mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2026-01-06 13:22:57 +00:00
* add to planner Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * impl evaluate_array Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * compute quantile Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * fix clippy Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * fix required input ordering Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * add more tests Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * todo to fixme Signed-off-by: Ruihang Xia <waynestxia@gmail.com> --------- Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
917 lines
31 KiB
Rust
917 lines
31 KiB
Rust
// Copyright 2023 Greptime Team
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
use std::any::Any;
|
|
use std::collections::{HashMap, HashSet};
|
|
use std::sync::Arc;
|
|
use std::task::Poll;
|
|
use std::time::Instant;
|
|
|
|
use common_recordbatch::RecordBatch as GtRecordBatch;
|
|
use common_telemetry::warn;
|
|
use datafusion::arrow::array::AsArray;
|
|
use datafusion::arrow::compute::{self, concat_batches, SortOptions};
|
|
use datafusion::arrow::datatypes::{DataType, Float64Type, SchemaRef};
|
|
use datafusion::arrow::record_batch::RecordBatch;
|
|
use datafusion::common::{DFSchema, DFSchemaRef};
|
|
use datafusion::error::{DataFusionError, Result as DataFusionResult};
|
|
use datafusion::execution::TaskContext;
|
|
use datafusion::logical_expr::{LogicalPlan, UserDefinedLogicalNodeCore};
|
|
use datafusion::physical_expr::{PhysicalSortExpr, PhysicalSortRequirement};
|
|
use datafusion::physical_plan::expressions::{CastExpr as PhyCast, Column as PhyColumn};
|
|
use datafusion::physical_plan::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
|
|
use datafusion::physical_plan::{
|
|
DisplayAs, DisplayFormatType, Distribution, ExecutionPlan, Partitioning, PhysicalExpr,
|
|
RecordBatchStream, SendableRecordBatchStream, Statistics,
|
|
};
|
|
use datafusion::prelude::{Column, Expr};
|
|
use datatypes::prelude::{ConcreteDataType, DataType as GtDataType};
|
|
use datatypes::schema::Schema as GtSchema;
|
|
use datatypes::value::{OrderedF64, ValueRef};
|
|
use datatypes::vectors::MutableVector;
|
|
use futures::{ready, Stream, StreamExt};
|
|
|
|
/// `HistogramFold` will fold the conventional (non-native) histogram ([1]) for later
|
|
/// computing. Specifically, it will transform the `le` and `field` column into a complex
|
|
/// type, and samples on other tag columns:
|
|
/// - `le` will become a [ListArray] of [f64]. With each bucket bound parsed
|
|
/// - `field` will become a [ListArray] of [f64]
|
|
/// - other columns will be sampled every `bucket_num` element, but their types won't change.
|
|
///
|
|
/// Due to the folding or sampling, the output rows number will become `input_rows` / `bucket_num`.
|
|
///
|
|
/// # Requirement
|
|
/// - Input should be sorted on `<tag list>, le ASC, ts`.
|
|
/// - The value set of `le` should be same. I.e., buckets of every series should be same.
|
|
///
|
|
/// [1]: https://prometheus.io/docs/concepts/metric_types/#histogram
|
|
#[derive(Debug, PartialEq, Hash, Eq)]
|
|
pub struct HistogramFold {
|
|
/// Name of the `le` column. It's a special column in prometheus
|
|
/// for implementing conventional histogram. It's a string column
|
|
/// with "literal" float value, like "+Inf", "0.001" etc.
|
|
le_column: String,
|
|
ts_column: String,
|
|
input: LogicalPlan,
|
|
field_column: String,
|
|
quantile: OrderedF64,
|
|
output_schema: DFSchemaRef,
|
|
}
|
|
|
|
impl UserDefinedLogicalNodeCore for HistogramFold {
|
|
fn name(&self) -> &str {
|
|
Self::name()
|
|
}
|
|
|
|
fn inputs(&self) -> Vec<&LogicalPlan> {
|
|
vec![&self.input]
|
|
}
|
|
|
|
fn schema(&self) -> &DFSchemaRef {
|
|
&self.output_schema
|
|
}
|
|
|
|
fn expressions(&self) -> Vec<Expr> {
|
|
vec![]
|
|
}
|
|
|
|
fn fmt_for_explain(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
write!(
|
|
f,
|
|
"HistogramFold: le={}, field={}, quantile={}",
|
|
self.le_column, self.field_column, self.quantile
|
|
)
|
|
}
|
|
|
|
fn from_template(&self, _exprs: &[Expr], inputs: &[LogicalPlan]) -> Self {
|
|
Self {
|
|
le_column: self.le_column.clone(),
|
|
ts_column: self.ts_column.clone(),
|
|
input: inputs[0].clone(),
|
|
field_column: self.field_column.clone(),
|
|
quantile: self.quantile,
|
|
// This method cannot return error. Otherwise we should re-calculate
|
|
// the output schema
|
|
output_schema: self.output_schema.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl HistogramFold {
|
|
pub fn new(
|
|
le_column: String,
|
|
field_column: String,
|
|
ts_column: String,
|
|
quantile: f64,
|
|
input: LogicalPlan,
|
|
) -> DataFusionResult<Self> {
|
|
let input_schema = input.schema();
|
|
Self::check_schema(input_schema, &le_column, &field_column, &ts_column)?;
|
|
let output_schema = Self::convert_schema(input_schema, &le_column)?;
|
|
Ok(Self {
|
|
le_column,
|
|
ts_column,
|
|
input,
|
|
field_column,
|
|
quantile: quantile.into(),
|
|
output_schema,
|
|
})
|
|
}
|
|
|
|
pub const fn name() -> &'static str {
|
|
"HistogramFold"
|
|
}
|
|
|
|
fn check_schema(
|
|
input_schema: &DFSchemaRef,
|
|
le_column: &str,
|
|
field_column: &str,
|
|
ts_column: &str,
|
|
) -> DataFusionResult<()> {
|
|
let check_column = |col| {
|
|
if !input_schema.has_column_with_unqualified_name(col) {
|
|
return Err(DataFusionError::SchemaError(
|
|
datafusion::common::SchemaError::FieldNotFound {
|
|
field: Box::new(Column::new(None::<String>, col)),
|
|
valid_fields: input_schema
|
|
.fields()
|
|
.iter()
|
|
.map(|f| f.qualified_column())
|
|
.collect(),
|
|
},
|
|
));
|
|
} else {
|
|
Ok(())
|
|
}
|
|
};
|
|
|
|
check_column(le_column)?;
|
|
check_column(ts_column)?;
|
|
check_column(field_column)
|
|
}
|
|
|
|
pub fn to_execution_plan(&self, exec_input: Arc<dyn ExecutionPlan>) -> Arc<dyn ExecutionPlan> {
|
|
let input_schema = self.input.schema();
|
|
// safety: those fields are checked in `check_schema()`
|
|
let le_column_index = input_schema
|
|
.index_of_column_by_name(None, &self.le_column)
|
|
.unwrap()
|
|
.unwrap();
|
|
let field_column_index = input_schema
|
|
.index_of_column_by_name(None, &self.field_column)
|
|
.unwrap()
|
|
.unwrap();
|
|
let ts_column_index = input_schema
|
|
.index_of_column_by_name(None, &self.ts_column)
|
|
.unwrap()
|
|
.unwrap();
|
|
|
|
Arc::new(HistogramFoldExec {
|
|
le_column_index,
|
|
field_column_index,
|
|
ts_column_index,
|
|
input: exec_input,
|
|
quantile: self.quantile.into(),
|
|
output_schema: Arc::new(self.output_schema.as_ref().into()),
|
|
metric: ExecutionPlanMetricsSet::new(),
|
|
})
|
|
}
|
|
|
|
/// Transform the schema
|
|
///
|
|
/// - `le` will be removed
|
|
fn convert_schema(
|
|
input_schema: &DFSchemaRef,
|
|
le_column: &str,
|
|
) -> DataFusionResult<DFSchemaRef> {
|
|
let mut fields = input_schema.fields().clone();
|
|
// safety: those fields are checked in `check_schema()`
|
|
let le_column_idx = input_schema
|
|
.index_of_column_by_name(None, le_column)?
|
|
.unwrap();
|
|
fields.remove(le_column_idx);
|
|
|
|
Ok(Arc::new(DFSchema::new_with_metadata(
|
|
fields,
|
|
HashMap::new(),
|
|
)?))
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct HistogramFoldExec {
|
|
/// Index for `le` column in the schema of input.
|
|
le_column_index: usize,
|
|
input: Arc<dyn ExecutionPlan>,
|
|
output_schema: SchemaRef,
|
|
/// Index for field column in the schema of input.
|
|
field_column_index: usize,
|
|
ts_column_index: usize,
|
|
quantile: f64,
|
|
metric: ExecutionPlanMetricsSet,
|
|
}
|
|
|
|
impl ExecutionPlan for HistogramFoldExec {
|
|
fn as_any(&self) -> &dyn Any {
|
|
self
|
|
}
|
|
|
|
fn schema(&self) -> SchemaRef {
|
|
self.output_schema.clone()
|
|
}
|
|
|
|
fn output_partitioning(&self) -> Partitioning {
|
|
self.input.output_partitioning()
|
|
}
|
|
|
|
fn output_ordering(&self) -> Option<&[PhysicalSortExpr]> {
|
|
self.input.output_ordering()
|
|
}
|
|
|
|
fn required_input_ordering(&self) -> Vec<Option<Vec<PhysicalSortRequirement>>> {
|
|
let mut cols = self
|
|
.tag_col_exprs()
|
|
.into_iter()
|
|
.map(|expr| PhysicalSortRequirement {
|
|
expr,
|
|
options: None,
|
|
})
|
|
.collect::<Vec<PhysicalSortRequirement>>();
|
|
// add le ASC
|
|
cols.push(PhysicalSortRequirement {
|
|
expr: Arc::new(PhyCast::new(
|
|
Arc::new(PhyColumn::new(
|
|
self.input.schema().field(self.le_column_index).name(),
|
|
self.le_column_index,
|
|
)),
|
|
DataType::Float64,
|
|
None,
|
|
)),
|
|
options: Some(SortOptions {
|
|
descending: false, // +INF in the last
|
|
nulls_first: false, // not nullable
|
|
}),
|
|
});
|
|
// add ts
|
|
cols.push(PhysicalSortRequirement {
|
|
expr: Arc::new(PhyColumn::new(
|
|
self.input.schema().field(self.ts_column_index).name(),
|
|
self.ts_column_index,
|
|
)),
|
|
options: None,
|
|
});
|
|
|
|
vec![Some(cols)]
|
|
}
|
|
|
|
fn required_input_distribution(&self) -> Vec<Distribution> {
|
|
// partition on all tag columns, i.e., non-le, non-ts and non-field columns
|
|
vec![Distribution::HashPartitioned(self.tag_col_exprs())]
|
|
}
|
|
|
|
fn maintains_input_order(&self) -> Vec<bool> {
|
|
vec![true; self.children().len()]
|
|
}
|
|
|
|
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
|
|
vec![self.input.clone()]
|
|
}
|
|
|
|
// cannot change schema with this method
|
|
fn with_new_children(
|
|
self: Arc<Self>,
|
|
children: Vec<Arc<dyn ExecutionPlan>>,
|
|
) -> DataFusionResult<Arc<dyn ExecutionPlan>> {
|
|
assert!(!children.is_empty());
|
|
Ok(Arc::new(Self {
|
|
input: children[0].clone(),
|
|
metric: self.metric.clone(),
|
|
le_column_index: self.le_column_index,
|
|
ts_column_index: self.ts_column_index,
|
|
quantile: self.quantile,
|
|
output_schema: self.output_schema.clone(),
|
|
field_column_index: self.field_column_index,
|
|
}))
|
|
}
|
|
|
|
fn execute(
|
|
&self,
|
|
partition: usize,
|
|
context: Arc<TaskContext>,
|
|
) -> DataFusionResult<SendableRecordBatchStream> {
|
|
let baseline_metric = BaselineMetrics::new(&self.metric, partition);
|
|
|
|
let batch_size = context.session_config().batch_size();
|
|
let input = self.input.execute(partition, context)?;
|
|
let output_schema = self.output_schema.clone();
|
|
|
|
let mut normal_indices = (0..input.schema().fields().len()).collect::<HashSet<_>>();
|
|
normal_indices.remove(&self.field_column_index);
|
|
normal_indices.remove(&self.le_column_index);
|
|
Ok(Box::pin(HistogramFoldStream {
|
|
le_column_index: self.le_column_index,
|
|
field_column_index: self.field_column_index,
|
|
quantile: self.quantile,
|
|
normal_indices: normal_indices.into_iter().collect(),
|
|
bucket_size: None,
|
|
input_buffer: vec![],
|
|
input,
|
|
output_schema,
|
|
metric: baseline_metric,
|
|
batch_size,
|
|
input_buffered_rows: 0,
|
|
output_buffer: HistogramFoldStream::empty_output_buffer(
|
|
&self.output_schema,
|
|
self.le_column_index,
|
|
)?,
|
|
output_buffered_rows: 0,
|
|
}))
|
|
}
|
|
|
|
fn metrics(&self) -> Option<MetricsSet> {
|
|
Some(self.metric.clone_inner())
|
|
}
|
|
|
|
fn statistics(&self) -> Statistics {
|
|
Statistics {
|
|
num_rows: None,
|
|
total_byte_size: None,
|
|
column_statistics: None,
|
|
is_exact: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl HistogramFoldExec {
|
|
/// Return all the [PhysicalExpr] of tag columns in order.
|
|
///
|
|
/// Tag columns are all columns except `le`, `field` and `ts` columns.
|
|
pub fn tag_col_exprs(&self) -> Vec<Arc<dyn PhysicalExpr>> {
|
|
self.input
|
|
.schema()
|
|
.fields()
|
|
.iter()
|
|
.enumerate()
|
|
.filter_map(|(idx, field)| {
|
|
if idx == self.le_column_index
|
|
|| idx == self.field_column_index
|
|
|| idx == self.ts_column_index
|
|
{
|
|
None
|
|
} else {
|
|
Some(Arc::new(PhyColumn::new(field.name(), idx)) as _)
|
|
}
|
|
})
|
|
.collect()
|
|
}
|
|
}
|
|
|
|
impl DisplayAs for HistogramFoldExec {
|
|
fn fmt_as(&self, t: DisplayFormatType, f: &mut std::fmt::Formatter) -> std::fmt::Result {
|
|
match t {
|
|
DisplayFormatType::Default | DisplayFormatType::Verbose => {
|
|
write!(
|
|
f,
|
|
"HistogramFoldExec: le=@{}, field=@{}, quantile={}",
|
|
self.le_column_index, self.field_column_index, self.quantile
|
|
)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct HistogramFoldStream {
|
|
// internal states
|
|
le_column_index: usize,
|
|
field_column_index: usize,
|
|
quantile: f64,
|
|
/// Columns need not folding. This indices is based on input schema
|
|
normal_indices: Vec<usize>,
|
|
bucket_size: Option<usize>,
|
|
/// Expected output batch size
|
|
batch_size: usize,
|
|
output_schema: SchemaRef,
|
|
|
|
// buffers
|
|
input_buffer: Vec<RecordBatch>,
|
|
input_buffered_rows: usize,
|
|
output_buffer: Vec<Box<dyn MutableVector>>,
|
|
output_buffered_rows: usize,
|
|
|
|
// runtime things
|
|
input: SendableRecordBatchStream,
|
|
metric: BaselineMetrics,
|
|
}
|
|
|
|
impl RecordBatchStream for HistogramFoldStream {
|
|
fn schema(&self) -> SchemaRef {
|
|
self.output_schema.clone()
|
|
}
|
|
}
|
|
|
|
impl Stream for HistogramFoldStream {
|
|
type Item = DataFusionResult<RecordBatch>;
|
|
|
|
fn poll_next(
|
|
mut self: std::pin::Pin<&mut Self>,
|
|
cx: &mut std::task::Context<'_>,
|
|
) -> Poll<Option<Self::Item>> {
|
|
let poll = loop {
|
|
match ready!(self.input.poll_next_unpin(cx)) {
|
|
Some(batch) => {
|
|
let batch = batch?;
|
|
let timer = Instant::now();
|
|
let Some(result) = self.fold_input(batch)? else {
|
|
self.metric.elapsed_compute().add_elapsed(timer);
|
|
continue;
|
|
};
|
|
self.metric.elapsed_compute().add_elapsed(timer);
|
|
break Poll::Ready(Some(result));
|
|
}
|
|
None => break Poll::Ready(self.take_output_buf()?.map(Ok)),
|
|
}
|
|
};
|
|
self.metric.record_poll(poll)
|
|
}
|
|
}
|
|
|
|
impl HistogramFoldStream {
|
|
/// The inner most `Result` is for `poll_next()`
|
|
pub fn fold_input(
|
|
&mut self,
|
|
input: RecordBatch,
|
|
) -> DataFusionResult<Option<DataFusionResult<RecordBatch>>> {
|
|
let Some(bucket_num) = self.calculate_bucket_num(&input)? else {
|
|
return Ok(None);
|
|
};
|
|
|
|
if self.input_buffered_rows + input.num_rows() < bucket_num {
|
|
// not enough rows to fold
|
|
self.push_input_buf(input);
|
|
return Ok(None);
|
|
}
|
|
|
|
self.fold_buf(bucket_num, input)?;
|
|
if self.output_buffered_rows >= self.batch_size {
|
|
return Ok(self.take_output_buf()?.map(Ok));
|
|
}
|
|
|
|
Ok(None)
|
|
}
|
|
|
|
/// Generate a group of empty [MutableVector]s from the output schema.
|
|
///
|
|
/// For simplicity, this method will insert a placeholder for `le`. So that
|
|
/// the output buffers has the same schema with input. This placeholder needs
|
|
/// to be removed before returning the output batch.
|
|
pub fn empty_output_buffer(
|
|
schema: &SchemaRef,
|
|
le_column_index: usize,
|
|
) -> DataFusionResult<Vec<Box<dyn MutableVector>>> {
|
|
let mut builders = Vec::with_capacity(schema.fields().len() + 1);
|
|
for field in schema.fields() {
|
|
let concrete_datatype = ConcreteDataType::try_from(field.data_type()).unwrap();
|
|
let mutable_vector = concrete_datatype.create_mutable_vector(0);
|
|
builders.push(mutable_vector);
|
|
}
|
|
builders.insert(
|
|
le_column_index,
|
|
ConcreteDataType::float64_datatype().create_mutable_vector(0),
|
|
);
|
|
|
|
Ok(builders)
|
|
}
|
|
|
|
fn calculate_bucket_num(&mut self, batch: &RecordBatch) -> DataFusionResult<Option<usize>> {
|
|
if let Some(size) = self.bucket_size {
|
|
return Ok(Some(size));
|
|
}
|
|
|
|
let inf_pos = self.find_positive_inf(batch)?;
|
|
if inf_pos == batch.num_rows() {
|
|
// no positive inf found, append to buffer and wait for next batch
|
|
self.push_input_buf(batch.clone());
|
|
return Ok(None);
|
|
}
|
|
|
|
// else we found the positive inf.
|
|
// calculate the bucket size
|
|
let bucket_size = inf_pos + self.input_buffered_rows + 1;
|
|
Ok(Some(bucket_size))
|
|
}
|
|
|
|
/// Fold record batches from input buffer and put to output buffer
|
|
fn fold_buf(&mut self, bucket_num: usize, input: RecordBatch) -> DataFusionResult<()> {
|
|
self.push_input_buf(input);
|
|
// TODO(ruihang): this concat is avoidable.
|
|
let batch = concat_batches(&self.input.schema(), self.input_buffer.drain(..).as_ref())?;
|
|
let mut remaining_rows = self.input_buffered_rows;
|
|
let mut cursor = 0;
|
|
|
|
let gt_schema = GtSchema::try_from(self.input.schema()).unwrap();
|
|
let batch = GtRecordBatch::try_from_df_record_batch(Arc::new(gt_schema), batch).unwrap();
|
|
|
|
while remaining_rows >= bucket_num {
|
|
// "sample" normal columns
|
|
for normal_index in &self.normal_indices {
|
|
let val = batch.column(*normal_index).get(cursor);
|
|
self.output_buffer[*normal_index].push_value_ref(val.as_value_ref());
|
|
}
|
|
// "fold" `le` and field columns
|
|
let le_array = batch.column(self.le_column_index);
|
|
let field_array = batch.column(self.field_column_index);
|
|
let mut bucket = vec![];
|
|
let mut counters = vec![];
|
|
for bias in 0..bucket_num {
|
|
let le_str_val = le_array.get(cursor + bias);
|
|
let le_str_val_ref = le_str_val.as_value_ref();
|
|
let le_str = le_str_val_ref
|
|
.as_string()
|
|
.unwrap()
|
|
.expect("le column should not be nullable");
|
|
let le = le_str.parse::<f64>().unwrap();
|
|
bucket.push(le);
|
|
|
|
let counter = field_array
|
|
.get(cursor + bias)
|
|
.as_value_ref()
|
|
.as_f64()
|
|
.unwrap()
|
|
.expect("field column should not be nullable");
|
|
counters.push(counter);
|
|
}
|
|
let result = Self::evaluate_row(self.quantile, &bucket, &counters)?;
|
|
self.output_buffer[self.field_column_index].push_value_ref(ValueRef::from(result));
|
|
cursor += bucket_num;
|
|
remaining_rows -= bucket_num;
|
|
self.output_buffered_rows += 1;
|
|
}
|
|
|
|
let remaining_input_batch = batch.into_df_record_batch().slice(cursor, remaining_rows);
|
|
self.input_buffered_rows = remaining_input_batch.num_rows();
|
|
self.input_buffer.push(remaining_input_batch);
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn push_input_buf(&mut self, batch: RecordBatch) {
|
|
self.input_buffered_rows += batch.num_rows();
|
|
self.input_buffer.push(batch);
|
|
}
|
|
|
|
/// Compute result from output buffer
|
|
fn take_output_buf(&mut self) -> DataFusionResult<Option<RecordBatch>> {
|
|
if self.output_buffered_rows == 0 {
|
|
if self.input_buffered_rows != 0 {
|
|
warn!(
|
|
"input buffer is not empty, {} rows remaining",
|
|
self.input_buffered_rows
|
|
);
|
|
}
|
|
return Ok(None);
|
|
}
|
|
|
|
let mut output_buf = Self::empty_output_buffer(&self.output_schema, self.le_column_index)?;
|
|
std::mem::swap(&mut self.output_buffer, &mut output_buf);
|
|
let mut columns = Vec::with_capacity(output_buf.len());
|
|
for builder in output_buf.iter_mut() {
|
|
columns.push(builder.to_vector().to_arrow_array());
|
|
}
|
|
// remove the placeholder column for `le`
|
|
columns.remove(self.le_column_index);
|
|
|
|
self.output_buffered_rows = 0;
|
|
RecordBatch::try_new(self.output_schema.clone(), columns)
|
|
.map(Some)
|
|
.map_err(DataFusionError::ArrowError)
|
|
}
|
|
|
|
/// Find the first `+Inf` which indicates the end of the bucket group
|
|
///
|
|
/// If the return value equals to batch's num_rows means the it's not found
|
|
/// in this batch
|
|
fn find_positive_inf(&self, batch: &RecordBatch) -> DataFusionResult<usize> {
|
|
// fuse this function. It should not be called when the
|
|
// bucket size is already know.
|
|
if let Some(bucket_size) = self.bucket_size {
|
|
return Ok(bucket_size);
|
|
}
|
|
let string_le_array = batch.column(self.le_column_index);
|
|
let float_le_array = compute::cast(&string_le_array, &DataType::Float64).map_err(|e| {
|
|
DataFusionError::Execution(format!(
|
|
"cannot cast {} array to float64 array: {:?}",
|
|
string_le_array.data_type(),
|
|
e
|
|
))
|
|
})?;
|
|
let le_as_f64_array = float_le_array
|
|
.as_primitive_opt::<Float64Type>()
|
|
.ok_or_else(|| {
|
|
DataFusionError::Execution(format!(
|
|
"expect a float64 array, but found {}",
|
|
float_le_array.data_type()
|
|
))
|
|
})?;
|
|
for (i, v) in le_as_f64_array.iter().enumerate() {
|
|
if let Some(v) = v && v == f64::INFINITY {
|
|
return Ok(i);
|
|
}
|
|
}
|
|
|
|
Ok(batch.num_rows())
|
|
}
|
|
|
|
/// Evaluate the field column and return the result
|
|
fn evaluate_row(quantile: f64, bucket: &[f64], counter: &[f64]) -> DataFusionResult<f64> {
|
|
// check bucket
|
|
if bucket.len() <= 1 {
|
|
return Ok(f64::NAN);
|
|
}
|
|
if *bucket.last().unwrap() != f64::INFINITY {
|
|
return Err(DataFusionError::Execution(
|
|
"last bucket should be +Inf".to_string(),
|
|
));
|
|
}
|
|
if bucket.len() != counter.len() {
|
|
return Err(DataFusionError::Execution(
|
|
"bucket and counter should have the same length".to_string(),
|
|
));
|
|
}
|
|
// check quantile
|
|
if quantile < 0.0 {
|
|
return Ok(f64::NEG_INFINITY);
|
|
} else if quantile > 1.0 {
|
|
return Ok(f64::INFINITY);
|
|
} else if quantile.is_nan() {
|
|
return Ok(f64::NAN);
|
|
}
|
|
|
|
// check input value
|
|
debug_assert!(bucket.windows(2).all(|w| w[0] <= w[1]));
|
|
debug_assert!(counter.windows(2).all(|w| w[0] <= w[1]));
|
|
|
|
let total = *counter.last().unwrap();
|
|
let expected_pos = total * quantile;
|
|
let mut fit_bucket_pos = 0;
|
|
while fit_bucket_pos < bucket.len() && counter[fit_bucket_pos] < expected_pos {
|
|
fit_bucket_pos += 1;
|
|
}
|
|
if fit_bucket_pos >= bucket.len() - 1 {
|
|
Ok(bucket[bucket.len() - 2])
|
|
} else {
|
|
let upper_bound = bucket[fit_bucket_pos];
|
|
let upper_count = counter[fit_bucket_pos];
|
|
let mut lower_bound = bucket[0].min(0.0);
|
|
let mut lower_count = 0.0;
|
|
if fit_bucket_pos > 0 {
|
|
lower_bound = bucket[fit_bucket_pos - 1];
|
|
lower_count = counter[fit_bucket_pos - 1];
|
|
}
|
|
Ok(lower_bound
|
|
+ (upper_bound - lower_bound) / (upper_count - lower_count)
|
|
* (expected_pos - lower_count))
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod test {
|
|
use std::sync::Arc;
|
|
|
|
use datafusion::arrow::array::Float64Array;
|
|
use datafusion::arrow::datatypes::{Field, Schema};
|
|
use datafusion::common::ToDFSchema;
|
|
use datafusion::physical_plan::memory::MemoryExec;
|
|
use datafusion::prelude::SessionContext;
|
|
use datatypes::arrow_array::StringArray;
|
|
|
|
use super::*;
|
|
|
|
fn prepare_test_data() -> MemoryExec {
|
|
let schema = Arc::new(Schema::new(vec![
|
|
Field::new("host", DataType::Utf8, true),
|
|
Field::new("le", DataType::Utf8, true),
|
|
Field::new("val", DataType::Float64, true),
|
|
]));
|
|
|
|
// 12 items
|
|
let host_column_1 = Arc::new(StringArray::from(vec![
|
|
"host_1", "host_1", "host_1", "host_1", "host_1", "host_1", "host_1", "host_1",
|
|
"host_1", "host_1", "host_1", "host_1",
|
|
])) as _;
|
|
let le_column_1 = Arc::new(StringArray::from(vec![
|
|
"0.001", "0.1", "10", "1000", "+Inf", "0.001", "0.1", "10", "1000", "+inf", "0.001",
|
|
"0.1",
|
|
])) as _;
|
|
let val_column_1 = Arc::new(Float64Array::from(vec![
|
|
0_0.0, 1.0, 1.0, 5.0, 5.0, 0_0.0, 20.0, 60.0, 70.0, 100.0, 0_1.0, 1.0,
|
|
])) as _;
|
|
|
|
// 2 items
|
|
let host_column_2 = Arc::new(StringArray::from(vec!["host_1", "host_1"])) as _;
|
|
let le_column_2 = Arc::new(StringArray::from(vec!["10", "1000"])) as _;
|
|
let val_column_2 = Arc::new(Float64Array::from(vec![1.0, 1.0])) as _;
|
|
|
|
// 11 items
|
|
let host_column_3 = Arc::new(StringArray::from(vec![
|
|
"host_1", "host_2", "host_2", "host_2", "host_2", "host_2", "host_2", "host_2",
|
|
"host_2", "host_2", "host_2",
|
|
])) as _;
|
|
let le_column_3 = Arc::new(StringArray::from(vec![
|
|
"+INF", "0.001", "0.1", "10", "1000", "+iNf", "0.001", "0.1", "10", "1000", "+Inf",
|
|
])) as _;
|
|
let val_column_3 = Arc::new(Float64Array::from(vec![
|
|
1.0, 0_0.0, 0.0, 0.0, 0.0, 0.0, 0_0.0, 1.0, 2.0, 3.0, 4.0,
|
|
])) as _;
|
|
|
|
let data_1 = RecordBatch::try_new(
|
|
schema.clone(),
|
|
vec![host_column_1, le_column_1, val_column_1],
|
|
)
|
|
.unwrap();
|
|
let data_2 = RecordBatch::try_new(
|
|
schema.clone(),
|
|
vec![host_column_2, le_column_2, val_column_2],
|
|
)
|
|
.unwrap();
|
|
let data_3 = RecordBatch::try_new(
|
|
schema.clone(),
|
|
vec![host_column_3, le_column_3, val_column_3],
|
|
)
|
|
.unwrap();
|
|
|
|
MemoryExec::try_new(&[vec![data_1, data_2, data_3]], schema, None).unwrap()
|
|
}
|
|
|
|
#[tokio::test]
|
|
async fn fold_overall() {
|
|
let memory_exec = Arc::new(prepare_test_data());
|
|
let output_schema = Arc::new(
|
|
(*HistogramFold::convert_schema(
|
|
&Arc::new(memory_exec.schema().to_dfschema().unwrap()),
|
|
"le",
|
|
)
|
|
.unwrap()
|
|
.as_ref())
|
|
.clone()
|
|
.into(),
|
|
);
|
|
let fold_exec = Arc::new(HistogramFoldExec {
|
|
le_column_index: 1,
|
|
field_column_index: 2,
|
|
quantile: 0.4,
|
|
ts_column_index: 9999, // not exist but doesn't matter
|
|
input: memory_exec,
|
|
output_schema,
|
|
metric: ExecutionPlanMetricsSet::new(),
|
|
});
|
|
|
|
let session_context = SessionContext::default();
|
|
let result = datafusion::physical_plan::collect(fold_exec, session_context.task_ctx())
|
|
.await
|
|
.unwrap();
|
|
let result_literal = datatypes::arrow::util::pretty::pretty_format_batches(&result)
|
|
.unwrap()
|
|
.to_string();
|
|
|
|
let expected = String::from(
|
|
"+--------+-------------------+
|
|
| host | val |
|
|
+--------+-------------------+
|
|
| host_1 | 257.5 |
|
|
| host_1 | 5.05 |
|
|
| host_1 | 0.0004 |
|
|
| host_2 | NaN |
|
|
| host_2 | 6.040000000000001 |
|
|
+--------+-------------------+",
|
|
);
|
|
assert_eq!(result_literal, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn confirm_schema() {
|
|
let input_schema = Schema::new(vec![
|
|
Field::new("host", DataType::Utf8, true),
|
|
Field::new("le", DataType::Utf8, true),
|
|
Field::new("val", DataType::Float64, true),
|
|
])
|
|
.to_dfschema_ref()
|
|
.unwrap();
|
|
let expected_output_schema = Schema::new(vec![
|
|
Field::new("host", DataType::Utf8, true),
|
|
Field::new("val", DataType::Float64, true),
|
|
])
|
|
.to_dfschema_ref()
|
|
.unwrap();
|
|
|
|
let actual = HistogramFold::convert_schema(&input_schema, "le").unwrap();
|
|
assert_eq!(actual, expected_output_schema)
|
|
}
|
|
|
|
#[test]
|
|
fn evaluate_row_normal_case() {
|
|
let bucket = [0.0, 1.0, 2.0, 3.0, 4.0, f64::INFINITY];
|
|
|
|
#[derive(Debug)]
|
|
struct Case {
|
|
quantile: f64,
|
|
counters: Vec<f64>,
|
|
expected: f64,
|
|
}
|
|
|
|
let cases = [
|
|
Case {
|
|
quantile: 0.9,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: 4.0,
|
|
},
|
|
Case {
|
|
quantile: 0.89,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: 4.0,
|
|
},
|
|
Case {
|
|
quantile: 0.78,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: 3.9,
|
|
},
|
|
Case {
|
|
quantile: 0.5,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: 2.5,
|
|
},
|
|
Case {
|
|
quantile: 0.5,
|
|
counters: vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
expected: f64::NAN,
|
|
},
|
|
Case {
|
|
quantile: 1.0,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: 4.0,
|
|
},
|
|
Case {
|
|
quantile: 0.0,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: f64::NAN,
|
|
},
|
|
Case {
|
|
quantile: 1.1,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: f64::INFINITY,
|
|
},
|
|
Case {
|
|
quantile: -1.0,
|
|
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
|
expected: f64::NEG_INFINITY,
|
|
},
|
|
];
|
|
|
|
for case in cases {
|
|
let actual =
|
|
HistogramFoldStream::evaluate_row(case.quantile, &bucket, &case.counters).unwrap();
|
|
assert_eq!(
|
|
format!("{actual}"),
|
|
format!("{}", case.expected),
|
|
"{:?}",
|
|
case
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic]
|
|
fn evaluate_out_of_order_input() {
|
|
let bucket = [0.0, 1.0, 2.0, 3.0, 4.0, f64::INFINITY];
|
|
let counters = [5.0, 4.0, 3.0, 2.0, 1.0, 0.0];
|
|
HistogramFoldStream::evaluate_row(0.5, &bucket, &counters).unwrap();
|
|
}
|
|
|
|
#[test]
|
|
fn evaluate_wrong_bucket() {
|
|
let bucket = [0.0, 1.0, 2.0, 3.0, 4.0, f64::INFINITY, 5.0];
|
|
let counters = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
|
|
let result = HistogramFoldStream::evaluate_row(0.5, &bucket, &counters);
|
|
assert!(result.is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn evaluate_small_fraction() {
|
|
let bucket = [0.0, 2.0, 4.0, 6.0, f64::INFINITY];
|
|
let counters = [0.0, 1.0 / 300.0, 2.0 / 300.0, 0.01, 0.01];
|
|
let result = HistogramFoldStream::evaluate_row(0.5, &bucket, &counters).unwrap();
|
|
assert_eq!(3.0, result);
|
|
}
|
|
}
|