options.options.get(FULLTEXT_GRPC_KEY).unwrap(),
"{\"enable\":true,\"analyzer\":\"English\",\"case-sensitive\":false,\"backend\":\"bloom\"}"
"{\"enable\":true,\"analyzer\":\"English\",\"case-sensitive\":false}"
);
assert_eq!(
options.options.get(INVERTED_INDEX_GRPC_KEY).unwrap(),
@@ -251,12 +239,11 @@ mod tests {
enable: true,
analyzer: FulltextAnalyzer::English,
case_sensitive: false,
backend: FulltextBackend::Bloom,
};
let options = options_from_fulltext(&fulltext).unwrap().unwrap();
assert_eq!(
options.options.get(FULLTEXT_GRPC_KEY).unwrap(),
"{\"enable\":true,\"analyzer\":\"English\",\"case-sensitive\":false,\"backend\":\"bloom\"}"
"{\"enable\":true,\"analyzer\":\"English\",\"case-sensitive\":false}"
);
}

View File

@@ -36,7 +36,7 @@ pub fn userinfo_by_name(username: Option<String>) -> UserInfoRef {
}
pub fn user_provider_from_option(opt: &String) -> Result<UserProviderRef> {
let (name, content) = opt.split_once(':').with_context(|| InvalidConfigSnafu {
let (name, content) = opt.split_once(':').context(InvalidConfigSnafu {
value: opt.to_string(),
msg: "UserProviderOption must be in format `<option>:<value>`",
})?;
@@ -57,24 +57,6 @@ pub fn user_provider_from_option(opt: &String) -> Result<UserProviderRef> {
}
}
pub fn static_user_provider_from_option(opt: &String) -> Result<StaticUserProvider> {
let (name, content) = opt.split_once(':').with_context(|| InvalidConfigSnafu {
value: opt.to_string(),
msg: "UserProviderOption must be in format `<option>:<value>`",
})?;
match name {
STATIC_USER_PROVIDER => {
let provider = StaticUserProvider::new(content)?;
Ok(provider)
}
_ => InvalidConfigSnafu {
value: name.to_string(),
msg: format!("Invalid UserProviderOption, expect only {STATIC_USER_PROVIDER}"),
}
.fail(),
}
}
type Username<'a> = &'a str;
type HostOrIp<'a> = &'a str;

View File

@@ -38,14 +38,6 @@ pub enum Error {
location: Location,
},
#[snafu(display("Failed to convert to utf8"))]
FromUtf8 {
#[snafu(source)]
error: std::string::FromUtf8Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Authentication source failure"))]
AuthBackend {
#[snafu(implicit)]
@@ -93,7 +85,7 @@ impl ErrorExt for Error {
fn status_code(&self) -> StatusCode {
match self {
Error::InvalidConfig { .. } => StatusCode::InvalidArguments,
Error::IllegalParam { .. } | Error::FromUtf8 { .. } => StatusCode::InvalidArguments,
Error::IllegalParam { .. } => StatusCode::InvalidArguments,
Error::FileWatch { .. } => StatusCode::InvalidArguments,
Error::InternalState { .. } => StatusCode::Unexpected,
Error::Io { .. } => StatusCode::StorageUnavailable,

View File

@@ -22,12 +22,10 @@ mod user_provider;
pub mod tests;
pub use common::{
auth_mysql, static_user_provider_from_option, user_provider_from_option, userinfo_by_name,
HashedPassword, Identity, Password,
auth_mysql, user_provider_from_option, userinfo_by_name, HashedPassword, Identity, Password,
};
pub use permission::{PermissionChecker, PermissionReq, PermissionResp};
pub use user_info::UserInfo;
pub use user_provider::static_user_provider::StaticUserProvider;
pub use user_provider::UserProvider;
/// pub type alias

View File

@@ -15,15 +15,15 @@
use std::collections::HashMap;
use async_trait::async_trait;
use snafu::{OptionExt, ResultExt};
use snafu::OptionExt;
use crate::error::{FromUtf8Snafu, InvalidConfigSnafu, Result};
use crate::error::{InvalidConfigSnafu, Result};
use crate::user_provider::{authenticate_with_credential, load_credential_from_file};
use crate::{Identity, Password, UserInfoRef, UserProvider};
pub(crate) const STATIC_USER_PROVIDER: &str = "static_user_provider";
pub struct StaticUserProvider {
pub(crate) struct StaticUserProvider {
users: HashMap<String, Vec<u8>>,
}
@@ -60,18 +60,6 @@ impl StaticUserProvider {
.fail(),
}
}
/// Return a random username/password pair
/// This is useful for invoking from other components in the cluster
pub fn get_one_user_pwd(&self) -> Result<(String, String)> {
let kv = self.users.iter().next().context(InvalidConfigSnafu {
value: "",
msg: "Expect at least one pair of username and password",
})?;
let username = kv.0;
let pwd = String::from_utf8(kv.1.clone()).context(FromUtf8Snafu)?;
Ok((username.clone(), pwd))
}
}
#[async_trait]

View File

@@ -17,10 +17,8 @@ arrow-schema.workspace = true
async-stream.workspace = true
async-trait.workspace = true
bytes.workspace = true
common-base.workspace = true
common-catalog.workspace = true
common-error.workspace = true
common-frontend.workspace = true
common-macro.workspace = true
common-meta.workspace = true
common-procedure.workspace = true

View File

@@ -277,26 +277,6 @@ pub enum Error {
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to invoke frontend services"))]
InvokeFrontend {
source: common_frontend::error::Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Meta client is not provided"))]
MetaClientMissing {
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to find frontend node: {}", addr))]
FrontendNotFound {
addr: String,
#[snafu(implicit)]
location: Location,
},
}
impl Error {
@@ -365,10 +345,6 @@ impl ErrorExt for Error {
Error::GetViewCache { source, .. } | Error::GetTableCache { source, .. } => {
source.status_code()
}
Error::InvokeFrontend { source, .. } => source.status_code(),
Error::FrontendNotFound { .. } | Error::MetaClientMissing { .. } => {
StatusCode::Unexpected
}
}
}

View File

@@ -22,9 +22,7 @@ use common_catalog::consts::{
PG_CATALOG_NAME,
};
use common_error::ext::BoxedError;
use common_meta::cache::{
LayeredCacheRegistryRef, TableRoute, TableRouteCacheRef, ViewInfoCacheRef,
};
use common_meta::cache::{LayeredCacheRegistryRef, ViewInfoCacheRef};
use common_meta::key::catalog_name::CatalogNameKey;
use common_meta::key::flow::FlowMetadataManager;
use common_meta::key::schema_name::SchemaNameKey;
@@ -53,7 +51,6 @@ use crate::error::{
};
use crate::information_schema::{InformationExtensionRef, InformationSchemaProvider};
use crate::kvbackend::TableCacheRef;
use crate::process_manager::ProcessManagerRef;
use crate::system_schema::pg_catalog::PGCatalogProvider;
use crate::system_schema::SystemSchemaProvider;
use crate::CatalogManager;
@@ -87,7 +84,6 @@ impl KvBackendCatalogManager {
backend: KvBackendRef,
cache_registry: LayeredCacheRegistryRef,
procedure_manager: Option<ProcedureManagerRef>,
process_manager: Option<ProcessManagerRef>,
) -> Arc<Self> {
Arc::new_cyclic(|me| Self {
information_extension,
@@ -106,14 +102,12 @@ impl KvBackendCatalogManager {
DEFAULT_CATALOG_NAME.to_string(),
me.clone(),
Arc::new(FlowMetadataManager::new(backend.clone())),
process_manager.clone(),
)),
pg_catalog_provider: Arc::new(PGCatalogProvider::new(
DEFAULT_CATALOG_NAME.to_string(),
me.clone(),
)),
backend,
process_manager,
},
cache_registry,
procedure_manager,
@@ -268,68 +262,16 @@ impl CatalogManager for KvBackendCatalogManager {
let table_cache: TableCacheRef = self.cache_registry.get().context(CacheNotFoundSnafu {
name: "table_cache",
})?;
let table_route_cache: TableRouteCacheRef =
self.cache_registry.get().context(CacheNotFoundSnafu {
name: "table_route_cache",
})?;
let table = table_cache
if let Some(table) = table_cache
.get_by_ref(&TableName {
catalog_name: catalog_name.to_string(),
schema_name: schema_name.to_string(),
table_name: table_name.to_string(),
})
.await
.context(GetTableCacheSnafu)?;
// Override logical table's partition key indices with physical table's.
if let Some(table) = &table
&& let Some(table_route_value) = table_route_cache
.get(table.table_info().table_id())
.await
.context(TableMetadataManagerSnafu)?
&& let TableRoute::Logical(logical_route) = &*table_route_value
&& let Some(physical_table_info_value) = self
.table_metadata_manager
.table_info_manager()
.get(logical_route.physical_table_id())
.await
.context(TableMetadataManagerSnafu)?
.context(GetTableCacheSnafu)?
{
let mut new_table_info = (*table.table_info()).clone();
// Gather all column names from the logical table
let logical_column_names: std::collections::HashSet<_> = new_table_info
.meta
.schema
.column_schemas()
.iter()
.map(|col| &col.name)
.collect();
// Only preserve partition key indices where the corresponding columns exist in logical table
new_table_info.meta.partition_key_indices = physical_table_info_value
.table_info
.meta
.partition_key_indices
.iter()
.filter(|&&index| {
if let Some(physical_column) = physical_table_info_value
.table_info
.meta
.schema
.column_schemas
.get(index)
{
logical_column_names.contains(&physical_column.name)
} else {
false
}
})
.cloned()
.collect();
let new_table = DistTable::table(Arc::new(new_table_info));
return Ok(Some(new_table));
return Ok(Some(table));
}
if channel == Channel::Postgres {
@@ -342,7 +284,7 @@ impl CatalogManager for KvBackendCatalogManager {
}
}
Ok(table)
return Ok(None);
}
async fn tables_by_ids(
@@ -477,7 +419,6 @@ struct SystemCatalog {
information_schema_provider: Arc<InformationSchemaProvider>,
pg_catalog_provider: Arc<PGCatalogProvider>,
backend: KvBackendRef,
process_manager: Option<ProcessManagerRef>,
}
impl SystemCatalog {
@@ -545,7 +486,6 @@ impl SystemCatalog {
catalog.to_string(),
self.catalog_manager.clone(),
Arc::new(FlowMetadataManager::new(self.backend.clone())),
self.process_manager.clone(),
))
});
information_schema_provider.table(table_name)

View File

@@ -14,7 +14,6 @@
#![feature(assert_matches)]
#![feature(try_blocks)]
#![feature(let_chains)]
use std::any::Any;
use std::fmt::{Debug, Formatter};
@@ -41,7 +40,6 @@ pub mod information_schema {
pub use crate::system_schema::information_schema::*;
}
pub mod process_manager;
pub mod table_source;
#[async_trait::async_trait]

View File

@@ -356,7 +356,6 @@ impl MemoryCatalogManager {
catalog,
Arc::downgrade(self) as Weak<dyn CatalogManager>,
Arc::new(FlowMetadataManager::new(Arc::new(MemoryKvBackend::new()))),
None, // we don't need ProcessManager on regions server.
);
let information_schema = information_schema_provider.tables().clone();

View File

@@ -34,20 +34,4 @@ lazy_static! {
register_histogram!("greptime_catalog_kv_get", "catalog kv get").unwrap();
pub static ref METRIC_CATALOG_KV_BATCH_GET: Histogram =
register_histogram!("greptime_catalog_kv_batch_get", "catalog kv batch get").unwrap();
/// Count of running process in each catalog.
pub static ref PROCESS_LIST_COUNT: IntGaugeVec = register_int_gauge_vec!(
"greptime_process_list_count",
"Running process count per catalog",
&["catalog"]
)
.unwrap();
/// Count of killed process in each catalog.
pub static ref PROCESS_KILL_COUNT: IntCounterVec = register_int_counter_vec!(
"greptime_process_kill_count",
"Completed kill process requests count",
&["catalog"]
)
.unwrap();
}

View File

@@ -1,494 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::fmt::{Debug, Formatter};
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::{Arc, RwLock};
use api::v1::frontend::{KillProcessRequest, ListProcessRequest, ProcessInfo};
use common_base::cancellation::CancellationHandle;
use common_frontend::selector::{FrontendSelector, MetaClientSelector};
use common_telemetry::{debug, info};
use common_time::util::current_time_millis;
use meta_client::MetaClientRef;
use snafu::{ensure, OptionExt, ResultExt};
use crate::error;
use crate::metrics::{PROCESS_KILL_COUNT, PROCESS_LIST_COUNT};
pub type ProcessId = u32;
pub type ProcessManagerRef = Arc<ProcessManager>;
/// Query process manager.
pub struct ProcessManager {
/// Local frontend server address,
server_addr: String,
/// Next process id for local queries.
next_id: AtomicU32,
/// Running process per catalog.
catalogs: RwLock<HashMap<String, HashMap<ProcessId, CancellableProcess>>>,
/// Frontend selector to locate frontend nodes.
frontend_selector: Option<MetaClientSelector>,
}
impl ProcessManager {
/// Create a [ProcessManager] instance with server address and kv client.
pub fn new(server_addr: String, meta_client: Option<MetaClientRef>) -> Self {
let frontend_selector = meta_client.map(MetaClientSelector::new);
Self {
server_addr,
next_id: Default::default(),
catalogs: Default::default(),
frontend_selector,
}
}
}
impl ProcessManager {
/// Registers a submitted query. Use the provided id if present.
#[must_use]
pub fn register_query(
self: &Arc<Self>,
catalog: String,
schemas: Vec<String>,
query: String,
client: String,
query_id: Option<ProcessId>,
) -> Ticket {
let id = query_id.unwrap_or_else(|| self.next_id.fetch_add(1, Ordering::Relaxed));
let process = ProcessInfo {
id,
catalog: catalog.clone(),
schemas,
query,
start_timestamp: current_time_millis(),
client,
frontend: self.server_addr.clone(),
};
let cancellation_handle = Arc::new(CancellationHandle::default());
let cancellable_process = CancellableProcess::new(cancellation_handle.clone(), process);
self.catalogs
.write()
.unwrap()
.entry(catalog.clone())
.or_default()
.insert(id, cancellable_process);
Ticket {
catalog,
manager: self.clone(),
id,
cancellation_handle,
}
}
/// Generates the next process id.
pub fn next_id(&self) -> u32 {
self.next_id.fetch_add(1, Ordering::Relaxed)
}
/// De-register a query from process list.
pub fn deregister_query(&self, catalog: String, id: ProcessId) {
if let Entry::Occupied(mut o) = self.catalogs.write().unwrap().entry(catalog) {
let process = o.get_mut().remove(&id);
debug!("Deregister process: {:?}", process);
if o.get().is_empty() {
o.remove();
}
}
}
/// List local running processes in given catalog.
pub fn local_processes(&self, catalog: Option<&str>) -> error::Result<Vec<ProcessInfo>> {
let catalogs = self.catalogs.read().unwrap();
let result = if let Some(catalog) = catalog {
if let Some(catalogs) = catalogs.get(catalog) {
catalogs.values().map(|p| p.process.clone()).collect()
} else {
vec![]
}
} else {
catalogs
.values()
.flat_map(|v| v.values().map(|p| p.process.clone()))
.collect()
};
Ok(result)
}
pub async fn list_all_processes(
&self,
catalog: Option<&str>,
) -> error::Result<Vec<ProcessInfo>> {
let mut processes = vec![];
if let Some(remote_frontend_selector) = self.frontend_selector.as_ref() {
let frontends = remote_frontend_selector
.select(|node| node.peer.addr != self.server_addr)
.await
.context(error::InvokeFrontendSnafu)?;
for mut f in frontends {
processes.extend(
f.list_process(ListProcessRequest {
catalog: catalog.unwrap_or_default().to_string(),
})
.await
.context(error::InvokeFrontendSnafu)?
.processes,
);
}
}
processes.extend(self.local_processes(catalog)?);
Ok(processes)
}
/// Kills query with provided catalog and id.
pub async fn kill_process(
&self,
server_addr: String,
catalog: String,
id: ProcessId,
) -> error::Result<bool> {
if server_addr == self.server_addr {
self.kill_local_process(catalog, id).await
} else {
let mut nodes = self
.frontend_selector
.as_ref()
.context(error::MetaClientMissingSnafu)?
.select(|node| node.peer.addr == server_addr)
.await
.context(error::InvokeFrontendSnafu)?;
ensure!(
!nodes.is_empty(),
error::FrontendNotFoundSnafu { addr: server_addr }
);
let request = KillProcessRequest {
server_addr,
catalog,
process_id: id,
};
nodes[0]
.kill_process(request)
.await
.context(error::InvokeFrontendSnafu)?;
Ok(true)
}
}
/// Kills local query with provided catalog and id.
pub async fn kill_local_process(&self, catalog: String, id: ProcessId) -> error::Result<bool> {
if let Some(catalogs) = self.catalogs.write().unwrap().get_mut(&catalog) {
if let Some(process) = catalogs.remove(&id) {
process.handle.cancel();
info!(
"Killed process, catalog: {}, id: {:?}",
process.process.catalog, process.process.id
);
PROCESS_KILL_COUNT.with_label_values(&[&catalog]).inc();
Ok(true)
} else {
debug!("Failed to kill process, id not found: {}", id);
Ok(false)
}
} else {
debug!("Failed to kill process, catalog not found: {}", catalog);
Ok(false)
}
}
}
pub struct Ticket {
pub(crate) catalog: String,
pub(crate) manager: ProcessManagerRef,
pub(crate) id: ProcessId,
pub cancellation_handle: Arc<CancellationHandle>,
}
impl Drop for Ticket {
fn drop(&mut self) {
self.manager
.deregister_query(std::mem::take(&mut self.catalog), self.id);
}
}
struct CancellableProcess {
handle: Arc<CancellationHandle>,
process: ProcessInfo,
}
impl Drop for CancellableProcess {
fn drop(&mut self) {
PROCESS_LIST_COUNT
.with_label_values(&[&self.process.catalog])
.dec();
}
}
impl CancellableProcess {
fn new(handle: Arc<CancellationHandle>, process: ProcessInfo) -> Self {
PROCESS_LIST_COUNT
.with_label_values(&[&process.catalog])
.inc();
Self { handle, process }
}
}
impl Debug for CancellableProcess {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.debug_struct("CancellableProcess")
.field("cancelled", &self.handle.is_cancelled())
.field("process", &self.process)
.finish()
}
}
#[cfg(test)]
mod tests {
use std::sync::Arc;
use crate::process_manager::ProcessManager;
#[tokio::test]
async fn test_register_query() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let ticket = process_manager.clone().register_query(
"public".to_string(),
vec!["test".to_string()],
"SELECT * FROM table".to_string(),
"".to_string(),
None,
);
let running_processes = process_manager.local_processes(None).unwrap();
assert_eq!(running_processes.len(), 1);
assert_eq!(&running_processes[0].frontend, "127.0.0.1:8000");
assert_eq!(running_processes[0].id, ticket.id);
assert_eq!(&running_processes[0].query, "SELECT * FROM table");
drop(ticket);
assert_eq!(process_manager.local_processes(None).unwrap().len(), 0);
}
#[tokio::test]
async fn test_register_query_with_custom_id() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let custom_id = 12345;
let ticket = process_manager.clone().register_query(
"public".to_string(),
vec!["test".to_string()],
"SELECT * FROM table".to_string(),
"client1".to_string(),
Some(custom_id),
);
assert_eq!(ticket.id, custom_id);
let running_processes = process_manager.local_processes(None).unwrap();
assert_eq!(running_processes.len(), 1);
assert_eq!(running_processes[0].id, custom_id);
assert_eq!(&running_processes[0].client, "client1");
}
#[tokio::test]
async fn test_multiple_queries_same_catalog() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let ticket1 = process_manager.clone().register_query(
"public".to_string(),
vec!["schema1".to_string()],
"SELECT * FROM table1".to_string(),
"client1".to_string(),
None,
);
let ticket2 = process_manager.clone().register_query(
"public".to_string(),
vec!["schema2".to_string()],
"SELECT * FROM table2".to_string(),
"client2".to_string(),
None,
);
let running_processes = process_manager.local_processes(Some("public")).unwrap();
assert_eq!(running_processes.len(), 2);
// Verify both processes are present
let ids: Vec<u32> = running_processes.iter().map(|p| p.id).collect();
assert!(ids.contains(&ticket1.id));
assert!(ids.contains(&ticket2.id));
}
#[tokio::test]
async fn test_multiple_catalogs() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let _ticket1 = process_manager.clone().register_query(
"catalog1".to_string(),
vec!["schema1".to_string()],
"SELECT * FROM table1".to_string(),
"client1".to_string(),
None,
);
let _ticket2 = process_manager.clone().register_query(
"catalog2".to_string(),
vec!["schema2".to_string()],
"SELECT * FROM table2".to_string(),
"client2".to_string(),
None,
);
// Test listing processes for specific catalog
let catalog1_processes = process_manager.local_processes(Some("catalog1")).unwrap();
assert_eq!(catalog1_processes.len(), 1);
assert_eq!(&catalog1_processes[0].catalog, "catalog1");
let catalog2_processes = process_manager.local_processes(Some("catalog2")).unwrap();
assert_eq!(catalog2_processes.len(), 1);
assert_eq!(&catalog2_processes[0].catalog, "catalog2");
// Test listing all processes
let all_processes = process_manager.local_processes(None).unwrap();
assert_eq!(all_processes.len(), 2);
}
#[tokio::test]
async fn test_deregister_query() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let ticket = process_manager.clone().register_query(
"public".to_string(),
vec!["test".to_string()],
"SELECT * FROM table".to_string(),
"client1".to_string(),
None,
);
assert_eq!(process_manager.local_processes(None).unwrap().len(), 1);
process_manager.deregister_query("public".to_string(), ticket.id);
assert_eq!(process_manager.local_processes(None).unwrap().len(), 0);
}
#[tokio::test]
async fn test_cancellation_handle() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let ticket = process_manager.clone().register_query(
"public".to_string(),
vec!["test".to_string()],
"SELECT * FROM table".to_string(),
"client1".to_string(),
None,
);
assert!(!ticket.cancellation_handle.is_cancelled());
ticket.cancellation_handle.cancel();
assert!(ticket.cancellation_handle.is_cancelled());
}
#[tokio::test]
async fn test_kill_local_process() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let ticket = process_manager.clone().register_query(
"public".to_string(),
vec!["test".to_string()],
"SELECT * FROM table".to_string(),
"client1".to_string(),
None,
);
assert!(!ticket.cancellation_handle.is_cancelled());
let killed = process_manager
.kill_process(
"127.0.0.1:8000".to_string(),
"public".to_string(),
ticket.id,
)
.await
.unwrap();
assert!(killed);
assert_eq!(process_manager.local_processes(None).unwrap().len(), 0);
}
#[tokio::test]
async fn test_kill_nonexistent_process() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let killed = process_manager
.kill_process("127.0.0.1:8000".to_string(), "public".to_string(), 999)
.await
.unwrap();
assert!(!killed);
}
#[tokio::test]
async fn test_kill_process_nonexistent_catalog() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let killed = process_manager
.kill_process("127.0.0.1:8000".to_string(), "nonexistent".to_string(), 1)
.await
.unwrap();
assert!(!killed);
}
#[tokio::test]
async fn test_process_info_fields() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
let _ticket = process_manager.clone().register_query(
"test_catalog".to_string(),
vec!["schema1".to_string(), "schema2".to_string()],
"SELECT COUNT(*) FROM users WHERE age > 18".to_string(),
"test_client".to_string(),
Some(42),
);
let processes = process_manager.local_processes(None).unwrap();
assert_eq!(processes.len(), 1);
let process = &processes[0];
assert_eq!(process.id, 42);
assert_eq!(&process.catalog, "test_catalog");
assert_eq!(process.schemas, vec!["schema1", "schema2"]);
assert_eq!(&process.query, "SELECT COUNT(*) FROM users WHERE age > 18");
assert_eq!(&process.client, "test_client");
assert_eq!(&process.frontend, "127.0.0.1:8000");
assert!(process.start_timestamp > 0);
}
#[tokio::test]
async fn test_ticket_drop_deregisters_process() {
let process_manager = Arc::new(ProcessManager::new("127.0.0.1:8000".to_string(), None));
{
let _ticket = process_manager.clone().register_query(
"public".to_string(),
vec!["test".to_string()],
"SELECT * FROM table".to_string(),
"client1".to_string(),
None,
);
// Process should be registered
assert_eq!(process_manager.local_processes(None).unwrap().len(), 1);
} // ticket goes out of scope here
// Process should be automatically deregistered
assert_eq!(process_manager.local_processes(None).unwrap().len(), 0);
}
}

View File

@@ -19,8 +19,7 @@ mod information_memory_table;
pub mod key_column_usage;
mod partitions;
mod procedure_info;
pub mod process_list;
pub mod region_peers;
mod region_peers;
mod region_statistics;
mod runtime_metrics;
pub mod schemata;
@@ -43,7 +42,6 @@ use common_recordbatch::SendableRecordBatchStream;
use datatypes::schema::SchemaRef;
use lazy_static::lazy_static;
use paste::paste;
use process_list::InformationSchemaProcessList;
use store_api::storage::{ScanRequest, TableId};
use table::metadata::TableType;
use table::TableRef;
@@ -51,8 +49,8 @@ pub use table_names::*;
use views::InformationSchemaViews;
use self::columns::InformationSchemaColumns;
use super::{SystemSchemaProviderInner, SystemTable, SystemTableRef};
use crate::error::{Error, Result};
use crate::process_manager::ProcessManagerRef;
use crate::system_schema::information_schema::cluster_info::InformationSchemaClusterInfo;
use crate::system_schema::information_schema::flows::InformationSchemaFlows;
use crate::system_schema::information_schema::information_memory_table::get_schema_columns;
@@ -65,9 +63,7 @@ use crate::system_schema::information_schema::table_constraints::InformationSche
use crate::system_schema::information_schema::tables::InformationSchemaTables;
use crate::system_schema::memory_table::MemoryTable;
pub(crate) use crate::system_schema::predicate::Predicates;
use crate::system_schema::{
SystemSchemaProvider, SystemSchemaProviderInner, SystemTable, SystemTableRef,
};
use crate::system_schema::SystemSchemaProvider;
use crate::CatalogManager;
lazy_static! {
@@ -116,7 +112,6 @@ macro_rules! setup_memory_table {
pub struct InformationSchemaProvider {
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
process_manager: Option<ProcessManagerRef>,
flow_metadata_manager: Arc<FlowMetadataManager>,
tables: HashMap<String, TableRef>,
}
@@ -211,10 +206,6 @@ impl SystemSchemaProviderInner for InformationSchemaProvider {
self.catalog_manager.clone(),
),
) as _),
PROCESS_LIST => self
.process_manager
.as_ref()
.map(|p| Arc::new(InformationSchemaProcessList::new(p.clone())) as _),
_ => None,
}
}
@@ -225,13 +216,11 @@ impl InformationSchemaProvider {
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
flow_metadata_manager: Arc<FlowMetadataManager>,
process_manager: Option<ProcessManagerRef>,
) -> Self {
let mut provider = Self {
catalog_name,
catalog_manager,
flow_metadata_manager,
process_manager,
tables: HashMap::new(),
};
@@ -287,9 +276,6 @@ impl InformationSchemaProvider {
self.build_table(TABLE_CONSTRAINTS).unwrap(),
);
tables.insert(FLOWS.to_string(), self.build_table(FLOWS).unwrap());
if let Some(process_list) = self.build_table(PROCESS_LIST) {
tables.insert(PROCESS_LIST.to_string(), process_list);
}
// Add memory tables
for name in MEMORY_TABLES.iter() {
tables.insert((*name).to_string(), self.build_table(name).expect(name));

View File

@@ -36,8 +36,9 @@ use datatypes::vectors::{
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::CLUSTER_INFO;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::information_schema::{InformationTable, Predicates, CLUSTER_INFO};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -38,11 +38,11 @@ use snafu::{OptionExt, ResultExt};
use sql::statements;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, COLUMNS};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, COLUMNS};
use crate::CatalogManager;
#[derive(Debug)]
@@ -56,8 +56,6 @@ pub const TABLE_CATALOG: &str = "table_catalog";
pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const COLUMN_NAME: &str = "column_name";
pub const REGION_ID: &str = "region_id";
pub const PEER_ID: &str = "peer_id";
const ORDINAL_POSITION: &str = "ordinal_position";
const CHARACTER_MAXIMUM_LENGTH: &str = "character_maximum_length";
const CHARACTER_OCTET_LENGTH: &str = "character_octet_length";

View File

@@ -18,7 +18,7 @@ use common_catalog::consts::{METRIC_ENGINE, MITO_ENGINE};
use datatypes::schema::{Schema, SchemaRef};
use datatypes::vectors::{Int64Vector, StringVector, VectorRef};
use crate::system_schema::information_schema::table_names::*;
use super::table_names::*;
use crate::system_schema::utils::tables::{
bigint_column, string_column, string_columns, timestamp_micro_column,
};

View File

@@ -24,17 +24,18 @@ use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatch
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, MutableVector, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, FulltextBackend, Schema, SchemaRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{ConstantVector, StringVector, StringVectorBuilder, UInt32VectorBuilder};
use futures_util::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::KEY_COLUMN_USAGE;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates, KEY_COLUMN_USAGE};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
pub const CONSTRAINT_SCHEMA: &str = "constraint_schema";
@@ -47,38 +48,20 @@ pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const COLUMN_NAME: &str = "column_name";
pub const ORDINAL_POSITION: &str = "ordinal_position";
/// The type of the index.
pub const GREPTIME_INDEX_TYPE: &str = "greptime_index_type";
const INIT_CAPACITY: usize = 42;
/// Time index constraint name
pub(crate) const CONSTRAINT_NAME_TIME_INDEX: &str = "TIME INDEX";
/// Primary key constraint name
pub(crate) const CONSTRAINT_NAME_PRI: &str = "PRIMARY";
/// Primary key index type
pub(crate) const INDEX_TYPE_PRI: &str = "greptime-primary-key-v1";
pub(crate) const PRI_CONSTRAINT_NAME: &str = "PRIMARY";
/// Time index constraint name
pub(crate) const TIME_INDEX_CONSTRAINT_NAME: &str = "TIME INDEX";
/// Inverted index constraint name
pub(crate) const CONSTRAINT_NAME_INVERTED_INDEX: &str = "INVERTED INDEX";
/// Inverted index type
pub(crate) const INDEX_TYPE_INVERTED_INDEX: &str = "greptime-inverted-index-v1";
pub(crate) const INVERTED_INDEX_CONSTRAINT_NAME: &str = "INVERTED INDEX";
/// Fulltext index constraint name
pub(crate) const CONSTRAINT_NAME_FULLTEXT_INDEX: &str = "FULLTEXT INDEX";
/// Fulltext index v1 type
pub(crate) const INDEX_TYPE_FULLTEXT_TANTIVY: &str = "greptime-fulltext-index-v1";
/// Fulltext index bloom type
pub(crate) const INDEX_TYPE_FULLTEXT_BLOOM: &str = "greptime-fulltext-index-bloom";
pub(crate) const FULLTEXT_INDEX_CONSTRAINT_NAME: &str = "FULLTEXT INDEX";
/// Skipping index constraint name
pub(crate) const CONSTRAINT_NAME_SKIPPING_INDEX: &str = "SKIPPING INDEX";
/// Skipping index type
pub(crate) const INDEX_TYPE_SKIPPING_INDEX: &str = "greptime-bloom-filter-v1";
pub(crate) const SKIPPING_INDEX_CONSTRAINT_NAME: &str = "SKIPPING INDEX";
/// The virtual table implementation for `information_schema.KEY_COLUMN_USAGE`.
///
/// Provides an extra column `greptime_index_type` for the index type of the key column.
#[derive(Debug)]
pub(super) struct InformationSchemaKeyColumnUsage {
schema: SchemaRef,
@@ -138,11 +121,6 @@ impl InformationSchemaKeyColumnUsage {
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
GREPTIME_INDEX_TYPE,
ConcreteDataType::string_datatype(),
true,
),
]))
}
@@ -207,7 +185,6 @@ struct InformationSchemaKeyColumnUsageBuilder {
column_name: StringVectorBuilder,
ordinal_position: UInt32VectorBuilder,
position_in_unique_constraint: UInt32VectorBuilder,
greptime_index_type: StringVectorBuilder,
}
impl InformationSchemaKeyColumnUsageBuilder {
@@ -230,7 +207,6 @@ impl InformationSchemaKeyColumnUsageBuilder {
column_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
ordinal_position: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
position_in_unique_constraint: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
greptime_index_type: StringVectorBuilder::with_capacity(INIT_CAPACITY),
}
}
@@ -254,47 +230,34 @@ impl InformationSchemaKeyColumnUsageBuilder {
for (idx, column) in schema.column_schemas().iter().enumerate() {
let mut constraints = vec![];
let mut greptime_index_type = vec![];
if column.is_time_index() {
self.add_key_column_usage(
&predicates,
&schema_name,
CONSTRAINT_NAME_TIME_INDEX,
TIME_INDEX_CONSTRAINT_NAME,
&catalog_name,
&schema_name,
table_name,
&column.name,
1, //always 1 for time index
"",
);
}
// TODO(dimbtp): foreign key constraint not supported yet
if keys.contains(&idx) {
constraints.push(CONSTRAINT_NAME_PRI);
greptime_index_type.push(INDEX_TYPE_PRI);
constraints.push(PRI_CONSTRAINT_NAME);
}
if column.is_inverted_indexed() {
constraints.push(CONSTRAINT_NAME_INVERTED_INDEX);
greptime_index_type.push(INDEX_TYPE_INVERTED_INDEX);
constraints.push(INVERTED_INDEX_CONSTRAINT_NAME);
}
if let Ok(Some(options)) = column.fulltext_options() {
if options.enable {
constraints.push(CONSTRAINT_NAME_FULLTEXT_INDEX);
let index_type = match options.backend {
FulltextBackend::Bloom => INDEX_TYPE_FULLTEXT_BLOOM,
FulltextBackend::Tantivy => INDEX_TYPE_FULLTEXT_TANTIVY,
};
greptime_index_type.push(index_type);
}
if column.is_fulltext_indexed() {
constraints.push(FULLTEXT_INDEX_CONSTRAINT_NAME);
}
if column.is_skipping_indexed() {
constraints.push(CONSTRAINT_NAME_SKIPPING_INDEX);
greptime_index_type.push(INDEX_TYPE_SKIPPING_INDEX);
constraints.push(SKIPPING_INDEX_CONSTRAINT_NAME);
}
if !constraints.is_empty() {
let aggregated_constraints = constraints.join(", ");
let aggregated_index_types = greptime_index_type.join(", ");
self.add_key_column_usage(
&predicates,
&schema_name,
@@ -304,7 +267,6 @@ impl InformationSchemaKeyColumnUsageBuilder {
table_name,
&column.name,
idx as u32 + 1,
&aggregated_index_types,
);
}
}
@@ -327,7 +289,6 @@ impl InformationSchemaKeyColumnUsageBuilder {
table_name: &str,
column_name: &str,
ordinal_position: u32,
index_types: &str,
) {
let row = [
(CONSTRAINT_SCHEMA, &Value::from(constraint_schema)),
@@ -337,7 +298,6 @@ impl InformationSchemaKeyColumnUsageBuilder {
(TABLE_NAME, &Value::from(table_name)),
(COLUMN_NAME, &Value::from(column_name)),
(ORDINAL_POSITION, &Value::from(ordinal_position)),
(GREPTIME_INDEX_TYPE, &Value::from(index_types)),
];
if !predicates.eval(&row) {
@@ -354,7 +314,6 @@ impl InformationSchemaKeyColumnUsageBuilder {
self.column_name.push(Some(column_name));
self.ordinal_position.push(Some(ordinal_position));
self.position_in_unique_constraint.push(None);
self.greptime_index_type.push(Some(index_types));
}
fn finish(&mut self) -> Result<RecordBatch> {
@@ -378,7 +337,6 @@ impl InformationSchemaKeyColumnUsageBuilder {
null_string_vector.clone(),
null_string_vector.clone(),
null_string_vector,
Arc::new(self.greptime_index_type.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}

View File

@@ -39,12 +39,13 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use table::metadata::{TableInfo, TableType};
use super::PARTITIONS;
use crate::error::{
CreateRecordBatchSnafu, FindPartitionsSnafu, InternalSnafu, PartitionManagerNotFoundSnafu,
Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::kvbackend::KvBackendCatalogManager;
use crate::system_schema::information_schema::{InformationTable, Predicates, PARTITIONS};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
const TABLE_CATALOG: &str = "table_catalog";

View File

@@ -33,8 +33,9 @@ use datatypes::vectors::{StringVectorBuilder, TimestampMillisecondVectorBuilder}
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::PROCEDURE_INFO;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::information_schema::{InformationTable, Predicates, PROCEDURE_INFO};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -1,189 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use common_catalog::consts::INFORMATION_SCHEMA_PROCESS_LIST_TABLE_ID;
use common_error::ext::BoxedError;
use common_frontend::DisplayProcessId;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use common_time::util::current_time_millis;
use common_time::{Duration, Timestamp};
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datatypes::prelude::ConcreteDataType as CDT;
use datatypes::scalars::ScalarVectorBuilder;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{
DurationMillisecondVectorBuilder, StringVectorBuilder, TimestampMillisecondVectorBuilder,
VectorRef,
};
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use crate::error::{self, InternalSnafu};
use crate::information_schema::Predicates;
use crate::process_manager::ProcessManagerRef;
use crate::system_schema::information_schema::InformationTable;
/// Column names of `information_schema.process_list`
pub const ID: &str = "id";
pub const CATALOG: &str = "catalog";
pub const SCHEMAS: &str = "schemas";
pub const QUERY: &str = "query";
pub const CLIENT: &str = "client";
pub const FRONTEND: &str = "frontend";
pub const START_TIMESTAMP: &str = "start_timestamp";
pub const ELAPSED_TIME: &str = "elapsed_time";
/// `information_schema.process_list` table implementation that tracks running
/// queries in current cluster.
pub struct InformationSchemaProcessList {
schema: SchemaRef,
process_manager: ProcessManagerRef,
}
impl InformationSchemaProcessList {
pub fn new(process_manager: ProcessManagerRef) -> Self {
Self {
schema: Self::schema(),
process_manager,
}
}
fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(ID, CDT::string_datatype(), false),
ColumnSchema::new(CATALOG, CDT::string_datatype(), false),
ColumnSchema::new(SCHEMAS, CDT::string_datatype(), false),
ColumnSchema::new(QUERY, CDT::string_datatype(), false),
ColumnSchema::new(CLIENT, CDT::string_datatype(), false),
ColumnSchema::new(FRONTEND, CDT::string_datatype(), false),
ColumnSchema::new(
START_TIMESTAMP,
CDT::timestamp_millisecond_datatype(),
false,
),
ColumnSchema::new(ELAPSED_TIME, CDT::duration_millisecond_datatype(), false),
]))
}
}
impl InformationTable for InformationSchemaProcessList {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_PROCESS_LIST_TABLE_ID
}
fn table_name(&self) -> &'static str {
"process_list"
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> error::Result<SendableRecordBatchStream> {
let process_manager = self.process_manager.clone();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
self.schema.arrow_schema().clone(),
futures::stream::once(async move {
make_process_list(process_manager, request)
.await
.map(RecordBatch::into_df_record_batch)
.map_err(|e| datafusion::error::DataFusionError::External(Box::new(e)))
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
/// Build running process list.
async fn make_process_list(
process_manager: ProcessManagerRef,
request: ScanRequest,
) -> error::Result<RecordBatch> {
let predicates = Predicates::from_scan_request(&Some(request));
let current_time = current_time_millis();
// todo(hl): find a way to extract user catalog to filter queries from other users.
let queries = process_manager.list_all_processes(None).await?;
let mut id_builder = StringVectorBuilder::with_capacity(queries.len());
let mut catalog_builder = StringVectorBuilder::with_capacity(queries.len());
let mut schemas_builder = StringVectorBuilder::with_capacity(queries.len());
let mut query_builder = StringVectorBuilder::with_capacity(queries.len());
let mut client_builder = StringVectorBuilder::with_capacity(queries.len());
let mut frontend_builder = StringVectorBuilder::with_capacity(queries.len());
let mut start_time_builder = TimestampMillisecondVectorBuilder::with_capacity(queries.len());
let mut elapsed_time_builder = DurationMillisecondVectorBuilder::with_capacity(queries.len());
for process in queries {
let display_id = DisplayProcessId {
server_addr: process.frontend.to_string(),
id: process.id,
}
.to_string();
let schemas = process.schemas.join(",");
let id = Value::from(display_id);
let catalog = Value::from(process.catalog);
let schemas = Value::from(schemas);
let query = Value::from(process.query);
let client = Value::from(process.client);
let frontend = Value::from(process.frontend);
let start_timestamp = Value::from(Timestamp::new_millisecond(process.start_timestamp));
let elapsed_time = Value::from(Duration::new_millisecond(
current_time - process.start_timestamp,
));
let row = [
(ID, &id),
(CATALOG, &catalog),
(SCHEMAS, &schemas),
(QUERY, &query),
(CLIENT, &client),
(FRONTEND, &frontend),
(START_TIMESTAMP, &start_timestamp),
(ELAPSED_TIME, &elapsed_time),
];
if predicates.eval(&row) {
id_builder.push(id.as_string().as_deref());
catalog_builder.push(catalog.as_string().as_deref());
schemas_builder.push(schemas.as_string().as_deref());
query_builder.push(query.as_string().as_deref());
client_builder.push(client.as_string().as_deref());
frontend_builder.push(frontend.as_string().as_deref());
start_time_builder.push(start_timestamp.as_timestamp().map(|t| t.value().into()));
elapsed_time_builder.push(elapsed_time.as_duration().map(|d| d.value().into()));
}
}
RecordBatch::new(
InformationSchemaProcessList::schema(),
vec![
Arc::new(id_builder.finish()) as VectorRef,
Arc::new(catalog_builder.finish()) as VectorRef,
Arc::new(schemas_builder.finish()) as VectorRef,
Arc::new(query_builder.finish()) as VectorRef,
Arc::new(client_builder.finish()) as VectorRef,
Arc::new(frontend_builder.finish()) as VectorRef,
Arc::new(start_time_builder.finish()) as VectorRef,
Arc::new(elapsed_time_builder.finish()) as VectorRef,
],
)
.context(error::CreateRecordBatchSnafu)
}

View File

@@ -21,7 +21,6 @@ use common_error::ext::BoxedError;
use common_meta::rpc::router::RegionRoute;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::common::HashMap;
use datafusion::execution::TaskContext;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
@@ -35,30 +34,25 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{RegionId, ScanRequest, TableId};
use table::metadata::TableType;
use super::REGION_PEERS;
use crate::error::{
CreateRecordBatchSnafu, FindRegionRoutesSnafu, InternalSnafu, Result,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::kvbackend::KvBackendCatalogManager;
use crate::system_schema::information_schema::{InformationTable, Predicates, REGION_PEERS};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
pub const TABLE_CATALOG: &str = "table_catalog";
pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const REGION_ID: &str = "region_id";
pub const PEER_ID: &str = "peer_id";
const REGION_ID: &str = "region_id";
const PEER_ID: &str = "peer_id";
const PEER_ADDR: &str = "peer_addr";
pub const IS_LEADER: &str = "is_leader";
const IS_LEADER: &str = "is_leader";
const STATUS: &str = "status";
const DOWN_SECONDS: &str = "down_seconds";
const INIT_CAPACITY: usize = 42;
/// The `REGION_PEERS` table provides information about the region distribution and routes. Including fields:
///
/// - `table_catalog`: the table catalog name
/// - `table_schema`: the table schema name
/// - `table_name`: the table name
/// - `region_id`: the region id
/// - `peer_id`: the region storage datanode peer id
/// - `peer_addr`: the region storage datanode gRPC peer address
@@ -83,9 +77,6 @@ impl InformationSchemaRegionPeers {
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(REGION_ID, ConcreteDataType::uint64_datatype(), false),
ColumnSchema::new(PEER_ID, ConcreteDataType::uint64_datatype(), true),
ColumnSchema::new(PEER_ADDR, ConcreteDataType::string_datatype(), true),
@@ -143,9 +134,6 @@ struct InformationSchemaRegionPeersBuilder {
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
table_catalogs: StringVectorBuilder,
table_schemas: StringVectorBuilder,
table_names: StringVectorBuilder,
region_ids: UInt64VectorBuilder,
peer_ids: UInt64VectorBuilder,
peer_addrs: StringVectorBuilder,
@@ -164,9 +152,6 @@ impl InformationSchemaRegionPeersBuilder {
schema,
catalog_name,
catalog_manager,
table_catalogs: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_schemas: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
region_ids: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
peer_ids: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
peer_addrs: StringVectorBuilder::with_capacity(INIT_CAPACITY),
@@ -192,28 +177,24 @@ impl InformationSchemaRegionPeersBuilder {
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name, None).await? {
let table_stream = catalog_manager
let table_id_stream = catalog_manager
.tables(&catalog_name, &schema_name, None)
.try_filter_map(|t| async move {
let table_info = t.table_info();
if table_info.table_type == TableType::Temporary {
Ok(None)
} else {
Ok(Some((
table_info.ident.table_id,
table_info.name.to_string(),
)))
Ok(Some(table_info.ident.table_id))
}
});
const BATCH_SIZE: usize = 128;
// Split tables into chunks
let mut table_chunks = pin!(table_stream.ready_chunks(BATCH_SIZE));
// Split table ids into chunks
let mut table_id_chunks = pin!(table_id_stream.ready_chunks(BATCH_SIZE));
while let Some(tables) = table_chunks.next().await {
let tables = tables.into_iter().collect::<Result<HashMap<_, _>>>()?;
let table_ids = tables.keys().cloned().collect::<Vec<_>>();
while let Some(table_ids) = table_id_chunks.next().await {
let table_ids = table_ids.into_iter().collect::<Result<Vec<_>>>()?;
let table_routes = if let Some(partition_manager) = &partition_manager {
partition_manager
@@ -225,16 +206,7 @@ impl InformationSchemaRegionPeersBuilder {
};
for (table_id, routes) in table_routes {
// Safety: table_id is guaranteed to be in the map
let table_name = tables.get(&table_id).unwrap();
self.add_region_peers(
&catalog_name,
&schema_name,
table_name,
&predicates,
table_id,
&routes,
);
self.add_region_peers(&predicates, table_id, &routes);
}
}
}
@@ -244,9 +216,6 @@ impl InformationSchemaRegionPeersBuilder {
fn add_region_peers(
&mut self,
table_catalog: &str,
table_schema: &str,
table_name: &str,
predicates: &Predicates,
table_id: TableId,
routes: &[RegionRoute],
@@ -262,20 +231,13 @@ impl InformationSchemaRegionPeersBuilder {
Some("ALIVE".to_string())
};
let row = [
(TABLE_CATALOG, &Value::from(table_catalog)),
(TABLE_SCHEMA, &Value::from(table_schema)),
(TABLE_NAME, &Value::from(table_name)),
(REGION_ID, &Value::from(region_id)),
];
let row = [(REGION_ID, &Value::from(region_id))];
if !predicates.eval(&row) {
return;
}
self.table_catalogs.push(Some(table_catalog));
self.table_schemas.push(Some(table_schema));
self.table_names.push(Some(table_name));
// TODO(dennis): adds followers.
self.region_ids.push(Some(region_id));
self.peer_ids.push(peer_id);
self.peer_addrs.push(peer_addr.as_deref());
@@ -283,26 +245,11 @@ impl InformationSchemaRegionPeersBuilder {
self.statuses.push(state.as_deref());
self.down_seconds
.push(route.leader_down_millis().map(|m| m / 1000));
for follower in &route.follower_peers {
self.table_catalogs.push(Some(table_catalog));
self.table_schemas.push(Some(table_schema));
self.table_names.push(Some(table_name));
self.region_ids.push(Some(region_id));
self.peer_ids.push(Some(follower.id));
self.peer_addrs.push(Some(follower.addr.as_str()));
self.is_leaders.push(Some("No"));
self.statuses.push(None);
self.down_seconds.push(None);
}
}
}
fn finish(&mut self) -> Result<RecordBatch> {
let columns: Vec<VectorRef> = vec![
Arc::new(self.table_catalogs.finish()),
Arc::new(self.table_schemas.finish()),
Arc::new(self.table_names.finish()),
Arc::new(self.region_ids.finish()),
Arc::new(self.peer_ids.finish()),
Arc::new(self.peer_addrs.finish()),

View File

@@ -30,9 +30,9 @@ use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder, UInt64VectorB
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, REGION_STATISTICS};
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, REGION_STATISTICS};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -35,8 +35,8 @@ use itertools::Itertools;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, RUNTIME_METRICS};
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::information_schema::{InformationTable, RUNTIME_METRICS};
#[derive(Debug)]
pub(super) struct InformationSchemaMetrics {

View File

@@ -31,11 +31,12 @@ use datatypes::vectors::StringVectorBuilder;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::SCHEMATA;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, TableMetadataManagerSnafu,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates, SCHEMATA};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -32,14 +32,14 @@ use futures::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, TABLE_CONSTRAINTS};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::key_column_usage::{
CONSTRAINT_NAME_PRI, CONSTRAINT_NAME_TIME_INDEX,
PRI_CONSTRAINT_NAME, TIME_INDEX_CONSTRAINT_NAME,
};
use crate::information_schema::Predicates;
use crate::system_schema::information_schema::{InformationTable, TABLE_CONSTRAINTS};
use crate::CatalogManager;
/// The `TABLE_CONSTRAINTS` table describes which tables have constraints.
@@ -188,7 +188,7 @@ impl InformationSchemaTableConstraintsBuilder {
self.add_table_constraint(
&predicates,
&schema_name,
CONSTRAINT_NAME_TIME_INDEX,
TIME_INDEX_CONSTRAINT_NAME,
&schema_name,
&table.table_info().name,
TIME_INDEX_CONSTRAINT_TYPE,
@@ -199,7 +199,7 @@ impl InformationSchemaTableConstraintsBuilder {
self.add_table_constraint(
&predicates,
&schema_name,
CONSTRAINT_NAME_PRI,
PRI_CONSTRAINT_NAME,
&schema_name,
&table.table_info().name,
PRI_KEY_CONSTRAINT_TYPE,

View File

@@ -47,4 +47,3 @@ pub const VIEWS: &str = "views";
pub const FLOWS: &str = "flows";
pub const PROCEDURE_INFO: &str = "procedure_info";
pub const REGION_STATISTICS: &str = "region_statistics";
pub const PROCESS_LIST: &str = "process_list";

View File

@@ -38,10 +38,11 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{RegionId, ScanRequest, TableId};
use table::metadata::{TableInfo, TableType};
use super::TABLES;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::system_schema::information_schema::{InformationTable, Predicates, TABLES};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::system_schema::utils;
use crate::CatalogManager;

View File

@@ -32,12 +32,13 @@ use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use table::metadata::TableType;
use super::VIEWS;
use crate::error::{
CastManagerSnafu, CreateRecordBatchSnafu, GetViewCacheSnafu, InternalSnafu, Result,
UpgradeWeakCatalogManagerRefSnafu, ViewInfoNotFoundSnafu,
};
use crate::kvbackend::KvBackendCatalogManager;
use crate::system_schema::information_schema::{InformationTable, Predicates, VIEWS};
use crate::system_schema::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
const INIT_CAPACITY: usize = 42;

View File

@@ -29,8 +29,8 @@ use datatypes::vectors::VectorRef;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::SystemTable;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
use crate::system_schema::SystemTable;
/// A memory table with specified schema and columns.
#[derive(Debug)]

Some files were not shown because too many files have changed in this diff Show More