mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-03 18:32:55 +00:00
feat: support nested pydantic schema (#707)
This commit is contained in:
6
.github/workflows/python.yml
vendored
6
.github/workflows/python.yml
vendored
@@ -91,11 +91,7 @@ jobs:
|
||||
pip install "pydantic<2"
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest pytest-mock black isort
|
||||
- name: Black
|
||||
run: black --check --diff --no-color --quiet .
|
||||
- name: isort
|
||||
run: isort --check --diff --quiet .
|
||||
pip install pytest pytest-mock
|
||||
- name: Run tests
|
||||
run: pytest -m "not slow" -x -v --durations=30 tests
|
||||
- name: doctest
|
||||
|
||||
@@ -348,3 +348,20 @@ def get_extras(field_info: pydantic.fields.FieldInfo, key: str) -> Any:
|
||||
if PYDANTIC_VERSION.major >= 2:
|
||||
return (field_info.json_schema_extra or {}).get(key)
|
||||
return (field_info.field_info.extra or {}).get("json_schema_extra", {}).get(key)
|
||||
|
||||
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
|
||||
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert a Pydantic model to a dictionary.
|
||||
"""
|
||||
return model.dict()
|
||||
|
||||
else:
|
||||
|
||||
def model_to_dict(model: pydantic.BaseModel) -> Dict[str, Any]:
|
||||
"""
|
||||
Convert a Pydantic model to a dictionary.
|
||||
"""
|
||||
return model.model_dump()
|
||||
|
||||
@@ -28,7 +28,7 @@ from lance.vector import vec_to_table
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
from .pydantic import LanceModel
|
||||
from .pydantic import LanceModel, model_to_dict
|
||||
from .query import LanceQueryBuilder, Query
|
||||
from .util import fs_from_uri, safe_import_pandas, value_to_sql
|
||||
|
||||
@@ -52,8 +52,10 @@ def _sanitize_data(
|
||||
# convert to list of dict if data is a bunch of LanceModels
|
||||
if isinstance(data[0], LanceModel):
|
||||
schema = data[0].__class__.to_arrow_schema()
|
||||
data = [dict(d) for d in data]
|
||||
data = pa.Table.from_pylist(data)
|
||||
data = [model_to_dict(d) for d in data]
|
||||
data = pa.Table.from_pylist(data, schema=schema)
|
||||
else:
|
||||
data = pa.Table.from_pylist(data)
|
||||
elif isinstance(data, dict):
|
||||
data = vec_to_table(data)
|
||||
elif pd is not None and isinstance(data, pd.DataFrame):
|
||||
|
||||
@@ -21,6 +21,7 @@ import lance
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
from pydantic import BaseModel
|
||||
import pytest
|
||||
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
@@ -141,14 +142,32 @@ def test_add(db):
|
||||
|
||||
|
||||
def test_add_pydantic_model(db):
|
||||
class TestModel(LanceModel):
|
||||
vector: Vector(16)
|
||||
li: List[int]
|
||||
# https://github.com/lancedb/lancedb/issues/562
|
||||
|
||||
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
|
||||
table = LanceTable.create(db, "test", data=[data])
|
||||
assert len(table) == 1
|
||||
assert table.schema == TestModel.to_arrow_schema()
|
||||
class Document(BaseModel):
|
||||
content: str
|
||||
source: str
|
||||
|
||||
class LanceSchema(LanceModel):
|
||||
id: str
|
||||
vector: Vector(2)
|
||||
li: List[int]
|
||||
payload: Document
|
||||
|
||||
tbl = LanceTable.create(db, "mytable", schema=LanceSchema, mode="overwrite")
|
||||
assert tbl.schema == LanceSchema.to_arrow_schema()
|
||||
|
||||
# add works
|
||||
expected = LanceSchema(
|
||||
id="id",
|
||||
vector=[0.0, 0.0],
|
||||
li=[1, 2, 3],
|
||||
payload=Document(content="foo", source="bar"),
|
||||
)
|
||||
tbl.add([expected])
|
||||
|
||||
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
|
||||
assert result == expected
|
||||
|
||||
|
||||
def _add(table, schema):
|
||||
|
||||
Reference in New Issue
Block a user