mirror of
https://github.com/GreptimeTeam/greptimedb.git
synced 2025-12-27 00:19:58 +00:00
feat: implement histogram_quantile in PromQL (#2651)
* add to planner Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * impl evaluate_array Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * compute quantile Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * fix clippy Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * fix required input ordering Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * add more tests Signed-off-by: Ruihang Xia <waynestxia@gmail.com> * todo to fixme Signed-off-by: Ruihang Xia <waynestxia@gmail.com> --------- Signed-off-by: Ruihang Xia <waynestxia@gmail.com>
This commit is contained in:
@@ -109,6 +109,9 @@ pub enum Error {
|
||||
|
||||
#[snafu(display("Expect a metric matcher, but not found"))]
|
||||
NoMetricMatcher { location: Location },
|
||||
|
||||
#[snafu(display("Invalid function argument for {}", fn_name))]
|
||||
FunctionInvalidArgument { fn_name: String, location: Location },
|
||||
}
|
||||
|
||||
impl ErrorExt for Error {
|
||||
@@ -124,7 +127,8 @@ impl ErrorExt for Error {
|
||||
| ExpectRangeSelector { .. }
|
||||
| ZeroRangeSelector { .. }
|
||||
| ColumnNotFound { .. }
|
||||
| Deserialize { .. } => StatusCode::InvalidArguments,
|
||||
| Deserialize { .. }
|
||||
| FunctionInvalidArgument { .. } => StatusCode::InvalidArguments,
|
||||
|
||||
UnknownTable { .. }
|
||||
| DataFusionPlanning { .. }
|
||||
|
||||
@@ -22,6 +22,7 @@ mod series_divide;
|
||||
|
||||
use datafusion::arrow::datatypes::{ArrowPrimitiveType, TimestampMillisecondType};
|
||||
pub use empty_metric::{build_special_time_expr, EmptyMetric, EmptyMetricExec, EmptyMetricStream};
|
||||
pub use histogram_fold::{HistogramFold, HistogramFoldExec, HistogramFoldStream};
|
||||
pub use instant_manipulate::{InstantManipulate, InstantManipulateExec, InstantManipulateStream};
|
||||
pub use normalize::{SeriesNormalize, SeriesNormalizeExec, SeriesNormalizeStream};
|
||||
pub use planner::PromExtensionPlanner;
|
||||
|
||||
@@ -22,14 +22,14 @@ use common_recordbatch::RecordBatch as GtRecordBatch;
|
||||
use common_telemetry::warn;
|
||||
use datafusion::arrow::array::AsArray;
|
||||
use datafusion::arrow::compute::{self, concat_batches, SortOptions};
|
||||
use datafusion::arrow::datatypes::{DataType, Field, Float64Type, SchemaRef};
|
||||
use datafusion::arrow::datatypes::{DataType, Float64Type, SchemaRef};
|
||||
use datafusion::arrow::record_batch::RecordBatch;
|
||||
use datafusion::common::{DFField, DFSchema, DFSchemaRef};
|
||||
use datafusion::common::{DFSchema, DFSchemaRef};
|
||||
use datafusion::error::{DataFusionError, Result as DataFusionResult};
|
||||
use datafusion::execution::TaskContext;
|
||||
use datafusion::logical_expr::{LogicalPlan, UserDefinedLogicalNodeCore};
|
||||
use datafusion::physical_expr::{PhysicalSortExpr, PhysicalSortRequirement};
|
||||
use datafusion::physical_plan::expressions::Column as PhyColumn;
|
||||
use datafusion::physical_plan::expressions::{CastExpr as PhyCast, Column as PhyColumn};
|
||||
use datafusion::physical_plan::metrics::{BaselineMetrics, ExecutionPlanMetricsSet, MetricsSet};
|
||||
use datafusion::physical_plan::{
|
||||
DisplayAs, DisplayFormatType, Distribution, ExecutionPlan, Partitioning, PhysicalExpr,
|
||||
@@ -38,7 +38,7 @@ use datafusion::physical_plan::{
|
||||
use datafusion::prelude::{Column, Expr};
|
||||
use datatypes::prelude::{ConcreteDataType, DataType as GtDataType};
|
||||
use datatypes::schema::Schema as GtSchema;
|
||||
use datatypes::value::{ListValue, Value};
|
||||
use datatypes::value::{OrderedF64, ValueRef};
|
||||
use datatypes::vectors::MutableVector;
|
||||
use futures::{ready, Stream, StreamExt};
|
||||
|
||||
@@ -56,7 +56,7 @@ use futures::{ready, Stream, StreamExt};
|
||||
/// - The value set of `le` should be same. I.e., buckets of every series should be same.
|
||||
///
|
||||
/// [1]: https://prometheus.io/docs/concepts/metric_types/#histogram
|
||||
#[derive(Debug, PartialEq, Eq, Hash)]
|
||||
#[derive(Debug, PartialEq, Hash, Eq)]
|
||||
pub struct HistogramFold {
|
||||
/// Name of the `le` column. It's a special column in prometheus
|
||||
/// for implementing conventional histogram. It's a string column
|
||||
@@ -65,6 +65,7 @@ pub struct HistogramFold {
|
||||
ts_column: String,
|
||||
input: LogicalPlan,
|
||||
field_column: String,
|
||||
quantile: OrderedF64,
|
||||
output_schema: DFSchemaRef,
|
||||
}
|
||||
|
||||
@@ -88,8 +89,8 @@ impl UserDefinedLogicalNodeCore for HistogramFold {
|
||||
fn fmt_for_explain(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"HistogramFold: le={}, field={}",
|
||||
self.le_column, self.field_column
|
||||
"HistogramFold: le={}, field={}, quantile={}",
|
||||
self.le_column, self.field_column, self.quantile
|
||||
)
|
||||
}
|
||||
|
||||
@@ -99,6 +100,7 @@ impl UserDefinedLogicalNodeCore for HistogramFold {
|
||||
ts_column: self.ts_column.clone(),
|
||||
input: inputs[0].clone(),
|
||||
field_column: self.field_column.clone(),
|
||||
quantile: self.quantile,
|
||||
// This method cannot return error. Otherwise we should re-calculate
|
||||
// the output schema
|
||||
output_schema: self.output_schema.clone(),
|
||||
@@ -107,21 +109,22 @@ impl UserDefinedLogicalNodeCore for HistogramFold {
|
||||
}
|
||||
|
||||
impl HistogramFold {
|
||||
#[allow(dead_code)]
|
||||
pub fn new(
|
||||
le_column: String,
|
||||
field_column: String,
|
||||
ts_column: String,
|
||||
quantile: f64,
|
||||
input: LogicalPlan,
|
||||
) -> DataFusionResult<Self> {
|
||||
let input_schema = input.schema();
|
||||
Self::check_schema(input_schema, &le_column, &field_column, &ts_column)?;
|
||||
let output_schema = Self::convert_schema(input_schema, &le_column, &field_column)?;
|
||||
let output_schema = Self::convert_schema(input_schema, &le_column)?;
|
||||
Ok(Self {
|
||||
le_column,
|
||||
ts_column,
|
||||
input,
|
||||
field_column,
|
||||
quantile: quantile.into(),
|
||||
output_schema,
|
||||
})
|
||||
}
|
||||
@@ -158,7 +161,6 @@ impl HistogramFold {
|
||||
check_column(field_column)
|
||||
}
|
||||
|
||||
#[allow(dead_code)]
|
||||
pub fn to_execution_plan(&self, exec_input: Arc<dyn ExecutionPlan>) -> Arc<dyn ExecutionPlan> {
|
||||
let input_schema = self.input.schema();
|
||||
// safety: those fields are checked in `check_schema()`
|
||||
@@ -180,6 +182,7 @@ impl HistogramFold {
|
||||
field_column_index,
|
||||
ts_column_index,
|
||||
input: exec_input,
|
||||
quantile: self.quantile.into(),
|
||||
output_schema: Arc::new(self.output_schema.as_ref().into()),
|
||||
metric: ExecutionPlanMetricsSet::new(),
|
||||
})
|
||||
@@ -187,46 +190,17 @@ impl HistogramFold {
|
||||
|
||||
/// Transform the schema
|
||||
///
|
||||
/// - `le` will become a [ListArray] of [f64]. With each bucket bound parsed
|
||||
/// - `field` will become a [ListArray] of [f64]
|
||||
/// - `le` will be removed
|
||||
fn convert_schema(
|
||||
input_schema: &DFSchemaRef,
|
||||
le_column: &str,
|
||||
field_column: &str,
|
||||
) -> DataFusionResult<DFSchemaRef> {
|
||||
let mut fields = input_schema.fields().clone();
|
||||
// safety: those fields are checked in `check_schema()`
|
||||
let le_column_idx = input_schema
|
||||
.index_of_column_by_name(None, le_column)?
|
||||
.unwrap();
|
||||
let field_column_idx = input_schema
|
||||
.index_of_column_by_name(None, field_column)?
|
||||
.unwrap();
|
||||
|
||||
// transform `le`
|
||||
let le_field: Field = fields[le_column_idx].field().as_ref().clone();
|
||||
let le_field = le_field.with_data_type(DataType::Float64);
|
||||
let folded_le_datatype = DataType::List(Arc::new(le_field));
|
||||
let folded_le = DFField::new(
|
||||
fields[le_column_idx].qualifier().cloned(),
|
||||
fields[le_column_idx].name(),
|
||||
folded_le_datatype,
|
||||
false,
|
||||
);
|
||||
|
||||
// transform `field`
|
||||
// to avoid ambiguity, that field will be referenced as `the_field` below.
|
||||
let the_field: Field = fields[field_column_idx].field().as_ref().clone();
|
||||
let folded_field_datatype = DataType::List(Arc::new(the_field));
|
||||
let folded_field = DFField::new(
|
||||
fields[field_column_idx].qualifier().cloned(),
|
||||
fields[field_column_idx].name(),
|
||||
folded_field_datatype,
|
||||
false,
|
||||
);
|
||||
|
||||
fields[le_column_idx] = folded_le;
|
||||
fields[field_column_idx] = folded_field;
|
||||
fields.remove(le_column_idx);
|
||||
|
||||
Ok(Arc::new(DFSchema::new_with_metadata(
|
||||
fields,
|
||||
@@ -244,6 +218,7 @@ pub struct HistogramFoldExec {
|
||||
/// Index for field column in the schema of input.
|
||||
field_column_index: usize,
|
||||
ts_column_index: usize,
|
||||
quantile: f64,
|
||||
metric: ExecutionPlanMetricsSet,
|
||||
}
|
||||
|
||||
@@ -275,9 +250,13 @@ impl ExecutionPlan for HistogramFoldExec {
|
||||
.collect::<Vec<PhysicalSortRequirement>>();
|
||||
// add le ASC
|
||||
cols.push(PhysicalSortRequirement {
|
||||
expr: Arc::new(PhyColumn::new(
|
||||
self.output_schema.field(self.le_column_index).name(),
|
||||
self.le_column_index,
|
||||
expr: Arc::new(PhyCast::new(
|
||||
Arc::new(PhyColumn::new(
|
||||
self.input.schema().field(self.le_column_index).name(),
|
||||
self.le_column_index,
|
||||
)),
|
||||
DataType::Float64,
|
||||
None,
|
||||
)),
|
||||
options: Some(SortOptions {
|
||||
descending: false, // +INF in the last
|
||||
@@ -287,7 +266,7 @@ impl ExecutionPlan for HistogramFoldExec {
|
||||
// add ts
|
||||
cols.push(PhysicalSortRequirement {
|
||||
expr: Arc::new(PhyColumn::new(
|
||||
self.output_schema.field(self.ts_column_index).name(),
|
||||
self.input.schema().field(self.ts_column_index).name(),
|
||||
self.ts_column_index,
|
||||
)),
|
||||
options: None,
|
||||
@@ -320,6 +299,7 @@ impl ExecutionPlan for HistogramFoldExec {
|
||||
metric: self.metric.clone(),
|
||||
le_column_index: self.le_column_index,
|
||||
ts_column_index: self.ts_column_index,
|
||||
quantile: self.quantile,
|
||||
output_schema: self.output_schema.clone(),
|
||||
field_column_index: self.field_column_index,
|
||||
}))
|
||||
@@ -336,12 +316,13 @@ impl ExecutionPlan for HistogramFoldExec {
|
||||
let input = self.input.execute(partition, context)?;
|
||||
let output_schema = self.output_schema.clone();
|
||||
|
||||
let mut normal_indices = (0..output_schema.fields().len()).collect::<HashSet<_>>();
|
||||
normal_indices.remove(&self.le_column_index);
|
||||
let mut normal_indices = (0..input.schema().fields().len()).collect::<HashSet<_>>();
|
||||
normal_indices.remove(&self.field_column_index);
|
||||
normal_indices.remove(&self.le_column_index);
|
||||
Ok(Box::pin(HistogramFoldStream {
|
||||
le_column_index: self.le_column_index,
|
||||
field_column_index: self.field_column_index,
|
||||
quantile: self.quantile,
|
||||
normal_indices: normal_indices.into_iter().collect(),
|
||||
bucket_size: None,
|
||||
input_buffer: vec![],
|
||||
@@ -350,7 +331,10 @@ impl ExecutionPlan for HistogramFoldExec {
|
||||
metric: baseline_metric,
|
||||
batch_size,
|
||||
input_buffered_rows: 0,
|
||||
output_buffer: HistogramFoldStream::empty_output_buffer(&self.output_schema)?,
|
||||
output_buffer: HistogramFoldStream::empty_output_buffer(
|
||||
&self.output_schema,
|
||||
self.le_column_index,
|
||||
)?,
|
||||
output_buffered_rows: 0,
|
||||
}))
|
||||
}
|
||||
@@ -399,8 +383,8 @@ impl DisplayAs for HistogramFoldExec {
|
||||
DisplayFormatType::Default | DisplayFormatType::Verbose => {
|
||||
write!(
|
||||
f,
|
||||
"HistogramFoldExec: le=@{}, field=@{}",
|
||||
self.le_column_index, self.field_column_index
|
||||
"HistogramFoldExec: le=@{}, field=@{}, quantile={}",
|
||||
self.le_column_index, self.field_column_index, self.quantile
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -411,7 +395,8 @@ pub struct HistogramFoldStream {
|
||||
// internal states
|
||||
le_column_index: usize,
|
||||
field_column_index: usize,
|
||||
/// Columns need not folding
|
||||
quantile: f64,
|
||||
/// Columns need not folding. This indices is based on input schema
|
||||
normal_indices: Vec<usize>,
|
||||
bucket_size: Option<usize>,
|
||||
/// Expected output batch size
|
||||
@@ -485,15 +470,25 @@ impl HistogramFoldStream {
|
||||
Ok(None)
|
||||
}
|
||||
|
||||
/// Generate a group of empty [MutableVector]s from the output schema.
|
||||
///
|
||||
/// For simplicity, this method will insert a placeholder for `le`. So that
|
||||
/// the output buffers has the same schema with input. This placeholder needs
|
||||
/// to be removed before returning the output batch.
|
||||
pub fn empty_output_buffer(
|
||||
schema: &SchemaRef,
|
||||
le_column_index: usize,
|
||||
) -> DataFusionResult<Vec<Box<dyn MutableVector>>> {
|
||||
let mut builders = Vec::with_capacity(schema.fields().len());
|
||||
let mut builders = Vec::with_capacity(schema.fields().len() + 1);
|
||||
for field in schema.fields() {
|
||||
let concrete_datatype = ConcreteDataType::try_from(field.data_type()).unwrap();
|
||||
let mutable_vector = concrete_datatype.create_mutable_vector(0);
|
||||
builders.push(mutable_vector);
|
||||
}
|
||||
builders.insert(
|
||||
le_column_index,
|
||||
ConcreteDataType::float64_datatype().create_mutable_vector(0),
|
||||
);
|
||||
|
||||
Ok(builders)
|
||||
}
|
||||
@@ -536,8 +531,8 @@ impl HistogramFoldStream {
|
||||
// "fold" `le` and field columns
|
||||
let le_array = batch.column(self.le_column_index);
|
||||
let field_array = batch.column(self.field_column_index);
|
||||
let mut le_item = vec![];
|
||||
let mut field_item = vec![];
|
||||
let mut bucket = vec![];
|
||||
let mut counters = vec![];
|
||||
for bias in 0..bucket_num {
|
||||
let le_str_val = le_array.get(cursor + bias);
|
||||
let le_str_val_ref = le_str_val.as_value_ref();
|
||||
@@ -546,24 +541,18 @@ impl HistogramFoldStream {
|
||||
.unwrap()
|
||||
.expect("le column should not be nullable");
|
||||
let le = le_str.parse::<f64>().unwrap();
|
||||
let le_val = Value::from(le);
|
||||
le_item.push(le_val);
|
||||
bucket.push(le);
|
||||
|
||||
let field = field_array.get(cursor + bias);
|
||||
field_item.push(field);
|
||||
let counter = field_array
|
||||
.get(cursor + bias)
|
||||
.as_value_ref()
|
||||
.as_f64()
|
||||
.unwrap()
|
||||
.expect("field column should not be nullable");
|
||||
counters.push(counter);
|
||||
}
|
||||
let le_list_val = Value::List(ListValue::new(
|
||||
Some(Box::new(le_item)),
|
||||
ConcreteDataType::float64_datatype(),
|
||||
));
|
||||
let field_list_val = Value::List(ListValue::new(
|
||||
Some(Box::new(field_item)),
|
||||
ConcreteDataType::float64_datatype(),
|
||||
));
|
||||
self.output_buffer[self.le_column_index].push_value_ref(le_list_val.as_value_ref());
|
||||
self.output_buffer[self.field_column_index]
|
||||
.push_value_ref(field_list_val.as_value_ref());
|
||||
|
||||
let result = Self::evaluate_row(self.quantile, &bucket, &counters)?;
|
||||
self.output_buffer[self.field_column_index].push_value_ref(ValueRef::from(result));
|
||||
cursor += bucket_num;
|
||||
remaining_rows -= bucket_num;
|
||||
self.output_buffered_rows += 1;
|
||||
@@ -581,6 +570,7 @@ impl HistogramFoldStream {
|
||||
self.input_buffer.push(batch);
|
||||
}
|
||||
|
||||
/// Compute result from output buffer
|
||||
fn take_output_buf(&mut self) -> DataFusionResult<Option<RecordBatch>> {
|
||||
if self.output_buffered_rows == 0 {
|
||||
if self.input_buffered_rows != 0 {
|
||||
@@ -592,24 +582,14 @@ impl HistogramFoldStream {
|
||||
return Ok(None);
|
||||
}
|
||||
|
||||
let mut output_buf = Self::empty_output_buffer(&self.output_schema)?;
|
||||
let mut output_buf = Self::empty_output_buffer(&self.output_schema, self.le_column_index)?;
|
||||
std::mem::swap(&mut self.output_buffer, &mut output_buf);
|
||||
let mut columns = Vec::with_capacity(output_buf.len());
|
||||
for builder in output_buf.iter_mut() {
|
||||
columns.push(builder.to_vector().to_arrow_array());
|
||||
}
|
||||
|
||||
// overwrite default list datatype to change field name
|
||||
columns[self.le_column_index] = compute::cast(
|
||||
&columns[self.le_column_index],
|
||||
self.output_schema.field(self.le_column_index).data_type(),
|
||||
)?;
|
||||
columns[self.field_column_index] = compute::cast(
|
||||
&columns[self.field_column_index],
|
||||
self.output_schema
|
||||
.field(self.field_column_index)
|
||||
.data_type(),
|
||||
)?;
|
||||
// remove the placeholder column for `le`
|
||||
columns.remove(self.le_column_index);
|
||||
|
||||
self.output_buffered_rows = 0;
|
||||
RecordBatch::try_new(self.output_schema.clone(), columns)
|
||||
@@ -651,6 +631,58 @@ impl HistogramFoldStream {
|
||||
|
||||
Ok(batch.num_rows())
|
||||
}
|
||||
|
||||
/// Evaluate the field column and return the result
|
||||
fn evaluate_row(quantile: f64, bucket: &[f64], counter: &[f64]) -> DataFusionResult<f64> {
|
||||
// check bucket
|
||||
if bucket.len() <= 1 {
|
||||
return Ok(f64::NAN);
|
||||
}
|
||||
if *bucket.last().unwrap() != f64::INFINITY {
|
||||
return Err(DataFusionError::Execution(
|
||||
"last bucket should be +Inf".to_string(),
|
||||
));
|
||||
}
|
||||
if bucket.len() != counter.len() {
|
||||
return Err(DataFusionError::Execution(
|
||||
"bucket and counter should have the same length".to_string(),
|
||||
));
|
||||
}
|
||||
// check quantile
|
||||
if quantile < 0.0 {
|
||||
return Ok(f64::NEG_INFINITY);
|
||||
} else if quantile > 1.0 {
|
||||
return Ok(f64::INFINITY);
|
||||
} else if quantile.is_nan() {
|
||||
return Ok(f64::NAN);
|
||||
}
|
||||
|
||||
// check input value
|
||||
debug_assert!(bucket.windows(2).all(|w| w[0] <= w[1]));
|
||||
debug_assert!(counter.windows(2).all(|w| w[0] <= w[1]));
|
||||
|
||||
let total = *counter.last().unwrap();
|
||||
let expected_pos = total * quantile;
|
||||
let mut fit_bucket_pos = 0;
|
||||
while fit_bucket_pos < bucket.len() && counter[fit_bucket_pos] < expected_pos {
|
||||
fit_bucket_pos += 1;
|
||||
}
|
||||
if fit_bucket_pos >= bucket.len() - 1 {
|
||||
Ok(bucket[bucket.len() - 2])
|
||||
} else {
|
||||
let upper_bound = bucket[fit_bucket_pos];
|
||||
let upper_count = counter[fit_bucket_pos];
|
||||
let mut lower_bound = bucket[0].min(0.0);
|
||||
let mut lower_count = 0.0;
|
||||
if fit_bucket_pos > 0 {
|
||||
lower_bound = bucket[fit_bucket_pos - 1];
|
||||
lower_count = counter[fit_bucket_pos - 1];
|
||||
}
|
||||
Ok(lower_bound
|
||||
+ (upper_bound - lower_bound) / (upper_count - lower_count)
|
||||
* (expected_pos - lower_count))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
@@ -658,7 +690,7 @@ mod test {
|
||||
use std::sync::Arc;
|
||||
|
||||
use datafusion::arrow::array::Float64Array;
|
||||
use datafusion::arrow::datatypes::Schema;
|
||||
use datafusion::arrow::datatypes::{Field, Schema};
|
||||
use datafusion::common::ToDFSchema;
|
||||
use datafusion::physical_plan::memory::MemoryExec;
|
||||
use datafusion::prelude::SessionContext;
|
||||
@@ -729,7 +761,6 @@ mod test {
|
||||
(*HistogramFold::convert_schema(
|
||||
&Arc::new(memory_exec.schema().to_dfschema().unwrap()),
|
||||
"le",
|
||||
"val",
|
||||
)
|
||||
.unwrap()
|
||||
.as_ref())
|
||||
@@ -739,6 +770,7 @@ mod test {
|
||||
let fold_exec = Arc::new(HistogramFoldExec {
|
||||
le_column_index: 1,
|
||||
field_column_index: 2,
|
||||
quantile: 0.4,
|
||||
ts_column_index: 9999, // not exist but doesn't matter
|
||||
input: memory_exec,
|
||||
output_schema,
|
||||
@@ -754,15 +786,15 @@ mod test {
|
||||
.to_string();
|
||||
|
||||
let expected = String::from(
|
||||
"+--------+---------------------------------+--------------------------------+
|
||||
| host | le | val |
|
||||
+--------+---------------------------------+--------------------------------+
|
||||
| host_1 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 1.0, 1.0, 5.0, 5.0] |
|
||||
| host_1 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 20.0, 60.0, 70.0, 100.0] |
|
||||
| host_1 | [0.001, 0.1, 10.0, 1000.0, inf] | [1.0, 1.0, 1.0, 1.0, 1.0] |
|
||||
| host_2 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 0.0, 0.0, 0.0, 0.0] |
|
||||
| host_2 | [0.001, 0.1, 10.0, 1000.0, inf] | [0.0, 1.0, 2.0, 3.0, 4.0] |
|
||||
+--------+---------------------------------+--------------------------------+",
|
||||
"+--------+-------------------+
|
||||
| host | val |
|
||||
+--------+-------------------+
|
||||
| host_1 | 257.5 |
|
||||
| host_1 | 5.05 |
|
||||
| host_1 | 0.0004 |
|
||||
| host_2 | NaN |
|
||||
| host_2 | 6.040000000000001 |
|
||||
+--------+-------------------+",
|
||||
);
|
||||
assert_eq!(result_literal, expected);
|
||||
}
|
||||
@@ -778,21 +810,107 @@ mod test {
|
||||
.unwrap();
|
||||
let expected_output_schema = Schema::new(vec![
|
||||
Field::new("host", DataType::Utf8, true),
|
||||
Field::new(
|
||||
"le",
|
||||
DataType::List(Arc::new(Field::new("le", DataType::Float64, true))),
|
||||
false,
|
||||
),
|
||||
Field::new(
|
||||
"val",
|
||||
DataType::List(Arc::new(Field::new("val", DataType::Float64, true))),
|
||||
false,
|
||||
),
|
||||
Field::new("val", DataType::Float64, true),
|
||||
])
|
||||
.to_dfschema_ref()
|
||||
.unwrap();
|
||||
|
||||
let actual = HistogramFold::convert_schema(&input_schema, "le", "val").unwrap();
|
||||
let actual = HistogramFold::convert_schema(&input_schema, "le").unwrap();
|
||||
assert_eq!(actual, expected_output_schema)
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn evaluate_row_normal_case() {
|
||||
let bucket = [0.0, 1.0, 2.0, 3.0, 4.0, f64::INFINITY];
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Case {
|
||||
quantile: f64,
|
||||
counters: Vec<f64>,
|
||||
expected: f64,
|
||||
}
|
||||
|
||||
let cases = [
|
||||
Case {
|
||||
quantile: 0.9,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: 4.0,
|
||||
},
|
||||
Case {
|
||||
quantile: 0.89,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: 4.0,
|
||||
},
|
||||
Case {
|
||||
quantile: 0.78,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: 3.9,
|
||||
},
|
||||
Case {
|
||||
quantile: 0.5,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: 2.5,
|
||||
},
|
||||
Case {
|
||||
quantile: 0.5,
|
||||
counters: vec![0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
||||
expected: f64::NAN,
|
||||
},
|
||||
Case {
|
||||
quantile: 1.0,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: 4.0,
|
||||
},
|
||||
Case {
|
||||
quantile: 0.0,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: f64::NAN,
|
||||
},
|
||||
Case {
|
||||
quantile: 1.1,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: f64::INFINITY,
|
||||
},
|
||||
Case {
|
||||
quantile: -1.0,
|
||||
counters: vec![0.0, 10.0, 20.0, 30.0, 40.0, 50.0],
|
||||
expected: f64::NEG_INFINITY,
|
||||
},
|
||||
];
|
||||
|
||||
for case in cases {
|
||||
let actual =
|
||||
HistogramFoldStream::evaluate_row(case.quantile, &bucket, &case.counters).unwrap();
|
||||
assert_eq!(
|
||||
format!("{actual}"),
|
||||
format!("{}", case.expected),
|
||||
"{:?}",
|
||||
case
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
#[should_panic]
|
||||
fn evaluate_out_of_order_input() {
|
||||
let bucket = [0.0, 1.0, 2.0, 3.0, 4.0, f64::INFINITY];
|
||||
let counters = [5.0, 4.0, 3.0, 2.0, 1.0, 0.0];
|
||||
HistogramFoldStream::evaluate_row(0.5, &bucket, &counters).unwrap();
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn evaluate_wrong_bucket() {
|
||||
let bucket = [0.0, 1.0, 2.0, 3.0, 4.0, f64::INFINITY, 5.0];
|
||||
let counters = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0];
|
||||
let result = HistogramFoldStream::evaluate_row(0.5, &bucket, &counters);
|
||||
assert!(result.is_err());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn evaluate_small_fraction() {
|
||||
let bucket = [0.0, 2.0, 4.0, 6.0, f64::INFINITY];
|
||||
let counters = [0.0, 1.0 / 300.0, 2.0 / 300.0, 0.01, 0.01];
|
||||
let result = HistogramFoldStream::evaluate_row(0.5, &bucket, &counters).unwrap();
|
||||
assert_eq!(3.0, result);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -21,6 +21,7 @@ use datafusion::logical_expr::{LogicalPlan, UserDefinedLogicalNode};
|
||||
use datafusion::physical_plan::ExecutionPlan;
|
||||
use datafusion::physical_planner::{ExtensionPlanner, PhysicalPlanner};
|
||||
|
||||
use super::HistogramFold;
|
||||
use crate::extension_plan::{
|
||||
EmptyMetric, InstantManipulate, RangeManipulate, SeriesDivide, SeriesNormalize,
|
||||
};
|
||||
@@ -47,6 +48,8 @@ impl ExtensionPlanner for PromExtensionPlanner {
|
||||
Ok(Some(node.to_execution_plan(physical_inputs[0].clone())))
|
||||
} else if let Some(node) = node.as_any().downcast_ref::<EmptyMetric>() {
|
||||
Ok(Some(node.to_execution_plan(session_state, planner)?))
|
||||
} else if let Some(node) = node.as_any().downcast_ref::<HistogramFold>() {
|
||||
Ok(Some(node.to_execution_plan(physical_inputs[0].clone())))
|
||||
} else {
|
||||
Ok(None)
|
||||
}
|
||||
|
||||
@@ -44,14 +44,14 @@ use table::table::adapter::DfTableProviderAdapter;
|
||||
|
||||
use crate::error::{
|
||||
CatalogSnafu, ColumnNotFoundSnafu, DataFusionPlanningSnafu, ExpectExprSnafu,
|
||||
ExpectRangeSelectorSnafu, MultipleMetricMatchersSnafu, MultipleVectorSnafu,
|
||||
NoMetricMatcherSnafu, Result, TableNameNotFoundSnafu, TimeIndexNotFoundSnafu,
|
||||
UnexpectedPlanExprSnafu, UnexpectedTokenSnafu, UnknownTableSnafu, UnsupportedExprSnafu,
|
||||
ValueNotFoundSnafu, ZeroRangeSelectorSnafu,
|
||||
ExpectRangeSelectorSnafu, FunctionInvalidArgumentSnafu, MultipleMetricMatchersSnafu,
|
||||
MultipleVectorSnafu, NoMetricMatcherSnafu, Result, TableNameNotFoundSnafu,
|
||||
TimeIndexNotFoundSnafu, UnexpectedPlanExprSnafu, UnexpectedTokenSnafu, UnknownTableSnafu,
|
||||
UnsupportedExprSnafu, ValueNotFoundSnafu, ZeroRangeSelectorSnafu,
|
||||
};
|
||||
use crate::extension_plan::{
|
||||
build_special_time_expr, EmptyMetric, InstantManipulate, Millisecond, RangeManipulate,
|
||||
SeriesDivide, SeriesNormalize,
|
||||
build_special_time_expr, EmptyMetric, HistogramFold, InstantManipulate, Millisecond,
|
||||
RangeManipulate, SeriesDivide, SeriesNormalize,
|
||||
};
|
||||
use crate::functions::{
|
||||
AbsentOverTime, AvgOverTime, Changes, CountOverTime, Delta, Deriv, HoltWinters, IDelta,
|
||||
@@ -63,6 +63,8 @@ use crate::functions::{
|
||||
const SPECIAL_TIME_FUNCTION: &str = "time";
|
||||
/// `histogram_quantile` function in PromQL
|
||||
const SPECIAL_HISTOGRAM_QUANTILE: &str = "histogram_quantile";
|
||||
/// `le` column for conventional histogram.
|
||||
const LE_COLUMN_NAME: &str = "le";
|
||||
|
||||
const DEFAULT_TIME_INDEX_COLUMN: &str = "time";
|
||||
|
||||
@@ -110,6 +112,11 @@ impl PromPlannerContext {
|
||||
self.field_column_matcher = None;
|
||||
self.range = None;
|
||||
}
|
||||
|
||||
/// Check if `le` is present in tag columns
|
||||
fn has_le_tag(&self) -> bool {
|
||||
self.tag_columns.iter().any(|c| c.eq(&LE_COLUMN_NAME))
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PromPlanner {
|
||||
@@ -443,7 +450,55 @@ impl PromPlanner {
|
||||
}
|
||||
|
||||
if func.name == SPECIAL_HISTOGRAM_QUANTILE {
|
||||
todo!()
|
||||
if args.args.len() != 2 {
|
||||
return FunctionInvalidArgumentSnafu {
|
||||
fn_name: SPECIAL_HISTOGRAM_QUANTILE.to_string(),
|
||||
}
|
||||
.fail();
|
||||
}
|
||||
let phi = Self::try_build_float_literal(&args.args[0]).with_context(|| {
|
||||
FunctionInvalidArgumentSnafu {
|
||||
fn_name: SPECIAL_HISTOGRAM_QUANTILE.to_string(),
|
||||
}
|
||||
})?;
|
||||
let input = args.args[1].as_ref().clone();
|
||||
let input_plan = self.prom_expr_to_plan(input).await?;
|
||||
|
||||
if !self.ctx.has_le_tag() {
|
||||
common_telemetry::info!("[DEBUG] valid tags: {:?}", self.ctx.tag_columns);
|
||||
return ColumnNotFoundSnafu {
|
||||
col: LE_COLUMN_NAME.to_string(),
|
||||
}
|
||||
.fail();
|
||||
}
|
||||
let time_index_column =
|
||||
self.ctx.time_index_column.clone().with_context(|| {
|
||||
TimeIndexNotFoundSnafu {
|
||||
table: self.ctx.table_name.clone().unwrap_or_default(),
|
||||
}
|
||||
})?;
|
||||
// FIXME(ruihang): support multi fields
|
||||
let field_column = self
|
||||
.ctx
|
||||
.field_columns
|
||||
.first()
|
||||
.with_context(|| FunctionInvalidArgumentSnafu {
|
||||
fn_name: SPECIAL_HISTOGRAM_QUANTILE.to_string(),
|
||||
})?
|
||||
.clone();
|
||||
|
||||
return Ok(LogicalPlan::Extension(Extension {
|
||||
node: Arc::new(
|
||||
HistogramFold::new(
|
||||
LE_COLUMN_NAME.to_string(),
|
||||
field_column,
|
||||
time_index_column,
|
||||
phi,
|
||||
input_plan,
|
||||
)
|
||||
.context(DataFusionPlanningSnafu)?,
|
||||
),
|
||||
}));
|
||||
}
|
||||
|
||||
let args = self.create_function_args(&args.args)?;
|
||||
@@ -1189,6 +1244,25 @@ impl PromPlanner {
|
||||
}
|
||||
}
|
||||
|
||||
/// Try to build a [f64] from [PromExpr].
|
||||
fn try_build_float_literal(expr: &PromExpr) -> Option<f64> {
|
||||
match expr {
|
||||
PromExpr::NumberLiteral(NumberLiteral { val }) => Some(*val),
|
||||
PromExpr::Paren(ParenExpr { expr }) => Self::try_build_float_literal(expr),
|
||||
PromExpr::Unary(UnaryExpr { expr, .. }) => {
|
||||
Self::try_build_float_literal(expr).map(|f| -f)
|
||||
}
|
||||
PromExpr::StringLiteral(_)
|
||||
| PromExpr::Binary(_)
|
||||
| PromExpr::VectorSelector(_)
|
||||
| PromExpr::MatrixSelector(_)
|
||||
| PromExpr::Call(_)
|
||||
| PromExpr::Extension(_)
|
||||
| PromExpr::Aggregate(_)
|
||||
| PromExpr::Subquery(_) => None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Return a lambda to build binary expression from token.
|
||||
/// Because some binary operator are function in DataFusion like `atan2` or `^`.
|
||||
#[allow(clippy::type_complexity)]
|
||||
|
||||
246
tests/cases/standalone/common/promql/simple_histogram.result
Normal file
246
tests/cases/standalone/common/promql/simple_histogram.result
Normal file
@@ -0,0 +1,246 @@
|
||||
-- from prometheus/promql/testdata/histograms.test
|
||||
-- cases related to metric `testhistogram_bucket`
|
||||
create table histogram_bucket (
|
||||
ts timestamp time index,
|
||||
le string,
|
||||
s string,
|
||||
val double,
|
||||
primary key (s, le),
|
||||
);
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
insert into histogram_bucket values
|
||||
(3000000, "0.1", "positive", 50),
|
||||
(3000000, ".2", "positive", 70),
|
||||
(3000000, "1e0", "positive", 110),
|
||||
(3000000, "+Inf", "positive", 120),
|
||||
(3000000, "-.2", "negative", 10),
|
||||
(3000000, "-0.1", "negative", 20),
|
||||
(3000000, "0.3", "negative", 20),
|
||||
(3000000, "+Inf", "negative", 30);
|
||||
|
||||
Affected Rows: 8
|
||||
|
||||
-- Quantile too low.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(-0.1, histogram_bucket);
|
||||
|
||||
+---------------------+----------+------+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+------+
|
||||
| 1970-01-01T00:50:00 | negative | -inf |
|
||||
| 1970-01-01T00:50:00 | positive | -inf |
|
||||
+---------------------+----------+------+
|
||||
|
||||
-- Quantile too high.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(1.01, histogram_bucket);
|
||||
|
||||
+---------------------+----------+-----+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+-----+
|
||||
| 1970-01-01T00:50:00 | negative | inf |
|
||||
| 1970-01-01T00:50:00 | positive | inf |
|
||||
+---------------------+----------+-----+
|
||||
|
||||
-- Quantile invalid.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(NaN, histogram_bucket);
|
||||
|
||||
+---------------------+----------+-----+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+-----+
|
||||
| 1970-01-01T00:50:00 | negative | NaN |
|
||||
| 1970-01-01T00:50:00 | positive | NaN |
|
||||
+---------------------+----------+-----+
|
||||
|
||||
-- Quantile value in lowest bucket, which is positive.
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0, histogram_bucket{s="positive"});
|
||||
|
||||
+---------------------+----------+-----+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+-----+
|
||||
| 1970-01-01T00:50:00 | positive | 0.0 |
|
||||
+---------------------+----------+-----+
|
||||
|
||||
-- Quantile value in lowest bucket, which is negative.
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0, histogram_bucket{s="negative"});
|
||||
|
||||
+---------------------+----------+------+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+------+
|
||||
| 1970-01-01T00:50:00 | negative | -0.2 |
|
||||
+---------------------+----------+------+
|
||||
|
||||
-- Quantile value in highest bucket.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(1, histogram_bucket);
|
||||
|
||||
+---------------------+----------+-----+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+-----+
|
||||
| 1970-01-01T00:50:00 | negative | 0.3 |
|
||||
| 1970-01-01T00:50:00 | positive | 1.0 |
|
||||
+---------------------+----------+-----+
|
||||
|
||||
-- Finally some useful quantiles.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.2, histogram_bucket);
|
||||
|
||||
+---------------------+----------+-------+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+-------+
|
||||
| 1970-01-01T00:50:00 | negative | -0.2 |
|
||||
| 1970-01-01T00:50:00 | positive | 0.048 |
|
||||
+---------------------+----------+-------+
|
||||
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.5, histogram_bucket);
|
||||
|
||||
+---------------------+----------+----------------------+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+----------------------+
|
||||
| 1970-01-01T00:50:00 | negative | -0.15000000000000002 |
|
||||
| 1970-01-01T00:50:00 | positive | 0.15000000000000002 |
|
||||
+---------------------+----------+----------------------+
|
||||
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.8, histogram_bucket);
|
||||
|
||||
+---------------------+----------+------+
|
||||
| ts | s | val |
|
||||
+---------------------+----------+------+
|
||||
| 1970-01-01T00:50:00 | negative | 0.3 |
|
||||
| 1970-01-01T00:50:00 | positive | 0.72 |
|
||||
+---------------------+----------+------+
|
||||
|
||||
-- More realistic with rates.
|
||||
-- This case doesn't contains value because other point are not inserted.
|
||||
-- quantile with rate is covered in other cases
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.2, rate(histogram_bucket[5m]));
|
||||
|
||||
++
|
||||
++
|
||||
|
||||
drop table histogram_bucket;
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
-- cases related to `testhistogram2_bucket`
|
||||
create table histogram2_bucket (
|
||||
ts timestamp time index,
|
||||
le string,
|
||||
val double,
|
||||
primary key (le),
|
||||
);
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
insert into histogram2_bucket values
|
||||
(0, "0", 0),
|
||||
(300000, "0", 0),
|
||||
(600000, "0", 0),
|
||||
(900000, "0", 0),
|
||||
(1200000, "0", 0),
|
||||
(1500000, "0", 0),
|
||||
(1800000, "0", 0),
|
||||
(2100000, "0", 0),
|
||||
(2400000, "0", 0),
|
||||
(2700000, "0", 0),
|
||||
(0, "2", 1),
|
||||
(300000, "2", 2),
|
||||
(600000, "2", 3),
|
||||
(900000, "2", 4),
|
||||
(1200000, "2", 5),
|
||||
(1500000, "2", 6),
|
||||
(1800000, "2", 7),
|
||||
(2100000, "2", 8),
|
||||
(2400000, "2", 9),
|
||||
(2700000, "2", 10),
|
||||
(0, "4", 2),
|
||||
(300000, "4", 4),
|
||||
(600000, "4", 6),
|
||||
(900000, "4", 8),
|
||||
(1200000, "4", 10),
|
||||
(1500000, "4", 12),
|
||||
(1800000, "4", 14),
|
||||
(2100000, "4", 16),
|
||||
(2400000, "4", 18),
|
||||
(2700000, "4", 20),
|
||||
(0, "6", 3),
|
||||
(300000, "6", 6),
|
||||
(600000, "6", 9),
|
||||
(900000, "6", 12),
|
||||
(1200000, "6", 15),
|
||||
(1500000, "6", 18),
|
||||
(1800000, "6", 21),
|
||||
(2100000, "6", 24),
|
||||
(2400000, "6", 27),
|
||||
(2700000, "6", 30),
|
||||
(0, "+Inf", 3),
|
||||
(300000, "+Inf", 6),
|
||||
(600000, "+Inf", 9),
|
||||
(900000, "+Inf", 12),
|
||||
(1200000, "+Inf", 15),
|
||||
(1500000, "+Inf", 18),
|
||||
(1800000, "+Inf", 21),
|
||||
(2100000, "+Inf", 24),
|
||||
(2400000, "+Inf", 27),
|
||||
(2700000, "+Inf", 30);
|
||||
|
||||
Affected Rows: 50
|
||||
|
||||
-- Want results exactly in the middle of the bucket.
|
||||
tql eval (420, 420, '1s') histogram_quantile(0.166, histogram2_bucket);
|
||||
|
||||
+---------------------+-------+
|
||||
| ts | val |
|
||||
+---------------------+-------+
|
||||
| 1970-01-01T00:07:00 | 0.996 |
|
||||
+---------------------+-------+
|
||||
|
||||
tql eval (420, 420, '1s') histogram_quantile(0.5, histogram2_bucket);
|
||||
|
||||
+---------------------+-----+
|
||||
| ts | val |
|
||||
+---------------------+-----+
|
||||
| 1970-01-01T00:07:00 | 3.0 |
|
||||
+---------------------+-----+
|
||||
|
||||
tql eval (420, 420, '1s') histogram_quantile(0.833, histogram2_bucket);
|
||||
|
||||
+---------------------+-------------------+
|
||||
| ts | val |
|
||||
+---------------------+-------------------+
|
||||
| 1970-01-01T00:07:00 | 4.997999999999999 |
|
||||
+---------------------+-------------------+
|
||||
|
||||
tql eval (2820, 2820, '1s') histogram_quantile(0.166, rate(histogram2_bucket[15m]));
|
||||
|
||||
+---------------------+----------------------------+
|
||||
| ts | prom_rate(ts_range,val,ts) |
|
||||
+---------------------+----------------------------+
|
||||
| 1970-01-01T00:47:00 | 0.996 |
|
||||
+---------------------+----------------------------+
|
||||
|
||||
tql eval (2820, 2820, '1s') histogram_quantile(0.5, rate(histogram2_bucket[15m]));
|
||||
|
||||
+---------------------+----------------------------+
|
||||
| ts | prom_rate(ts_range,val,ts) |
|
||||
+---------------------+----------------------------+
|
||||
| 1970-01-01T00:47:00 | 3.0 |
|
||||
+---------------------+----------------------------+
|
||||
|
||||
tql eval (2820, 2820, '1s') histogram_quantile(0.833, rate(histogram2_bucket[15m]));
|
||||
|
||||
+---------------------+----------------------------+
|
||||
| ts | prom_rate(ts_range,val,ts) |
|
||||
+---------------------+----------------------------+
|
||||
| 1970-01-01T00:47:00 | 4.998 |
|
||||
+---------------------+----------------------------+
|
||||
|
||||
drop table histogram2_bucket;
|
||||
|
||||
Affected Rows: 0
|
||||
|
||||
134
tests/cases/standalone/common/promql/simple_histogram.sql
Normal file
134
tests/cases/standalone/common/promql/simple_histogram.sql
Normal file
@@ -0,0 +1,134 @@
|
||||
-- from prometheus/promql/testdata/histograms.test
|
||||
-- cases related to metric `testhistogram_bucket`
|
||||
|
||||
create table histogram_bucket (
|
||||
ts timestamp time index,
|
||||
le string,
|
||||
s string,
|
||||
val double,
|
||||
primary key (s, le),
|
||||
);
|
||||
|
||||
insert into histogram_bucket values
|
||||
(3000000, "0.1", "positive", 50),
|
||||
(3000000, ".2", "positive", 70),
|
||||
(3000000, "1e0", "positive", 110),
|
||||
(3000000, "+Inf", "positive", 120),
|
||||
(3000000, "-.2", "negative", 10),
|
||||
(3000000, "-0.1", "negative", 20),
|
||||
(3000000, "0.3", "negative", 20),
|
||||
(3000000, "+Inf", "negative", 30);
|
||||
|
||||
-- Quantile too low.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(-0.1, histogram_bucket);
|
||||
|
||||
-- Quantile too high.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(1.01, histogram_bucket);
|
||||
|
||||
-- Quantile invalid.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(NaN, histogram_bucket);
|
||||
|
||||
-- Quantile value in lowest bucket, which is positive.
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0, histogram_bucket{s="positive"});
|
||||
|
||||
-- Quantile value in lowest bucket, which is negative.
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0, histogram_bucket{s="negative"});
|
||||
|
||||
-- Quantile value in highest bucket.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(1, histogram_bucket);
|
||||
|
||||
-- Finally some useful quantiles.
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.2, histogram_bucket);
|
||||
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.5, histogram_bucket);
|
||||
|
||||
-- SQLNESS SORT_RESULT 3 1
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.8, histogram_bucket);
|
||||
|
||||
-- More realistic with rates.
|
||||
-- This case doesn't contains value because other point are not inserted.
|
||||
-- quantile with rate is covered in other cases
|
||||
tql eval (3000, 3000, '1s') histogram_quantile(0.2, rate(histogram_bucket[5m]));
|
||||
|
||||
drop table histogram_bucket;
|
||||
|
||||
-- cases related to `testhistogram2_bucket`
|
||||
create table histogram2_bucket (
|
||||
ts timestamp time index,
|
||||
le string,
|
||||
val double,
|
||||
primary key (le),
|
||||
);
|
||||
|
||||
insert into histogram2_bucket values
|
||||
(0, "0", 0),
|
||||
(300000, "0", 0),
|
||||
(600000, "0", 0),
|
||||
(900000, "0", 0),
|
||||
(1200000, "0", 0),
|
||||
(1500000, "0", 0),
|
||||
(1800000, "0", 0),
|
||||
(2100000, "0", 0),
|
||||
(2400000, "0", 0),
|
||||
(2700000, "0", 0),
|
||||
(0, "2", 1),
|
||||
(300000, "2", 2),
|
||||
(600000, "2", 3),
|
||||
(900000, "2", 4),
|
||||
(1200000, "2", 5),
|
||||
(1500000, "2", 6),
|
||||
(1800000, "2", 7),
|
||||
(2100000, "2", 8),
|
||||
(2400000, "2", 9),
|
||||
(2700000, "2", 10),
|
||||
(0, "4", 2),
|
||||
(300000, "4", 4),
|
||||
(600000, "4", 6),
|
||||
(900000, "4", 8),
|
||||
(1200000, "4", 10),
|
||||
(1500000, "4", 12),
|
||||
(1800000, "4", 14),
|
||||
(2100000, "4", 16),
|
||||
(2400000, "4", 18),
|
||||
(2700000, "4", 20),
|
||||
(0, "6", 3),
|
||||
(300000, "6", 6),
|
||||
(600000, "6", 9),
|
||||
(900000, "6", 12),
|
||||
(1200000, "6", 15),
|
||||
(1500000, "6", 18),
|
||||
(1800000, "6", 21),
|
||||
(2100000, "6", 24),
|
||||
(2400000, "6", 27),
|
||||
(2700000, "6", 30),
|
||||
(0, "+Inf", 3),
|
||||
(300000, "+Inf", 6),
|
||||
(600000, "+Inf", 9),
|
||||
(900000, "+Inf", 12),
|
||||
(1200000, "+Inf", 15),
|
||||
(1500000, "+Inf", 18),
|
||||
(1800000, "+Inf", 21),
|
||||
(2100000, "+Inf", 24),
|
||||
(2400000, "+Inf", 27),
|
||||
(2700000, "+Inf", 30);
|
||||
|
||||
-- Want results exactly in the middle of the bucket.
|
||||
tql eval (420, 420, '1s') histogram_quantile(0.166, histogram2_bucket);
|
||||
|
||||
tql eval (420, 420, '1s') histogram_quantile(0.5, histogram2_bucket);
|
||||
|
||||
tql eval (420, 420, '1s') histogram_quantile(0.833, histogram2_bucket);
|
||||
|
||||
tql eval (2820, 2820, '1s') histogram_quantile(0.166, rate(histogram2_bucket[15m]));
|
||||
|
||||
tql eval (2820, 2820, '1s') histogram_quantile(0.5, rate(histogram2_bucket[15m]));
|
||||
|
||||
tql eval (2820, 2820, '1s') histogram_quantile(0.833, rate(histogram2_bucket[15m]));
|
||||
|
||||
drop table histogram2_bucket;
|
||||
Reference in New Issue
Block a user