Compare commits

..

1 Commits

Author SHA1 Message Date
Ruihang Xia
710a68d2d6 chore: add deprecate develop branch warning
Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
2023-12-28 14:31:38 +08:00
919 changed files with 12167 additions and 66277 deletions

View File

@@ -3,3 +3,13 @@ linker = "aarch64-linux-gnu-gcc"
[alias]
sqlness = "run --bin sqlness-runner --"
[build]
rustflags = [
# lints
# TODO: use lint configuration in cargo https://github.com/rust-lang/cargo/issues/5034
"-Wclippy::print_stdout",
"-Wclippy::print_stderr",
"-Wclippy::implicit_clone",
]

View File

@@ -1,10 +0,0 @@
root = true
[*]
end_of_line = lf
indent_style = space
insert_final_newline = true
trim_trailing_whitespace = true
[{Makefile,**.mk}]
indent_style = tab

View File

@@ -19,8 +19,3 @@ GT_GCS_BUCKET = GCS bucket
GT_GCS_SCOPE = GCS scope
GT_GCS_CREDENTIAL_PATH = GCS credential path
GT_GCS_ENDPOINT = GCS end point
# Settings for kafka wal test
GT_KAFKA_ENDPOINTS = localhost:9092
# Setting for fuzz tests
GT_MYSQL_ADDR = localhost:4002

View File

@@ -21,7 +21,6 @@ body:
- Locking issue
- Performance issue
- Unexpected error
- User Experience
- Other
validations:
required: true
@@ -34,14 +33,9 @@ body:
multiple: true
options:
- Standalone mode
- Distributed Cluster
- Storage Engine
- Query Engine
- Table Engine
- Write Protocols
- MetaSrv
- Frontend
- Datanode
- Meta
- Other
validations:
required: true
@@ -83,17 +77,6 @@ body:
validations:
required: true
- type: input
id: greptimedb
attributes:
label: What version of GreptimeDB did you use?
description: |
Please provide the version of GreptimeDB. For example:
0.5.1 etc. You can get it by executing command line `greptime --version`.
placeholder: "0.5.1"
validations:
required: true
- type: textarea
id: logs
attributes:

View File

@@ -53,7 +53,7 @@ runs:
uses: docker/setup-buildx-action@v2
- name: Download amd64 artifacts
uses: actions/download-artifact@v4
uses: actions/download-artifact@v3
with:
name: ${{ inputs.amd64-artifact-name }}
@@ -66,7 +66,7 @@ runs:
mv ${{ inputs.amd64-artifact-name }} amd64
- name: Download arm64 artifacts
uses: actions/download-artifact@v4
uses: actions/download-artifact@v3
if: ${{ inputs.arm64-artifact-name }}
with:
name: ${{ inputs.arm64-artifact-name }}

View File

@@ -34,7 +34,7 @@ runs:
- name: Upload sqlness logs
if: ${{ failure() && inputs.disable-run-tests == 'false' }} # Only upload logs when the integration tests failed.
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: sqlness-logs
path: /tmp/greptime-*.log

View File

@@ -67,7 +67,7 @@ runs:
- name: Upload sqlness logs
if: ${{ failure() }} # Only upload logs when the integration tests failed.
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: sqlness-logs
path: /tmp/greptime-*.log

View File

@@ -25,7 +25,7 @@ inputs:
runs:
using: composite
steps:
- uses: arduino/setup-protoc@v3
- uses: arduino/setup-protoc@v1
- name: Install rust toolchain
uses: dtolnay/rust-toolchain@master
@@ -38,7 +38,7 @@ runs:
uses: Swatinem/rust-cache@v2
- name: Install Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
@@ -62,15 +62,15 @@ runs:
- name: Upload sqlness logs
if: ${{ failure() }} # Only upload logs when the integration tests failed.
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: sqlness-logs
path: /tmp/greptime-*.log
path: ${{ runner.temp }}/greptime-*.log
retention-days: 3
- name: Build greptime binary
shell: pwsh
run: cargo build --profile ${{ inputs.cargo-profile }} --features ${{ inputs.features }} --target ${{ inputs.arch }} --bin greptime
run: cargo build --profile ${{ inputs.cargo-profile }} --features ${{ inputs.features }} --target ${{ inputs.arch }}
- name: Upload artifacts
uses: ./.github/actions/upload-artifacts

View File

@@ -1,13 +0,0 @@
name: Fuzz Test
description: 'Fuzz test given setup and service'
inputs:
target:
description: "The fuzz target to test"
runs:
using: composite
steps:
- name: Run Fuzz Test
shell: bash
run: cargo fuzz run ${{ inputs.target }} --fuzz-dir tests-fuzz -D -s none -- -max_total_time=120
env:
GT_MYSQL_ADDR: 127.0.0.1:4002

View File

@@ -15,7 +15,7 @@ runs:
# |- greptime-darwin-amd64-v0.5.0.sha256sum/greptime-darwin-amd64-v0.5.0.sha256sum
# ...
- name: Download artifacts
uses: actions/download-artifact@v4
uses: actions/download-artifact@v3
- name: Create git tag for release
if: ${{ github.event_name != 'push' }} # Meaning this is a scheduled or manual workflow.

View File

@@ -73,7 +73,7 @@ runs:
using: composite
steps:
- name: Download artifacts
uses: actions/download-artifact@v4
uses: actions/download-artifact@v3
with:
path: ${{ inputs.artifacts-dir }}

View File

@@ -6,7 +6,7 @@ inputs:
required: true
target-file:
description: The path of the target artifact
required: false
required: true
version:
description: Version of the artifact
required: true
@@ -18,7 +18,6 @@ runs:
using: composite
steps:
- name: Create artifacts directory
if: ${{ inputs.target-file != '' }}
working-directory: ${{ inputs.working-dir }}
shell: bash
run: |
@@ -50,15 +49,15 @@ runs:
run: Get-FileHash ${{ inputs.artifacts-dir }}.tar.gz -Algorithm SHA256 | select -ExpandProperty Hash > ${{ inputs.artifacts-dir }}.sha256sum
# Note: The artifacts will be double zip compressed(related issue: https://github.com/actions/upload-artifact/issues/39).
# However, when we use 'actions/download-artifact' to download the artifacts, it will be automatically unzipped.
# However, when we use 'actions/download-artifact@v3' to download the artifacts, it will be automatically unzipped.
- name: Upload artifacts
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: ${{ inputs.artifacts-dir }}
path: ${{ inputs.working-dir }}/${{ inputs.artifacts-dir }}.tar.gz
- name: Upload checksum
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: ${{ inputs.artifacts-dir }}.sha256sum
path: ${{ inputs.working-dir }}/${{ inputs.artifacts-dir }}.sha256sum

View File

@@ -1,10 +1,8 @@
I hereby agree to the terms of the [GreptimeDB CLA](https://github.com/GreptimeTeam/.github/blob/main/CLA.md).
## Refer to a related PR or issue link (optional)
I hereby agree to the terms of the [GreptimeDB CLA](https://gist.github.com/xtang/6378857777706e568c1949c7578592cc)
## What's changed and what's your intention?
__!!! DO NOT LEAVE THIS BLOCK EMPTY !!!__
_PLEASE DO NOT LEAVE THIS EMPTY !!!_
Please explain IN DETAIL what the changes are in this PR and why they are needed:
@@ -17,4 +15,6 @@ Please explain IN DETAIL what the changes are in this PR and why they are needed
- [ ] I have written the necessary rustdoc comments.
- [ ] I have added the necessary unit tests and integration tests.
- [x] This PR does not require documentation updates.
- [ ] This PR does not require documentation updates.
## Refer to a related PR or issue link (optional)

View File

@@ -1,7 +1,7 @@
on:
push:
branches:
- main
- develop
paths-ignore:
- 'docs/**'
- 'config/**'
@@ -19,8 +19,8 @@ jobs:
apidoc:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v3
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: dtolnay/rust-toolchain@master

View File

@@ -101,7 +101,7 @@ jobs:
version: ${{ steps.create-version.outputs.version }}
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -155,12 +155,12 @@ jobs:
runs-on: ${{ needs.allocate-runners.outputs.linux-amd64-runner }}
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Checkout greptimedb
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
repository: ${{ inputs.repository }}
ref: ${{ inputs.commit }}
@@ -184,12 +184,12 @@ jobs:
runs-on: ${{ needs.allocate-runners.outputs.linux-arm64-runner }}
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
- name: Checkout greptimedb
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
repository: ${{ inputs.repository }}
ref: ${{ inputs.commit }}
@@ -216,7 +216,7 @@ jobs:
outputs:
build-result: ${{ steps.set-build-result.outputs.build-result }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -247,7 +247,7 @@ jobs:
runs-on: ubuntu-20.04
continue-on-error: true
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -281,7 +281,7 @@ jobs:
]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -306,7 +306,7 @@ jobs:
]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -330,14 +330,14 @@ jobs:
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_DEVELOP_CHANNEL }}
steps:
- name: Notifiy dev build successful result
- name: Notifiy nightly build successful result
uses: slackapi/slack-github-action@v1.23.0
if: ${{ needs.release-images-to-dockerhub.outputs.build-result == 'success' }}
with:
payload: |
{"text": "GreptimeDB's ${{ env.NEXT_RELEASE_VERSION }} build has completed successfully."}
- name: Notifiy dev build failed result
- name: Notifiy nightly build failed result
uses: slackapi/slack-github-action@v1.23.0
if: ${{ needs.release-images-to-dockerhub.outputs.build-result != 'success' }}
with:

View File

@@ -1,7 +1,7 @@
on:
merge_group:
pull_request:
types: [ opened, synchronize, reopened, ready_for_review ]
types: [opened, synchronize, reopened, ready_for_review]
paths-ignore:
- 'docs/**'
- 'config/**'
@@ -9,9 +9,9 @@ on:
- '.dockerignore'
- 'docker/**'
- '.gitignore'
- 'grafana/**'
push:
branches:
- develop
- main
paths-ignore:
- 'docs/**'
@@ -20,7 +20,6 @@ on:
- '.dockerignore'
- 'docker/**'
- '.gitignore'
- 'grafana/**'
workflow_dispatch:
name: CI
@@ -37,19 +36,20 @@ jobs:
name: Spell Check with Typos
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: crate-ci/typos@v1.13.10
check:
name: Check
if: github.event.pull_request.draft == false
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ windows-latest, ubuntu-20.04 ]
os: [ windows-latest-8-cores, ubuntu-20.04 ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v3
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: dtolnay/rust-toolchain@master
@@ -57,170 +57,62 @@ jobs:
toolchain: ${{ env.RUST_TOOLCHAIN }}
- name: Rust Cache
uses: Swatinem/rust-cache@v2
with:
# Shares across multiple jobs
# Shares with `Clippy` job
shared-key: "check-lint"
- name: Run cargo check
run: cargo check --locked --workspace --all-targets
toml:
name: Toml Check
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: dtolnay/rust-toolchain@master
with:
toolchain: stable
- name: Rust Cache
uses: Swatinem/rust-cache@v2
with:
# Shares across multiple jobs
shared-key: "check-toml"
- name: Install taplo
run: cargo +stable install taplo-cli --version ^0.9 --locked
run: cargo +stable install taplo-cli --version ^0.8 --locked
- name: Run taplo
run: taplo format --check
build:
name: Build GreptimeDB binaries
sqlness:
name: Sqlness Test
if: github.event.pull_request.draft == false
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-20.04 ]
os: [ ubuntu-20.04-8-cores ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: dtolnay/rust-toolchain@master
- uses: actions/checkout@v3
- uses: arduino/setup-protoc@v1
with:
toolchain: ${{ env.RUST_TOOLCHAIN }}
- uses: Swatinem/rust-cache@v2
with:
# Shares across multiple jobs
shared-key: "build-binaries"
- name: Build greptime binaries
shell: bash
run: cargo build --bin greptime --bin sqlness-runner
- name: Pack greptime binaries
shell: bash
run: |
mkdir bins && \
mv ./target/debug/greptime bins && \
mv ./target/debug/sqlness-runner bins
- name: Print greptime binaries info
run: ls -lh bins
- name: Upload artifacts
uses: ./.github/actions/upload-artifacts
with:
artifacts-dir: bins
version: current
fuzztest:
name: Fuzz Test
needs: build
runs-on: ubuntu-latest
strategy:
matrix:
target: [ "fuzz_create_table", "fuzz_alter_table" ]
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ env.RUST_TOOLCHAIN }}
- name: Rust Cache
uses: Swatinem/rust-cache@v2
with:
# Shares across multiple jobs
shared-key: "fuzz-test-targets"
- name: Set Rust Fuzz
shell: bash
run: |
sudo apt update && sudo apt install -y libfuzzer-14-dev
cargo install cargo-fuzz
- name: Download pre-built binaries
uses: actions/download-artifact@v4
with:
name: bins
path: .
- name: Unzip binaries
run: tar -xvf ./bins.tar.gz
- name: Run GreptimeDB
run: |
./bins/greptime standalone start&
- name: Fuzz Test
uses: ./.github/actions/fuzz-test
env:
CUSTOM_LIBFUZZER_PATH: /usr/lib/llvm-14/lib/libFuzzer.a
with:
target: ${{ matrix.target }}
sqlness:
name: Sqlness Test
needs: build
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-20.04 ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- name: Download pre-built binaries
uses: actions/download-artifact@v4
with:
name: bins
path: .
- name: Unzip binaries
run: tar -xvf ./bins.tar.gz
- name: Run sqlness
run: RUST_BACKTRACE=1 ./bins/sqlness-runner -c ./tests/cases --bins-dir ./bins
run: cargo sqlness
- name: Upload sqlness logs
if: always()
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: sqlness-logs
path: /tmp/greptime-*.log
retention-days: 3
sqlness-kafka-wal:
name: Sqlness Test with Kafka Wal
needs: build
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-20.04 ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- name: Download pre-built binaries
uses: actions/download-artifact@v4
with:
name: bins
path: .
- name: Unzip binaries
run: tar -xvf ./bins.tar.gz
- name: Setup kafka server
working-directory: tests-integration/fixtures/kafka
run: docker compose -f docker-compose-standalone.yml up -d --wait
- name: Run sqlness
run: RUST_BACKTRACE=1 ./bins/sqlness-runner -w kafka -k 127.0.0.1:9092 -c ./tests/cases --bins-dir ./bins
- name: Upload sqlness logs
if: always()
uses: actions/upload-artifact@v4
with:
name: sqlness-logs-with-kafka-wal
path: /tmp/greptime-*.log
path: ${{ runner.temp }}/greptime-*.log
retention-days: 3
fmt:
name: Rustfmt
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v3
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: dtolnay/rust-toolchain@master
@@ -229,19 +121,17 @@ jobs:
components: rustfmt
- name: Rust Cache
uses: Swatinem/rust-cache@v2
with:
# Shares across multiple jobs
shared-key: "check-rust-fmt"
- name: Run cargo fmt
run: cargo fmt --all -- --check
clippy:
name: Clippy
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v3
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: dtolnay/rust-toolchain@master
@@ -250,10 +140,6 @@ jobs:
components: clippy
- name: Rust Cache
uses: Swatinem/rust-cache@v2
with:
# Shares across multiple jobs
# Shares with `Check` job
shared-key: "check-lint"
- name: Run cargo clippy
run: cargo clippy --workspace --all-targets -- -D warnings
@@ -262,8 +148,8 @@ jobs:
runs-on: ubuntu-20.04-8-cores
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v3
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: KyleMayes/install-llvm-action@v1
@@ -276,19 +162,12 @@ jobs:
components: llvm-tools-preview
- name: Rust Cache
uses: Swatinem/rust-cache@v2
with:
# Shares cross multiple jobs
shared-key: "coverage-test"
- name: Docker Cache
uses: ScribeMD/docker-cache@0.3.7
with:
key: docker-${{ runner.os }}-coverage
- name: Install latest nextest release
uses: taiki-e/install-action@nextest
- name: Install cargo-llvm-cov
uses: taiki-e/install-action@cargo-llvm-cov
- name: Install Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install PyArrow Package
@@ -313,28 +192,10 @@ jobs:
GT_KAFKA_ENDPOINTS: 127.0.0.1:9092
UNITTEST_LOG_DIR: "__unittest_logs"
- name: Codecov upload
uses: codecov/codecov-action@v4
uses: codecov/codecov-action@v2
with:
token: ${{ secrets.CODECOV_TOKEN }}
files: ./lcov.info
flags: rust
fail_ci_if_error: false
verbose: true
compat:
name: Compatibility Test
needs: build
runs-on: ubuntu-20.04
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- name: Download pre-built binaries
uses: actions/download-artifact@v4
with:
name: bins
path: .
- name: Unzip binaries
run: |
mkdir -p ./bins/current
tar -xvf ./bins.tar.gz --strip-components=1 -C ./bins/current
- run: ./tests/compat/test-compat.sh 0.6.0

View File

@@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-20.04
steps:
- name: create an issue in doc repo
uses: dacbd/create-issue-action@v1.2.1
uses: dacbd/create-issue-action@main
with:
owner: GreptimeTeam
repo: docs
@@ -28,7 +28,7 @@ jobs:
runs-on: ubuntu-20.04
steps:
- name: create an issue in cloud repo
uses: dacbd/create-issue-action@v1.2.1
uses: dacbd/create-issue-action@main
with:
owner: GreptimeTeam
repo: greptimedb-cloud

View File

@@ -12,25 +12,9 @@ jobs:
if: ${{ github.repository == 'GreptimeTeam/greptimedb' }}
runs-on: ubuntu-latest
steps:
- uses: github/issue-labeler@v3.4
- uses: github/issue-labeler@v3.3
with:
configuration-path: .github/doc-label-config.yml
enable-versioned-regex: false
repo-token: ${{ secrets.GITHUB_TOKEN }}
sync-labels: 1
- name: create an issue in doc repo
uses: dacbd/create-issue-action@v1.2.1
if: ${{ github.event.action == 'opened' && contains(github.event.pull_request.body, '- [ ] This PR does not require documentation updates.') }}
with:
owner: GreptimeTeam
repo: docs
token: ${{ secrets.DOCS_REPO_TOKEN }}
title: Update docs for ${{ github.event.issue.title || github.event.pull_request.title }}
body: |
A document change request is generated from
${{ github.event.issue.html_url || github.event.pull_request.html_url }}
- name: Check doc labels
uses: docker://agilepathway/pull-request-label-checker:latest
with:
one_of: Doc update required,Doc not needed
repo_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -9,9 +9,9 @@ on:
- '.dockerignore'
- 'docker/**'
- '.gitignore'
- 'grafana/**'
push:
branches:
- develop
- main
paths:
- 'docs/**'
@@ -20,7 +20,6 @@ on:
- '.dockerignore'
- 'docker/**'
- '.gitignore'
- 'grafana/**'
workflow_dispatch:
name: CI
@@ -33,46 +32,39 @@ jobs:
name: Spell Check with Typos
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
- uses: crate-ci/typos@v1.13.10
check:
name: Check
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
fmt:
name: Rustfmt
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
clippy:
name: Clippy
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
coverage:
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'
sqlness:
name: Sqlness Test
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-20.04 ]
steps:
- run: 'echo "No action required"'
sqlness-kafka-wal:
name: Sqlness Test with Kafka Wal
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-20.04 ]
if: github.event.pull_request.draft == false
runs-on: ubuntu-20.04
steps:
- run: 'echo "No action required"'

View File

@@ -3,7 +3,7 @@ name: License checker
on:
push:
branches:
- main
- develop
pull_request:
types: [opened, synchronize, reopened, ready_for_review]
jobs:
@@ -11,6 +11,6 @@ jobs:
runs-on: ubuntu-20.04
name: license-header-check
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v2
- name: Check License Header
uses: korandoru/hawkeye@v4
uses: korandoru/hawkeye@v3

View File

@@ -85,7 +85,7 @@ jobs:
version: ${{ steps.create-version.outputs.version }}
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -137,7 +137,7 @@ jobs:
]
runs-on: ${{ needs.allocate-runners.outputs.linux-amd64-runner }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -156,7 +156,7 @@ jobs:
]
runs-on: ${{ needs.allocate-runners.outputs.linux-arm64-runner }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -179,7 +179,7 @@ jobs:
outputs:
nightly-build-result: ${{ steps.set-nightly-build-result.outputs.nightly-build-result }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -211,7 +211,7 @@ jobs:
# The ACR have daily sync with DockerHub, so don't worry about the image not being updated.
continue-on-error: true
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -245,7 +245,7 @@ jobs:
]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -270,7 +270,7 @@ jobs:
]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0

View File

@@ -24,8 +24,8 @@ jobs:
os: [ windows-latest-8-cores ]
timeout-minutes: 60
steps:
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v4.1.0
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- uses: dtolnay/rust-toolchain@master
@@ -45,10 +45,10 @@ jobs:
{"text": "Nightly CI failed for sqlness tests"}
- name: Upload sqlness logs
if: always()
uses: actions/upload-artifact@v4
uses: actions/upload-artifact@v3
with:
name: sqlness-logs
path: /tmp/greptime-*.log
path: ${{ runner.temp }}/greptime-*.log
retention-days: 3
test-on-windows:
@@ -57,8 +57,8 @@ jobs:
timeout-minutes: 60
steps:
- run: git config --global core.autocrlf false
- uses: actions/checkout@v4
- uses: arduino/setup-protoc@v3
- uses: actions/checkout@v4.1.0
- uses: arduino/setup-protoc@v1
with:
repo-token: ${{ secrets.GITHUB_TOKEN }}
- name: Install Rust toolchain
@@ -71,7 +71,7 @@ jobs:
- name: Install Cargo Nextest
uses: taiki-e/install-action@nextest
- name: Install Python
uses: actions/setup-python@v5
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install PyArrow Package

View File

@@ -13,7 +13,7 @@ jobs:
runs-on: ubuntu-22.04
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0

View File

@@ -13,7 +13,7 @@ jobs:
runs-on: ubuntu-20.04
timeout-minutes: 10
steps:
- uses: thehanimo/pr-title-checker@v1.4.2
- uses: thehanimo/pr-title-checker@v1.3.4
with:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
pass_on_octokit_error: false
@@ -22,7 +22,7 @@ jobs:
runs-on: ubuntu-20.04
timeout-minutes: 10
steps:
- uses: thehanimo/pr-title-checker@v1.4.2
- uses: thehanimo/pr-title-checker@v1.3.4
with:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
pass_on_octokit_error: false

View File

@@ -30,7 +30,7 @@ jobs:
runs-on: ubuntu-20.04-16-cores
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0

View File

@@ -91,7 +91,7 @@ env:
# The scheduled version is '${{ env.NEXT_RELEASE_VERSION }}-nightly-YYYYMMDD', like v0.2.0-nigthly-20230313;
NIGHTLY_RELEASE_PREFIX: nightly
# Note: The NEXT_RELEASE_VERSION should be modified manually by every formal release.
NEXT_RELEASE_VERSION: v0.8.0
NEXT_RELEASE_VERSION: v0.6.0
jobs:
allocate-runners:
@@ -114,7 +114,7 @@ jobs:
version: ${{ steps.create-version.outputs.version }}
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -168,7 +168,7 @@ jobs:
]
runs-on: ${{ needs.allocate-runners.outputs.linux-amd64-runner }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -187,7 +187,7 @@ jobs:
]
runs-on: ${{ needs.allocate-runners.outputs.linux-arm64-runner }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -221,14 +221,12 @@ jobs:
arch: x86_64-apple-darwin
artifacts-dir-prefix: greptime-darwin-amd64-pyo3
runs-on: ${{ matrix.os }}
outputs:
build-macos-result: ${{ steps.set-build-macos-result.outputs.build-macos-result }}
needs: [
allocate-runners,
]
if: ${{ inputs.build_macos_artifacts || github.event_name == 'push' || github.event_name == 'schedule' }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -242,11 +240,6 @@ jobs:
disable-run-tests: ${{ env.DISABLE_RUN_TESTS }}
artifacts-dir: ${{ matrix.artifacts-dir-prefix }}-${{ needs.allocate-runners.outputs.version }}
- name: Set build macos result
id: set-build-macos-result
run: |
echo "build-macos-result=success" >> $GITHUB_OUTPUT
build-windows-artifacts:
name: Build Windows artifacts
strategy:
@@ -262,8 +255,6 @@ jobs:
features: pyo3_backend,servers/dashboard
artifacts-dir-prefix: greptime-windows-amd64-pyo3
runs-on: ${{ matrix.os }}
outputs:
build-windows-result: ${{ steps.set-build-windows-result.outputs.build-windows-result }}
needs: [
allocate-runners,
]
@@ -271,7 +262,7 @@ jobs:
steps:
- run: git config --global core.autocrlf false
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -285,11 +276,6 @@ jobs:
disable-run-tests: ${{ env.DISABLE_RUN_TESTS }}
artifacts-dir: ${{ matrix.artifacts-dir-prefix }}-${{ needs.allocate-runners.outputs.version }}
- name: Set build windows result
id: set-build-windows-result
run: |
echo "build-windows-result=success" >> $Env:GITHUB_OUTPUT
release-images-to-dockerhub:
name: Build and push images to DockerHub
if: ${{ inputs.release_images || github.event_name == 'push' || github.event_name == 'schedule' }}
@@ -299,10 +285,8 @@ jobs:
build-linux-arm64-artifacts,
]
runs-on: ubuntu-2004-16-cores
outputs:
build-image-result: ${{ steps.set-build-image-result.outputs.build-image-result }}
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -315,11 +299,6 @@ jobs:
image-registry-password: ${{ secrets.DOCKERHUB_TOKEN }}
version: ${{ needs.allocate-runners.outputs.version }}
- name: Set build image result
id: set-build-image-result
run: |
echo "build-image-result=success" >> $GITHUB_OUTPUT
release-cn-artifacts:
name: Release artifacts to CN region
if: ${{ inputs.release_images || github.event_name == 'push' || github.event_name == 'schedule' }}
@@ -337,7 +316,7 @@ jobs:
# The ACR have daily sync with DockerHub, so don't worry about the image not being updated.
continue-on-error: true
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -373,7 +352,7 @@ jobs:
]
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
- uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -396,7 +375,7 @@ jobs:
]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -421,7 +400,7 @@ jobs:
]
steps:
- name: Checkout
uses: actions/checkout@v4
uses: actions/checkout@v3
with:
fetch-depth: 0
@@ -434,29 +413,3 @@ jobs:
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ vars.EC2_RUNNER_REGION }}
github-token: ${{ secrets.GH_PERSONAL_ACCESS_TOKEN }}
notification:
if: ${{ always() }} # Not requiring successful dependent jobs, always run.
name: Send notification to Greptime team
needs: [
release-images-to-dockerhub,
build-macos-artifacts,
build-windows-artifacts,
]
runs-on: ubuntu-20.04
env:
SLACK_WEBHOOK_URL: ${{ secrets.SLACK_WEBHOOK_URL_DEVELOP_CHANNEL }}
steps:
- name: Notifiy release successful result
uses: slackapi/slack-github-action@v1.25.0
if: ${{ needs.release-images-to-dockerhub.outputs.build-image-result == 'success' && needs.build-windows-artifacts.outputs.build-windows-result == 'success' && needs.build-macos-artifacts.outputs.build-macos-result == 'success' }}
with:
payload: |
{"text": "GreptimeDB's release version has completed successfully."}
- name: Notifiy release failed result
uses: slackapi/slack-github-action@v1.25.0
if: ${{ needs.release-images-to-dockerhub.outputs.build-image-result != 'success' || needs.build-windows-artifacts.outputs.build-windows-result != 'success' || needs.build-macos-artifacts.outputs.build-macos-result != 'success' }}
with:
payload: |
{"text": "GreptimeDB's release version has failed, please check 'https://github.com/GreptimeTeam/greptimedb/actions/workflows/release.yml'."}

25
.github/workflows/size-label.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
name: size-labeler
on: [pull_request_target]
jobs:
labeler:
runs-on: ubuntu-latest
name: Label the PR size
permissions:
issues: write
pull-requests: write
steps:
- uses: codelytv/pr-size-labeler@v1
with:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
s_label: 'Size: S'
s_max_size: '100'
m_label: 'Size: M'
m_max_size: '500'
l_label: 'Size: L'
l_max_size: '1000'
xl_label: 'Size: XL'
fail_if_xl: 'false'
message_if_xl: ""
files_to_ignore: 'Cargo.lock'

View File

@@ -0,0 +1,19 @@
name: Check user doc labels
on:
pull_request:
types:
- opened
- reopened
- labeled
- unlabeled
jobs:
check_labels:
name: Check doc labels
runs-on: ubuntu-latest
steps:
- uses: docker://agilepathway/pull-request-label-checker:latest
with:
one_of: Doc update required,Doc not needed
repo_token: ${{ secrets.GITHUB_TOKEN }}

4
.gitignore vendored
View File

@@ -46,7 +46,3 @@ benchmarks/data
*.code-workspace
venv/
# Fuzz tests
tests-fuzz/artifacts/
tests-fuzz/corpus/

View File

@@ -10,7 +10,7 @@ Follow our [README](https://github.com/GreptimeTeam/greptimedb#readme) to get th
It can feel intimidating to contribute to a complex project, but it can also be exciting and fun. These general notes will help everyone participate in this communal activity.
- Follow the [Code of Conduct](https://github.com/GreptimeTeam/greptimedb/blob/main/CODE_OF_CONDUCT.md)
- Follow the [Code of Conduct](https://github.com/GreptimeTeam/greptimedb/blob/develop/CODE_OF_CONDUCT.md)
- Small changes make huge differences. We will happily accept a PR making a single character change if it helps move forward. Don't wait to have everything working.
- Check the closed issues before opening your issue.
- Try to follow the existing style of the code.
@@ -26,7 +26,7 @@ Pull requests are great, but we accept all kinds of other help if you like. Such
## Code of Conduct
Also, there are things that we are not looking for because they don't match the goals of the product or benefit the community. Please read [Code of Conduct](https://github.com/GreptimeTeam/greptimedb/blob/main/CODE_OF_CONDUCT.md); we hope everyone can keep good manners and become an honored member.
Also, there are things that we are not looking for because they don't match the goals of the product or benefit the community. Please read [Code of Conduct](https://github.com/GreptimeTeam/greptimedb/blob/develop/CODE_OF_CONDUCT.md); we hope everyone can keep good manners and become an honored member.
## License

1327
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -18,7 +18,6 @@ members = [
"src/common/grpc-expr",
"src/common/mem-prof",
"src/common/meta",
"src/common/plugins",
"src/common/procedure",
"src/common/procedure-test",
"src/common/query",
@@ -30,11 +29,9 @@ members = [
"src/common/time",
"src/common/decimal",
"src/common/version",
"src/common/wal",
"src/datanode",
"src/datatypes",
"src/file-engine",
"src/flow",
"src/frontend",
"src/log-store",
"src/meta-client",
@@ -55,41 +52,31 @@ members = [
"src/store-api",
"src/table",
"src/index",
"tests-fuzz",
"tests-integration",
"tests/runner",
]
resolver = "2"
[workspace.package]
version = "0.7.1"
version = "0.5.0"
edition = "2021"
license = "Apache-2.0"
[workspace.lints]
clippy.print_stdout = "warn"
clippy.print_stderr = "warn"
clippy.implicit_clone = "warn"
rust.unknown_lints = "deny"
[workspace.dependencies]
ahash = { version = "0.8", features = ["compile-time-rng"] }
aquamarine = "0.3"
arrow = { version = "47.0" }
arrow-array = "47.0"
arrow-flight = "47.0"
arrow-ipc = { version = "47.0", features = ["lz4"] }
arrow-schema = { version = "47.0", features = ["serde"] }
async-stream = "0.3"
async-trait = "0.1"
axum = { version = "0.6", features = ["headers"] }
base64 = "0.21"
bigdecimal = "0.4.2"
bitflags = "2.4.1"
bytemuck = "1.12"
bytes = { version = "1.5", features = ["serde"] }
chrono = { version = "0.4", features = ["serde"] }
clap = { version = "4.4", features = ["derive"] }
dashmap = "5.4"
datafusion = { git = "https://github.com/apache/arrow-datafusion.git", rev = "26e43acac3a96cec8dd4c8365f22dfb1a84306e9" }
datafusion-common = { git = "https://github.com/apache/arrow-datafusion.git", rev = "26e43acac3a96cec8dd4c8365f22dfb1a84306e9" }
@@ -103,14 +90,13 @@ etcd-client = "0.12"
fst = "0.4.7"
futures = "0.3"
futures-util = "0.3"
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "96f1f0404f421ee560a4310c73c5071e49168168" }
greptime-proto = { git = "https://github.com/GreptimeTeam/greptime-proto.git", rev = "a31ea166fc015ea7ff111ac94e26c3a5d64364d2" }
humantime-serde = "1.1"
itertools = "0.10"
lazy_static = "1.4"
meter-core = { git = "https://github.com/GreptimeTeam/greptime-meter.git", rev = "80b72716dcde47ec4161478416a5c6c21343364d" }
meter-core = { git = "https://github.com/GreptimeTeam/greptime-meter.git", rev = "abbd357c1e193cd270ea65ee7652334a150b628f" }
mockall = "0.11.4"
moka = "0.12"
num_cpus = "1.16"
once_cell = "1.18"
opentelemetry-proto = { git = "https://github.com/waynexia/opentelemetry-rust.git", rev = "33841b38dda79b15f2024952be5f32533325ca02", features = [
"gen-tonic",
@@ -122,10 +108,10 @@ paste = "1.0"
pin-project = "1.0"
prometheus = { version = "0.13.3", features = ["process"] }
prost = "0.12"
raft-engine = { version = "0.4.1", default-features = false }
raft-engine = { git = "https://github.com/tikv/raft-engine.git", rev = "22dfb426cd994602b57725ef080287d3e53db479" }
rand = "0.8"
regex = "1.8"
regex-automata = { version = "0.2", features = ["transducer"] }
regex-automata = { version = "0.1", features = ["transducer"] }
reqwest = { version = "0.11", default-features = false, features = [
"json",
"rustls-tls-native-roots",
@@ -134,11 +120,9 @@ reqwest = { version = "0.11", default-features = false, features = [
rskafka = "0.5"
rust_decimal = "1.33"
serde = { version = "1.0", features = ["derive"] }
serde_json = { version = "1.0", features = ["float_roundtrip"] }
serde_with = "3"
smallvec = { version = "1", features = ["serde"] }
serde_json = "1.0"
smallvec = "1"
snafu = "0.7"
sysinfo = "0.30"
# on branch v0.38.x
sqlparser = { git = "https://github.com/GreptimeTeam/sqlparser-rs.git", rev = "6a93567ae38d42be5c8d08b13c8ff4dde26502ef", features = [
"visitor",
@@ -171,7 +155,7 @@ common-grpc-expr = { path = "src/common/grpc-expr" }
common-macro = { path = "src/common/macro" }
common-mem-prof = { path = "src/common/mem-prof" }
common-meta = { path = "src/common/meta" }
common-plugins = { path = "src/common/plugins" }
common-pprof = { path = "src/common/pprof" }
common-procedure = { path = "src/common/procedure" }
common-procedure-test = { path = "src/common/procedure-test" }
common-query = { path = "src/common/query" }
@@ -181,12 +165,10 @@ common-telemetry = { path = "src/common/telemetry" }
common-test-util = { path = "src/common/test-util" }
common-time = { path = "src/common/time" }
common-version = { path = "src/common/version" }
common-wal = { path = "src/common/wal" }
datanode = { path = "src/datanode" }
datatypes = { path = "src/datatypes" }
file-engine = { path = "src/file-engine" }
frontend = { path = "src/frontend" }
index = { path = "src/index" }
log-store = { path = "src/log-store" }
meta-client = { path = "src/meta-client" }
meta-srv = { path = "src/meta-srv" }
@@ -197,7 +179,6 @@ operator = { path = "src/operator" }
partition = { path = "src/partition" }
plugins = { path = "src/plugins" }
promql = { path = "src/promql" }
puffin = { path = "src/puffin" }
query = { path = "src/query" }
script = { path = "src/script" }
servers = { path = "src/servers" }
@@ -209,7 +190,7 @@ table = { path = "src/table" }
[workspace.dependencies.meter-macros]
git = "https://github.com/GreptimeTeam/greptime-meter.git"
rev = "80b72716dcde47ec4161478416a5c6c21343364d"
rev = "abbd357c1e193cd270ea65ee7652334a150b628f"
[profile.release]
debug = 1

View File

@@ -3,7 +3,6 @@ CARGO_PROFILE ?=
FEATURES ?=
TARGET_DIR ?=
TARGET ?=
BUILD_BIN ?= greptime
CARGO_BUILD_OPTS := --locked
IMAGE_REGISTRY ?= docker.io
IMAGE_NAMESPACE ?= greptime
@@ -46,10 +45,6 @@ ifneq ($(strip $(TARGET)),)
CARGO_BUILD_OPTS += --target ${TARGET}
endif
ifneq ($(strip $(BUILD_BIN)),)
CARGO_BUILD_OPTS += --bin ${BUILD_BIN}
endif
ifneq ($(strip $(RELEASE)),)
CARGO_BUILD_OPTS += --release
endif
@@ -70,7 +65,7 @@ endif
build: ## Build debug version greptime.
cargo ${CARGO_EXTENSION} build ${CARGO_BUILD_OPTS}
.PHONY: build-by-dev-builder
.POHNY: build-by-dev-builder
build-by-dev-builder: ## Build greptime by dev-builder.
docker run --network=host \
-v ${PWD}:/greptimedb -v ${CARGO_REGISTRY_CACHE}:/root/.cargo/registry \
@@ -149,12 +144,11 @@ multi-platform-buildx: ## Create buildx multi-platform builder.
docker buildx inspect ${BUILDX_BUILDER_NAME} || docker buildx create --name ${BUILDX_BUILDER_NAME} --driver docker-container --bootstrap --use
##@ Test
.PHONY: test
test: nextest ## Run unit and integration tests.
cargo nextest run ${NEXTEST_OPTS}
.PHONY: nextest
nextest: ## Install nextest tools.
.PHONY: nextest ## Install nextest tools.
nextest:
cargo --list | grep nextest || cargo install cargo-nextest --locked
.PHONY: sqlness-test

View File

@@ -1,8 +1,8 @@
<p align="center">
<picture>
<source media="(prefers-color-scheme: light)" srcset="https://cdn.jsdelivr.net/gh/GreptimeTeam/greptimedb@main/docs/logo-text-padding.png">
<source media="(prefers-color-scheme: dark)" srcset="https://cdn.jsdelivr.net/gh/GreptimeTeam/greptimedb@main/docs/logo-text-padding-dark.png">
<img alt="GreptimeDB Logo" src="https://cdn.jsdelivr.net/gh/GreptimeTeam/greptimedb@main/docs/logo-text-padding.png" width="400px">
<source media="(prefers-color-scheme: light)" srcset="https://cdn.jsdelivr.net/gh/GreptimeTeam/greptimedb@develop/docs/logo-text-padding.png">
<source media="(prefers-color-scheme: dark)" srcset="https://cdn.jsdelivr.net/gh/GreptimeTeam/greptimedb@develop/docs/logo-text-padding-dark.png">
<img alt="GreptimeDB Logo" src="https://cdn.jsdelivr.net/gh/GreptimeTeam/greptimedb@develop/docs/logo-text-padding.png" width="400px">
</picture>
</p>
@@ -12,11 +12,11 @@
</h3>
<p align="center">
<a href="https://codecov.io/gh/GrepTimeTeam/greptimedb"><img src="https://codecov.io/gh/GrepTimeTeam/greptimedb/branch/main/graph/badge.svg?token=FITFDI3J3C"></img></a>
<a href="https://codecov.io/gh/GrepTimeTeam/greptimedb"><img src="https://codecov.io/gh/GrepTimeTeam/greptimedb/branch/develop/graph/badge.svg?token=FITFDI3J3C"></img></a>
&nbsp;
<a href="https://github.com/GreptimeTeam/greptimedb/actions/workflows/develop.yml"><img src="https://github.com/GreptimeTeam/greptimedb/actions/workflows/develop.yml/badge.svg" alt="CI"></img></a>
&nbsp;
<a href="https://github.com/greptimeTeam/greptimedb/blob/main/LICENSE"><img src="https://img.shields.io/github/license/greptimeTeam/greptimedb"></a>
<a href="https://github.com/greptimeTeam/greptimedb/blob/develop/LICENSE"><img src="https://img.shields.io/github/license/greptimeTeam/greptimedb"></a>
</p>
<p align="center">
@@ -27,19 +27,26 @@
<a href="https://greptime.com/slack"><img src="https://img.shields.io/badge/slack-GreptimeDB-0abd59?logo=slack" alt="slack" /></a>
</p>
> [!WARNING]
> Our default branch has changed from `develop` to `main` (issue [#3025](https://github.com/GreptimeTeam/greptimedb/issues/3025)). Please update your local repository to use the `main` branch.
## What is GreptimeDB
GreptimeDB is an open-source time-series database focusing on efficiency, scalability, and analytical capabilities.
It's designed to work on infrastructure of the cloud era, and users benefit from its elasticity and commodity storage.
GreptimeDB is an open-source time-series database with a special focus on
scalability, analytical capabilities and efficiency. It's designed to work on
infrastructure of the cloud era, and users benefit from its elasticity and commodity
storage.
Our core developers have been building time-series data platforms for years. Based on their best-practices, GreptimeDB is born to give you:
Our core developers have been building time-series data platform
for years. Based on their best-practices, GreptimeDB is born to give you:
- Optimized columnar layout for handling time-series data; compacted, compressed, and stored on various storage backends, particularly cloud object storage with 50x cost efficiency.
- Fully open-source distributed cluster architecture that harnesses the power of cloud-native elastic computing resources.
- Seamless scalability from a standalone binary at edge to a robust, highly available distributed cluster in cloud, with a transparent experience for both developers and administrators.
- Native SQL and PromQL for queries, and Python scripting to facilitate complex analytical tasks.
- Flexible indexing capabilities and distributed, parallel-processing query engine, tackling high cardinality issues down.
- Widely adopted database protocols and APIs, including MySQL, PostgreSQL, and Prometheus Remote Storage, etc.
- A standalone binary that scales to highly-available distributed cluster, providing a transparent experience for cluster users
- Optimized columnar layout for handling time-series data; compacted, compressed, and stored on various storage backends
- Flexible indexes, tackling high cardinality issues down
- Distributed, parallel query execution, leveraging elastic computing resource
- Native SQL, and Python scripting for advanced analytical scenarios
- Widely adopted database protocols and APIs, native PromQL supports
- Extensible table engine architecture for extensive workloads
## Quick Start
@@ -127,16 +134,12 @@ To write and query data, GreptimeDB is compatible with multiple [protocols and c
- [GreptimeDB C++ Client](https://github.com/GreptimeTeam/greptimedb-client-cpp)
- [GreptimeDB Erlang Client](https://github.com/GreptimeTeam/greptimedb-client-erl)
- [GreptimeDB Go Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-go)
- [GreptimeDB Java Ingester](https://github.com/GreptimeTeam/greptimedb-ingester-java)
- [GreptimeDB Go Client](https://github.com/GreptimeTeam/greptimedb-client-go)
- [GreptimeDB Java Client](https://github.com/GreptimeTeam/greptimedb-client-java)
- [GreptimeDB Python Client](https://github.com/GreptimeTeam/greptimedb-client-py) (WIP)
- [GreptimeDB Rust Client](https://github.com/GreptimeTeam/greptimedb-client-rust)
- [GreptimeDB JavaScript Client](https://github.com/GreptimeTeam/greptime-js-sdk)
### Grafana Dashboard
Our official Grafana dashboard is available at [grafana](./grafana/README.md) directory.
## Project Status
This project is in its early stage and under heavy development. We move fast and
@@ -165,17 +168,18 @@ In addition, you may:
## License
GreptimeDB uses the [Apache License 2.0](https://apache.org/licenses/LICENSE-2.0.txt) to strike a balance between
GreptimeDB uses the [Apache 2.0 license][1] to strike a balance between
open contributions and allowing you to use the software however you want.
[1]: <https://github.com/greptimeTeam/greptimedb/blob/develop/LICENSE>
## Contributing
Please refer to [contribution guidelines](CONTRIBUTING.md) for more information.
## Acknowledgement
- GreptimeDB uses [Apache Arrow™](https://arrow.apache.org/) as the memory model and [Apache Parquet™](https://parquet.apache.org/) as the persistent file format.
- GreptimeDB's query engine is powered by [Apache Arrow DataFusion™](https://arrow.apache.org/datafusion/).
- [Apache OpenDAL™](https://opendal.apache.org) gives GreptimeDB a very general and elegant data access abstraction layer.
- GreptimeDB uses [Apache Arrow](https://arrow.apache.org/) as the memory model and [Apache Parquet](https://parquet.apache.org/) as the persistent file format.
- GreptimeDB's query engine is powered by [Apache Arrow DataFusion](https://github.com/apache/arrow-datafusion).
- [Apache OpenDAL (incubating)](https://opendal.apache.org) gives GreptimeDB a very general and elegant data access abstraction layer.
- GreptimeDB's meta service is based on [etcd](https://etcd.io/).
- GreptimeDB uses [RustPython](https://github.com/RustPython/RustPython) for experimental embedded python scripting.

View File

@@ -4,13 +4,10 @@ version.workspace = true
edition.workspace = true
license.workspace = true
[lints]
workspace = true
[dependencies]
arrow.workspace = true
chrono.workspace = true
clap.workspace = true
clap = { version = "4.0", features = ["derive"] }
client.workspace = true
futures-util.workspace = true
indicatif = "0.17.1"

View File

@@ -29,7 +29,7 @@ use client::api::v1::column::Values;
use client::api::v1::{
Column, ColumnDataType, ColumnDef, CreateTableExpr, InsertRequest, InsertRequests, SemanticType,
};
use client::{Client, Database, OutputData, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use client::{Client, Database, Output, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use futures_util::TryStreamExt;
use indicatif::{MultiProgress, ProgressBar, ProgressStyle};
use parquet::arrow::arrow_reader::ParquetRecordBatchReaderBuilder;
@@ -258,7 +258,7 @@ fn create_table_expr(table_name: &str) -> CreateTableExpr {
catalog_name: CATALOG_NAME.to_string(),
schema_name: SCHEMA_NAME.to_string(),
table_name: table_name.to_string(),
desc: String::default(),
desc: "".to_string(),
column_defs: vec![
ColumnDef {
name: "VendorID".to_string(),
@@ -502,9 +502,9 @@ async fn do_query(num_iter: usize, db: &Database, table_name: &str) {
for i in 0..num_iter {
let now = Instant::now();
let res = db.sql(&query).await.unwrap();
match res.data {
OutputData::AffectedRows(_) | OutputData::RecordBatches(_) => (),
OutputData::Stream(stream) => {
match res {
Output::AffectedRows(_) | Output::RecordBatches(_) => (),
Output::Stream(stream) => {
stream.try_collect::<Vec<_>>().await.unwrap();
}
}

View File

@@ -8,6 +8,5 @@ coverage:
ignore:
- "**/error*.rs" # ignore all error.rs files
- "tests/runner/*.rs" # ignore integration test runner
- "tests-integration/**/*.rs" # ignore integration tests
comment: # this is a top-level key
layout: "diff"

View File

@@ -14,7 +14,7 @@ require_lease_before_startup = false
# Initialize all regions in the background during the startup.
# By default, it provides services after all regions have been initialized.
init_regions_in_background = false
initialize_region_in_background = false
[heartbeat]
# Interval for sending heartbeat messages to the Metasrv, 3 seconds by default.
@@ -34,7 +34,11 @@ connect_timeout = "1s"
tcp_nodelay = true
# WAL options.
# Currently, users are expected to choose the wal through the provider field.
# When a wal provider is chose, the user should comment out all other wal config
# except those corresponding to the chosen one.
[wal]
# WAL data directory
provider = "raft_engine"
# Raft-engine wal options, see `standalone.example.toml`.
@@ -47,10 +51,9 @@ sync_write = false
# Kafka wal options, see `standalone.example.toml`.
# broker_endpoints = ["127.0.0.1:9092"]
# Warning: Kafka has a default limit of 1MB per message in a topic.
# max_batch_size = "1MB"
# max_batch_size = "4MB"
# linger = "200ms"
# consumer_wait_timeout = "100ms"
# produce_record_timeout = "100ms"
# backoff_init = "500ms"
# backoff_max = "10s"
# backoff_base = 2
@@ -94,18 +97,15 @@ compress_manifest = false
max_background_jobs = 4
# Interval to auto flush a region if it has not flushed yet.
auto_flush_interval = "1h"
# Global write buffer size for all regions. If not set, it's default to 1/8 of OS memory with a max limitation of 1GB.
# Global write buffer size for all regions.
global_write_buffer_size = "1GB"
# Global write buffer size threshold to reject write requests. If not set, it's default to 2 times of `global_write_buffer_size`
# Global write buffer size threshold to reject write requests (default 2G).
global_write_buffer_reject_size = "2GB"
# Cache size for SST metadata. Setting it to 0 to disable the cache.
# If not set, it's default to 1/32 of OS memory with a max limitation of 128MB.
# Cache size for SST metadata (default 128MB). Setting it to 0 to disable the cache.
sst_meta_cache_size = "128MB"
# Cache size for vectors and arrow arrays. Setting it to 0 to disable the cache.
# If not set, it's default to 1/16 of OS memory with a max limitation of 512MB.
# Cache size for vectors and arrow arrays (default 512MB). Setting it to 0 to disable the cache.
vector_cache_size = "512MB"
# Cache size for pages of SST row groups. Setting it to 0 to disable the cache.
# If not set, it's default to 1/16 of OS memory with a max limitation of 512MB.
# Cache size for pages of SST row groups (default 512MB). Setting it to 0 to disable the cache.
page_cache_size = "512MB"
# Buffer size for SST writing.
sst_write_buffer_size = "8MB"
@@ -116,39 +116,6 @@ sst_write_buffer_size = "8MB"
scan_parallelism = 0
# Capacity of the channel to send data from parallel scan tasks to the main task (default 32).
parallel_scan_channel_size = 32
# Whether to allow stale WAL entries read during replay.
allow_stale_entries = false
[region_engine.mito.inverted_index]
# Whether to create the index on flush.
# - "auto": automatically
# - "disable": never
create_on_flush = "auto"
# Whether to create the index on compaction.
# - "auto": automatically
# - "disable": never
create_on_compaction = "auto"
# Whether to apply the index on query
# - "auto": automatically
# - "disable": never
apply_on_query = "auto"
# Memory threshold for performing an external sort during index creation.
# Setting to empty will disable external sorting, forcing all sorting operations to happen in memory.
mem_threshold_on_create = "64M"
# File system path to store intermediate files for external sorting (default `{data_home}/index_intermediate`).
intermediate_path = ""
[region_engine.mito.memtable]
# Memtable type.
# - "experimental": experimental memtable
# - "time_series": time-series memtable (deprecated)
type = "experimental"
# The max number of keys in one shard.
index_max_keys_per_shard = 8192
# The max rows of data inside the actively writing buffer in one shard.
data_freeze_threshold = 32768
# Max dictionary bytes.
fork_dictionary_bytes = "1GiB"
# Log options, see `standalone.example.toml`
# [logging]
@@ -162,10 +129,11 @@ fork_dictionary_bytes = "1GiB"
# [export_metrics]
# whether enable export metrics, default is false
# enable = false
# The url of metrics export endpoint, default is `frontend` default HTTP endpoint.
# endpoint = "127.0.0.1:4000"
# The database name of exported metrics stores, user needs to specify a valid database
# db = ""
# The interval of export metrics
# write_interval = "30s"
# [export_metrics.remote_write]
# The url the metrics send to. The url is empty by default, url example: `http://127.0.0.1:4000/v1/prometheus/write?db=information_schema`
# url = ""
# HTTP headers of Prometheus remote-write carry
# headers = {}

View File

@@ -31,7 +31,6 @@ runtime_size = 2
mode = "disable"
cert_path = ""
key_path = ""
watch = false
# PostgresSQL server options, see `standalone.example.toml`.
[postgres]
@@ -44,7 +43,6 @@ runtime_size = 2
mode = "disable"
cert_path = ""
key_path = ""
watch = false
# OpenTSDB protocol options, see `standalone.example.toml`.
[opentsdb]
@@ -59,9 +57,6 @@ enable = true
# Prometheus remote storage options, see `standalone.example.toml`.
[prom_store]
enable = true
# Whether to store the data from Prometheus remote write in metric engine.
# true by default
with_metric_engine = true
# Metasrv client options, see `datanode.example.toml`.
[meta_client]
@@ -71,13 +66,6 @@ timeout = "3s"
ddl_timeout = "10s"
connect_timeout = "1s"
tcp_nodelay = true
# The configuration about the cache of the Metadata.
# default: 100000
metadata_cache_max_capacity = 100000
# default: 10m
metadata_cache_ttl = "10m"
# default: 5m
metadata_cache_tti = "5m"
# Log options, see `standalone.example.toml`
# [logging]
@@ -99,8 +87,11 @@ tcp_nodelay = true
# [export_metrics]
# whether enable export metrics, default is false
# enable = false
# The url of metrics export endpoint, default is `frontend` default HTTP endpoint.
# endpoint = "127.0.0.1:4000"
# The database name of exported metrics stores, user needs to specify a valid database
# db = ""
# The interval of export metrics
# write_interval = "30s"
# for `frontend`, `self_import` is recommend to collect metrics generated by itself
# [export_metrics.self_import]
# db = "information_schema"
# HTTP headers of Prometheus remote-write carry
# headers = {}

View File

@@ -64,6 +64,8 @@ provider = "raft_engine"
# selector_type = "round_robin"
# A Kafka topic is constructed by concatenating `topic_name_prefix` and `topic_id`.
# topic_name_prefix = "greptimedb_wal_topic"
# Number of partitions per topic.
# num_partitions = 1
# Expected number of replicas of each partition.
# replication_factor = 1
# Above which a topic creation operation will be cancelled.
@@ -84,10 +86,11 @@ provider = "raft_engine"
# [export_metrics]
# whether enable export metrics, default is false
# enable = false
# The url of metrics export endpoint, default is `frontend` default HTTP endpoint.
# endpoint = "127.0.0.1:4000"
# The database name of exported metrics stores, user needs to specify a valid database
# db = ""
# The interval of export metrics
# write_interval = "30s"
# [export_metrics.remote_write]
# The url the metrics send to. The url is empty by default, url example: `http://127.0.0.1:4000/v1/prometheus/write?db=information_schema`
# url = ""
# HTTP headers of Prometheus remote-write carry
# headers = {}

View File

@@ -44,8 +44,6 @@ mode = "disable"
cert_path = ""
# Private key file path.
key_path = ""
# Watch for Certificate and key file change and auto reload
watch = false
# PostgresSQL server options.
[postgres]
@@ -64,8 +62,6 @@ mode = "disable"
cert_path = ""
# private key file path.
key_path = ""
# Watch for Certificate and key file change and auto reload
watch = false
# OpenTSDB protocol options.
[opentsdb]
@@ -85,9 +81,6 @@ enable = true
[prom_store]
# Whether to enable Prometheus remote write and read in HTTP API, true by default.
enable = true
# Whether to store the data from Prometheus remote write in metric engine.
# true by default
with_metric_engine = true
[wal]
# Available wal providers:
@@ -95,7 +88,43 @@ with_metric_engine = true
# - "kafka"
provider = "raft_engine"
# Raft-engine wal options.
# There're none raft-engine wal config since meta srv only involves in remote wal currently.
# Kafka wal options.
# The broker endpoints of the Kafka cluster. ["127.0.0.1:9092"] by default.
# broker_endpoints = ["127.0.0.1:9092"]
# Number of topics to be created upon start.
# num_topics = 64
# Topic selector type.
# Available selector types:
# - "round_robin" (default)
# selector_type = "round_robin"
# A Kafka topic is constructed by concatenating `topic_name_prefix` and `topic_id`.
# topic_name_prefix = "greptimedb_wal_topic"
# Number of partitions per topic.
# num_partitions = 1
# Expected number of replicas of each partition.
# replication_factor = 1
# The maximum log size a kafka batch producer could buffer.
# max_batch_size = "4MB"
# The linger duration of a kafka batch producer.
# linger = "200ms"
# The maximum amount of time (in milliseconds) to wait for Kafka records to be returned.
# produce_record_timeout = "100ms"
# Above which a topic creation operation will be cancelled.
# create_topic_timeout = "30s"
# The initial backoff for kafka clients.
# backoff_init = "500ms"
# The maximum backoff for kafka clients.
# backoff_max = "10s"
# Exponential backoff rate, i.e. next backoff = base * current backoff.
# backoff_base = 2
# Stop reconnecting if the total wait time reaches the deadline. If this config is missing, the reconnecting won't terminate.
# backoff_deadline = "5mins"
# WAL data directory
# dir = "/tmp/greptimedb/wal"
# WAL file size in bytes.
@@ -108,47 +137,6 @@ purge_interval = "10m"
read_batch_size = 128
# Whether to sync log file after every write.
sync_write = false
# Whether to reuse logically truncated log files.
enable_log_recycle = true
# Whether to pre-create log files on start up
prefill_log_files = false
# Duration for fsyncing log files.
sync_period = "1000ms"
# Kafka wal options.
# The broker endpoints of the Kafka cluster. ["127.0.0.1:9092"] by default.
# broker_endpoints = ["127.0.0.1:9092"]
# Number of topics to be created upon start.
# num_topics = 64
# Topic selector type.
# Available selector types:
# - "round_robin" (default)
# selector_type = "round_robin"
# The prefix of topic name.
# topic_name_prefix = "greptimedb_wal_topic"
# The number of replicas of each partition.
# Warning: the replication factor must be positive and must not be greater than the number of broker endpoints.
# replication_factor = 1
# The max size of a single producer batch.
# Warning: Kafka has a default limit of 1MB per message in a topic.
# max_batch_size = "1MB"
# The linger duration.
# linger = "200ms"
# The consumer wait timeout.
# consumer_wait_timeout = "100ms"
# Create topic timeout.
# create_topic_timeout = "30s"
# The initial backoff delay.
# backoff_init = "500ms"
# The maximum backoff delay.
# backoff_max = "10s"
# Exponential backoff rate, i.e. next backoff = base * current backoff.
# backoff_base = 2
# The deadline of retries.
# backoff_deadline = "5mins"
# Metadata storage options.
[metadata_store]
@@ -200,18 +188,15 @@ compress_manifest = false
max_background_jobs = 4
# Interval to auto flush a region if it has not flushed yet.
auto_flush_interval = "1h"
# Global write buffer size for all regions. If not set, it's default to 1/8 of OS memory with a max limitation of 1GB.
# Global write buffer size for all regions.
global_write_buffer_size = "1GB"
# Global write buffer size threshold to reject write requests. If not set, it's default to 2 times of `global_write_buffer_size`
# Global write buffer size threshold to reject write requests (default 2G).
global_write_buffer_reject_size = "2GB"
# Cache size for SST metadata. Setting it to 0 to disable the cache.
# If not set, it's default to 1/32 of OS memory with a max limitation of 128MB.
# Cache size for SST metadata (default 128MB). Setting it to 0 to disable the cache.
sst_meta_cache_size = "128MB"
# Cache size for vectors and arrow arrays. Setting it to 0 to disable the cache.
# If not set, it's default to 1/16 of OS memory with a max limitation of 512MB.
# Cache size for vectors and arrow arrays (default 512MB). Setting it to 0 to disable the cache.
vector_cache_size = "512MB"
# Cache size for pages of SST row groups. Setting it to 0 to disable the cache.
# If not set, it's default to 1/16 of OS memory with a max limitation of 512MB.
# Cache size for pages of SST row groups (default 512MB). Setting it to 0 to disable the cache.
page_cache_size = "512MB"
# Buffer size for SST writing.
sst_write_buffer_size = "8MB"
@@ -222,39 +207,6 @@ sst_write_buffer_size = "8MB"
scan_parallelism = 0
# Capacity of the channel to send data from parallel scan tasks to the main task (default 32).
parallel_scan_channel_size = 32
# Whether to allow stale WAL entries read during replay.
allow_stale_entries = false
[region_engine.mito.inverted_index]
# Whether to create the index on flush.
# - "auto": automatically
# - "disable": never
create_on_flush = "auto"
# Whether to create the index on compaction.
# - "auto": automatically
# - "disable": never
create_on_compaction = "auto"
# Whether to apply the index on query
# - "auto": automatically
# - "disable": never
apply_on_query = "auto"
# Memory threshold for performing an external sort during index creation.
# Setting to empty will disable external sorting, forcing all sorting operations to happen in memory.
mem_threshold_on_create = "64M"
# File system path to store intermediate files for external sorting (default `{data_home}/index_intermediate`).
intermediate_path = ""
[region_engine.mito.memtable]
# Memtable type.
# - "experimental": experimental memtable
# - "time_series": time-series memtable (deprecated)
type = "experimental"
# The max number of keys in one shard.
index_max_keys_per_shard = 8192
# The max rows of data inside the actively writing buffer in one shard.
data_freeze_threshold = 32768
# Max dictionary bytes.
fork_dictionary_bytes = "1GiB"
# Log options
# [logging]
@@ -266,11 +218,10 @@ fork_dictionary_bytes = "1GiB"
# enable_otlp_tracing = false
# tracing exporter endpoint with format `ip:port`, we use grpc oltp as exporter, default endpoint is `localhost:4317`
# otlp_endpoint = "localhost:4317"
# The percentage of tracing will be sampled and exported. Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1. ratio > 1 are treated as 1. Fractions < 0 are treated as 0
# tracing_sample_ratio = 1.0
# Whether to append logs to stdout. Defaults to true.
# append_stdout = true
# The percentage of tracing will be sampled and exported. Valid range `[0, 1]`, 1 means all traces are sampled, 0 means all traces are not sampled, the default value is 1. ratio > 1 are treated as 1. Fractions < 0 are treated as 0
# [logging.tracing_sample_ratio]
# default_ratio = 0.0
# Standalone export the metrics generated by itself
# encoded to Prometheus remote-write format
@@ -279,8 +230,11 @@ fork_dictionary_bytes = "1GiB"
# [export_metrics]
# whether enable export metrics, default is false
# enable = false
# The url of metrics export endpoint, default is `frontend` default HTTP endpoint.
# endpoint = "127.0.0.1:4000"
# The database name of exported metrics stores, user needs to specify a valid database
# db = ""
# The interval of export metrics
# write_interval = "30s"
# for `standalone`, `self_import` is recommend to collect metrics generated by itself
# [export_metrics.self_import]
# db = "information_schema"
# HTTP headers of Prometheus remote-write carry
# headers = {}

View File

@@ -1,11 +1,5 @@
FROM ubuntu:22.04
# The root path under which contains all the dependencies to build this Dockerfile.
ARG DOCKER_BUILD_ROOT=.
# The binary name of GreptimeDB executable.
# Defaults to "greptime", but sometimes in other projects it might be different.
ARG TARGET_BIN=greptime
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
ca-certificates \
python3.10 \
@@ -13,16 +7,14 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y \
python3-pip \
curl
COPY $DOCKER_BUILD_ROOT/docker/python/requirements.txt /etc/greptime/requirements.txt
COPY ./docker/python/requirements.txt /etc/greptime/requirements.txt
RUN python3 -m pip install -r /etc/greptime/requirements.txt
ARG TARGETARCH
ADD $TARGETARCH/$TARGET_BIN /greptime/bin/
ADD $TARGETARCH/greptime /greptime/bin/
ENV PATH /greptime/bin/:$PATH
ENV TARGET_BIN=$TARGET_BIN
ENTRYPOINT ["sh", "-c", "exec $TARGET_BIN \"$@\"", "--"]
ENTRYPOINT ["greptime"]

View File

@@ -1,8 +1,5 @@
FROM ubuntu:20.04
# The root path under which contains all the dependencies to build this Dockerfile.
ARG DOCKER_BUILD_ROOT=.
ENV LANG en_US.utf8
WORKDIR /greptimedb
@@ -30,20 +27,10 @@ RUN apt-get -y purge python3.8 && \
ln -s /usr/bin/python3.10 /usr/bin/python3 && \
curl -sS https://bootstrap.pypa.io/get-pip.py | python3.10
# Silence all `safe.directory` warnings, to avoid the "detect dubious repository" error when building with submodules.
# Disabling the safe directory check here won't pose extra security issues, because in our usage for this dev build
# image, we use it solely on our own environment (that github action's VM, or ECS created dynamically by ourselves),
# and the repositories are pulled from trusted sources (still us, of course). Doing so does not violate the intention
# of the Git's addition to the "safe.directory" at the first place (see the commit message here:
# https://github.com/git/git/commit/8959555cee7ec045958f9b6dd62e541affb7e7d9).
# There's also another solution to this, that we add the desired submodules to the safe directory, instead of using
# wildcard here. However, that requires the git's config files and the submodules all owned by the very same user.
# It's troublesome to do this since the dev build runs in Docker, which is under user "root"; while outside the Docker,
# it can be a different user that have prepared the submodules.
RUN git config --global --add safe.directory *
RUN git config --global --add safe.directory /greptimedb
# Install Python dependencies.
COPY $DOCKER_BUILD_ROOT/docker/python/requirements.txt /etc/greptime/requirements.txt
COPY ./docker/python/requirements.txt /etc/greptime/requirements.txt
RUN python3 -m pip install -r /etc/greptime/requirements.txt
# Install Rust.

View File

@@ -1,50 +0,0 @@
# TSBS benchmark - v0.7.0
## Environment
### Local
| | |
| ------ | ---------------------------------- |
| CPU | AMD Ryzen 7 7735HS (8 core 3.2GHz) |
| Memory | 32GB |
| Disk | SOLIDIGM SSDPFKNU010TZ |
| OS | Ubuntu 22.04.2 LTS |
### Amazon EC2
| | |
| ------- | -------------- |
| Machine | c5d.2xlarge |
| CPU | 8 core |
| Memory | 16GB |
| Disk | 50GB (GP3) |
| OS | Ubuntu 22.04.1 |
## Write performance
| Environment | Ingest rate (rows/s) |
| ------------------ | --------------------- |
| Local | 3695814.64 |
| EC2 c5d.2xlarge | 2987166.64 |
## Query performance
| Query type | Local (ms) | EC2 c5d.2xlarge (ms) |
| --------------------- | ---------- | ---------------------- |
| cpu-max-all-1 | 30.56 | 54.74 |
| cpu-max-all-8 | 52.69 | 70.50 |
| double-groupby-1 | 664.30 | 1366.63 |
| double-groupby-5 | 1391.26 | 2141.71 |
| double-groupby-all | 2828.94 | 3389.59 |
| groupby-orderby-limit | 718.92 | 1213.90 |
| high-cpu-1 | 29.21 | 52.98 |
| high-cpu-all | 5514.12 | 7194.91 |
| lastpoint | 7571.40 | 9423.41 |
| single-groupby-1-1-1 | 19.09 | 7.77 |
| single-groupby-1-1-12 | 27.28 | 51.64 |
| single-groupby-1-8-1 | 31.85 | 11.64 |
| single-groupby-5-1-1 | 16.14 | 9.67 |
| single-groupby-5-1-12 | 27.21 | 53.62 |
| single-groupby-5-8-1 | 39.62 | 14.96 |

View File

@@ -79,7 +79,7 @@ This RFC proposes to add a new expression node `MergeScan` to merge result from
│ │ │ │
└─Frontend──────┘ └─Remote-Sources──────────────┘
```
This merge operation simply chains all the underlying remote data sources and return `RecordBatch`, just like a coalesce op. And each remote sources is a gRPC query to datanode via the substrait logical plan interface. The plan is transformed and divided from the original query that comes to frontend.
This merge operation simply chains all the the underlying remote data sources and return `RecordBatch`, just like a coalesce op. And each remote sources is a gRPC query to datanode via the substrait logical plan interface. The plan is transformed and divided from the original query that comes to frontend.
## Commutativity of MergeScan

View File

@@ -1,6 +1,6 @@
---
Feature Name: Inverted Index for SST File
Tracking Issue: https://github.com/GreptimeTeam/greptimedb/issues/2705
Tracking Issue: TBD
Date: 2023-11-03
Author: "Zhong Zhenchi <zhongzc_arch@outlook.com>"
---

View File

@@ -1,97 +0,0 @@
---
Feature Name: Dataflow Framework
Tracking Issue: https://github.com/GreptimeTeam/greptimedb/issues/3187
Date: 2024-01-17
Author: "Discord9 <discord9@163.com>"
---
# Summary
This RFC proposes a Lightweight Module for executing continuous aggregation queries on a stream of data.
# Motivation
Being able to do continuous aggregation is a very powerful tool. It allows you to do things like:
1. downsample data from i.e. 1 milliseconds to 1 second
2. calculate the average of a stream of data
3. Keeping a sliding window of data in memory
In order to do those things while maintaining a low memory footprint, you need to be able to manage the data in a smart way. Hence, we only store necessary data in memory, and send/recv data deltas to/from the client.
# Details
## System boundary / What it's and isn't
- GreptimeFlow provides a way to perform continuous aggregation over time-series data.
- It's not a complete streaming-processing system. Only a must subset functionalities are provided.
- Flow can process a configured range of fresh data. Data exceeding this range will be dropped directly. Thus it cannot handle random datasets (random on timestamp).
- Both sliding windows (e.g., latest 5m from present) and fixed windows (every 5m from some time) are supported. And these two are the major targeting scenarios.
- Flow can handle most aggregate operators within one table(i.e. Sum, avg, min, max and comparison operators). But others (join, trigger, txn etc.) are not the target feature.
## Framework
- Greptime Flow's is built on top of [Hydroflow](https://github.com/hydro-project/hydroflow).
- We have three choices for the Dataflow/Streaming process framework for our simple continuous aggregation feature:
1. Based on the timely/differential dataflow crate that [materialize](https://github.com/MaterializeInc/materialize) based on. Later, it's proved too obscure for a simple usage, and is hard to customize memory usage control.
2. Based on a simple dataflow framework that we write from ground up, like what [arroyo](https://www.arroyo.dev/) or [risingwave](https://www.risingwave.dev/) did, for example the core streaming logic of [arroyo](https://github.com/ArroyoSystems/arroyo/blob/master/arroyo-datastream/src/lib.rs) only takes up to 2000 line of codes. However, it means maintaining another layer of dataflow framework, which might seem easy in the beginning, but I fear it might be too burdensome to maintain once we need more features.
3. Based on a simple and lower level dataflow framework that someone else write, like [hydroflow](https://github.com/hydro-project/hydroflow), this approach combines the best of both worlds. Firstly, it boasts ease of comprehension and customization. Secondly, the dataflow framework offers precisely the necessary features for crafting uncomplicated single-node dataflow programs while delivering decent performance.
Hence, we choose the third option, and use a simple logical plan that's anagonistic to the underlying dataflow framework, as it only describe how the dataflow graph should be doing, not how it do that. And we built operator in hydroflow to execute the plan. And the result hydroflow graph is wrapped in a engine that only support data in/out and tick event to flush and compute the result. This provide a thin middle layer that's easy to maintain and allow switching to other dataflow framework if necessary.
## Deploy mode and protocol
- Greptime Flow is an independent streaming compute component. It can be used either within a standalone node or as a dedicated node at the same level as frontend in distributed mode.
- It accepts insert request Rows, which is used between frontend and datanode.
- New flow job is submitted in the format of modified SQL query like snowflake do, like: `CREATE TASK avg_over_5m WINDOW_SIZE = "5m" AS SELECT avg(value) FROM table WHERE time > now() - 5m GROUP BY time(1m)`. Flow job then got stored in MetaSrv.
- It also persists results in the format of Rows to frontend.
- The query plan uses Substrait as codec format. It's the same with GreptimeDB's query engine.
- Greptime Flow needs a WAL for recovering. It's possible to reuse datanode's.
The workflow is shown in the following diagram
```mermaid
graph TB
subgraph Flownode["Flownode"]
subgraph Dataflows
df1("Dataflow_1")
df2("Dataflow_2")
end
end
subgraph Frontend["Frontend"]
newLines["Mirror Insert
Create Task From Query
Write result from flow node"]
end
subgraph Datanode["Datanode"]
end
User --> Frontend
Frontend -->|Register Task| Metasrv
Metasrv -->|Read Task Metadata| Frontend
Frontend -->|Create Task| Flownode
Frontend -->|Mirror Insert| Flownode
Flownode -->|Write back| Frontend
Frontend --> Datanode
Datanode --> Frontend
```
## Lifecycle of data
- New data is inserted into frontend like before. Frontend will mirror insert request to Flow node if there is configured flow job.
- Depending on the timestamp of incoming data, flow will either drop it (outdated data) or process it (fresh data).
- Greptime Flow will periodically write results back to the result table through frontend.
- Those result will then be written into a result table stored in datanode.
- A small table of intermediate state is kept in memory, which is used to calculate the result.
## Supported operations
- Greptime Flow accepts a configurable "materialize window", data point exceeds that time window is discarded.
- Data within that "materialize window" is queryable and updateable.
- Greptime Flow can handle partitioning, if and only if the input query can be transformed to a fully partitioned plan according to the existing commutative rules. Otherwise the corresponding flow job has to be calculated in a single node.
- Notice that Greptime Flow has to see all the data belongs to one partition.
- Deletion and duplicate insertion are not supported at early stage.
## Miscellaneous
- Greptime Flow can translate SQL to it's own plan, however only a selected few aggregate function is supported for now, like min/max/sum/count/avg
- Greptime Flow's operator is configurable in terms of the size of the materialize window, whether to allow delay of incoming data etc., so simplest operator can choose to not tolerate any delay to save memory.
# Future Work
- Support UDF that can do one-to-one mapping. Preferably, we can reuse the UDF mechanism in GreptimeDB.
- Support join operator.
- Design syntax for config operator for different materialize window and delay tolerance.
- Support cross partition merge operator that allows complex query plan that not necessary accord with partitioning rule to communicate between nodes and create final materialize result.
- Duplicate insertion, which can be reverted easily within the current framework, so supporting it could be easy
- Deletion within "materialize window", this requires operators like min/max to store all inputs within materialize window, which might require further optimization.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 65 KiB

View File

@@ -1,101 +0,0 @@
---
Feature Name: Multi-dimension Partition Rule
Tracking Issue: https://github.com/GreptimeTeam/greptimedb/issues/3351
Date: 2024-02-21
Author: "Ruihang Xia <waynestxia@gmail.com>"
---
# Summary
A new region partition scheme that runs on multiple dimensions of the key space. The partition rule is defined by a set of simple expressions on the partition key columns.
# Motivation
The current partition rule is from MySQL's [`RANGE Partition`](https://dev.mysql.com/doc/refman/8.0/en/partitioning-range.html), which is based on a single dimension. It is sort of a [Hilbert Curve](https://en.wikipedia.org/wiki/Hilbert_curve) and pick several point on the curve to divide the space. It is neither easy to understand how the data get partitioned nor flexible enough to handle complex partitioning requirements.
Considering the future requirements like region repartitioning or autonomous rebalancing, where both workload and partition may change frequently. Here proposes a new region partition scheme that uses a set of simple expressions on the partition key columns to divide the key space.
# Details
## Partition rule
First, we define a simple expression that can be used to define the partition rule. The simple expression is a binary expression expression on the partition key columns that can be evaluated to a boolean value. The binary operator is limited to comparison operators only, like `=`, `!=`, `>`, `>=`, `<`, `<=`. And the operands are limited either literal value or partition column.
Example of valid simple expressions are $`col_A = 10`$, $`col_A \gt 10 \& col_B \gt 20`$ or $`col_A \ne 10`$.
Those expressions can be used as predicates to divide the key space into different regions. The following example have two partition columns `Col A` and `Col B`, and four partitioned regions.
```math
\left\{\begin{aligned}
&col_A \le 10 &Region_1 \\
&10 \lt col_A \& col_A \le 20 &Region_2 \\
&20 \lt col_A \space \& \space col_B \lt 100 &Region_3 \\
&20 \lt col_A \space \& \space col_B \ge 100 &Region_4
\end{aligned}\right\}
```
An advantage of this scheme is that it is easy to understand how the data get partitioned. The above example can be visualized in a 2D space (two partition column is involved in the example).
![example](2d-example.png)
Here each expression draws a line in the 2D space. Managing data partitioning becomes a matter of drawing lines in the key space.
To make it easy to use, there is a "default region" which catches all the data that doesn't match any of previous expressions. The default region exist by default and do not need to specify. It is also possible to remove this default region if the DB finds it is not necessary.
## SQL interface
The SQL interface is in response to two parts: specifying the partition columns and the partition rule. Thouth we are targeting an autonomous system, it's still allowed to give some bootstrap rules or hints on creating table.
Partition column is specified by `PARTITION ON COLUMNS` sub-clause in `CREATE TABLE`:
```sql
CREATE TABLE t (...)
PARTITION ON COLUMNS (...) ();
```
Two following brackets are for partition columns and partition rule respectively.
Columns provided here are only used as an allow-list of how the partition rule can be defined. Which means (a) the sequence between columns doesn't matter, (b) the columns provided here are not necessarily being used in the partition rule.
The partition rule part is a list of comma-separated simple expressions. Expressions here are not corresponding to region, as they might be changed by system to fit various workload.
A full example of `CREATE TABLE` with partition rule is:
```sql
CREATE TABLE IF NOT EXISTS demo (
a STRING,
b STRING,
c STRING,
d STRING,
ts TIMESTAMP,
memory DOUBLE,
TIME INDEX (ts),
PRIMARY KEY (a, b, c, d)
)
PARTITION ON COLUMNS (c, b, a) (
a < 10,
10 >= a AND a < 20,
20 >= a AND b < 100,
20 >= a AND b > 100
)
```
## Combine with storage
Examining columns separately suits our columnar storage very well in two aspects.
1. The simple expression can be pushed down to storage and file format, and is likely to hit existing index. Makes pruning operation very efficient.
2. Columns in columnar storage are not tightly coupled like in the traditional row storages, which means we can easily add or remove columns from partition rule without much impact (like a global reshuffle) on data.
The data file itself can be "projected" to the key space as a polyhedron, it is guaranteed that each plane is in parallel with some coordinate planes (in a 2D scenario, this is saying that all the files can be projected to a rectangle). Thus partition or repartition also only need to consider related columns.
![sst-project](sst-project.png)
An additional limitation is that considering how the index works and how we organize the primary keys at present, the partition columns are limited to be a subset of primary keys for better performance.
# Drawbacks
This is a breaking change.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 71 KiB

View File

@@ -1,10 +0,0 @@
Grafana dashboard for GreptimeDB
--------------------------------
GreptimeDB's official Grafana dashboard.
Status notify: we are still working on this config. It's expected to change frequently in the recent days. Please feel free to submit your feedback and/or contribution to this dashboard 🤗
# How to use
Open Grafana Dashboard page, choose `New` -> `Import`. And upload `greptimedb.json` file.

File diff suppressed because it is too large Load Diff

View File

@@ -1,7 +1,8 @@
#!/usr/bin/env bash
# This script is used to download built dashboard assets from the "GreptimeTeam/dashboard" repository.
set -ex
set -e -x
declare -r SCRIPT_DIR=$(cd $(dirname ${0}) >/dev/null 2>&1 && pwd)
declare -r ROOT_DIR=$(dirname ${SCRIPT_DIR})
@@ -12,34 +13,13 @@ RELEASE_VERSION="$(cat $STATIC_DIR/VERSION | tr -d '\t\r\n ')"
echo "Downloading assets to dir: $OUT_DIR"
cd $OUT_DIR
if [[ -z "$GITHUB_PROXY_URL" ]]; then
GITHUB_URL="https://github.com"
else
GITHUB_URL="${GITHUB_PROXY_URL%/}"
fi
function retry_fetch() {
local url=$1
local filename=$2
curl --connect-timeout 10 --retry 3 -fsSL $url --output $filename || {
echo "Failed to download $url"
echo "You may try to set http_proxy and https_proxy environment variables."
if [[ -z "$GITHUB_PROXY_URL" ]]; then
echo "You may try to set GITHUB_PROXY_URL=http://mirror.ghproxy.com/"
fi
exit 1
}
}
# Download the SHA256 checksum attached to the release. To verify the integrity
# of the download, this checksum will be used to check the download tar file
# containing the built dashboard assets.
retry_fetch "${GITHUB_URL}/GreptimeTeam/dashboard/releases/download/${RELEASE_VERSION}/sha256.txt" sha256.txt
curl -Ls https://github.com/GreptimeTeam/dashboard/releases/download/$RELEASE_VERSION/sha256.txt --output sha256.txt
# Download the tar file containing the built dashboard assets.
retry_fetch "${GITHUB_URL}/GreptimeTeam/dashboard/releases/download/$RELEASE_VERSION/build.tar.gz" build.tar.gz
curl -L https://github.com/GreptimeTeam/dashboard/releases/download/$RELEASE_VERSION/build.tar.gz --output build.tar.gz
# Verify the checksums match; exit if they don't.
case "$(uname -s)" in

View File

@@ -4,9 +4,6 @@ version.workspace = true
edition.workspace = true
license.workspace = true
[lints]
workspace = true
[dependencies]
common-base.workspace = true
common-decimal.workspace = true

View File

@@ -8,9 +8,6 @@ license.workspace = true
default = []
testing = []
[lints]
workspace = true
[dependencies]
api.workspace = true
async-trait.workspace = true

View File

@@ -7,16 +7,13 @@ license.workspace = true
[features]
testing = []
[lints]
workspace = true
[dependencies]
api.workspace = true
arc-swap = "1.0"
arrow.workspace = true
arrow-schema.workspace = true
async-stream.workspace = true
async-trait = "0.1"
build-data = "0.1"
common-catalog.workspace = true
common-error.workspace = true
common-grpc.workspace = true
@@ -27,16 +24,14 @@ common-recordbatch.workspace = true
common-runtime.workspace = true
common-telemetry.workspace = true
common-time.workspace = true
common-version.workspace = true
dashmap.workspace = true
datafusion.workspace = true
datatypes.workspace = true
futures = "0.3"
futures-util.workspace = true
itertools.workspace = true
lazy_static.workspace = true
meta-client.workspace = true
moka = { workspace = true, features = ["future", "sync"] }
moka = { workspace = true, features = ["future"] }
parking_lot = "0.12"
partition.workspace = true
paste = "1.0"

View File

@@ -41,14 +41,6 @@ pub enum Error {
source: BoxedError,
},
#[snafu(display("Failed to list {}.{}'s tables", catalog, schema))]
ListTables {
location: Location,
catalog: String,
schema: String,
source: BoxedError,
},
#[snafu(display("Failed to re-compile script due to internal error"))]
CompileScriptInternal {
location: Location,
@@ -164,12 +156,6 @@ pub enum Error {
location: Location,
},
#[snafu(display("Failed to find table partitions"))]
FindPartitions { source: partition::error::Error },
#[snafu(display("Failed to find region routes"))]
FindRegionRoutes { source: partition::error::Error },
#[snafu(display("Failed to read system catalog table records"))]
ReadSystemCatalog {
location: Location,
@@ -251,12 +237,6 @@ pub enum Error {
source: common_meta::error::Error,
location: Location,
},
#[snafu(display("Get null from table cache, key: {}", key))]
TableCacheNotGet { key: String, location: Location },
#[snafu(display("Failed to get table cache, err: {}", err_msg))]
GetTableCache { err_msg: String },
}
pub type Result<T> = std::result::Result<T, Error>;
@@ -266,14 +246,11 @@ impl ErrorExt for Error {
match self {
Error::InvalidKey { .. }
| Error::SchemaNotFound { .. }
| Error::TableNotFound { .. }
| Error::CatalogNotFound { .. }
| Error::FindPartitions { .. }
| Error::FindRegionRoutes { .. }
| Error::InvalidEntryType { .. }
| Error::ParallelOpenTable { .. } => StatusCode::Unexpected,
Error::TableNotFound { .. } => StatusCode::TableNotFound,
Error::SystemCatalog { .. }
| Error::EmptyValue { .. }
| Error::ValueDeserialize { .. } => StatusCode::StorageUnavailable,
@@ -293,9 +270,9 @@ impl ErrorExt for Error {
StatusCode::InvalidArguments
}
Error::ListCatalogs { source, .. }
| Error::ListSchemas { source, .. }
| Error::ListTables { source, .. } => source.status_code(),
Error::ListCatalogs { source, .. } | Error::ListSchemas { source, .. } => {
source.status_code()
}
Error::OpenSystemCatalog { source, .. }
| Error::CreateSystemCatalog { source, .. }
@@ -317,7 +294,6 @@ impl ErrorExt for Error {
Error::QueryAccessDenied { .. } => StatusCode::AccessDenied,
Error::Datafusion { .. } => StatusCode::EngineExecuteQuery,
Error::TableMetadataManager { source, .. } => source.status_code(),
Error::TableCacheNotGet { .. } | Error::GetTableCache { .. } => StatusCode::Internal,
}
}
@@ -357,7 +333,7 @@ mod tests {
assert_eq!(
StatusCode::StorageUnavailable,
Error::SystemCatalog {
msg: String::default(),
msg: "".to_string(),
location: Location::generate(),
}
.status_code()

View File

@@ -13,27 +13,20 @@
// limitations under the License.
mod columns;
mod key_column_usage;
mod memory_table;
mod partitions;
mod predicate;
mod region_peers;
mod runtime_metrics;
pub mod schemata;
mod table_names;
pub mod tables;
mod tables;
use std::collections::HashMap;
use std::sync::{Arc, Weak};
use common_catalog::consts::{self, DEFAULT_CATALOG_NAME, INFORMATION_SCHEMA_NAME};
use common_catalog::consts::{self, INFORMATION_SCHEMA_NAME};
use common_error::ext::BoxedError;
use common_recordbatch::{RecordBatchStreamWrapper, SendableRecordBatchStream};
use datatypes::schema::SchemaRef;
use futures_util::StreamExt;
use lazy_static::lazy_static;
use paste::paste;
pub(crate) use predicate::Predicates;
use snafu::ResultExt;
use store_api::data_source::DataSource;
use store_api::storage::{ScanRequest, TableId};
@@ -47,12 +40,7 @@ pub use table_names::*;
use self::columns::InformationSchemaColumns;
use crate::error::Result;
use crate::information_schema::key_column_usage::InformationSchemaKeyColumnUsage;
use crate::information_schema::memory_table::{get_schema_columns, MemoryTable};
use crate::information_schema::partitions::InformationSchemaPartitions;
use crate::information_schema::region_peers::InformationSchemaRegionPeers;
use crate::information_schema::runtime_metrics::InformationSchemaMetrics;
use crate::information_schema::schemata::InformationSchemaSchemata;
use crate::information_schema::tables::InformationSchemaTables;
use crate::CatalogManager;
@@ -62,23 +50,7 @@ lazy_static! {
ENGINES,
COLUMN_PRIVILEGES,
COLUMN_STATISTICS,
CHARACTER_SETS,
COLLATIONS,
COLLATION_CHARACTER_SET_APPLICABILITY,
CHECK_CONSTRAINTS,
EVENTS,
FILES,
OPTIMIZER_TRACE,
PARAMETERS,
PROFILING,
REFERENTIAL_CONSTRAINTS,
ROUTINES,
SCHEMA_PRIVILEGES,
TABLE_PRIVILEGES,
TRIGGERS,
GLOBAL_STATUS,
SESSION_STATUS,
PARTITIONS,
BUILD_INFO,
];
}
@@ -148,36 +120,12 @@ impl InformationSchemaProvider {
fn build_tables(&mut self) {
let mut tables = HashMap::new();
// Carefully consider the tables that may expose sensitive cluster configurations,
// authentication details, and other critical information.
// Only put these tables under `greptime` catalog to prevent info leak.
if self.catalog_name == DEFAULT_CATALOG_NAME {
tables.insert(
RUNTIME_METRICS.to_string(),
self.build_table(RUNTIME_METRICS).unwrap(),
);
tables.insert(
BUILD_INFO.to_string(),
self.build_table(BUILD_INFO).unwrap(),
);
tables.insert(
REGION_PEERS.to_string(),
self.build_table(REGION_PEERS).unwrap(),
);
}
tables.insert(TABLES.to_string(), self.build_table(TABLES).unwrap());
tables.insert(SCHEMATA.to_string(), self.build_table(SCHEMATA).unwrap());
tables.insert(COLUMNS.to_string(), self.build_table(COLUMNS).unwrap());
tables.insert(
KEY_COLUMN_USAGE.to_string(),
self.build_table(KEY_COLUMN_USAGE).unwrap(),
);
// Add memory tables
for name in MEMORY_TABLES.iter() {
tables.insert((*name).to_string(), self.build_table(name).expect(name));
tables.insert((*name).to_string(), self.build_table(name).unwrap());
}
self.tables = tables;
@@ -186,7 +134,7 @@ impl InformationSchemaProvider {
fn build_table(&self, name: &str) -> Option<TableRef> {
self.information_table(name).map(|table| {
let table_info = Self::table_info(self.catalog_name.clone(), &table);
let filter_pushdown = FilterPushDownType::Inexact;
let filter_pushdown = FilterPushDownType::Unsupported;
let thin_table = ThinTable::new(table_info, filter_pushdown);
let data_source = Arc::new(InformationTableDataSource::new(table));
@@ -208,41 +156,6 @@ impl InformationSchemaProvider {
COLUMN_PRIVILEGES => setup_memory_table!(COLUMN_PRIVILEGES),
COLUMN_STATISTICS => setup_memory_table!(COLUMN_STATISTICS),
BUILD_INFO => setup_memory_table!(BUILD_INFO),
CHARACTER_SETS => setup_memory_table!(CHARACTER_SETS),
COLLATIONS => setup_memory_table!(COLLATIONS),
COLLATION_CHARACTER_SET_APPLICABILITY => {
setup_memory_table!(COLLATION_CHARACTER_SET_APPLICABILITY)
}
CHECK_CONSTRAINTS => setup_memory_table!(CHECK_CONSTRAINTS),
EVENTS => setup_memory_table!(EVENTS),
FILES => setup_memory_table!(FILES),
OPTIMIZER_TRACE => setup_memory_table!(OPTIMIZER_TRACE),
PARAMETERS => setup_memory_table!(PARAMETERS),
PROFILING => setup_memory_table!(PROFILING),
REFERENTIAL_CONSTRAINTS => setup_memory_table!(REFERENTIAL_CONSTRAINTS),
ROUTINES => setup_memory_table!(ROUTINES),
SCHEMA_PRIVILEGES => setup_memory_table!(SCHEMA_PRIVILEGES),
TABLE_PRIVILEGES => setup_memory_table!(TABLE_PRIVILEGES),
TRIGGERS => setup_memory_table!(TRIGGERS),
GLOBAL_STATUS => setup_memory_table!(GLOBAL_STATUS),
SESSION_STATUS => setup_memory_table!(SESSION_STATUS),
KEY_COLUMN_USAGE => Some(Arc::new(InformationSchemaKeyColumnUsage::new(
self.catalog_name.clone(),
self.catalog_manager.clone(),
)) as _),
SCHEMATA => Some(Arc::new(InformationSchemaSchemata::new(
self.catalog_name.clone(),
self.catalog_manager.clone(),
)) as _),
RUNTIME_METRICS => Some(Arc::new(InformationSchemaMetrics::new())),
PARTITIONS => Some(Arc::new(InformationSchemaPartitions::new(
self.catalog_name.clone(),
self.catalog_manager.clone(),
)) as _),
REGION_PEERS => Some(Arc::new(InformationSchemaRegionPeers::new(
self.catalog_name.clone(),
self.catalog_manager.clone(),
)) as _),
_ => None,
}
}
@@ -274,7 +187,7 @@ trait InformationTable {
fn schema(&self) -> SchemaRef;
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream>;
fn to_stream(&self) -> Result<SendableRecordBatchStream>;
fn table_type(&self) -> TableType {
TableType::Temporary
@@ -308,7 +221,7 @@ impl DataSource for InformationTableDataSource {
&self,
request: ScanRequest,
) -> std::result::Result<SendableRecordBatchStream, BoxedError> {
let projection = request.projection.clone();
let projection = request.projection;
let projected_schema = match &projection {
Some(projection) => self.try_project(projection)?,
None => self.table.schema(),
@@ -316,7 +229,7 @@ impl DataSource for InformationTableDataSource {
let stream = self
.table
.to_stream(request)
.to_stream()
.map_err(BoxedError::new)
.context(TablesRecordBatchSnafu)
.map_err(BoxedError::new)?
@@ -329,7 +242,6 @@ impl DataSource for InformationTableDataSource {
schema: projected_schema,
stream: Box::pin(stream),
output_ordering: None,
metrics: Default::default(),
};
Ok(Box::pin(stream))

View File

@@ -29,17 +29,14 @@ use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatc
use datatypes::prelude::{ConcreteDataType, DataType};
use datatypes::scalars::ScalarVectorBuilder;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{StringVectorBuilder, VectorRef};
use futures::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use store_api::storage::TableId;
use super::{InformationTable, COLUMNS};
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::Predicates;
use crate::CatalogManager;
pub(super) struct InformationSchemaColumns {
@@ -54,11 +51,6 @@ const TABLE_NAME: &str = "table_name";
const COLUMN_NAME: &str = "column_name";
const DATA_TYPE: &str = "data_type";
const SEMANTIC_TYPE: &str = "semantic_type";
const COLUMN_DEFAULT: &str = "column_default";
const IS_NULLABLE: &str = "is_nullable";
const COLUMN_TYPE: &str = "column_type";
const COLUMN_COMMENT: &str = "column_comment";
const INIT_CAPACITY: usize = 42;
impl InformationSchemaColumns {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
@@ -77,10 +69,6 @@ impl InformationSchemaColumns {
ColumnSchema::new(COLUMN_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(DATA_TYPE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(SEMANTIC_TYPE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(COLUMN_DEFAULT, ConcreteDataType::string_datatype(), true),
ColumnSchema::new(IS_NULLABLE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(COLUMN_TYPE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(COLUMN_COMMENT, ConcreteDataType::string_datatype(), true),
]))
}
@@ -106,14 +94,14 @@ impl InformationTable for InformationSchemaColumns {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
fn to_stream(&self) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_columns(Some(request))
.make_columns()
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
@@ -138,11 +126,6 @@ struct InformationSchemaColumnsBuilder {
column_names: StringVectorBuilder,
data_types: StringVectorBuilder,
semantic_types: StringVectorBuilder,
column_defaults: StringVectorBuilder,
is_nullables: StringVectorBuilder,
column_types: StringVectorBuilder,
column_comments: StringVectorBuilder,
}
impl InformationSchemaColumnsBuilder {
@@ -155,52 +138,62 @@ impl InformationSchemaColumnsBuilder {
schema,
catalog_name,
catalog_manager,
catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
column_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
data_types: StringVectorBuilder::with_capacity(INIT_CAPACITY),
semantic_types: StringVectorBuilder::with_capacity(INIT_CAPACITY),
column_defaults: StringVectorBuilder::with_capacity(INIT_CAPACITY),
is_nullables: StringVectorBuilder::with_capacity(INIT_CAPACITY),
column_types: StringVectorBuilder::with_capacity(INIT_CAPACITY),
column_comments: StringVectorBuilder::with_capacity(INIT_CAPACITY),
catalog_names: StringVectorBuilder::with_capacity(42),
schema_names: StringVectorBuilder::with_capacity(42),
table_names: StringVectorBuilder::with_capacity(42),
column_names: StringVectorBuilder::with_capacity(42),
data_types: StringVectorBuilder::with_capacity(42),
semantic_types: StringVectorBuilder::with_capacity(42),
}
}
/// Construct the `information_schema.columns` virtual table
async fn make_columns(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
async fn make_columns(&mut self) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
let mut stream = catalog_manager.tables(&catalog_name, &schema_name).await;
if !catalog_manager
.schema_exists(&catalog_name, &schema_name)
.await?
{
continue;
}
while let Some(table) = stream.try_next().await? {
let keys = &table.table_info().meta.primary_key_indices;
let schema = table.schema();
for table_name in catalog_manager
.table_names(&catalog_name, &schema_name)
.await?
{
if let Some(table) = catalog_manager
.table(&catalog_name, &schema_name, &table_name)
.await?
{
let keys = &table.table_info().meta.primary_key_indices;
let schema = table.schema();
for (idx, column) in schema.column_schemas().iter().enumerate() {
let semantic_type = if column.is_time_index() {
SEMANTIC_TYPE_TIME_INDEX
} else if keys.contains(&idx) {
SEMANTIC_TYPE_PRIMARY_KEY
} else {
SEMANTIC_TYPE_FIELD
};
for (idx, column) in schema.column_schemas().iter().enumerate() {
let semantic_type = if column.is_time_index() {
SEMANTIC_TYPE_TIME_INDEX
} else if keys.contains(&idx) {
SEMANTIC_TYPE_PRIMARY_KEY
} else {
SEMANTIC_TYPE_FIELD
};
self.add_column(
&predicates,
&catalog_name,
&schema_name,
&table.table_info().name,
semantic_type,
column,
);
self.add_column(
&catalog_name,
&schema_name,
&table_name,
&column.name,
&column.data_type.name(),
semantic_type,
);
}
} else {
unreachable!();
}
}
}
@@ -210,48 +203,19 @@ impl InformationSchemaColumnsBuilder {
fn add_column(
&mut self,
predicates: &Predicates,
catalog_name: &str,
schema_name: &str,
table_name: &str,
column_name: &str,
data_type: &str,
semantic_type: &str,
column_schema: &ColumnSchema,
) {
let data_type = &column_schema.data_type.name();
let row = [
(TABLE_CATALOG, &Value::from(catalog_name)),
(TABLE_SCHEMA, &Value::from(schema_name)),
(TABLE_NAME, &Value::from(table_name)),
(COLUMN_NAME, &Value::from(column_schema.name.as_str())),
(DATA_TYPE, &Value::from(data_type.as_str())),
(SEMANTIC_TYPE, &Value::from(semantic_type)),
];
if !predicates.eval(&row) {
return;
}
self.catalog_names.push(Some(catalog_name));
self.schema_names.push(Some(schema_name));
self.table_names.push(Some(table_name));
self.column_names.push(Some(&column_schema.name));
self.column_names.push(Some(column_name));
self.data_types.push(Some(data_type));
self.semantic_types.push(Some(semantic_type));
self.column_defaults.push(
column_schema
.default_constraint()
.map(|s| format!("{}", s))
.as_deref(),
);
if column_schema.is_nullable() {
self.is_nullables.push(Some("Yes"));
} else {
self.is_nullables.push(Some("No"));
}
self.column_types.push(Some(data_type));
self.column_comments
.push(column_schema.column_comment().map(|x| x.as_ref()));
}
fn finish(&mut self) -> Result<RecordBatch> {
@@ -262,10 +226,6 @@ impl InformationSchemaColumnsBuilder {
Arc::new(self.column_names.finish()),
Arc::new(self.data_types.finish()),
Arc::new(self.semantic_types.finish()),
Arc::new(self.column_defaults.finish()),
Arc::new(self.is_nullables.finish()),
Arc::new(self.column_types.finish()),
Arc::new(self.column_comments.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
@@ -284,7 +244,7 @@ impl DfPartitionStream for InformationSchemaColumns {
schema,
futures::stream::once(async move {
builder
.make_columns(None)
.make_columns()
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)

View File

@@ -1,345 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_KEY_COLUMN_USAGE_TABLE_ID;
use common_error::ext::BoxedError;
use common_query::physical_plan::TaskContext;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, MutableVector, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{ConstantVector, StringVector, StringVectorBuilder, UInt32VectorBuilder};
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::KEY_COLUMN_USAGE;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
const CONSTRAINT_SCHEMA: &str = "constraint_schema";
const CONSTRAINT_NAME: &str = "constraint_name";
const TABLE_CATALOG: &str = "table_catalog";
const TABLE_SCHEMA: &str = "table_schema";
const TABLE_NAME: &str = "table_name";
const COLUMN_NAME: &str = "column_name";
const ORDINAL_POSITION: &str = "ordinal_position";
const INIT_CAPACITY: usize = 42;
/// The virtual table implementation for `information_schema.KEY_COLUMN_USAGE`.
pub(super) struct InformationSchemaKeyColumnUsage {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaKeyColumnUsage {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(
"constraint_catalog",
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(
CONSTRAINT_SCHEMA,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(CONSTRAINT_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(COLUMN_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(ORDINAL_POSITION, ConcreteDataType::uint32_datatype(), false),
ColumnSchema::new(
"position_in_unique_constraint",
ConcreteDataType::uint32_datatype(),
true,
),
ColumnSchema::new(
"referenced_table_schema",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"referenced_table_name",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"referenced_column_name",
ConcreteDataType::string_datatype(),
true,
),
]))
}
fn builder(&self) -> InformationSchemaKeyColumnUsageBuilder {
InformationSchemaKeyColumnUsageBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaKeyColumnUsage {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_KEY_COLUMN_USAGE_TABLE_ID
}
fn table_name(&self) -> &'static str {
KEY_COLUMN_USAGE
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_key_column_usage(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
/// Builds the `information_schema.KEY_COLUMN_USAGE` table row by row
///
/// Columns are based on <https://dev.mysql.com/doc/refman/8.2/en/information-schema-key-column-usage-table.html>
struct InformationSchemaKeyColumnUsageBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
constraint_catalog: StringVectorBuilder,
constraint_schema: StringVectorBuilder,
constraint_name: StringVectorBuilder,
table_catalog: StringVectorBuilder,
table_schema: StringVectorBuilder,
table_name: StringVectorBuilder,
column_name: StringVectorBuilder,
ordinal_position: UInt32VectorBuilder,
position_in_unique_constraint: UInt32VectorBuilder,
}
impl InformationSchemaKeyColumnUsageBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
constraint_catalog: StringVectorBuilder::with_capacity(INIT_CAPACITY),
constraint_schema: StringVectorBuilder::with_capacity(INIT_CAPACITY),
constraint_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_catalog: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_schema: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
column_name: StringVectorBuilder::with_capacity(INIT_CAPACITY),
ordinal_position: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
position_in_unique_constraint: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
}
}
/// Construct the `information_schema.KEY_COLUMN_USAGE` virtual table
async fn make_key_column_usage(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let predicates = Predicates::from_scan_request(&request);
let mut primary_constraints = vec![];
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
if !catalog_manager
.schema_exists(&catalog_name, &schema_name)
.await?
{
continue;
}
for table_name in catalog_manager
.table_names(&catalog_name, &schema_name)
.await?
{
if let Some(table) = catalog_manager
.table(&catalog_name, &schema_name, &table_name)
.await?
{
let keys = &table.table_info().meta.primary_key_indices;
let schema = table.schema();
for (idx, column) in schema.column_schemas().iter().enumerate() {
if column.is_time_index() {
self.add_key_column_usage(
&predicates,
&schema_name,
"TIME INDEX",
&schema_name,
&table_name,
&column.name,
1, //always 1 for time index
);
}
if keys.contains(&idx) {
primary_constraints.push((
schema_name.clone(),
table_name.clone(),
column.name.clone(),
));
}
// TODO(dimbtp): foreign key constraint not supported yet
}
} else {
unreachable!();
}
}
}
for (i, (schema_name, table_name, column_name)) in
primary_constraints.into_iter().enumerate()
{
self.add_key_column_usage(
&predicates,
&schema_name,
"PRIMARY",
&schema_name,
&table_name,
&column_name,
i as u32 + 1,
);
}
self.finish()
}
// TODO(dimbtp): Foreign key constraint has not `None` value for last 4
// fields, but it is not supported yet.
#[allow(clippy::too_many_arguments)]
fn add_key_column_usage(
&mut self,
predicates: &Predicates,
constraint_schema: &str,
constraint_name: &str,
table_schema: &str,
table_name: &str,
column_name: &str,
ordinal_position: u32,
) {
let row = [
(CONSTRAINT_SCHEMA, &Value::from(constraint_schema)),
(CONSTRAINT_NAME, &Value::from(constraint_name)),
(TABLE_SCHEMA, &Value::from(table_schema)),
(TABLE_NAME, &Value::from(table_name)),
(COLUMN_NAME, &Value::from(column_name)),
(ORDINAL_POSITION, &Value::from(ordinal_position)),
];
if !predicates.eval(&row) {
return;
}
self.constraint_catalog.push(Some("def"));
self.constraint_schema.push(Some(constraint_schema));
self.constraint_name.push(Some(constraint_name));
self.table_catalog.push(Some("def"));
self.table_schema.push(Some(table_schema));
self.table_name.push(Some(table_name));
self.column_name.push(Some(column_name));
self.ordinal_position.push(Some(ordinal_position));
self.position_in_unique_constraint.push(None);
}
fn finish(&mut self) -> Result<RecordBatch> {
let rows_num = self.table_catalog.len();
let null_string_vector = Arc::new(ConstantVector::new(
Arc::new(StringVector::from(vec![None as Option<&str>])),
rows_num,
));
let columns: Vec<VectorRef> = vec![
Arc::new(self.constraint_catalog.finish()),
Arc::new(self.constraint_schema.finish()),
Arc::new(self.constraint_name.finish()),
Arc::new(self.table_catalog.finish()),
Arc::new(self.table_schema.finish()),
Arc::new(self.table_name.finish()),
Arc::new(self.column_name.finish()),
Arc::new(self.ordinal_position.finish()),
Arc::new(self.position_in_unique_constraint.finish()),
null_string_vector.clone(),
null_string_vector.clone(),
null_string_vector,
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaKeyColumnUsage {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_key_column_usage(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}

View File

@@ -26,7 +26,7 @@ use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatc
use datatypes::schema::SchemaRef;
use datatypes::vectors::VectorRef;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use store_api::storage::TableId;
pub use tables::get_schema_columns;
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
@@ -74,7 +74,7 @@ impl InformationTable for MemoryTable {
self.schema.clone()
}
fn to_stream(&self, _request: ScanRequest) -> Result<SendableRecordBatchStream> {
fn to_stream(&self) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
@@ -169,7 +169,7 @@ mod tests {
assert_eq!("test", table.table_name());
assert_eq!(schema, InformationTable::schema(&table));
let stream = table.to_stream(ScanRequest::default()).unwrap();
let stream = table.to_stream().unwrap();
let batches = RecordBatches::try_collect(stream).await.unwrap();
@@ -198,7 +198,7 @@ mod tests {
assert_eq!("test", table.table_name());
assert_eq!(schema, InformationTable::schema(&table));
let stream = table.to_stream(ScanRequest::default()).unwrap();
let stream = table.to_stream().unwrap();
let batches = RecordBatches::try_collect(stream).await.unwrap();

View File

@@ -17,10 +17,12 @@ use std::sync::Arc;
use common_catalog::consts::MITO_ENGINE;
use datatypes::prelude::{ConcreteDataType, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::vectors::{Int64Vector, StringVector};
use datatypes::vectors::StringVector;
use crate::information_schema::table_names::*;
const UNKNOWN: &str = "unknown";
/// Find the schema and columns by the table_name, only valid for memory tables.
/// Safety: the user MUST ensure the table schema exists, panic otherwise.
pub fn get_schema_columns(table_name: &str) -> (SchemaRef, Vec<VectorRef>) {
@@ -70,340 +72,29 @@ pub fn get_schema_columns(table_name: &str) -> (SchemaRef, Vec<VectorRef>) {
],
),
BUILD_INFO => {
let build_info = common_version::build_info();
(
string_columns(&[
"GIT_BRANCH",
"GIT_COMMIT",
"GIT_COMMIT_SHORT",
"GIT_DIRTY",
"PKG_VERSION",
]),
vec![
Arc::new(StringVector::from(vec![build_info.branch.to_string()])),
Arc::new(StringVector::from(vec![build_info.commit.to_string()])),
Arc::new(StringVector::from(vec![build_info
.commit_short
.to_string()])),
Arc::new(StringVector::from(vec![build_info.dirty.to_string()])),
Arc::new(StringVector::from(vec![build_info.version.to_string()])),
],
)
}
CHARACTER_SETS => (
vec![
string_column("CHARACTER_SET_NAME"),
string_column("DEFAULT_COLLATE_NAME"),
string_column("DESCRIPTION"),
bigint_column("MAXLEN"),
],
vec![
Arc::new(StringVector::from(vec!["utf8"])),
Arc::new(StringVector::from(vec!["utf8_bin"])),
Arc::new(StringVector::from(vec!["UTF-8 Unicode"])),
Arc::new(Int64Vector::from_slice([4])),
],
),
COLLATIONS => (
vec![
string_column("COLLATION_NAME"),
string_column("CHARACTER_SET_NAME"),
bigint_column("ID"),
string_column("IS_DEFAULT"),
string_column("IS_COMPILED"),
bigint_column("SORTLEN"),
],
vec![
Arc::new(StringVector::from(vec!["utf8_bin"])),
Arc::new(StringVector::from(vec!["utf8"])),
Arc::new(Int64Vector::from_slice([1])),
Arc::new(StringVector::from(vec!["Yes"])),
Arc::new(StringVector::from(vec!["Yes"])),
Arc::new(Int64Vector::from_slice([1])),
],
),
COLLATION_CHARACTER_SET_APPLICABILITY => (
vec![
string_column("COLLATION_NAME"),
string_column("CHARACTER_SET_NAME"),
],
vec![
Arc::new(StringVector::from(vec!["utf8_bin"])),
Arc::new(StringVector::from(vec!["utf8"])),
],
),
CHECK_CONSTRAINTS => (
BUILD_INFO => (
string_columns(&[
"CONSTRAINT_CATALOG",
"CONSTRAINT_SCHEMA",
"CONSTRAINT_NAME",
"CHECK_CLAUSE",
"GIT_BRANCH",
"GIT_COMMIT",
"GIT_COMMIT_SHORT",
"GIT_DIRTY",
"PKG_VERSION",
]),
// Not support check constraints yet
vec![],
),
EVENTS => (
vec![
string_column("EVENT_CATALOG"),
string_column("EVENT_SCHEMA"),
string_column("EVENT_NAME"),
string_column("DEFINER"),
string_column("TIME_ZONE"),
string_column("EVENT_BODY"),
string_column("EVENT_DEFINITION"),
string_column("EVENT_TYPE"),
datetime_column("EXECUTE_AT"),
bigint_column("INTERVAL_VALUE"),
string_column("INTERVAL_FIELD"),
string_column("SQL_MODE"),
datetime_column("STARTS"),
datetime_column("ENDS"),
string_column("STATUS"),
string_column("ON_COMPLETION"),
datetime_column("CREATED"),
datetime_column("LAST_ALTERED"),
datetime_column("LAST_EXECUTED"),
string_column("EVENT_COMMENT"),
bigint_column("ORIGINATOR"),
string_column("CHARACTER_SET_CLIENT"),
string_column("COLLATION_CONNECTION"),
string_column("DATABASE_COLLATION"),
Arc::new(StringVector::from(vec![
build_data::get_git_branch().unwrap_or_else(|_| UNKNOWN.to_string())
])),
Arc::new(StringVector::from(vec![
build_data::get_git_commit().unwrap_or_else(|_| UNKNOWN.to_string())
])),
Arc::new(StringVector::from(vec![
build_data::get_git_commit_short().unwrap_or_else(|_| UNKNOWN.to_string())
])),
Arc::new(StringVector::from(vec![
build_data::get_git_dirty().map_or(UNKNOWN.to_string(), |v| v.to_string())
])),
Arc::new(StringVector::from(vec![option_env!("CARGO_PKG_VERSION")])),
],
vec![],
),
FILES => (
vec![
bigint_column("FILE_ID"),
string_column("FILE_NAME"),
string_column("FILE_TYPE"),
string_column("TABLESPACE_NAME"),
string_column("TABLE_CATALOG"),
string_column("TABLE_SCHEMA"),
string_column("TABLE_NAME"),
string_column("LOGFILE_GROUP_NAME"),
bigint_column("LOGFILE_GROUP_NUMBER"),
string_column("ENGINE"),
string_column("FULLTEXT_KEYS"),
bigint_column("DELETED_ROWS"),
bigint_column("UPDATE_COUNT"),
bigint_column("FREE_EXTENTS"),
bigint_column("TOTAL_EXTENTS"),
bigint_column("EXTENT_SIZE"),
bigint_column("INITIAL_SIZE"),
bigint_column("MAXIMUM_SIZE"),
bigint_column("AUTOEXTEND_SIZE"),
datetime_column("CREATION_TIME"),
datetime_column("LAST_UPDATE_TIME"),
datetime_column("LAST_ACCESS_TIME"),
datetime_column("RECOVER_TIME"),
bigint_column("TRANSACTION_COUNTER"),
string_column("VERSION"),
string_column("ROW_FORMAT"),
bigint_column("TABLE_ROWS"),
bigint_column("AVG_ROW_LENGTH"),
bigint_column("DATA_LENGTH"),
bigint_column("MAX_DATA_LENGTH"),
bigint_column("INDEX_LENGTH"),
bigint_column("DATA_FREE"),
datetime_column("CREATE_TIME"),
datetime_column("UPDATE_TIME"),
datetime_column("CHECK_TIME"),
string_column("CHECKSUM"),
string_column("STATUS"),
string_column("EXTRA"),
],
vec![],
),
OPTIMIZER_TRACE => (
vec![
string_column("QUERY"),
string_column("TRACE"),
bigint_column("MISSING_BYTES_BEYOND_MAX_MEM_SIZE"),
bigint_column("INSUFFICIENT_PRIVILEGES"),
],
vec![],
),
// MySQL(https://dev.mysql.com/doc/refman/8.2/en/information-schema-parameters-table.html)
// has the spec that is different from
// PostgreSQL(https://www.postgresql.org/docs/current/infoschema-parameters.html).
// Follow `MySQL` spec here.
PARAMETERS => (
vec![
string_column("SPECIFIC_CATALOG"),
string_column("SPECIFIC_SCHEMA"),
string_column("SPECIFIC_NAME"),
bigint_column("ORDINAL_POSITION"),
string_column("PARAMETER_MODE"),
string_column("PARAMETER_NAME"),
string_column("DATA_TYPE"),
bigint_column("CHARACTER_MAXIMUM_LENGTH"),
bigint_column("CHARACTER_OCTET_LENGTH"),
bigint_column("NUMERIC_PRECISION"),
bigint_column("NUMERIC_SCALE"),
bigint_column("DATETIME_PRECISION"),
string_column("CHARACTER_SET_NAME"),
string_column("COLLATION_NAME"),
string_column("DTD_IDENTIFIER"),
string_column("ROUTINE_TYPE"),
],
vec![],
),
PROFILING => (
vec![
bigint_column("QUERY_ID"),
bigint_column("SEQ"),
string_column("STATE"),
bigint_column("DURATION"),
bigint_column("CPU_USER"),
bigint_column("CPU_SYSTEM"),
bigint_column("CONTEXT_VOLUNTARY"),
bigint_column("CONTEXT_INVOLUNTARY"),
bigint_column("BLOCK_OPS_IN"),
bigint_column("BLOCK_OPS_OUT"),
bigint_column("MESSAGES_SENT"),
bigint_column("MESSAGES_RECEIVED"),
bigint_column("PAGE_FAULTS_MAJOR"),
bigint_column("PAGE_FAULTS_MINOR"),
bigint_column("SWAPS"),
string_column("SOURCE_FUNCTION"),
string_column("SOURCE_FILE"),
bigint_column("SOURCE_LINE"),
],
vec![],
),
// TODO: _Must_ reimplement this table when foreign key constraint is supported.
REFERENTIAL_CONSTRAINTS => (
vec![
string_column("CONSTRAINT_CATALOG"),
string_column("CONSTRAINT_SCHEMA"),
string_column("CONSTRAINT_NAME"),
string_column("UNIQUE_CONSTRAINT_CATALOG"),
string_column("UNIQUE_CONSTRAINT_SCHEMA"),
string_column("UNIQUE_CONSTRAINT_NAME"),
string_column("MATCH_OPTION"),
string_column("UPDATE_RULE"),
string_column("DELETE_RULE"),
string_column("TABLE_NAME"),
string_column("REFERENCED_TABLE_NAME"),
],
vec![],
),
ROUTINES => (
vec![
string_column("SPECIFIC_NAME"),
string_column("ROUTINE_CATALOG"),
string_column("ROUTINE_SCHEMA"),
string_column("ROUTINE_NAME"),
string_column("ROUTINE_TYPE"),
string_column("DATA_TYPE"),
bigint_column("CHARACTER_MAXIMUM_LENGTH"),
bigint_column("CHARACTER_OCTET_LENGTH"),
bigint_column("NUMERIC_PRECISION"),
bigint_column("NUMERIC_SCALE"),
bigint_column("DATETIME_PRECISION"),
string_column("CHARACTER_SET_NAME"),
string_column("COLLATION_NAME"),
string_column("DTD_IDENTIFIER"),
string_column("ROUTINE_BODY"),
string_column("ROUTINE_DEFINITION"),
string_column("EXTERNAL_NAME"),
string_column("EXTERNAL_LANGUAGE"),
string_column("PARAMETER_STYLE"),
string_column("IS_DETERMINISTIC"),
string_column("SQL_DATA_ACCESS"),
string_column("SQL_PATH"),
string_column("SECURITY_TYPE"),
datetime_column("CREATED"),
datetime_column("LAST_ALTERED"),
string_column("SQL_MODE"),
string_column("ROUTINE_COMMENT"),
string_column("DEFINER"),
string_column("CHARACTER_SET_CLIENT"),
string_column("COLLATION_CONNECTION"),
string_column("DATABASE_COLLATION"),
],
vec![],
),
SCHEMA_PRIVILEGES => (
vec![
string_column("GRANTEE"),
string_column("TABLE_CATALOG"),
string_column("TABLE_SCHEMA"),
string_column("PRIVILEGE_TYPE"),
string_column("IS_GRANTABLE"),
],
vec![],
),
TABLE_PRIVILEGES => (
vec![
string_column("GRANTEE"),
string_column("TABLE_CATALOG"),
string_column("TABLE_SCHEMA"),
string_column("TABLE_NAME"),
string_column("PRIVILEGE_TYPE"),
string_column("IS_GRANTABLE"),
],
vec![],
),
TRIGGERS => (
vec![
string_column("TRIGGER_CATALOG"),
string_column("TRIGGER_SCHEMA"),
string_column("TRIGGER_NAME"),
string_column("EVENT_MANIPULATION"),
string_column("EVENT_OBJECT_CATALOG"),
string_column("EVENT_OBJECT_SCHEMA"),
string_column("EVENT_OBJECT_TABLE"),
bigint_column("ACTION_ORDER"),
string_column("ACTION_CONDITION"),
string_column("ACTION_STATEMENT"),
string_column("ACTION_ORIENTATION"),
string_column("ACTION_TIMING"),
string_column("ACTION_REFERENCE_OLD_TABLE"),
string_column("ACTION_REFERENCE_NEW_TABLE"),
string_column("ACTION_REFERENCE_OLD_ROW"),
string_column("ACTION_REFERENCE_NEW_ROW"),
datetime_column("CREATED"),
string_column("SQL_MODE"),
string_column("DEFINER"),
string_column("CHARACTER_SET_CLIENT"),
string_column("COLLATION_CONNECTION"),
string_column("DATABASE_COLLATION"),
],
vec![],
),
// TODO: Considering store internal metrics in `global_status` and
// `session_status` tables.
GLOBAL_STATUS => (
vec![
string_column("VARIABLE_NAME"),
string_column("VARIABLE_VALUE"),
],
vec![],
),
SESSION_STATUS => (
vec![
string_column("VARIABLE_NAME"),
string_column("VARIABLE_VALUE"),
],
vec![],
),
_ => unreachable!("Unknown table in information_schema: {}", table_name),
@@ -424,22 +115,6 @@ fn string_column(name: &str) -> ColumnSchema {
)
}
fn bigint_column(name: &str) -> ColumnSchema {
ColumnSchema::new(
str::to_lowercase(name),
ConcreteDataType::int64_datatype(),
false,
)
}
fn datetime_column(name: &str) -> ColumnSchema {
ColumnSchema::new(
str::to_lowercase(name),
ConcreteDataType::datetime_datatype(),
false,
)
}
#[cfg(test)]
mod tests {
use super::*;

View File

@@ -1,424 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use core::pin::pin;
use std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_PARTITIONS_TABLE_ID;
use common_error::ext::BoxedError;
use common_query::physical_plan::TaskContext;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use common_time::datetime::DateTime;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{
ConstantVector, DateTimeVector, DateTimeVectorBuilder, Int64Vector, Int64VectorBuilder,
MutableVector, StringVector, StringVectorBuilder, UInt64VectorBuilder,
};
use futures::{StreamExt, TryStreamExt};
use partition::manager::PartitionInfo;
use partition::partition::PartitionDef;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{RegionId, ScanRequest, TableId};
use table::metadata::{TableInfo, TableType};
use super::PARTITIONS;
use crate::error::{
CreateRecordBatchSnafu, FindPartitionsSnafu, InternalSnafu, Result,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::{InformationTable, Predicates};
use crate::kvbackend::KvBackendCatalogManager;
use crate::CatalogManager;
const TABLE_CATALOG: &str = "table_catalog";
const TABLE_SCHEMA: &str = "table_schema";
const TABLE_NAME: &str = "table_name";
const PARTITION_NAME: &str = "partition_name";
const PARTITION_EXPRESSION: &str = "partition_expression";
/// The region id
const GREPTIME_PARTITION_ID: &str = "greptime_partition_id";
const INIT_CAPACITY: usize = 42;
/// The `PARTITIONS` table provides information about partitioned tables.
/// See https://dev.mysql.com/doc/refman/8.0/en/information-schema-partitions-table.html
/// We provide an extral column `greptime_partition_id` for GreptimeDB region id.
pub(super) struct InformationSchemaPartitions {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaPartitions {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(PARTITION_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(
"subpartition_name",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"partition_ordinal_position",
ConcreteDataType::int64_datatype(),
true,
),
ColumnSchema::new(
"subpartition_ordinal_position",
ConcreteDataType::int64_datatype(),
true,
),
ColumnSchema::new(
"partition_method",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"subpartition_method",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
PARTITION_EXPRESSION,
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"subpartition_expression",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new(
"partition_description",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new("table_rows", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new("avg_row_length", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new("data_length", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new("max_data_length", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new("index_length", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new("data_free", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new("create_time", ConcreteDataType::datetime_datatype(), true),
ColumnSchema::new("update_time", ConcreteDataType::datetime_datatype(), true),
ColumnSchema::new("check_time", ConcreteDataType::datetime_datatype(), true),
ColumnSchema::new("checksum", ConcreteDataType::int64_datatype(), true),
ColumnSchema::new(
"partition_comment",
ConcreteDataType::string_datatype(),
true,
),
ColumnSchema::new("nodegroup", ConcreteDataType::string_datatype(), true),
ColumnSchema::new("tablespace_name", ConcreteDataType::string_datatype(), true),
ColumnSchema::new(
GREPTIME_PARTITION_ID,
ConcreteDataType::uint64_datatype(),
true,
),
]))
}
fn builder(&self) -> InformationSchemaPartitionsBuilder {
InformationSchemaPartitionsBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaPartitions {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_PARTITIONS_TABLE_ID
}
fn table_name(&self) -> &'static str {
PARTITIONS
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_partitions(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
struct InformationSchemaPartitionsBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
catalog_names: StringVectorBuilder,
schema_names: StringVectorBuilder,
table_names: StringVectorBuilder,
partition_names: StringVectorBuilder,
partition_ordinal_positions: Int64VectorBuilder,
partition_expressions: StringVectorBuilder,
create_times: DateTimeVectorBuilder,
partition_ids: UInt64VectorBuilder,
}
impl InformationSchemaPartitionsBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
partition_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
partition_ordinal_positions: Int64VectorBuilder::with_capacity(INIT_CAPACITY),
partition_expressions: StringVectorBuilder::with_capacity(INIT_CAPACITY),
create_times: DateTimeVectorBuilder::with_capacity(INIT_CAPACITY),
partition_ids: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
}
}
/// Construct the `information_schema.partitions` virtual table
async fn make_partitions(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let partition_manager = catalog_manager
.as_any()
.downcast_ref::<KvBackendCatalogManager>()
.map(|catalog_manager| catalog_manager.partition_manager());
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
let table_info_stream = catalog_manager
.tables(&catalog_name, &schema_name)
.await
.try_filter_map(|t| async move {
let table_info = t.table_info();
if table_info.table_type == TableType::Temporary {
Ok(None)
} else {
Ok(Some(table_info))
}
});
const BATCH_SIZE: usize = 128;
// Split table infos into chunks
let mut table_info_chunks = pin!(table_info_stream.ready_chunks(BATCH_SIZE));
while let Some(table_infos) = table_info_chunks.next().await {
let table_infos = table_infos.into_iter().collect::<Result<Vec<_>>>()?;
let table_ids: Vec<TableId> =
table_infos.iter().map(|info| info.ident.table_id).collect();
let mut table_partitions = if let Some(partition_manager) = &partition_manager {
partition_manager
.batch_find_table_partitions(&table_ids)
.await
.context(FindPartitionsSnafu)?
} else {
// Current node must be a standalone instance, contains only one partition by default.
// TODO(dennis): change it when we support multi-regions for standalone.
table_ids
.into_iter()
.map(|table_id| {
(
table_id,
vec![PartitionInfo {
id: RegionId::new(table_id, 0),
partition: PartitionDef::new(vec![], vec![]),
}],
)
})
.collect()
};
for table_info in table_infos {
let partitions = table_partitions
.remove(&table_info.ident.table_id)
.unwrap_or(vec![]);
self.add_partitions(
&predicates,
&table_info,
&catalog_name,
&schema_name,
&table_info.name,
&partitions,
);
}
}
}
self.finish()
}
#[allow(clippy::too_many_arguments)]
fn add_partitions(
&mut self,
predicates: &Predicates,
table_info: &TableInfo,
catalog_name: &str,
schema_name: &str,
table_name: &str,
partitions: &[PartitionInfo],
) {
let row = [
(TABLE_CATALOG, &Value::from(catalog_name)),
(TABLE_SCHEMA, &Value::from(schema_name)),
(TABLE_NAME, &Value::from(table_name)),
];
if !predicates.eval(&row) {
return;
}
for (index, partition) in partitions.iter().enumerate() {
let partition_name = format!("p{index}");
self.catalog_names.push(Some(catalog_name));
self.schema_names.push(Some(schema_name));
self.table_names.push(Some(table_name));
self.partition_names.push(Some(&partition_name));
self.partition_ordinal_positions
.push(Some((index + 1) as i64));
let expressions = if partition.partition.partition_columns().is_empty() {
None
} else {
Some(partition.partition.to_string())
};
self.partition_expressions.push(expressions.as_deref());
self.create_times.push(Some(DateTime::from(
table_info.meta.created_on.timestamp_millis(),
)));
self.partition_ids.push(Some(partition.id.as_u64()));
}
}
fn finish(&mut self) -> Result<RecordBatch> {
let rows_num = self.catalog_names.len();
let null_string_vector = Arc::new(ConstantVector::new(
Arc::new(StringVector::from(vec![None as Option<&str>])),
rows_num,
));
let null_i64_vector = Arc::new(ConstantVector::new(
Arc::new(Int64Vector::from(vec![None])),
rows_num,
));
let null_datetime_vector = Arc::new(ConstantVector::new(
Arc::new(DateTimeVector::from(vec![None])),
rows_num,
));
let partition_methods = Arc::new(ConstantVector::new(
Arc::new(StringVector::from(vec![Some("RANGE")])),
rows_num,
));
let columns: Vec<VectorRef> = vec![
Arc::new(self.catalog_names.finish()),
Arc::new(self.schema_names.finish()),
Arc::new(self.table_names.finish()),
Arc::new(self.partition_names.finish()),
null_string_vector.clone(),
Arc::new(self.partition_ordinal_positions.finish()),
null_i64_vector.clone(),
partition_methods,
null_string_vector.clone(),
Arc::new(self.partition_expressions.finish()),
null_string_vector.clone(),
null_string_vector.clone(),
// TODO(dennis): rows and index statistics info
null_i64_vector.clone(),
null_i64_vector.clone(),
null_i64_vector.clone(),
null_i64_vector.clone(),
null_i64_vector.clone(),
null_i64_vector.clone(),
Arc::new(self.create_times.finish()),
// TODO(dennis): supports update_time
null_datetime_vector.clone(),
null_datetime_vector,
null_i64_vector,
null_string_vector.clone(),
null_string_vector.clone(),
null_string_vector,
Arc::new(self.partition_ids.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaPartitions {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_partitions(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}

View File

@@ -1,609 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow::array::StringArray;
use arrow::compute::kernels::comparison;
use common_query::logical_plan::DfExpr;
use datafusion::common::ScalarValue;
use datafusion::logical_expr::expr::Like;
use datafusion::logical_expr::Operator;
use datatypes::value::Value;
use store_api::storage::ScanRequest;
type ColumnName = String;
/// Predicate to filter `information_schema` tables stream,
/// we only support these simple predicates currently.
/// TODO(dennis): supports more predicate types.
#[derive(Clone, PartialEq, Eq, Debug)]
enum Predicate {
Eq(ColumnName, Value),
Like(ColumnName, String, bool),
NotEq(ColumnName, Value),
InList(ColumnName, Vec<Value>),
And(Box<Predicate>, Box<Predicate>),
Or(Box<Predicate>, Box<Predicate>),
Not(Box<Predicate>),
}
impl Predicate {
/// Evaluate the predicate with the row, returns:
/// - `None` when the predicate can't evaluate with the row.
/// - `Some(true)` when the predicate is satisfied,
/// - `Some(false)` when the predicate is not satisfied,
fn eval(&self, row: &[(&str, &Value)]) -> Option<bool> {
match self {
Predicate::Eq(c, v) => {
for (column, value) in row {
if c != column {
continue;
}
return Some(v == *value);
}
}
Predicate::Like(c, pattern, case_insensitive) => {
for (column, value) in row {
if c != column {
continue;
}
let Value::String(bs) = value else {
continue;
};
return like_utf8(bs.as_utf8(), pattern, case_insensitive);
}
}
Predicate::NotEq(c, v) => {
for (column, value) in row {
if c != column {
continue;
}
return Some(v != *value);
}
}
Predicate::InList(c, values) => {
for (column, value) in row {
if c != column {
continue;
}
return Some(values.iter().any(|v| v == *value));
}
}
Predicate::And(left, right) => {
let left = left.eval(row);
// short-circuit
if matches!(left, Some(false)) {
return Some(false);
}
return match (left, right.eval(row)) {
(Some(left), Some(right)) => Some(left && right),
(None, Some(false)) => Some(false),
_ => None,
};
}
Predicate::Or(left, right) => {
let left = left.eval(row);
// short-circuit
if matches!(left, Some(true)) {
return Some(true);
}
return match (left, right.eval(row)) {
(Some(left), Some(right)) => Some(left || right),
(None, Some(true)) => Some(true),
_ => None,
};
}
Predicate::Not(p) => {
let Some(b) = p.eval(row) else {
return None;
};
return Some(!b);
}
}
// Can't evaluate predicate with the row
None
}
/// Try to create a predicate from datafusion [`Expr`], return None if fails.
fn from_expr(expr: DfExpr) -> Option<Predicate> {
match expr {
// NOT expr
DfExpr::Not(expr) => {
let Some(p) = Self::from_expr(*expr) else {
return None;
};
Some(Predicate::Not(Box::new(p)))
}
// expr LIKE pattern
DfExpr::Like(Like {
negated,
expr,
pattern,
case_insensitive,
..
}) if is_column(&expr) && is_string_literal(&pattern) => {
// Safety: ensured by gurad
let DfExpr::Column(c) = *expr else {
unreachable!();
};
let DfExpr::Literal(ScalarValue::Utf8(Some(pattern))) = *pattern else {
unreachable!();
};
let p = Predicate::Like(c.name, pattern, case_insensitive);
if negated {
Some(Predicate::Not(Box::new(p)))
} else {
Some(p)
}
}
// left OP right
DfExpr::BinaryExpr(bin) => match (*bin.left, bin.op, *bin.right) {
// left == right
(DfExpr::Literal(scalar), Operator::Eq, DfExpr::Column(c))
| (DfExpr::Column(c), Operator::Eq, DfExpr::Literal(scalar)) => {
let Ok(v) = Value::try_from(scalar) else {
return None;
};
Some(Predicate::Eq(c.name, v))
}
// left != right
(DfExpr::Literal(scalar), Operator::NotEq, DfExpr::Column(c))
| (DfExpr::Column(c), Operator::NotEq, DfExpr::Literal(scalar)) => {
let Ok(v) = Value::try_from(scalar) else {
return None;
};
Some(Predicate::NotEq(c.name, v))
}
// left AND right
(left, Operator::And, right) => {
let Some(left) = Self::from_expr(left) else {
return None;
};
let Some(right) = Self::from_expr(right) else {
return None;
};
Some(Predicate::And(Box::new(left), Box::new(right)))
}
// left OR right
(left, Operator::Or, right) => {
let Some(left) = Self::from_expr(left) else {
return None;
};
let Some(right) = Self::from_expr(right) else {
return None;
};
Some(Predicate::Or(Box::new(left), Box::new(right)))
}
_ => None,
},
// [NOT] IN (LIST)
DfExpr::InList(list) => {
match (*list.expr, list.list, list.negated) {
// column [NOT] IN (v1, v2, v3, ...)
(DfExpr::Column(c), list, negated) if is_all_scalars(&list) => {
let mut values = Vec::with_capacity(list.len());
for scalar in list {
// Safety: checked by `is_all_scalars`
let DfExpr::Literal(scalar) = scalar else {
unreachable!();
};
let Ok(value) = Value::try_from(scalar) else {
return None;
};
values.push(value);
}
let predicate = Predicate::InList(c.name, values);
if negated {
Some(Predicate::Not(Box::new(predicate)))
} else {
Some(predicate)
}
}
_ => None,
}
}
_ => None,
}
}
}
/// Perform SQL left LIKE right, return `None` if fail to evaluate.
/// - `s` the target string
/// - `pattern` the pattern just like '%abc'
/// - `case_insensitive` whether to perform case-insensitive like or not.
fn like_utf8(s: &str, pattern: &str, case_insensitive: &bool) -> Option<bool> {
let array = StringArray::from(vec![s]);
let patterns = StringArray::new_scalar(pattern);
let Ok(booleans) = (if *case_insensitive {
comparison::ilike(&array, &patterns)
} else {
comparison::like(&array, &patterns)
}) else {
return None;
};
// Safety: at least one value in result
Some(booleans.value(0))
}
fn is_string_literal(expr: &DfExpr) -> bool {
matches!(expr, DfExpr::Literal(ScalarValue::Utf8(Some(_))))
}
fn is_column(expr: &DfExpr) -> bool {
matches!(expr, DfExpr::Column(_))
}
/// A list of predicate
pub struct Predicates {
predicates: Vec<Predicate>,
}
impl Predicates {
/// Try its best to create predicates from [`ScanRequest`].
pub fn from_scan_request(request: &Option<ScanRequest>) -> Predicates {
if let Some(request) = request {
let mut predicates = Vec::with_capacity(request.filters.len());
for filter in &request.filters {
if let Some(predicate) = Predicate::from_expr(filter.df_expr().clone()) {
predicates.push(predicate);
}
}
Self { predicates }
} else {
Self {
predicates: Vec::new(),
}
}
}
/// Evaluate the predicates with the row.
/// returns true when all the predicates are satisfied or can't be evaluated.
pub fn eval(&self, row: &[(&str, &Value)]) -> bool {
// fast path
if self.predicates.is_empty() {
return true;
}
self.predicates
.iter()
.filter_map(|p| p.eval(row))
.all(|b| b)
}
}
/// Returns true when the values are all [`DfExpr::Literal`].
fn is_all_scalars(list: &[DfExpr]) -> bool {
list.iter().all(|v| matches!(v, DfExpr::Literal(_)))
}
#[cfg(test)]
mod tests {
use datafusion::common::{Column, ScalarValue};
use datafusion::logical_expr::expr::InList;
use datafusion::logical_expr::BinaryExpr;
use super::*;
#[test]
fn test_predicate_eval() {
let a_col = "a".to_string();
let b_col = "b".to_string();
let a_value = Value::from("a_value");
let b_value = Value::from("b_value");
let wrong_value = Value::from("wrong_value");
let a_row = [(a_col.as_str(), &a_value)];
let b_row = [("b", &wrong_value)];
let wrong_row = [(a_col.as_str(), &wrong_value)];
// Predicate::Eq
let p = Predicate::Eq(a_col.clone(), a_value.clone());
assert!(p.eval(&a_row).unwrap());
assert!(p.eval(&b_row).is_none());
assert!(!p.eval(&wrong_row).unwrap());
// Predicate::NotEq
let p = Predicate::NotEq(a_col.clone(), a_value.clone());
assert!(!p.eval(&a_row).unwrap());
assert!(p.eval(&b_row).is_none());
assert!(p.eval(&wrong_row).unwrap());
// Predicate::InList
let p = Predicate::InList(a_col.clone(), vec![a_value.clone(), b_value.clone()]);
assert!(p.eval(&a_row).unwrap());
assert!(p.eval(&b_row).is_none());
assert!(!p.eval(&wrong_row).unwrap());
assert!(p.eval(&[(&a_col, &b_value)]).unwrap());
let p1 = Predicate::Eq(a_col.clone(), a_value.clone());
let p2 = Predicate::Eq(b_col.clone(), b_value.clone());
let row = [(a_col.as_str(), &a_value), (b_col.as_str(), &b_value)];
let wrong_row = [(a_col.as_str(), &a_value), (b_col.as_str(), &wrong_value)];
//Predicate::And
let p = Predicate::And(Box::new(p1.clone()), Box::new(p2.clone()));
assert!(p.eval(&row).unwrap());
assert!(!p.eval(&wrong_row).unwrap());
assert!(p.eval(&[]).is_none());
assert!(p.eval(&[("c", &a_value)]).is_none());
assert!(!p
.eval(&[(a_col.as_str(), &b_value), (b_col.as_str(), &a_value)])
.unwrap());
assert!(!p
.eval(&[(a_col.as_str(), &b_value), (b_col.as_str(), &b_value)])
.unwrap());
assert!(p
.eval(&[(a_col.as_ref(), &a_value), ("c", &a_value)])
.is_none());
assert!(!p
.eval(&[(a_col.as_ref(), &b_value), ("c", &a_value)])
.unwrap());
//Predicate::Or
let p = Predicate::Or(Box::new(p1), Box::new(p2));
assert!(p.eval(&row).unwrap());
assert!(p.eval(&wrong_row).unwrap());
assert!(p.eval(&[]).is_none());
assert!(p.eval(&[("c", &a_value)]).is_none());
assert!(!p
.eval(&[(a_col.as_str(), &b_value), (b_col.as_str(), &a_value)])
.unwrap());
assert!(p
.eval(&[(a_col.as_str(), &b_value), (b_col.as_str(), &b_value)])
.unwrap());
assert!(p
.eval(&[(a_col.as_ref(), &a_value), ("c", &a_value)])
.unwrap());
assert!(p
.eval(&[(a_col.as_ref(), &b_value), ("c", &a_value)])
.is_none());
}
#[test]
fn test_predicate_like() {
// case insensitive
let expr = DfExpr::Like(Like {
negated: false,
expr: Box::new(column("a")),
pattern: Box::new(string_literal("%abc")),
case_insensitive: true,
escape_char: None,
});
let p = Predicate::from_expr(expr).unwrap();
assert!(
matches!(&p, Predicate::Like(c, pattern, case_insensitive) if
c == "a"
&& pattern == "%abc"
&& *case_insensitive)
);
let match_row = [
("a", &Value::from("hello AbC")),
("b", &Value::from("b value")),
];
let unmatch_row = [("a", &Value::from("bca")), ("b", &Value::from("b value"))];
assert!(p.eval(&match_row).unwrap());
assert!(!p.eval(&unmatch_row).unwrap());
assert!(p.eval(&[]).is_none());
// case sensitive
let expr = DfExpr::Like(Like {
negated: false,
expr: Box::new(column("a")),
pattern: Box::new(string_literal("%abc")),
case_insensitive: false,
escape_char: None,
});
let p = Predicate::from_expr(expr).unwrap();
assert!(
matches!(&p, Predicate::Like(c, pattern, case_insensitive) if
c == "a"
&& pattern == "%abc"
&& !*case_insensitive)
);
assert!(!p.eval(&match_row).unwrap());
assert!(!p.eval(&unmatch_row).unwrap());
assert!(p.eval(&[]).is_none());
// not like
let expr = DfExpr::Like(Like {
negated: true,
expr: Box::new(column("a")),
pattern: Box::new(string_literal("%abc")),
case_insensitive: true,
escape_char: None,
});
let p = Predicate::from_expr(expr).unwrap();
assert!(!p.eval(&match_row).unwrap());
assert!(p.eval(&unmatch_row).unwrap());
assert!(p.eval(&[]).is_none());
}
fn column(name: &str) -> DfExpr {
DfExpr::Column(Column {
relation: None,
name: name.to_string(),
})
}
fn string_literal(v: &str) -> DfExpr {
DfExpr::Literal(ScalarValue::Utf8(Some(v.to_string())))
}
fn match_string_value(v: &Value, expected: &str) -> bool {
matches!(v, Value::String(bs) if bs.as_utf8() == expected)
}
fn match_string_values(vs: &[Value], expected: &[&str]) -> bool {
assert_eq!(vs.len(), expected.len());
let mut result = true;
for (i, v) in vs.iter().enumerate() {
result = result && match_string_value(v, expected[i]);
}
result
}
fn mock_exprs() -> (DfExpr, DfExpr) {
let expr1 = DfExpr::BinaryExpr(BinaryExpr {
left: Box::new(column("a")),
op: Operator::Eq,
right: Box::new(string_literal("a_value")),
});
let expr2 = DfExpr::BinaryExpr(BinaryExpr {
left: Box::new(column("b")),
op: Operator::NotEq,
right: Box::new(string_literal("b_value")),
});
(expr1, expr2)
}
#[test]
fn test_predicate_from_expr() {
let (expr1, expr2) = mock_exprs();
let p1 = Predicate::from_expr(expr1.clone()).unwrap();
assert!(matches!(&p1, Predicate::Eq(column, v) if column == "a"
&& match_string_value(v, "a_value")));
let p2 = Predicate::from_expr(expr2.clone()).unwrap();
assert!(matches!(&p2, Predicate::NotEq(column, v) if column == "b"
&& match_string_value(v, "b_value")));
let and_expr = DfExpr::BinaryExpr(BinaryExpr {
left: Box::new(expr1.clone()),
op: Operator::And,
right: Box::new(expr2.clone()),
});
let or_expr = DfExpr::BinaryExpr(BinaryExpr {
left: Box::new(expr1.clone()),
op: Operator::Or,
right: Box::new(expr2.clone()),
});
let not_expr = DfExpr::Not(Box::new(expr1.clone()));
let and_p = Predicate::from_expr(and_expr).unwrap();
assert!(matches!(and_p, Predicate::And(left, right) if *left == p1 && *right == p2));
let or_p = Predicate::from_expr(or_expr).unwrap();
assert!(matches!(or_p, Predicate::Or(left, right) if *left == p1 && *right == p2));
let not_p = Predicate::from_expr(not_expr).unwrap();
assert!(matches!(not_p, Predicate::Not(p) if *p == p1));
let inlist_expr = DfExpr::InList(InList {
expr: Box::new(column("a")),
list: vec![string_literal("a1"), string_literal("a2")],
negated: false,
});
let inlist_p = Predicate::from_expr(inlist_expr).unwrap();
assert!(matches!(&inlist_p, Predicate::InList(c, values) if c == "a"
&& match_string_values(values, &["a1", "a2"])));
let inlist_expr = DfExpr::InList(InList {
expr: Box::new(column("a")),
list: vec![string_literal("a1"), string_literal("a2")],
negated: true,
});
let inlist_p = Predicate::from_expr(inlist_expr).unwrap();
assert!(matches!(inlist_p, Predicate::Not(p) if
matches!(&*p,
Predicate::InList(c, values) if c == "a"
&& match_string_values(values, &["a1", "a2"]))));
}
#[test]
fn test_predicates_from_scan_request() {
let predicates = Predicates::from_scan_request(&None);
assert!(predicates.predicates.is_empty());
let (expr1, expr2) = mock_exprs();
let request = ScanRequest {
filters: vec![expr1.into(), expr2.into()],
..Default::default()
};
let predicates = Predicates::from_scan_request(&Some(request));
assert_eq!(2, predicates.predicates.len());
assert!(
matches!(&predicates.predicates[0], Predicate::Eq(column, v) if column == "a"
&& match_string_value(v, "a_value"))
);
assert!(
matches!(&predicates.predicates[1], Predicate::NotEq(column, v) if column == "b"
&& match_string_value(v, "b_value"))
);
}
#[test]
fn test_predicates_eval_row() {
let wrong_row = [
("a", &Value::from("a_value")),
("b", &Value::from("b_value")),
("c", &Value::from("c_value")),
];
let row = [
("a", &Value::from("a_value")),
("b", &Value::from("not_b_value")),
("c", &Value::from("c_value")),
];
let c_row = [("c", &Value::from("c_value"))];
// test empty predicates, always returns true
let predicates = Predicates::from_scan_request(&None);
assert!(predicates.eval(&row));
assert!(predicates.eval(&wrong_row));
assert!(predicates.eval(&c_row));
let (expr1, expr2) = mock_exprs();
let request = ScanRequest {
filters: vec![expr1.into(), expr2.into()],
..Default::default()
};
let predicates = Predicates::from_scan_request(&Some(request));
assert!(predicates.eval(&row));
assert!(!predicates.eval(&wrong_row));
assert!(predicates.eval(&c_row));
}
}

View File

@@ -1,279 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use core::pin::pin;
use std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_REGION_PEERS_TABLE_ID;
use common_error::ext::BoxedError;
use common_meta::rpc::router::RegionRoute;
use common_query::physical_plan::TaskContext;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{Int64VectorBuilder, StringVectorBuilder, UInt64VectorBuilder};
use futures::{StreamExt, TryStreamExt};
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use table::metadata::TableType;
use super::REGION_PEERS;
use crate::error::{
CreateRecordBatchSnafu, FindRegionRoutesSnafu, InternalSnafu, Result,
UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::{InformationTable, Predicates};
use crate::kvbackend::KvBackendCatalogManager;
use crate::CatalogManager;
const REGION_ID: &str = "region_id";
const PEER_ID: &str = "peer_id";
const PEER_ADDR: &str = "peer_addr";
const IS_LEADER: &str = "is_leader";
const STATUS: &str = "status";
const DOWN_SECONDS: &str = "down_seconds";
const INIT_CAPACITY: usize = 42;
/// The `REGION_PEERS` table provides information about the region distribution and routes. Including fields:
///
/// - `region_id`: the region id
/// - `peer_id`: the region storage datanode peer id
/// - `peer_addr`: the region storage datanode peer address
/// - `is_leader`: whether the peer is the leader
/// - `status`: the region status, `ALIVE` or `DOWNGRADED`.
/// - `down_seconds`: the duration of being offline, in seconds.
///
pub(super) struct InformationSchemaRegionPeers {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaRegionPeers {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(REGION_ID, ConcreteDataType::uint64_datatype(), false),
ColumnSchema::new(PEER_ID, ConcreteDataType::uint64_datatype(), true),
ColumnSchema::new(PEER_ADDR, ConcreteDataType::string_datatype(), true),
ColumnSchema::new(IS_LEADER, ConcreteDataType::string_datatype(), true),
ColumnSchema::new(STATUS, ConcreteDataType::string_datatype(), true),
ColumnSchema::new(DOWN_SECONDS, ConcreteDataType::int64_datatype(), true),
]))
}
fn builder(&self) -> InformationSchemaRegionPeersBuilder {
InformationSchemaRegionPeersBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaRegionPeers {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_REGION_PEERS_TABLE_ID
}
fn table_name(&self) -> &'static str {
REGION_PEERS
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_region_peers(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
struct InformationSchemaRegionPeersBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
region_ids: UInt64VectorBuilder,
peer_ids: UInt64VectorBuilder,
peer_addrs: StringVectorBuilder,
is_leaders: StringVectorBuilder,
statuses: StringVectorBuilder,
down_seconds: Int64VectorBuilder,
}
impl InformationSchemaRegionPeersBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
region_ids: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
peer_ids: UInt64VectorBuilder::with_capacity(INIT_CAPACITY),
peer_addrs: StringVectorBuilder::with_capacity(INIT_CAPACITY),
is_leaders: StringVectorBuilder::with_capacity(INIT_CAPACITY),
statuses: StringVectorBuilder::with_capacity(INIT_CAPACITY),
down_seconds: Int64VectorBuilder::with_capacity(INIT_CAPACITY),
}
}
/// Construct the `information_schema.region_peers` virtual table
async fn make_region_peers(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let partition_manager = catalog_manager
.as_any()
.downcast_ref::<KvBackendCatalogManager>()
.map(|catalog_manager| catalog_manager.partition_manager());
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
let table_id_stream = catalog_manager
.tables(&catalog_name, &schema_name)
.await
.try_filter_map(|t| async move {
let table_info = t.table_info();
if table_info.table_type == TableType::Temporary {
Ok(None)
} else {
Ok(Some(table_info.ident.table_id))
}
});
const BATCH_SIZE: usize = 128;
// Split table ids into chunks
let mut table_id_chunks = pin!(table_id_stream.ready_chunks(BATCH_SIZE));
while let Some(table_ids) = table_id_chunks.next().await {
let table_ids = table_ids.into_iter().collect::<Result<Vec<_>>>()?;
let table_routes = if let Some(partition_manager) = &partition_manager {
partition_manager
.batch_find_region_routes(&table_ids)
.await
.context(FindRegionRoutesSnafu)?
} else {
table_ids.into_iter().map(|id| (id, vec![])).collect()
};
for routes in table_routes.values() {
self.add_region_peers(&predicates, routes);
}
}
}
self.finish()
}
fn add_region_peers(&mut self, predicates: &Predicates, routes: &[RegionRoute]) {
for route in routes {
let region_id = route.region.id.as_u64();
let peer_id = route.leader_peer.clone().map(|p| p.id);
let peer_addr = route.leader_peer.clone().map(|p| p.addr);
let status = if let Some(status) = route.leader_status {
Some(status.as_ref().to_string())
} else {
// Alive by default
Some("ALIVE".to_string())
};
let row = [(REGION_ID, &Value::from(region_id))];
if !predicates.eval(&row) {
return;
}
// TODO(dennis): adds followers.
self.region_ids.push(Some(region_id));
self.peer_ids.push(peer_id);
self.peer_addrs.push(peer_addr.as_deref());
self.is_leaders.push(Some("Yes"));
self.statuses.push(status.as_deref());
self.down_seconds
.push(route.leader_down_millis().map(|m| m / 1000));
}
}
fn finish(&mut self) -> Result<RecordBatch> {
let columns: Vec<VectorRef> = vec![
Arc::new(self.region_ids.finish()),
Arc::new(self.peer_ids.finish()),
Arc::new(self.peer_addrs.finish()),
Arc::new(self.is_leaders.finish()),
Arc::new(self.statuses.finish()),
Arc::new(self.down_seconds.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaRegionPeers {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_region_peers(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}

View File

@@ -1,250 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_RUNTIME_METRICS_TABLE_ID;
use common_error::ext::BoxedError;
use common_query::physical_plan::TaskContext;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use common_time::util::current_time_millis;
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, MutableVector};
use datatypes::scalars::ScalarVectorBuilder;
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::vectors::{
ConstantVector, Float64VectorBuilder, StringVector, StringVectorBuilder,
TimestampMillisecondVector, VectorRef,
};
use itertools::Itertools;
use snafu::ResultExt;
use store_api::storage::{ScanRequest, TableId};
use super::{InformationTable, RUNTIME_METRICS};
use crate::error::{CreateRecordBatchSnafu, InternalSnafu, Result};
pub(super) struct InformationSchemaMetrics {
schema: SchemaRef,
}
const METRIC_NAME: &str = "metric_name";
const METRIC_VALUE: &str = "value";
const METRIC_LABELS: &str = "labels";
const NODE: &str = "node";
const NODE_TYPE: &str = "node_type";
const TIMESTAMP: &str = "timestamp";
/// The `information_schema.runtime_metrics` virtual table.
/// It provides the GreptimeDB runtime metrics for the users by SQL.
impl InformationSchemaMetrics {
pub(super) fn new() -> Self {
Self {
schema: Self::schema(),
}
}
fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(METRIC_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(METRIC_VALUE, ConcreteDataType::float64_datatype(), false),
ColumnSchema::new(METRIC_LABELS, ConcreteDataType::string_datatype(), true),
ColumnSchema::new(NODE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(NODE_TYPE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(
TIMESTAMP,
ConcreteDataType::timestamp_millisecond_datatype(),
false,
),
]))
}
fn builder(&self) -> InformationSchemaMetricsBuilder {
InformationSchemaMetricsBuilder::new(self.schema.clone())
}
}
impl InformationTable for InformationSchemaMetrics {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_RUNTIME_METRICS_TABLE_ID
}
fn table_name(&self) -> &'static str {
RUNTIME_METRICS
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_metrics(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
struct InformationSchemaMetricsBuilder {
schema: SchemaRef,
metric_names: StringVectorBuilder,
metric_values: Float64VectorBuilder,
metric_labels: StringVectorBuilder,
}
impl InformationSchemaMetricsBuilder {
fn new(schema: SchemaRef) -> Self {
Self {
schema,
metric_names: StringVectorBuilder::with_capacity(42),
metric_values: Float64VectorBuilder::with_capacity(42),
metric_labels: StringVectorBuilder::with_capacity(42),
}
}
fn add_metric(&mut self, metric_name: &str, labels: String, metric_value: f64) {
self.metric_names.push(Some(metric_name));
self.metric_values.push(Some(metric_value));
self.metric_labels.push(Some(&labels));
}
async fn make_metrics(&mut self, _request: Option<ScanRequest>) -> Result<RecordBatch> {
let metric_families = prometheus::gather();
let write_request =
common_telemetry::metric::convert_metric_to_write_request(metric_families, None, 0);
for ts in write_request.timeseries {
//Safety: always has `__name__` label
let metric_name = ts
.labels
.iter()
.find_map(|label| {
if label.name == "__name__" {
Some(label.value.clone())
} else {
None
}
})
.unwrap();
self.add_metric(
&metric_name,
ts.labels
.into_iter()
.filter_map(|label| {
if label.name == "__name__" {
None
} else {
Some(format!("{}={}", label.name, label.value))
}
})
.join(", "),
// Safety: always has a sample
ts.samples[0].value,
);
}
self.finish()
}
fn finish(&mut self) -> Result<RecordBatch> {
let rows_num = self.metric_names.len();
let unknowns = Arc::new(ConstantVector::new(
Arc::new(StringVector::from(vec!["unknown"])),
rows_num,
));
let timestamps = Arc::new(ConstantVector::new(
Arc::new(TimestampMillisecondVector::from_slice([
current_time_millis(),
])),
rows_num,
));
let columns: Vec<VectorRef> = vec![
Arc::new(self.metric_names.finish()),
Arc::new(self.metric_values.finish()),
Arc::new(self.metric_labels.finish()),
// TODO(dennis): supports node and node_type for cluster
unknowns.clone(),
unknowns,
timestamps,
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaMetrics {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_metrics(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}
#[cfg(test)]
mod tests {
use common_recordbatch::RecordBatches;
use super::*;
#[tokio::test]
async fn test_make_metrics() {
let metrics = InformationSchemaMetrics::new();
let stream = metrics.to_stream(ScanRequest::default()).unwrap();
let batches = RecordBatches::try_collect(stream).await.unwrap();
let result_literal = batches.pretty_print().unwrap();
assert!(result_literal.contains(METRIC_NAME));
assert!(result_literal.contains(METRIC_VALUE));
assert!(result_literal.contains(METRIC_LABELS));
assert!(result_literal.contains(NODE));
assert!(result_literal.contains(NODE_TYPE));
assert!(result_literal.contains(TIMESTAMP));
}
}

View File

@@ -1,222 +0,0 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::{Arc, Weak};
use arrow_schema::SchemaRef as ArrowSchemaRef;
use common_catalog::consts::INFORMATION_SCHEMA_SCHEMATA_TABLE_ID;
use common_error::ext::BoxedError;
use common_query::physical_plan::TaskContext;
use common_recordbatch::adapter::RecordBatchStreamAdapter;
use common_recordbatch::{RecordBatch, SendableRecordBatchStream};
use datafusion::physical_plan::stream::RecordBatchStreamAdapter as DfRecordBatchStreamAdapter;
use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::StringVectorBuilder;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use super::SCHEMATA;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::{InformationTable, Predicates};
use crate::CatalogManager;
pub const CATALOG_NAME: &str = "catalog_name";
pub const SCHEMA_NAME: &str = "schema_name";
const DEFAULT_CHARACTER_SET_NAME: &str = "default_character_set_name";
const DEFAULT_COLLATION_NAME: &str = "default_collation_name";
const INIT_CAPACITY: usize = 42;
/// The `information_schema.schemata` table implementation.
pub(super) struct InformationSchemaSchemata {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
}
impl InformationSchemaSchemata {
pub(super) fn new(catalog_name: String, catalog_manager: Weak<dyn CatalogManager>) -> Self {
Self {
schema: Self::schema(),
catalog_name,
catalog_manager,
}
}
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(CATALOG_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(SCHEMA_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(
DEFAULT_CHARACTER_SET_NAME,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new(
DEFAULT_COLLATION_NAME,
ConcreteDataType::string_datatype(),
false,
),
ColumnSchema::new("sql_path", ConcreteDataType::string_datatype(), true),
]))
}
fn builder(&self) -> InformationSchemaSchemataBuilder {
InformationSchemaSchemataBuilder::new(
self.schema.clone(),
self.catalog_name.clone(),
self.catalog_manager.clone(),
)
}
}
impl InformationTable for InformationSchemaSchemata {
fn table_id(&self) -> TableId {
INFORMATION_SCHEMA_SCHEMATA_TABLE_ID
}
fn table_name(&self) -> &'static str {
SCHEMATA
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_schemata(Some(request))
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
));
Ok(Box::pin(
RecordBatchStreamAdapter::try_new(stream)
.map_err(BoxedError::new)
.context(InternalSnafu)?,
))
}
}
/// Builds the `information_schema.schemata` table row by row
///
/// Columns are based on <https://docs.pingcap.com/tidb/stable/information-schema-schemata>
struct InformationSchemaSchemataBuilder {
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
catalog_names: StringVectorBuilder,
schema_names: StringVectorBuilder,
charset_names: StringVectorBuilder,
collation_names: StringVectorBuilder,
sql_paths: StringVectorBuilder,
}
impl InformationSchemaSchemataBuilder {
fn new(
schema: SchemaRef,
catalog_name: String,
catalog_manager: Weak<dyn CatalogManager>,
) -> Self {
Self {
schema,
catalog_name,
catalog_manager,
catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
charset_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
collation_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
sql_paths: StringVectorBuilder::with_capacity(INIT_CAPACITY),
}
}
/// Construct the `information_schema.schemata` virtual table
async fn make_schemata(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
self.add_schema(&predicates, &catalog_name, &schema_name);
}
self.finish()
}
fn add_schema(&mut self, predicates: &Predicates, catalog_name: &str, schema_name: &str) {
let row = [
(CATALOG_NAME, &Value::from(catalog_name)),
(SCHEMA_NAME, &Value::from(schema_name)),
(DEFAULT_CHARACTER_SET_NAME, &Value::from("utf8")),
(DEFAULT_COLLATION_NAME, &Value::from("utf8_bin")),
];
if !predicates.eval(&row) {
return;
}
self.catalog_names.push(Some(catalog_name));
self.schema_names.push(Some(schema_name));
self.charset_names.push(Some("utf8"));
self.collation_names.push(Some("utf8_bin"));
self.sql_paths.push(None);
}
fn finish(&mut self) -> Result<RecordBatch> {
let columns: Vec<VectorRef> = vec![
Arc::new(self.catalog_names.finish()),
Arc::new(self.schema_names.finish()),
Arc::new(self.charset_names.finish()),
Arc::new(self.collation_names.finish()),
Arc::new(self.sql_paths.finish()),
];
RecordBatch::new(self.schema.clone(), columns).context(CreateRecordBatchSnafu)
}
}
impl DfPartitionStream for InformationSchemaSchemata {
fn schema(&self) -> &ArrowSchemaRef {
self.schema.arrow_schema()
}
fn execute(&self, _: Arc<TaskContext>) -> DfSendableRecordBatchStream {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_schemata(None)
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
}),
))
}
}

View File

@@ -20,24 +20,3 @@ pub const ENGINES: &str = "engines";
pub const COLUMN_PRIVILEGES: &str = "column_privileges";
pub const COLUMN_STATISTICS: &str = "column_statistics";
pub const BUILD_INFO: &str = "build_info";
pub const CHARACTER_SETS: &str = "character_sets";
pub const COLLATIONS: &str = "collations";
pub const COLLATION_CHARACTER_SET_APPLICABILITY: &str = "collation_character_set_applicability";
pub const CHECK_CONSTRAINTS: &str = "check_constraints";
pub const EVENTS: &str = "events";
pub const FILES: &str = "files";
pub const SCHEMATA: &str = "schemata";
pub const KEY_COLUMN_USAGE: &str = "key_column_usage";
pub const OPTIMIZER_TRACE: &str = "optimizer_trace";
pub const PARAMETERS: &str = "parameters";
pub const PROFILING: &str = "profiling";
pub const REFERENTIAL_CONSTRAINTS: &str = "referential_constraints";
pub const ROUTINES: &str = "routines";
pub const SCHEMA_PRIVILEGES: &str = "schema_privileges";
pub const TABLE_PRIVILEGES: &str = "table_privileges";
pub const TRIGGERS: &str = "triggers";
pub const GLOBAL_STATUS: &str = "global_status";
pub const SESSION_STATUS: &str = "session_status";
pub const RUNTIME_METRICS: &str = "runtime_metrics";
pub const PARTITIONS: &str = "partitions";
pub const REGION_PEERS: &str = "greptime_region_peers";

View File

@@ -25,28 +25,18 @@ use datafusion::physical_plan::streaming::PartitionStream as DfPartitionStream;
use datafusion::physical_plan::SendableRecordBatchStream as DfSendableRecordBatchStream;
use datatypes::prelude::{ConcreteDataType, ScalarVectorBuilder, VectorRef};
use datatypes::schema::{ColumnSchema, Schema, SchemaRef};
use datatypes::value::Value;
use datatypes::vectors::{StringVectorBuilder, UInt32VectorBuilder};
use futures::TryStreamExt;
use snafu::{OptionExt, ResultExt};
use store_api::storage::{ScanRequest, TableId};
use store_api::storage::TableId;
use table::metadata::TableType;
use super::TABLES;
use crate::error::{
CreateRecordBatchSnafu, InternalSnafu, Result, UpgradeWeakCatalogManagerRefSnafu,
};
use crate::information_schema::{InformationTable, Predicates};
use crate::information_schema::InformationTable;
use crate::CatalogManager;
pub const TABLE_CATALOG: &str = "table_catalog";
pub const TABLE_SCHEMA: &str = "table_schema";
pub const TABLE_NAME: &str = "table_name";
pub const TABLE_TYPE: &str = "table_type";
const TABLE_ID: &str = "table_id";
const ENGINE: &str = "engine";
const INIT_CAPACITY: usize = 42;
pub(super) struct InformationSchemaTables {
schema: SchemaRef,
catalog_name: String,
@@ -64,12 +54,12 @@ impl InformationSchemaTables {
pub(crate) fn schema() -> SchemaRef {
Arc::new(Schema::new(vec![
ColumnSchema::new(TABLE_CATALOG, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_SCHEMA, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_NAME, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_TYPE, ConcreteDataType::string_datatype(), false),
ColumnSchema::new(TABLE_ID, ConcreteDataType::uint32_datatype(), true),
ColumnSchema::new(ENGINE, ConcreteDataType::string_datatype(), true),
ColumnSchema::new("table_catalog", ConcreteDataType::string_datatype(), false),
ColumnSchema::new("table_schema", ConcreteDataType::string_datatype(), false),
ColumnSchema::new("table_name", ConcreteDataType::string_datatype(), false),
ColumnSchema::new("table_type", ConcreteDataType::string_datatype(), false),
ColumnSchema::new("table_id", ConcreteDataType::uint32_datatype(), true),
ColumnSchema::new("engine", ConcreteDataType::string_datatype(), true),
]))
}
@@ -95,14 +85,14 @@ impl InformationTable for InformationSchemaTables {
self.schema.clone()
}
fn to_stream(&self, request: ScanRequest) -> Result<SendableRecordBatchStream> {
fn to_stream(&self) -> Result<SendableRecordBatchStream> {
let schema = self.schema.arrow_schema().clone();
let mut builder = self.builder();
let stream = Box::pin(DfRecordBatchStreamAdapter::new(
schema,
futures::stream::once(async move {
builder
.make_tables(Some(request))
.make_tables()
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)
@@ -142,48 +132,59 @@ impl InformationSchemaTablesBuilder {
schema,
catalog_name,
catalog_manager,
catalog_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
schema_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_names: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_types: StringVectorBuilder::with_capacity(INIT_CAPACITY),
table_ids: UInt32VectorBuilder::with_capacity(INIT_CAPACITY),
engines: StringVectorBuilder::with_capacity(INIT_CAPACITY),
catalog_names: StringVectorBuilder::with_capacity(42),
schema_names: StringVectorBuilder::with_capacity(42),
table_names: StringVectorBuilder::with_capacity(42),
table_types: StringVectorBuilder::with_capacity(42),
table_ids: UInt32VectorBuilder::with_capacity(42),
engines: StringVectorBuilder::with_capacity(42),
}
}
/// Construct the `information_schema.tables` virtual table
async fn make_tables(&mut self, request: Option<ScanRequest>) -> Result<RecordBatch> {
async fn make_tables(&mut self) -> Result<RecordBatch> {
let catalog_name = self.catalog_name.clone();
let catalog_manager = self
.catalog_manager
.upgrade()
.context(UpgradeWeakCatalogManagerRefSnafu)?;
let predicates = Predicates::from_scan_request(&request);
for schema_name in catalog_manager.schema_names(&catalog_name).await? {
let mut stream = catalog_manager.tables(&catalog_name, &schema_name).await;
if !catalog_manager
.schema_exists(&catalog_name, &schema_name)
.await?
{
continue;
}
while let Some(table) = stream.try_next().await? {
let table_info = table.table_info();
self.add_table(
&predicates,
&catalog_name,
&schema_name,
&table_info.name,
table.table_type(),
Some(table_info.ident.table_id),
Some(&table_info.meta.engine),
);
for table_name in catalog_manager
.table_names(&catalog_name, &schema_name)
.await?
{
if let Some(table) = catalog_manager
.table(&catalog_name, &schema_name, &table_name)
.await?
{
let table_info = table.table_info();
self.add_table(
&catalog_name,
&schema_name,
&table_name,
table.table_type(),
Some(table_info.ident.table_id),
Some(&table_info.meta.engine),
);
} else {
unreachable!();
}
}
}
self.finish()
}
#[allow(clippy::too_many_arguments)]
fn add_table(
&mut self,
predicates: &Predicates,
catalog_name: &str,
schema_name: &str,
table_name: &str,
@@ -191,27 +192,14 @@ impl InformationSchemaTablesBuilder {
table_id: Option<u32>,
engine: Option<&str>,
) {
let table_type = match table_type {
TableType::Base => "BASE TABLE",
TableType::View => "VIEW",
TableType::Temporary => "LOCAL TEMPORARY",
};
let row = [
(TABLE_CATALOG, &Value::from(catalog_name)),
(TABLE_SCHEMA, &Value::from(schema_name)),
(TABLE_NAME, &Value::from(table_name)),
(TABLE_TYPE, &Value::from(table_type)),
];
if !predicates.eval(&row) {
return;
}
self.catalog_names.push(Some(catalog_name));
self.schema_names.push(Some(schema_name));
self.table_names.push(Some(table_name));
self.table_types.push(Some(table_type));
self.table_types.push(Some(match table_type {
TableType::Base => "BASE TABLE",
TableType::View => "VIEW",
TableType::Temporary => "LOCAL TEMPORARY",
}));
self.table_ids.push(table_id);
self.engines.push(engine);
}
@@ -241,7 +229,7 @@ impl DfPartitionStream for InformationSchemaTables {
schema,
futures::stream::once(async move {
builder
.make_tables(None)
.make_tables()
.await
.map(|x| x.into_df_record_batch())
.map_err(Into::into)

View File

@@ -12,9 +12,11 @@
// See the License for the specific language governing permissions and
// limitations under the License.
pub use client::{CachedMetaKvBackend, CachedMetaKvBackendBuilder, MetaKvBackend};
pub use client::{CachedMetaKvBackend, MetaKvBackend};
mod client;
mod manager;
#[cfg(feature = "testing")]
pub mod mock;
pub use manager::KvBackendCatalogManager;

View File

@@ -14,10 +14,8 @@
use std::any::Any;
use std::fmt::Debug;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::{Arc, Mutex};
use std::sync::Arc;
use std::time::Duration;
use std::usize;
use common_error::ext::BoxedError;
use common_meta::cache_invalidator::KvCacheInvalidator;
@@ -35,89 +33,18 @@ use meta_client::client::MetaClient;
use moka::future::{Cache, CacheBuilder};
use snafu::{OptionExt, ResultExt};
use crate::metrics::{
METRIC_CATALOG_KV_BATCH_GET, METRIC_CATALOG_KV_GET, METRIC_CATALOG_KV_REMOTE_GET,
};
use crate::metrics::{METRIC_CATALOG_KV_GET, METRIC_CATALOG_KV_REMOTE_GET};
const DEFAULT_CACHE_MAX_CAPACITY: u64 = 10000;
const DEFAULT_CACHE_TTL: Duration = Duration::from_secs(10 * 60);
const DEFAULT_CACHE_TTI: Duration = Duration::from_secs(5 * 60);
const CACHE_MAX_CAPACITY: u64 = 10000;
const CACHE_TTL_SECOND: u64 = 10 * 60;
const CACHE_TTI_SECOND: u64 = 5 * 60;
pub struct CachedMetaKvBackendBuilder {
cache_max_capacity: Option<u64>,
cache_ttl: Option<Duration>,
cache_tti: Option<Duration>,
meta_client: Arc<MetaClient>,
}
pub type CacheBackendRef = Arc<Cache<Vec<u8>, KeyValue>>;
impl CachedMetaKvBackendBuilder {
pub fn new(meta_client: Arc<MetaClient>) -> Self {
Self {
cache_max_capacity: None,
cache_ttl: None,
cache_tti: None,
meta_client,
}
}
pub fn cache_max_capacity(mut self, cache_max_capacity: u64) -> Self {
self.cache_max_capacity.replace(cache_max_capacity);
self
}
pub fn cache_ttl(mut self, cache_ttl: Duration) -> Self {
self.cache_ttl.replace(cache_ttl);
self
}
pub fn cache_tti(mut self, cache_tti: Duration) -> Self {
self.cache_tti.replace(cache_tti);
self
}
pub fn build(self) -> CachedMetaKvBackend {
let cache_max_capacity = self
.cache_max_capacity
.unwrap_or(DEFAULT_CACHE_MAX_CAPACITY);
let cache_ttl = self.cache_ttl.unwrap_or(DEFAULT_CACHE_TTL);
let cache_tti = self.cache_tti.unwrap_or(DEFAULT_CACHE_TTI);
let cache = CacheBuilder::new(cache_max_capacity)
.time_to_live(cache_ttl)
.time_to_idle(cache_tti)
.build();
let kv_backend = Arc::new(MetaKvBackend {
client: self.meta_client,
});
let name = format!("CachedKvBackend({})", kv_backend.name());
let version = AtomicUsize::new(0);
CachedMetaKvBackend {
kv_backend,
cache,
name,
version,
}
}
}
pub type CacheBackend = Cache<Vec<u8>, KeyValue>;
/// A wrapper of `MetaKvBackend` with cache support.
///
/// CachedMetaKvBackend is mainly used to read metadata information from Metasrv, and provides
/// cache for get and batch_get. One way to trigger cache invalidation of CachedMetaKvBackend:
/// when metadata information changes, Metasrv will broadcast a metadata invalidation request.
///
/// Therefore, it is recommended to use CachedMetaKvBackend to only read metadata related
/// information. Note: If you read other information, you may read expired data, which depends on
/// TTL and TTI for cache.
pub struct CachedMetaKvBackend {
kv_backend: KvBackendRef,
cache: CacheBackend,
cache: CacheBackendRef,
name: String,
version: AtomicUsize,
}
impl TxnService for CachedMetaKvBackend {
@@ -169,38 +96,7 @@ impl KvBackend for CachedMetaKvBackend {
}
async fn batch_get(&self, req: BatchGetRequest) -> Result<BatchGetResponse> {
let _timer = METRIC_CATALOG_KV_BATCH_GET.start_timer();
let mut kvs = Vec::with_capacity(req.keys.len());
let mut miss_keys = Vec::with_capacity(req.keys.len());
for key in req.keys {
if let Some(val) = self.cache.get(&key).await {
kvs.push(val);
} else {
miss_keys.push(key);
}
}
let batch_get_req = BatchGetRequest::new().with_keys(miss_keys.clone());
let pre_version = self.version();
let unhit_kvs = self.kv_backend.batch_get(batch_get_req).await?.kvs;
for kv in unhit_kvs.iter() {
self.cache.insert(kv.key().to_vec(), kv.clone()).await;
}
if !self.validate_version(pre_version) {
for key in miss_keys.iter() {
self.cache.invalidate(key).await;
}
}
kvs.extend(unhit_kvs);
Ok(BatchGetResponse { kvs })
self.kv_backend.batch_get(req).await
}
async fn compare_and_put(&self, req: CompareAndPutRequest) -> Result<CompareAndPutResponse> {
@@ -258,14 +154,8 @@ impl KvBackend for CachedMetaKvBackend {
async fn get(&self, key: &[u8]) -> Result<Option<KeyValue>> {
let _timer = METRIC_CATALOG_KV_GET.start_timer();
let pre_version = Arc::new(Mutex::new(None));
let init = async {
let version_clone = pre_version.clone();
let _timer = METRIC_CATALOG_KV_REMOTE_GET.start_timer();
version_clone.lock().unwrap().replace(self.version());
self.kv_backend.get(key).await.map(|val| {
val.with_context(|| CacheNotGetSnafu {
key: String::from_utf8_lossy(key),
@@ -276,7 +166,7 @@ impl KvBackend for CachedMetaKvBackend {
// currently moka doesn't have `optionally_try_get_with_by_ref`
// TODO(fys): change to moka method when available
// https://github.com/moka-rs/moka/issues/254
let ret = match self.cache.try_get_with_by_ref(key, init).await {
match self.cache.try_get_with_by_ref(key, init).await {
Ok(val) => Ok(Some(val)),
Err(e) => match e.as_ref() {
CacheNotGet { .. } => Ok(None),
@@ -285,65 +175,43 @@ impl KvBackend for CachedMetaKvBackend {
}
.map_err(|e| GetKvCache {
err_msg: e.to_string(),
});
// "cache.invalidate_key" and "cache.try_get_with_by_ref" are not mutually exclusive. So we need
// to use the version mechanism to prevent expired data from being put into the cache.
if pre_version
.lock()
.unwrap()
.as_ref()
.map_or(false, |v| !self.validate_version(*v))
{
self.cache.invalidate(key).await;
}
ret
})
}
}
#[async_trait::async_trait]
impl KvCacheInvalidator for CachedMetaKvBackend {
async fn invalidate_key(&self, key: &[u8]) {
self.create_new_version();
self.cache.invalidate(key).await;
debug!("invalidated cache key: {}", String::from_utf8_lossy(key));
}
}
impl CachedMetaKvBackend {
// only for test
#[cfg(test)]
fn wrap(kv_backend: KvBackendRef) -> Self {
let cache = CacheBuilder::new(DEFAULT_CACHE_MAX_CAPACITY)
.time_to_live(DEFAULT_CACHE_TTL)
.time_to_idle(DEFAULT_CACHE_TTI)
.build();
pub fn new(client: Arc<MetaClient>) -> Self {
let kv_backend = Arc::new(MetaKvBackend { client });
Self::wrap(kv_backend)
}
pub fn wrap(kv_backend: KvBackendRef) -> Self {
let cache = Arc::new(
CacheBuilder::new(CACHE_MAX_CAPACITY)
.time_to_live(Duration::from_secs(CACHE_TTL_SECOND))
.time_to_idle(Duration::from_secs(CACHE_TTI_SECOND))
.build(),
);
let name = format!("CachedKvBackend({})", kv_backend.name());
Self {
kv_backend,
cache,
name,
version: AtomicUsize::new(0),
}
}
pub fn cache(&self) -> &CacheBackend {
pub fn cache(&self) -> &CacheBackendRef {
&self.cache
}
fn version(&self) -> usize {
self.version.load(Ordering::Relaxed)
}
fn validate_version(&self, pre_version: usize) -> bool {
self.version() == pre_version
}
fn create_new_version(&self) -> usize {
self.version.fetch_add(1, Ordering::Relaxed) + 1
}
}
#[derive(Debug)]
@@ -440,162 +308,3 @@ impl KvBackend for MetaKvBackend {
self
}
}
#[cfg(test)]
mod tests {
use std::any::Any;
use std::sync::atomic::{AtomicU32, Ordering};
use std::sync::Arc;
use async_trait::async_trait;
use common_meta::kv_backend::{KvBackend, TxnService};
use common_meta::rpc::store::{
BatchDeleteRequest, BatchDeleteResponse, BatchGetRequest, BatchGetResponse,
BatchPutRequest, BatchPutResponse, CompareAndPutRequest, CompareAndPutResponse,
DeleteRangeRequest, DeleteRangeResponse, PutRequest, PutResponse, RangeRequest,
RangeResponse,
};
use common_meta::rpc::KeyValue;
use dashmap::DashMap;
use super::CachedMetaKvBackend;
#[derive(Default)]
pub struct SimpleKvBackend {
inner_map: DashMap<Vec<u8>, Vec<u8>>,
get_execute_times: Arc<AtomicU32>,
}
impl TxnService for SimpleKvBackend {
type Error = common_meta::error::Error;
}
#[async_trait]
impl KvBackend for SimpleKvBackend {
fn name(&self) -> &str {
"SimpleKvBackend"
}
fn as_any(&self) -> &dyn Any {
self
}
async fn batch_get(&self, req: BatchGetRequest) -> Result<BatchGetResponse, Self::Error> {
let mut kvs = Vec::with_capacity(req.keys.len());
for key in req.keys.iter() {
if let Some(kv) = self.get(key).await? {
kvs.push(kv);
}
}
Ok(BatchGetResponse { kvs })
}
async fn put(&self, req: PutRequest) -> Result<PutResponse, Self::Error> {
self.inner_map.insert(req.key, req.value);
// always return None as prev_kv, since we don't use it in this test.
Ok(PutResponse { prev_kv: None })
}
async fn get(&self, key: &[u8]) -> Result<Option<KeyValue>, Self::Error> {
self.get_execute_times
.fetch_add(1, std::sync::atomic::Ordering::SeqCst);
Ok(self.inner_map.get(key).map(|v| KeyValue {
key: key.to_vec(),
value: v.value().clone(),
}))
}
async fn range(&self, _req: RangeRequest) -> Result<RangeResponse, Self::Error> {
todo!()
}
async fn batch_put(&self, _req: BatchPutRequest) -> Result<BatchPutResponse, Self::Error> {
todo!()
}
async fn compare_and_put(
&self,
_req: CompareAndPutRequest,
) -> Result<CompareAndPutResponse, Self::Error> {
todo!()
}
async fn delete_range(
&self,
_req: DeleteRangeRequest,
) -> Result<DeleteRangeResponse, Self::Error> {
todo!()
}
async fn batch_delete(
&self,
_req: BatchDeleteRequest,
) -> Result<BatchDeleteResponse, Self::Error> {
todo!()
}
}
#[tokio::test]
async fn test_cached_kv_backend() {
let simple_kv = Arc::new(SimpleKvBackend::default());
let get_execute_times = simple_kv.get_execute_times.clone();
let cached_kv = CachedMetaKvBackend::wrap(simple_kv);
add_some_vals(&cached_kv).await;
let batch_get_req = BatchGetRequest {
keys: vec![b"k1".to_vec(), b"k2".to_vec()],
};
assert_eq!(get_execute_times.load(Ordering::SeqCst), 0);
for _ in 0..10 {
let _batch_get_resp = cached_kv.batch_get(batch_get_req.clone()).await.unwrap();
assert_eq!(get_execute_times.load(Ordering::SeqCst), 2);
}
let batch_get_req = BatchGetRequest {
keys: vec![b"k1".to_vec(), b"k2".to_vec(), b"k3".to_vec()],
};
let _batch_get_resp = cached_kv.batch_get(batch_get_req.clone()).await.unwrap();
assert_eq!(get_execute_times.load(Ordering::SeqCst), 3);
for _ in 0..10 {
let _batch_get_resp = cached_kv.batch_get(batch_get_req.clone()).await.unwrap();
assert_eq!(get_execute_times.load(Ordering::SeqCst), 3);
}
}
async fn add_some_vals(kv_backend: &impl KvBackend) {
kv_backend
.put(PutRequest {
key: b"k1".to_vec(),
value: b"v1".to_vec(),
prev_kv: false,
})
.await
.unwrap();
kv_backend
.put(PutRequest {
key: b"k2".to_vec(),
value: b"v2".to_vec(),
prev_kv: false,
})
.await
.unwrap();
kv_backend
.put(PutRequest {
key: b"k3".to_vec(),
value: b"v3".to_vec(),
prev_kv: false,
})
.await
.unwrap();
}
}

View File

@@ -15,27 +15,18 @@
use std::any::Any;
use std::collections::BTreeSet;
use std::sync::{Arc, Weak};
use std::time::Duration;
use async_stream::try_stream;
use common_catalog::consts::{
DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, INFORMATION_SCHEMA_NAME, NUMBERS_TABLE_ID,
};
use common_catalog::format_full_table_name;
use common_catalog::consts::{DEFAULT_SCHEMA_NAME, INFORMATION_SCHEMA_NAME, NUMBERS_TABLE_ID};
use common_error::ext::BoxedError;
use common_meta::cache_invalidator::{CacheInvalidator, CacheInvalidatorRef, Context};
use common_meta::error::Result as MetaResult;
use common_meta::key::catalog_name::CatalogNameKey;
use common_meta::key::schema_name::SchemaNameKey;
use common_meta::key::table_info::TableInfoValue;
use common_meta::key::table_name::TableNameKey;
use common_meta::key::{TableMetadataManager, TableMetadataManagerRef};
use common_meta::kv_backend::KvBackendRef;
use common_meta::table_name::TableName;
use futures_util::stream::BoxStream;
use futures_util::{StreamExt, TryStreamExt};
use moka::future::{Cache as AsyncCache, CacheBuilder};
use moka::sync::Cache;
use futures_util::TryStreamExt;
use partition::manager::{PartitionRuleManager, PartitionRuleManagerRef};
use snafu::prelude::*;
use table::dist_table::DistTable;
@@ -43,10 +34,9 @@ use table::metadata::TableId;
use table::table::numbers::{NumbersTable, NUMBERS_TABLE_NAME};
use table::TableRef;
use crate::error::Error::{GetTableCache, TableCacheNotGet};
use crate::error::{
self as catalog_err, ListCatalogsSnafu, ListSchemasSnafu, ListTablesSnafu,
Result as CatalogResult, TableCacheNotGetSnafu, TableMetadataManagerSnafu,
self as catalog_err, ListCatalogsSnafu, ListSchemasSnafu, Result as CatalogResult,
TableMetadataManagerSnafu,
};
use crate::information_schema::InformationSchemaProvider;
use crate::CatalogManager;
@@ -66,45 +56,23 @@ pub struct KvBackendCatalogManager {
table_metadata_manager: TableMetadataManagerRef,
/// A sub-CatalogManager that handles system tables
system_catalog: SystemCatalog,
table_cache: AsyncCache<String, TableRef>,
}
fn make_table(table_info_value: TableInfoValue) -> CatalogResult<TableRef> {
let table_info = table_info_value
.table_info
.try_into()
.context(catalog_err::InvalidTableInfoInCatalogSnafu)?;
Ok(DistTable::table(Arc::new(table_info)))
}
#[async_trait::async_trait]
impl CacheInvalidator for KvBackendCatalogManager {
async fn invalidate_table_name(&self, ctx: &Context, table_name: TableName) -> MetaResult<()> {
self.cache_invalidator
.invalidate_table_name(ctx, table_name)
.await
}
async fn invalidate_table_id(&self, ctx: &Context, table_id: TableId) -> MetaResult<()> {
self.cache_invalidator
.invalidate_table_id(ctx, table_id)
.await
}
async fn invalidate_table_name(&self, ctx: &Context, table_name: TableName) -> MetaResult<()> {
let table_cache_key = format_full_table_name(
&table_name.catalog_name,
&table_name.schema_name,
&table_name.table_name,
);
self.cache_invalidator
.invalidate_table_name(ctx, table_name)
.await?;
self.table_cache.invalidate(&table_cache_key).await;
Ok(())
}
}
const CATALOG_CACHE_MAX_CAPACITY: u64 = 128;
const TABLE_CACHE_MAX_CAPACITY: u64 = 65536;
const TABLE_CACHE_TTL: Duration = Duration::from_secs(10 * 60);
const TABLE_CACHE_TTI: Duration = Duration::from_secs(5 * 60);
impl KvBackendCatalogManager {
pub fn new(backend: KvBackendRef, cache_invalidator: CacheInvalidatorRef) -> Arc<Self> {
Arc::new_cyclic(|me| Self {
@@ -113,16 +81,12 @@ impl KvBackendCatalogManager {
cache_invalidator,
system_catalog: SystemCatalog {
catalog_manager: me.clone(),
catalog_cache: Cache::new(CATALOG_CACHE_MAX_CAPACITY),
information_schema_provider: Arc::new(InformationSchemaProvider::new(
DEFAULT_CATALOG_NAME.to_string(),
// The catalog name is not used in system_catalog, so let it empty
"".to_string(),
me.clone(),
)),
},
table_cache: CacheBuilder::new(TABLE_CACHE_MAX_CAPACITY)
.time_to_live(TABLE_CACHE_TTL)
.time_to_idle(TABLE_CACHE_TTI)
.build(),
})
}
@@ -137,10 +101,6 @@ impl KvBackendCatalogManager {
#[async_trait::async_trait]
impl CatalogManager for KvBackendCatalogManager {
fn as_any(&self) -> &dyn Any {
self
}
async fn catalog_names(&self) -> CatalogResult<Vec<String>> {
let stream = self
.table_metadata_manager
@@ -175,22 +135,18 @@ impl CatalogManager for KvBackendCatalogManager {
}
async fn table_names(&self, catalog: &str, schema: &str) -> CatalogResult<Vec<String>> {
let stream = self
let mut tables = self
.table_metadata_manager
.table_name_manager()
.tables(catalog, schema)
.await;
let mut tables = stream
.try_collect::<Vec<_>>()
.await
.map_err(BoxedError::new)
.context(ListTablesSnafu { catalog, schema })?
.context(TableMetadataManagerSnafu)?
.into_iter()
.map(|(k, _)| k)
.collect::<Vec<_>>();
.collect::<Vec<String>>();
tables.extend_from_slice(&self.system_catalog.table_names(schema));
Ok(tables.into_iter().collect())
Ok(tables)
}
async fn catalog_exists(&self, catalog: &str) -> CatalogResult<bool> {
@@ -237,101 +193,39 @@ impl CatalogManager for KvBackendCatalogManager {
return Ok(Some(table));
}
let init = async {
let table_name_key = TableNameKey::new(catalog, schema, table_name);
let Some(table_name_value) = self
.table_metadata_manager
.table_name_manager()
.get(table_name_key)
.await
.context(TableMetadataManagerSnafu)?
else {
return TableCacheNotGetSnafu {
key: table_name_key.to_string(),
}
.fail();
};
let table_id = table_name_value.table_id();
let Some(table_info_value) = self
.table_metadata_manager
.table_info_manager()
.get(table_id)
.await
.context(TableMetadataManagerSnafu)?
.map(|v| v.into_inner())
else {
return TableCacheNotGetSnafu {
key: table_name_key.to_string(),
}
.fail();
};
make_table(table_info_value)
};
match self
.table_cache
.try_get_with_by_ref(&format_full_table_name(catalog, schema, table_name), init)
.await
{
Ok(table) => Ok(Some(table)),
Err(err) => match err.as_ref() {
TableCacheNotGet { .. } => Ok(None),
_ => Err(err),
},
}
.map_err(|err| GetTableCache {
err_msg: err.to_string(),
})
}
async fn tables<'a>(
&'a self,
catalog: &'a str,
schema: &'a str,
) -> BoxStream<'a, CatalogResult<TableRef>> {
let sys_tables = try_stream!({
// System tables
let sys_table_names = self.system_catalog.table_names(schema);
for table_name in sys_table_names {
if let Some(table) = self.system_catalog.table(catalog, schema, &table_name) {
yield table;
}
}
});
let table_id_stream = self
let key = TableNameKey::new(catalog, schema, table_name);
let Some(table_name_value) = self
.table_metadata_manager
.table_name_manager()
.tables(catalog, schema)
.get(key)
.await
.map_ok(|(_, v)| v.table_id());
const BATCH_SIZE: usize = 128;
let user_tables = try_stream!({
// Split table ids into chunks
let mut table_id_chunks = table_id_stream.ready_chunks(BATCH_SIZE);
.context(TableMetadataManagerSnafu)?
else {
return Ok(None);
};
let table_id = table_name_value.table_id();
while let Some(table_ids) = table_id_chunks.next().await {
let table_ids = table_ids
.into_iter()
.collect::<Result<Vec<_>, _>>()
.map_err(BoxedError::new)
.context(ListTablesSnafu { catalog, schema })?;
let Some(table_info_value) = self
.table_metadata_manager
.table_info_manager()
.get(table_id)
.await
.context(TableMetadataManagerSnafu)?
.map(|v| v.into_inner())
else {
return Ok(None);
};
let table_info = Arc::new(
table_info_value
.table_info
.try_into()
.context(catalog_err::InvalidTableInfoInCatalogSnafu)?,
);
Ok(Some(DistTable::table(table_info)))
}
let table_info_values = self
.table_metadata_manager
.table_info_manager()
.batch_get(&table_ids)
.await
.context(TableMetadataManagerSnafu)?;
for table_info_value in table_info_values.into_values() {
yield make_table(table_info_value)?;
}
}
});
Box::pin(sys_tables.chain(user_tables))
fn as_any(&self) -> &dyn Any {
self
}
}
@@ -344,7 +238,6 @@ impl CatalogManager for KvBackendCatalogManager {
#[derive(Clone)]
struct SystemCatalog {
catalog_manager: Weak<KvBackendCatalogManager>,
catalog_cache: Cache<String, Arc<InformationSchemaProvider>>,
information_schema_provider: Arc<InformationSchemaProvider>,
}
@@ -380,12 +273,7 @@ impl SystemCatalog {
fn table(&self, catalog: &str, schema: &str, table_name: &str) -> Option<TableRef> {
if schema == INFORMATION_SCHEMA_NAME {
let information_schema_provider =
self.catalog_cache.get_with_by_ref(catalog, move || {
Arc::new(InformationSchemaProvider::new(
catalog.to_string(),
self.catalog_manager.clone(),
))
});
InformationSchemaProvider::new(catalog.to_string(), self.catalog_manager.clone());
information_schema_provider.table(table_name)
} else if schema == DEFAULT_SCHEMA_NAME && table_name == NUMBERS_TABLE_NAME {
Some(NumbersTable::table(NUMBERS_TABLE_ID))

View File

@@ -0,0 +1,128 @@
// Copyright 2023 Greptime Team
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use std::collections::HashMap;
use std::sync::{Arc, RwLock as StdRwLock};
use common_recordbatch::RecordBatch;
use datatypes::data_type::ConcreteDataType;
use datatypes::schema::{ColumnSchema, Schema};
use datatypes::vectors::StringVector;
use table::engine::{CloseTableResult, EngineContext, TableEngine};
use table::metadata::TableId;
use table::requests::{
AlterTableRequest, CloseTableRequest, CreateTableRequest, DropTableRequest, OpenTableRequest,
TruncateTableRequest,
};
use table::test_util::MemTable;
use table::TableRef;
#[derive(Default)]
pub struct MockTableEngine {
tables: StdRwLock<HashMap<TableId, TableRef>>,
}
#[async_trait::async_trait]
impl TableEngine for MockTableEngine {
fn name(&self) -> &str {
"MockTableEngine"
}
/// Create a table with only one column
async fn create_table(
&self,
_ctx: &EngineContext,
request: CreateTableRequest,
) -> table::Result<TableRef> {
let table_id = request.id;
let schema = Arc::new(Schema::new(vec![ColumnSchema::new(
"name",
ConcreteDataType::string_datatype(),
true,
)]));
let data = vec![Arc::new(StringVector::from(vec!["a", "b", "c"])) as _];
let record_batch = RecordBatch::new(schema, data).unwrap();
let table = MemTable::new_with_catalog(
&request.table_name,
record_batch,
table_id,
request.catalog_name,
request.schema_name,
vec![0],
);
let mut tables = self.tables.write().unwrap();
let _ = tables.insert(table_id, table.clone() as TableRef);
Ok(table)
}
async fn open_table(
&self,
_ctx: &EngineContext,
request: OpenTableRequest,
) -> table::Result<Option<TableRef>> {
Ok(self.tables.read().unwrap().get(&request.table_id).cloned())
}
async fn alter_table(
&self,
_ctx: &EngineContext,
_request: AlterTableRequest,
) -> table::Result<TableRef> {
unimplemented!()
}
fn get_table(
&self,
_ctx: &EngineContext,
table_id: TableId,
) -> table::Result<Option<TableRef>> {
Ok(self.tables.read().unwrap().get(&table_id).cloned())
}
fn table_exists(&self, _ctx: &EngineContext, table_id: TableId) -> bool {
self.tables.read().unwrap().contains_key(&table_id)
}
async fn drop_table(
&self,
_ctx: &EngineContext,
_request: DropTableRequest,
) -> table::Result<bool> {
unimplemented!()
}
async fn close_table(
&self,
_ctx: &EngineContext,
request: CloseTableRequest,
) -> table::Result<CloseTableResult> {
let _ = self.tables.write().unwrap().remove(&request.table_id);
Ok(CloseTableResult::Released(vec![]))
}
async fn close(&self) -> table::Result<()> {
Ok(())
}
async fn truncate_table(
&self,
_ctx: &EngineContext,
_request: TruncateTableRequest,
) -> table::Result<bool> {
Ok(true)
}
}

View File

@@ -20,7 +20,6 @@ use std::fmt::{Debug, Formatter};
use std::sync::Arc;
use futures::future::BoxFuture;
use futures_util::stream::BoxStream;
use table::metadata::TableId;
use table::requests::CreateTableRequest;
use table::TableRef;
@@ -57,13 +56,6 @@ pub trait CatalogManager: Send + Sync {
schema: &str,
table_name: &str,
) -> Result<Option<TableRef>>;
/// Returns all tables with a stream by catalog and schema.
async fn tables<'a>(
&'a self,
catalog: &'a str,
schema: &'a str,
) -> BoxStream<'a, Result<TableRef>>;
}
pub type CatalogManagerRef = Arc<dyn CatalogManager>;

View File

@@ -17,12 +17,10 @@ use std::collections::hash_map::Entry;
use std::collections::HashMap;
use std::sync::{Arc, RwLock, Weak};
use async_stream::{stream, try_stream};
use common_catalog::build_db_string;
use common_catalog::consts::{
DEFAULT_CATALOG_NAME, DEFAULT_PRIVATE_SCHEMA_NAME, DEFAULT_SCHEMA_NAME, INFORMATION_SCHEMA_NAME,
};
use futures_util::stream::BoxStream;
use snafu::OptionExt;
use table::TableRef;
@@ -41,64 +39,10 @@ pub struct MemoryCatalogManager {
#[async_trait::async_trait]
impl CatalogManager for MemoryCatalogManager {
fn as_any(&self) -> &dyn Any {
self
}
async fn catalog_names(&self) -> Result<Vec<String>> {
Ok(self.catalogs.read().unwrap().keys().cloned().collect())
}
async fn schema_names(&self, catalog: &str) -> Result<Vec<String>> {
Ok(self
.catalogs
.read()
.unwrap()
.get(catalog)
.with_context(|| CatalogNotFoundSnafu {
catalog_name: catalog,
})?
.keys()
.cloned()
.collect())
}
async fn table_names(&self, catalog: &str, schema: &str) -> Result<Vec<String>> {
Ok(self
.catalogs
.read()
.unwrap()
.get(catalog)
.with_context(|| CatalogNotFoundSnafu {
catalog_name: catalog,
})?
.get(schema)
.with_context(|| SchemaNotFoundSnafu { catalog, schema })?
.keys()
.cloned()
.collect())
}
async fn catalog_exists(&self, catalog: &str) -> Result<bool> {
self.catalog_exist_sync(catalog)
}
async fn schema_exists(&self, catalog: &str, schema: &str) -> Result<bool> {
self.schema_exist_sync(catalog, schema)
}
async fn table_exists(&self, catalog: &str, schema: &str, table: &str) -> Result<bool> {
let catalogs = self.catalogs.read().unwrap();
Ok(catalogs
.get(catalog)
.with_context(|| CatalogNotFoundSnafu {
catalog_name: catalog,
})?
.get(schema)
.with_context(|| SchemaNotFoundSnafu { catalog, schema })?
.contains_key(table))
}
async fn table(
&self,
catalog: &str,
@@ -117,35 +61,57 @@ impl CatalogManager for MemoryCatalogManager {
Ok(result)
}
async fn tables<'a>(
&'a self,
catalog: &'a str,
schema: &'a str,
) -> BoxStream<'a, Result<TableRef>> {
async fn catalog_exists(&self, catalog: &str) -> Result<bool> {
self.catalog_exist_sync(catalog)
}
async fn table_exists(&self, catalog: &str, schema: &str, table: &str) -> Result<bool> {
let catalogs = self.catalogs.read().unwrap();
Ok(catalogs
.get(catalog)
.with_context(|| CatalogNotFoundSnafu {
catalog_name: catalog,
})?
.get(schema)
.with_context(|| SchemaNotFoundSnafu { catalog, schema })?
.contains_key(table))
}
let Some(schemas) = catalogs.get(catalog) else {
return Box::pin(stream!({
yield CatalogNotFoundSnafu {
catalog_name: catalog,
}
.fail();
}));
};
async fn catalog_names(&self) -> Result<Vec<String>> {
Ok(self.catalogs.read().unwrap().keys().cloned().collect())
}
let Some(tables) = schemas.get(schema) else {
return Box::pin(stream!({
yield SchemaNotFoundSnafu { catalog, schema }.fail();
}));
};
async fn schema_names(&self, catalog_name: &str) -> Result<Vec<String>> {
Ok(self
.catalogs
.read()
.unwrap()
.get(catalog_name)
.with_context(|| CatalogNotFoundSnafu { catalog_name })?
.keys()
.cloned()
.collect())
}
let tables = tables.values().cloned().collect::<Vec<_>>();
async fn table_names(&self, catalog_name: &str, schema_name: &str) -> Result<Vec<String>> {
Ok(self
.catalogs
.read()
.unwrap()
.get(catalog_name)
.with_context(|| CatalogNotFoundSnafu { catalog_name })?
.get(schema_name)
.with_context(|| SchemaNotFoundSnafu {
catalog: catalog_name,
schema: schema_name,
})?
.keys()
.cloned()
.collect())
}
return Box::pin(try_stream!({
for table in tables {
yield table;
}
}));
fn as_any(&self) -> &dyn Any {
self
}
}
@@ -341,7 +307,6 @@ pub fn new_memory_catalog_manager() -> Result<Arc<MemoryCatalogManager>> {
#[cfg(test)]
mod tests {
use common_catalog::consts::*;
use futures_util::TryStreamExt;
use table::table::numbers::{NumbersTable, NUMBERS_TABLE_NAME};
use super::*;
@@ -366,18 +331,8 @@ mod tests {
NUMBERS_TABLE_NAME,
)
.await
.unwrap()
.unwrap();
let stream = catalog_list
.tables(DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME)
.await;
let tables = stream.try_collect::<Vec<_>>().await.unwrap();
assert_eq!(tables.len(), 1);
assert_eq!(
table.table_info().table_id(),
tables[0].table_info().table_id()
);
let _ = table.unwrap();
assert!(catalog_list
.table(DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME, "not_exists")
.await

View File

@@ -19,19 +19,17 @@ use prometheus::*;
lazy_static! {
pub static ref METRIC_CATALOG_MANAGER_CATALOG_COUNT: IntGauge =
register_int_gauge!("greptime_catalog_catalog_count", "catalog catalog count").unwrap();
register_int_gauge!("catalog_catalog_count", "catalog catalog count").unwrap();
pub static ref METRIC_CATALOG_MANAGER_SCHEMA_COUNT: IntGauge =
register_int_gauge!("greptime_catalog_schema_count", "catalog schema count").unwrap();
register_int_gauge!("catalog_schema_count", "catalog schema count").unwrap();
pub static ref METRIC_CATALOG_MANAGER_TABLE_COUNT: IntGaugeVec = register_int_gauge_vec!(
"greptime_catalog_table_count",
"catalog_table_count",
"catalog table count",
&[METRIC_DB_LABEL]
)
.unwrap();
pub static ref METRIC_CATALOG_KV_REMOTE_GET: Histogram =
register_histogram!("greptime_catalog_kv_get_remote", "catalog kv get remote").unwrap();
register_histogram!("catalog_kv_get_remote", "catalog kv get remote").unwrap();
pub static ref METRIC_CATALOG_KV_GET: Histogram =
register_histogram!("greptime_catalog_kv_get", "catalog kv get").unwrap();
pub static ref METRIC_CATALOG_KV_BATCH_GET: Histogram =
register_histogram!("greptime_catalog_kv_batch_get", "catalog kv batch get").unwrap();
register_histogram!("catalog_kv_get", "catalog kv get").unwrap();
}

View File

@@ -15,6 +15,7 @@
use std::collections::HashMap;
use std::sync::Arc;
use common_catalog::consts::INFORMATION_SCHEMA_NAME;
use common_catalog::format_full_table_name;
use datafusion::common::{ResolvedTableReference, TableReference};
use datafusion::datasource::provider_as_source;
@@ -29,7 +30,7 @@ use crate::CatalogManagerRef;
pub struct DfTableSourceProvider {
catalog_manager: CatalogManagerRef,
resolved_tables: HashMap<String, Arc<dyn TableSource>>,
disallow_cross_catalog_query: bool,
disallow_cross_schema_query: bool,
default_catalog: String,
default_schema: String,
}
@@ -37,12 +38,12 @@ pub struct DfTableSourceProvider {
impl DfTableSourceProvider {
pub fn new(
catalog_manager: CatalogManagerRef,
disallow_cross_catalog_query: bool,
disallow_cross_schema_query: bool,
query_ctx: &QueryContext,
) -> Self {
Self {
catalog_manager,
disallow_cross_catalog_query,
disallow_cross_schema_query,
resolved_tables: HashMap::new(),
default_catalog: query_ctx.current_catalog().to_owned(),
default_schema: query_ctx.current_schema().to_owned(),
@@ -53,18 +54,29 @@ impl DfTableSourceProvider {
&'a self,
table_ref: TableReference<'a>,
) -> Result<ResolvedTableReference<'a>> {
if self.disallow_cross_catalog_query {
if self.disallow_cross_schema_query {
match &table_ref {
TableReference::Bare { .. } => (),
TableReference::Partial { .. } => {}
TableReference::Partial { schema, .. } => {
ensure!(
schema.as_ref() == self.default_schema
|| schema.as_ref() == INFORMATION_SCHEMA_NAME,
QueryAccessDeniedSnafu {
catalog: &self.default_catalog,
schema: schema.as_ref(),
}
);
}
TableReference::Full {
catalog, schema, ..
} => {
ensure!(
catalog.as_ref() == self.default_catalog,
catalog.as_ref() == self.default_catalog
&& (schema.as_ref() == self.default_schema
|| schema.as_ref() == INFORMATION_SCHEMA_NAME),
QueryAccessDeniedSnafu {
catalog: catalog.as_ref(),
schema: schema.as_ref(),
schema: schema.as_ref()
}
);
}
@@ -124,21 +136,21 @@ mod tests {
table: Cow::Borrowed("table_name"),
};
let result = table_provider.resolve_table_ref(table_ref);
assert!(result.is_ok());
let _ = result.unwrap();
let table_ref = TableReference::Partial {
schema: Cow::Borrowed("public"),
table: Cow::Borrowed("table_name"),
};
let result = table_provider.resolve_table_ref(table_ref);
assert!(result.is_ok());
let _ = result.unwrap();
let table_ref = TableReference::Partial {
schema: Cow::Borrowed("wrong_schema"),
table: Cow::Borrowed("table_name"),
};
let result = table_provider.resolve_table_ref(table_ref);
assert!(result.is_ok());
assert!(result.is_err());
let table_ref = TableReference::Full {
catalog: Cow::Borrowed("greptime"),
@@ -146,7 +158,7 @@ mod tests {
table: Cow::Borrowed("table_name"),
};
let result = table_provider.resolve_table_ref(table_ref);
assert!(result.is_ok());
let _ = result.unwrap();
let table_ref = TableReference::Full {
catalog: Cow::Borrowed("wrong_catalog"),
@@ -160,15 +172,14 @@ mod tests {
schema: Cow::Borrowed("information_schema"),
table: Cow::Borrowed("columns"),
};
let result = table_provider.resolve_table_ref(table_ref);
assert!(result.is_ok());
let _ = table_provider.resolve_table_ref(table_ref).unwrap();
let table_ref = TableReference::Full {
catalog: Cow::Borrowed("greptime"),
schema: Cow::Borrowed("information_schema"),
table: Cow::Borrowed("columns"),
};
assert!(table_provider.resolve_table_ref(table_ref).is_ok());
let _ = table_provider.resolve_table_ref(table_ref).unwrap();
let table_ref = TableReference::Full {
catalog: Cow::Borrowed("dummy"),
@@ -176,12 +187,5 @@ mod tests {
table: Cow::Borrowed("columns"),
};
assert!(table_provider.resolve_table_ref(table_ref).is_err());
let table_ref = TableReference::Full {
catalog: Cow::Borrowed("greptime"),
schema: Cow::Borrowed("greptime_private"),
table: Cow::Borrowed("columns"),
};
assert!(table_provider.resolve_table_ref(table_ref).is_ok());
}
}

View File

@@ -7,12 +7,8 @@ license.workspace = true
[features]
testing = []
[lints]
workspace = true
[dependencies]
api.workspace = true
arc-swap = "1.6"
arrow-flight.workspace = true
async-stream.workspace = true
async-trait.workspace = true
@@ -37,12 +33,10 @@ parking_lot = "0.12"
prometheus.workspace = true
prost.workspace = true
rand.workspace = true
serde.workspace = true
serde_json.workspace = true
session.workspace = true
snafu.workspace = true
tokio.workspace = true
tokio-stream = { workspace = true, features = ["net"] }
tokio.workspace = true
tonic.workspace = true
[dev-dependencies]

View File

@@ -37,7 +37,7 @@ async fn run() {
catalog_name: "greptime".to_string(),
schema_name: "public".to_string(),
table_name: "test_logical_dist_exec".to_string(),
desc: String::default(),
desc: "".to_string(),
column_defs: vec![
ColumnDef {
name: "timestamp".to_string(),

View File

@@ -122,7 +122,7 @@ impl Client {
self.inner.set_peers(urls);
}
pub fn find_channel(&self) -> Result<(String, Channel)> {
fn find_channel(&self) -> Result<(String, Channel)> {
let addr = self
.inner
.get_peer()

View File

@@ -47,9 +47,6 @@ pub struct Database {
// The dbname follows naming rule as out mysql, postgres and http
// protocol. The server treat dbname in priority of catalog/schema.
dbname: String,
// The time zone indicates the time zone where the user is located.
// Some queries need to be aware of the user's time zone to perform some specific actions.
timezone: String,
client: Client,
ctx: FlightContext,
@@ -61,8 +58,7 @@ impl Database {
Self {
catalog: catalog.into(),
schema: schema.into(),
dbname: String::default(),
timezone: String::default(),
dbname: "".to_string(),
client,
ctx: FlightContext::default(),
}
@@ -77,9 +73,8 @@ impl Database {
/// environment
pub fn new_with_dbname(dbname: impl Into<String>, client: Client) -> Self {
Self {
catalog: String::default(),
schema: String::default(),
timezone: String::default(),
catalog: "".to_string(),
schema: "".to_string(),
dbname: dbname.into(),
client,
ctx: FlightContext::default(),
@@ -110,14 +105,6 @@ impl Database {
self.dbname = dbname.into();
}
pub fn timezone(&self) -> &String {
&self.timezone
}
pub fn set_timezone(&mut self, timezone: impl Into<String>) {
self.timezone = timezone.into();
}
pub fn set_auth(&mut self, auth: AuthScheme) {
self.ctx.auth_header = Some(AuthHeader {
auth_scheme: Some(auth),
@@ -174,7 +161,6 @@ impl Database {
schema: self.schema.clone(),
authorization: self.ctx.auth_header.clone(),
dbname: self.dbname.clone(),
timezone: self.timezone.clone(),
// TODO(Taylor-lagrange): add client grpc tracing
tracing_context: W3cTrace::new(),
}),
@@ -307,40 +293,34 @@ impl Database {
reason: "Expect 'AffectedRows' Flight messages to be the one and the only!"
}
);
Ok(Output::new_with_affected_rows(rows))
Ok(Output::AffectedRows(rows))
}
FlightMessage::Recordbatch(_) | FlightMessage::Metrics(_) => {
IllegalFlightMessagesSnafu {
reason: "The first flight message cannot be a RecordBatch or Metrics message",
}
.fail()
FlightMessage::Recordbatch(_) => IllegalFlightMessagesSnafu {
reason: "The first flight message cannot be a RecordBatch message",
}
.fail(),
FlightMessage::Schema(schema) => {
let stream = Box::pin(stream!({
while let Some(flight_message) = flight_message_stream.next().await {
let flight_message = flight_message
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
match flight_message {
FlightMessage::Recordbatch(record_batch) => yield Ok(record_batch),
FlightMessage::Metrics(_) => {}
FlightMessage::AffectedRows(_) | FlightMessage::Schema(_) => {
yield IllegalFlightMessagesSnafu {reason: format!("A Schema message must be succeeded exclusively by a set of RecordBatch messages, flight_message: {:?}", flight_message)}
let FlightMessage::Recordbatch(record_batch) = flight_message else {
yield IllegalFlightMessagesSnafu {reason: "A Schema message must be succeeded exclusively by a set of RecordBatch messages"}
.fail()
.map_err(BoxedError::new)
.context(ExternalSnafu);
break;
}
}
break;
};
yield Ok(record_batch);
}
}));
let record_batch_stream = RecordBatchStreamWrapper {
schema,
stream,
output_ordering: None,
metrics: Default::default(),
};
Ok(Output::new_with_stream(Box::pin(record_batch_stream)))
Ok(Output::Stream(Box::pin(record_batch_stream)))
}
}
}

View File

@@ -16,7 +16,7 @@ use std::any::Any;
use common_error::ext::{BoxedError, ErrorExt};
use common_error::status_code::StatusCode;
use common_error::{GREPTIME_DB_HEADER_ERROR_CODE, GREPTIME_DB_HEADER_ERROR_MSG};
use common_error::{GREPTIME_ERROR_CODE, GREPTIME_ERROR_MSG};
use common_macro::stack_trace_debug;
use snafu::{Location, Snafu};
use tonic::{Code, Status};
@@ -115,7 +115,7 @@ impl From<Status> for Error {
.and_then(|v| String::from_utf8(v.as_bytes().to_vec()).ok())
}
let code = get_metadata_value(&e, GREPTIME_DB_HEADER_ERROR_CODE)
let code = get_metadata_value(&e, GREPTIME_ERROR_CODE)
.and_then(|s| {
if let Ok(code) = s.parse::<u32>() {
StatusCode::from_u32(code)
@@ -125,8 +125,8 @@ impl From<Status> for Error {
})
.unwrap_or(StatusCode::Unknown);
let msg = get_metadata_value(&e, GREPTIME_DB_HEADER_ERROR_MSG)
.unwrap_or_else(|| e.message().to_string());
let msg =
get_metadata_value(&e, GREPTIME_ERROR_MSG).unwrap_or_else(|| e.message().to_string());
Self::Server { code, msg }
}
@@ -134,17 +134,10 @@ impl From<Status> for Error {
impl Error {
pub fn should_retry(&self) -> bool {
// TODO(weny): figure out each case of these codes.
matches!(
!matches!(
self,
Self::RegionServer {
code: Code::Cancelled,
..
} | Self::RegionServer {
code: Code::DeadlineExceeded,
..
} | Self::RegionServer {
code: Code::Unavailable,
code: Code::InvalidArgument,
..
}
)

View File

@@ -26,7 +26,7 @@ use api::v1::greptime_response::Response;
use api::v1::{AffectedRows, GreptimeResponse};
pub use common_catalog::consts::{DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_error::status_code::StatusCode;
pub use common_query::{Output, OutputData, OutputMeta};
pub use common_query::Output;
pub use common_recordbatch::{RecordBatches, SendableRecordBatchStream};
use snafu::OptionExt;

View File

@@ -17,30 +17,27 @@ use prometheus::*;
lazy_static! {
pub static ref METRIC_GRPC_CREATE_TABLE: Histogram =
register_histogram!("greptime_grpc_create_table", "grpc create table").unwrap();
pub static ref METRIC_GRPC_PROMQL_RANGE_QUERY: Histogram = register_histogram!(
"greptime_grpc_promql_range_query",
"grpc promql range query"
)
.unwrap();
register_histogram!("grpc_create_table", "grpc create table").unwrap();
pub static ref METRIC_GRPC_PROMQL_RANGE_QUERY: Histogram =
register_histogram!("grpc_promql_range_query", "grpc promql range query").unwrap();
pub static ref METRIC_GRPC_INSERT: Histogram =
register_histogram!("greptime_grpc_insert", "grpc insert").unwrap();
register_histogram!("grpc_insert", "grpc insert").unwrap();
pub static ref METRIC_GRPC_DELETE: Histogram =
register_histogram!("greptime_grpc_delete", "grpc delete").unwrap();
register_histogram!("grpc_delete", "grpc delete").unwrap();
pub static ref METRIC_GRPC_SQL: Histogram =
register_histogram!("greptime_grpc_sql", "grpc sql").unwrap();
register_histogram!("grpc_sql", "grpc sql").unwrap();
pub static ref METRIC_GRPC_LOGICAL_PLAN: Histogram =
register_histogram!("greptime_grpc_logical_plan", "grpc logical plan").unwrap();
register_histogram!("grpc_logical_plan", "grpc logical plan").unwrap();
pub static ref METRIC_GRPC_ALTER: Histogram =
register_histogram!("greptime_grpc_alter", "grpc alter").unwrap();
register_histogram!("grpc_alter", "grpc alter").unwrap();
pub static ref METRIC_GRPC_DROP_TABLE: Histogram =
register_histogram!("greptime_grpc_drop_table", "grpc drop table").unwrap();
register_histogram!("grpc_drop_table", "grpc drop table").unwrap();
pub static ref METRIC_GRPC_TRUNCATE_TABLE: Histogram =
register_histogram!("greptime_grpc_truncate_table", "grpc truncate table").unwrap();
register_histogram!("grpc_truncate_table", "grpc truncate table").unwrap();
pub static ref METRIC_GRPC_DO_GET: Histogram =
register_histogram!("greptime_grpc_do_get", "grpc do get").unwrap();
register_histogram!("grpc_do_get", "grpc do get").unwrap();
pub static ref METRIC_REGION_REQUEST_GRPC: HistogramVec = register_histogram_vec!(
"greptime_grpc_region_request",
"grpc_region_request",
"grpc region request",
&["request_type"]
)

View File

@@ -12,11 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
use std::sync::Arc;
use api::v1::region::{QueryRequest, RegionRequest, RegionResponse};
use api::v1::ResponseHeader;
use arc_swap::ArcSwapOption;
use arrow_flight::Ticket;
use async_stream::stream;
use async_trait::async_trait;
@@ -28,7 +25,6 @@ use common_meta::error::{self as meta_error, Result as MetaResult};
use common_recordbatch::error::ExternalSnafu;
use common_recordbatch::{RecordBatchStreamWrapper, SendableRecordBatchStream};
use common_telemetry::error;
use common_telemetry::tracing_context::TracingContext;
use prost::Message;
use snafu::{location, Location, OptionExt, ResultExt};
use tokio_stream::StreamExt;
@@ -123,44 +119,27 @@ impl RegionRequester {
.fail();
};
let metrics = Arc::new(ArcSwapOption::from(None));
let metrics_ref = metrics.clone();
let tracing_context = TracingContext::from_current_span();
let stream = Box::pin(stream!({
let _span = tracing_context.attach(common_telemetry::tracing::info_span!(
"poll_flight_data_stream"
));
while let Some(flight_message) = flight_message_stream.next().await {
let flight_message = flight_message
.map_err(BoxedError::new)
.context(ExternalSnafu)?;
match flight_message {
FlightMessage::Recordbatch(record_batch) => yield Ok(record_batch),
FlightMessage::Metrics(s) => {
let m = serde_json::from_str(&s).ok().map(Arc::new);
metrics_ref.swap(m);
break;
}
_ => {
yield IllegalFlightMessagesSnafu {
let FlightMessage::Recordbatch(record_batch) = flight_message else {
yield IllegalFlightMessagesSnafu {
reason: "A Schema message must be succeeded exclusively by a set of RecordBatch messages"
}
.fail()
.map_err(BoxedError::new)
.context(ExternalSnafu);
break;
}
}
break;
};
yield Ok(record_batch);
}
}));
let record_batch_stream = RecordBatchStreamWrapper {
schema,
stream,
output_ordering: None,
metrics,
};
Ok(Box::pin(record_batch_stream))
}
@@ -197,7 +176,7 @@ impl RegionRequester {
check_response_header(header)?;
Ok(affected_rows as _)
Ok(affected_rows)
}
pub async fn handle(&self, request: RegionRequest) -> Result<AffectedRows> {
@@ -251,7 +230,7 @@ mod test {
let result = check_response_header(Some(ResponseHeader {
status: Some(PbStatus {
status_code: StatusCode::Success as u32,
err_msg: String::default(),
err_msg: "".to_string(),
}),
}));
assert!(result.is_ok());
@@ -259,7 +238,7 @@ mod test {
let result = check_response_header(Some(ResponseHeader {
status: Some(PbStatus {
status_code: u32::MAX,
err_msg: String::default(),
err_msg: "".to_string(),
}),
}));
assert!(matches!(

View File

@@ -39,7 +39,7 @@ use crate::from_grpc_response;
/// ```
///
/// If you want to see a concrete usage example, please see
/// [stream_inserter.rs](https://github.com/GreptimeTeam/greptimedb/blob/main/src/client/examples/stream_ingest.rs).
/// [stream_inserter.rs](https://github.com/GreptimeTeam/greptimedb/blob/develop/src/client/examples/stream_ingest.rs).
pub struct StreamInserter {
sender: mpsc::Sender<GreptimeRequest>,

View File

@@ -12,16 +12,13 @@ path = "src/bin/greptime.rs"
[features]
tokio-console = ["common-telemetry/tokio-console"]
[lints]
workspace = true
[dependencies]
anymap = "1.0.0-beta.2"
async-trait.workspace = true
auth.workspace = true
catalog.workspace = true
chrono.workspace = true
clap.workspace = true
clap = { version = "4.4", features = ["derive"] }
client.workspace = true
common-base.workspace = true
common-catalog.workspace = true
@@ -32,12 +29,10 @@ common-meta.workspace = true
common-procedure.workspace = true
common-query.workspace = true
common-recordbatch.workspace = true
common-runtime.workspace = true
common-telemetry = { workspace = true, features = [
"deadlock_detection",
] }
common-time.workspace = true
common-wal.workspace = true
config = "0.13"
datanode.workspace = true
datatypes.workspace = true

View File

@@ -13,5 +13,5 @@
// limitations under the License.
fn main() {
common_version::setup_build_info();
common_version::setup_git_versions();
}

View File

@@ -62,9 +62,7 @@ pub struct BenchTableMetadataCommand {
impl BenchTableMetadataCommand {
pub async fn build(&self) -> Result<Instance> {
let etcd_store = EtcdStore::with_endpoints([&self.etcd_addr], 128)
.await
.unwrap();
let etcd_store = EtcdStore::with_endpoints([&self.etcd_addr]).await.unwrap();
let table_metadata_manager = Arc::new(TableMetadataManager::new(etcd_store));
@@ -158,7 +156,6 @@ fn create_region_routes(regions: Vec<RegionNumber>) -> Vec<RegionRoute> {
}),
follower_peers: vec![],
leader_status: None,
leader_down_since: None,
});
}

View File

@@ -19,7 +19,8 @@ use async_trait::async_trait;
use clap::{Parser, ValueEnum};
use client::api::v1::auth_header::AuthScheme;
use client::api::v1::Basic;
use client::{Client, Database, OutputData, DEFAULT_SCHEMA_NAME};
use client::{Client, Database, DEFAULT_SCHEMA_NAME};
use common_query::Output;
use common_recordbatch::util::collect;
use common_telemetry::{debug, error, info, warn};
use datatypes::scalars::ScalarVector;
@@ -57,8 +58,8 @@ pub struct ExportCommand {
#[clap(long)]
output_dir: String,
/// The name of the catalog to export.
#[clap(long, default_value = "greptime-*")]
/// The name of the catalog to export. Default to "greptime-*"".
#[clap(long, default_value = "")]
database: String,
/// Parallelism of the export.
@@ -141,7 +142,7 @@ impl Export {
.with_context(|_| RequestDatabaseSnafu {
sql: "show databases".to_string(),
})?;
let OutputData::Stream(stream) = result.data else {
let Output::Stream(stream) = result else {
NotDataFromOutputSnafu.fail()?
};
let record_batch = collect(stream)
@@ -182,7 +183,7 @@ impl Export {
.sql(&sql)
.await
.with_context(|_| RequestDatabaseSnafu { sql })?;
let OutputData::Stream(stream) = result.data else {
let Output::Stream(stream) = result else {
NotDataFromOutputSnafu.fail()?
};
let Some(record_batch) = collect(stream)
@@ -234,7 +235,7 @@ impl Export {
.sql(&sql)
.await
.with_context(|_| RequestDatabaseSnafu { sql })?;
let OutputData::Stream(stream) = result.data else {
let Output::Stream(stream) = result else {
NotDataFromOutputSnafu.fail()?
};
let record_batch = collect(stream)

View File

@@ -16,10 +16,8 @@ use std::path::PathBuf;
use std::sync::Arc;
use std::time::Instant;
use catalog::kvbackend::{
CachedMetaKvBackend, CachedMetaKvBackendBuilder, KvBackendCatalogManager,
};
use client::{Client, Database, OutputData, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use catalog::kvbackend::{CachedMetaKvBackend, KvBackendCatalogManager};
use client::{Client, Database, DEFAULT_CATALOG_NAME, DEFAULT_SCHEMA_NAME};
use common_base::Plugins;
use common_error::ext::ErrorExt;
use common_query::Output;
@@ -159,20 +157,19 @@ impl Repl {
let start = Instant::now();
let output = if let Some(query_engine) = &self.query_engine {
let query_ctx = QueryContext::with(self.database.catalog(), self.database.schema());
let stmt = QueryLanguageParser::parse_sql(&sql, &query_ctx)
let stmt = QueryLanguageParser::parse_sql(&sql)
.with_context(|_| ParseSqlSnafu { sql: sql.clone() })?;
let query_ctx = QueryContext::with(self.database.catalog(), self.database.schema());
let plan = query_engine
.planner()
.plan(stmt, query_ctx.clone())
.plan(stmt, query_ctx)
.await
.context(PlanStatementSnafu)?;
let LogicalPlan::DfPlan(plan) = query_engine
.optimize(&query_engine.engine_context(query_ctx), &plan)
.context(PlanStatementSnafu)?;
let LogicalPlan::DfPlan(plan) =
query_engine.optimize(&plan).context(PlanStatementSnafu)?;
let plan = DFLogicalSubstraitConvertor {}
.encode(&plan)
@@ -184,15 +181,15 @@ impl Repl {
}
.context(RequestDatabaseSnafu { sql: &sql })?;
let either = match output.data {
OutputData::Stream(s) => {
let either = match output {
Output::Stream(s) => {
let x = RecordBatches::try_collect(s)
.await
.context(CollectRecordBatchesSnafu)?;
Either::Left(x)
}
OutputData::RecordBatches(x) => Either::Left(x),
OutputData::AffectedRows(rows) => Either::Right(rows),
Output::RecordBatches(x) => Either::Left(x),
Output::AffectedRows(rows) => Either::Right(rows),
};
let end = Instant::now();
@@ -250,8 +247,7 @@ async fn create_query_engine(meta_addr: &str) -> Result<DatafusionQueryEngine> {
.context(StartMetaClientSnafu)?;
let meta_client = Arc::new(meta_client);
let cached_meta_backend =
Arc::new(CachedMetaKvBackendBuilder::new(meta_client.clone()).build());
let cached_meta_backend = Arc::new(CachedMetaKvBackend::new(meta_client.clone()));
let catalog_list =
KvBackendCatalogManager::new(cached_meta_backend.clone(), cached_meta_backend);
@@ -260,7 +256,6 @@ async fn create_query_engine(meta_addr: &str) -> Result<DatafusionQueryEngine> {
catalog_list,
None,
None,
None,
false,
plugins.clone(),
));

View File

@@ -70,7 +70,7 @@ impl UpgradeCommand {
etcd_addr: &self.etcd_addr,
})?;
let tool = MigrateTableMetadata {
etcd_store: EtcdStore::with_etcd_client(client, 128),
etcd_store: EtcdStore::with_etcd_client(client),
dryrun: self.dryrun,
skip_catalog_keys: self.skip_catalog_keys,
skip_table_global_keys: self.skip_table_global_keys,

View File

@@ -18,11 +18,10 @@ use std::time::Duration;
use async_trait::async_trait;
use catalog::kvbackend::MetaKvBackend;
use clap::Parser;
use common_config::WalConfig;
use common_telemetry::{info, logging};
use common_wal::config::DatanodeWalConfig;
use datanode::config::DatanodeOptions;
use datanode::datanode::{Datanode, DatanodeBuilder};
use datanode::service::DatanodeServiceBuilder;
use meta_client::MetaClientOptions;
use servers::Mode;
use snafu::{OptionExt, ResultExt};
@@ -36,17 +35,9 @@ pub struct Instance {
}
impl Instance {
pub fn new(datanode: Datanode) -> Self {
fn new(datanode: Datanode) -> Self {
Self { datanode }
}
pub fn datanode_mut(&mut self) -> &mut Datanode {
&mut self.datanode
}
pub fn datanode(&self) -> &Datanode {
&self.datanode
}
}
#[async_trait]
@@ -178,7 +169,7 @@ impl StartCommand {
// `wal_dir` only affects raft-engine config.
if let Some(wal_dir) = &self.wal_dir
&& let DatanodeWalConfig::RaftEngine(raft_engine_config) = &mut opts.wal
&& let WalConfig::RaftEngine(raft_engine_config) = &mut opts.wal
{
if raft_engine_config
.dir
@@ -228,20 +219,14 @@ impl StartCommand {
client: Arc::new(meta_client.clone()),
});
let mut datanode = DatanodeBuilder::new(opts.clone(), plugins)
let datanode = DatanodeBuilder::new(opts, plugins)
.with_meta_client(meta_client)
.with_kv_backend(meta_backend)
.build()
.await
.context(StartDatanodeSnafu)?;
let services = DatanodeServiceBuilder::new(&opts)
.with_default_grpc_server(&datanode.region_server())
.enable_region_server_service()
.enable_http_service()
.build()
.await
.context(StartDatanodeSnafu)?;
datanode.setup_services(services);
Ok(Instance::new(datanode))
}
@@ -321,7 +306,7 @@ mod tests {
assert_eq!("127.0.0.1:3001".to_string(), options.rpc_addr);
assert_eq!(Some(42), options.node_id);
let DatanodeWalConfig::RaftEngine(raft_engine_config) = options.wal else {
let WalConfig::RaftEngine(raft_engine_config) = options.wal else {
unreachable!()
};
assert_eq!("/other/wal", raft_engine_config.dir.unwrap());
@@ -509,7 +494,7 @@ mod tests {
};
// Should be read from env, env > default values.
let DatanodeWalConfig::RaftEngine(raft_engine_config) = opts.wal else {
let WalConfig::RaftEngine(raft_engine_config) = opts.wal else {
unreachable!()
};
assert_eq!(raft_engine_config.read_batch_size, 100);

View File

@@ -249,12 +249,6 @@ pub enum Error {
source: BoxedError,
location: Location,
},
#[snafu(display("Failed to build runtime"))]
BuildRuntime {
location: Location,
source: common_runtime::error::Error,
},
}
pub type Result<T> = std::result::Result<T, Error>;
@@ -304,8 +298,6 @@ impl ErrorExt for Error {
Error::SerdeJson { .. } | Error::FileIo { .. } => StatusCode::Unexpected,
Error::Other { source, .. } => source.status_code(),
Error::BuildRuntime { source, .. } => source.status_code(),
}
}

View File

@@ -16,7 +16,7 @@ use std::sync::Arc;
use std::time::Duration;
use async_trait::async_trait;
use catalog::kvbackend::CachedMetaKvBackendBuilder;
use catalog::kvbackend::CachedMetaKvBackend;
use clap::Parser;
use client::client_manager::DatanodeClients;
use common_meta::heartbeat::handler::parse_mailbox_message::ParseMailboxMessageHandler;
@@ -28,7 +28,6 @@ use frontend::heartbeat::handler::invalidate_table_cache::InvalidateTableCacheHa
use frontend::heartbeat::HeartbeatTask;
use frontend::instance::builder::FrontendBuilder;
use frontend::instance::{FrontendInstance, Instance as FeInstance};
use frontend::server::Services;
use meta_client::MetaClientOptions;
use servers::tls::{TlsMode, TlsOption};
use servers::Mode;
@@ -43,17 +42,9 @@ pub struct Instance {
}
impl Instance {
pub fn new(frontend: FeInstance) -> Self {
fn new(frontend: FeInstance) -> Self {
Self { frontend }
}
pub fn mut_inner(&mut self) -> &mut FeInstance {
&mut self.frontend
}
pub fn inner(&self) -> &FeInstance {
&self.frontend
}
}
#[async_trait]
@@ -232,27 +223,15 @@ impl StartCommand {
let meta_client_options = opts.meta_client.as_ref().context(MissingConfigSnafu {
msg: "'meta_client'",
})?;
let cache_max_capacity = meta_client_options.metadata_cache_max_capacity;
let cache_ttl = meta_client_options.metadata_cache_ttl;
let cache_tti = meta_client_options.metadata_cache_tti;
let meta_client = FeInstance::create_meta_client(meta_client_options)
.await
.context(StartFrontendSnafu)?;
let cached_meta_backend = CachedMetaKvBackendBuilder::new(meta_client.clone())
.cache_max_capacity(cache_max_capacity)
.cache_ttl(cache_ttl)
.cache_tti(cache_tti)
.build();
let cached_meta_backend = Arc::new(cached_meta_backend);
let meta_backend = Arc::new(CachedMetaKvBackend::new(meta_client.clone()));
let executor = HandlerGroupExecutor::new(vec![
Arc::new(ParseMailboxMessageHandler),
Arc::new(InvalidateTableCacheHandler::new(
cached_meta_backend.clone(),
)),
Arc::new(InvalidateTableCacheHandler::new(meta_backend.clone())),
]);
let heartbeat_task = HeartbeatTask::new(
@@ -262,23 +241,24 @@ impl StartCommand {
);
let mut instance = FrontendBuilder::new(
cached_meta_backend.clone(),
meta_backend.clone(),
Arc::new(DatanodeClients::default()),
meta_client,
)
.with_cache_invalidator(cached_meta_backend)
.with_plugin(plugins.clone())
.with_cache_invalidator(meta_backend)
.with_plugin(plugins)
.with_heartbeat_task(heartbeat_task)
.try_build()
.await
.context(StartFrontendSnafu)?;
let servers = Services::new(opts.clone(), Arc::new(instance.clone()), plugins)
.build()
.await
.context(StartFrontendSnafu)?;
instance
.build_servers(opts, servers)
.build_export_metrics_task(&opts.export_metrics)
.context(StartFrontendSnafu)?;
instance
.build_servers(opts)
.await
.context(StartFrontendSnafu)?;
Ok(Instance::new(instance))

View File

@@ -28,39 +28,35 @@ pub mod standalone;
lazy_static::lazy_static! {
static ref APP_VERSION: prometheus::IntGaugeVec =
prometheus::register_int_gauge_vec!("greptime_app_version", "app version", &["short_version", "version"]).unwrap();
prometheus::register_int_gauge_vec!("app_version", "app version", &["short_version", "version"]).unwrap();
}
#[async_trait]
pub trait App: Send {
pub trait App {
fn name(&self) -> &str;
/// A hook for implementor to make something happened before actual startup. Defaults to no-op.
async fn pre_start(&mut self) -> error::Result<()> {
Ok(())
}
async fn start(&mut self) -> error::Result<()>;
async fn stop(&self) -> error::Result<()>;
}
pub async fn start_app(mut app: Box<dyn App>) -> error::Result<()> {
info!("Starting app: {}", app.name());
let name = app.name().to_string();
app.pre_start().await?;
app.start().await?;
if let Err(e) = tokio::signal::ctrl_c().await {
error!("Failed to listen for ctrl-c signal: {}", e);
// It's unusual to fail to listen for ctrl-c signal, maybe there's something unexpected in
// the underlying system. So we stop the app instead of running nonetheless to let people
// investigate the issue.
tokio::select! {
result = app.start() => {
if let Err(err) = result {
error!(err; "Failed to start app {name}!");
}
}
_ = tokio::signal::ctrl_c() => {
if let Err(err) = app.stop().await {
error!(err; "Failed to stop app {name}!");
}
info!("Goodbye!");
}
}
app.stop().await?;
info!("Goodbye!");
Ok(())
}

View File

@@ -117,12 +117,10 @@ struct StartCommand {
/// The working home directory of this metasrv instance.
#[clap(long)]
data_home: Option<String>,
/// If it's not empty, the metasrv will store all data with this key prefix.
#[clap(long, default_value = "")]
store_key_prefix: String,
/// The max operations per txn
#[clap(long)]
max_txn_ops: Option<usize>,
}
impl StartCommand {
@@ -130,7 +128,7 @@ impl StartCommand {
let mut opts: MetaSrvOptions = Options::load_layered_options(
self.config_file.as_deref(),
self.env_prefix.as_ref(),
MetaSrvOptions::env_list_keys(),
None,
)?;
if let Some(dir) = &cli_options.log_dir {
@@ -183,10 +181,6 @@ impl StartCommand {
opts.store_key_prefix = self.store_key_prefix.clone()
}
if let Some(max_txn_ops) = self.max_txn_ops {
opts.max_txn_ops = max_txn_ops;
}
// Disable dashboard in metasrv.
opts.http.disable_dashboard = true;

View File

@@ -14,8 +14,8 @@
use clap::ArgMatches;
use common_config::KvBackendConfig;
use common_meta::wal::WalConfig as MetaSrvWalConfig;
use common_telemetry::logging::{LoggingOptions, TracingOptions};
use common_wal::config::MetaSrvWalConfig;
use config::{Config, Environment, File, FileFormat};
use datanode::config::{DatanodeOptions, ProcedureConfig};
use frontend::error::{Result as FeResult, TomlFormatSnafu};
@@ -173,8 +173,8 @@ impl Options {
mod tests {
use std::io::Write;
use common_config::WalConfig;
use common_test_util::temp_dir::create_named_temp_file;
use common_wal::config::DatanodeWalConfig;
use datanode::config::{DatanodeOptions, ObjectStoreConfig};
use super::*;
@@ -281,7 +281,7 @@ mod tests {
);
// Should be the values from config file, not environment variables.
let DatanodeWalConfig::RaftEngine(raft_engine_config) = opts.wal else {
let WalConfig::RaftEngine(raft_engine_config) = opts.wal else {
unreachable!()
};
assert_eq!(raft_engine_config.dir.unwrap(), "/tmp/greptimedb/wal");

View File

@@ -18,29 +18,28 @@ use std::{fs, path};
use async_trait::async_trait;
use clap::Parser;
use common_catalog::consts::MIN_USER_TABLE_ID;
use common_config::wal::StandaloneWalConfig;
use common_config::{metadata_store_dir, KvBackendConfig};
use common_meta::cache_invalidator::DummyCacheInvalidator;
use common_meta::datanode_manager::DatanodeManagerRef;
use common_meta::ddl::table_meta::{TableMetadataAllocator, TableMetadataAllocatorRef};
use common_meta::ddl::ProcedureExecutorRef;
use common_meta::ddl::{DdlTaskExecutorRef, TableMetadataAllocatorRef};
use common_meta::ddl_manager::DdlManager;
use common_meta::key::{TableMetadataManager, TableMetadataManagerRef};
use common_meta::kv_backend::KvBackendRef;
use common_meta::region_keeper::MemoryRegionKeeper;
use common_meta::sequence::SequenceBuilder;
use common_meta::wal_options_allocator::{WalOptionsAllocator, WalOptionsAllocatorRef};
use common_meta::wal::{WalOptionsAllocator, WalOptionsAllocatorRef};
use common_procedure::ProcedureManagerRef;
use common_telemetry::info;
use common_telemetry::logging::LoggingOptions;
use common_time::timezone::set_default_timezone;
use common_wal::config::StandaloneWalConfig;
use datanode::config::{DatanodeOptions, ProcedureConfig, RegionEngineConfig, StorageConfig};
use datanode::datanode::{Datanode, DatanodeBuilder};
use file_engine::config::EngineConfig as FileEngineConfig;
use frontend::frontend::FrontendOptions;
use frontend::instance::builder::FrontendBuilder;
use frontend::instance::standalone::StandaloneTableMetadataAllocator;
use frontend::instance::{FrontendInstance, Instance as FeInstance, StandaloneDatanodeManager};
use frontend::server::Services;
use frontend::service_config::{
GrpcOptions, InfluxdbOptions, MysqlOptions, OpentsdbOptions, PostgresOptions, PromStoreOptions,
};
@@ -119,12 +118,6 @@ pub struct StandaloneOptions {
pub export_metrics: ExportMetricsOption,
}
impl StandaloneOptions {
pub fn env_list_keys() -> Option<&'static [&'static str]> {
Some(&["wal.broker_endpoints"])
}
}
impl Default for StandaloneOptions {
fn default() -> Self {
Self {
@@ -213,10 +206,6 @@ impl App for Instance {
.await
.context(StartWalOptionsAllocatorSnafu)?;
plugins::start_frontend_plugins(self.frontend.plugins().clone())
.await
.context(StartFrontendSnafu)?;
self.frontend.start().await.context(StartFrontendSnafu)?;
Ok(())
}
@@ -278,7 +267,7 @@ impl StartCommand {
let opts: StandaloneOptions = Options::load_layered_options(
self.config_file.as_deref(),
self.env_prefix.as_ref(),
StandaloneOptions::env_list_keys(),
None,
)?;
self.convert_options(cli_options, opts)
@@ -372,18 +361,20 @@ impl StartCommand {
#[allow(unused_variables)]
#[allow(clippy::diverging_sub_expression)]
async fn build(self, opts: MixOptions) -> Result<Instance> {
info!("Standalone start command: {:#?}", self);
info!("Building standalone instance with {opts:#?}");
let mut fe_opts = opts.frontend;
let mut fe_opts = opts.frontend.clone();
#[allow(clippy::unnecessary_mut_passed)]
let fe_plugins = plugins::setup_frontend_plugins(&mut fe_opts) // mut ref is MUST, DO NOT change it
.await
.context(StartFrontendSnafu)?;
let dn_opts = opts.datanode;
let dn_opts = opts.datanode.clone();
set_default_timezone(fe_opts.default_timezone.as_deref()).context(InitTimezoneSnafu)?;
info!("Standalone start command: {:#?}", self);
info!("Building standalone instance with {opts:#?}");
set_default_timezone(opts.frontend.default_timezone.as_deref())
.context(InitTimezoneSnafu)?;
// Ensure the data_home directory exists.
fs::create_dir_all(path::Path::new(&opts.data_home)).context(CreateDirSnafu {
@@ -415,18 +406,13 @@ impl StartCommand {
opts.wal_meta.clone(),
kv_backend.clone(),
));
let table_metadata_manager =
Self::create_table_metadata_manager(kv_backend.clone()).await?;
let table_meta_allocator = Arc::new(TableMetadataAllocator::new(
let table_meta_allocator = Arc::new(StandaloneTableMetadataAllocator::new(
table_id_sequence,
wal_options_allocator.clone(),
table_metadata_manager.table_name_manager().clone(),
));
let ddl_task_executor = Self::create_ddl_task_executor(
table_metadata_manager,
kv_backend.clone(),
procedure_manager.clone(),
datanode_manager.clone(),
table_meta_allocator,
@@ -434,17 +420,18 @@ impl StartCommand {
.await?;
let mut frontend = FrontendBuilder::new(kv_backend, datanode_manager, ddl_task_executor)
.with_plugin(fe_plugins.clone())
.with_plugin(fe_plugins)
.try_build()
.await
.context(StartFrontendSnafu)?;
let servers = Services::new(fe_opts.clone(), Arc::new(frontend.clone()), fe_plugins)
.build()
.await
.context(StartFrontendSnafu)?;
frontend
.build_servers(fe_opts, servers)
.build_export_metrics_task(&opts.frontend.export_metrics)
.context(StartFrontendSnafu)?;
frontend
.build_servers(opts)
.await
.context(StartFrontendSnafu)?;
Ok(Instance {
@@ -456,12 +443,15 @@ impl StartCommand {
}
pub async fn create_ddl_task_executor(
table_metadata_manager: TableMetadataManagerRef,
kv_backend: KvBackendRef,
procedure_manager: ProcedureManagerRef,
datanode_manager: DatanodeManagerRef,
table_meta_allocator: TableMetadataAllocatorRef,
) -> Result<ProcedureExecutorRef> {
let procedure_executor: ProcedureExecutorRef = Arc::new(
) -> Result<DdlTaskExecutorRef> {
let table_metadata_manager =
Self::create_table_metadata_manager(kv_backend.clone()).await?;
let ddl_task_executor: DdlTaskExecutorRef = Arc::new(
DdlManager::try_new(
procedure_manager,
datanode_manager,
@@ -473,10 +463,10 @@ impl StartCommand {
.context(InitDdlManagerSnafu)?,
);
Ok(procedure_executor)
Ok(ddl_task_executor)
}
pub async fn create_table_metadata_manager(
async fn create_table_metadata_manager(
kv_backend: KvBackendRef,
) -> Result<TableMetadataManagerRef> {
let table_metadata_manager = Arc::new(TableMetadataManager::new(kv_backend));
@@ -498,8 +488,8 @@ mod tests {
use auth::{Identity, Password, UserProviderRef};
use common_base::readable_size::ReadableSize;
use common_config::WalConfig;
use common_test_util::temp_dir::create_named_temp_file;
use common_wal::config::DatanodeWalConfig;
use datanode::config::{FileConfig, GcsConfig};
use servers::Mode;
@@ -606,7 +596,7 @@ mod tests {
assert_eq!(None, fe_opts.mysql.reject_no_database);
assert!(fe_opts.influxdb.enable);
let DatanodeWalConfig::RaftEngine(raft_engine_config) = dn_opts.wal else {
let WalConfig::RaftEngine(raft_engine_config) = dn_opts.wal else {
unreachable!()
};
assert_eq!("/tmp/greptimedb/test/wal", raft_engine_config.dir.unwrap());

View File

@@ -4,9 +4,6 @@ version.workspace = true
edition.workspace = true
license.workspace = true
[lints]
workspace = true
[dependencies]
anymap = "1.0.0-beta.2"
bitvec = "1.0"

Some files were not shown because too many files have changed in this diff Show More