Compare commits

..

13 Commits

Author SHA1 Message Date
liyang
96187618c4 setup qemu action 2025-03-05 13:55:39 +08:00
liyang
57695ea21f test dev builder 2025-03-05 13:43:41 +08:00
liyang
3b7ff55b7c test dev builder 2025-03-05 13:34:14 +08:00
liyang
6b6cbe852a test dev builder 2025-03-04 22:18:05 +08:00
liyang
61c3842db5 test dev builder 2025-03-04 21:05:19 +08:00
liyang
79dfc2f9ea test dev builder 2025-03-04 20:23:00 +08:00
liyang
f4ec1cf201 test dev builder 2025-03-04 20:12:16 +08:00
liyang
f91a183e83 test dev builder 2025-03-04 20:00:01 +08:00
liyang
f1bd2d51fe test dev builder 2025-03-04 19:54:30 +08:00
liyang
312c174d89 test dev builder 2025-03-04 19:38:52 +08:00
liyang
9b3157b27d test dev builder 2025-03-04 19:27:55 +08:00
liyang
7f48184e35 test dev builder 2025-03-04 19:18:42 +08:00
liyang
6456d4bdb5 test dev builder 2025-03-04 19:11:34 +08:00
79 changed files with 2645 additions and 2937 deletions

View File

@@ -41,6 +41,13 @@ runs:
username: ${{ inputs.dockerhub-image-registry-username }}
password: ${{ inputs.dockerhub-image-registry-token }}
- name: Set up qemu for multi-platform builds
uses: docker/setup-qemu-action@v3
with:
platforms: linux/amd64,linux/arm64
# The latest version will lead to segmentation fault.
image: tonistiigi/binfmt:qemu-v7.0.0-28
- name: Build and push dev-builder-ubuntu image
shell: bash
if: ${{ inputs.build-dev-builder-ubuntu == 'true' }}
@@ -69,8 +76,8 @@ runs:
run: |
make dev-builder \
BASE_IMAGE=android \
BUILDX_MULTI_PLATFORM_BUILD=amd64 \
IMAGE_REGISTRY=${{ inputs.dockerhub-image-registry }} \
IMAGE_NAMESPACE=${{ inputs.dockerhub-image-namespace }} \
DEV_BUILDER_IMAGE_TAG=${{ inputs.version }} && \
DEV_BUILDER_IMAGE_TAG=${{ inputs.version }}
docker push ${{ inputs.dockerhub-image-registry }}/${{ inputs.dockerhub-image-namespace }}/dev-builder-android:${{ inputs.version }}

View File

@@ -56,7 +56,7 @@ runs:
- name: Start EC2 runner
if: startsWith(inputs.runner, 'ec2')
uses: machulav/ec2-github-runner@v2.3.8
uses: machulav/ec2-github-runner@v2
id: start-linux-arm64-ec2-runner
with:
mode: start

View File

@@ -33,7 +33,7 @@ runs:
- name: Stop EC2 runner
if: ${{ inputs.label && inputs.ec2-instance-id }}
uses: machulav/ec2-github-runner@v2.3.8
uses: machulav/ec2-github-runner@v2
with:
mode: stop
label: ${{ inputs.label }}

View File

@@ -14,7 +14,7 @@ name: Build API docs
jobs:
apidoc:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:

View File

@@ -16,11 +16,11 @@ on:
description: The runner uses to build linux-amd64 artifacts
default: ec2-c6i.4xlarge-amd64
options:
- ubuntu-22.04
- ubuntu-22.04-8-cores
- ubuntu-22.04-16-cores
- ubuntu-22.04-32-cores
- ubuntu-22.04-64-cores
- ubuntu-20.04
- ubuntu-20.04-8-cores
- ubuntu-20.04-16-cores
- ubuntu-20.04-32-cores
- ubuntu-20.04-64-cores
- ec2-c6i.xlarge-amd64 # 4C8G
- ec2-c6i.2xlarge-amd64 # 8C16G
- ec2-c6i.4xlarge-amd64 # 16C32G
@@ -83,7 +83,7 @@ jobs:
allocate-runners:
name: Allocate runners
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
outputs:
linux-amd64-runner: ${{ steps.start-linux-amd64-runner.outputs.label }}
linux-arm64-runner: ${{ steps.start-linux-arm64-runner.outputs.label }}
@@ -218,7 +218,7 @@ jobs:
build-linux-amd64-artifacts,
build-linux-arm64-artifacts,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
outputs:
build-result: ${{ steps.set-build-result.outputs.build-result }}
steps:
@@ -251,7 +251,7 @@ jobs:
allocate-runners,
release-images-to-dockerhub,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
continue-on-error: true
steps:
- uses: actions/checkout@v4
@@ -283,7 +283,7 @@ jobs:
name: Stop linux-amd64 runner
# Only run this job when the runner is allocated.
if: ${{ always() }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: [
allocate-runners,
build-linux-amd64-artifacts,
@@ -309,7 +309,7 @@ jobs:
name: Stop linux-arm64 runner
# Only run this job when the runner is allocated.
if: ${{ always() }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: [
allocate-runners,
build-linux-arm64-artifacts,
@@ -337,7 +337,7 @@ jobs:
needs: [
release-images-to-dockerhub
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
permissions:
issues: write

View File

@@ -23,7 +23,7 @@ concurrency:
jobs:
check-typos-and-docs:
name: Check typos and docs
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:
@@ -36,7 +36,7 @@ jobs:
|| (echo "'config/config.md' is not up-to-date, please run 'make config-docs'." && exit 1)
license-header-check:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
name: Check License Header
steps:
- uses: actions/checkout@v4
@@ -49,7 +49,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest ]
os: [ ubuntu-20.04 ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -72,7 +72,7 @@ jobs:
toml:
name: Toml Check
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -89,7 +89,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest ]
os: [ ubuntu-20.04 ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -248,7 +248,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest ]
os: [ ubuntu-20.04 ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -568,7 +568,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest ]
os: [ ubuntu-20.04 ]
mode:
- name: "Basic"
opts: ""
@@ -607,7 +607,7 @@ jobs:
fmt:
name: Rustfmt
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -624,7 +624,7 @@ jobs:
clippy:
name: Clippy
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -710,7 +710,7 @@ jobs:
coverage:
if: github.event_name == 'merge_group'
runs-on: ubuntu-22.04-8-cores
runs-on: ubuntu-20.04-8-cores
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
@@ -770,7 +770,7 @@ jobs:
# compat:
# name: Compatibility Test
# needs: build
# runs-on: ubuntu-22.04
# runs-on: ubuntu-20.04
# timeout-minutes: 60
# steps:
# - uses: actions/checkout@v4

View File

@@ -9,7 +9,7 @@ concurrency:
jobs:
docbot:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
permissions:
pull-requests: write
contents: read

View File

@@ -31,7 +31,7 @@ name: CI
jobs:
typos:
name: Spell Check with Typos
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:
@@ -39,7 +39,7 @@ jobs:
- uses: crate-ci/typos@master
license-header-check:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
name: Check License Header
steps:
- uses: actions/checkout@v4
@@ -49,29 +49,29 @@ jobs:
check:
name: Check
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
fmt:
name: Rustfmt
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
clippy:
name: Clippy
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
coverage:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
test:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
@@ -80,7 +80,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-latest ]
os: [ ubuntu-20.04 ]
mode:
- name: "Basic"
- name: "Remote WAL"

View File

@@ -14,11 +14,11 @@ on:
description: The runner uses to build linux-amd64 artifacts
default: ec2-c6i.4xlarge-amd64
options:
- ubuntu-22.04
- ubuntu-22.04-8-cores
- ubuntu-22.04-16-cores
- ubuntu-22.04-32-cores
- ubuntu-22.04-64-cores
- ubuntu-20.04
- ubuntu-20.04-8-cores
- ubuntu-20.04-16-cores
- ubuntu-20.04-32-cores
- ubuntu-20.04-64-cores
- ec2-c6i.xlarge-amd64 # 4C8G
- ec2-c6i.2xlarge-amd64 # 8C16G
- ec2-c6i.4xlarge-amd64 # 16C32G
@@ -70,7 +70,7 @@ jobs:
allocate-runners:
name: Allocate runners
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
outputs:
linux-amd64-runner: ${{ steps.start-linux-amd64-runner.outputs.label }}
linux-arm64-runner: ${{ steps.start-linux-arm64-runner.outputs.label }}
@@ -182,7 +182,7 @@ jobs:
build-linux-amd64-artifacts,
build-linux-arm64-artifacts,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
outputs:
nightly-build-result: ${{ steps.set-nightly-build-result.outputs.nightly-build-result }}
steps:
@@ -214,7 +214,7 @@ jobs:
allocate-runners,
release-images-to-dockerhub,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
# When we push to ACR, it's easy to fail due to some unknown network issues.
# However, we don't want to fail the whole workflow because of this.
# The ACR have daily sync with DockerHub, so don't worry about the image not being updated.
@@ -249,7 +249,7 @@ jobs:
name: Stop linux-amd64 runner
# Only run this job when the runner is allocated.
if: ${{ always() }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: [
allocate-runners,
build-linux-amd64-artifacts,
@@ -275,7 +275,7 @@ jobs:
name: Stop linux-arm64 runner
# Only run this job when the runner is allocated.
if: ${{ always() }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: [
allocate-runners,
build-linux-arm64-artifacts,
@@ -303,7 +303,7 @@ jobs:
needs: [
release-images-to-dockerhub
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
permissions:
issues: write
env:

View File

@@ -13,7 +13,7 @@ jobs:
sqlness-test:
name: Run sqlness test
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- name: Checkout
uses: actions/checkout@v4
@@ -133,7 +133,7 @@ jobs:
name: Check status
needs: [sqlness-test, sqlness-windows, test-on-windows]
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
outputs:
check-result: ${{ steps.set-check-result.outputs.check-result }}
steps:
@@ -146,7 +146,7 @@ jobs:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' && always() }} # Not requiring successful dependent jobs, always run.
name: Send notification to Greptime team
needs: [check-status]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_DEVELOP_CHANNEL }}
steps:

View File

@@ -29,7 +29,7 @@ jobs:
release-dev-builder-images:
name: Release dev builder images
if: ${{ inputs.release_dev_builder_ubuntu_image || inputs.release_dev_builder_centos_image || inputs.release_dev_builder_android_image }} # Only manually trigger this job.
runs-on: ubuntu-latest
runs-on: ubuntu-22.04-16-cores
outputs:
version: ${{ steps.set-version.outputs.version }}
steps:
@@ -63,7 +63,7 @@ jobs:
release-dev-builder-images-ecr:
name: Release dev builder images to AWS ECR
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
needs: [
release-dev-builder-images
]
@@ -148,7 +148,7 @@ jobs:
release-dev-builder-images-cn: # Note: Be careful issue: https://github.com/containers/skopeo/issues/1874 and we decide to use the latest stable skopeo container.
name: Release dev builder images to CN region
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
needs: [
release-dev-builder-images
]

View File

@@ -18,11 +18,11 @@ on:
description: The runner uses to build linux-amd64 artifacts
default: ec2-c6i.4xlarge-amd64
options:
- ubuntu-22.04
- ubuntu-22.04-8-cores
- ubuntu-22.04-16-cores
- ubuntu-22.04-32-cores
- ubuntu-22.04-64-cores
- ubuntu-20.04
- ubuntu-20.04-8-cores
- ubuntu-20.04-16-cores
- ubuntu-20.04-32-cores
- ubuntu-20.04-64-cores
- ec2-c6i.xlarge-amd64 # 4C8G
- ec2-c6i.2xlarge-amd64 # 8C16G
- ec2-c6i.4xlarge-amd64 # 16C32G
@@ -97,7 +97,7 @@ jobs:
allocate-runners:
name: Allocate runners
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
outputs:
linux-amd64-runner: ${{ steps.start-linux-amd64-runner.outputs.label }}
linux-arm64-runner: ${{ steps.start-linux-arm64-runner.outputs.label }}
@@ -299,7 +299,7 @@ jobs:
build-linux-amd64-artifacts,
build-linux-arm64-artifacts,
]
runs-on: ubuntu-latest
runs-on: ubuntu-2004-16-cores
outputs:
build-image-result: ${{ steps.set-build-image-result.outputs.build-image-result }}
steps:
@@ -335,7 +335,7 @@ jobs:
build-windows-artifacts,
release-images-to-dockerhub,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
# When we push to ACR, it's easy to fail due to some unknown network issues.
# However, we don't want to fail the whole workflow because of this.
# The ACR have daily sync with DockerHub, so don't worry about the image not being updated.
@@ -377,7 +377,7 @@ jobs:
build-windows-artifacts,
release-images-to-dockerhub,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:
@@ -396,7 +396,7 @@ jobs:
name: Stop linux-amd64 runner
# Only run this job when the runner is allocated.
if: ${{ always() }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: [
allocate-runners,
build-linux-amd64-artifacts,
@@ -422,7 +422,7 @@ jobs:
name: Stop linux-arm64 runner
# Only run this job when the runner is allocated.
if: ${{ always() }}
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: [
allocate-runners,
build-linux-arm64-artifacts,
@@ -448,7 +448,7 @@ jobs:
name: Bump doc version
if: ${{ github.event_name == 'push' || github.event_name == 'schedule' }}
needs: [allocate-runners]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
# Permission reference: https://docs.github.com/en/actions/using-jobs/assigning-permissions-to-jobs
permissions:
issues: write # Allows the action to create issues for cyborg.
@@ -475,7 +475,7 @@ jobs:
build-macos-artifacts,
build-windows-artifacts,
]
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
# Permission reference: https://docs.github.com/en/actions/using-jobs/assigning-permissions-to-jobs
permissions:
issues: write # Allows the action to create issues for cyborg.

View File

@@ -13,7 +13,7 @@ concurrency:
jobs:
check:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
timeout-minutes: 10
steps:
- uses: actions/checkout@v4

1
Cargo.lock generated
View File

@@ -4167,7 +4167,6 @@ dependencies = [
"bytes",
"cache",
"catalog",
"chrono",
"client",
"common-base",
"common-catalog",

View File

@@ -60,6 +60,8 @@ ifeq ($(BUILDX_MULTI_PLATFORM_BUILD), all)
BUILDX_MULTI_PLATFORM_BUILD_OPTS := --platform linux/amd64,linux/arm64 --push
else ifeq ($(BUILDX_MULTI_PLATFORM_BUILD), amd64)
BUILDX_MULTI_PLATFORM_BUILD_OPTS := --platform linux/amd64 --push
else ifeq ($(BUILDX_MULTI_PLATFORM_BUILD), arm64)
BUILDX_MULTI_PLATFORM_BUILD_OPTS := --platform linux/arm64 --push
else
BUILDX_MULTI_PLATFORM_BUILD_OPTS := -o type=docker
endif

View File

@@ -1,4 +1,4 @@
FROM ubuntu:22.04 as builder
FROM ubuntu:20.04 as builder
ARG CARGO_PROFILE
ARG FEATURES

View File

@@ -1,4 +1,4 @@
FROM ubuntu:latest
FROM ubuntu:22.04
# The binary name of GreptimeDB executable.
# Defaults to "greptime", but sometimes in other projects it might be different.

View File

@@ -41,7 +41,7 @@ RUN mv protoc3/include/* /usr/local/include/
# and the repositories are pulled from trusted sources (still us, of course). Doing so does not violate the intention
# of the Git's addition to the "safe.directory" at the first place (see the commit message here:
# https://github.com/git/git/commit/8959555cee7ec045958f9b6dd62e541affb7e7d9).
# There's also another solution to this, that we add the desired submodules to the safe directory, instead of using
# There's also another solution to this, that we add the desired submodules to the safe directory, instead of using
# wildcard here. However, that requires the git's config files and the submodules all owned by the very same user.
# It's troublesome to do this since the dev build runs in Docker, which is under user "root"; while outside the Docker,
# it can be a different user that have prepared the submodules.

View File

@@ -38,7 +38,6 @@ use partition::manager::{PartitionRuleManager, PartitionRuleManagerRef};
use session::context::{Channel, QueryContext};
use snafu::prelude::*;
use table::dist_table::DistTable;
use table::metadata::TableId;
use table::table::numbers::{NumbersTable, NUMBERS_TABLE_NAME};
use table::table_name::TableName;
use table::TableRef;
@@ -287,28 +286,6 @@ impl CatalogManager for KvBackendCatalogManager {
return Ok(None);
}
async fn tables_by_ids(
&self,
catalog: &str,
schema: &str,
table_ids: &[TableId],
) -> Result<Vec<TableRef>> {
let table_info_values = self
.table_metadata_manager
.table_info_manager()
.batch_get(table_ids)
.await
.context(TableMetadataManagerSnafu)?;
let tables = table_info_values
.into_values()
.filter(|t| t.table_info.catalog_name == catalog && t.table_info.schema_name == schema)
.map(build_table)
.collect::<Result<Vec<_>>>()?;
Ok(tables)
}
fn tables<'a>(
&'a self,
catalog: &'a str,

View File

@@ -87,14 +87,6 @@ pub trait CatalogManager: Send + Sync {
query_ctx: Option<&QueryContext>,
) -> Result<Option<TableRef>>;
/// Returns the tables by table ids.
async fn tables_by_ids(
&self,
catalog: &str,
schema: &str,
table_ids: &[TableId],
) -> Result<Vec<TableRef>>;
/// Returns all tables with a stream by catalog and schema.
fn tables<'a>(
&'a self,

View File

@@ -14,7 +14,7 @@
use std::any::Any;
use std::collections::hash_map::Entry;
use std::collections::{HashMap, HashSet};
use std::collections::HashMap;
use std::sync::{Arc, RwLock, Weak};
use async_stream::{stream, try_stream};
@@ -28,7 +28,6 @@ use common_meta::kv_backend::memory::MemoryKvBackend;
use futures_util::stream::BoxStream;
use session::context::QueryContext;
use snafu::OptionExt;
use table::metadata::TableId;
use table::TableRef;
use crate::error::{CatalogNotFoundSnafu, Result, SchemaNotFoundSnafu, TableExistsSnafu};
@@ -144,33 +143,6 @@ impl CatalogManager for MemoryCatalogManager {
Ok(result)
}
async fn tables_by_ids(
&self,
catalog: &str,
schema: &str,
table_ids: &[TableId],
) -> Result<Vec<TableRef>> {
let catalogs = self.catalogs.read().unwrap();
let schemas = catalogs.get(catalog).context(CatalogNotFoundSnafu {
catalog_name: catalog,
})?;
let tables = schemas
.get(schema)
.context(SchemaNotFoundSnafu { catalog, schema })?;
let filter_ids: HashSet<_> = table_ids.iter().collect();
// It is very inefficient, but we do not need to optimize it since it will not be called in `MemoryCatalogManager`.
let tables = tables
.values()
.filter(|t| filter_ids.contains(&t.table_info().table_id()))
.cloned()
.collect::<Vec<_>>();
Ok(tables)
}
fn tables<'a>(
&'a self,
catalog: &'a str,

View File

@@ -16,6 +16,7 @@
mod client;
pub mod client_manager;
#[cfg(feature = "testing")]
mod database;
pub mod error;
pub mod flow;
@@ -33,6 +34,7 @@ pub use common_recordbatch::{RecordBatches, SendableRecordBatchStream};
use snafu::OptionExt;
pub use self::client::Client;
#[cfg(feature = "testing")]
pub use self::database::Database;
pub use self::error::{Error, Result};
use crate::error::{IllegalDatabaseResponseSnafu, ServerSnafu};

View File

@@ -32,7 +32,7 @@ use common_meta::key::TableMetadataManager;
use common_telemetry::info;
use common_telemetry::logging::TracingOptions;
use common_version::{short_version, version};
use flow::{FlownodeBuilder, FlownodeInstance, FrontendClient, FrontendInvoker};
use flow::{FlownodeBuilder, FlownodeInstance, FrontendInvoker};
use meta_client::{MetaClientOptions, MetaClientType};
use servers::Mode;
use snafu::{OptionExt, ResultExt};
@@ -317,8 +317,6 @@ impl StartCommand {
Arc::new(executor),
);
let frontend_client = FrontendClient::from_meta_client(meta_client.clone());
let flow_metadata_manager = Arc::new(FlowMetadataManager::new(cached_meta_backend.clone()));
let flownode_builder = FlownodeBuilder::new(
opts,
@@ -326,7 +324,6 @@ impl StartCommand {
table_metadata_manager,
catalog_manager.clone(),
flow_metadata_manager,
Arc::new(frontend_client),
)
.with_heartbeat_task(heartbeat_task);

View File

@@ -54,10 +54,7 @@ use datanode::config::{DatanodeOptions, ProcedureConfig, RegionEngineConfig, Sto
use datanode::datanode::{Datanode, DatanodeBuilder};
use datanode::region_server::RegionServer;
use file_engine::config::EngineConfig as FileEngineConfig;
use flow::{
FlowConfig, FlowWorkerManager, FlownodeBuilder, FlownodeOptions, FrontendClient,
FrontendInvoker,
};
use flow::{FlowConfig, FlowWorkerManager, FlownodeBuilder, FlownodeOptions, FrontendInvoker};
use frontend::frontend::FrontendOptions;
use frontend::instance::builder::FrontendBuilder;
use frontend::instance::{FrontendInstance, Instance as FeInstance, StandaloneDatanodeManager};
@@ -536,16 +533,12 @@ impl StartCommand {
flow: opts.flow.clone(),
..Default::default()
};
let fe_server_addr = fe_opts.grpc.bind_addr.clone();
let frontend_client = FrontendClient::from_static_grpc_addr(fe_server_addr);
let flow_builder = FlownodeBuilder::new(
flownode_options,
plugins.clone(),
table_metadata_manager.clone(),
catalog_manager.clone(),
flow_metadata_manager.clone(),
Arc::new(frontend_client),
);
let flownode = Arc::new(
flow_builder

View File

@@ -130,10 +130,3 @@ pub const SEMANTIC_TYPE_TIME_INDEX: &str = "TIMESTAMP";
pub fn is_readonly_schema(schema: &str) -> bool {
matches!(schema, INFORMATION_SCHEMA_NAME)
}
// ---- special table and fields ----
pub const TRACE_ID_COLUMN: &str = "trace_id";
pub const SPAN_ID_COLUMN: &str = "span_id";
pub const SPAN_NAME_COLUMN: &str = "span_name";
pub const PARENT_SPAN_ID_COLUMN: &str = "parent_span_id";
// ---- End of special table and fields ----

View File

@@ -12,16 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
//! Two UDAFs are implemented for HyperLogLog:
//!
//! - `hll`: Accepts a string column and aggregates the values into a
//! HyperLogLog state.
//! - `hll_merge`: Accepts a binary column of states generated by `hll`
//! and merges them into a single state.
//!
//! The states can be then used to estimate the cardinality of the
//! values in the column by `hll_count` UDF.
use std::sync::Arc;
use common_query::prelude::*;

View File

@@ -12,12 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implementation of the `uddsketch_state` UDAF that generate the state of
//! UDDSketch for a given set of values.
//!
//! The generated state can be used to compute approximate quantiles using
//! `uddsketch_calc` UDF.
use std::sync::Arc;
use common_query::prelude::*;

View File

@@ -12,16 +12,24 @@
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Deprecate Warning:
//!
//! This module is deprecated and will be removed in the future.
//! All UDAF implementation here are not maintained and should
//! not be used before they are refactored into the `src/aggr`
//! version.
mod argmax;
mod argmin;
mod diff;
mod mean;
mod polyval;
mod scipy_stats_norm_cdf;
mod scipy_stats_norm_pdf;
use std::sync::Arc;
pub use argmax::ArgmaxAccumulatorCreator;
pub use argmin::ArgminAccumulatorCreator;
use common_query::logical_plan::AggregateFunctionCreatorRef;
pub use diff::DiffAccumulatorCreator;
pub use mean::MeanAccumulatorCreator;
pub use polyval::PolyvalAccumulatorCreator;
pub use scipy_stats_norm_cdf::ScipyStatsNormCdfAccumulatorCreator;
pub use scipy_stats_norm_pdf::ScipyStatsNormPdfAccumulatorCreator;
use crate::function_registry::FunctionRegistry;
use crate::scalars::vector::product::VectorProductCreator;
@@ -68,22 +76,31 @@ pub(crate) struct AggregateFunctions;
impl AggregateFunctions {
pub fn register(registry: &FunctionRegistry) {
registry.register_aggregate_function(Arc::new(AggregateFunctionMeta::new(
"vec_sum",
1,
Arc::new(|| Arc::new(VectorSumCreator::default())),
)));
registry.register_aggregate_function(Arc::new(AggregateFunctionMeta::new(
"vec_product",
1,
Arc::new(|| Arc::new(VectorProductCreator::default())),
)));
macro_rules! register_aggr_func {
($name :expr, $arg_count :expr, $creator :ty) => {
registry.register_aggregate_function(Arc::new(AggregateFunctionMeta::new(
$name,
$arg_count,
Arc::new(|| Arc::new(<$creator>::default())),
)));
};
}
register_aggr_func!("diff", 1, DiffAccumulatorCreator);
register_aggr_func!("mean", 1, MeanAccumulatorCreator);
register_aggr_func!("polyval", 2, PolyvalAccumulatorCreator);
register_aggr_func!("argmax", 1, ArgmaxAccumulatorCreator);
register_aggr_func!("argmin", 1, ArgminAccumulatorCreator);
register_aggr_func!("scipystatsnormcdf", 2, ScipyStatsNormCdfAccumulatorCreator);
register_aggr_func!("scipystatsnormpdf", 2, ScipyStatsNormPdfAccumulatorCreator);
register_aggr_func!("vec_sum", 1, VectorSumCreator);
register_aggr_func!("vec_product", 1, VectorProductCreator);
#[cfg(feature = "geo")]
registry.register_aggregate_function(Arc::new(AggregateFunctionMeta::new(
register_aggr_func!(
"json_encode_path",
3,
Arc::new(|| Arc::new(super::geo::encoding::JsonPathEncodeFunctionCreator::default())),
)));
super::geo::encoding::JsonPathEncodeFunctionCreator
);
}
}

View File

@@ -0,0 +1,208 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp::Ordering;
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
BadAccumulatorImplSnafu, CreateAccumulatorSnafu, InvalidInputStateSnafu, Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::types::{LogicalPrimitiveType, WrapperType};
use datatypes::vectors::{ConstantVector, Helper};
use datatypes::with_match_primitive_type_id;
use snafu::ensure;
// https://numpy.org/doc/stable/reference/generated/numpy.argmax.html
// return the index of the max value
#[derive(Debug, Default)]
pub struct Argmax<T> {
max: Option<T>,
n: u64,
}
impl<T> Argmax<T>
where
T: PartialOrd + Copy,
{
fn update(&mut self, value: T, index: u64) {
if let Some(Ordering::Less) = self.max.partial_cmp(&Some(value)) {
self.max = Some(value);
self.n = index;
}
}
}
impl<T> Accumulator for Argmax<T>
where
T: WrapperType + PartialOrd,
{
fn state(&self) -> Result<Vec<Value>> {
match self.max {
Some(max) => Ok(vec![max.into(), self.n.into()]),
_ => Ok(vec![Value::Null, self.n.into()]),
}
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
let column = &values[0];
let column: &<T as Scalar>::VectorType = if column.is_const() {
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
for (i, v) in column.iter_data().enumerate() {
if let Some(value) = v {
self.update(value, i as u64);
}
}
Ok(())
}
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
ensure!(
states.len() == 2,
BadAccumulatorImplSnafu {
err_msg: "expect 2 states in `merge_batch`",
}
);
let max = &states[0];
let index = &states[1];
let max: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(max) };
let index: &<u64 as Scalar>::VectorType = unsafe { Helper::static_cast(index) };
index
.iter_data()
.flatten()
.zip(max.iter_data().flatten())
.for_each(|(i, max)| self.update(max, i));
Ok(())
}
fn evaluate(&self) -> Result<Value> {
match self.max {
Some(_) => Ok(self.n.into()),
_ => Ok(Value::Null),
}
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct ArgmaxAccumulatorCreator {}
impl AggregateFunctionCreator for ArgmaxAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(Argmax::<<$S as LogicalPrimitiveType>::Wrapper>::default()))
},
{
let err_msg = format!(
"\"ARGMAX\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
Ok(ConcreteDataType::uint64_datatype())
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 1, InvalidInputStateSnafu);
Ok(vec![
input_types.into_iter().next().unwrap(),
ConcreteDataType::uint64_datatype(),
])
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::Int32Vector;
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut argmax = Argmax::<i32>::default();
argmax.update_batch(&[]).unwrap();
assert_eq!(Value::Null, argmax.evaluate().unwrap());
// test update one not-null value
let mut argmax = Argmax::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Some(42)]))];
argmax.update_batch(&v).unwrap();
assert_eq!(Value::from(0_u64), argmax.evaluate().unwrap());
// test update one null value
let mut argmax = Argmax::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Option::<i32>::None]))];
argmax.update_batch(&v).unwrap();
assert_eq!(Value::Null, argmax.evaluate().unwrap());
// test update no null-value batch
let mut argmax = Argmax::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-1i32),
Some(1),
Some(3),
]))];
argmax.update_batch(&v).unwrap();
assert_eq!(Value::from(2_u64), argmax.evaluate().unwrap());
// test update null-value batch
let mut argmax = Argmax::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-2i32),
None,
Some(4),
]))];
argmax.update_batch(&v).unwrap();
assert_eq!(Value::from(2_u64), argmax.evaluate().unwrap());
// test update with constant vector
let mut argmax = Argmax::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(ConstantVector::new(
Arc::new(Int32Vector::from_vec(vec![4])),
10,
))];
argmax.update_batch(&v).unwrap();
assert_eq!(Value::from(0_u64), argmax.evaluate().unwrap());
}
}

View File

@@ -0,0 +1,216 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::cmp::Ordering;
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
BadAccumulatorImplSnafu, CreateAccumulatorSnafu, InvalidInputStateSnafu, Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::vectors::{ConstantVector, Helper};
use datatypes::with_match_primitive_type_id;
use snafu::ensure;
// // https://numpy.org/doc/stable/reference/generated/numpy.argmin.html
#[derive(Debug, Default)]
pub struct Argmin<T> {
min: Option<T>,
n: u32,
}
impl<T> Argmin<T>
where
T: Copy + PartialOrd,
{
fn update(&mut self, value: T, index: u32) {
match self.min {
Some(min) => {
if let Some(Ordering::Greater) = min.partial_cmp(&value) {
self.min = Some(value);
self.n = index;
}
}
None => {
self.min = Some(value);
self.n = index;
}
}
}
}
impl<T> Accumulator for Argmin<T>
where
T: WrapperType + PartialOrd,
{
fn state(&self) -> Result<Vec<Value>> {
match self.min {
Some(min) => Ok(vec![min.into(), self.n.into()]),
_ => Ok(vec![Value::Null, self.n.into()]),
}
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
ensure!(values.len() == 1, InvalidInputStateSnafu);
let column = &values[0];
let column: &<T as Scalar>::VectorType = if column.is_const() {
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
for (i, v) in column.iter_data().enumerate() {
if let Some(value) = v {
self.update(value, i as u32);
}
}
Ok(())
}
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
ensure!(
states.len() == 2,
BadAccumulatorImplSnafu {
err_msg: "expect 2 states in `merge_batch`",
}
);
let min = &states[0];
let index = &states[1];
let min: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(min) };
let index: &<u32 as Scalar>::VectorType = unsafe { Helper::static_cast(index) };
index
.iter_data()
.flatten()
.zip(min.iter_data().flatten())
.for_each(|(i, min)| self.update(min, i));
Ok(())
}
fn evaluate(&self) -> Result<Value> {
match self.min {
Some(_) => Ok(self.n.into()),
_ => Ok(Value::Null),
}
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct ArgminAccumulatorCreator {}
impl AggregateFunctionCreator for ArgminAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(Argmin::<<$S as LogicalPrimitiveType>::Wrapper>::default()))
},
{
let err_msg = format!(
"\"ARGMIN\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
Ok(ConcreteDataType::uint32_datatype())
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 1, InvalidInputStateSnafu);
Ok(vec![
input_types.into_iter().next().unwrap(),
ConcreteDataType::uint32_datatype(),
])
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::Int32Vector;
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut argmin = Argmin::<i32>::default();
argmin.update_batch(&[]).unwrap();
assert_eq!(Value::Null, argmin.evaluate().unwrap());
// test update one not-null value
let mut argmin = Argmin::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Some(42)]))];
argmin.update_batch(&v).unwrap();
assert_eq!(Value::from(0_u32), argmin.evaluate().unwrap());
// test update one null value
let mut argmin = Argmin::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Option::<i32>::None]))];
argmin.update_batch(&v).unwrap();
assert_eq!(Value::Null, argmin.evaluate().unwrap());
// test update no null-value batch
let mut argmin = Argmin::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-1i32),
Some(1),
Some(3),
]))];
argmin.update_batch(&v).unwrap();
assert_eq!(Value::from(0_u32), argmin.evaluate().unwrap());
// test update null-value batch
let mut argmin = Argmin::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-2i32),
None,
Some(4),
]))];
argmin.update_batch(&v).unwrap();
assert_eq!(Value::from(0_u32), argmin.evaluate().unwrap());
// test update with constant vector
let mut argmin = Argmin::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(ConstantVector::new(
Arc::new(Int32Vector::from_vec(vec![4])),
10,
))];
argmin.update_batch(&v).unwrap();
assert_eq!(Value::from(0_u32), argmin.evaluate().unwrap());
}
}

View File

@@ -0,0 +1,252 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::marker::PhantomData;
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
CreateAccumulatorSnafu, DowncastVectorSnafu, FromScalarValueSnafu, InvalidInputStateSnafu,
Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::value::ListValue;
use datatypes::vectors::{ConstantVector, Helper, ListVector};
use datatypes::with_match_primitive_type_id;
use num_traits::AsPrimitive;
use snafu::{ensure, OptionExt, ResultExt};
// https://numpy.org/doc/stable/reference/generated/numpy.diff.html
// I is the input type, O is the output type.
#[derive(Debug, Default)]
pub struct Diff<I, O> {
values: Vec<I>,
_phantom: PhantomData<O>,
}
impl<I, O> Diff<I, O> {
fn push(&mut self, value: I) {
self.values.push(value);
}
}
impl<I, O> Accumulator for Diff<I, O>
where
I: WrapperType,
O: WrapperType,
I::Native: AsPrimitive<O::Native>,
O::Native: std::ops::Sub<Output = O::Native>,
{
fn state(&self) -> Result<Vec<Value>> {
let nums = self
.values
.iter()
.map(|&n| n.into())
.collect::<Vec<Value>>();
Ok(vec![Value::List(ListValue::new(
nums,
I::LogicalType::build_data_type(),
))])
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
ensure!(values.len() == 1, InvalidInputStateSnafu);
let column = &values[0];
let mut len = 1;
let column: &<I as Scalar>::VectorType = if column.is_const() {
len = column.len();
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
(0..len).for_each(|_| {
for v in column.iter_data().flatten() {
self.push(v);
}
});
Ok(())
}
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
let states = &states[0];
let states = states
.as_any()
.downcast_ref::<ListVector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect ListVector, got vector type {}",
states.vector_type_name()
),
})?;
for state in states.values_iter() {
if let Some(state) = state.context(FromScalarValueSnafu)? {
self.update_batch(&[state])?;
}
}
Ok(())
}
fn evaluate(&self) -> Result<Value> {
if self.values.is_empty() || self.values.len() == 1 {
return Ok(Value::Null);
}
let diff = self
.values
.windows(2)
.map(|x| {
let native = x[1].into_native().as_() - x[0].into_native().as_();
O::from_native(native).into()
})
.collect::<Vec<Value>>();
let diff = Value::List(ListValue::new(diff, O::LogicalType::build_data_type()));
Ok(diff)
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct DiffAccumulatorCreator {}
impl AggregateFunctionCreator for DiffAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(Diff::<<$S as LogicalPrimitiveType>::Wrapper, <<$S as LogicalPrimitiveType>::LargestType as LogicalPrimitiveType>::Wrapper>::default()))
},
{
let err_msg = format!(
"\"DIFF\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 1, InvalidInputStateSnafu);
with_match_primitive_type_id!(
input_types[0].logical_type_id(),
|$S| {
Ok(ConcreteDataType::list_datatype($S::default().into()))
},
{
unreachable!()
}
)
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 1, InvalidInputStateSnafu);
with_match_primitive_type_id!(
input_types[0].logical_type_id(),
|$S| {
Ok(vec![ConcreteDataType::list_datatype($S::default().into())])
},
{
unreachable!()
}
)
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::Int32Vector;
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut diff = Diff::<i32, i64>::default();
diff.update_batch(&[]).unwrap();
assert!(diff.values.is_empty());
assert_eq!(Value::Null, diff.evaluate().unwrap());
// test update one not-null value
let mut diff = Diff::<i32, i64>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Some(42)]))];
diff.update_batch(&v).unwrap();
assert_eq!(Value::Null, diff.evaluate().unwrap());
// test update one null value
let mut diff = Diff::<i32, i64>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Option::<i32>::None]))];
diff.update_batch(&v).unwrap();
assert_eq!(Value::Null, diff.evaluate().unwrap());
// test update no null-value batch
let mut diff = Diff::<i32, i64>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-1i32),
Some(1),
Some(2),
]))];
let values = vec![Value::from(2_i64), Value::from(1_i64)];
diff.update_batch(&v).unwrap();
assert_eq!(
Value::List(ListValue::new(values, ConcreteDataType::int64_datatype())),
diff.evaluate().unwrap()
);
// test update null-value batch
let mut diff = Diff::<i32, i64>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-2i32),
None,
Some(3),
Some(4),
]))];
let values = vec![Value::from(5_i64), Value::from(1_i64)];
diff.update_batch(&v).unwrap();
assert_eq!(
Value::List(ListValue::new(values, ConcreteDataType::int64_datatype())),
diff.evaluate().unwrap()
);
// test update with constant vector
let mut diff = Diff::<i32, i64>::default();
let v: Vec<VectorRef> = vec![Arc::new(ConstantVector::new(
Arc::new(Int32Vector::from_vec(vec![4])),
4,
))];
let values = vec![Value::from(0_i64), Value::from(0_i64), Value::from(0_i64)];
diff.update_batch(&v).unwrap();
assert_eq!(
Value::List(ListValue::new(values, ConcreteDataType::int64_datatype())),
diff.evaluate().unwrap()
);
}
}

View File

@@ -0,0 +1,238 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::marker::PhantomData;
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
BadAccumulatorImplSnafu, CreateAccumulatorSnafu, DowncastVectorSnafu, InvalidInputStateSnafu,
Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::types::WrapperType;
use datatypes::vectors::{ConstantVector, Float64Vector, Helper, UInt64Vector};
use datatypes::with_match_primitive_type_id;
use num_traits::AsPrimitive;
use snafu::{ensure, OptionExt};
#[derive(Debug, Default)]
pub struct Mean<T> {
sum: f64,
n: u64,
_phantom: PhantomData<T>,
}
impl<T> Mean<T>
where
T: WrapperType,
T::Native: AsPrimitive<f64>,
{
#[inline(always)]
fn push(&mut self, value: T) {
self.sum += value.into_native().as_();
self.n += 1;
}
#[inline(always)]
fn update(&mut self, sum: f64, n: u64) {
self.sum += sum;
self.n += n;
}
}
impl<T> Accumulator for Mean<T>
where
T: WrapperType,
T::Native: AsPrimitive<f64>,
{
fn state(&self) -> Result<Vec<Value>> {
Ok(vec![self.sum.into(), self.n.into()])
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
ensure!(values.len() == 1, InvalidInputStateSnafu);
let column = &values[0];
let mut len = 1;
let column: &<T as Scalar>::VectorType = if column.is_const() {
len = column.len();
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
(0..len).for_each(|_| {
for v in column.iter_data().flatten() {
self.push(v);
}
});
Ok(())
}
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
ensure!(
states.len() == 2,
BadAccumulatorImplSnafu {
err_msg: "expect 2 states in `merge_batch`",
}
);
let sum = &states[0];
let n = &states[1];
let sum = sum
.as_any()
.downcast_ref::<Float64Vector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect Float64Vector, got vector type {}",
sum.vector_type_name()
),
})?;
let n = n
.as_any()
.downcast_ref::<UInt64Vector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect UInt64Vector, got vector type {}",
sum.vector_type_name()
),
})?;
sum.iter_data().zip(n.iter_data()).for_each(|(sum, n)| {
if let (Some(sum), Some(n)) = (sum, n) {
self.update(sum, n);
}
});
Ok(())
}
fn evaluate(&self) -> Result<Value> {
if self.n == 0 {
return Ok(Value::Null);
}
let values = self.sum / self.n as f64;
Ok(values.into())
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct MeanAccumulatorCreator {}
impl AggregateFunctionCreator for MeanAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(Mean::<<$S as LogicalPrimitiveType>::Native>::default()))
},
{
let err_msg = format!(
"\"MEAN\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 1, InvalidInputStateSnafu);
Ok(ConcreteDataType::float64_datatype())
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 1, InvalidInputStateSnafu);
Ok(vec![
ConcreteDataType::float64_datatype(),
ConcreteDataType::uint64_datatype(),
])
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::Int32Vector;
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut mean = Mean::<i32>::default();
mean.update_batch(&[]).unwrap();
assert_eq!(Value::Null, mean.evaluate().unwrap());
// test update one not-null value
let mut mean = Mean::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Some(42)]))];
mean.update_batch(&v).unwrap();
assert_eq!(Value::from(42.0_f64), mean.evaluate().unwrap());
// test update one null value
let mut mean = Mean::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![Option::<i32>::None]))];
mean.update_batch(&v).unwrap();
assert_eq!(Value::Null, mean.evaluate().unwrap());
// test update no null-value batch
let mut mean = Mean::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-1i32),
Some(1),
Some(2),
]))];
mean.update_batch(&v).unwrap();
assert_eq!(Value::from(0.6666666666666666), mean.evaluate().unwrap());
// test update null-value batch
let mut mean = Mean::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(Int32Vector::from(vec![
Some(-2i32),
None,
Some(3),
Some(4),
]))];
mean.update_batch(&v).unwrap();
assert_eq!(Value::from(1.6666666666666667), mean.evaluate().unwrap());
// test update with constant vector
let mut mean = Mean::<i32>::default();
let v: Vec<VectorRef> = vec![Arc::new(ConstantVector::new(
Arc::new(Int32Vector::from_vec(vec![4])),
10,
))];
mean.update_batch(&v).unwrap();
assert_eq!(Value::from(4.0), mean.evaluate().unwrap());
}
}

View File

@@ -0,0 +1,329 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::marker::PhantomData;
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
self, BadAccumulatorImplSnafu, CreateAccumulatorSnafu, DowncastVectorSnafu,
FromScalarValueSnafu, InvalidInputColSnafu, InvalidInputStateSnafu, Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::types::{LogicalPrimitiveType, WrapperType};
use datatypes::value::ListValue;
use datatypes::vectors::{ConstantVector, Helper, Int64Vector, ListVector};
use datatypes::with_match_primitive_type_id;
use num_traits::AsPrimitive;
use snafu::{ensure, OptionExt, ResultExt};
// https://numpy.org/doc/stable/reference/generated/numpy.polyval.html
#[derive(Debug, Default)]
pub struct Polyval<T, PolyT>
where
T: WrapperType,
T::Native: AsPrimitive<PolyT::Native>,
PolyT: WrapperType,
PolyT::Native: std::ops::Mul<Output = PolyT::Native>,
{
values: Vec<T>,
// DataFusion casts constant in into i64 type.
x: Option<i64>,
_phantom: PhantomData<PolyT>,
}
impl<T, PolyT> Polyval<T, PolyT>
where
T: WrapperType,
T::Native: AsPrimitive<PolyT::Native>,
PolyT: WrapperType,
PolyT::Native: std::ops::Mul<Output = PolyT::Native>,
{
fn push(&mut self, value: T) {
self.values.push(value);
}
}
impl<T, PolyT> Accumulator for Polyval<T, PolyT>
where
T: WrapperType,
T::Native: AsPrimitive<PolyT::Native>,
PolyT: WrapperType + std::iter::Sum<<PolyT as WrapperType>::Native>,
PolyT::Native: std::ops::Mul<Output = PolyT::Native> + std::iter::Sum<PolyT::Native>,
i64: AsPrimitive<<PolyT as WrapperType>::Native>,
{
fn state(&self) -> Result<Vec<Value>> {
let nums = self
.values
.iter()
.map(|&n| n.into())
.collect::<Vec<Value>>();
Ok(vec![
Value::List(ListValue::new(nums, T::LogicalType::build_data_type())),
self.x.into(),
])
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
ensure!(values.len() == 2, InvalidInputStateSnafu);
ensure!(values[0].len() == values[1].len(), InvalidInputStateSnafu);
if values[0].len() == 0 {
return Ok(());
}
// This is a unary accumulator, so only one column is provided.
let column = &values[0];
let mut len = 1;
let column: &<T as Scalar>::VectorType = if column.is_const() {
len = column.len();
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
(0..len).for_each(|_| {
for v in column.iter_data().flatten() {
self.push(v);
}
});
let x = &values[1];
let x = Helper::check_get_scalar::<i64>(x).context(error::InvalidInputTypeSnafu {
err_msg: "expecting \"POLYVAL\" function's second argument to be a positive integer",
})?;
// `get(0)` is safe because we have checked `values[1].len() == values[0].len() != 0`
let first = x.get(0);
ensure!(!first.is_null(), InvalidInputColSnafu);
for i in 1..x.len() {
ensure!(first == x.get(i), InvalidInputColSnafu);
}
let first = match first {
Value::Int64(v) => v,
// unreachable because we have checked `first` is not null and is i64 above
_ => unreachable!(),
};
if let Some(x) = self.x {
ensure!(x == first, InvalidInputColSnafu);
} else {
self.x = Some(first);
};
Ok(())
}
// DataFusion executes accumulators in partitions. In some execution stage, DataFusion will
// merge states from other accumulators (returned by `state()` method).
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
ensure!(
states.len() == 2,
BadAccumulatorImplSnafu {
err_msg: "expect 2 states in `merge_batch`",
}
);
let x = &states[1];
let x = x
.as_any()
.downcast_ref::<Int64Vector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect Int64Vector, got vector type {}",
x.vector_type_name()
),
})?;
let x = x.get(0);
if x.is_null() {
return Ok(());
}
let x = match x {
Value::Int64(x) => x,
_ => unreachable!(),
};
self.x = Some(x);
let values = &states[0];
let values = values
.as_any()
.downcast_ref::<ListVector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect ListVector, got vector type {}",
values.vector_type_name()
),
})?;
for value in values.values_iter() {
if let Some(value) = value.context(FromScalarValueSnafu)? {
let column: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(&value) };
for v in column.iter_data().flatten() {
self.push(v);
}
}
}
Ok(())
}
// DataFusion expects this function to return the final value of this aggregator.
fn evaluate(&self) -> Result<Value> {
if self.values.is_empty() {
return Ok(Value::Null);
}
let x = if let Some(x) = self.x {
x
} else {
return Ok(Value::Null);
};
let len = self.values.len();
let polyval: PolyT = self
.values
.iter()
.enumerate()
.map(|(i, &value)| value.into_native().as_() * x.pow((len - 1 - i) as u32).as_())
.sum();
Ok(polyval.into())
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct PolyvalAccumulatorCreator {}
impl AggregateFunctionCreator for PolyvalAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(Polyval::<<$S as LogicalPrimitiveType>::Wrapper, <<$S as LogicalPrimitiveType>::LargestType as LogicalPrimitiveType>::Wrapper>::default()))
},
{
let err_msg = format!(
"\"POLYVAL\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 2, InvalidInputStateSnafu);
let input_type = self.input_types()?[0].logical_type_id();
with_match_primitive_type_id!(
input_type,
|$S| {
Ok(<<$S as LogicalPrimitiveType>::LargestType as LogicalPrimitiveType>::build_data_type())
},
{
unreachable!()
}
)
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 2, InvalidInputStateSnafu);
Ok(vec![
ConcreteDataType::list_datatype(input_types.into_iter().next().unwrap()),
ConcreteDataType::int64_datatype(),
])
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::Int32Vector;
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut polyval = Polyval::<i32, i64>::default();
polyval.update_batch(&[]).unwrap();
assert!(polyval.values.is_empty());
assert_eq!(Value::Null, polyval.evaluate().unwrap());
// test update one not-null value
let mut polyval = Polyval::<i32, i64>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(3)])),
Arc::new(Int64Vector::from(vec![Some(2_i64)])),
];
polyval.update_batch(&v).unwrap();
assert_eq!(Value::Int64(3), polyval.evaluate().unwrap());
// test update one null value
let mut polyval = Polyval::<i32, i64>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Option::<i32>::None])),
Arc::new(Int64Vector::from(vec![Some(2_i64)])),
];
polyval.update_batch(&v).unwrap();
assert_eq!(Value::Null, polyval.evaluate().unwrap());
// test update no null-value batch
let mut polyval = Polyval::<i32, i64>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(3), Some(0), Some(1)])),
Arc::new(Int64Vector::from(vec![
Some(2_i64),
Some(2_i64),
Some(2_i64),
])),
];
polyval.update_batch(&v).unwrap();
assert_eq!(Value::Int64(13), polyval.evaluate().unwrap());
// test update null-value batch
let mut polyval = Polyval::<i32, i64>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(3), Some(0), None, Some(1)])),
Arc::new(Int64Vector::from(vec![
Some(2_i64),
Some(2_i64),
Some(2_i64),
Some(2_i64),
])),
];
polyval.update_batch(&v).unwrap();
assert_eq!(Value::Int64(13), polyval.evaluate().unwrap());
// test update with constant vector
let mut polyval = Polyval::<i32, i64>::default();
let v: Vec<VectorRef> = vec![
Arc::new(ConstantVector::new(
Arc::new(Int32Vector::from_vec(vec![4])),
2,
)),
Arc::new(Int64Vector::from(vec![Some(5_i64), Some(5_i64)])),
];
polyval.update_batch(&v).unwrap();
assert_eq!(Value::Int64(24), polyval.evaluate().unwrap());
}
}

View File

@@ -0,0 +1,270 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
self, BadAccumulatorImplSnafu, CreateAccumulatorSnafu, DowncastVectorSnafu,
FromScalarValueSnafu, GenerateFunctionSnafu, InvalidInputColSnafu, InvalidInputStateSnafu,
Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::value::{ListValue, OrderedFloat};
use datatypes::vectors::{ConstantVector, Float64Vector, Helper, ListVector};
use datatypes::with_match_primitive_type_id;
use num_traits::AsPrimitive;
use snafu::{ensure, OptionExt, ResultExt};
use statrs::distribution::{ContinuousCDF, Normal};
use statrs::statistics::Statistics;
// https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
#[derive(Debug, Default)]
pub struct ScipyStatsNormCdf<T> {
values: Vec<T>,
x: Option<f64>,
}
impl<T> ScipyStatsNormCdf<T> {
fn push(&mut self, value: T) {
self.values.push(value);
}
}
impl<T> Accumulator for ScipyStatsNormCdf<T>
where
T: WrapperType + std::iter::Sum<T>,
T::Native: AsPrimitive<f64>,
{
fn state(&self) -> Result<Vec<Value>> {
let nums = self
.values
.iter()
.map(|&x| x.into())
.collect::<Vec<Value>>();
Ok(vec![
Value::List(ListValue::new(nums, T::LogicalType::build_data_type())),
self.x.into(),
])
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
ensure!(values.len() == 2, InvalidInputStateSnafu);
ensure!(values[1].len() == values[0].len(), InvalidInputStateSnafu);
if values[0].len() == 0 {
return Ok(());
}
let column = &values[0];
let mut len = 1;
let column: &<T as Scalar>::VectorType = if column.is_const() {
len = column.len();
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
let x = &values[1];
let x = Helper::check_get_scalar::<f64>(x).context(error::InvalidInputTypeSnafu {
err_msg: "expecting \"SCIPYSTATSNORMCDF\" function's second argument to be a positive integer",
})?;
let first = x.get(0);
ensure!(!first.is_null(), InvalidInputColSnafu);
let first = match first {
Value::Float64(OrderedFloat(v)) => v,
// unreachable because we have checked `first` is not null and is i64 above
_ => unreachable!(),
};
if let Some(x) = self.x {
ensure!(x == first, InvalidInputColSnafu);
} else {
self.x = Some(first);
};
(0..len).for_each(|_| {
for v in column.iter_data().flatten() {
self.push(v);
}
});
Ok(())
}
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
ensure!(
states.len() == 2,
BadAccumulatorImplSnafu {
err_msg: "expect 2 states in `merge_batch`",
}
);
let x = &states[1];
let x = x
.as_any()
.downcast_ref::<Float64Vector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect Float64Vector, got vector type {}",
x.vector_type_name()
),
})?;
let x = x.get(0);
if x.is_null() {
return Ok(());
}
let x = match x {
Value::Float64(OrderedFloat(x)) => x,
_ => unreachable!(),
};
self.x = Some(x);
let values = &states[0];
let values = values
.as_any()
.downcast_ref::<ListVector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect ListVector, got vector type {}",
values.vector_type_name()
),
})?;
for value in values.values_iter() {
if let Some(value) = value.context(FromScalarValueSnafu)? {
let column: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(&value) };
for v in column.iter_data().flatten() {
self.push(v);
}
}
}
Ok(())
}
fn evaluate(&self) -> Result<Value> {
let mean = self.values.iter().map(|v| v.into_native().as_()).mean();
let std_dev = self.values.iter().map(|v| v.into_native().as_()).std_dev();
if mean.is_nan() || std_dev.is_nan() {
Ok(Value::Null)
} else {
let x = if let Some(x) = self.x {
x
} else {
return Ok(Value::Null);
};
let n = Normal::new(mean, std_dev).context(GenerateFunctionSnafu)?;
Ok(n.cdf(x).into())
}
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct ScipyStatsNormCdfAccumulatorCreator {}
impl AggregateFunctionCreator for ScipyStatsNormCdfAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(ScipyStatsNormCdf::<<$S as LogicalPrimitiveType>::Wrapper>::default()))
},
{
let err_msg = format!(
"\"SCIPYSTATSNORMCDF\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 2, InvalidInputStateSnafu);
Ok(ConcreteDataType::float64_datatype())
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 2, InvalidInputStateSnafu);
Ok(vec![
ConcreteDataType::list_datatype(input_types[0].clone()),
ConcreteDataType::float64_datatype(),
])
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::{Float64Vector, Int32Vector};
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut scipy_stats_norm_cdf = ScipyStatsNormCdf::<i32>::default();
scipy_stats_norm_cdf.update_batch(&[]).unwrap();
assert!(scipy_stats_norm_cdf.values.is_empty());
assert_eq!(Value::Null, scipy_stats_norm_cdf.evaluate().unwrap());
// test update no null-value batch
let mut scipy_stats_norm_cdf = ScipyStatsNormCdf::<i32>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(-1i32), Some(1), Some(2)])),
Arc::new(Float64Vector::from(vec![
Some(2.0_f64),
Some(2.0_f64),
Some(2.0_f64),
])),
];
scipy_stats_norm_cdf.update_batch(&v).unwrap();
assert_eq!(
Value::from(0.8086334555398362),
scipy_stats_norm_cdf.evaluate().unwrap()
);
// test update null-value batch
let mut scipy_stats_norm_cdf = ScipyStatsNormCdf::<i32>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(-2i32), None, Some(3), Some(4)])),
Arc::new(Float64Vector::from(vec![
Some(2.0_f64),
None,
Some(2.0_f64),
Some(2.0_f64),
])),
];
scipy_stats_norm_cdf.update_batch(&v).unwrap();
assert_eq!(
Value::from(0.5412943699039795),
scipy_stats_norm_cdf.evaluate().unwrap()
);
}
}

View File

@@ -0,0 +1,271 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use common_macro::{as_aggr_func_creator, AggrFuncTypeStore};
use common_query::error::{
self, BadAccumulatorImplSnafu, CreateAccumulatorSnafu, DowncastVectorSnafu,
FromScalarValueSnafu, GenerateFunctionSnafu, InvalidInputColSnafu, InvalidInputStateSnafu,
Result,
};
use common_query::logical_plan::accumulator::AggrFuncTypeStore;
use common_query::logical_plan::{Accumulator, AggregateFunctionCreator};
use common_query::prelude::*;
use datatypes::prelude::*;
use datatypes::value::{ListValue, OrderedFloat};
use datatypes::vectors::{ConstantVector, Float64Vector, Helper, ListVector};
use datatypes::with_match_primitive_type_id;
use num_traits::AsPrimitive;
use snafu::{ensure, OptionExt, ResultExt};
use statrs::distribution::{Continuous, Normal};
use statrs::statistics::Statistics;
// https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
#[derive(Debug, Default)]
pub struct ScipyStatsNormPdf<T> {
values: Vec<T>,
x: Option<f64>,
}
impl<T> ScipyStatsNormPdf<T> {
fn push(&mut self, value: T) {
self.values.push(value);
}
}
impl<T> Accumulator for ScipyStatsNormPdf<T>
where
T: WrapperType,
T::Native: AsPrimitive<f64> + std::iter::Sum<T>,
{
fn state(&self) -> Result<Vec<Value>> {
let nums = self
.values
.iter()
.map(|&x| x.into())
.collect::<Vec<Value>>();
Ok(vec![
Value::List(ListValue::new(nums, T::LogicalType::build_data_type())),
self.x.into(),
])
}
fn update_batch(&mut self, values: &[VectorRef]) -> Result<()> {
if values.is_empty() {
return Ok(());
}
ensure!(values.len() == 2, InvalidInputStateSnafu);
ensure!(values[1].len() == values[0].len(), InvalidInputStateSnafu);
if values[0].len() == 0 {
return Ok(());
}
let column = &values[0];
let mut len = 1;
let column: &<T as Scalar>::VectorType = if column.is_const() {
len = column.len();
let column: &ConstantVector = unsafe { Helper::static_cast(column) };
unsafe { Helper::static_cast(column.inner()) }
} else {
unsafe { Helper::static_cast(column) }
};
let x = &values[1];
let x = Helper::check_get_scalar::<f64>(x).context(error::InvalidInputTypeSnafu {
err_msg: "expecting \"SCIPYSTATSNORMPDF\" function's second argument to be a positive integer",
})?;
let first = x.get(0);
ensure!(!first.is_null(), InvalidInputColSnafu);
let first = match first {
Value::Float64(OrderedFloat(v)) => v,
// unreachable because we have checked `first` is not null and is i64 above
_ => unreachable!(),
};
if let Some(x) = self.x {
ensure!(x == first, InvalidInputColSnafu);
} else {
self.x = Some(first);
};
(0..len).for_each(|_| {
for v in column.iter_data().flatten() {
self.push(v);
}
});
Ok(())
}
fn merge_batch(&mut self, states: &[VectorRef]) -> Result<()> {
if states.is_empty() {
return Ok(());
}
ensure!(
states.len() == 2,
BadAccumulatorImplSnafu {
err_msg: "expect 2 states in `merge_batch`",
}
);
let x = &states[1];
let x = x
.as_any()
.downcast_ref::<Float64Vector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect Float64Vector, got vector type {}",
x.vector_type_name()
),
})?;
let x = x.get(0);
if x.is_null() {
return Ok(());
}
let x = match x {
Value::Float64(OrderedFloat(x)) => x,
_ => unreachable!(),
};
self.x = Some(x);
let values = &states[0];
let values = values
.as_any()
.downcast_ref::<ListVector>()
.with_context(|| DowncastVectorSnafu {
err_msg: format!(
"expect ListVector, got vector type {}",
values.vector_type_name()
),
})?;
for value in values.values_iter() {
if let Some(value) = value.context(FromScalarValueSnafu)? {
let column: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(&value) };
for v in column.iter_data().flatten() {
self.push(v);
}
}
}
Ok(())
}
fn evaluate(&self) -> Result<Value> {
let mean = self.values.iter().map(|v| v.into_native().as_()).mean();
let std_dev = self.values.iter().map(|v| v.into_native().as_()).std_dev();
if mean.is_nan() || std_dev.is_nan() {
Ok(Value::Null)
} else {
let x = if let Some(x) = self.x {
x
} else {
return Ok(Value::Null);
};
let n = Normal::new(mean, std_dev).context(GenerateFunctionSnafu)?;
Ok(n.pdf(x).into())
}
}
}
#[as_aggr_func_creator]
#[derive(Debug, Default, AggrFuncTypeStore)]
pub struct ScipyStatsNormPdfAccumulatorCreator {}
impl AggregateFunctionCreator for ScipyStatsNormPdfAccumulatorCreator {
fn creator(&self) -> AccumulatorCreatorFunction {
let creator: AccumulatorCreatorFunction = Arc::new(move |types: &[ConcreteDataType]| {
let input_type = &types[0];
with_match_primitive_type_id!(
input_type.logical_type_id(),
|$S| {
Ok(Box::new(ScipyStatsNormPdf::<<$S as LogicalPrimitiveType>::Wrapper>::default()))
},
{
let err_msg = format!(
"\"SCIPYSTATSNORMpdf\" aggregate function not support data type {:?}",
input_type.logical_type_id(),
);
CreateAccumulatorSnafu { err_msg }.fail()?
}
)
});
creator
}
fn output_type(&self) -> Result<ConcreteDataType> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 2, InvalidInputStateSnafu);
Ok(ConcreteDataType::float64_datatype())
}
fn state_types(&self) -> Result<Vec<ConcreteDataType>> {
let input_types = self.input_types()?;
ensure!(input_types.len() == 2, InvalidInputStateSnafu);
Ok(vec![
ConcreteDataType::list_datatype(input_types[0].clone()),
ConcreteDataType::float64_datatype(),
])
}
}
#[cfg(test)]
mod test {
use datatypes::vectors::{Float64Vector, Int32Vector};
use super::*;
#[test]
fn test_update_batch() {
// test update empty batch, expect not updating anything
let mut scipy_stats_norm_pdf = ScipyStatsNormPdf::<i32>::default();
scipy_stats_norm_pdf.update_batch(&[]).unwrap();
assert!(scipy_stats_norm_pdf.values.is_empty());
assert_eq!(Value::Null, scipy_stats_norm_pdf.evaluate().unwrap());
// test update no null-value batch
let mut scipy_stats_norm_pdf = ScipyStatsNormPdf::<i32>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(-1i32), Some(1), Some(2)])),
Arc::new(Float64Vector::from(vec![
Some(2.0_f64),
Some(2.0_f64),
Some(2.0_f64),
])),
];
scipy_stats_norm_pdf.update_batch(&v).unwrap();
assert_eq!(
Value::from(0.17843340219081558),
scipy_stats_norm_pdf.evaluate().unwrap()
);
// test update null-value batch
let mut scipy_stats_norm_pdf = ScipyStatsNormPdf::<i32>::default();
let v: Vec<VectorRef> = vec![
Arc::new(Int32Vector::from(vec![Some(-2i32), None, Some(3), Some(4)])),
Arc::new(Float64Vector::from(vec![
Some(2.0_f64),
None,
Some(2.0_f64),
Some(2.0_f64),
])),
];
scipy_stats_norm_pdf.update_batch(&v).unwrap();
assert_eq!(
Value::from(0.12343972049858312),
scipy_stats_norm_pdf.evaluate().unwrap()
);
}
}

View File

@@ -343,7 +343,6 @@ pub enum FlowType {
impl FlowType {
pub const RECORDING_RULE: &str = "recording_rule";
pub const STREAMING: &str = "streaming";
pub const FLOW_TYPE_KEY: &str = "flow_type";
}
impl Default for FlowType {
@@ -399,8 +398,7 @@ impl From<&CreateFlowData> for CreateRequest {
};
let flow_type = value.flow_type.unwrap_or_default().to_string();
req.flow_options
.insert(FlowType::FLOW_TYPE_KEY.to_string(), flow_type);
req.flow_options.insert("flow_type".to_string(), flow_type);
req
}
}
@@ -432,7 +430,7 @@ impl From<&CreateFlowData> for (FlowInfoValue, Vec<(FlowPartitionId, FlowRouteVa
.collect::<Vec<_>>();
let flow_type = value.flow_type.unwrap_or_default().to_string();
options.insert(FlowType::FLOW_TYPE_KEY.to_string(), flow_type);
options.insert("flow_type".to_string(), flow_type);
let flow_info = FlowInfoValue {
source_table_ids: value.source_table_ids.clone(),

View File

@@ -24,6 +24,7 @@ use datatypes::arrow::datatypes::DataType as ArrowDatatype;
use datatypes::error::Error as DataTypeError;
use datatypes::prelude::ConcreteDataType;
use snafu::{Location, Snafu};
use statrs::StatsError;
#[derive(Snafu)]
#[snafu(visibility(pub))]
@@ -37,6 +38,14 @@ pub enum Error {
location: Location,
},
#[snafu(display("Failed to generate function"))]
GenerateFunction {
#[snafu(source)]
error: StatsError,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Failed to cast scalar value into vector"))]
FromScalarValue {
#[snafu(implicit)]
@@ -88,6 +97,12 @@ pub enum Error {
location: Location,
},
#[snafu(display("unexpected: not constant column"))]
InvalidInputCol {
#[snafu(implicit)]
location: Location,
},
#[snafu(display("General DataFusion error"))]
GeneralDataFusion {
#[snafu(source)]
@@ -233,6 +248,8 @@ impl ErrorExt for Error {
Error::CreateAccumulator { .. }
| Error::DowncastVector { .. }
| Error::InvalidInputState { .. }
| Error::InvalidInputCol { .. }
| Error::GenerateFunction { .. }
| Error::BadAccumulatorImpl { .. }
| Error::ToScalarValue { .. }
| Error::GetScalarVector { .. }

View File

@@ -597,7 +597,7 @@ impl fmt::Display for FulltextAnalyzer {
}
/// Skipping options for a column.
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Visit, VisitMut)]
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize, Default, Visit, VisitMut)]
#[serde(rename_all = "kebab-case")]
pub struct SkippingIndexOptions {
/// The granularity of the skip index.
@@ -607,15 +607,6 @@ pub struct SkippingIndexOptions {
pub index_type: SkippingIndexType,
}
impl Default for SkippingIndexOptions {
fn default() -> Self {
Self {
granularity: DEFAULT_GRANULARITY,
index_type: SkippingIndexType::default(),
}
}
}
impl fmt::Display for SkippingIndexOptions {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "granularity={}", self.granularity)?;

View File

@@ -16,7 +16,6 @@ async-trait.workspace = true
bytes.workspace = true
cache.workspace = true
catalog.workspace = true
chrono.workspace = true
client.workspace = true
common-base.workspace = true
common-config.workspace = true

View File

@@ -49,13 +49,12 @@ pub(crate) use crate::adapter::node_context::FlownodeContext;
use crate::adapter::refill::RefillTask;
use crate::adapter::table_source::ManagedTableSource;
use crate::adapter::util::relation_desc_to_column_schemas_with_fallback;
pub(crate) use crate::adapter::worker::{create_worker, WorkerHandle};
pub(crate) use crate::adapter::worker::{create_worker, Worker, WorkerHandle};
use crate::compute::ErrCollector;
use crate::df_optimizer::sql_to_flow_plan;
use crate::error::{EvalSnafu, ExternalSnafu, InternalSnafu, InvalidQuerySnafu, UnexpectedSnafu};
use crate::expr::Batch;
use crate::metrics::{METRIC_FLOW_INSERT_ELAPSED, METRIC_FLOW_ROWS, METRIC_FLOW_RUN_INTERVAL_MS};
use crate::recording_rules::RecordingRuleEngine;
use crate::repr::{self, DiffRow, RelationDesc, Row, BATCH_SIZE};
mod flownode_impl;
@@ -64,7 +63,7 @@ pub(crate) mod refill;
mod stat;
#[cfg(test)]
mod tests;
pub(crate) mod util;
mod util;
mod worker;
pub(crate) mod node_context;
@@ -172,8 +171,6 @@ pub struct FlowWorkerManager {
flush_lock: RwLock<()>,
/// receive a oneshot sender to send state size report
state_report_handler: RwLock<Option<StateReportHandler>>,
/// engine for recording rule
rule_engine: RecordingRuleEngine,
}
/// Building FlownodeManager
@@ -188,7 +185,6 @@ impl FlowWorkerManager {
node_id: Option<u32>,
query_engine: Arc<dyn QueryEngine>,
table_meta: TableMetadataManagerRef,
rule_engine: RecordingRuleEngine,
) -> Self {
let srv_map = ManagedTableSource::new(
table_meta.table_info_manager().clone(),
@@ -211,7 +207,6 @@ impl FlowWorkerManager {
node_id,
flush_lock: RwLock::new(()),
state_report_handler: RwLock::new(None),
rule_engine,
}
}
@@ -220,6 +215,25 @@ impl FlowWorkerManager {
self
}
/// Create a flownode manager with one worker
pub fn new_with_workers<'s>(
node_id: Option<u32>,
query_engine: Arc<dyn QueryEngine>,
table_meta: TableMetadataManagerRef,
num_workers: usize,
) -> (Self, Vec<Worker<'s>>) {
let mut zelf = Self::new(node_id, query_engine, table_meta);
let workers: Vec<_> = (0..num_workers)
.map(|_| {
let (handle, worker) = create_worker();
zelf.add_worker_handle(handle);
worker
})
.collect();
(zelf, workers)
}
/// add a worker handler to manager, meaning this corresponding worker is under it's manage
pub fn add_worker_handle(&mut self, handle: WorkerHandle) {
self.worker_handles.push(handle);
@@ -737,11 +751,7 @@ pub struct CreateFlowArgs {
/// Create&Remove flow
impl FlowWorkerManager {
/// remove a flow by it's id
#[allow(unreachable_code)]
pub async fn remove_flow(&self, flow_id: FlowId) -> Result<(), Error> {
// TODO(discord9): reroute some back to streaming engine later
return self.rule_engine.remove_flow(flow_id).await;
for handle in self.worker_handles.iter() {
if handle.contains_flow(flow_id).await? {
handle.remove_flow(flow_id).await?;
@@ -757,10 +767,8 @@ impl FlowWorkerManager {
/// steps to create task:
/// 1. parse query into typed plan(and optional parse expire_after expr)
/// 2. render source/sink with output table id and used input table id
#[allow(clippy::too_many_arguments, unreachable_code)]
#[allow(clippy::too_many_arguments)]
pub async fn create_flow(&self, args: CreateFlowArgs) -> Result<Option<FlowId>, Error> {
// TODO(discord9): reroute some back to streaming engine later
return self.rule_engine.create_flow(args).await;
let CreateFlowArgs {
flow_id,
sink_table_name,

View File

@@ -153,13 +153,7 @@ impl Flownode for FlowWorkerManager {
}
}
#[allow(unreachable_code, unused)]
async fn handle_inserts(&self, request: InsertRequests) -> Result<FlowResponse> {
return self
.rule_engine
.handle_inserts(request)
.await
.map_err(to_meta_err(snafu::location!()));
// using try_read to ensure two things:
// 1. flush wouldn't happen until inserts before it is inserted
// 2. inserts happening concurrently with flush wouldn't be block by flush
@@ -212,15 +206,15 @@ impl Flownode for FlowWorkerManager {
.collect_vec();
let table_col_names = table_schema.relation_desc.names;
let table_col_names = table_col_names
.iter().enumerate()
.map(|(idx,name)| match name {
Some(name) => Ok(name.clone()),
None => InternalSnafu {
reason: format!("Expect column {idx} of table id={table_id} to have name in table schema, found None"),
}
.fail().map_err(BoxedError::new).context(ExternalSnafu),
})
.collect::<Result<Vec<_>>>()?;
.iter().enumerate()
.map(|(idx,name)| match name {
Some(name) => Ok(name.clone()),
None => InternalSnafu {
reason: format!("Expect column {idx} of table id={table_id} to have name in table schema, found None"),
}
.fail().map_err(BoxedError::new).context(ExternalSnafu),
})
.collect::<Result<Vec<_>>>()?;
let name_to_col = HashMap::<_, _>::from_iter(
insert_schema
.iter()

View File

@@ -12,8 +12,6 @@
// See the License for the specific language governing permissions and
// limitations under the License.
//! Some utility functions
use std::sync::Arc;
use api::helper::ColumnDataTypeWrapper;

View File

@@ -16,7 +16,6 @@
use std::any::Any;
use arrow_schema::ArrowError;
use common_error::ext::BoxedError;
use common_error::{define_into_tonic_status, from_err_code_msg_to_header};
use common_macro::stack_trace_debug;
@@ -54,13 +53,6 @@ pub enum Error {
location: Location,
},
#[snafu(display("Time error"))]
Time {
source: common_time::error::Error,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("External error"))]
External {
source: BoxedError,
@@ -164,15 +156,6 @@ pub enum Error {
location: Location,
},
#[snafu(display("Arrow error: {raw:?} in context: {context}"))]
Arrow {
#[snafu(source)]
raw: ArrowError,
context: String,
#[snafu(implicit)]
location: Location,
},
#[snafu(display("Datafusion error: {raw:?} in context: {context}"))]
Datafusion {
#[snafu(source)]
@@ -247,7 +230,6 @@ impl ErrorExt for Error {
match self {
Self::Eval { .. }
| Self::JoinTask { .. }
| Self::Arrow { .. }
| Self::Datafusion { .. }
| Self::InsertIntoFlow { .. } => StatusCode::Internal,
Self::FlowAlreadyExist { .. } => StatusCode::TableAlreadyExists,
@@ -256,9 +238,7 @@ impl ErrorExt for Error {
| Self::FlowNotFound { .. }
| Self::ListFlows { .. } => StatusCode::TableNotFound,
Self::Plan { .. } | Self::Datatypes { .. } => StatusCode::PlanQuery,
Self::InvalidQuery { .. } | Self::CreateFlow { .. } | Self::Time { .. } => {
StatusCode::EngineExecuteQuery
}
Self::InvalidQuery { .. } | Self::CreateFlow { .. } => StatusCode::EngineExecuteQuery,
Self::Unexpected { .. } => StatusCode::Unexpected,
Self::NotImplemented { .. } | Self::UnsupportedTemporalFilter { .. } => {
StatusCode::Unsupported

View File

@@ -238,7 +238,6 @@ mod test {
for (sql, current, expected) in &testcases {
let plan = sql_to_substrait(engine.clone(), sql).await;
let mut ctx = create_test_ctx();
let flow_plan = TypedPlan::from_substrait_plan(&mut ctx, &plan)
.await

View File

@@ -130,6 +130,13 @@ impl HeartbeatTask {
pub fn shutdown(&self) {
info!("Close heartbeat task for flownode");
if self
.running
.compare_exchange(true, false, Ordering::AcqRel, Ordering::Acquire)
.is_err()
{
warn!("Call close heartbeat task multiple times");
}
}
fn new_heartbeat_request(

View File

@@ -33,7 +33,6 @@ mod expr;
pub mod heartbeat;
mod metrics;
mod plan;
mod recording_rules;
mod repr;
mod server;
mod transform;
@@ -44,5 +43,4 @@ mod test_utils;
pub use adapter::{FlowConfig, FlowWorkerManager, FlowWorkerManagerRef, FlownodeOptions};
pub use error::{Error, Result};
pub use recording_rules::FrontendClient;
pub use server::{FlownodeBuilder, FlownodeInstance, FlownodeServer, FrontendInvoker};

View File

@@ -28,32 +28,6 @@ lazy_static! {
&["table_id"]
)
.unwrap();
pub static ref METRIC_FLOW_RULE_ENGINE_QUERY_TIME: HistogramVec = register_histogram_vec!(
"greptime_flow_rule_engine_query_time",
"flow rule engine query time",
&["flow_id"],
vec![
0.0,
1.,
3.,
5.,
10.,
20.,
30.,
60.,
2. * 60.,
5. * 60.,
10. * 60.
]
)
.unwrap();
pub static ref METRIC_FLOW_RULE_ENGINE_SLOW_QUERY: HistogramVec = register_histogram_vec!(
"greptime_flow_rule_engine_slow_query",
"flow rule engine slow query",
&["flow_id", "sql", "peer"],
vec![60., 2. * 60., 3. * 60., 5. * 60., 10. * 60.]
)
.unwrap();
pub static ref METRIC_FLOW_RUN_INTERVAL_MS: IntGauge =
register_int_gauge!("greptime_flow_run_interval_ms", "flow run interval in ms").unwrap();
pub static ref METRIC_FLOW_ROWS: IntCounterVec = register_int_counter_vec!(

View File

@@ -1,882 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Run flow as recording rule which is time-window-aware normal query triggered every tick set by user
mod engine;
mod frontend_client;
use std::collections::BTreeSet;
use std::sync::Arc;
use api::helper::pb_value_to_value_ref;
use catalog::CatalogManagerRef;
use common_error::ext::BoxedError;
use common_recordbatch::DfRecordBatch;
use common_telemetry::warn;
use common_time::timestamp::TimeUnit;
use common_time::Timestamp;
use datafusion::error::Result as DfResult;
use datafusion::logical_expr::Expr;
use datafusion::physical_planner::{DefaultPhysicalPlanner, PhysicalPlanner};
use datafusion::prelude::SessionContext;
use datafusion::sql::unparser::Unparser;
use datafusion_common::tree_node::{Transformed, TreeNode, TreeNodeRecursion, TreeNodeRewriter};
use datafusion_common::{DFSchema, TableReference};
use datafusion_expr::{ColumnarValue, LogicalPlan};
use datafusion_physical_expr::PhysicalExprRef;
use datatypes::prelude::{ConcreteDataType, DataType};
use datatypes::scalars::ScalarVector;
use datatypes::schema::TIME_INDEX_KEY;
use datatypes::value::Value;
use datatypes::vectors::{
TimestampMicrosecondVector, TimestampMillisecondVector, TimestampNanosecondVector,
TimestampSecondVector, Vector,
};
pub use engine::RecordingRuleEngine;
pub use frontend_client::FrontendClient;
use itertools::Itertools;
use query::parser::QueryLanguageParser;
use query::QueryEngineRef;
use session::context::QueryContextRef;
use snafu::{ensure, OptionExt, ResultExt};
use crate::adapter::util::from_proto_to_data_type;
use crate::df_optimizer::apply_df_optimizer;
use crate::error::{ArrowSnafu, DatafusionSnafu, DatatypesSnafu, ExternalSnafu, UnexpectedSnafu};
use crate::expr::error::DataTypeSnafu;
use crate::Error;
#[derive(Debug, Clone)]
pub struct TimeWindowExpr {
expr: PhysicalExprRef,
column_name: String,
}
impl TimeWindowExpr {
pub fn new(expr: PhysicalExprRef, column_name: String) -> Self {
Self { expr, column_name }
}
pub fn from_expr(expr: &Expr, column_name: &str, df_schema: &DFSchema) -> Result<Self, Error> {
let phy_planner = DefaultPhysicalPlanner::default();
let phy_expr: PhysicalExprRef = phy_planner
.create_physical_expr(expr, df_schema, &SessionContext::new().state())
.with_context(|_e| DatafusionSnafu {
context: format!(
"Failed to create physical expression from {expr:?} using {df_schema:?}"
),
})?;
Ok(Self {
expr: phy_expr,
column_name: column_name.to_string(),
})
}
/// Find timestamps from rows using time window expr
pub async fn handle_rows(
&self,
rows_list: Vec<api::v1::Rows>,
) -> Result<BTreeSet<Timestamp>, Error> {
let mut time_windows = BTreeSet::new();
for rows in rows_list {
// pick the time index column and use it to eval on `self.expr`
let ts_col_index = rows
.schema
.iter()
.map(|col| col.column_name.clone())
.position(|name| name == self.column_name);
let Some(ts_col_index) = ts_col_index else {
warn!("can't found time index column in schema: {:?}", rows.schema);
continue;
};
let col_schema = &rows.schema[ts_col_index];
let cdt = from_proto_to_data_type(col_schema)?;
let column_values = rows
.rows
.iter()
.map(|row| &row.values[ts_col_index])
.collect_vec();
let mut vector = cdt.create_mutable_vector(column_values.len());
for value in column_values {
let value = pb_value_to_value_ref(value, &None);
vector.try_push_value_ref(value).context(DataTypeSnafu {
msg: "Failed to convert rows to columns",
})?;
}
let vector = vector.to_vector();
let df_schema = create_df_schema_for_ts_column(&self.column_name, cdt)?;
let rb =
DfRecordBatch::try_new(df_schema.inner().clone(), vec![vector.to_arrow_array()])
.with_context(|_e| ArrowSnafu {
context: format!(
"Failed to create record batch from {df_schema:?} and {vector:?}"
),
})?;
let eval_res = self.expr.evaluate(&rb).with_context(|_| DatafusionSnafu {
context: format!(
"Failed to evaluate physical expression {:?} on {rb:?}",
self.expr
),
})?;
let res = columnar_to_ts_vector(&eval_res)?;
for ts in res.into_iter().flatten() {
time_windows.insert(ts);
}
}
Ok(time_windows)
}
}
fn create_df_schema_for_ts_column(name: &str, cdt: ConcreteDataType) -> Result<DFSchema, Error> {
let arrow_schema = Arc::new(arrow_schema::Schema::new(vec![arrow_schema::Field::new(
name,
cdt.as_arrow_type(),
false,
)]));
let df_schema = DFSchema::from_field_specific_qualified_schema(
vec![Some(TableReference::bare("TimeIndexOnlyTable"))],
&arrow_schema,
)
.with_context(|_e| DatafusionSnafu {
context: format!("Failed to create DFSchema from arrow schema {arrow_schema:?}"),
})?;
Ok(df_schema)
}
/// Convert `ColumnarValue` to `Vec<Option<Timestamp>>`
fn columnar_to_ts_vector(columnar: &ColumnarValue) -> Result<Vec<Option<Timestamp>>, Error> {
let val = match columnar {
datafusion_expr::ColumnarValue::Array(array) => {
let ty = array.data_type();
let ty = ConcreteDataType::from_arrow_type(ty);
let time_unit = if let ConcreteDataType::Timestamp(ty) = ty {
ty.unit()
} else {
return UnexpectedSnafu {
reason: format!("Non-timestamp type: {ty:?}"),
}
.fail();
};
match time_unit {
TimeUnit::Second => TimestampSecondVector::try_from_arrow_array(array.clone())
.with_context(|_| DatatypesSnafu {
extra: format!("Failed to create vector from arrow array {array:?}"),
})?
.iter_data()
.map(|d| d.map(|d| d.0))
.collect_vec(),
TimeUnit::Millisecond => {
TimestampMillisecondVector::try_from_arrow_array(array.clone())
.with_context(|_| DatatypesSnafu {
extra: format!("Failed to create vector from arrow array {array:?}"),
})?
.iter_data()
.map(|d| d.map(|d| d.0))
.collect_vec()
}
TimeUnit::Microsecond => {
TimestampMicrosecondVector::try_from_arrow_array(array.clone())
.with_context(|_| DatatypesSnafu {
extra: format!("Failed to create vector from arrow array {array:?}"),
})?
.iter_data()
.map(|d| d.map(|d| d.0))
.collect_vec()
}
TimeUnit::Nanosecond => {
TimestampNanosecondVector::try_from_arrow_array(array.clone())
.with_context(|_| DatatypesSnafu {
extra: format!("Failed to create vector from arrow array {array:?}"),
})?
.iter_data()
.map(|d| d.map(|d| d.0))
.collect_vec()
}
}
}
datafusion_expr::ColumnarValue::Scalar(scalar) => {
let value = Value::try_from(scalar.clone()).with_context(|_| DatatypesSnafu {
extra: format!("Failed to convert scalar {scalar:?} to value"),
})?;
let ts = value.as_timestamp().context(UnexpectedSnafu {
reason: format!("Expect Timestamp, found {:?}", value),
})?;
vec![Some(ts)]
}
};
Ok(val)
}
/// Convert sql to datafusion logical plan
pub async fn sql_to_df_plan(
query_ctx: QueryContextRef,
engine: QueryEngineRef,
sql: &str,
optimize: bool,
) -> Result<LogicalPlan, Error> {
let stmt = QueryLanguageParser::parse_sql(sql, &query_ctx)
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
let plan = engine
.planner()
.plan(&stmt, query_ctx)
.await
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
let plan = if optimize {
apply_df_optimizer(plan).await?
} else {
plan
};
Ok(plan)
}
/// Return (the column name of time index column, the time window expr, the expected time unit of time index column, the expr's schema for evaluating the time window)
async fn find_time_window_expr(
plan: &LogicalPlan,
catalog_man: CatalogManagerRef,
query_ctx: QueryContextRef,
) -> Result<(String, Option<datafusion_expr::Expr>, TimeUnit, DFSchema), Error> {
// TODO(discord9): find the expr that do time window
let mut table_name = None;
// first find the table source in the logical plan
plan.apply(|plan| {
let LogicalPlan::TableScan(table_scan) = plan else {
return Ok(TreeNodeRecursion::Continue);
};
table_name = Some(table_scan.table_name.clone());
Ok(TreeNodeRecursion::Stop)
})
.with_context(|_| DatafusionSnafu {
context: format!("Can't find table source in plan {plan:?}"),
})?;
let Some(table_name) = table_name else {
UnexpectedSnafu {
reason: format!("Can't find table source in plan {plan:?}"),
}
.fail()?
};
let current_schema = query_ctx.current_schema();
let catalog_name = table_name.catalog().unwrap_or(query_ctx.current_catalog());
let schema_name = table_name.schema().unwrap_or(&current_schema);
let table_name = table_name.table();
let Some(table_ref) = catalog_man
.table(catalog_name, schema_name, table_name, Some(&query_ctx))
.await
.map_err(BoxedError::new)
.context(ExternalSnafu)?
else {
UnexpectedSnafu {
reason: format!(
"Can't find table {table_name:?} in catalog {catalog_name:?}/{schema_name:?}"
),
}
.fail()?
};
let schema = &table_ref.table_info().meta.schema;
let ts_index = schema.timestamp_column().context(UnexpectedSnafu {
reason: format!("Can't find timestamp column in table {table_name:?}"),
})?;
let ts_col_name = ts_index.name.clone();
let expected_time_unit = ts_index.data_type.as_timestamp().with_context(|| UnexpectedSnafu {
reason: format!(
"Expected timestamp column {ts_col_name:?} in table {table_name:?} to be timestamp, but got {ts_index:?}"
),
})?.unit();
let arrow_schema = Arc::new(arrow_schema::Schema::new(vec![arrow_schema::Field::new(
ts_col_name.clone(),
ts_index.data_type.as_arrow_type(),
false,
)]));
let df_schema = DFSchema::from_field_specific_qualified_schema(
vec![Some(TableReference::bare(table_name))],
&arrow_schema,
)
.with_context(|_e| DatafusionSnafu {
context: format!("Failed to create DFSchema from arrow schema {arrow_schema:?}"),
})?;
// find the time window expr which refers to the time index column
let mut aggr_expr = None;
let mut time_window_expr: Option<Expr> = None;
let find_inner_aggr_expr = |plan: &LogicalPlan| {
if let LogicalPlan::Aggregate(aggregate) = plan {
aggr_expr = Some(aggregate.clone());
};
Ok(TreeNodeRecursion::Continue)
};
plan.apply(find_inner_aggr_expr)
.with_context(|_| DatafusionSnafu {
context: format!("Can't find aggr expr in plan {plan:?}"),
})?;
if let Some(aggregate) = aggr_expr {
for group_expr in &aggregate.group_expr {
let refs = group_expr.column_refs();
if refs.len() != 1 {
continue;
}
let ref_col = refs.iter().next().unwrap();
let index = aggregate.input.schema().maybe_index_of_column(ref_col);
let Some(index) = index else {
continue;
};
let field = aggregate.input.schema().field(index);
let is_time_index = field.metadata().get(TIME_INDEX_KEY) == Some(&"true".to_string());
if is_time_index {
let rewrite_column = group_expr.clone();
let rewritten = rewrite_column
.rewrite(&mut RewriteColumn {
table_name: table_name.to_string(),
})
.with_context(|_| DatafusionSnafu {
context: format!("Rewrite expr failed, expr={:?}", group_expr),
})?
.data;
struct RewriteColumn {
table_name: String,
}
impl TreeNodeRewriter for RewriteColumn {
type Node = Expr;
fn f_down(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
let Expr::Column(mut column) = node else {
return Ok(Transformed::no(node));
};
column.relation = Some(TableReference::bare(self.table_name.clone()));
Ok(Transformed::yes(Expr::Column(column)))
}
}
time_window_expr = Some(rewritten);
break;
}
}
Ok((ts_col_name, time_window_expr, expected_time_unit, df_schema))
} else {
// can't found time window expr, return None
Ok((ts_col_name, None, expected_time_unit, df_schema))
}
}
/// Find nearest lower bound for time `current` in given `plan` for the time window expr.
/// i.e. for time window expr being `date_bin(INTERVAL '5 minutes', ts) as time_window` and `current="2021-07-01 00:01:01.000"`,
/// return `Some("2021-07-01 00:00:00.000")`
/// if `plan` doesn't contain a `TIME INDEX` column, return `None`
///
/// Time window expr is a expr that:
/// 1. ref only to a time index column
/// 2. is monotonic increasing
/// 3. show up in GROUP BY clause
///
/// note this plan should only contain one TableScan
pub async fn find_plan_time_window_bound(
plan: &LogicalPlan,
current: Timestamp,
query_ctx: QueryContextRef,
engine: QueryEngineRef,
) -> Result<(String, Option<Timestamp>, Option<Timestamp>), Error> {
// TODO(discord9): find the expr that do time window
let catalog_man = engine.engine_state().catalog_manager();
let (ts_col_name, time_window_expr, expected_time_unit, df_schema) =
find_time_window_expr(plan, catalog_man.clone(), query_ctx).await?;
// cast current to ts_index's type
let new_current = current
.convert_to(expected_time_unit)
.with_context(|| UnexpectedSnafu {
reason: format!("Failed to cast current timestamp {current:?} to {expected_time_unit}"),
})?;
// if no time_window_expr is found, return None
if let Some(time_window_expr) = time_window_expr {
let lower_bound =
find_expr_time_window_lower_bound(&time_window_expr, &df_schema, new_current)?;
let upper_bound =
find_expr_time_window_upper_bound(&time_window_expr, &df_schema, new_current)?;
Ok((ts_col_name, lower_bound, upper_bound))
} else {
Ok((ts_col_name, None, None))
}
}
/// Find the lower bound of time window in given `expr` and `current` timestamp.
///
/// i.e. for `current="2021-07-01 00:01:01.000"` and `expr=date_bin(INTERVAL '5 minutes', ts) as time_window` and `ts_col=ts`,
/// return `Some("2021-07-01 00:00:00.000")` since it's the lower bound
/// of current time window given the current timestamp
///
/// if return None, meaning this time window have no lower bound
fn find_expr_time_window_lower_bound(
expr: &Expr,
df_schema: &DFSchema,
current: Timestamp,
) -> Result<Option<Timestamp>, Error> {
let phy_planner = DefaultPhysicalPlanner::default();
let phy_expr: PhysicalExprRef = phy_planner
.create_physical_expr(expr, df_schema, &SessionContext::new().state())
.with_context(|_e| DatafusionSnafu {
context: format!(
"Failed to create physical expression from {expr:?} using {df_schema:?}"
),
})?;
let cur_time_window = eval_ts_to_ts(&phy_expr, df_schema, current)?;
let input_time_unit = cur_time_window.unit();
Ok(cur_time_window.convert_to(input_time_unit))
}
/// Find the upper bound for time window expression
fn find_expr_time_window_upper_bound(
expr: &Expr,
df_schema: &DFSchema,
current: Timestamp,
) -> Result<Option<Timestamp>, Error> {
use std::cmp::Ordering;
let phy_planner = DefaultPhysicalPlanner::default();
let phy_expr: PhysicalExprRef = phy_planner
.create_physical_expr(expr, df_schema, &SessionContext::new().state())
.with_context(|_e| DatafusionSnafu {
context: format!(
"Failed to create physical expression from {expr:?} using {df_schema:?}"
),
})?;
let cur_time_window = eval_ts_to_ts(&phy_expr, df_schema, current)?;
// search to find the lower bound
let mut offset: i64 = 1;
let mut lower_bound = Some(current);
let upper_bound;
// first expontial probe to found a range for binary search
loop {
let Some(next_val) = current.value().checked_add(offset) else {
// no upper bound if overflow
return Ok(None);
};
let next_time_probe = common_time::Timestamp::new(next_val, current.unit());
let next_time_window = eval_ts_to_ts(&phy_expr, df_schema, next_time_probe)?;
match next_time_window.cmp(&cur_time_window) {
Ordering::Less => {UnexpectedSnafu {
reason: format!(
"Unsupported time window expression, expect monotonic increasing for time window expression {expr:?}"
),
}
.fail()?
}
Ordering::Equal => {
lower_bound = Some(next_time_probe);
}
Ordering::Greater => {
upper_bound = Some(next_time_probe);
break
}
}
let Some(new_offset) = offset.checked_mul(2) else {
// no upper bound if overflow
return Ok(None);
};
offset = new_offset;
}
// binary search for the exact upper bound
ensure!(lower_bound.map(|v|v.unit())==upper_bound.map(|v|v.unit()), UnexpectedSnafu{
reason: format!(" unit mismatch for time window expression {expr:?}, found {lower_bound:?} and {upper_bound:?}"),
});
let output_unit = upper_bound
.context(UnexpectedSnafu {
reason: "should have lower bound",
})?
.unit();
let mut low = lower_bound
.context(UnexpectedSnafu {
reason: "should have lower bound",
})?
.value();
let mut high = upper_bound
.context(UnexpectedSnafu {
reason: "should have upper bound",
})?
.value();
while low < high {
let mid = (low + high) / 2;
let mid_probe = common_time::Timestamp::new(mid, output_unit);
let mid_time_window = eval_ts_to_ts(&phy_expr, df_schema, mid_probe)?;
match mid_time_window.cmp(&cur_time_window) {
Ordering::Less => UnexpectedSnafu {
reason: format!("Binary search failed for time window expression {expr:?}"),
}
.fail()?,
Ordering::Equal => low = mid + 1,
Ordering::Greater => high = mid,
}
}
let final_upper_bound_for_time_window = common_time::Timestamp::new(high, output_unit);
Ok(Some(final_upper_bound_for_time_window))
}
fn eval_ts_to_ts(
phy: &PhysicalExprRef,
df_schema: &DFSchema,
input_value: Timestamp,
) -> Result<Timestamp, Error> {
let ts_vector = match input_value.unit() {
TimeUnit::Second => {
TimestampSecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
}
TimeUnit::Millisecond => {
TimestampMillisecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
}
TimeUnit::Microsecond => {
TimestampMicrosecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
}
TimeUnit::Nanosecond => {
TimestampNanosecondVector::from_vec(vec![input_value.value()]).to_arrow_array()
}
};
let rb = DfRecordBatch::try_new(df_schema.inner().clone(), vec![ts_vector.clone()])
.with_context(|_| ArrowSnafu {
context: format!("Failed to create record batch from {df_schema:?} and {ts_vector:?}"),
})?;
let eval_res = phy.evaluate(&rb).with_context(|_| DatafusionSnafu {
context: format!("Failed to evaluate physical expression {phy:?} on {rb:?}"),
})?;
if let Some(Some(ts)) = columnar_to_ts_vector(&eval_res)?.first() {
Ok(*ts)
} else {
UnexpectedSnafu {
reason: format!(
"Expected timestamp in expression {phy:?} but got {:?}",
eval_res
),
}
.fail()?
}
}
// TODO(discord9): a method to found out the precise time window
/// Find out the `Filter` Node corresponding to outermost `WHERE` and add a new filter expr to it
#[derive(Debug)]
pub struct AddFilterRewriter {
extra_filter: Expr,
is_rewritten: bool,
}
impl AddFilterRewriter {
fn new(filter: Expr) -> Self {
Self {
extra_filter: filter,
is_rewritten: false,
}
}
}
impl TreeNodeRewriter for AddFilterRewriter {
type Node = LogicalPlan;
fn f_up(&mut self, node: Self::Node) -> DfResult<Transformed<Self::Node>> {
if self.is_rewritten {
return Ok(Transformed::no(node));
}
match node {
LogicalPlan::Filter(mut filter) if !filter.having => {
filter.predicate = filter.predicate.and(self.extra_filter.clone());
self.is_rewritten = true;
Ok(Transformed::yes(LogicalPlan::Filter(filter)))
}
LogicalPlan::TableScan(_) => {
// add a new filter
let filter =
datafusion_expr::Filter::try_new(self.extra_filter.clone(), Arc::new(node))?;
self.is_rewritten = true;
Ok(Transformed::yes(LogicalPlan::Filter(filter)))
}
_ => Ok(Transformed::no(node)),
}
}
}
fn df_plan_to_sql(plan: &LogicalPlan) -> Result<String, Error> {
let unparser = Unparser::default();
let sql = unparser
.plan_to_sql(plan)
.with_context(|_e| DatafusionSnafu {
context: format!("Failed to unparse logical plan {plan:?}"),
})?;
Ok(sql.to_string())
}
#[cfg(test)]
mod test {
use datafusion_common::tree_node::TreeNode;
use pretty_assertions::assert_eq;
use session::context::QueryContext;
use super::{sql_to_df_plan, *};
use crate::recording_rules::{df_plan_to_sql, AddFilterRewriter};
use crate::test_utils::create_test_query_engine;
#[tokio::test]
async fn test_add_filter() {
let testcases = vec![
(
"SELECT number FROM numbers_with_ts GROUP BY number","SELECT numbers_with_ts.number FROM numbers_with_ts WHERE (number > 4) GROUP BY numbers_with_ts.number"
),
(
"SELECT number FROM numbers_with_ts WHERE number < 2 OR number >10",
"SELECT numbers_with_ts.number FROM numbers_with_ts WHERE ((numbers_with_ts.number < 2) OR (numbers_with_ts.number > 10)) AND (number > 4)"
),
(
"SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window",
"SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE (number > 4) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
)
];
use datafusion_expr::{col, lit};
let query_engine = create_test_query_engine();
let ctx = QueryContext::arc();
for (before, after) in testcases {
let sql = before;
let plan = sql_to_df_plan(ctx.clone(), query_engine.clone(), sql, false)
.await
.unwrap();
let mut add_filter = AddFilterRewriter::new(col("number").gt(lit(4u32)));
let plan = plan.rewrite(&mut add_filter).unwrap().data;
let new_sql = df_plan_to_sql(&plan).unwrap();
assert_eq!(after, new_sql);
}
}
#[tokio::test]
async fn test_plan_time_window_lower_bound() {
use datafusion_expr::{col, lit};
let query_engine = create_test_query_engine();
let ctx = QueryContext::arc();
let testcases = [
// same alias is not same column
(
"SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS ts FROM numbers_with_ts GROUP BY ts;",
Timestamp::new(1740394109, TimeUnit::Second),
(
"ts".to_string(),
Some(Timestamp::new(1740394109000, TimeUnit::Millisecond)),
Some(Timestamp::new(1740394109001, TimeUnit::Millisecond)),
),
"SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS ts FROM numbers_with_ts WHERE ((ts >= CAST('2025-02-24 10:48:29' AS TIMESTAMP)) AND (ts <= CAST('2025-02-24 10:48:29.001' AS TIMESTAMP))) GROUP BY numbers_with_ts.ts"
),
// complex time window index
(
"SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS time_window FROM numbers_with_ts GROUP BY time_window;",
Timestamp::new(1740394109, TimeUnit::Second),
(
"ts".to_string(),
Some(Timestamp::new(1740394080, TimeUnit::Second)),
Some(Timestamp::new(1740394140, TimeUnit::Second)),
),
"SELECT arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)') AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('2025-02-24 10:48:00' AS TIMESTAMP)) AND (ts <= CAST('2025-02-24 10:49:00' AS TIMESTAMP))) GROUP BY arrow_cast(date_bin(INTERVAL '1 MINS', numbers_with_ts.ts), 'Timestamp(Second, None)')"
),
// no time index
(
"SELECT date_bin('5 minutes', ts) FROM numbers_with_ts;",
Timestamp::new(23, TimeUnit::Millisecond),
("ts".to_string(), None, None),
"SELECT date_bin('5 minutes', ts) FROM numbers_with_ts;"
),
// time index
(
"SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
Timestamp::new(23, TimeUnit::Nanosecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
),
// on spot
(
"SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
Timestamp::new(0, TimeUnit::Nanosecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
),
// different time unit
(
"SELECT date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
Timestamp::new(23_000_000, TimeUnit::Nanosecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
),
// time index with other fields
(
"SELECT sum(number) as sum_up, date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window;",
Timestamp::new(23, TimeUnit::Millisecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT sum(numbers_with_ts.number) AS sum_up, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts)"
),
// time index with other pks
(
"SELECT number, date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window, number;",
Timestamp::new(23, TimeUnit::Millisecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts), numbers_with_ts.number"
),
// subquery
(
"SELECT number, time_window FROM (SELECT number, date_bin('5 minutes', ts) as time_window FROM numbers_with_ts GROUP BY time_window, number);",
Timestamp::new(23, TimeUnit::Millisecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT numbers_with_ts.number, time_window FROM (SELECT numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts), numbers_with_ts.number)"
),
// cte
(
"with cte as (select number, date_bin('5 minutes', ts) as time_window from numbers_with_ts GROUP BY time_window, number) select number, time_window from cte;",
Timestamp::new(23, TimeUnit::Millisecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT cte.number, cte.time_window FROM (SELECT numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP))) GROUP BY date_bin('5 minutes', numbers_with_ts.ts), numbers_with_ts.number) AS cte"
),
// complex subquery without alias
(
"SELECT sum(number), number, date_bin('5 minutes', ts) as time_window, bucket_name FROM (SELECT number, ts, case when number < 5 THEN 'bucket_0_5' when number >= 5 THEN 'bucket_5_inf' END as bucket_name FROM numbers_with_ts) GROUP BY number, time_window, bucket_name;",
Timestamp::new(23, TimeUnit::Millisecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT sum(numbers_with_ts.number), numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts) AS time_window, bucket_name FROM (SELECT numbers_with_ts.number, numbers_with_ts.ts, CASE WHEN (numbers_with_ts.number < 5) THEN 'bucket_0_5' WHEN (numbers_with_ts.number >= 5) THEN 'bucket_5_inf' END AS bucket_name FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP)))) GROUP BY numbers_with_ts.number, date_bin('5 minutes', numbers_with_ts.ts), bucket_name"
),
// complex subquery alias
(
"SELECT sum(number), number, date_bin('5 minutes', ts) as time_window, bucket_name FROM (SELECT number, ts, case when number < 5 THEN 'bucket_0_5' when number >= 5 THEN 'bucket_5_inf' END as bucket_name FROM numbers_with_ts) as cte GROUP BY number, time_window, bucket_name;",
Timestamp::new(23, TimeUnit::Millisecond),
(
"ts".to_string(),
Some(Timestamp::new(0, TimeUnit::Millisecond)),
Some(Timestamp::new(300000, TimeUnit::Millisecond)),
),
"SELECT sum(cte.number), cte.number, date_bin('5 minutes', cte.ts) AS time_window, cte.bucket_name FROM (SELECT numbers_with_ts.number, numbers_with_ts.ts, CASE WHEN (numbers_with_ts.number < 5) THEN 'bucket_0_5' WHEN (numbers_with_ts.number >= 5) THEN 'bucket_5_inf' END AS bucket_name FROM numbers_with_ts WHERE ((ts >= CAST('1970-01-01 00:00:00' AS TIMESTAMP)) AND (ts <= CAST('1970-01-01 00:05:00' AS TIMESTAMP)))) AS cte GROUP BY cte.number, date_bin('5 minutes', cte.ts), cte.bucket_name"
),
];
for (sql, current, expected, expected_unparsed) in testcases {
let plan = sql_to_df_plan(ctx.clone(), query_engine.clone(), sql, true)
.await
.unwrap();
let real =
find_plan_time_window_bound(&plan, current, ctx.clone(), query_engine.clone())
.await
.unwrap();
assert_eq!(expected, real);
let plan = sql_to_df_plan(ctx.clone(), query_engine.clone(), sql, false)
.await
.unwrap();
let (col_name, lower, upper) = real;
let new_sql = if lower.is_some() {
let to_df_literal = |value| {
let value = Value::from(value);
value.try_to_scalar_value(&value.data_type()).unwrap()
};
let lower = to_df_literal(lower.unwrap());
let upper = to_df_literal(upper.unwrap());
let expr = col(&col_name)
.gt_eq(lit(lower))
.and(col(&col_name).lt_eq(lit(upper)));
let mut add_filter = AddFilterRewriter::new(expr);
let plan = plan.rewrite(&mut add_filter).unwrap().data;
df_plan_to_sql(&plan).unwrap()
} else {
sql.to_string()
};
assert_eq!(expected_unparsed, new_sql);
}
}
}

View File

@@ -1,776 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::{BTreeMap, HashMap, HashSet};
use std::sync::Arc;
use std::time::{Duration, SystemTime, UNIX_EPOCH};
use api::v1::flow::FlowResponse;
use common_error::ext::BoxedError;
use common_meta::ddl::create_flow::FlowType;
use common_meta::key::flow::FlowMetadataManagerRef;
use common_meta::key::table_info::TableInfoManager;
use common_meta::key::TableMetadataManagerRef;
use common_telemetry::tracing::warn;
use common_telemetry::{debug, info};
use common_time::Timestamp;
use datafusion::sql::unparser::expr_to_sql;
use datafusion_common::tree_node::TreeNode;
use datatypes::value::Value;
use query::QueryEngineRef;
use session::context::QueryContextRef;
use snafu::{ensure, OptionExt, ResultExt};
use store_api::storage::RegionId;
use table::metadata::TableId;
use tokio::sync::oneshot::error::TryRecvError;
use tokio::sync::{oneshot, RwLock};
use tokio::time::Instant;
use super::frontend_client::FrontendClient;
use super::{df_plan_to_sql, AddFilterRewriter, TimeWindowExpr};
use crate::adapter::{CreateFlowArgs, FlowId, TableName};
use crate::error::{
DatafusionSnafu, DatatypesSnafu, ExternalSnafu, FlowAlreadyExistSnafu, InternalSnafu,
TimeSnafu, UnexpectedSnafu,
};
use crate::metrics::{METRIC_FLOW_RULE_ENGINE_QUERY_TIME, METRIC_FLOW_RULE_ENGINE_SLOW_QUERY};
use crate::recording_rules::{find_plan_time_window_bound, find_time_window_expr, sql_to_df_plan};
use crate::Error;
/// TODO(discord9): make those constants configurable
/// The default rule engine query timeout is 10 minutes
pub const DEFAULT_RULE_ENGINE_QUERY_TIMEOUT: Duration = Duration::from_secs(10 * 60);
/// will output a warn log for any query that runs for more that 1 minutes, and also every 1 minutes when that query is still running
pub const SLOW_QUERY_THRESHOLD: Duration = Duration::from_secs(60);
/// TODO(discord9): determine how to configure refresh rate
pub struct RecordingRuleEngine {
tasks: RwLock<BTreeMap<FlowId, RecordingRuleTask>>,
shutdown_txs: RwLock<BTreeMap<FlowId, oneshot::Sender<()>>>,
frontend_client: Arc<FrontendClient>,
flow_metadata_manager: FlowMetadataManagerRef,
table_meta: TableMetadataManagerRef,
engine: QueryEngineRef,
}
impl RecordingRuleEngine {
pub fn new(
frontend_client: Arc<FrontendClient>,
engine: QueryEngineRef,
flow_metadata_manager: FlowMetadataManagerRef,
table_meta: TableMetadataManagerRef,
) -> Self {
Self {
tasks: Default::default(),
shutdown_txs: Default::default(),
frontend_client,
flow_metadata_manager,
table_meta,
engine,
}
}
pub async fn handle_inserts(
&self,
request: api::v1::region::InsertRequests,
) -> Result<FlowResponse, Error> {
let table_info_mgr = self.table_meta.table_info_manager();
let mut group_by_table_name: HashMap<TableName, Vec<api::v1::Rows>> = HashMap::new();
for r in request.requests {
let tid = RegionId::from(r.region_id).table_id();
let name = get_table_name(table_info_mgr, &tid).await?;
let entry = group_by_table_name.entry(name).or_default();
if let Some(rows) = r.rows {
entry.push(rows);
}
}
for (_flow_id, task) in self.tasks.read().await.iter() {
let src_table_names = &task.source_table_names;
for src_table_name in src_table_names {
if let Some(entry) = group_by_table_name.get(src_table_name) {
let Some(expr) = &task.time_window_expr else {
continue;
};
let involved_time_windows = expr.handle_rows(entry.clone()).await?;
let mut state = task.state.write().await;
state
.dirty_time_windows
.add_lower_bounds(involved_time_windows.into_iter());
}
}
}
Ok(Default::default())
}
}
async fn get_table_name(zelf: &TableInfoManager, table_id: &TableId) -> Result<TableName, Error> {
zelf.get(*table_id)
.await
.map_err(BoxedError::new)
.context(ExternalSnafu)?
.with_context(|| UnexpectedSnafu {
reason: format!("Table id = {:?}, couldn't found table name", table_id),
})
.map(|name| name.table_name())
.map(|name| [name.catalog_name, name.schema_name, name.table_name])
}
const MIN_REFRESH_DURATION: Duration = Duration::new(5, 0);
impl RecordingRuleEngine {
pub async fn create_flow(&self, args: CreateFlowArgs) -> Result<Option<FlowId>, Error> {
let CreateFlowArgs {
flow_id,
sink_table_name,
source_table_ids,
create_if_not_exists,
or_replace,
expire_after,
comment: _,
sql,
flow_options,
query_ctx,
} = args;
// or replace logic
{
let is_exist = self.tasks.read().await.contains_key(&flow_id);
match (create_if_not_exists, or_replace, is_exist) {
// if replace, ignore that old flow exists
(_, true, true) => {
info!("Replacing flow with id={}", flow_id);
}
(false, false, true) => FlowAlreadyExistSnafu { id: flow_id }.fail()?,
// already exists, and not replace, return None
(true, false, true) => {
info!("Flow with id={} already exists, do nothing", flow_id);
return Ok(None);
}
// continue as normal
(_, _, false) => (),
}
}
let flow_type = flow_options.get(FlowType::FLOW_TYPE_KEY);
ensure!(
flow_type == Some(&FlowType::RecordingRule.to_string()) || flow_type.is_none(),
UnexpectedSnafu {
reason: format!("Flow type is not RecordingRule nor None, got {flow_type:?}")
}
);
let Some(query_ctx) = query_ctx else {
UnexpectedSnafu {
reason: "Query context is None".to_string(),
}
.fail()?
};
let query_ctx = Arc::new(query_ctx);
let mut source_table_names = Vec::new();
for src_id in source_table_ids {
let table_name = self
.table_meta
.table_info_manager()
.get(src_id)
.await
.map_err(BoxedError::new)
.context(ExternalSnafu)?
.with_context(|| UnexpectedSnafu {
reason: format!("Table id = {:?}, couldn't found table name", src_id),
})
.map(|name| name.table_name())
.map(|name| [name.catalog_name, name.schema_name, name.table_name])?;
source_table_names.push(table_name);
}
let (tx, rx) = oneshot::channel();
let plan = sql_to_df_plan(query_ctx.clone(), self.engine.clone(), &sql, true).await?;
let (column_name, time_window_expr, _, df_schema) = find_time_window_expr(
&plan,
self.engine.engine_state().catalog_manager().clone(),
query_ctx.clone(),
)
.await?;
let phy_expr = time_window_expr
.map(|expr| TimeWindowExpr::from_expr(&expr, &column_name, &df_schema))
.transpose()?;
let task = RecordingRuleTask::new(
flow_id,
&sql,
phy_expr,
expire_after,
sink_table_name,
source_table_names,
query_ctx,
rx,
);
let task_inner = task.clone();
let engine = self.engine.clone();
let frontend = self.frontend_client.clone();
// TODO(discord9): also save handle & use time wheel or what for better
let _handle = common_runtime::spawn_global(async move {
match task_inner.start_executing(engine, frontend).await {
Ok(()) => info!("Flow {} shutdown", task_inner.flow_id),
Err(err) => common_telemetry::error!(
"Flow {} encounter unrecoverable error: {err:?}",
task_inner.flow_id
),
}
});
// TODO(discord9): deal with replace logic
let replaced_old_task_opt = self.tasks.write().await.insert(flow_id, task);
drop(replaced_old_task_opt);
self.shutdown_txs.write().await.insert(flow_id, tx);
Ok(Some(flow_id))
}
pub async fn remove_flow(&self, flow_id: FlowId) -> Result<(), Error> {
if self.tasks.write().await.remove(&flow_id).is_none() {
warn!("Flow {flow_id} not found in tasks")
}
let Some(tx) = self.shutdown_txs.write().await.remove(&flow_id) else {
UnexpectedSnafu {
reason: format!("Can't found shutdown tx for flow {flow_id}"),
}
.fail()?
};
if tx.send(()).is_err() {
warn!("Fail to shutdown flow {flow_id} due to receiver already dropped, maybe flow {flow_id} is already dropped?")
}
Ok(())
}
}
#[derive(Debug, Clone)]
pub struct RecordingRuleTask {
flow_id: FlowId,
query: String,
time_window_expr: Option<TimeWindowExpr>,
/// in seconds
expire_after: Option<i64>,
sink_table_name: [String; 3],
source_table_names: HashSet<[String; 3]>,
state: Arc<RwLock<RecordingRuleState>>,
}
impl RecordingRuleTask {
#[allow(clippy::too_many_arguments)]
pub fn new(
flow_id: FlowId,
query: &str,
time_window_expr: Option<TimeWindowExpr>,
expire_after: Option<i64>,
sink_table_name: [String; 3],
source_table_names: Vec<[String; 3]>,
query_ctx: QueryContextRef,
shutdown_rx: oneshot::Receiver<()>,
) -> Self {
Self {
flow_id,
query: query.to_string(),
time_window_expr,
expire_after,
sink_table_name,
source_table_names: source_table_names.into_iter().collect(),
state: Arc::new(RwLock::new(RecordingRuleState::new(query_ctx, shutdown_rx))),
}
}
}
impl RecordingRuleTask {
/// This should be called in a new tokio task
pub async fn start_executing(
&self,
engine: QueryEngineRef,
frontend_client: Arc<FrontendClient>,
) -> Result<(), Error> {
// only first query don't need upper bound
let mut is_first = true;
loop {
// FIXME(discord9): test if need upper bound also works
let new_query = self.gen_query_with_time_window(engine.clone()).await?;
let insert_into = if let Some(new_query) = new_query {
format!(
"INSERT INTO {}.{}.{} {}",
self.sink_table_name[0],
self.sink_table_name[1],
self.sink_table_name[2],
new_query
)
} else {
tokio::time::sleep(MIN_REFRESH_DURATION).await;
continue;
};
if is_first {
is_first = false;
}
let instant = Instant::now();
let flow_id = self.flow_id;
let db_client = frontend_client.get_database_client().await?;
let peer_addr = db_client.peer.addr;
debug!(
"Executing flow {flow_id}(expire_after={:?} secs) on {:?} with query {}",
self.expire_after, peer_addr, &insert_into
);
let timer = METRIC_FLOW_RULE_ENGINE_QUERY_TIME
.with_label_values(&[flow_id.to_string().as_str()])
.start_timer();
let res = db_client.database.sql(&insert_into).await;
drop(timer);
let elapsed = instant.elapsed();
if let Ok(res1) = &res {
debug!(
"Flow {flow_id} executed, result: {res1:?}, elapsed: {:?}",
elapsed
);
} else if let Err(res) = &res {
warn!(
"Failed to execute Flow {flow_id} on frontend {}, result: {res:?}, elapsed: {:?} with query: {}",
peer_addr, elapsed, &insert_into
);
}
// record slow query
if elapsed >= SLOW_QUERY_THRESHOLD {
warn!(
"Flow {flow_id} on frontend {} executed for {:?} before complete, query: {}",
peer_addr, elapsed, &insert_into
);
METRIC_FLOW_RULE_ENGINE_SLOW_QUERY
.with_label_values(&[flow_id.to_string().as_str(), &insert_into, &peer_addr])
.observe(elapsed.as_secs_f64());
}
self.state
.write()
.await
.after_query_exec(elapsed, res.is_ok());
let sleep_until = {
let mut state = self.state.write().await;
match state.shutdown_rx.try_recv() {
Ok(()) => break Ok(()),
Err(TryRecvError::Closed) => {
warn!("Unexpected shutdown flow {flow_id}, shutdown anyway");
break Ok(());
}
Err(TryRecvError::Empty) => (),
}
state.get_next_start_query_time(None)
};
tokio::time::sleep_until(sleep_until).await;
}
}
/// will merge and use the first ten time window in query
async fn gen_query_with_time_window(
&self,
engine: QueryEngineRef,
) -> Result<Option<String>, Error> {
let query_ctx = self.state.read().await.query_ctx.clone();
let start = SystemTime::now();
let since_the_epoch = start
.duration_since(UNIX_EPOCH)
.expect("Time went backwards");
let low_bound = self
.expire_after
.map(|e| since_the_epoch.as_secs() - e as u64);
let Some(low_bound) = low_bound else {
return Ok(Some(self.query.clone()));
};
let low_bound = Timestamp::new_second(low_bound as i64);
let plan = sql_to_df_plan(query_ctx.clone(), engine.clone(), &self.query, true).await?;
// TODO(discord9): find more time window!
let (col_name, lower, upper) =
find_plan_time_window_bound(&plan, low_bound, query_ctx.clone(), engine.clone())
.await?;
let new_sql = {
let expr = {
match (lower, upper) {
(Some(l), Some(u)) => {
let window_size = u.sub(&l).with_context(|| UnexpectedSnafu {
reason: format!("Can't get window size from {u:?} - {l:?}"),
})?;
self.state
.write()
.await
.dirty_time_windows
.gen_filter_exprs(&col_name, lower, window_size)?
}
_ => {
warn!(
"Flow id = {:?}, can't get window size: lower={lower:?}, upper={upper:?}, using the same query", self.flow_id
);
// since no time window lower/upper bound is found, just return the original query
return Ok(Some(self.query.clone()));
}
}
};
debug!(
"Flow id={:?}, Generated filter expr: {:?}",
self.flow_id,
expr.as_ref()
.map(|expr| expr_to_sql(expr).with_context(|_| DatafusionSnafu {
context: format!("Failed to generate filter expr from {expr:?}"),
}))
.transpose()?
.map(|s| s.to_string())
);
let Some(expr) = expr else {
// no new data, hence no need to update
debug!("Flow id={:?}, no new data, not update", self.flow_id);
return Ok(None);
};
let mut add_filter = AddFilterRewriter::new(expr);
// make a not optimized plan for clearer unparse
let plan =
sql_to_df_plan(query_ctx.clone(), engine.clone(), &self.query, false).await?;
let plan = plan
.clone()
.rewrite(&mut add_filter)
.with_context(|_| DatafusionSnafu {
context: format!("Failed to rewrite plan {plan:?}"),
})?
.data;
df_plan_to_sql(&plan)?
};
Ok(Some(new_sql))
}
}
#[derive(Debug)]
pub struct RecordingRuleState {
query_ctx: QueryContextRef,
/// last query complete time
last_update_time: Instant,
/// last time query duration
last_query_duration: Duration,
/// Dirty Time windows need to be updated
/// mapping of `start -> end` and non-overlapping
dirty_time_windows: DirtyTimeWindows,
exec_state: ExecState,
shutdown_rx: oneshot::Receiver<()>,
}
#[derive(Debug, Clone, Default)]
pub struct DirtyTimeWindows {
windows: BTreeMap<Timestamp, Option<Timestamp>>,
}
fn to_df_literal(value: Timestamp) -> Result<datafusion_common::ScalarValue, Error> {
let value = Value::from(value);
let value = value
.try_to_scalar_value(&value.data_type())
.with_context(|_| DatatypesSnafu {
extra: format!("Failed to convert to scalar value: {}", value),
})?;
Ok(value)
}
impl DirtyTimeWindows {
/// Time window merge distance
const MERGE_DIST: i32 = 3;
/// Maximum number of filters allowed in a single query
const MAX_FILTER_NUM: usize = 20;
/// Add lower bounds to the dirty time windows. Upper bounds are ignored.
///
/// # Arguments
///
/// * `lower_bounds` - An iterator of lower bounds to be added.
pub fn add_lower_bounds(&mut self, lower_bounds: impl Iterator<Item = Timestamp>) {
for lower_bound in lower_bounds {
let entry = self.windows.entry(lower_bound);
entry.or_insert(None);
}
}
/// Generate all filter expressions consuming all time windows
pub fn gen_filter_exprs(
&mut self,
col_name: &str,
expire_lower_bound: Option<Timestamp>,
window_size: chrono::Duration,
) -> Result<Option<datafusion_expr::Expr>, Error> {
debug!(
"expire_lower_bound: {:?}, window_size: {:?}",
expire_lower_bound.map(|t| t.to_iso8601_string()),
window_size
);
self.merge_dirty_time_windows(window_size)?;
if self.windows.len() > Self::MAX_FILTER_NUM {
warn!(
"Too many time windows: {}, only the first {} are taken for this query, the group by expression might be wrong",
self.windows.len(),
Self::MAX_FILTER_NUM
);
}
// get the first `MAX_FILTER_NUM` time windows
let nth = self
.windows
.iter()
.nth(Self::MAX_FILTER_NUM)
.map(|(key, _)| *key);
let first_nth = {
if let Some(nth) = nth {
let mut after = self.windows.split_off(&nth);
std::mem::swap(&mut self.windows, &mut after);
after
} else {
std::mem::take(&mut self.windows)
}
};
let mut expr_lst = vec![];
for (start, end) in first_nth.into_iter() {
debug!(
"Time window start: {:?}, end: {:?}",
start.to_iso8601_string(),
end.map(|t| t.to_iso8601_string())
);
let start = if let Some(expire) = expire_lower_bound {
start.max(expire)
} else {
start
};
// filter out expired time window
if let Some(end) = end {
if end <= start {
continue;
}
}
use datafusion_expr::{col, lit};
let lower = to_df_literal(start)?;
let upper = end.map(to_df_literal).transpose()?;
let expr = if let Some(upper) = upper {
col(col_name)
.gt_eq(lit(lower))
.and(col(col_name).lt(lit(upper)))
} else {
col(col_name).gt_eq(lit(lower))
};
expr_lst.push(expr);
}
let expr = expr_lst.into_iter().reduce(|a, b| a.and(b));
Ok(expr)
}
/// Merge time windows that overlaps or get too close
pub fn merge_dirty_time_windows(&mut self, window_size: chrono::Duration) -> Result<(), Error> {
let mut new_windows = BTreeMap::new();
let mut prev_tw = None;
for (lower_bound, upper_bound) in std::mem::take(&mut self.windows) {
let Some(prev_tw) = &mut prev_tw else {
prev_tw = Some((lower_bound, upper_bound));
continue;
};
let std_window_size = window_size.to_std().map_err(|e| {
InternalSnafu {
reason: e.to_string(),
}
.build()
})?;
// if cur.lower - prev.upper <= window_size * 2, merge
let prev_upper = prev_tw
.1
.unwrap_or(prev_tw.0.add_duration(std_window_size).context(TimeSnafu)?);
prev_tw.1 = Some(prev_upper);
let cur_upper = upper_bound.unwrap_or(
lower_bound
.add_duration(std_window_size)
.context(TimeSnafu)?,
);
if lower_bound
.sub(&prev_upper)
.map(|dist| dist <= window_size * Self::MERGE_DIST)
.unwrap_or(false)
{
prev_tw.1 = Some(cur_upper);
} else {
new_windows.insert(prev_tw.0, prev_tw.1);
*prev_tw = (lower_bound, Some(cur_upper));
}
}
if let Some(prev_tw) = prev_tw {
new_windows.insert(prev_tw.0, prev_tw.1);
}
self.windows = new_windows;
Ok(())
}
}
impl RecordingRuleState {
pub fn new(query_ctx: QueryContextRef, shutdown_rx: oneshot::Receiver<()>) -> Self {
Self {
query_ctx,
last_update_time: Instant::now(),
last_query_duration: Duration::from_secs(0),
dirty_time_windows: Default::default(),
exec_state: ExecState::Idle,
shutdown_rx,
}
}
/// called after last query is done
/// `is_succ` indicate whether the last query is successful
pub fn after_query_exec(&mut self, elapsed: Duration, _is_succ: bool) {
self.exec_state = ExecState::Idle;
self.last_query_duration = elapsed;
self.last_update_time = Instant::now();
}
/// wait for at least `last_query_duration`, at most `max_timeout` to start next query
pub fn get_next_start_query_time(&self, max_timeout: Option<Duration>) -> Instant {
let next_duration = max_timeout
.unwrap_or(self.last_query_duration)
.min(self.last_query_duration);
let next_duration = next_duration.max(MIN_REFRESH_DURATION);
self.last_update_time + next_duration
}
}
#[derive(Debug, Clone)]
enum ExecState {
Idle,
Executing,
}
#[cfg(test)]
mod test {
use pretty_assertions::assert_eq;
use super::*;
#[test]
fn test_merge_dirty_time_windows() {
let mut dirty = DirtyTimeWindows::default();
dirty.add_lower_bounds(
vec![
Timestamp::new_second(0),
Timestamp::new_second((1 + DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60),
]
.into_iter(),
);
dirty
.merge_dirty_time_windows(chrono::Duration::seconds(5 * 60))
.unwrap();
// just enough to merge
assert_eq!(
dirty.windows,
BTreeMap::from([(
Timestamp::new_second(0),
Some(Timestamp::new_second(
(2 + DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60
))
)])
);
// separate time window
let mut dirty = DirtyTimeWindows::default();
dirty.add_lower_bounds(
vec![
Timestamp::new_second(0),
Timestamp::new_second((2 + DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60),
]
.into_iter(),
);
dirty
.merge_dirty_time_windows(chrono::Duration::seconds(5 * 60))
.unwrap();
// just enough to merge
assert_eq!(
BTreeMap::from([
(
Timestamp::new_second(0),
Some(Timestamp::new_second(5 * 60))
),
(
Timestamp::new_second((2 + DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60),
Some(Timestamp::new_second(
(3 + DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60
))
)
]),
dirty.windows
);
// overlapping
let mut dirty = DirtyTimeWindows::default();
dirty.add_lower_bounds(
vec![
Timestamp::new_second(0),
Timestamp::new_second((DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60),
]
.into_iter(),
);
dirty
.merge_dirty_time_windows(chrono::Duration::seconds(5 * 60))
.unwrap();
// just enough to merge
assert_eq!(
BTreeMap::from([(
Timestamp::new_second(0),
Some(Timestamp::new_second(
(1 + DirtyTimeWindows::MERGE_DIST as i64) * 5 * 60
))
),]),
dirty.windows
);
}
}

View File

@@ -1,150 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Frontend client to run flow as recording rule which is time-window-aware normal query triggered every tick set by user
use std::sync::Arc;
use client::{Client, Database, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_error::ext::BoxedError;
use common_grpc::channel_manager::{ChannelConfig, ChannelManager};
use common_meta::cluster::{NodeInfo, NodeInfoKey, Role};
use common_meta::peer::Peer;
use common_meta::rpc::store::RangeRequest;
use meta_client::client::MetaClient;
use snafu::ResultExt;
use crate::error::{ExternalSnafu, UnexpectedSnafu};
use crate::recording_rules::engine::DEFAULT_RULE_ENGINE_QUERY_TIMEOUT;
use crate::Error;
fn default_channel_mgr() -> ChannelManager {
let cfg = ChannelConfig::new().timeout(DEFAULT_RULE_ENGINE_QUERY_TIMEOUT);
ChannelManager::with_config(cfg)
}
fn client_from_urls(addrs: Vec<String>) -> Client {
Client::with_manager_and_urls(default_channel_mgr(), addrs)
}
/// A simple frontend client able to execute sql using grpc protocol
#[derive(Debug)]
pub enum FrontendClient {
Distributed {
meta_client: Arc<MetaClient>,
},
Standalone {
/// for the sake of simplicity still use grpc even in standalone mode
/// notice the client here should all be lazy, so that can wait after frontend is booted then make conn
/// TODO(discord9): not use grpc under standalone mode
database_client: DatabaseWithPeer,
},
}
#[derive(Debug, Clone)]
pub struct DatabaseWithPeer {
pub database: Database,
pub peer: Peer,
}
impl DatabaseWithPeer {
fn new(database: Database, peer: Peer) -> Self {
Self { database, peer }
}
}
impl FrontendClient {
pub fn from_meta_client(meta_client: Arc<MetaClient>) -> Self {
Self::Distributed { meta_client }
}
pub fn from_static_grpc_addr(addr: String) -> Self {
let peer = Peer {
id: 0,
addr: addr.clone(),
};
let client = client_from_urls(vec![addr]);
let database = Database::new(DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, client);
Self::Standalone {
database_client: DatabaseWithPeer::new(database, peer),
}
}
}
impl FrontendClient {
async fn scan_for_frontend(&self) -> Result<Vec<(NodeInfoKey, NodeInfo)>, Error> {
let Self::Distributed { meta_client, .. } = self else {
return Ok(vec![]);
};
let cluster_client = meta_client
.cluster_client()
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
let cluster_id = meta_client.id().0;
let prefix = NodeInfoKey::key_prefix_with_role(cluster_id, Role::Frontend);
let req = RangeRequest::new().with_prefix(prefix);
let resp = cluster_client
.range(req)
.await
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
let mut res = Vec::with_capacity(resp.kvs.len());
for kv in resp.kvs {
let key = NodeInfoKey::try_from(kv.key)
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
let val = NodeInfo::try_from(kv.value)
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
res.push((key, val));
}
Ok(res)
}
/// Get the database with max `last_activity_ts`
async fn get_last_active_frontend(&self) -> Result<DatabaseWithPeer, Error> {
if let Self::Standalone { database_client } = self {
return Ok(database_client.clone());
}
let frontends = self.scan_for_frontend().await?;
let mut last_activity_ts = i64::MIN;
let mut peer = None;
for (_key, val) in frontends.iter() {
if val.last_activity_ts > last_activity_ts {
last_activity_ts = val.last_activity_ts;
peer = Some(val.peer.clone());
}
}
let Some(peer) = peer else {
UnexpectedSnafu {
reason: format!("No frontend available: {:?}", frontends),
}
.fail()?
};
let client = client_from_urls(vec![peer.addr.clone()]);
let database = Database::new(DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, client);
Ok(DatabaseWithPeer::new(database, peer))
}
/// Get a database client, and possibly update it before returning.
pub async fn get_database_client(&self) -> Result<DatabaseWithPeer, Error> {
match self {
Self::Standalone { database_client } => Ok(database_client.clone()),
Self::Distributed { meta_client: _ } => self.get_last_active_frontend().await,
}
}
}

View File

@@ -57,7 +57,6 @@ use crate::error::{
};
use crate::heartbeat::HeartbeatTask;
use crate::metrics::{METRIC_FLOW_PROCESSING_TIME, METRIC_FLOW_ROWS};
use crate::recording_rules::{FrontendClient, RecordingRuleEngine};
use crate::transform::register_function_to_query_engine;
use crate::utils::{SizeReportSender, StateReportHandler};
use crate::{Error, FlowWorkerManager, FlownodeOptions};
@@ -246,7 +245,6 @@ impl FlownodeInstance {
self.server.shutdown().await.context(ShutdownServerSnafu)?;
if let Some(task) = &self.heartbeat_task {
info!("Close heartbeat task for flownode");
task.shutdown();
}
@@ -273,8 +271,6 @@ pub struct FlownodeBuilder {
heartbeat_task: Option<HeartbeatTask>,
/// receive a oneshot sender to send state size report
state_report_handler: Option<StateReportHandler>,
/// Client to send sql to frontend
frontend_client: Arc<FrontendClient>,
}
impl FlownodeBuilder {
@@ -285,7 +281,6 @@ impl FlownodeBuilder {
table_meta: TableMetadataManagerRef,
catalog_manager: CatalogManagerRef,
flow_metadata_manager: FlowMetadataManagerRef,
frontend_client: Arc<FrontendClient>,
) -> Self {
Self {
opts,
@@ -295,7 +290,6 @@ impl FlownodeBuilder {
flow_metadata_manager,
heartbeat_task: None,
state_report_handler: None,
frontend_client,
}
}
@@ -453,14 +447,7 @@ impl FlownodeBuilder {
let node_id = self.opts.node_id.map(|id| id as u32);
let rule_engine = RecordingRuleEngine::new(
self.frontend_client.clone(),
query_engine.clone(),
self.flow_metadata_manager.clone(),
table_meta.clone(),
);
let mut man = FlowWorkerManager::new(node_id, query_engine, table_meta, rule_engine);
let mut man = FlowWorkerManager::new(node_id, query_engine, table_meta);
for worker_id in 0..num_workers {
let (tx, rx) = oneshot::channel();

View File

@@ -86,8 +86,7 @@ pub fn create_test_query_engine() -> Arc<dyn QueryEngine> {
let schema = vec![
datatypes::schema::ColumnSchema::new("number", CDT::uint32_datatype(), false),
datatypes::schema::ColumnSchema::new("ts", CDT::timestamp_millisecond_datatype(), false)
.with_time_index(true),
datatypes::schema::ColumnSchema::new("ts", CDT::timestamp_millisecond_datatype(), false),
];
let mut columns = vec![];
let numbers = (1..=10).collect_vec();

View File

@@ -36,11 +36,11 @@ use servers::error::{
TableNotFoundSnafu,
};
use servers::http::jaeger::QueryTraceParams;
use servers::otlp::trace::{
use servers::otlp::trace::v0::{
DURATION_NANO_COLUMN, SERVICE_NAME_COLUMN, SPAN_ATTRIBUTES_COLUMN, SPAN_ID_COLUMN,
SPAN_KIND_COLUMN, SPAN_KIND_PREFIX, SPAN_NAME_COLUMN, TIMESTAMP_COLUMN, TRACE_ID_COLUMN,
TRACE_TABLE_NAME,
};
use servers::otlp::trace::TRACE_TABLE_NAME;
use servers::query_handler::JaegerQueryHandler;
use session::context::QueryContextRef;
use snafu::{OptionExt, ResultExt};

View File

@@ -127,26 +127,4 @@ impl Instance {
.map_err(BoxedError::new)
.context(ExecuteGrpcRequestSnafu)
}
pub async fn handle_trace_inserts(
&self,
rows: RowInsertRequests,
ctx: QueryContextRef,
) -> ServerResult<Output> {
let _guard = if let Some(limiter) = &self.limiter {
let result = limiter.limit_row_inserts(&rows);
if result.is_none() {
return InFlightWriteBytesExceededSnafu.fail();
}
result
} else {
None
};
self.inserter
.handle_trace_inserts(rows, ctx, self.statement_executor.as_ref())
.await
.map_err(BoxedError::new)
.context(ExecuteGrpcRequestSnafu)
}
}

View File

@@ -101,7 +101,17 @@ impl OpenTelemetryProtocolHandler for Instance {
OTLP_TRACES_ROWS.inc_by(rows as u64);
self.handle_trace_inserts(requests, ctx)
let _guard = if let Some(limiter) = &self.limiter {
let result = limiter.limit_row_inserts(&requests);
if result.is_none() {
return InFlightWriteBytesExceededSnafu.fail();
}
result
} else {
None
};
self.handle_log_inserts(requests, ctx)
.await
.map_err(BoxedError::new)
.context(error::ExecuteGrpcQuerySnafu)

View File

@@ -112,7 +112,6 @@ impl MetaClientBuilder {
.enable_store()
.enable_heartbeat()
.enable_procedure()
.enable_access_cluster_info()
}
pub fn enable_heartbeat(self) -> Self {

View File

@@ -799,14 +799,6 @@ pub enum Error {
#[snafu(display("A cursor named {name} already exists"))]
CursorExists { name: String },
#[snafu(display("Column options error"))]
ColumnOptions {
#[snafu(source)]
source: api::error::Error,
#[snafu(implicit)]
location: Location,
},
}
pub type Result<T> = std::result::Result<T, Error>;
@@ -958,8 +950,6 @@ impl ErrorExt for Error {
Error::UpgradeCatalogManagerRef { .. } => StatusCode::Internal,
Error::StatementTimeout { .. } => StatusCode::Cancelled,
Error::ColumnOptions { source, .. } => source.status_code(),
}
}

View File

@@ -16,7 +16,6 @@ use std::sync::Arc;
use ahash::{HashMap, HashMapExt, HashSet, HashSetExt};
use api::v1::alter_table_expr::Kind;
use api::v1::column_def::options_from_skipping;
use api::v1::region::{
InsertRequest as RegionInsertRequest, InsertRequests as RegionInsertRequests,
RegionRequestHeader,
@@ -27,9 +26,7 @@ use api::v1::{
};
use catalog::CatalogManagerRef;
use client::{OutputData, OutputMeta};
use common_catalog::consts::{
default_engine, PARENT_SPAN_ID_COLUMN, SPAN_NAME_COLUMN, TRACE_ID_COLUMN,
};
use common_catalog::consts::default_engine;
use common_grpc_expr::util::ColumnExpr;
use common_meta::cache::TableFlownodeSetCacheRef;
use common_meta::node_manager::{AffectedRows, NodeManagerRef};
@@ -37,16 +34,13 @@ use common_meta::peer::Peer;
use common_query::prelude::{GREPTIME_TIMESTAMP, GREPTIME_VALUE};
use common_query::Output;
use common_telemetry::tracing_context::TracingContext;
use common_telemetry::{error, info, warn};
use datatypes::schema::SkippingIndexOptions;
use common_telemetry::{error, info};
use futures_util::future;
use meter_macros::write_meter;
use partition::manager::PartitionRuleManagerRef;
use session::context::QueryContextRef;
use snafu::prelude::*;
use snafu::ResultExt;
use sql::partition::partition_rule_for_hexstring;
use sql::statements::create::Partitions;
use sql::statements::insert::Insert;
use store_api::metric_engine_consts::{
LOGICAL_TABLE_METADATA_KEY, METRIC_ENGINE_NAME, PHYSICAL_TABLE_METADATA_KEY,
@@ -59,8 +53,8 @@ use table::table_reference::TableReference;
use table::TableRef;
use crate::error::{
CatalogSnafu, ColumnOptionsSnafu, FindRegionLeaderSnafu, InvalidInsertRequestSnafu,
JoinTaskSnafu, RequestInsertsSnafu, Result, TableNotFoundSnafu,
CatalogSnafu, FindRegionLeaderSnafu, InvalidInsertRequestSnafu, JoinTaskSnafu,
RequestInsertsSnafu, Result, TableNotFoundSnafu,
};
use crate::expr_helper;
use crate::region_req_factory::RegionRequestFactory;
@@ -74,7 +68,6 @@ pub struct Inserter {
catalog_manager: CatalogManagerRef,
partition_manager: PartitionRuleManagerRef,
node_manager: NodeManagerRef,
#[allow(unused)]
table_flownode_set_cache: TableFlownodeSetCacheRef,
}
@@ -91,8 +84,6 @@ enum AutoCreateTableType {
Log,
/// A table that merges rows by `last_non_null` strategy.
LastNonNull,
/// Create table that build index and default partition rules on trace_id
Trace,
}
impl AutoCreateTableType {
@@ -102,7 +93,6 @@ impl AutoCreateTableType {
AutoCreateTableType::Physical => "physical",
AutoCreateTableType::Log => "log",
AutoCreateTableType::LastNonNull => "last_non_null",
AutoCreateTableType::Trace => "trace",
}
}
}
@@ -181,21 +171,6 @@ impl Inserter {
.await
}
pub async fn handle_trace_inserts(
&self,
requests: RowInsertRequests,
ctx: QueryContextRef,
statement_executor: &StatementExecutor,
) -> Result<Output> {
self.handle_row_inserts_with_create_type(
requests,
ctx,
statement_executor,
AutoCreateTableType::Trace,
)
.await
}
/// Handles row inserts request and creates a table with `last_non_null` merge mode on demand.
pub async fn handle_last_non_null_inserts(
&self,
@@ -363,8 +338,6 @@ impl Inserter {
instant_requests,
} = requests;
// TODO(discord9): mirror some
// Mirror requests for source table to flownode asynchronously
let flow_mirror_task = FlowMirrorTask::new(
&self.table_flownode_set_cache,
@@ -555,56 +528,7 @@ impl Inserter {
// for it's a very unexpected behavior and should be set by user explicitly
for create_table in create_tables {
let table = self
.create_physical_table(create_table, None, ctx, statement_executor)
.await?;
let table_info = table.table_info();
if table_info.is_ttl_instant_table() {
instant_table_ids.insert(table_info.table_id());
}
table_infos.insert(table_info.table_id(), table.table_info());
}
for alter_expr in alter_tables.into_iter() {
statement_executor
.alter_table_inner(alter_expr, ctx.clone())
.await?;
}
}
AutoCreateTableType::Trace => {
// note that auto create table shouldn't be ttl instant table
// for it's a very unexpected behavior and should be set by user explicitly
for mut create_table in create_tables {
// prebuilt partition rules for uuid data: see the function
// for more information
let partitions = partition_rule_for_hexstring(TRACE_ID_COLUMN);
// add skip index to
// - trace_id: when searching by trace id
// - parent_span_id: when searching root span
// - span_name: when searching certain types of span
let index_columns = [TRACE_ID_COLUMN, PARENT_SPAN_ID_COLUMN, SPAN_NAME_COLUMN];
for index_column in index_columns {
if let Some(col) = create_table
.column_defs
.iter_mut()
.find(|c| c.name == index_column)
{
col.options = options_from_skipping(&SkippingIndexOptions::default())
.context(ColumnOptionsSnafu)?;
} else {
warn!(
"Column {} not found when creating index for trace table: {}.",
index_column, create_table.table_name
);
}
}
let table = self
.create_physical_table(
create_table,
Some(partitions),
ctx,
statement_executor,
)
.create_physical_table(create_table, ctx, statement_executor)
.await?;
let table_info = table.table_info();
if table_info.is_ttl_instant_table() {
@@ -734,9 +658,6 @@ impl Inserter {
AutoCreateTableType::LastNonNull => {
table_options.push((MERGE_MODE_KEY, "last_non_null"));
}
AutoCreateTableType::Trace => {
table_options.push((APPEND_MODE_KEY, "true"));
}
}
let schema = ctx.current_schema();
@@ -745,7 +666,6 @@ impl Inserter {
let request_schema = req.rows.as_ref().unwrap().schema.as_slice();
let mut create_table_expr =
build_create_table_expr(&table_ref, request_schema, engine_name)?;
info!("Table `{table_ref}` does not exist, try creating table");
for (k, v) in table_options {
create_table_expr
@@ -787,7 +707,6 @@ impl Inserter {
async fn create_physical_table(
&self,
mut create_table_expr: CreateTableExpr,
partitions: Option<Partitions>,
ctx: &QueryContextRef,
statement_executor: &StatementExecutor,
) -> Result<TableRef> {
@@ -801,7 +720,7 @@ impl Inserter {
info!("Table `{table_ref}` does not exist, try creating table");
}
let res = statement_executor
.create_table_inner(&mut create_table_expr, partitions, ctx.clone())
.create_table_inner(&mut create_table_expr, None, ctx.clone())
.await;
let table_ref = TableReference::full(
@@ -898,14 +817,12 @@ struct CreateAlterTableResult {
table_infos: HashMap<TableId, Arc<TableInfo>>,
}
#[allow(unused)]
struct FlowMirrorTask {
requests: HashMap<Peer, RegionInsertRequests>,
num_rows: usize,
}
impl FlowMirrorTask {
#[allow(unused)]
async fn new(
cache: &TableFlownodeSetCacheRef,
requests: impl Iterator<Item = &RegionInsertRequest>,
@@ -979,7 +896,6 @@ impl FlowMirrorTask {
})
}
#[allow(unused)]
fn detach(self, node_manager: NodeManagerRef) -> Result<()> {
crate::metrics::DIST_MIRROR_PENDING_ROW_COUNT.add(self.num_rows as i64);
for (peer, inserts) in self.requests {

View File

@@ -21,8 +21,14 @@ use table::TableRef;
use crate::parser::QueryLanguageParser;
use crate::{QueryEngineFactory, QueryEngineRef};
mod argmax_test;
mod argmin_test;
mod mean_test;
mod my_sum_udaf_example;
mod polyval_test;
mod query_engine_test;
mod scipy_stats_norm_cdf_test;
mod scipy_stats_norm_pdf;
mod time_range_filter_test;
mod function;

View File

@@ -0,0 +1,73 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use datatypes::for_all_primitive_types;
use datatypes::prelude::*;
use datatypes::types::WrapperType;
use crate::error::Result;
use crate::tests::{exec_selection, function};
use crate::QueryEngine;
#[tokio::test]
async fn test_argmax_aggregator() -> Result<()> {
common_telemetry::init_default_ut_logging();
let engine = function::create_query_engine();
macro_rules! test_argmax {
([], $( { $T:ty } ),*) => {
$(
let column_name = format!("{}_number", std::any::type_name::<$T>());
test_argmax_success::<$T>(&column_name, "numbers", engine.clone()).await?;
)*
}
}
for_all_primitive_types! { test_argmax }
Ok(())
}
async fn test_argmax_success<T>(
column_name: &str,
table_name: &str,
engine: Arc<dyn QueryEngine>,
) -> Result<()>
where
T: WrapperType + PartialOrd,
{
let sql = format!("select ARGMAX({column_name}) as argmax from {table_name}");
let result = exec_selection(engine.clone(), &sql).await;
let value = function::get_value_from_batches("argmax", result);
let numbers =
function::get_numbers_from_table::<T>(column_name, table_name, engine.clone()).await;
let expected_value = match numbers.len() {
0 => 0_u64,
_ => {
let mut index = 0;
let mut max = numbers[0];
for (i, &number) in numbers.iter().enumerate() {
if max < number {
max = number;
index = i;
}
}
index as u64
}
};
let expected_value = Value::from(expected_value);
assert_eq!(value, expected_value);
Ok(())
}

View File

@@ -0,0 +1,73 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use datatypes::for_all_primitive_types;
use datatypes::prelude::*;
use datatypes::types::WrapperType;
use crate::error::Result;
use crate::tests::{exec_selection, function};
use crate::QueryEngine;
#[tokio::test]
async fn test_argmin_aggregator() -> Result<()> {
common_telemetry::init_default_ut_logging();
let engine = function::create_query_engine();
macro_rules! test_argmin {
([], $( { $T:ty } ),*) => {
$(
let column_name = format!("{}_number", std::any::type_name::<$T>());
test_argmin_success::<$T>(&column_name, "numbers", engine.clone()).await?;
)*
}
}
for_all_primitive_types! { test_argmin }
Ok(())
}
async fn test_argmin_success<T>(
column_name: &str,
table_name: &str,
engine: Arc<dyn QueryEngine>,
) -> Result<()>
where
T: WrapperType + PartialOrd,
{
let sql = format!("select argmin({column_name}) as argmin from {table_name}");
let result = exec_selection(engine.clone(), &sql).await;
let value = function::get_value_from_batches("argmin", result);
let numbers =
function::get_numbers_from_table::<T>(column_name, table_name, engine.clone()).await;
let expected_value = match numbers.len() {
0 => 0_u32,
_ => {
let mut index = 0;
let mut min = numbers[0];
for (i, &number) in numbers.iter().enumerate() {
if min > number {
min = number;
index = i;
}
}
index as u32
}
};
let expected_value = Value::from(expected_value);
assert_eq!(value, expected_value);
Ok(())
}

View File

@@ -16,14 +16,42 @@ use std::sync::Arc;
use common_function::scalars::vector::impl_conv::veclit_to_binlit;
use common_recordbatch::RecordBatch;
use datatypes::for_all_primitive_types;
use datatypes::prelude::*;
use datatypes::schema::{ColumnSchema, Schema};
use datatypes::vectors::BinaryVector;
use datatypes::types::WrapperType;
use datatypes::vectors::{BinaryVector, Helper};
use rand::Rng;
use table::test_util::MemTable;
use crate::tests::new_query_engine_with_table;
use crate::QueryEngineRef;
use crate::tests::{exec_selection, new_query_engine_with_table};
use crate::{QueryEngine, QueryEngineRef};
pub fn create_query_engine() -> QueryEngineRef {
let mut column_schemas = vec![];
let mut columns = vec![];
macro_rules! create_number_table {
([], $( { $T:ty } ),*) => {
$(
let mut rng = rand::thread_rng();
let column_name = format!("{}_number", std::any::type_name::<$T>());
let column_schema = ColumnSchema::new(column_name, Value::from(<$T>::default()).data_type(), true);
column_schemas.push(column_schema);
let numbers = (1..=10).map(|_| rng.gen::<$T>()).collect::<Vec<$T>>();
let column: VectorRef = Arc::new(<$T as Scalar>::VectorType::from_vec(numbers.to_vec()));
columns.push(column);
)*
}
}
for_all_primitive_types! { create_number_table }
let schema = Arc::new(Schema::new(column_schemas.clone()));
let recordbatch = RecordBatch::new(schema, columns).unwrap();
let number_table = MemTable::table("numbers", recordbatch);
new_query_engine_with_table(number_table)
}
pub fn create_query_engine_for_vector10x3() -> QueryEngineRef {
let mut column_schemas = vec![];
@@ -53,6 +81,22 @@ pub fn create_query_engine_for_vector10x3() -> QueryEngineRef {
new_query_engine_with_table(vector_table)
}
pub async fn get_numbers_from_table<'s, T>(
column_name: &'s str,
table_name: &'s str,
engine: Arc<dyn QueryEngine>,
) -> Vec<T>
where
T: WrapperType,
{
let sql = format!("SELECT {column_name} FROM {table_name}");
let numbers = exec_selection(engine, &sql).await;
let column = numbers[0].column(0);
let column: &<T as Scalar>::VectorType = unsafe { Helper::static_cast(column) };
column.iter_data().flatten().collect::<Vec<T>>()
}
pub fn get_value_from_batches(column_name: &str, batches: Vec<RecordBatch>) -> Value {
assert_eq!(1, batches.len());
assert_eq!(batches[0].num_columns(), 1);

View File

@@ -0,0 +1,68 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use datatypes::for_all_primitive_types;
use datatypes::prelude::*;
use datatypes::types::WrapperType;
use datatypes::value::OrderedFloat;
use num_traits::AsPrimitive;
use crate::error::Result;
use crate::tests::{exec_selection, function};
use crate::QueryEngine;
#[tokio::test]
async fn test_mean_aggregator() -> Result<()> {
common_telemetry::init_default_ut_logging();
let engine = function::create_query_engine();
macro_rules! test_mean {
([], $( { $T:ty } ),*) => {
$(
let column_name = format!("{}_number", std::any::type_name::<$T>());
test_mean_success::<$T>(&column_name, "numbers", engine.clone()).await?;
)*
}
}
for_all_primitive_types! { test_mean }
Ok(())
}
async fn test_mean_success<T>(
column_name: &str,
table_name: &str,
engine: Arc<dyn QueryEngine>,
) -> Result<()>
where
T: WrapperType + AsPrimitive<f64>,
{
let sql = format!("select MEAN({column_name}) as mean from {table_name}");
let result = exec_selection(engine.clone(), &sql).await;
let value = function::get_value_from_batches("mean", result);
let numbers =
function::get_numbers_from_table::<T>(column_name, table_name, engine.clone()).await;
let numbers = numbers.iter().map(|&n| n.as_()).collect::<Vec<f64>>();
let expected = numbers.iter().sum::<f64>() / (numbers.len() as f64);
let Value::Float64(OrderedFloat(value)) = value else {
unreachable!()
};
assert!(
(value - expected).abs() < 1e-3,
"expected {expected}, actual {value}"
);
Ok(())
}

View File

@@ -0,0 +1,70 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use datatypes::for_all_primitive_types;
use datatypes::prelude::*;
use datatypes::types::WrapperType;
use num_traits::AsPrimitive;
use crate::error::Result;
use crate::tests::{exec_selection, function};
use crate::QueryEngine;
#[tokio::test]
async fn test_polyval_aggregator() -> Result<()> {
common_telemetry::init_default_ut_logging();
let engine = function::create_query_engine();
macro_rules! test_polyval {
([], $( { $T:ty } ),*) => {
$(
let column_name = format!("{}_number", std::any::type_name::<$T>());
test_polyval_success::<$T, <<<$T as WrapperType>::LogicalType as LogicalPrimitiveType>::LargestType as LogicalPrimitiveType>::Wrapper>(&column_name, "numbers", engine.clone()).await?;
)*
}
}
for_all_primitive_types! { test_polyval }
Ok(())
}
async fn test_polyval_success<T, PolyT>(
column_name: &str,
table_name: &str,
engine: Arc<dyn QueryEngine>,
) -> Result<()>
where
T: WrapperType,
PolyT: WrapperType,
T::Native: AsPrimitive<PolyT::Native>,
PolyT::Native: std::ops::Mul<Output = PolyT::Native> + std::iter::Sum,
i64: AsPrimitive<PolyT::Native>,
{
let sql = format!("select POLYVAL({column_name}, 0) as polyval from {table_name}");
let result = exec_selection(engine.clone(), &sql).await;
let value = function::get_value_from_batches("polyval", result);
let numbers =
function::get_numbers_from_table::<T>(column_name, table_name, engine.clone()).await;
let expected_value = numbers.iter().copied();
let x = 0i64;
let len = expected_value.len();
let expected_native: PolyT::Native = expected_value
.enumerate()
.map(|(i, v)| v.into_native().as_() * (x.pow((len - 1 - i) as u32)).as_())
.sum();
assert_eq!(value, PolyT::from_native(expected_native).into());
Ok(())
}

View File

@@ -0,0 +1,69 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use datatypes::for_all_primitive_types;
use datatypes::types::WrapperType;
use num_traits::AsPrimitive;
use statrs::distribution::{ContinuousCDF, Normal};
use statrs::statistics::Statistics;
use crate::error::Result;
use crate::tests::{exec_selection, function};
use crate::QueryEngine;
#[tokio::test]
async fn test_scipy_stats_norm_cdf_aggregator() -> Result<()> {
common_telemetry::init_default_ut_logging();
let engine = function::create_query_engine();
macro_rules! test_scipy_stats_norm_cdf {
([], $( { $T:ty } ),*) => {
$(
let column_name = format!("{}_number", std::any::type_name::<$T>());
test_scipy_stats_norm_cdf_success::<$T>(&column_name, "numbers", engine.clone()).await?;
)*
}
}
for_all_primitive_types! { test_scipy_stats_norm_cdf }
Ok(())
}
async fn test_scipy_stats_norm_cdf_success<T>(
column_name: &str,
table_name: &str,
engine: Arc<dyn QueryEngine>,
) -> Result<()>
where
T: WrapperType + AsPrimitive<f64>,
{
let sql = format!(
"select SCIPYSTATSNORMCDF({column_name},2.0) as scipy_stats_norm_cdf from {table_name}",
);
let result = exec_selection(engine.clone(), &sql).await;
let value = function::get_value_from_batches("scipy_stats_norm_cdf", result);
let numbers =
function::get_numbers_from_table::<T>(column_name, table_name, engine.clone()).await;
let expected_value = numbers.iter().map(|&n| n.as_()).collect::<Vec<f64>>();
let mean = expected_value.clone().mean();
let stddev = expected_value.std_dev();
let n = Normal::new(mean, stddev).unwrap();
let expected_value = n.cdf(2.0);
assert_eq!(value, expected_value.into());
Ok(())
}

View File

@@ -0,0 +1,69 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use datatypes::for_all_primitive_types;
use datatypes::types::WrapperType;
use num_traits::AsPrimitive;
use statrs::distribution::{Continuous, Normal};
use statrs::statistics::Statistics;
use crate::error::Result;
use crate::tests::{exec_selection, function};
use crate::QueryEngine;
#[tokio::test]
async fn test_scipy_stats_norm_pdf_aggregator() -> Result<()> {
common_telemetry::init_default_ut_logging();
let engine = function::create_query_engine();
macro_rules! test_scipy_stats_norm_pdf {
([], $( { $T:ty } ),*) => {
$(
let column_name = format!("{}_number", std::any::type_name::<$T>());
test_scipy_stats_norm_pdf_success::<$T>(&column_name, "numbers", engine.clone()).await?;
)*
}
}
for_all_primitive_types! { test_scipy_stats_norm_pdf }
Ok(())
}
async fn test_scipy_stats_norm_pdf_success<T>(
column_name: &str,
table_name: &str,
engine: Arc<dyn QueryEngine>,
) -> Result<()>
where
T: WrapperType + AsPrimitive<f64>,
{
let sql = format!(
"select SCIPYSTATSNORMPDF({column_name},2.0) as scipy_stats_norm_pdf from {table_name}"
);
let result = exec_selection(engine.clone(), &sql).await;
let value = function::get_value_from_batches("scipy_stats_norm_pdf", result);
let numbers =
function::get_numbers_from_table::<T>(column_name, table_name, engine.clone()).await;
let expected_value = numbers.iter().map(|&n| n.as_()).collect::<Vec<f64>>();
let mean = expected_value.clone().mean();
let stddev = expected_value.std_dev();
let n = Normal::new(mean, stddev).unwrap();
let expected_value = n.pdf(2.0);
assert_eq!(value, expected_value.into());
Ok(())
}

View File

@@ -34,11 +34,11 @@ use crate::error::{
};
use crate::http::HttpRecordsOutput;
use crate::metrics::METRIC_JAEGER_QUERY_ELAPSED;
use crate::otlp::trace::{
use crate::otlp::trace::v0::{
DURATION_NANO_COLUMN, SERVICE_NAME_COLUMN, SPAN_ATTRIBUTES_COLUMN, SPAN_ID_COLUMN,
SPAN_KIND_COLUMN, SPAN_KIND_PREFIX, SPAN_NAME_COLUMN, TIMESTAMP_COLUMN, TRACE_ID_COLUMN,
TRACE_TABLE_NAME,
};
use crate::otlp::trace::TRACE_TABLE_NAME;
use crate::query_handler::JaegerQueryHandlerRef;
/// JaegerAPIResponse is the response of Jaeger HTTP API.

View File

@@ -15,12 +15,8 @@
pub mod attributes;
pub mod span;
pub mod v0;
pub mod v1;
use api::v1::RowInsertRequests;
pub use common_catalog::consts::{
PARENT_SPAN_ID_COLUMN, SPAN_ID_COLUMN, SPAN_NAME_COLUMN, TRACE_ID_COLUMN,
};
use opentelemetry_proto::tonic::collector::trace::v1::ExportTraceServiceRequest;
use pipeline::{GreptimePipelineParams, PipelineWay};
use session::context::QueryContextRef;
@@ -30,15 +26,6 @@ use crate::query_handler::PipelineHandlerRef;
pub const TRACE_TABLE_NAME: &str = "opentelemetry_traces";
pub const SERVICE_NAME_COLUMN: &str = "service_name";
pub const TIMESTAMP_COLUMN: &str = "timestamp";
pub const DURATION_NANO_COLUMN: &str = "duration_nano";
pub const SPAN_KIND_COLUMN: &str = "span_kind";
pub const SPAN_ATTRIBUTES_COLUMN: &str = "span_attributes";
/// The span kind prefix in the database.
/// If the span kind is `server`, it will be stored as `SPAN_KIND_SERVER` in the database.
pub const SPAN_KIND_PREFIX: &str = "SPAN_KIND_";
/// Convert SpanTraces to GreptimeDB row insert requests.
/// Returns `InsertRequests` and total number of rows to ingest
pub fn to_grpc_insert_requests(
@@ -58,16 +45,8 @@ pub fn to_grpc_insert_requests(
query_ctx,
pipeline_handler,
),
PipelineWay::OtlpTraceDirectV1 => v1::v1_to_grpc_insert_requests(
request,
pipeline,
pipeline_params,
table_name,
query_ctx,
pipeline_handler,
),
_ => NotSupportedSnafu {
feat: "Unsupported pipeline for trace",
feat: "Unsupported pipeline for logs",
}
.fail(),
}

View File

@@ -128,10 +128,6 @@ impl From<Attributes> for jsonb::Value<'static> {
}
impl Attributes {
pub fn take(self) -> Vec<KeyValue> {
self.0
}
pub fn get_ref(&self) -> &Vec<KeyValue> {
&self.0
}

View File

@@ -16,8 +16,7 @@ use std::fmt::Display;
use common_time::timestamp::Timestamp;
use itertools::Itertools;
use opentelemetry_proto::tonic::collector::trace::v1::ExportTraceServiceRequest;
use opentelemetry_proto::tonic::common::v1::{any_value, InstrumentationScope, KeyValue};
use opentelemetry_proto::tonic::common::v1::{InstrumentationScope, KeyValue};
use opentelemetry_proto::tonic::trace::v1::span::{Event, Link};
use opentelemetry_proto::tonic::trace::v1::{Span, Status};
use serde::Serialize;
@@ -231,51 +230,6 @@ pub fn status_to_string(status: &Option<Status>) -> (String, String) {
}
}
/// Convert OpenTelemetry traces to SpanTraces
///
/// See
/// <https://github.com/open-telemetry/opentelemetry-proto/blob/main/opentelemetry/proto/trace/v1/trace.proto>
/// for data structure of OTLP traces.
pub fn parse(request: ExportTraceServiceRequest) -> TraceSpans {
let span_size = request
.resource_spans
.iter()
.flat_map(|res| res.scope_spans.iter())
.flat_map(|scope| scope.spans.iter())
.count();
let mut spans = Vec::with_capacity(span_size);
for resource_spans in request.resource_spans {
let resource_attrs = resource_spans
.resource
.map(|r| r.attributes)
.unwrap_or_default();
let service_name = resource_attrs
.iter()
.find_or_first(|kv| kv.key == "service.name")
.and_then(|kv| kv.value.clone())
.and_then(|v| match v.value {
Some(any_value::Value::StringValue(s)) => Some(s),
Some(any_value::Value::BytesValue(b)) => {
Some(String::from_utf8_lossy(&b).to_string())
}
_ => None,
});
for scope_spans in resource_spans.scope_spans {
let scope = scope_spans.scope.unwrap_or_default();
for span in scope_spans.spans {
spans.push(parse_span(
service_name.clone(),
&resource_attrs,
&scope,
span,
));
}
}
}
spans
}
#[cfg(test)]
mod tests {
use opentelemetry_proto::tonic::trace::v1::Status;

View File

@@ -15,15 +15,13 @@
use api::v1::value::ValueData;
use api::v1::{ColumnDataType, RowInsertRequests};
use common_grpc::precision::Precision;
use itertools::Itertools;
use opentelemetry_proto::tonic::collector::trace::v1::ExportTraceServiceRequest;
use opentelemetry_proto::tonic::common::v1::any_value;
use pipeline::{GreptimePipelineParams, PipelineWay};
use session::context::QueryContextRef;
use super::span::{parse, TraceSpan};
use super::{
DURATION_NANO_COLUMN, PARENT_SPAN_ID_COLUMN, SERVICE_NAME_COLUMN, SPAN_ATTRIBUTES_COLUMN,
SPAN_ID_COLUMN, SPAN_KIND_COLUMN, SPAN_NAME_COLUMN, TIMESTAMP_COLUMN, TRACE_ID_COLUMN,
};
use super::span::{parse_span, TraceSpan, TraceSpans};
use crate::error::Result;
use crate::otlp::utils::{make_column_data, make_string_column_data};
use crate::query_handler::PipelineHandlerRef;
@@ -31,6 +29,64 @@ use crate::row_writer::{self, MultiTableData, TableData};
const APPROXIMATE_COLUMN_COUNT: usize = 24;
pub const SERVICE_NAME_COLUMN: &str = "service_name";
pub const TRACE_ID_COLUMN: &str = "trace_id";
pub const TIMESTAMP_COLUMN: &str = "timestamp";
pub const DURATION_NANO_COLUMN: &str = "duration_nano";
pub const SPAN_ID_COLUMN: &str = "span_id";
pub const SPAN_NAME_COLUMN: &str = "span_name";
pub const SPAN_KIND_COLUMN: &str = "span_kind";
pub const SPAN_ATTRIBUTES_COLUMN: &str = "span_attributes";
/// The span kind prefix in the database.
/// If the span kind is `server`, it will be stored as `SPAN_KIND_SERVER` in the database.
pub const SPAN_KIND_PREFIX: &str = "SPAN_KIND_";
/// Convert OpenTelemetry traces to SpanTraces
///
/// See
/// <https://github.com/open-telemetry/opentelemetry-proto/blob/main/opentelemetry/proto/trace/v1/trace.proto>
/// for data structure of OTLP traces.
pub fn parse(request: ExportTraceServiceRequest) -> TraceSpans {
let span_size = request
.resource_spans
.iter()
.flat_map(|res| res.scope_spans.iter())
.flat_map(|scope| scope.spans.iter())
.count();
let mut spans = Vec::with_capacity(span_size);
for resource_spans in request.resource_spans {
let resource_attrs = resource_spans
.resource
.map(|r| r.attributes)
.unwrap_or_default();
let service_name = resource_attrs
.iter()
.find_or_first(|kv| kv.key == "service.name")
.and_then(|kv| kv.value.clone())
.and_then(|v| match v.value {
Some(any_value::Value::StringValue(s)) => Some(s),
Some(any_value::Value::BytesValue(b)) => {
Some(String::from_utf8_lossy(&b).to_string())
}
_ => None,
});
for scope_spans in resource_spans.scope_spans {
let scope = scope_spans.scope.unwrap_or_default();
for span in scope_spans.spans {
spans.push(parse_span(
service_name.clone(),
&resource_attrs,
&scope,
span,
));
}
}
}
spans
}
/// Convert SpanTraces to GreptimeDB row insert requests.
/// Returns `InsertRequests` and total number of rows to ingest
pub fn v0_to_grpc_insert_requests(
@@ -62,7 +118,7 @@ pub fn write_span_to_row(writer: &mut TableData, span: TraceSpan) -> Result<()>
// write ts
row_writer::write_ts_to_nanos(
writer,
TIMESTAMP_COLUMN,
"timestamp",
Some(span.start_in_nanosecond as i64),
Precision::Nanosecond,
&mut row,
@@ -75,7 +131,7 @@ pub fn write_span_to_row(writer: &mut TableData, span: TraceSpan) -> Result<()>
ValueData::TimestampNanosecondValue(span.end_in_nanosecond as i64),
),
make_column_data(
DURATION_NANO_COLUMN,
"duration_nano",
ColumnDataType::Uint64,
ValueData::U64Value(span.end_in_nanosecond - span.start_in_nanosecond),
),
@@ -83,14 +139,14 @@ pub fn write_span_to_row(writer: &mut TableData, span: TraceSpan) -> Result<()>
row_writer::write_fields(writer, fields.into_iter(), &mut row)?;
if let Some(service_name) = span.service_name {
row_writer::write_tag(writer, SERVICE_NAME_COLUMN, service_name, &mut row)?;
row_writer::write_tag(writer, "service_name", service_name, &mut row)?;
}
// tags
let iter = vec![
(TRACE_ID_COLUMN, span.trace_id),
(SPAN_ID_COLUMN, span.span_id),
(PARENT_SPAN_ID_COLUMN, span.parent_span_id),
("trace_id", span.trace_id),
("span_id", span.span_id),
("parent_span_id", span.parent_span_id),
]
.into_iter()
.map(|(col, val)| (col.to_string(), val));
@@ -98,8 +154,8 @@ pub fn write_span_to_row(writer: &mut TableData, span: TraceSpan) -> Result<()>
// write fields
let fields = vec![
make_string_column_data(SPAN_KIND_COLUMN, span.span_kind),
make_string_column_data(SPAN_NAME_COLUMN, span.span_name),
make_string_column_data("span_kind", span.span_kind),
make_string_column_data("span_name", span.span_name),
make_string_column_data("span_status_code", span.span_status_code),
make_string_column_data("span_status_message", span.span_status_message),
make_string_column_data("trace_state", span.trace_state),
@@ -108,7 +164,7 @@ pub fn write_span_to_row(writer: &mut TableData, span: TraceSpan) -> Result<()>
row_writer::write_json(
writer,
SPAN_ATTRIBUTES_COLUMN,
"span_attributes",
span.span_attributes.into(),
&mut row,
)?;

View File

@@ -1,226 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use api::v1::value::ValueData;
use api::v1::{ColumnDataType, RowInsertRequests, Value};
use common_grpc::precision::Precision;
use opentelemetry_proto::tonic::collector::trace::v1::ExportTraceServiceRequest;
use opentelemetry_proto::tonic::common::v1::any_value::Value as OtlpValue;
use pipeline::{GreptimePipelineParams, PipelineWay};
use session::context::QueryContextRef;
use super::attributes::Attributes;
use super::span::{parse, TraceSpan};
use super::{
DURATION_NANO_COLUMN, PARENT_SPAN_ID_COLUMN, SERVICE_NAME_COLUMN, SPAN_ID_COLUMN,
SPAN_KIND_COLUMN, SPAN_NAME_COLUMN, TIMESTAMP_COLUMN, TRACE_ID_COLUMN,
};
use crate::error::Result;
use crate::otlp::utils::{any_value_to_jsonb, make_column_data, make_string_column_data};
use crate::query_handler::PipelineHandlerRef;
use crate::row_writer::{self, MultiTableData, TableData};
const APPROXIMATE_COLUMN_COUNT: usize = 30;
/// Convert SpanTraces to GreptimeDB row insert requests.
/// Returns `InsertRequests` and total number of rows to ingest
///
/// Compared with v0, this v1 implementation:
/// 1. flattens all attribute data into columns.
/// 2. treat `span_id` and `parent_trace_id` as fields.
/// 3. removed `service_name` column because it's already in
/// `resource_attributes.service_name`
///
/// For other compound data structures like span_links and span_events here we
/// are still using `json` data structure.
pub fn v1_to_grpc_insert_requests(
request: ExportTraceServiceRequest,
_pipeline: PipelineWay,
_pipeline_params: GreptimePipelineParams,
table_name: String,
_query_ctx: &QueryContextRef,
_pipeline_handler: PipelineHandlerRef,
) -> Result<(RowInsertRequests, usize)> {
let spans = parse(request);
let mut multi_table_writer = MultiTableData::default();
let one_table_writer = multi_table_writer.get_or_default_table_data(
table_name,
APPROXIMATE_COLUMN_COUNT,
spans.len(),
);
for span in spans {
write_span_to_row(one_table_writer, span)?;
}
Ok(multi_table_writer.into_row_insert_requests())
}
pub fn write_span_to_row(writer: &mut TableData, span: TraceSpan) -> Result<()> {
let mut row = writer.alloc_one_row();
// write ts
row_writer::write_ts_to_nanos(
writer,
TIMESTAMP_COLUMN,
Some(span.start_in_nanosecond as i64),
Precision::Nanosecond,
&mut row,
)?;
// write ts fields
let fields = vec![
make_column_data(
"timestamp_end",
ColumnDataType::TimestampNanosecond,
ValueData::TimestampNanosecondValue(span.end_in_nanosecond as i64),
),
make_column_data(
DURATION_NANO_COLUMN,
ColumnDataType::Uint64,
ValueData::U64Value(span.end_in_nanosecond - span.start_in_nanosecond),
),
];
row_writer::write_fields(writer, fields.into_iter(), &mut row)?;
// tags
let tags = vec![
(TRACE_ID_COLUMN.to_string(), span.trace_id),
(SPAN_ID_COLUMN.to_string(), span.span_id),
];
row_writer::write_tags(writer, tags.into_iter(), &mut row)?;
// write fields
let fields = vec![
make_string_column_data(PARENT_SPAN_ID_COLUMN, span.parent_span_id),
make_string_column_data(SPAN_KIND_COLUMN, span.span_kind),
make_string_column_data(SPAN_NAME_COLUMN, span.span_name),
make_string_column_data("span_status_code", span.span_status_code),
make_string_column_data("span_status_message", span.span_status_message),
make_string_column_data("trace_state", span.trace_state),
make_string_column_data("scope_name", span.scope_name),
make_string_column_data("scope_version", span.scope_version),
];
row_writer::write_fields(writer, fields.into_iter(), &mut row)?;
if let Some(service_name) = span.service_name {
row_writer::write_fields(
writer,
std::iter::once(make_string_column_data(SERVICE_NAME_COLUMN, service_name)),
&mut row,
)?;
}
write_attributes(writer, "span_attributes", span.span_attributes, &mut row)?;
write_attributes(writer, "scope_attributes", span.scope_attributes, &mut row)?;
write_attributes(
writer,
"resource_attributes",
span.resource_attributes,
&mut row,
)?;
row_writer::write_json(writer, "span_events", span.span_events.into(), &mut row)?;
row_writer::write_json(writer, "span_links", span.span_links.into(), &mut row)?;
writer.add_row(row);
Ok(())
}
fn write_attributes(
writer: &mut TableData,
prefix: &str,
attributes: Attributes,
row: &mut Vec<Value>,
) -> Result<()> {
for attr in attributes.take().into_iter() {
let key_suffix = attr.key;
// skip resource_attributes.service.name because its already copied to
// top level as `SERVICE_NAME_COLUMN`
if prefix == "resource_attributes" && key_suffix == "service.name" {
continue;
}
let key = format!("{}.{}", prefix, key_suffix);
match attr.value.and_then(|v| v.value) {
Some(OtlpValue::StringValue(v)) => {
row_writer::write_fields(
writer,
std::iter::once(make_string_column_data(&key, v)),
row,
)?;
}
Some(OtlpValue::BoolValue(v)) => {
row_writer::write_fields(
writer,
std::iter::once(make_column_data(
&key,
ColumnDataType::Boolean,
ValueData::BoolValue(v),
)),
row,
)?;
}
Some(OtlpValue::IntValue(v)) => {
row_writer::write_fields(
writer,
std::iter::once(make_column_data(
&key,
ColumnDataType::Int64,
ValueData::I64Value(v),
)),
row,
)?;
}
Some(OtlpValue::DoubleValue(v)) => {
row_writer::write_fields(
writer,
std::iter::once(make_column_data(
&key,
ColumnDataType::Float64,
ValueData::F64Value(v),
)),
row,
)?;
}
Some(OtlpValue::ArrayValue(v)) => row_writer::write_json(
writer,
key,
any_value_to_jsonb(OtlpValue::ArrayValue(v)),
row,
)?,
Some(OtlpValue::KvlistValue(v)) => row_writer::write_json(
writer,
key,
any_value_to_jsonb(OtlpValue::KvlistValue(v)),
row,
)?,
Some(OtlpValue::BytesValue(v)) => {
row_writer::write_fields(
writer,
std::iter::once(make_column_data(
&key,
ColumnDataType::Binary,
ValueData::BinaryValue(v),
)),
row,
)?;
}
None => {}
}
}
Ok(())
}

View File

@@ -22,7 +22,6 @@ pub mod dialect;
pub mod error;
pub mod parser;
pub mod parsers;
pub mod partition;
pub mod statements;
pub mod util;

View File

@@ -2475,13 +2475,4 @@ CREATE TABLE log (
assert!(extensions.fulltext_index_options.is_some());
}
}
#[test]
fn test_parse_interval_cast() {
let s = "select '10s'::INTERVAL";
let stmts =
ParserContext::create_with_dialect(s, &GreptimeDbDialect {}, ParseOptions::default())
.unwrap();
assert_eq!("SELECT '10 seconds'::INTERVAL", &stmts[0].to_string());
}
}

View File

@@ -1,165 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use sqlparser::ast::{BinaryOperator, Expr, Ident, Value};
use crate::statements::create::Partitions;
macro_rules! between_string {
($col: expr, $left_incl: expr, $right_excl: expr) => {
Expr::BinaryOp {
op: BinaryOperator::And,
left: Box::new(Expr::BinaryOp {
op: BinaryOperator::GtEq,
left: Box::new($col.clone()),
right: Box::new(Expr::Value(Value::SingleQuotedString(
$left_incl.to_string(),
))),
}),
right: Box::new(Expr::BinaryOp {
op: BinaryOperator::Lt,
left: Box::new($col.clone()),
right: Box::new(Expr::Value(Value::SingleQuotedString(
$right_excl.to_string(),
))),
}),
}
};
}
macro_rules! or {
($left: expr, $right: expr) => {
Expr::BinaryOp {
op: BinaryOperator::Or,
left: Box::new($left),
right: Box::new($right),
}
};
}
pub fn partition_rule_for_hexstring(ident: &str) -> Partitions {
let ident = Ident::new(ident);
let ident_expr = Expr::Identifier(ident.clone());
// rules are like:
//
// "trace_id < '1'",
// "trace_id >= '1' AND trace_id < '2'",
// "trace_id >= '2' AND trace_id < '3'",
// "trace_id >= '3' AND trace_id < '4'",
// "trace_id >= '4' AND trace_id < '5'",
// "trace_id >= '5' AND trace_id < '6'",
// "trace_id >= '6' AND trace_id < '7'",
// "trace_id >= '7' AND trace_id < '8'",
// "trace_id >= '8' AND trace_id < '9'",
// "trace_id >= '9' AND trace_id < 'A'",
// "trace_id >= 'A' AND trace_id < 'B' OR trace_id >= 'a' AND trace_id < 'b'",
// "trace_id >= 'B' AND trace_id < 'C' OR trace_id >= 'b' AND trace_id < 'c'",
// "trace_id >= 'C' AND trace_id < 'D' OR trace_id >= 'c' AND trace_id < 'd'",
// "trace_id >= 'D' AND trace_id < 'E' OR trace_id >= 'd' AND trace_id < 'e'",
// "trace_id >= 'E' AND trace_id < 'F' OR trace_id >= 'e' AND trace_id < 'f'",
// "trace_id >= 'F' AND trace_id < 'a' OR trace_id >= 'f'",
let rules = vec![
Expr::BinaryOp {
left: Box::new(ident_expr.clone()),
op: BinaryOperator::Lt,
right: Box::new(Expr::Value(Value::SingleQuotedString("1".to_string()))),
},
// [left, right)
between_string!(ident_expr, "1", "2"),
between_string!(ident_expr, "2", "3"),
between_string!(ident_expr, "3", "4"),
between_string!(ident_expr, "4", "5"),
between_string!(ident_expr, "5", "6"),
between_string!(ident_expr, "6", "7"),
between_string!(ident_expr, "7", "8"),
between_string!(ident_expr, "8", "9"),
between_string!(ident_expr, "9", "A"),
or!(
between_string!(ident_expr, "A", "B"),
between_string!(ident_expr, "a", "b")
),
or!(
between_string!(ident_expr, "B", "C"),
between_string!(ident_expr, "b", "c")
),
or!(
between_string!(ident_expr, "C", "D"),
between_string!(ident_expr, "c", "d")
),
or!(
between_string!(ident_expr, "D", "E"),
between_string!(ident_expr, "d", "e")
),
or!(
between_string!(ident_expr, "E", "F"),
between_string!(ident_expr, "e", "f")
),
or!(
between_string!(ident_expr, "F", "a"),
Expr::BinaryOp {
left: Box::new(ident_expr.clone()),
op: BinaryOperator::GtEq,
right: Box::new(Expr::Value(Value::SingleQuotedString("f".to_string()))),
}
),
];
Partitions {
column_list: vec![ident],
exprs: rules,
}
}
#[cfg(test)]
mod tests {
use sqlparser::ast::Expr;
use sqlparser::dialect::GenericDialect;
use sqlparser::parser::Parser;
use super::*;
#[test]
fn test_rules() {
let expr = vec![
"trace_id < '1'",
"trace_id >= '1' AND trace_id < '2'",
"trace_id >= '2' AND trace_id < '3'",
"trace_id >= '3' AND trace_id < '4'",
"trace_id >= '4' AND trace_id < '5'",
"trace_id >= '5' AND trace_id < '6'",
"trace_id >= '6' AND trace_id < '7'",
"trace_id >= '7' AND trace_id < '8'",
"trace_id >= '8' AND trace_id < '9'",
"trace_id >= '9' AND trace_id < 'A'",
"trace_id >= 'A' AND trace_id < 'B' OR trace_id >= 'a' AND trace_id < 'b'",
"trace_id >= 'B' AND trace_id < 'C' OR trace_id >= 'b' AND trace_id < 'c'",
"trace_id >= 'C' AND trace_id < 'D' OR trace_id >= 'c' AND trace_id < 'd'",
"trace_id >= 'D' AND trace_id < 'E' OR trace_id >= 'd' AND trace_id < 'e'",
"trace_id >= 'E' AND trace_id < 'F' OR trace_id >= 'e' AND trace_id < 'f'",
"trace_id >= 'F' AND trace_id < 'a' OR trace_id >= 'f'",
];
let dialect = GenericDialect {};
let results = expr
.into_iter()
.map(|s| {
let mut parser = Parser::new(&dialect).try_with_sql(s).unwrap();
parser.parse_expr().unwrap()
})
.collect::<Vec<Expr>>();
assert_eq!(results, partition_rule_for_hexstring("trace_id").exprs);
}
}

View File

@@ -99,21 +99,15 @@ impl TransformRule for ExpandIntervalTransformRule {
Expr::Cast {
expr: cast_exp,
data_type,
kind,
format,
..
} => {
if DataType::Interval == *data_type {
match &**cast_exp {
Expr::Value(Value::SingleQuotedString(value))
| Expr::Value(Value::DoubleQuotedString(value)) => {
let interval_value =
let interval_name =
normalize_interval_name(value).unwrap_or_else(|| value.to_string());
*expr = Expr::Cast {
kind: kind.clone(),
expr: single_quoted_string_expr(interval_value),
data_type: DataType::Interval,
format: std::mem::take(format),
}
*expr = create_interval(single_quoted_string_expr(interval_name));
}
_ => {}
}
@@ -129,6 +123,16 @@ fn single_quoted_string_expr(string: String) -> Box<Expr> {
Box::new(Expr::Value(Value::SingleQuotedString(string)))
}
fn create_interval(value: Box<Expr>) -> Expr {
Expr::Interval(Interval {
value,
leading_field: None,
leading_precision: None,
last_field: None,
fractional_seconds_precision: None,
})
}
fn update_existing_interval_with_value(interval: &Interval, value: Box<Expr>) -> Expr {
Expr::Interval(Interval {
value,
@@ -195,23 +199,14 @@ fn expand_interval_abbreviation(interval_str: &str) -> Option<String> {
mod tests {
use std::ops::ControlFlow;
use sqlparser::ast::{BinaryOperator, CastKind, DataType, Expr, Interval, Value};
use sqlparser::ast::{BinaryOperator, DataType, Expr, Interval, Value};
use crate::statements::transform::expand_interval::{
normalize_interval_name, single_quoted_string_expr, ExpandIntervalTransformRule,
create_interval, normalize_interval_name, single_quoted_string_expr,
ExpandIntervalTransformRule,
};
use crate::statements::transform::TransformRule;
fn create_interval(value: Box<Expr>) -> Expr {
Expr::Interval(Interval {
value,
leading_field: None,
leading_precision: None,
last_field: None,
fractional_seconds_precision: None,
})
}
#[test]
fn test_transform_interval_basic_conversions() {
let test_cases = vec![
@@ -384,14 +379,15 @@ mod tests {
assert_eq!(control_flow, ControlFlow::Continue(()));
assert_eq!(
cast_to_interval_expr,
Expr::Cast {
kind: CastKind::Cast,
expr: Box::new(Expr::Value(Value::SingleQuotedString(
Expr::Interval(Interval {
value: Box::new(Expr::Value(Value::SingleQuotedString(
"3 years 2 months".to_string()
))),
data_type: DataType::Interval,
format: None,
}
leading_field: None,
leading_precision: None,
last_field: None,
fractional_seconds_precision: None,
})
);
let mut cast_to_i64_expr = Expr::Cast {

View File

@@ -40,7 +40,7 @@ use common_procedure::options::ProcedureConfig;
use common_procedure::ProcedureManagerRef;
use common_wal::config::{DatanodeWalConfig, MetasrvWalConfig};
use datanode::datanode::DatanodeBuilder;
use flow::{FlownodeBuilder, FrontendClient};
use flow::FlownodeBuilder;
use frontend::instance::builder::FrontendBuilder;
use frontend::instance::{FrontendInstance, Instance, StandaloneDatanodeManager};
use meta_srv::metasrv::{FLOW_ID_SEQ, TABLE_ID_SEQ};
@@ -164,15 +164,12 @@ impl GreptimeDbStandaloneBuilder {
Some(procedure_manager.clone()),
);
let fe_server_addr = opts.frontend_options().grpc.bind_addr.clone();
let frontend_client = FrontendClient::from_static_grpc_addr(fe_server_addr);
let flow_builder = FlownodeBuilder::new(
Default::default(),
plugins.clone(),
table_metadata_manager.clone(),
catalog_manager.clone(),
flow_metadata_manager.clone(),
Arc::new(frontend_client),
);
let flownode = Arc::new(flow_builder.build().await.unwrap());

View File

@@ -96,8 +96,7 @@ macro_rules! http_tests {
test_pipeline_dispatcher,
test_otlp_metrics,
test_otlp_traces_v0,
test_otlp_traces_v1,
test_otlp_traces,
test_otlp_logs,
test_loki_pb_logs,
test_loki_json_logs,
@@ -1321,7 +1320,7 @@ transform:
// 3. check schema
let expected_schema = "[[\"logs1\",\"CREATE TABLE IF NOT EXISTS \\\"logs1\\\" (\\n \\\"id1\\\" INT NULL,\\n \\\"id2\\\" INT NULL,\\n \\\"logger\\\" STRING NULL,\\n \\\"type\\\" STRING NULL SKIPPING INDEX WITH(granularity = '10240', type = 'BLOOM'),\\n \\\"log\\\" STRING NULL FULLTEXT INDEX WITH(analyzer = 'English', case_sensitive = 'false'),\\n \\\"time\\\" TIMESTAMP(9) NOT NULL,\\n TIME INDEX (\\\"time\\\")\\n)\\n\\nENGINE=mito\\nWITH(\\n append_mode = 'true'\\n)\"]]";
let expected_schema = "[[\"logs1\",\"CREATE TABLE IF NOT EXISTS \\\"logs1\\\" (\\n \\\"id1\\\" INT NULL,\\n \\\"id2\\\" INT NULL,\\n \\\"logger\\\" STRING NULL,\\n \\\"type\\\" STRING NULL SKIPPING INDEX WITH(granularity = '0', type = 'BLOOM'),\\n \\\"log\\\" STRING NULL FULLTEXT INDEX WITH(analyzer = 'English', case_sensitive = 'false'),\\n \\\"time\\\" TIMESTAMP(9) NOT NULL,\\n TIME INDEX (\\\"time\\\")\\n)\\n\\nENGINE=mito\\nWITH(\\n append_mode = 'true'\\n)\"]]";
validate_data(
"pipeline_schema",
&client,
@@ -2054,7 +2053,7 @@ pub async fn test_otlp_metrics(store_type: StorageType) {
guard.remove_all().await;
}
pub async fn test_otlp_traces_v0(store_type: StorageType) {
pub async fn test_otlp_traces(store_type: StorageType) {
// init
common_telemetry::init_default_ut_logging();
let (app, mut guard) = setup_test_http_app_with_frontend(store_type, "test_otlp_traces").await;
@@ -2126,99 +2125,6 @@ pub async fn test_otlp_traces_v0(store_type: StorageType) {
guard.remove_all().await;
}
pub async fn test_otlp_traces_v1(store_type: StorageType) {
// init
common_telemetry::init_default_ut_logging();
let (app, mut guard) = setup_test_http_app_with_frontend(store_type, "test_otlp_traces").await;
const TRACE_V1: &str = "greptime_trace_v1";
let content = r#"
{"resourceSpans":[{"resource":{"attributes":[{"key":"service.name","value":{"stringValue":"telemetrygen"}}],"droppedAttributesCount":0},"scopeSpans":[{"scope":{"name":"telemetrygen","version":"","attributes":[],"droppedAttributesCount":0},"spans":[{"traceId":"c05d7a4ec8e1f231f02ed6e8da8655b4","spanId":"9630f2916e2f7909","traceState":"","parentSpanId":"d24f921c75f68e23","flags":256,"name":"okey-dokey-0","kind":2,"startTimeUnixNano":"1736480942444376000","endTimeUnixNano":"1736480942444499000","attributes":[{"key":"net.peer.ip","value":{"stringValue":"1.2.3.4"}},{"key":"peer.service","value":{"stringValue":"telemetrygen-client"}}],"droppedAttributesCount":0,"events":[],"droppedEventsCount":0,"links":[],"droppedLinksCount":0,"status":{"message":"","code":0}},{"traceId":"c05d7a4ec8e1f231f02ed6e8da8655b4","spanId":"d24f921c75f68e23","traceState":"","parentSpanId":"","flags":256,"name":"lets-go","kind":3,"startTimeUnixNano":"1736480942444376000","endTimeUnixNano":"1736480942444499000","attributes":[{"key":"net.peer.ip","value":{"stringValue":"1.2.3.4"}},{"key":"peer.service","value":{"stringValue":"telemetrygen-server"}}],"droppedAttributesCount":0,"events":[],"droppedEventsCount":0,"links":[],"droppedLinksCount":0,"status":{"message":"","code":0}},{"traceId":"cc9e0991a2e63d274984bd44ee669203","spanId":"8f847259b0f6e1ab","traceState":"","parentSpanId":"eba7be77e3558179","flags":256,"name":"okey-dokey-0","kind":2,"startTimeUnixNano":"1736480942444589000","endTimeUnixNano":"1736480942444712000","attributes":[{"key":"net.peer.ip","value":{"stringValue":"1.2.3.4"}},{"key":"peer.service","value":{"stringValue":"telemetrygen-client"}}],"droppedAttributesCount":0,"events":[],"droppedEventsCount":0,"links":[],"droppedLinksCount":0,"status":{"message":"","code":0}},{"traceId":"cc9e0991a2e63d274984bd44ee669203","spanId":"eba7be77e3558179","traceState":"","parentSpanId":"","flags":256,"name":"lets-go","kind":3,"startTimeUnixNano":"1736480942444589000","endTimeUnixNano":"1736480942444712000","attributes":[{"key":"net.peer.ip","value":{"stringValue":"1.2.3.4"}},{"key":"peer.service","value":{"stringValue":"telemetrygen-server"}}],"droppedAttributesCount":0,"events":[],"droppedEventsCount":0,"links":[],"droppedLinksCount":0,"status":{"message":"","code":0}}],"schemaUrl":""}],"schemaUrl":"https://opentelemetry.io/schemas/1.4.0"}]}
"#;
let req: ExportTraceServiceRequest = serde_json::from_str(content).unwrap();
let body = req.encode_to_vec();
// handshake
let client = TestClient::new(app).await;
// write traces data
let res = send_req(
&client,
vec![
(
HeaderName::from_static("content-type"),
HeaderValue::from_static("application/x-protobuf"),
),
(
HeaderName::from_static("x-greptime-log-pipeline-name"),
HeaderValue::from_static(TRACE_V1),
),
(
HeaderName::from_static("x-greptime-trace-table-name"),
HeaderValue::from_static("mytable"),
),
],
"/v1/otlp/v1/traces",
body.clone(),
false,
)
.await;
assert_eq!(StatusCode::OK, res.status());
// select traces data
let expected = r#"[[1736480942444376000,1736480942444499000,123000,"c05d7a4ec8e1f231f02ed6e8da8655b4","9630f2916e2f7909","d24f921c75f68e23","SPAN_KIND_SERVER","okey-dokey-0","STATUS_CODE_UNSET","","","telemetrygen","","telemetrygen","1.2.3.4","telemetrygen-client",[],[]],[1736480942444376000,1736480942444499000,123000,"c05d7a4ec8e1f231f02ed6e8da8655b4","d24f921c75f68e23","","SPAN_KIND_CLIENT","lets-go","STATUS_CODE_UNSET","","","telemetrygen","","telemetrygen","1.2.3.4","telemetrygen-server",[],[]],[1736480942444589000,1736480942444712000,123000,"cc9e0991a2e63d274984bd44ee669203","8f847259b0f6e1ab","eba7be77e3558179","SPAN_KIND_SERVER","okey-dokey-0","STATUS_CODE_UNSET","","","telemetrygen","","telemetrygen","1.2.3.4","telemetrygen-client",[],[]],[1736480942444589000,1736480942444712000,123000,"cc9e0991a2e63d274984bd44ee669203","eba7be77e3558179","","SPAN_KIND_CLIENT","lets-go","STATUS_CODE_UNSET","","","telemetrygen","","telemetrygen","1.2.3.4","telemetrygen-server",[],[]]]"#;
validate_data("otlp_traces", &client, "select * from mytable;", expected).await;
let expected_ddl = r#"[["mytable","CREATE TABLE IF NOT EXISTS \"mytable\" (\n \"timestamp\" TIMESTAMP(9) NOT NULL,\n \"timestamp_end\" TIMESTAMP(9) NULL,\n \"duration_nano\" BIGINT UNSIGNED NULL,\n \"trace_id\" STRING NULL SKIPPING INDEX WITH(granularity = '10240', type = 'BLOOM'),\n \"span_id\" STRING NULL,\n \"parent_span_id\" STRING NULL SKIPPING INDEX WITH(granularity = '10240', type = 'BLOOM'),\n \"span_kind\" STRING NULL,\n \"span_name\" STRING NULL SKIPPING INDEX WITH(granularity = '10240', type = 'BLOOM'),\n \"span_status_code\" STRING NULL,\n \"span_status_message\" STRING NULL,\n \"trace_state\" STRING NULL,\n \"scope_name\" STRING NULL,\n \"scope_version\" STRING NULL,\n \"service_name\" STRING NULL,\n \"span_attributes.net.peer.ip\" STRING NULL,\n \"span_attributes.peer.service\" STRING NULL,\n \"span_events\" JSON NULL,\n \"span_links\" JSON NULL,\n TIME INDEX (\"timestamp\"),\n PRIMARY KEY (\"trace_id\", \"span_id\")\n)\nPARTITION ON COLUMNS (\"trace_id\") (\n trace_id < '1',\n trace_id >= '1' AND trace_id < '2',\n trace_id >= '2' AND trace_id < '3',\n trace_id >= '3' AND trace_id < '4',\n trace_id >= '4' AND trace_id < '5',\n trace_id >= '5' AND trace_id < '6',\n trace_id >= '6' AND trace_id < '7',\n trace_id >= '7' AND trace_id < '8',\n trace_id >= '8' AND trace_id < '9',\n trace_id >= '9' AND trace_id < 'A',\n trace_id >= 'A' AND trace_id < 'B' OR trace_id >= 'a' AND trace_id < 'b',\n trace_id >= 'B' AND trace_id < 'C' OR trace_id >= 'b' AND trace_id < 'c',\n trace_id >= 'C' AND trace_id < 'D' OR trace_id >= 'c' AND trace_id < 'd',\n trace_id >= 'D' AND trace_id < 'E' OR trace_id >= 'd' AND trace_id < 'e',\n trace_id >= 'E' AND trace_id < 'F' OR trace_id >= 'e' AND trace_id < 'f',\n trace_id >= 'F' AND trace_id < 'a' OR trace_id >= 'f'\n)\nENGINE=mito\nWITH(\n append_mode = 'true'\n)"]]"#;
validate_data(
"otlp_traces",
&client,
"show create table mytable;",
expected_ddl,
)
.await;
// drop table
let res = client.get("/v1/sql?sql=drop table mytable;").send().await;
assert_eq!(res.status(), StatusCode::OK);
// write traces data with gzip
let res = send_req(
&client,
vec![
(
HeaderName::from_static("content-type"),
HeaderValue::from_static("application/x-protobuf"),
),
(
HeaderName::from_static("x-greptime-log-pipeline-name"),
HeaderValue::from_static(TRACE_V1),
),
(
HeaderName::from_static("x-greptime-trace-table-name"),
HeaderValue::from_static("mytable"),
),
],
"/v1/otlp/v1/traces",
body.clone(),
true,
)
.await;
assert_eq!(StatusCode::OK, res.status());
// select traces data again
validate_data(
"otlp_traces_with_gzip",
&client,
"select * from mytable;",
expected,
)
.await;
guard.remove_all().await;
}
pub async fn test_otlp_logs(store_type: StorageType) {
common_telemetry::init_default_ut_logging();
let (app, mut guard) = setup_test_http_app_with_frontend(store_type, "test_otlp_logs").await;

View File

@@ -25,11 +25,11 @@ SELECT INTERVAL '-2 months';
SELECT '3 hours'::INTERVAL;
+-----------------+
| Utf8("3 hours") |
+-----------------+
| 3 hours |
+-----------------+
+--------------------------------------------------------------------------------------------------+
| IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 10800000000000 }") |
+--------------------------------------------------------------------------------------------------+
| 3 hours |
+--------------------------------------------------------------------------------------------------+
SELECT INTERVAL '1 year 2 months 3 days 4 hours' + INTERVAL '1 year';
@@ -128,11 +128,11 @@ SELECT INTERVAL '1y2w3d4h';
SELECT '3y2mon'::INTERVAL;
+--------------------------+
| Utf8("3 years 2 months") |
+--------------------------+
| 38 mons |
+--------------------------+
+--------------------------------------------------------------------------------------+
| IntervalMonthDayNano("IntervalMonthDayNano { months: 38, days: 0, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------+
| 38 mons |
+--------------------------------------------------------------------------------------+
SELECT INTERVAL '7 days' - INTERVAL '1d';
@@ -169,11 +169,11 @@ SELECT INTERVAL '-P3Y3M700DT133H17M36.789S';
SELECT 'P3Y3M700DT133H17M36.789S'::INTERVAL;
+---------------------------------------+
| Utf8("163343856789 milliseconds") |
+---------------------------------------+
| 45373 hours 17 mins 36.789000000 secs |
+---------------------------------------+
+------------------------------------------------------------------------------------------------------+
| IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 0, nanoseconds: 163343856789000000 }") |
+------------------------------------------------------------------------------------------------------+
| 45373 hours 17 mins 36.789000000 secs |
+------------------------------------------------------------------------------------------------------+
SELECT INTERVAL '2h' + INTERVAL 'P3Y3M700DT133H17M36.789S';
@@ -185,115 +185,115 @@ SELECT INTERVAL '2h' + INTERVAL 'P3Y3M700DT133H17M36.789S';
select '2022-01-01T00:00:01'::timestamp + '1 days'::interval;
+-----------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + Utf8("1 days") |
+-----------------------------------------------------------------------------------------------+
| 2022-01-02T00:00:01 |
+-----------------------------------------------------------------------------------------------+
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 1, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2022-01-02T00:00:01 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2022-01-01T00:00:01'::timestamp + '2 days'::interval;
+-----------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + Utf8("2 days") |
+-----------------------------------------------------------------------------------------------+
| 2022-01-03T00:00:01 |
+-----------------------------------------------------------------------------------------------+
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 2, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2022-01-03T00:00:01 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2022-01-01T00:00:01'::timestamp - '1 days'::interval;
+-----------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) - Utf8("1 days") |
+-----------------------------------------------------------------------------------------------+
| 2021-12-31T00:00:01 |
+-----------------------------------------------------------------------------------------------+
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) - IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 1, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2021-12-31T00:00:01 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2022-01-01T00:00:01'::timestamp - '2 days'::interval;
+-----------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) - Utf8("2 days") |
+-----------------------------------------------------------------------------------------------+
| 2021-12-30T00:00:01 |
+-----------------------------------------------------------------------------------------------+
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) - IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 2, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2021-12-30T00:00:01 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2022-01-01T00:00:01'::timestamp + '1 month'::interval;
+------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + Utf8("1 month") |
+------------------------------------------------------------------------------------------------+
| 2022-02-01T00:00:01 |
+------------------------------------------------------------------------------------------------+
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + IntervalMonthDayNano("IntervalMonthDayNano { months: 1, days: 0, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2022-02-01T00:00:01 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2022-01-01T00:00:01'::timestamp + '2 months'::interval;
+-------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + Utf8("2 months") |
+-------------------------------------------------------------------------------------------------+
| 2022-03-01T00:00:01 |
+-------------------------------------------------------------------------------------------------+
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + IntervalMonthDayNano("IntervalMonthDayNano { months: 2, days: 0, nanoseconds: 0 }") |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2022-03-01T00:00:01 |
+--------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2022-01-01T00:00:01'::timestamp + '1 year'::interval;
+-----------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + Utf8("1 year") |
+-----------------------------------------------------------------------------------------------+
| 2023-01-01T00:00:01 |
+-----------------------------------------------------------------------------------------------+
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2022-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + IntervalMonthDayNano("IntervalMonthDayNano { months: 12, days: 0, nanoseconds: 0 }") |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2023-01-01T00:00:01 |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
select '2023-01-01T00:00:01'::timestamp + '2 years'::interval;
+------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2023-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + Utf8("2 years") |
+------------------------------------------------------------------------------------------------+
| 2025-01-01T00:00:01 |
+------------------------------------------------------------------------------------------------+
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| arrow_cast(Utf8("2023-01-01T00:00:01"),Utf8("Timestamp(Millisecond, None)")) + IntervalMonthDayNano("IntervalMonthDayNano { months: 24, days: 0, nanoseconds: 0 }") |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 2025-01-01T00:00:01 |
+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
-- DATE + INTERVAL
SELECT DATE '2000-10-30' + '1 days'::interval;
+-------------------------------------+
| Utf8("2000-10-30") + Utf8("1 days") |
+-------------------------------------+
| 2000-10-31 |
+-------------------------------------+
+----------------------------------------------------------------------------------------------------------+
| Utf8("2000-10-30") + IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 1, nanoseconds: 0 }") |
+----------------------------------------------------------------------------------------------------------+
| 2000-10-31 |
+----------------------------------------------------------------------------------------------------------+
SELECT DATE '2000-10-30' + '2 months'::interval;
+---------------------------------------+
| Utf8("2000-10-30") + Utf8("2 months") |
+---------------------------------------+
| 2000-12-30 |
+---------------------------------------+
+----------------------------------------------------------------------------------------------------------+
| Utf8("2000-10-30") + IntervalMonthDayNano("IntervalMonthDayNano { months: 2, days: 0, nanoseconds: 0 }") |
+----------------------------------------------------------------------------------------------------------+
| 2000-12-30 |
+----------------------------------------------------------------------------------------------------------+
SELECT DATE '2000-10-30' + '2 years'::interval;
+--------------------------------------+
| Utf8("2000-10-30") + Utf8("2 years") |
+--------------------------------------+
| 2002-10-30 |
+--------------------------------------+
+-----------------------------------------------------------------------------------------------------------+
| Utf8("2000-10-30") + IntervalMonthDayNano("IntervalMonthDayNano { months: 24, days: 0, nanoseconds: 0 }") |
+-----------------------------------------------------------------------------------------------------------+
| 2002-10-30 |
+-----------------------------------------------------------------------------------------------------------+
-- DATE - INTERVAL
SELECT DATE '2000-10-30' - '1 days'::interval;
+-------------------------------------+
| Utf8("2000-10-30") - Utf8("1 days") |
+-------------------------------------+
| 2000-10-29 |
+-------------------------------------+
+----------------------------------------------------------------------------------------------------------+
| Utf8("2000-10-30") - IntervalMonthDayNano("IntervalMonthDayNano { months: 0, days: 1, nanoseconds: 0 }") |
+----------------------------------------------------------------------------------------------------------+
| 2000-10-29 |
+----------------------------------------------------------------------------------------------------------+
SELECT DATE '2000-10-30' - '2 months'::interval;
+---------------------------------------+
| Utf8("2000-10-30") - Utf8("2 months") |
+---------------------------------------+
| 2000-08-30 |
+---------------------------------------+
+----------------------------------------------------------------------------------------------------------+
| Utf8("2000-10-30") - IntervalMonthDayNano("IntervalMonthDayNano { months: 2, days: 0, nanoseconds: 0 }") |
+----------------------------------------------------------------------------------------------------------+
| 2000-08-30 |
+----------------------------------------------------------------------------------------------------------+
SELECT DATE '2000-10-30' - '2 years'::interval;
+--------------------------------------+
| Utf8("2000-10-30") - Utf8("2 years") |
+--------------------------------------+
| 1998-10-30 |
+--------------------------------------+
+-----------------------------------------------------------------------------------------------------------+
| Utf8("2000-10-30") - IntervalMonthDayNano("IntervalMonthDayNano { months: 24, days: 0, nanoseconds: 0 }") |
+-----------------------------------------------------------------------------------------------------------+
| 1998-10-30 |
+-----------------------------------------------------------------------------------------------------------+