feat: a utility for creating "permutation views" (#2552)

I'm working on a lancedb version of pytorch data loading (and hopefully
addressing https://github.com/lancedb/lance/issues/3727).

However, rather than rely on pytorch for everything I'm moving some of
the things that pytorch does into rust. This gives us more control over
data loading (e.g. using shards or a hash-based split) and it allows
permutations to be persistent. In particular I hope to be able to:

* Create a persistent permutation
* This permutation can handle splits, filtering, shuffling, and sharding
* Create a rust data loader that can read a permutation (one or more
splits), or a subset of a permutation (for DDP)
* Create a python data loader that delegates to the rust data loader

Eventually create integrations for other data loading libraries,
including rust & node
This commit is contained in:
Weston Pace
2025-10-09 18:07:31 -07:00
committed by GitHub
parent 3dcec724b7
commit 5a19cf15a6
38 changed files with 3786 additions and 58 deletions

27
Cargo.lock generated
View File

@@ -4702,6 +4702,7 @@ dependencies = [
name = "lancedb"
version = "0.22.2"
dependencies = [
"ahash",
"anyhow",
"arrow",
"arrow-array",
@@ -4737,8 +4738,11 @@ dependencies = [
"http 1.3.1",
"http-body 1.0.1",
"lance",
"lance-core",
"lance-datafusion",
"lance-datagen",
"lance-encoding",
"lance-file",
"lance-index",
"lance-io",
"lance-linalg",
@@ -4764,6 +4768,7 @@ dependencies = [
"serde_with",
"snafu",
"tempfile",
"test-log",
"tokenizers",
"tokio",
"url",
@@ -8237,6 +8242,28 @@ dependencies = [
"windows-sys 0.61.2",
]
[[package]]
name = "test-log"
version = "0.2.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "1e33b98a582ea0be1168eba097538ee8dd4bbe0f2b01b22ac92ea30054e5be7b"
dependencies = [
"env_logger",
"test-log-macros",
"tracing-subscriber",
]
[[package]]
name = "test-log-macros"
version = "0.2.18"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "451b374529930d7601b1eef8d32bc79ae870b6079b069401709c2a8bf9e75f36"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.106",
]
[[package]]
name = "thiserror"
version = "1.0.69"

View File

@@ -16,6 +16,9 @@ rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.38.2", default-features = false, "features" = ["dynamodb"] }
lance-core = "=0.38.2"
lance-datagen = "=0.38.2"
lance-file = "=0.38.2"
lance-io = { "version" = "=0.38.2", default-features = false }
lance-index = "=0.38.2"
lance-linalg = "=0.38.2"
@@ -24,6 +27,7 @@ lance-testing = "=0.38.2"
lance-datafusion = "=0.38.2"
lance-encoding = "=0.38.2"
lance-namespace = "0.0.18"
ahash = "0.8"
# Note that this one does not include pyarrow
arrow = { version = "56.2", optional = false }
arrow-array = "56.2"
@@ -48,6 +52,7 @@ log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
pin-project = "1.0.7"
rand = "0.9"
snafu = "0.8"
url = "2"
num-traits = "0.2"

View File

@@ -0,0 +1,220 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / PermutationBuilder
# Class: PermutationBuilder
A PermutationBuilder for creating data permutations with splits, shuffling, and filtering.
This class provides a TypeScript wrapper around the native Rust PermutationBuilder,
offering methods to configure data splits, shuffling, and filtering before executing
the permutation to create a new table.
## Methods
### execute()
```ts
execute(): Promise<Table>
```
Execute the permutation and create the destination table.
#### Returns
`Promise`&lt;[`Table`](Table.md)&gt;
A Promise that resolves to the new Table instance
#### Example
```ts
const permutationTable = await builder.execute();
console.log(`Created table: ${permutationTable.name}`);
```
***
### filter()
```ts
filter(filter): PermutationBuilder
```
Configure filtering for the permutation.
#### Parameters
* **filter**: `string`
SQL filter expression
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
builder.filter("age > 18 AND status = 'active'");
```
***
### shuffle()
```ts
shuffle(options): PermutationBuilder
```
Configure shuffling for the permutation.
#### Parameters
* **options**: [`ShuffleOptions`](../interfaces/ShuffleOptions.md)
Configuration for shuffling
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
// Basic shuffle
builder.shuffle({ seed: 42 });
// Shuffle with clump size
builder.shuffle({ seed: 42, clumpSize: 10 });
```
***
### splitCalculated()
```ts
splitCalculated(calculation): PermutationBuilder
```
Configure calculated splits for the permutation.
#### Parameters
* **calculation**: `string`
SQL expression for calculating splits
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
builder.splitCalculated("user_id % 3");
```
***
### splitHash()
```ts
splitHash(options): PermutationBuilder
```
Configure hash-based splits for the permutation.
#### Parameters
* **options**: [`SplitHashOptions`](../interfaces/SplitHashOptions.md)
Configuration for hash-based splitting
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
builder.splitHash({
columns: ["user_id"],
splitWeights: [70, 30],
discardWeight: 0
});
```
***
### splitRandom()
```ts
splitRandom(options): PermutationBuilder
```
Configure random splits for the permutation.
#### Parameters
* **options**: [`SplitRandomOptions`](../interfaces/SplitRandomOptions.md)
Configuration for random splitting
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
// Split by ratios
builder.splitRandom({ ratios: [0.7, 0.3], seed: 42 });
// Split by counts
builder.splitRandom({ counts: [1000, 500], seed: 42 });
// Split with fixed size
builder.splitRandom({ fixed: 100, seed: 42 });
```
***
### splitSequential()
```ts
splitSequential(options): PermutationBuilder
```
Configure sequential splits for the permutation.
#### Parameters
* **options**: [`SplitSequentialOptions`](../interfaces/SplitSequentialOptions.md)
Configuration for sequential splitting
#### Returns
[`PermutationBuilder`](PermutationBuilder.md)
A new PermutationBuilder instance
#### Example
```ts
// Split by ratios
builder.splitSequential({ ratios: [0.8, 0.2] });
// Split by counts
builder.splitSequential({ counts: [800, 200] });
// Split with fixed size
builder.splitSequential({ fixed: 1000 });
```

View File

@@ -0,0 +1,37 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / permutationBuilder
# Function: permutationBuilder()
```ts
function permutationBuilder(table, destTableName): PermutationBuilder
```
Create a permutation builder for the given table.
## Parameters
* **table**: [`Table`](../classes/Table.md)
The source table to create a permutation from
* **destTableName**: `string`
The name for the destination permutation table
## Returns
[`PermutationBuilder`](../classes/PermutationBuilder.md)
A PermutationBuilder instance
## Example
```ts
const builder = permutationBuilder(sourceTable, "training_data")
.splitRandom({ ratios: [0.8, 0.2], seed: 42 })
.shuffle({ seed: 123 });
const trainingTable = await builder.execute();
```

View File

@@ -28,6 +28,7 @@
- [MultiMatchQuery](classes/MultiMatchQuery.md)
- [NativeJsHeaderProvider](classes/NativeJsHeaderProvider.md)
- [OAuthHeaderProvider](classes/OAuthHeaderProvider.md)
- [PermutationBuilder](classes/PermutationBuilder.md)
- [PhraseQuery](classes/PhraseQuery.md)
- [Query](classes/Query.md)
- [QueryBase](classes/QueryBase.md)
@@ -76,6 +77,10 @@
- [QueryExecutionOptions](interfaces/QueryExecutionOptions.md)
- [RemovalStats](interfaces/RemovalStats.md)
- [RetryConfig](interfaces/RetryConfig.md)
- [ShuffleOptions](interfaces/ShuffleOptions.md)
- [SplitHashOptions](interfaces/SplitHashOptions.md)
- [SplitRandomOptions](interfaces/SplitRandomOptions.md)
- [SplitSequentialOptions](interfaces/SplitSequentialOptions.md)
- [TableNamesOptions](interfaces/TableNamesOptions.md)
- [TableStatistics](interfaces/TableStatistics.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
@@ -103,3 +108,4 @@
- [connect](functions/connect.md)
- [makeArrowTable](functions/makeArrowTable.md)
- [packBits](functions/packBits.md)
- [permutationBuilder](functions/permutationBuilder.md)

View File

@@ -0,0 +1,23 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / ShuffleOptions
# Interface: ShuffleOptions
## Properties
### clumpSize?
```ts
optional clumpSize: number;
```
***
### seed?
```ts
optional seed: number;
```

View File

@@ -0,0 +1,31 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / SplitHashOptions
# Interface: SplitHashOptions
## Properties
### columns
```ts
columns: string[];
```
***
### discardWeight?
```ts
optional discardWeight: number;
```
***
### splitWeights
```ts
splitWeights: number[];
```

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / SplitRandomOptions
# Interface: SplitRandomOptions
## Properties
### counts?
```ts
optional counts: number[];
```
***
### fixed?
```ts
optional fixed: number;
```
***
### ratios?
```ts
optional ratios: number[];
```
***
### seed?
```ts
optional seed: number;
```

View File

@@ -0,0 +1,31 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / SplitSequentialOptions
# Interface: SplitSequentialOptions
## Properties
### counts?
```ts
optional counts: number[];
```
***
### fixed?
```ts
optional fixed: number;
```
***
### ratios?
```ts
optional ratios: number[];
```

View File

@@ -0,0 +1,234 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import * as tmp from "tmp";
import { Table, connect, permutationBuilder } from "../lancedb";
import { makeArrowTable } from "../lancedb/arrow";
describe("PermutationBuilder", () => {
let tmpDir: tmp.DirResult;
let table: Table;
beforeEach(async () => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
const db = await connect(tmpDir.name);
// Create test data
const data = makeArrowTable(
[
{ id: 1, value: 10 },
{ id: 2, value: 20 },
{ id: 3, value: 30 },
{ id: 4, value: 40 },
{ id: 5, value: 50 },
{ id: 6, value: 60 },
{ id: 7, value: 70 },
{ id: 8, value: 80 },
{ id: 9, value: 90 },
{ id: 10, value: 100 },
],
{ vectorColumns: {} },
);
table = await db.createTable("test_table", data);
});
afterEach(() => {
tmpDir.removeCallback();
});
test("should create permutation builder", () => {
const builder = permutationBuilder(table, "permutation_table");
expect(builder).toBeDefined();
});
test("should execute basic permutation", async () => {
const builder = permutationBuilder(table, "permutation_table");
const permutationTable = await builder.execute();
expect(permutationTable).toBeDefined();
expect(permutationTable.name).toBe("permutation_table");
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with random splits", async () => {
const builder = permutationBuilder(table, "permutation_table").splitRandom({
ratios: [1.0],
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with percentage splits", async () => {
const builder = permutationBuilder(table, "permutation_table").splitRandom({
ratios: [0.3, 0.7],
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(10);
});
test("should create permutation with count splits", async () => {
const builder = permutationBuilder(table, "permutation_table").splitRandom({
counts: [3, 7],
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBe(3);
expect(split1Count).toBe(7);
});
test("should create permutation with hash splits", async () => {
const builder = permutationBuilder(table, "permutation_table").splitHash({
columns: ["id"],
splitWeights: [50, 50],
discardWeight: 0,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check that splits exist
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(10);
});
test("should create permutation with sequential splits", async () => {
const builder = permutationBuilder(
table,
"permutation_table",
).splitSequential({ ratios: [0.5, 0.5] });
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution - sequential should give exactly 5 and 5
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBe(5);
expect(split1Count).toBe(5);
});
test("should create permutation with calculated splits", async () => {
const builder = permutationBuilder(
table,
"permutation_table",
).splitCalculated("id % 2");
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(10);
});
test("should create permutation with shuffle", async () => {
const builder = permutationBuilder(table, "permutation_table").shuffle({
seed: 42,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with shuffle and clump size", async () => {
const builder = permutationBuilder(table, "permutation_table").shuffle({
seed: 42,
clumpSize: 2,
});
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(10);
});
test("should create permutation with filter", async () => {
const builder = permutationBuilder(table, "permutation_table").filter(
"value > 50",
);
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(5); // Values 60, 70, 80, 90, 100
});
test("should chain multiple operations", async () => {
const builder = permutationBuilder(table, "permutation_table")
.filter("value <= 80")
.splitRandom({ ratios: [0.5, 0.5], seed: 42 })
.shuffle({ seed: 123 });
const permutationTable = await builder.execute();
const rowCount = await permutationTable.countRows();
expect(rowCount).toBe(8); // Values 10, 20, 30, 40, 50, 60, 70, 80
// Check split distribution
const split0Count = await permutationTable.countRows("split_id = 0");
const split1Count = await permutationTable.countRows("split_id = 1");
expect(split0Count).toBeGreaterThan(0);
expect(split1Count).toBeGreaterThan(0);
expect(split0Count + split1Count).toBe(8);
});
test("should throw error for invalid split arguments", () => {
const builder = permutationBuilder(table, "permutation_table");
// Test no arguments provided
expect(() => builder.splitRandom({})).toThrow(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
);
// Test multiple arguments provided
expect(() =>
builder.splitRandom({ ratios: [0.5, 0.5], counts: [3, 7], seed: 42 }),
).toThrow("Exactly one of 'ratios', 'counts', or 'fixed' must be provided");
});
test("should throw error when builder is consumed", async () => {
const builder = permutationBuilder(table, "permutation_table");
// Execute once
await builder.execute();
// Should throw error on second execution
await expect(builder.execute()).rejects.toThrow("Builder already consumed");
});
});

View File

@@ -43,6 +43,10 @@ export {
DeleteResult,
DropColumnsResult,
UpdateResult,
SplitRandomOptions,
SplitHashOptions,
SplitSequentialOptions,
ShuffleOptions,
} from "./native.js";
export {
@@ -111,6 +115,7 @@ export {
export { MergeInsertBuilder, WriteExecutionOptions } from "./merge";
export * as embedding from "./embedding";
export { permutationBuilder, PermutationBuilder } from "./permutation";
export * as rerankers from "./rerankers";
export {
SchemaLike,

View File

@@ -0,0 +1,188 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import {
PermutationBuilder as NativePermutationBuilder,
Table as NativeTable,
ShuffleOptions,
SplitHashOptions,
SplitRandomOptions,
SplitSequentialOptions,
permutationBuilder as nativePermutationBuilder,
} from "./native.js";
import { LocalTable, Table } from "./table";
/**
* A PermutationBuilder for creating data permutations with splits, shuffling, and filtering.
*
* This class provides a TypeScript wrapper around the native Rust PermutationBuilder,
* offering methods to configure data splits, shuffling, and filtering before executing
* the permutation to create a new table.
*/
export class PermutationBuilder {
private inner: NativePermutationBuilder;
/**
* @hidden
*/
constructor(inner: NativePermutationBuilder) {
this.inner = inner;
}
/**
* Configure random splits for the permutation.
*
* @param options - Configuration for random splitting
* @returns A new PermutationBuilder instance
* @example
* ```ts
* // Split by ratios
* builder.splitRandom({ ratios: [0.7, 0.3], seed: 42 });
*
* // Split by counts
* builder.splitRandom({ counts: [1000, 500], seed: 42 });
*
* // Split with fixed size
* builder.splitRandom({ fixed: 100, seed: 42 });
* ```
*/
splitRandom(options: SplitRandomOptions): PermutationBuilder {
const newInner = this.inner.splitRandom(options);
return new PermutationBuilder(newInner);
}
/**
* Configure hash-based splits for the permutation.
*
* @param options - Configuration for hash-based splitting
* @returns A new PermutationBuilder instance
* @example
* ```ts
* builder.splitHash({
* columns: ["user_id"],
* splitWeights: [70, 30],
* discardWeight: 0
* });
* ```
*/
splitHash(options: SplitHashOptions): PermutationBuilder {
const newInner = this.inner.splitHash(options);
return new PermutationBuilder(newInner);
}
/**
* Configure sequential splits for the permutation.
*
* @param options - Configuration for sequential splitting
* @returns A new PermutationBuilder instance
* @example
* ```ts
* // Split by ratios
* builder.splitSequential({ ratios: [0.8, 0.2] });
*
* // Split by counts
* builder.splitSequential({ counts: [800, 200] });
*
* // Split with fixed size
* builder.splitSequential({ fixed: 1000 });
* ```
*/
splitSequential(options: SplitSequentialOptions): PermutationBuilder {
const newInner = this.inner.splitSequential(options);
return new PermutationBuilder(newInner);
}
/**
* Configure calculated splits for the permutation.
*
* @param calculation - SQL expression for calculating splits
* @returns A new PermutationBuilder instance
* @example
* ```ts
* builder.splitCalculated("user_id % 3");
* ```
*/
splitCalculated(calculation: string): PermutationBuilder {
const newInner = this.inner.splitCalculated(calculation);
return new PermutationBuilder(newInner);
}
/**
* Configure shuffling for the permutation.
*
* @param options - Configuration for shuffling
* @returns A new PermutationBuilder instance
* @example
* ```ts
* // Basic shuffle
* builder.shuffle({ seed: 42 });
*
* // Shuffle with clump size
* builder.shuffle({ seed: 42, clumpSize: 10 });
* ```
*/
shuffle(options: ShuffleOptions): PermutationBuilder {
const newInner = this.inner.shuffle(options);
return new PermutationBuilder(newInner);
}
/**
* Configure filtering for the permutation.
*
* @param filter - SQL filter expression
* @returns A new PermutationBuilder instance
* @example
* ```ts
* builder.filter("age > 18 AND status = 'active'");
* ```
*/
filter(filter: string): PermutationBuilder {
const newInner = this.inner.filter(filter);
return new PermutationBuilder(newInner);
}
/**
* Execute the permutation and create the destination table.
*
* @returns A Promise that resolves to the new Table instance
* @example
* ```ts
* const permutationTable = await builder.execute();
* console.log(`Created table: ${permutationTable.name}`);
* ```
*/
async execute(): Promise<Table> {
const nativeTable: NativeTable = await this.inner.execute();
return new LocalTable(nativeTable);
}
}
/**
* Create a permutation builder for the given table.
*
* @param table - The source table to create a permutation from
* @param destTableName - The name for the destination permutation table
* @returns A PermutationBuilder instance
* @example
* ```ts
* const builder = permutationBuilder(sourceTable, "training_data")
* .splitRandom({ ratios: [0.8, 0.2], seed: 42 })
* .shuffle({ seed: 123 });
*
* const trainingTable = await builder.execute();
* ```
*/
export function permutationBuilder(
table: Table,
destTableName: string,
): PermutationBuilder {
// Extract the inner native table from the TypeScript wrapper
const localTable = table as LocalTable;
// Access inner through type assertion since it's private
const nativeBuilder = nativePermutationBuilder(
// biome-ignore lint/suspicious/noExplicitAny: need access to private variable
(localTable as any).inner,
destTableName,
);
return new PermutationBuilder(nativeBuilder);
}

View File

@@ -12,6 +12,7 @@ mod header;
mod index;
mod iterator;
pub mod merge;
pub mod permutation;
mod query;
pub mod remote;
mod rerankers;

222
nodejs/src/permutation.rs Normal file
View File

@@ -0,0 +1,222 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::{Arc, Mutex};
use crate::{error::NapiErrorExt, table::Table};
use lancedb::dataloader::{
permutation::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
split::{SplitSizes, SplitStrategy},
};
use napi_derive::napi;
#[napi(object)]
pub struct SplitRandomOptions {
pub ratios: Option<Vec<f64>>,
pub counts: Option<Vec<i64>>,
pub fixed: Option<i64>,
pub seed: Option<i64>,
}
#[napi(object)]
pub struct SplitHashOptions {
pub columns: Vec<String>,
pub split_weights: Vec<i64>,
pub discard_weight: Option<i64>,
}
#[napi(object)]
pub struct SplitSequentialOptions {
pub ratios: Option<Vec<f64>>,
pub counts: Option<Vec<i64>>,
pub fixed: Option<i64>,
}
#[napi(object)]
pub struct ShuffleOptions {
pub seed: Option<i64>,
pub clump_size: Option<i64>,
}
pub struct PermutationBuilderState {
pub builder: Option<LancePermutationBuilder>,
pub dest_table_name: String,
}
#[napi]
pub struct PermutationBuilder {
state: Arc<Mutex<PermutationBuilderState>>,
}
impl PermutationBuilder {
pub fn new(builder: LancePermutationBuilder, dest_table_name: String) -> Self {
Self {
state: Arc::new(Mutex::new(PermutationBuilderState {
builder: Some(builder),
dest_table_name,
})),
}
}
}
impl PermutationBuilder {
fn modify(
&self,
func: impl FnOnce(LancePermutationBuilder) -> LancePermutationBuilder,
) -> napi::Result<Self> {
let mut state = self.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| napi::Error::from_reason("Builder already consumed"))?;
state.builder = Some(func(builder));
Ok(Self {
state: self.state.clone(),
})
}
}
#[napi]
impl PermutationBuilder {
/// Configure random splits
#[napi]
pub fn split_random(&self, options: SplitRandomOptions) -> napi::Result<Self> {
// Check that exactly one split type is provided
let split_args_count = [
options.ratios.is_some(),
options.counts.is_some(),
options.fixed.is_some(),
]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(napi::Error::from_reason(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = options.ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = options.counts {
SplitSizes::Counts(counts.into_iter().map(|c| c as u64).collect())
} else if let Some(fixed) = options.fixed {
SplitSizes::Fixed(fixed as u64)
} else {
unreachable!("One of the split arguments must be provided");
};
let seed = options.seed.map(|s| s as u64);
self.modify(|builder| builder.with_split_strategy(SplitStrategy::Random { seed, sizes }))
}
/// Configure hash-based splits
#[napi]
pub fn split_hash(&self, options: SplitHashOptions) -> napi::Result<Self> {
let split_weights = options
.split_weights
.into_iter()
.map(|w| w as u64)
.collect();
let discard_weight = options.discard_weight.unwrap_or(0) as u64;
self.modify(|builder| {
builder.with_split_strategy(SplitStrategy::Hash {
columns: options.columns,
split_weights,
discard_weight,
})
})
}
/// Configure sequential splits
#[napi]
pub fn split_sequential(&self, options: SplitSequentialOptions) -> napi::Result<Self> {
// Check that exactly one split type is provided
let split_args_count = [
options.ratios.is_some(),
options.counts.is_some(),
options.fixed.is_some(),
]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(napi::Error::from_reason(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = options.ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = options.counts {
SplitSizes::Counts(counts.into_iter().map(|c| c as u64).collect())
} else if let Some(fixed) = options.fixed {
SplitSizes::Fixed(fixed as u64)
} else {
unreachable!("One of the split arguments must be provided");
};
self.modify(|builder| builder.with_split_strategy(SplitStrategy::Sequential { sizes }))
}
/// Configure calculated splits
#[napi]
pub fn split_calculated(&self, calculation: String) -> napi::Result<Self> {
self.modify(|builder| {
builder.with_split_strategy(SplitStrategy::Calculated { calculation })
})
}
/// Configure shuffling
#[napi]
pub fn shuffle(&self, options: ShuffleOptions) -> napi::Result<Self> {
let seed = options.seed.map(|s| s as u64);
let clump_size = options.clump_size.map(|c| c as u64);
self.modify(|builder| {
builder.with_shuffle_strategy(ShuffleStrategy::Random { seed, clump_size })
})
}
/// Configure filtering
#[napi]
pub fn filter(&self, filter: String) -> napi::Result<Self> {
self.modify(|builder| builder.with_filter(filter))
}
/// Execute the permutation builder and create the table
#[napi]
pub async fn execute(&self) -> napi::Result<Table> {
let (builder, dest_table_name) = {
let mut state = self.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| napi::Error::from_reason("Builder already consumed"))?;
let dest_table_name = std::mem::take(&mut state.dest_table_name);
(builder, dest_table_name)
};
let table = builder.build(&dest_table_name).await.default_error()?;
Ok(Table::new(table))
}
}
/// Create a permutation builder for the given table
#[napi]
pub fn permutation_builder(
table: &crate::table::Table,
dest_table_name: String,
) -> napi::Result<PermutationBuilder> {
use lancedb::dataloader::permutation::PermutationBuilder as LancePermutationBuilder;
let inner_table = table.inner_ref()?.clone();
let inner_builder = LancePermutationBuilder::new(inner_table);
Ok(PermutationBuilder::new(inner_builder, dest_table_name))
}

View File

@@ -26,7 +26,7 @@ pub struct Table {
}
impl Table {
fn inner_ref(&self) -> napi::Result<&LanceDbTable> {
pub(crate) fn inner_ref(&self) -> napi::Result<&LanceDbTable> {
self.inner
.as_ref()
.ok_or_else(|| napi::Error::from_reason(format!("Table {} is closed", self.name)))

View File

@@ -296,3 +296,34 @@ class AlterColumnsResult:
class DropColumnsResult:
version: int
class AsyncPermutationBuilder:
def select(self, projections: Dict[str, str]) -> "AsyncPermutationBuilder": ...
def split_random(
self,
*,
ratios: Optional[List[float]] = None,
counts: Optional[List[int]] = None,
fixed: Optional[int] = None,
seed: Optional[int] = None,
) -> "AsyncPermutationBuilder": ...
def split_hash(
self, columns: List[str], split_weights: List[int], *, discard_weight: int = 0
) -> "AsyncPermutationBuilder": ...
def split_sequential(
self,
*,
ratios: Optional[List[float]] = None,
counts: Optional[List[int]] = None,
fixed: Optional[int] = None,
) -> "AsyncPermutationBuilder": ...
def split_calculated(self, calculation: str) -> "AsyncPermutationBuilder": ...
def shuffle(
self, seed: Optional[int], clump_size: Optional[int]
) -> "AsyncPermutationBuilder": ...
def filter(self, filter: str) -> "AsyncPermutationBuilder": ...
async def execute(self) -> Table: ...
def async_permutation_builder(
table: Table, dest_table_name: str
) -> AsyncPermutationBuilder: ...

View File

@@ -5,6 +5,7 @@
from __future__ import annotations
from abc import abstractmethod
from datetime import timedelta
from pathlib import Path
import sys
from typing import TYPE_CHECKING, Dict, Iterable, List, Literal, Optional, Union
@@ -40,7 +41,6 @@ import deprecation
if TYPE_CHECKING:
import pyarrow as pa
from .pydantic import LanceModel
from datetime import timedelta
from ._lancedb import Connection as LanceDbConnection
from .common import DATA, URI
@@ -452,7 +452,12 @@ class LanceDBConnection(DBConnection):
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
_inner: Optional[LanceDbConnection] = None,
):
if _inner is not None:
self._conn = _inner
return
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
@@ -461,11 +466,6 @@ class LanceDBConnection(DBConnection):
uri = Path(uri)
uri = uri.expanduser().absolute()
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options
self.session = session
if read_consistency_interval is not None:
read_consistency_interval_secs = read_consistency_interval.total_seconds()
@@ -484,10 +484,32 @@ class LanceDBConnection(DBConnection):
session,
)
# TODO: It would be nice if we didn't store self.storage_options but it is
# currently used by the LanceTable.to_lance method. This doesn't _really_
# work because some paths like LanceDBConnection.from_inner will lose the
# storage_options. Also, this class really shouldn't be holding any state
# beyond _conn.
self.storage_options = storage_options
self._conn = AsyncConnection(LOOP.run(do_connect()))
@property
def read_consistency_interval(self) -> Optional[timedelta]:
return LOOP.run(self._conn.get_read_consistency_interval())
@property
def session(self) -> Optional[Session]:
return self._conn.session
@property
def uri(self) -> str:
return self._conn.uri
@classmethod
def from_inner(cls, inner: LanceDbConnection):
return cls(None, _inner=inner)
def __repr__(self) -> str:
val = f"{self.__class__.__name__}(uri={self._uri!r}"
val = f"{self.__class__.__name__}(uri={self._conn.uri!r}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
@@ -497,6 +519,10 @@ class LanceDBConnection(DBConnection):
conn = AsyncConnection(await lancedb_connect(self.uri))
return await conn.table_names(start_after=start_after, limit=limit)
@property
def _inner(self) -> LanceDbConnection:
return self._conn._inner
@override
def list_namespaces(
self,
@@ -856,6 +882,13 @@ class AsyncConnection(object):
def uri(self) -> str:
return self._inner.uri
async def get_read_consistency_interval(self) -> Optional[timedelta]:
interval_secs = await self._inner.get_read_consistency_interval()
if interval_secs is not None:
return timedelta(seconds=interval_secs)
else:
return None
async def list_namespaces(
self,
namespace: List[str] = [],

View File

@@ -0,0 +1,72 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from ._lancedb import async_permutation_builder
from .table import LanceTable
from .background_loop import LOOP
from typing import Optional
class PermutationBuilder:
def __init__(self, table: LanceTable, dest_table_name: str):
self._async = async_permutation_builder(table, dest_table_name)
def select(self, projections: dict[str, str]) -> "PermutationBuilder":
self._async.select(projections)
return self
def split_random(
self,
*,
ratios: Optional[list[float]] = None,
counts: Optional[list[int]] = None,
fixed: Optional[int] = None,
seed: Optional[int] = None,
) -> "PermutationBuilder":
self._async.split_random(ratios=ratios, counts=counts, fixed=fixed, seed=seed)
return self
def split_hash(
self,
columns: list[str],
split_weights: list[int],
*,
discard_weight: Optional[int] = None,
) -> "PermutationBuilder":
self._async.split_hash(columns, split_weights, discard_weight=discard_weight)
return self
def split_sequential(
self,
*,
ratios: Optional[list[float]] = None,
counts: Optional[list[int]] = None,
fixed: Optional[int] = None,
) -> "PermutationBuilder":
self._async.split_sequential(ratios=ratios, counts=counts, fixed=fixed)
return self
def split_calculated(self, calculation: str) -> "PermutationBuilder":
self._async.split_calculated(calculation)
return self
def shuffle(
self, *, seed: Optional[int] = None, clump_size: Optional[int] = None
) -> "PermutationBuilder":
self._async.shuffle(seed=seed, clump_size=clump_size)
return self
def filter(self, filter: str) -> "PermutationBuilder":
self._async.filter(filter)
return self
def execute(self) -> LanceTable:
async def do_execute():
inner_tbl = await self._async.execute()
return LanceTable.from_inner(inner_tbl)
return LOOP.run(do_execute())
def permutation_builder(table: LanceTable, dest_table_name: str) -> PermutationBuilder:
return PermutationBuilder(table, dest_table_name)

View File

@@ -74,6 +74,7 @@ from .index import lang_mapping
if TYPE_CHECKING:
from .db import LanceDBConnection
from ._lancedb import (
Table as LanceDBTable,
OptimizeStats,
@@ -88,7 +89,6 @@ if TYPE_CHECKING:
MergeResult,
UpdateResult,
)
from .db import LanceDBConnection
from .index import IndexConfig
import pandas
import PIL
@@ -1707,22 +1707,38 @@ class LanceTable(Table):
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
_async: AsyncTable = None,
):
self._conn = connection
self._namespace = namespace
self._table = LOOP.run(
connection._conn.open_table(
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
if _async is not None:
self._table = _async
else:
self._table = LOOP.run(
connection._conn.open_table(
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
)
)
@property
def name(self) -> str:
return self._table.name
@classmethod
def from_inner(cls, tbl: LanceDBTable):
from .db import LanceDBConnection
async_tbl = AsyncTable(tbl)
conn = LanceDBConnection.from_inner(tbl.database())
return cls(
conn,
async_tbl.name,
_async=async_tbl,
)
@classmethod
def open(cls, db, name, *, namespace: List[str] = [], **kwargs):
tbl = cls(db, name, namespace=namespace, **kwargs)
@@ -2756,6 +2772,10 @@ class LanceTable(Table):
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
)
@property
def _inner(self) -> LanceDBTable:
return self._table._inner
@deprecation.deprecated(
deprecated_in="0.21.0",
current_version=__version__,

View File

@@ -0,0 +1,496 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import pyarrow as pa
import pytest
from lancedb.permutation import permutation_builder
def test_split_random_ratios(mem_db):
"""Test random splitting with ratios."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_random(ratios=[0.3, 0.7])
.execute()
)
# Check that the table was created and has data
assert permutation_tbl.count_rows() == 100
# Check that split_id column exists and has correct values
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert set(split_ids) == {0, 1}
# Check approximate split sizes (allowing for rounding)
split_0_count = split_ids.count(0)
split_1_count = split_ids.count(1)
assert 25 <= split_0_count <= 35 # ~30% ± tolerance
assert 65 <= split_1_count <= 75 # ~70% ± tolerance
def test_split_random_counts(mem_db):
"""Test random splitting with absolute counts."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_random(counts=[20, 30])
.execute()
)
# Check that we have exactly the requested counts
assert permutation_tbl.count_rows() == 50
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert split_ids.count(0) == 20
assert split_ids.count(1) == 30
def test_split_random_fixed(mem_db):
"""Test random splitting with fixed number of splits."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation").split_random(fixed=4).execute()
)
# Check that we have 4 splits with 25 rows each
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert set(split_ids) == {0, 1, 2, 3}
for split_id in range(4):
assert split_ids.count(split_id) == 25
def test_split_random_with_seed(mem_db):
"""Test that seeded random splits are reproducible."""
tbl = mem_db.create_table("test_table", pa.table({"x": range(50), "y": range(50)}))
# Create two identical permutations with same seed
perm1 = (
permutation_builder(tbl, "perm1")
.split_random(ratios=[0.6, 0.4], seed=42)
.execute()
)
perm2 = (
permutation_builder(tbl, "perm2")
.split_random(ratios=[0.6, 0.4], seed=42)
.execute()
)
# Results should be identical
data1 = perm1.search(None).to_arrow().to_pydict()
data2 = perm2.search(None).to_arrow().to_pydict()
assert data1["row_id"] == data2["row_id"]
assert data1["split_id"] == data2["split_id"]
def test_split_hash(mem_db):
"""Test hash-based splitting."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C"] * 34)[:100], # Repeating pattern
"value": range(100),
}
),
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_hash(["category"], [1, 1], discard_weight=0)
.execute()
)
# Should have all 100 rows (no discard)
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
split_ids = data["split_id"]
assert set(split_ids) == {0, 1}
# Verify that each split has roughly 50 rows (allowing for hash variance)
split_0_count = split_ids.count(0)
split_1_count = split_ids.count(1)
assert 30 <= split_0_count <= 70 # ~50 ± 20 tolerance for hash distribution
assert 30 <= split_1_count <= 70 # ~50 ± 20 tolerance for hash distribution
# Hash splits should be deterministic - same category should go to same split
# Let's verify by creating another permutation and checking consistency
perm2 = (
permutation_builder(tbl, "test_permutation2")
.split_hash(["category"], [1, 1], discard_weight=0)
.execute()
)
data2 = perm2.search(None).to_arrow().to_pydict()
assert data["split_id"] == data2["split_id"] # Should be identical
def test_split_hash_with_discard(mem_db):
"""Test hash-based splitting with discard weight."""
tbl = mem_db.create_table(
"test_table",
pa.table({"id": range(100), "category": ["A", "B"] * 50, "value": range(100)}),
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_hash(["category"], [1, 1], discard_weight=2) # Should discard ~50%
.execute()
)
# Should have fewer than 100 rows due to discard
row_count = permutation_tbl.count_rows()
assert row_count < 100
assert row_count > 0 # But not empty
def test_split_sequential(mem_db):
"""Test sequential splitting."""
tbl = mem_db.create_table(
"test_table", pa.table({"x": range(100), "y": range(100)})
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_sequential(counts=[30, 40])
.execute()
)
assert permutation_tbl.count_rows() == 70
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
split_ids = data["split_id"]
# Sequential should maintain order
assert row_ids == sorted(row_ids)
# First 30 should be split 0, next 40 should be split 1
assert split_ids[:30] == [0] * 30
assert split_ids[30:] == [1] * 40
def test_split_calculated(mem_db):
"""Test calculated splitting."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100)})
)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_calculated("id % 3") # Split based on id modulo 3
.execute()
)
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
split_ids = data["split_id"]
# Verify the calculation: each row's split_id should equal row_id % 3
for i, (row_id, split_id) in enumerate(zip(row_ids, split_ids)):
assert split_id == row_id % 3
def test_split_error_cases(mem_db):
"""Test error handling for invalid split parameters."""
tbl = mem_db.create_table("test_table", pa.table({"x": range(10), "y": range(10)}))
# Test split_random with no parameters
with pytest.raises(Exception):
permutation_builder(tbl, "error1").split_random().execute()
# Test split_random with multiple parameters
with pytest.raises(Exception):
permutation_builder(tbl, "error2").split_random(
ratios=[0.5, 0.5], counts=[5, 5]
).execute()
# Test split_sequential with no parameters
with pytest.raises(Exception):
permutation_builder(tbl, "error3").split_sequential().execute()
# Test split_sequential with multiple parameters
with pytest.raises(Exception):
permutation_builder(tbl, "error4").split_sequential(
ratios=[0.5, 0.5], fixed=2
).execute()
def test_shuffle_no_seed(mem_db):
"""Test shuffling without a seed."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100)})
)
# Create a permutation with shuffling (no seed)
permutation_tbl = permutation_builder(tbl, "test_permutation").shuffle().execute()
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
# Row IDs should not be in sequential order due to shuffling
# This is probabilistic but with 100 rows, it's extremely unlikely they'd stay
# in order
assert row_ids != list(range(100))
def test_shuffle_with_seed(mem_db):
"""Test that shuffling with a seed is reproducible."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(50), "value": range(50)})
)
# Create two identical permutations with same shuffle seed
perm1 = permutation_builder(tbl, "perm1").shuffle(seed=42).execute()
perm2 = permutation_builder(tbl, "perm2").shuffle(seed=42).execute()
# Results should be identical due to same seed
data1 = perm1.search(None).to_arrow().to_pydict()
data2 = perm2.search(None).to_arrow().to_pydict()
assert data1["row_id"] == data2["row_id"]
assert data1["split_id"] == data2["split_id"]
def test_shuffle_with_clump_size(mem_db):
"""Test shuffling with clump size."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100)})
)
# Create a permutation with shuffling using clumps
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.shuffle(clump_size=10) # 10-row clumps
.execute()
)
assert permutation_tbl.count_rows() == 100
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
for i in range(10):
start = row_ids[i * 10]
assert row_ids[i * 10 : (i + 1) * 10] == list(range(start, start + 10))
def test_shuffle_different_seeds(mem_db):
"""Test that different seeds produce different shuffle orders."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(50), "value": range(50)})
)
# Create two permutations with different shuffle seeds
perm1 = (
permutation_builder(tbl, "perm1")
.split_random(fixed=2)
.shuffle(seed=42)
.execute()
)
perm2 = (
permutation_builder(tbl, "perm2")
.split_random(fixed=2)
.shuffle(seed=123)
.execute()
)
# Results should be different due to different seeds
data1 = perm1.search(None).to_arrow().to_pydict()
data2 = perm2.search(None).to_arrow().to_pydict()
# Row order should be different
assert data1["row_id"] != data2["row_id"]
def test_shuffle_combined_with_splits(mem_db):
"""Test shuffling combined with different split strategies."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C"] * 34)[:100],
"value": range(100),
}
),
)
# Test shuffle with random splits
perm_random = (
permutation_builder(tbl, "perm_random")
.split_random(ratios=[0.6, 0.4], seed=42)
.shuffle(seed=123, clump_size=None)
.execute()
)
# Test shuffle with hash splits
perm_hash = (
permutation_builder(tbl, "perm_hash")
.split_hash(["category"], [1, 1], discard_weight=0)
.shuffle(seed=456, clump_size=5)
.execute()
)
# Test shuffle with sequential splits
perm_sequential = (
permutation_builder(tbl, "perm_sequential")
.split_sequential(counts=[40, 35])
.shuffle(seed=789, clump_size=None)
.execute()
)
# Verify all permutations work and have expected properties
assert perm_random.count_rows() == 100
assert perm_hash.count_rows() == 100
assert perm_sequential.count_rows() == 75
# Verify shuffle affected the order
data_random = perm_random.search(None).to_arrow().to_pydict()
data_sequential = perm_sequential.search(None).to_arrow().to_pydict()
assert data_random["row_id"] != list(range(100))
assert data_sequential["row_id"] != list(range(75))
def test_no_shuffle_maintains_order(mem_db):
"""Test that not calling shuffle maintains the original order."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(50), "value": range(50)})
)
# Create permutation without shuffle (should maintain some order)
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.split_sequential(counts=[25, 25]) # Sequential maintains order
.execute()
)
assert permutation_tbl.count_rows() == 50
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
# With sequential splits and no shuffle, should maintain order
assert row_ids == list(range(50))
def test_filter_basic(mem_db):
"""Test basic filtering functionality."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(100), "value": range(100, 200)})
)
# Filter to only include rows where id < 50
permutation_tbl = (
permutation_builder(tbl, "test_permutation").filter("id < 50").execute()
)
assert permutation_tbl.count_rows() == 50
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
# All row_ids should be less than 50
assert all(row_id < 50 for row_id in row_ids)
def test_filter_with_splits(mem_db):
"""Test filtering combined with split strategies."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C"] * 34)[:100],
"value": range(100),
}
),
)
# Filter to only category A and B, then split
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.filter("category IN ('A', 'B')")
.split_random(ratios=[0.5, 0.5])
.execute()
)
# Should have fewer than 100 rows due to filtering
row_count = permutation_tbl.count_rows()
assert row_count == 67
data = permutation_tbl.search(None).to_arrow().to_pydict()
categories = data["category"]
# All categories should be A or B
assert all(cat in ["A", "B"] for cat in categories)
def test_filter_with_shuffle(mem_db):
"""Test filtering combined with shuffling."""
tbl = mem_db.create_table(
"test_table",
pa.table(
{
"id": range(100),
"category": (["A", "B", "C", "D"] * 25)[:100],
"value": range(100),
}
),
)
# Filter and shuffle
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.filter("category IN ('A', 'C')")
.shuffle(seed=42)
.execute()
)
row_count = permutation_tbl.count_rows()
assert row_count == 50 # Should have 50 rows (A and C categories)
data = permutation_tbl.search(None).to_arrow().to_pydict()
row_ids = data["row_id"]
assert row_ids != sorted(row_ids)
def test_filter_empty_result(mem_db):
"""Test filtering that results in empty set."""
tbl = mem_db.create_table(
"test_table", pa.table({"id": range(10), "value": range(10)})
)
# Filter that matches nothing
permutation_tbl = (
permutation_builder(tbl, "test_permutation")
.filter("value > 100") # No values > 100 in our data
.execute()
)
assert permutation_tbl.count_rows() == 0

View File

@@ -4,7 +4,10 @@
use std::{collections::HashMap, sync::Arc, time::Duration};
use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow};
use lancedb::{connection::Connection as LanceConnection, database::CreateTableMode};
use lancedb::{
connection::Connection as LanceConnection,
database::{CreateTableMode, ReadConsistency},
};
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyclass, pyfunction, pymethods, Bound, FromPyObject, Py, PyAny, PyRef, PyResult, Python,
@@ -23,7 +26,7 @@ impl Connection {
Self { inner: Some(inner) }
}
fn get_inner(&self) -> PyResult<&LanceConnection> {
pub(crate) fn get_inner(&self) -> PyResult<&LanceConnection> {
self.inner
.as_ref()
.ok_or_else(|| PyRuntimeError::new_err("Connection is closed"))
@@ -63,6 +66,18 @@ impl Connection {
self.get_inner().map(|inner| inner.uri().to_string())
}
#[pyo3(signature = ())]
pub fn get_read_consistency_interval(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
Ok(match inner.read_consistency().await.infer_error()? {
ReadConsistency::Manual => None,
ReadConsistency::Eventual(duration) => Some(duration.as_secs_f64()),
ReadConsistency::Strong => Some(0.0_f64),
})
})
}
#[pyo3(signature = (namespace=vec![], start_after=None, limit=None))]
pub fn table_names(
self_: PyRef<'_, Self>,

View File

@@ -5,6 +5,7 @@ use arrow::RecordBatchStream;
use connection::{connect, Connection};
use env_logger::Env;
use index::IndexConfig;
use permutation::PyAsyncPermutationBuilder;
use pyo3::{
pymodule,
types::{PyModule, PyModuleMethods},
@@ -22,6 +23,7 @@ pub mod connection;
pub mod error;
pub mod header;
pub mod index;
pub mod permutation;
pub mod query;
pub mod session;
pub mod table;
@@ -49,7 +51,9 @@ pub fn _lancedb(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_class::<DeleteResult>()?;
m.add_class::<DropColumnsResult>()?;
m.add_class::<UpdateResult>()?;
m.add_class::<PyAsyncPermutationBuilder>()?;
m.add_function(wrap_pyfunction!(connect, m)?)?;
m.add_function(wrap_pyfunction!(permutation::async_permutation_builder, m)?)?;
m.add_function(wrap_pyfunction!(util::validate_table_name, m)?)?;
m.add("__version__", env!("CARGO_PKG_VERSION"))?;
Ok(())

177
python/src/permutation.rs Normal file
View File

@@ -0,0 +1,177 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::{Arc, Mutex};
use crate::{error::PythonErrorExt, table::Table};
use lancedb::dataloader::{
permutation::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
split::{SplitSizes, SplitStrategy},
};
use pyo3::{
exceptions::PyRuntimeError, pyclass, pymethods, types::PyAnyMethods, Bound, PyAny, PyRefMut,
PyResult,
};
use pyo3_async_runtimes::tokio::future_into_py;
/// Create a permutation builder for the given table
#[pyo3::pyfunction]
pub fn async_permutation_builder(
table: Bound<'_, PyAny>,
dest_table_name: String,
) -> PyResult<PyAsyncPermutationBuilder> {
let table = table.getattr("_inner")?.downcast_into::<Table>()?;
let inner_table = table.borrow().inner_ref()?.clone();
let inner_builder = LancePermutationBuilder::new(inner_table);
Ok(PyAsyncPermutationBuilder {
state: Arc::new(Mutex::new(PyAsyncPermutationBuilderState {
builder: Some(inner_builder),
dest_table_name,
})),
})
}
struct PyAsyncPermutationBuilderState {
builder: Option<LancePermutationBuilder>,
dest_table_name: String,
}
#[pyclass(name = "AsyncPermutationBuilder")]
pub struct PyAsyncPermutationBuilder {
state: Arc<Mutex<PyAsyncPermutationBuilderState>>,
}
impl PyAsyncPermutationBuilder {
fn modify(
&self,
func: impl FnOnce(LancePermutationBuilder) -> LancePermutationBuilder,
) -> PyResult<Self> {
let mut state = self.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| PyRuntimeError::new_err("Builder already consumed"))?;
state.builder = Some(func(builder));
Ok(Self {
state: self.state.clone(),
})
}
}
#[pymethods]
impl PyAsyncPermutationBuilder {
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None, seed=None))]
pub fn split_random(
slf: PyRefMut<'_, Self>,
ratios: Option<Vec<f64>>,
counts: Option<Vec<u64>>,
fixed: Option<u64>,
seed: Option<u64>,
) -> PyResult<Self> {
// Check that exactly one split type is provided
let split_args_count = [ratios.is_some(), counts.is_some(), fixed.is_some()]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(pyo3::exceptions::PyValueError::new_err(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = counts {
SplitSizes::Counts(counts)
} else if let Some(fixed) = fixed {
SplitSizes::Fixed(fixed)
} else {
unreachable!("One of the split arguments must be provided");
};
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Random { seed, sizes }))
}
#[pyo3(signature = (columns, split_weights, *, discard_weight=0))]
pub fn split_hash(
slf: PyRefMut<'_, Self>,
columns: Vec<String>,
split_weights: Vec<u64>,
discard_weight: u64,
) -> PyResult<Self> {
slf.modify(|builder| {
builder.with_split_strategy(SplitStrategy::Hash {
columns,
split_weights,
discard_weight,
})
})
}
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None))]
pub fn split_sequential(
slf: PyRefMut<'_, Self>,
ratios: Option<Vec<f64>>,
counts: Option<Vec<u64>>,
fixed: Option<u64>,
) -> PyResult<Self> {
// Check that exactly one split type is provided
let split_args_count = [ratios.is_some(), counts.is_some(), fixed.is_some()]
.iter()
.filter(|&&x| x)
.count();
if split_args_count != 1 {
return Err(pyo3::exceptions::PyValueError::new_err(
"Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
));
}
let sizes = if let Some(ratios) = ratios {
SplitSizes::Percentages(ratios)
} else if let Some(counts) = counts {
SplitSizes::Counts(counts)
} else if let Some(fixed) = fixed {
SplitSizes::Fixed(fixed)
} else {
unreachable!("One of the split arguments must be provided");
};
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Sequential { sizes }))
}
pub fn split_calculated(slf: PyRefMut<'_, Self>, calculation: String) -> PyResult<Self> {
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Calculated { calculation }))
}
pub fn shuffle(
slf: PyRefMut<'_, Self>,
seed: Option<u64>,
clump_size: Option<u64>,
) -> PyResult<Self> {
slf.modify(|builder| {
builder.with_shuffle_strategy(ShuffleStrategy::Random { seed, clump_size })
})
}
pub fn filter(slf: PyRefMut<'_, Self>, filter: String) -> PyResult<Self> {
slf.modify(|builder| builder.with_filter(filter))
}
pub fn execute(slf: PyRefMut<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let mut state = slf.state.lock().unwrap();
let builder = state
.builder
.take()
.ok_or_else(|| PyRuntimeError::new_err("Builder already consumed"))?;
let dest_table_name = std::mem::take(&mut state.dest_table_name);
future_into_py(slf.py(), async move {
let table = builder.build(&dest_table_name).await.infer_error()?;
Ok(Table::new(table))
})
}
}

View File

@@ -3,6 +3,7 @@
use std::{collections::HashMap, sync::Arc};
use crate::{
connection::Connection,
error::PythonErrorExt,
index::{extract_index_params, IndexConfig},
query::{Query, TakeQuery},
@@ -249,7 +250,7 @@ impl Table {
}
impl Table {
fn inner_ref(&self) -> PyResult<&LanceDbTable> {
pub(crate) fn inner_ref(&self) -> PyResult<&LanceDbTable> {
self.inner
.as_ref()
.ok_or_else(|| PyRuntimeError::new_err(format!("Table {} is closed", self.name)))
@@ -272,6 +273,13 @@ impl Table {
self.inner.take();
}
pub fn database(&self) -> PyResult<Connection> {
let inner = self.inner_ref()?.clone();
let inner_connection =
lancedb::Connection::new(inner.database().clone(), inner.embedding_registry().clone());
Ok(Connection::new(inner_connection))
}
pub fn schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {

View File

@@ -11,6 +11,7 @@ rust-version.workspace = true
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
ahash = { workspace = true }
arrow = { workspace = true }
arrow-array = { workspace = true }
arrow-data = { workspace = true }
@@ -24,12 +25,16 @@ datafusion-common.workspace = true
datafusion-execution.workspace = true
datafusion-expr.workspace = true
datafusion-physical-plan.workspace = true
datafusion.workspace = true
object_store = { workspace = true }
snafu = { workspace = true }
half = { workspace = true }
lazy_static.workspace = true
lance = { workspace = true }
lance-core = { workspace = true }
lance-datafusion.workspace = true
lance-datagen = { workspace = true }
lance-file = { workspace = true }
lance-io = { workspace = true }
lance-index = { workspace = true }
lance-table = { workspace = true }
@@ -46,11 +51,13 @@ bytes = "1"
futures.workspace = true
num-traits.workspace = true
url.workspace = true
rand.workspace = true
regex.workspace = true
serde = { version = "^1" }
serde_json = { version = "1" }
async-openai = { version = "0.20.0", optional = true }
serde_with = { version = "3.8.1" }
tempfile = "3.5.0"
aws-sdk-bedrockruntime = { version = "1.27.0", optional = true }
# For remote feature
reqwest = { version = "0.12.0", default-features = false, features = [
@@ -61,9 +68,8 @@ reqwest = { version = "0.12.0", default-features = false, features = [
"macos-system-configuration",
"stream",
], optional = true }
rand = { version = "0.9", features = ["small_rng"], optional = true }
http = { version = "1", optional = true } # Matching what is in reqwest
uuid = { version = "1.7.0", features = ["v4"], optional = true }
uuid = { version = "1.7.0", features = ["v4"] }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
hf-hub = { version = "0.4.1", optional = true, default-features = false, features = [
@@ -84,7 +90,6 @@ bytemuck_derive.workspace = true
[dev-dependencies]
anyhow = "1"
tempfile = "3.5.0"
rand = { version = "0.9", features = ["small_rng"] }
random_word = { version = "0.4.3", features = ["en"] }
uuid = { version = "1.7.0", features = ["v4"] }
walkdir = "2"
@@ -96,6 +101,7 @@ aws-smithy-runtime = { version = "1.9.1" }
datafusion.workspace = true
http-body = "1" # Matching reqwest
rstest = "0.23.0"
test-log = "0.2"
[features]
@@ -105,7 +111,7 @@ oss = ["lance/oss", "lance-io/oss"]
gcs = ["lance/gcp", "lance-io/gcp"]
azure = ["lance/azure", "lance-io/azure"]
dynamodb = ["lance/dynamodb", "aws"]
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
remote = ["dep:reqwest", "dep:http"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
bedrock = ["dep:aws-sdk-bedrockruntime"]

View File

@@ -7,6 +7,7 @@ pub use arrow_schema;
use datafusion_common::DataFusionError;
use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
use futures::{Stream, StreamExt, TryStreamExt};
use lance_datagen::{BatchCount, BatchGeneratorBuilder, RowCount};
#[cfg(feature = "polars")]
use {crate::polars_arrow_convertors, polars::frame::ArrowChunk, polars::prelude::DataFrame};
@@ -161,6 +162,26 @@ impl IntoArrowStream for datafusion_physical_plan::SendableRecordBatchStream {
}
}
pub trait LanceDbDatagenExt {
fn into_ldb_stream(
self,
batch_size: RowCount,
num_batches: BatchCount,
) -> SendableRecordBatchStream;
}
impl LanceDbDatagenExt for BatchGeneratorBuilder {
fn into_ldb_stream(
self,
batch_size: RowCount,
num_batches: BatchCount,
) -> SendableRecordBatchStream {
let (stream, schema) = self.into_reader_stream(batch_size, num_batches);
let stream = stream.map_err(|err| Error::Arrow { source: err });
Box::pin(SimpleRecordBatchStream::new(stream, schema))
}
}
#[cfg(feature = "polars")]
/// An iterator of record batches formed from a Polars DataFrame.
pub struct PolarsDataFrameRecordBatchReader {

View File

@@ -19,7 +19,7 @@ use crate::database::listing::{
use crate::database::{
CloneTableRequest, CreateNamespaceRequest, CreateTableData, CreateTableMode,
CreateTableRequest, Database, DatabaseOptions, DropNamespaceRequest, ListNamespacesRequest,
OpenTableRequest, TableNamesRequest,
OpenTableRequest, ReadConsistency, TableNamesRequest,
};
use crate::embeddings::{
EmbeddingDefinition, EmbeddingFunction, EmbeddingRegistry, MemoryRegistry, WithEmbeddings,
@@ -152,6 +152,7 @@ impl CreateTableBuilder<true> {
let request = self.into_request()?;
Ok(Table::new_with_embedding_registry(
parent.create_table(request).await?,
parent,
embedding_registry,
))
}
@@ -211,9 +212,9 @@ impl CreateTableBuilder<false> {
/// Execute the create table operation
pub async fn execute(self) -> Result<Table> {
Ok(Table::new(
self.parent.clone().create_table(self.request).await?,
))
let parent = self.parent.clone();
let table = parent.create_table(self.request).await?;
Ok(Table::new(table, parent))
}
}
@@ -462,8 +463,10 @@ impl OpenTableBuilder {
/// Open the table
pub async fn execute(self) -> Result<Table> {
let table = self.parent.open_table(self.request).await?;
Ok(Table::new_with_embedding_registry(
self.parent.clone().open_table(self.request).await?,
table,
self.parent,
self.embedding_registry,
))
}
@@ -519,16 +522,15 @@ impl CloneTableBuilder {
/// Execute the clone operation
pub async fn execute(self) -> Result<Table> {
Ok(Table::new(
self.parent.clone().clone_table(self.request).await?,
))
let parent = self.parent.clone();
let table = parent.clone_table(self.request).await?;
Ok(Table::new(table, parent))
}
}
/// A connection to LanceDB
#[derive(Clone)]
pub struct Connection {
uri: String,
internal: Arc<dyn Database>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
}
@@ -540,9 +542,19 @@ impl std::fmt::Display for Connection {
}
impl Connection {
pub fn new(
internal: Arc<dyn Database>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
) -> Self {
Self {
internal,
embedding_registry,
}
}
/// Get the URI of the connection
pub fn uri(&self) -> &str {
self.uri.as_str()
self.internal.uri()
}
/// Get access to the underlying database
@@ -675,6 +687,11 @@ impl Connection {
.await
}
/// Get the read consistency of the connection
pub async fn read_consistency(&self) -> Result<ReadConsistency> {
self.internal.read_consistency().await
}
/// Drop a table in the database.
///
/// # Arguments
@@ -973,7 +990,6 @@ impl ConnectBuilder {
)?);
Ok(Connection {
internal,
uri: self.request.uri,
embedding_registry: self
.embedding_registry
.unwrap_or_else(|| Arc::new(MemoryRegistry::new())),
@@ -996,7 +1012,6 @@ impl ConnectBuilder {
let internal = Arc::new(ListingDatabase::connect_with_options(&self.request).await?);
Ok(Connection {
internal,
uri: self.request.uri,
embedding_registry: self
.embedding_registry
.unwrap_or_else(|| Arc::new(MemoryRegistry::new())),
@@ -1104,7 +1119,6 @@ impl ConnectNamespaceBuilder {
Ok(Connection {
internal,
uri: format!("namespace://{}", self.ns_impl),
embedding_registry: self
.embedding_registry
.unwrap_or_else(|| Arc::new(MemoryRegistry::new())),
@@ -1139,7 +1153,6 @@ mod test_utils {
let internal = Arc::new(crate::remote::db::RemoteDatabase::new_mock(handler));
Self {
internal,
uri: "db://test".to_string(),
embedding_registry: Arc::new(MemoryRegistry::new()),
}
}
@@ -1156,7 +1169,6 @@ mod test_utils {
));
Self {
internal,
uri: "db://test".to_string(),
embedding_registry: Arc::new(MemoryRegistry::new()),
}
}
@@ -1187,7 +1199,7 @@ mod tests {
#[tokio::test]
async fn test_connect() {
let tc = new_test_connection().await.unwrap();
assert_eq!(tc.connection.uri, tc.uri);
assert_eq!(tc.connection.uri(), tc.uri);
}
#[cfg(not(windows))]
@@ -1208,7 +1220,7 @@ mod tests {
.await
.unwrap();
assert_eq!(db.uri, relative_uri.to_str().unwrap().to_string());
assert_eq!(db.uri(), relative_uri.to_str().unwrap().to_string());
}
#[tokio::test]

View File

@@ -16,6 +16,7 @@
use std::collections::HashMap;
use std::sync::Arc;
use std::time::Duration;
use arrow_array::RecordBatchReader;
use async_trait::async_trait;
@@ -213,6 +214,20 @@ impl CloneTableRequest {
}
}
/// How long until a change is reflected from one Table instance to another
///
/// Tables are always internally consistent. If a write method is called on
/// a table instance it will be immediately visible in that same table instance.
pub enum ReadConsistency {
/// Changes will not be automatically propagated until the checkout_latest
/// method is called on the target table
Manual,
/// Changes will be propagated automatically within the given duration
Eventual(Duration),
/// Changes are immediately visible in target tables
Strong,
}
/// The `Database` trait defines the interface for database implementations.
///
/// A database is responsible for managing tables and their metadata.
@@ -220,6 +235,10 @@ impl CloneTableRequest {
pub trait Database:
Send + Sync + std::any::Any + std::fmt::Debug + std::fmt::Display + 'static
{
/// Get the uri of the database
fn uri(&self) -> &str;
/// Get the read consistency of the database
async fn read_consistency(&self) -> Result<ReadConsistency>;
/// List immediate child namespace names in the given namespace
async fn list_namespaces(&self, request: ListNamespacesRequest) -> Result<Vec<String>>;
/// Create a new namespace

View File

@@ -17,6 +17,7 @@ use object_store::local::LocalFileSystem;
use snafu::ResultExt;
use crate::connection::ConnectRequest;
use crate::database::ReadConsistency;
use crate::error::{CreateDirSnafu, Error, Result};
use crate::io::object_store::MirroringObjectStoreWrapper;
use crate::table::NativeTable;
@@ -598,6 +599,22 @@ impl Database for ListingDatabase {
Ok(Vec::new())
}
fn uri(&self) -> &str {
&self.uri
}
async fn read_consistency(&self) -> Result<ReadConsistency> {
if let Some(read_consistency_inverval) = self.read_consistency_interval {
if read_consistency_inverval.is_zero() {
Ok(ReadConsistency::Strong)
} else {
Ok(ReadConsistency::Eventual(read_consistency_inverval))
}
} else {
Ok(ReadConsistency::Manual)
}
}
async fn create_namespace(&self, _request: CreateNamespaceRequest) -> Result<()> {
Err(Error::NotSupported {
message: "Namespace operations are not supported for listing database".into(),
@@ -1249,7 +1266,8 @@ mod tests {
)
.unwrap();
let source_table_obj = Table::new(source_table.clone());
let db = Arc::new(db);
let source_table_obj = Table::new(source_table.clone(), db.clone());
source_table_obj
.add(Box::new(arrow_array::RecordBatchIterator::new(
vec![Ok(batch2)],
@@ -1320,7 +1338,8 @@ mod tests {
.unwrap();
// Create a tag for the current version
let source_table_obj = Table::new(source_table.clone());
let db = Arc::new(db);
let source_table_obj = Table::new(source_table.clone(), db.clone());
let mut tags = source_table_obj.tags().await.unwrap();
tags.create("v1.0", source_table.version().await.unwrap())
.await
@@ -1336,7 +1355,7 @@ mod tests {
)
.unwrap();
let source_table_obj = Table::new(source_table.clone());
let source_table_obj = Table::new(source_table.clone(), db.clone());
source_table_obj
.add(Box::new(arrow_array::RecordBatchIterator::new(
vec![Ok(batch2)],
@@ -1432,7 +1451,8 @@ mod tests {
)
.unwrap();
let cloned_table_obj = Table::new(cloned_table.clone());
let db = Arc::new(db);
let cloned_table_obj = Table::new(cloned_table.clone(), db.clone());
cloned_table_obj
.add(Box::new(arrow_array::RecordBatchIterator::new(
vec![Ok(batch_clone)],
@@ -1452,7 +1472,7 @@ mod tests {
)
.unwrap();
let source_table_obj = Table::new(source_table.clone());
let source_table_obj = Table::new(source_table.clone(), db);
source_table_obj
.add(Box::new(arrow_array::RecordBatchIterator::new(
vec![Ok(batch_source)],
@@ -1495,6 +1515,7 @@ mod tests {
.unwrap();
// Add more data to create new versions
let db = Arc::new(db);
for i in 0..3 {
let batch = RecordBatch::try_new(
schema.clone(),
@@ -1502,7 +1523,7 @@ mod tests {
)
.unwrap();
let source_table_obj = Table::new(source_table.clone());
let source_table_obj = Table::new(source_table.clone(), db.clone());
source_table_obj
.add(Box::new(arrow_array::RecordBatchIterator::new(
vec![Ok(batch)],

View File

@@ -16,9 +16,9 @@ use lance_namespace::{
LanceNamespace,
};
use crate::connection::ConnectRequest;
use crate::database::listing::ListingDatabase;
use crate::error::{Error, Result};
use crate::{connection::ConnectRequest, database::ReadConsistency};
use super::{
BaseTable, CloneTableRequest, CreateNamespaceRequest as DbCreateNamespaceRequest,
@@ -36,6 +36,8 @@ pub struct LanceNamespaceDatabase {
read_consistency_interval: Option<std::time::Duration>,
// Optional session for object stores and caching
session: Option<Arc<lance::session::Session>>,
// database URI
uri: String,
}
impl LanceNamespaceDatabase {
@@ -57,6 +59,7 @@ impl LanceNamespaceDatabase {
storage_options,
read_consistency_interval,
session,
uri: format!("namespace://{}", ns_impl),
})
}
@@ -130,6 +133,22 @@ impl std::fmt::Display for LanceNamespaceDatabase {
#[async_trait]
impl Database for LanceNamespaceDatabase {
fn uri(&self) -> &str {
&self.uri
}
async fn read_consistency(&self) -> Result<ReadConsistency> {
if let Some(read_consistency_inverval) = self.read_consistency_interval {
if read_consistency_inverval.is_zero() {
Ok(ReadConsistency::Strong)
} else {
Ok(ReadConsistency::Eventual(read_consistency_inverval))
}
} else {
Ok(ReadConsistency::Manual)
}
}
async fn list_namespaces(&self, request: DbListNamespacesRequest) -> Result<Vec<String>> {
let ns_request = ListNamespacesRequest {
id: if request.namespace.is_empty() {

View File

@@ -0,0 +1,7 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
pub mod permutation;
pub mod shuffle;
pub mod split;
pub mod util;

View File

@@ -0,0 +1,294 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
//! Contains the [PermutationBuilder] to create a permutation "view" of an existing table.
//!
//! A permutation view can apply a filter, divide the data into splits, and shuffle the data.
//! The permutation table only stores the split ids and row ids. It is not a materialized copy of
//! the underlying data and can be very lightweight.
//!
//! Building a permutation table should be fairly quick and memory efficient, even for billions or
//! trillions of rows.
use datafusion::prelude::{SessionConfig, SessionContext};
use datafusion_execution::{disk_manager::DiskManagerBuilder, runtime_env::RuntimeEnvBuilder};
use datafusion_expr::col;
use futures::TryStreamExt;
use lance_datafusion::exec::SessionContextExt;
use crate::{
arrow::{SendableRecordBatchStream, SendableRecordBatchStreamExt, SimpleRecordBatchStream},
dataloader::{
shuffle::{Shuffler, ShufflerConfig},
split::{SplitStrategy, Splitter, SPLIT_ID_COLUMN},
util::{rename_column, TemporaryDirectory},
},
query::{ExecutableQuery, QueryBase},
Connection, Error, Result, Table,
};
/// Configuration for creating a permutation table
#[derive(Debug, Default)]
pub struct PermutationConfig {
/// Splitting configuration
pub split_strategy: SplitStrategy,
/// Shuffle strategy
pub shuffle_strategy: ShuffleStrategy,
/// Optional filter to apply to the base table
pub filter: Option<String>,
/// Directory to use for temporary files
pub temp_dir: TemporaryDirectory,
}
/// Strategy for shuffling the data.
#[derive(Debug, Clone)]
pub enum ShuffleStrategy {
/// The data is randomly shuffled
///
/// A seed can be provided to make the shuffle deterministic.
///
/// If a clump size is provided, then data will be shuffled in small blocks of contiguous rows.
/// This decreases the overall randomization but can improve I/O performance when reading from
/// cloud storage.
///
/// For example, a clump size of 16 will means we will shuffle blocks of 16 contiguous rows. This
/// will mean 16x fewer IOPS but these 16 rows will always be close together and this can influence
/// the performance of the model. Note: shuffling within clumps can still be done at read time but
/// this will only provide a local shuffle and not a global shuffle.
Random {
seed: Option<u64>,
clump_size: Option<u64>,
},
/// The data is not shuffled
///
/// This is useful for debugging and testing.
None,
}
impl Default for ShuffleStrategy {
fn default() -> Self {
Self::None
}
}
/// Builder for creating a permutation table.
///
/// A permutation table is a table that stores split assignments and a shuffled order of rows. This
/// can be used to create a
pub struct PermutationBuilder {
config: PermutationConfig,
base_table: Table,
}
impl PermutationBuilder {
pub fn new(base_table: Table) -> Self {
Self {
config: PermutationConfig::default(),
base_table,
}
}
/// Configures the strategy for assigning rows to splits.
///
/// For example, it is common to create a test/train split of the data. Splits can also be used
/// to limit the number of rows. For example, to only use 10% of the data in a permutation you can
/// create a single split with 10% of the data.
///
/// Splits are _not_ required for parallel processing. A single split can be loaded in parallel across
/// multiple processes and multiple nodes.
///
/// The default is a single split that contains all rows.
pub fn with_split_strategy(mut self, split_strategy: SplitStrategy) -> Self {
self.config.split_strategy = split_strategy;
self
}
/// Configures the strategy for shuffling the data.
///
/// The default is to shuffle the data randomly at row-level granularity (no shard size) and
/// with a random seed.
pub fn with_shuffle_strategy(mut self, shuffle_strategy: ShuffleStrategy) -> Self {
self.config.shuffle_strategy = shuffle_strategy;
self
}
/// Configures a filter to apply to the base table.
///
/// Only rows matching the filter will be included in the permutation.
pub fn with_filter(mut self, filter: String) -> Self {
self.config.filter = Some(filter);
self
}
/// Configures the directory to use for temporary files.
///
/// The default is to use the operating system's default temporary directory.
pub fn with_temp_dir(mut self, temp_dir: TemporaryDirectory) -> Self {
self.config.temp_dir = temp_dir;
self
}
async fn sort_by_split_id(
&self,
data: SendableRecordBatchStream,
) -> Result<SendableRecordBatchStream> {
let ctx = SessionContext::new_with_config_rt(
SessionConfig::default(),
RuntimeEnvBuilder::new()
.with_memory_limit(100 * 1024 * 1024, 1.0)
.with_disk_manager_builder(
DiskManagerBuilder::default()
.with_mode(self.config.temp_dir.to_disk_manager_mode()),
)
.build_arc()
.unwrap(),
);
let df = ctx
.read_one_shot(data.into_df_stream())
.map_err(|e| Error::Other {
message: format!("Failed to setup sort by split id: {}", e),
source: Some(e.into()),
})?;
let df_stream = df
.sort_by(vec![col(SPLIT_ID_COLUMN)])
.map_err(|e| Error::Other {
message: format!("Failed to plan sort by split id: {}", e),
source: Some(e.into()),
})?
.execute_stream()
.await
.map_err(|e| Error::Other {
message: format!("Failed to sort by split id: {}", e),
source: Some(e.into()),
})?;
let schema = df_stream.schema();
let stream = df_stream.map_err(|e| Error::Other {
message: format!("Failed to execute sort by split id: {}", e),
source: Some(e.into()),
});
Ok(Box::pin(SimpleRecordBatchStream { schema, stream }))
}
/// Builds the permutation table and stores it in the given database.
pub async fn build(self, dest_table_name: &str) -> Result<Table> {
// First pass, apply filter and load row ids
let mut rows = self.base_table.query().with_row_id();
if let Some(filter) = &self.config.filter {
rows = rows.only_if(filter);
}
let splitter = Splitter::new(
self.config.temp_dir.clone(),
self.config.split_strategy.clone(),
);
let mut needs_sort = !splitter.orders_by_split_id();
// Might need to load additional columns to calculate splits (e.g. hash columns or calculated
// split id)
rows = splitter.project(rows);
let num_rows = self
.base_table
.count_rows(self.config.filter.clone())
.await? as u64;
// Apply splits
let rows = rows.execute().await?;
let split_data = splitter.apply(rows, num_rows).await?;
// Shuffle data if requested
let shuffled = match self.config.shuffle_strategy {
ShuffleStrategy::None => split_data,
ShuffleStrategy::Random { seed, clump_size } => {
let shuffler = Shuffler::new(ShufflerConfig {
seed,
clump_size,
temp_dir: self.config.temp_dir.clone(),
max_rows_per_file: 10 * 1024 * 1024,
});
shuffler.shuffle(split_data, num_rows).await?
}
};
// We want the final permutation to be sorted by the split id. If we shuffled or if
// the split was not assigned sequentially then we need to sort the data.
needs_sort |= !matches!(self.config.shuffle_strategy, ShuffleStrategy::None);
let sorted = if needs_sort {
self.sort_by_split_id(shuffled).await?
} else {
shuffled
};
// Rename _rowid to row_id
let renamed = rename_column(sorted, "_rowid", "row_id")?;
// Create permutation table
let conn = Connection::new(
self.base_table.database().clone(),
self.base_table.embedding_registry().clone(),
);
conn.create_table_streaming(dest_table_name, renamed)
.execute()
.await
}
}
#[cfg(test)]
mod tests {
use arrow::datatypes::Int32Type;
use lance_datagen::{BatchCount, RowCount};
use crate::{arrow::LanceDbDatagenExt, connect, dataloader::split::SplitSizes};
use super::*;
#[tokio::test]
async fn test_permutation_builder() {
let temp_dir = tempfile::tempdir().unwrap();
let db = connect(temp_dir.path().to_str().unwrap())
.execute()
.await
.unwrap();
let initial_data = lance_datagen::gen_batch()
.col("some_value", lance_datagen::array::step::<Int32Type>())
.into_ldb_stream(RowCount::from(100), BatchCount::from(10));
let data_table = db
.create_table_streaming("mytbl", initial_data)
.execute()
.await
.unwrap();
let permutation_table = PermutationBuilder::new(data_table)
.with_filter("some_value > 57".to_string())
.with_split_strategy(SplitStrategy::Random {
seed: Some(42),
sizes: SplitSizes::Percentages(vec![0.05, 0.30]),
})
.build("permutation")
.await
.unwrap();
// Potentially brittle seed-dependent values below
assert_eq!(permutation_table.count_rows(None).await.unwrap(), 330);
assert_eq!(
permutation_table
.count_rows(Some("split_id = 0".to_string()))
.await
.unwrap(),
47
);
assert_eq!(
permutation_table
.count_rows(Some("split_id = 1".to_string()))
.await
.unwrap(),
283
);
}
}

View File

@@ -0,0 +1,475 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::sync::{Arc, Mutex};
use arrow::compute::concat_batches;
use arrow_array::{RecordBatch, UInt64Array};
use futures::{StreamExt, TryStreamExt};
use lance::io::ObjectStore;
use lance_core::{cache::LanceCache, utils::futures::FinallyStreamExt};
use lance_encoding::decoder::DecoderPlugins;
use lance_file::v2::{
reader::{FileReader, FileReaderOptions},
writer::{FileWriter, FileWriterOptions},
};
use lance_index::scalar::IndexReader;
use lance_io::{
scheduler::{ScanScheduler, SchedulerConfig},
utils::CachedFileSize,
};
use rand::{seq::SliceRandom, Rng, RngCore};
use crate::{
arrow::{SendableRecordBatchStream, SimpleRecordBatchStream},
dataloader::util::{non_crypto_rng, TemporaryDirectory},
Error, Result,
};
#[derive(Debug, Clone)]
pub struct ShufflerConfig {
/// An optional seed to make the shuffle deterministic
pub seed: Option<u64>,
/// The maximum number of rows to write to a single file
///
/// The shuffler will need to hold at least this many rows in memory. Setting this value
/// extremely large could cause the shuffler to use a lot of memory (depending on row size).
///
/// However, the shuffler will also need to hold total_num_rows / max_rows_per_file file
/// writers in memory. Each of these will consume some amount of data for column write buffers.
/// So setting this value too small could _also_ cause the shuffler to use a lot of memory and
/// open file handles.
pub max_rows_per_file: u64,
/// The temporary directory to use for writing files
pub temp_dir: TemporaryDirectory,
/// The size of the clumps to shuffle within
///
/// If a clump size is provided, then data will be shuffled in small blocks of contiguous rows.
/// This decreases the overall randomization but can improve I/O performance when reading from
/// cloud storage.
pub clump_size: Option<u64>,
}
impl Default for ShufflerConfig {
fn default() -> Self {
Self {
max_rows_per_file: 1024 * 1024,
seed: Option::default(),
temp_dir: TemporaryDirectory::default(),
clump_size: None,
}
}
}
/// A shuffler that can shuffle a stream of record batches
///
/// To do this the stream is consumed and written to temporary files. A new stream is returned
/// which returns the shuffled data from the temporary files.
///
/// If there are fewer than max_rows_per_file rows in the input stream, then the shuffler will not
/// write any files and will instead perform an in-memory shuffle.
///
/// The number of rows in the input stream must be known in advance.
pub struct Shuffler {
config: ShufflerConfig,
id: String,
}
impl Shuffler {
pub fn new(config: ShufflerConfig) -> Self {
let id = uuid::Uuid::new_v4().to_string();
Self { config, id }
}
/// Shuffles a single batch of data in memory
fn shuffle_batch(
batch: &RecordBatch,
rng: &mut dyn RngCore,
clump_size: u64,
) -> Result<RecordBatch> {
let num_clumps = (batch.num_rows() as u64).div_ceil(clump_size);
let mut indices = (0..num_clumps).collect::<Vec<_>>();
indices.shuffle(rng);
let indices = if clump_size == 1 {
UInt64Array::from(indices)
} else {
UInt64Array::from_iter_values(indices.iter().flat_map(|&clump_index| {
if clump_index == num_clumps - 1 {
clump_index * clump_size..batch.num_rows() as u64
} else {
clump_index * clump_size..(clump_index + 1) * clump_size
}
}))
};
Ok(arrow::compute::take_record_batch(batch, &indices)?)
}
async fn in_memory_shuffle(
&self,
data: SendableRecordBatchStream,
mut rng: Box<dyn RngCore + Send>,
) -> Result<SendableRecordBatchStream> {
let schema = data.schema();
let batches = data.try_collect::<Vec<_>>().await?;
let batch = concat_batches(&schema, &batches)?;
let shuffled = Self::shuffle_batch(&batch, &mut rng, self.config.clump_size.unwrap_or(1))?;
log::debug!("Shuffle job {}: in-memory shuffle complete", self.id);
Ok(Box::pin(SimpleRecordBatchStream::new(
futures::stream::once(async move { Ok(shuffled) }),
schema,
)))
}
async fn do_shuffle(
&self,
mut data: SendableRecordBatchStream,
num_rows: u64,
mut rng: Box<dyn RngCore + Send>,
) -> Result<SendableRecordBatchStream> {
let num_files = num_rows.div_ceil(self.config.max_rows_per_file);
let temp_dir = self.config.temp_dir.create_temp_dir()?;
let tmp_dir = temp_dir.path().to_path_buf();
let clump_size = self.config.clump_size.unwrap_or(1);
if clump_size == 0 {
return Err(Error::InvalidInput {
message: "clump size must be greater than 0".to_string(),
});
}
let object_store = ObjectStore::local();
let arrow_schema = data.schema();
let schema = lance::datatypes::Schema::try_from(arrow_schema.as_ref())?;
// Create file writers
let mut file_writers = Vec::with_capacity(num_files as usize);
for file_index in 0..num_files {
let path = tmp_dir.join(format!("shuffle_{}_{file_index}.lance", self.id));
let path =
object_store::path::Path::from_absolute_path(path).map_err(|err| Error::Other {
message: format!("Failed to create temporary file: {}", err),
source: None,
})?;
let object_writer = object_store.create(&path).await?;
let writer =
FileWriter::try_new(object_writer, schema.clone(), FileWriterOptions::default())?;
file_writers.push(writer);
}
let mut num_rows_seen = 0;
// Randomly distribute clumps to files
while let Some(batch) = data.try_next().await? {
num_rows_seen += batch.num_rows() as u64;
let is_last = num_rows_seen == num_rows;
if num_rows_seen > num_rows {
return Err(Error::Runtime {
message: format!("Expected {} rows but saw {} rows", num_rows, num_rows_seen),
});
}
// This is kind of an annoying limitation but if we allow runt clumps from batches then
// clumps will get unaligned and we will mess up the clumps when we do the in-memory
// shuffle step. If this is a problem we can probably figure out a better way to do this.
if !is_last && batch.num_rows() as u64 % clump_size != 0 {
return Err(Error::Runtime {
message: format!(
"Expected batch size ({}) to be divisible by clump size ({})",
batch.num_rows(),
clump_size
),
});
}
let num_clumps = (batch.num_rows() as u64).div_ceil(clump_size);
let mut batch_offsets_for_files =
vec![Vec::<u64>::with_capacity(batch.num_rows()); num_files as usize];
// Partition the batch randomly and write to the appropriate accumulator
for clump_offset in 0..num_clumps {
let clump_start = clump_offset * clump_size;
let num_rows_in_clump = clump_size.min(batch.num_rows() as u64 - clump_start);
let clump_end = clump_start + num_rows_in_clump;
let file_index = rng.random_range(0..num_files);
batch_offsets_for_files[file_index as usize].extend(clump_start..clump_end);
}
for (file_index, batch_offsets) in batch_offsets_for_files.into_iter().enumerate() {
if batch_offsets.is_empty() {
continue;
}
let indices = UInt64Array::from(batch_offsets);
let partition = arrow::compute::take_record_batch(&batch, &indices)?;
file_writers[file_index].write_batch(&partition).await?;
}
}
// Finish writing files
for (file_idx, mut writer) in file_writers.into_iter().enumerate() {
let num_written = writer.finish().await?;
log::debug!(
"Shuffle job {}: wrote {} rows to file {}",
self.id,
num_written,
file_idx
);
}
let scheduler_config = SchedulerConfig::max_bandwidth(&object_store);
let scan_scheduler = ScanScheduler::new(Arc::new(object_store), scheduler_config);
let job_id = self.id.clone();
let rng = Arc::new(Mutex::new(rng));
// Second pass, read each file as a single batch and shuffle
let stream = futures::stream::iter(0..num_files)
.then(move |file_index| {
let scan_scheduler = scan_scheduler.clone();
let rng = rng.clone();
let tmp_dir = tmp_dir.clone();
let job_id = job_id.clone();
async move {
let path = tmp_dir.join(format!("shuffle_{}_{file_index}.lance", job_id));
let path = object_store::path::Path::from_absolute_path(path).unwrap();
let file_scheduler = scan_scheduler
.open_file(&path, &CachedFileSize::unknown())
.await?;
let reader = FileReader::try_open(
file_scheduler,
None,
Arc::<DecoderPlugins>::default(),
&LanceCache::no_cache(),
FileReaderOptions::default(),
)
.await?;
// Need to read the entire file in a single batch for in-memory shuffling
let batch = reader.read_record_batch(0, reader.num_rows()).await?;
let mut rng = rng.lock().unwrap();
Self::shuffle_batch(&batch, &mut rng, clump_size)
}
})
.finally(move || drop(temp_dir))
.boxed();
Ok(Box::pin(SimpleRecordBatchStream::new(stream, arrow_schema)))
}
pub async fn shuffle(
self,
data: SendableRecordBatchStream,
num_rows: u64,
) -> Result<SendableRecordBatchStream> {
log::debug!(
"Shuffle job {}: shuffling {} rows and {} columns",
self.id,
num_rows,
data.schema().fields.len()
);
let rng = non_crypto_rng(&self.config.seed);
if num_rows < self.config.max_rows_per_file {
return self.in_memory_shuffle(data, rng).await;
}
self.do_shuffle(data, num_rows, rng).await
}
}
#[cfg(test)]
mod tests {
use crate::arrow::LanceDbDatagenExt;
use super::*;
use arrow::{array::AsArray, datatypes::Int32Type};
use datafusion::prelude::SessionContext;
use datafusion_expr::col;
use futures::TryStreamExt;
use lance_datagen::{BatchCount, BatchGeneratorBuilder, ByteCount, RowCount, Seed};
use rand::{rngs::SmallRng, SeedableRng};
fn test_gen() -> BatchGeneratorBuilder {
lance_datagen::gen_batch()
.with_seed(Seed::from(42))
.col("id", lance_datagen::array::step::<Int32Type>())
.col(
"name",
lance_datagen::array::rand_utf8(ByteCount::from(10), false),
)
}
fn create_test_batch(size: RowCount) -> RecordBatch {
test_gen().into_batch_rows(size).unwrap()
}
fn create_test_stream(
num_batches: BatchCount,
batch_size: RowCount,
) -> SendableRecordBatchStream {
test_gen().into_ldb_stream(batch_size, num_batches)
}
#[test]
fn test_shuffle_batch_deterministic() {
let batch = create_test_batch(RowCount::from(10));
let mut rng1 = SmallRng::seed_from_u64(42);
let mut rng2 = SmallRng::seed_from_u64(42);
let shuffled1 = Shuffler::shuffle_batch(&batch, &mut rng1, 1).unwrap();
let shuffled2 = Shuffler::shuffle_batch(&batch, &mut rng2, 1).unwrap();
// Same seed should produce same shuffle
assert_eq!(shuffled1, shuffled2);
}
#[test]
fn test_shuffle_with_clumps() {
let batch = create_test_batch(RowCount::from(10));
let mut rng = SmallRng::seed_from_u64(42);
let shuffled = Shuffler::shuffle_batch(&batch, &mut rng, 3).unwrap();
let values = shuffled.column(0).as_primitive::<Int32Type>();
let mut iter = values.into_iter().map(|o| o.unwrap());
let mut frag_seen = false;
let mut clumps_seen = 0;
while let Some(first) = iter.next() {
// 9 is the last value and not a full clump
if first != 9 {
// Otherwise we should have a full clump
let second = iter.next().unwrap();
let third = iter.next().unwrap();
assert_eq!(first + 1, second);
assert_eq!(first + 2, third);
clumps_seen += 1;
} else {
frag_seen = true;
}
}
assert_eq!(clumps_seen, 3);
assert!(frag_seen);
}
async fn sort_batch(batch: RecordBatch) -> RecordBatch {
let ctx = SessionContext::new();
let df = ctx.read_batch(batch).unwrap();
let sorted = df.sort_by(vec![col("id")]).unwrap();
let batches = sorted.collect().await.unwrap();
let schema = batches[0].schema();
concat_batches(&schema, &batches).unwrap()
}
#[tokio::test]
async fn test_shuffle_batch_preserves_data() {
let batch = create_test_batch(RowCount::from(100));
let mut rng = SmallRng::seed_from_u64(42);
let shuffled = Shuffler::shuffle_batch(&batch, &mut rng, 1).unwrap();
assert_ne!(shuffled, batch);
let sorted = sort_batch(shuffled).await;
assert_eq!(sorted, batch);
}
#[test]
fn test_shuffle_batch_empty() {
let batch = create_test_batch(RowCount::from(0));
let mut rng = SmallRng::seed_from_u64(42);
let shuffled = Shuffler::shuffle_batch(&batch, &mut rng, 1).unwrap();
assert_eq!(shuffled.num_rows(), 0);
}
#[tokio::test]
async fn test_in_memory_shuffle() {
let config = ShufflerConfig {
temp_dir: TemporaryDirectory::None,
..Default::default()
};
let shuffler = Shuffler::new(config);
let stream = create_test_stream(BatchCount::from(5), RowCount::from(20));
let result_stream = shuffler.shuffle(stream, 100).await.unwrap();
let result_batches: Vec<RecordBatch> = result_stream.try_collect().await.unwrap();
assert_eq!(result_batches.len(), 1);
let result_batch = result_batches.into_iter().next().unwrap();
let unshuffled_batches = create_test_stream(BatchCount::from(5), RowCount::from(20))
.try_collect::<Vec<_>>()
.await
.unwrap();
let schema = unshuffled_batches[0].schema();
let unshuffled_batch = concat_batches(&schema, &unshuffled_batches).unwrap();
let sorted = sort_batch(result_batch).await;
assert_eq!(unshuffled_batch, sorted);
}
#[tokio::test]
async fn test_external_shuffle() {
let config = ShufflerConfig {
max_rows_per_file: 100,
..Default::default()
};
let shuffler = Shuffler::new(config);
let stream = create_test_stream(BatchCount::from(5), RowCount::from(1000));
let result_stream = shuffler.shuffle(stream, 5000).await.unwrap();
let result_batches: Vec<RecordBatch> = result_stream.try_collect().await.unwrap();
let unshuffled_batches = create_test_stream(BatchCount::from(5), RowCount::from(1000))
.try_collect::<Vec<_>>()
.await
.unwrap();
let schema = unshuffled_batches[0].schema();
let unshuffled_batch = concat_batches(&schema, &unshuffled_batches).unwrap();
assert_eq!(result_batches.len(), 50);
let result_batch = concat_batches(&schema, &result_batches).unwrap();
let sorted = sort_batch(result_batch).await;
assert_eq!(unshuffled_batch, sorted);
}
#[test_log::test(tokio::test)]
async fn test_external_clump_shuffle() {
let config = ShufflerConfig {
max_rows_per_file: 100,
clump_size: Some(30),
..Default::default()
};
let shuffler = Shuffler::new(config);
// Batch size (900) must be multiple of clump size (30)
let stream = create_test_stream(BatchCount::from(5), RowCount::from(900));
let schema = stream.schema();
// Remove 10 rows from the last batch to simulate ending with partial clump
let mut batches = stream.try_collect::<Vec<_>>().await.unwrap();
let last_index = batches.len() - 1;
let sliced_last = batches[last_index].slice(0, 890);
batches[last_index] = sliced_last;
let stream = Box::pin(SimpleRecordBatchStream::new(
futures::stream::iter(batches).map(Ok).boxed(),
schema.clone(),
));
let result_stream = shuffler.shuffle(stream, 4490).await.unwrap();
let result_batches: Vec<RecordBatch> = result_stream.try_collect().await.unwrap();
let result_batch = concat_batches(&schema, &result_batches).unwrap();
let ids = result_batch.column(0).as_primitive::<Int32Type>();
let mut iter = ids.into_iter().map(|o| o.unwrap());
while let Some(first) = iter.next() {
let rows_left_in_clump = if first == 4470 { 19 } else { 29 };
let mut expected_next = first + 1;
for _ in 0..rows_left_in_clump {
let next = iter.next().unwrap();
assert_eq!(next, expected_next);
expected_next += 1;
}
}
}
}

View File

@@ -0,0 +1,804 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::{
iter,
sync::{
atomic::{AtomicBool, AtomicU64, AtomicUsize, Ordering},
Arc,
},
};
use arrow_array::{Array, BooleanArray, RecordBatch, UInt64Array};
use arrow_schema::{DataType, Field, Schema};
use datafusion_common::hash_utils::create_hashes;
use futures::{StreamExt, TryStreamExt};
use lance::arrow::SchemaExt;
use crate::{
arrow::{SendableRecordBatchStream, SimpleRecordBatchStream},
dataloader::{
shuffle::{Shuffler, ShufflerConfig},
util::TemporaryDirectory,
},
query::{Query, QueryBase, Select},
Error, Result,
};
pub const SPLIT_ID_COLUMN: &str = "split_id";
/// Strategy for assigning rows to splits
#[derive(Debug, Clone)]
pub enum SplitStrategy {
/// All rows will have split id 0
NoSplit,
/// Rows will be randomly assigned to splits
///
/// A seed can be provided to make the assignment deterministic.
Random {
seed: Option<u64>,
sizes: SplitSizes,
},
/// Rows will be assigned to splits based on the values in the specified columns.
///
/// This will ensure rows are always assigned to the same split if the given columns do not change.
///
/// The `split_weights` are used to determine the approximate number of rows in each split. This
/// controls how we divide up the u64 hash space. However, it does not guarantee any particular division
/// of rows. For example, if all rows have identical hash values then all rows will be assigned to the same split
/// regardless of the weights.
///
/// The `discard_weight` controls what percentage of rows should be throw away. For example, if you want your
/// first split to have ~5% of your rows and the second split to have ~10% of your rows then you would set
/// split_weights to [1, 2] and discard weight to 17 (or you could set split_weights to [5, 10] and discard_weight
/// to 85). If you set discard_weight to 0 then all rows will be assigned to a split.
Hash {
columns: Vec<String>,
split_weights: Vec<u64>,
discard_weight: u64,
},
/// Rows will be assigned to splits sequentially.
///
/// The first N1 rows are assigned to split 1, the next N2 rows are assigned to split 2, etc.
///
/// This is mainly useful for debugging and testing.
Sequential { sizes: SplitSizes },
/// Rows will be assigned to splits based on a calculation of one or more columns.
///
/// This is useful when the splits already exist in the base table.
///
/// The provided `calculation` should be an SQL statement that returns an integer value between
/// 0 and the number of splits - 1 (the number of splits is defined by the `splits` configuration).
///
/// If this strategy is used then the counts/percentages in the SplitSizes are ignored.
Calculated { calculation: String },
}
// The default is not to split the data
//
// All data will be assigned to a single split.
impl Default for SplitStrategy {
fn default() -> Self {
Self::NoSplit
}
}
impl SplitStrategy {
pub fn validate(&self, num_rows: u64) -> Result<()> {
match self {
Self::NoSplit => Ok(()),
Self::Random { sizes, .. } => sizes.validate(num_rows),
Self::Hash {
split_weights,
columns,
..
} => {
if columns.is_empty() {
return Err(Error::InvalidInput {
message: "Hash strategy requires at least one column".to_string(),
});
}
if split_weights.is_empty() {
return Err(Error::InvalidInput {
message: "Hash strategy requires at least one split weight".to_string(),
});
}
if split_weights.iter().any(|w| *w == 0) {
return Err(Error::InvalidInput {
message: "Split weights must be greater than 0".to_string(),
});
}
Ok(())
}
Self::Sequential { sizes } => sizes.validate(num_rows),
Self::Calculated { .. } => Ok(()),
}
}
}
pub struct Splitter {
temp_dir: TemporaryDirectory,
strategy: SplitStrategy,
}
impl Splitter {
pub fn new(temp_dir: TemporaryDirectory, strategy: SplitStrategy) -> Self {
Self { temp_dir, strategy }
}
fn sequential_split_id(
num_rows: u64,
split_sizes: &[u64],
split_index: &AtomicUsize,
counter_in_split: &AtomicU64,
exhausted: &AtomicBool,
) -> UInt64Array {
let mut split_ids = Vec::<u64>::with_capacity(num_rows as usize);
while split_ids.len() < num_rows as usize {
let split_id = split_index.load(Ordering::Relaxed);
let counter = counter_in_split.load(Ordering::Relaxed);
let split_size = split_sizes[split_id];
let remaining_in_split = split_size - counter;
let remaining_in_batch = num_rows - split_ids.len() as u64;
let mut done = false;
let rows_to_add = if remaining_in_batch < remaining_in_split {
counter_in_split.fetch_add(remaining_in_batch, Ordering::Relaxed);
remaining_in_batch
} else {
split_index.fetch_add(1, Ordering::Relaxed);
counter_in_split.store(0, Ordering::Relaxed);
if split_id == split_sizes.len() - 1 {
exhausted.store(true, Ordering::Relaxed);
done = true;
}
remaining_in_split
};
split_ids.extend(iter::repeat_n(split_id as u64, rows_to_add as usize));
if done {
// Quit early if we've run out of splits
break;
}
}
UInt64Array::from(split_ids)
}
async fn apply_sequential(
&self,
source: SendableRecordBatchStream,
num_rows: u64,
sizes: &SplitSizes,
) -> Result<SendableRecordBatchStream> {
let split_sizes = sizes.to_counts(num_rows);
let split_index = AtomicUsize::new(0);
let counter_in_split = AtomicU64::new(0);
let exhausted = AtomicBool::new(false);
let schema = source.schema();
let new_schema = Arc::new(schema.try_with_column(Field::new(
SPLIT_ID_COLUMN,
DataType::UInt64,
false,
))?);
let new_schema_clone = new_schema.clone();
let stream = source.filter_map(move |batch| {
let batch = match batch {
Ok(batch) => batch,
Err(e) => {
return std::future::ready(Some(Err(e)));
}
};
if exhausted.load(Ordering::Relaxed) {
return std::future::ready(None);
}
let split_ids = Self::sequential_split_id(
batch.num_rows() as u64,
&split_sizes,
&split_index,
&counter_in_split,
&exhausted,
);
let mut arrays = batch.columns().to_vec();
// This can happen if we exhaust all splits in the middle of a batch
if split_ids.len() < batch.num_rows() {
arrays = arrays
.iter()
.map(|arr| arr.slice(0, split_ids.len()))
.collect();
}
arrays.push(Arc::new(split_ids));
std::future::ready(Some(Ok(
RecordBatch::try_new(new_schema.clone(), arrays).unwrap()
)))
});
Ok(Box::pin(SimpleRecordBatchStream::new(
stream,
new_schema_clone,
)))
}
fn hash_split_id(batch: &RecordBatch, thresholds: &[u64], total_weight: u64) -> UInt64Array {
let arrays = batch
.columns()
.iter()
// Don't hash the last column which should always be the row id
.take(batch.columns().len() - 1)
.cloned()
.collect::<Vec<_>>();
let mut hashes = vec![0; batch.num_rows()];
let random_state = ahash::RandomState::with_seeds(0, 0, 0, 0);
create_hashes(&arrays, &random_state, &mut hashes).unwrap();
// As an example, let's assume the weights are 1, 2. Our total weight is 3.
//
// Our thresholds are [1, 3]
// Our modulo output will be 0, 1, or 2.
//
// thresholds.binary_search(0) => Err(0) => 0
// thresholds.binary_search(1) => Ok(0) => 1
// thresholds.binary_search(2) => Err(1) => 1
let split_ids = hashes
.iter()
.map(|h| {
let h = h % total_weight;
let split_id = match thresholds.binary_search(&h) {
Ok(i) => (i + 1) as u64,
Err(i) => i as u64,
};
if split_id == thresholds.len() as u64 {
// If we're at the last threshold then we discard the row (indicated by setting
// the split_id to null)
None
} else {
Some(split_id)
}
})
.collect::<Vec<_>>();
UInt64Array::from(split_ids)
}
async fn apply_hash(
&self,
source: SendableRecordBatchStream,
weights: &[u64],
discard_weight: u64,
) -> Result<SendableRecordBatchStream> {
let row_id_index = source.schema().fields.len() - 1;
let new_schema = Arc::new(Schema::new(vec![
source.schema().field(row_id_index).clone(),
Field::new(SPLIT_ID_COLUMN, DataType::UInt64, false),
]));
let total_weight = weights.iter().sum::<u64>() + discard_weight;
// Thresholds are the cumulative sum of the weights
let mut offset = 0;
let thresholds = weights
.iter()
.map(|w| {
let value = offset + w;
offset = value;
value
})
.collect::<Vec<_>>();
let new_schema_clone = new_schema.clone();
let stream = source.map_ok(move |batch| {
let split_ids = Self::hash_split_id(&batch, &thresholds, total_weight);
if split_ids.null_count() > 0 {
let is_valid = split_ids.nulls().unwrap().inner();
let is_valid_mask = BooleanArray::new(is_valid.clone(), None);
let split_ids = arrow::compute::filter(&split_ids, &is_valid_mask).unwrap();
let row_ids = batch.column(row_id_index);
let row_ids = arrow::compute::filter(row_ids.as_ref(), &is_valid_mask).unwrap();
RecordBatch::try_new(new_schema.clone(), vec![row_ids, split_ids]).unwrap()
} else {
RecordBatch::try_new(
new_schema.clone(),
vec![batch.column(row_id_index).clone(), Arc::new(split_ids)],
)
.unwrap()
}
});
Ok(Box::pin(SimpleRecordBatchStream::new(
stream,
new_schema_clone,
)))
}
pub async fn apply(
&self,
source: SendableRecordBatchStream,
num_rows: u64,
) -> Result<SendableRecordBatchStream> {
self.strategy.validate(num_rows)?;
match &self.strategy {
// For consistency, even if no-split, we still give a split id column of all 0s
SplitStrategy::NoSplit => {
self.apply_sequential(source, num_rows, &SplitSizes::Counts(vec![num_rows]))
.await
}
SplitStrategy::Random { seed, sizes } => {
let shuffler = Shuffler::new(ShufflerConfig {
seed: *seed,
// In this case we are only shuffling row ids so we can use a large max_rows_per_file
max_rows_per_file: 10 * 1024 * 1024,
temp_dir: self.temp_dir.clone(),
clump_size: None,
});
let shuffled = shuffler.shuffle(source, num_rows).await?;
self.apply_sequential(shuffled, num_rows, sizes).await
}
SplitStrategy::Sequential { sizes } => {
self.apply_sequential(source, num_rows, sizes).await
}
// Nothing to do, split is calculated in projection
SplitStrategy::Calculated { .. } => Ok(source),
SplitStrategy::Hash {
split_weights,
discard_weight,
..
} => {
self.apply_hash(source, split_weights, *discard_weight)
.await
}
}
}
pub fn project(&self, query: Query) -> Query {
match &self.strategy {
SplitStrategy::Calculated { calculation } => query.select(Select::Dynamic(vec![(
SPLIT_ID_COLUMN.to_string(),
calculation.clone(),
)])),
SplitStrategy::Hash { columns, .. } => query.select(Select::Columns(columns.clone())),
_ => query,
}
}
pub fn orders_by_split_id(&self) -> bool {
match &self.strategy {
SplitStrategy::Hash { .. } | SplitStrategy::Calculated { .. } => true,
SplitStrategy::NoSplit
| SplitStrategy::Sequential { .. }
// It may be strange but for random we shuffle and then assign splits so the result is
// sorted by split id
| SplitStrategy::Random { .. } => false,
}
}
}
/// Split configuration - either percentages or absolute counts
///
/// If the percentages do not sum to 1.0 (or the counts do not sum to the total number of rows)
/// the remaining rows will not be included in the permutation.
///
/// The default implementation assigns all rows to a single split.
#[derive(Debug, Clone)]
pub enum SplitSizes {
/// Percentage splits (must sum to <= 1.0)
///
/// The number of rows in each split is the nearest integer to the percentage multiplied by
/// the total number of rows.
Percentages(Vec<f64>),
/// Absolute row counts per split
///
/// If the dataset doesn't contain enough matching rows to fill all splits then an error
/// will be raised.
Counts(Vec<u64>),
/// Divides data into a fixed number of splits
///
/// Will divide the data evenly.
///
/// If the number of rows is not divisible by the number of splits then the rows per split
/// is rounded down.
Fixed(u64),
}
impl Default for SplitSizes {
fn default() -> Self {
Self::Percentages(vec![1.0])
}
}
impl SplitSizes {
pub fn validate(&self, num_rows: u64) -> Result<()> {
match self {
Self::Percentages(percentages) => {
for percentage in percentages {
if *percentage < 0.0 || *percentage > 1.0 {
return Err(Error::InvalidInput {
message: "Split percentages must be between 0.0 and 1.0".to_string(),
});
}
if percentage * (num_rows as f64) < 1.0 {
return Err(Error::InvalidInput {
message: format!(
"One of the splits has {}% of {} rows which rounds to 0 rows",
percentage * 100.0,
num_rows
),
});
}
}
if percentages.iter().sum::<f64>() > 1.0 {
return Err(Error::InvalidInput {
message: "Split percentages must sum to 1.0 or less".to_string(),
});
}
}
Self::Counts(counts) => {
if counts.iter().sum::<u64>() > num_rows {
return Err(Error::InvalidInput {
message: format!(
"Split counts specified {} rows but only {} are available",
counts.iter().sum::<u64>(),
num_rows
),
});
}
if counts.iter().any(|c| *c == 0) {
return Err(Error::InvalidInput {
message: "Split counts must be greater than 0".to_string(),
});
}
}
Self::Fixed(num_splits) => {
if *num_splits > num_rows {
return Err(Error::InvalidInput {
message: format!(
"Split fixed config specified {} splits but only {} rows are available. Must have at least 1 row per split.",
*num_splits, num_rows
),
});
}
if (num_rows / num_splits) == 0 {
return Err(Error::InvalidInput {
message: format!(
"Split fixed config specified {} splits but only {} rows are available. Must have at least 1 row per split.",
*num_splits, num_rows
),
});
}
}
}
Ok(())
}
pub fn to_counts(&self, num_rows: u64) -> Vec<u64> {
let sizes = match self {
Self::Percentages(percentages) => {
let mut percentage_sum = 0.0_f64;
let mut counts = percentages
.iter()
.map(|p| {
let count = (p * (num_rows as f64)).round() as u64;
percentage_sum += p;
count
})
.collect::<Vec<_>>();
let sum = counts.iter().sum::<u64>();
let is_basically_one =
(num_rows as f64 - percentage_sum * num_rows as f64).abs() < 0.5;
// If the sum of percentages is close to 1.0 then rounding errors can add up
// to more or less than num_rows
//
// Drop items from buckets until we have the correct number of rows
let mut excess = sum as i64 - num_rows as i64;
let mut drop_idx = 0;
while excess > 0 {
if counts[drop_idx] > 0 {
counts[drop_idx] -= 1;
excess -= 1;
}
drop_idx += 1;
if drop_idx == counts.len() {
drop_idx = 0;
}
}
// On the other hand, if the percentages sum to ~1.0 then the we also shouldn't _lose_
// rows due to rounding errors
let mut add_idx = 0;
while is_basically_one && excess < 0 {
counts[add_idx] += 1;
add_idx += 1;
excess += 1;
if add_idx == counts.len() {
add_idx = 0;
}
}
counts
}
Self::Counts(counts) => counts.clone(),
Self::Fixed(num_splits) => {
let rows_per_split = num_rows / *num_splits;
vec![rows_per_split; *num_splits as usize]
}
};
assert!(sizes.iter().sum::<u64>() <= num_rows);
sizes
}
}
#[cfg(test)]
mod tests {
use crate::arrow::LanceDbDatagenExt;
use super::*;
use arrow::{
array::AsArray,
compute::concat_batches,
datatypes::{Int32Type, UInt64Type},
};
use arrow_array::Int32Array;
use futures::TryStreamExt;
use lance_datagen::{BatchCount, ByteCount, RowCount, Seed};
use std::sync::Arc;
const ID_COLUMN: &str = "id";
#[test]
fn test_split_sizes_percentages_validation() {
// Valid percentages
let sizes = SplitSizes::Percentages(vec![0.7, 0.3]);
assert!(sizes.validate(100).is_ok());
// Sum > 1.0
let sizes = SplitSizes::Percentages(vec![0.7, 0.4]);
assert!(sizes.validate(100).is_err());
// Negative percentage
let sizes = SplitSizes::Percentages(vec![-0.1, 0.5]);
assert!(sizes.validate(100).is_err());
// Percentage > 1.0
let sizes = SplitSizes::Percentages(vec![1.5]);
assert!(sizes.validate(100).is_err());
// Percentage rounds to 0 rows
let sizes = SplitSizes::Percentages(vec![0.001]);
assert!(sizes.validate(100).is_err());
}
#[test]
fn test_split_sizes_counts_validation() {
// Valid counts
let sizes = SplitSizes::Counts(vec![30, 70]);
assert!(sizes.validate(100).is_ok());
// Sum > num_rows
let sizes = SplitSizes::Counts(vec![60, 50]);
assert!(sizes.validate(100).is_err());
// Counts are 0
let sizes = SplitSizes::Counts(vec![0, 100]);
assert!(sizes.validate(100).is_err());
}
#[test]
fn test_split_sizes_fixed_validation() {
// Valid fixed splits
let sizes = SplitSizes::Fixed(5);
assert!(sizes.validate(100).is_ok());
// More splits than rows
let sizes = SplitSizes::Fixed(150);
assert!(sizes.validate(100).is_err());
}
#[test]
fn test_split_sizes_to_sizes_percentages() {
let sizes = SplitSizes::Percentages(vec![0.3, 0.7]);
let result = sizes.to_counts(100);
assert_eq!(result, vec![30, 70]);
// Test rounding
let sizes = SplitSizes::Percentages(vec![0.3, 0.41]);
let result = sizes.to_counts(70);
assert_eq!(result, vec![21, 29]);
}
#[test]
fn test_split_sizes_to_sizes_fixed() {
let sizes = SplitSizes::Fixed(4);
let result = sizes.to_counts(100);
assert_eq!(result, vec![25, 25, 25, 25]);
// Test with remainder
let sizes = SplitSizes::Fixed(3);
let result = sizes.to_counts(10);
assert_eq!(result, vec![3, 3, 3]);
}
fn test_data() -> SendableRecordBatchStream {
lance_datagen::gen_batch()
.with_seed(Seed::from(42))
.col(ID_COLUMN, lance_datagen::array::step::<Int32Type>())
.into_ldb_stream(RowCount::from(10), BatchCount::from(5))
}
async fn verify_splitter(
splitter: Splitter,
data: SendableRecordBatchStream,
num_rows: u64,
expected_split_sizes: &[u64],
row_ids_in_order: bool,
) {
let split_batches = splitter
.apply(data, num_rows)
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let schema = split_batches[0].schema();
let split_batch = concat_batches(&schema, &split_batches).unwrap();
let total_split_sizes = expected_split_sizes.iter().sum::<u64>();
assert_eq!(split_batch.num_rows(), total_split_sizes as usize);
let mut expected = Vec::with_capacity(total_split_sizes as usize);
for (i, size) in expected_split_sizes.iter().enumerate() {
expected.extend(iter::repeat_n(i as u64, *size as usize));
}
let expected = Arc::new(UInt64Array::from(expected)) as Arc<dyn Array>;
assert_eq!(&expected, split_batch.column(1));
let expected_row_ids =
Arc::new(Int32Array::from_iter_values(0..total_split_sizes as i32)) as Arc<dyn Array>;
if row_ids_in_order {
assert_eq!(&expected_row_ids, split_batch.column(0));
} else {
assert_ne!(&expected_row_ids, split_batch.column(0));
}
}
#[tokio::test]
async fn test_fixed_sequential_split() {
let splitter = Splitter::new(
// Sequential splitting doesn't need a temp dir
TemporaryDirectory::None,
SplitStrategy::Sequential {
sizes: SplitSizes::Fixed(3),
},
);
verify_splitter(splitter, test_data(), 50, &[16, 16, 16], true).await;
}
#[tokio::test]
async fn test_fixed_random_split() {
let splitter = Splitter::new(
TemporaryDirectory::None,
SplitStrategy::Random {
seed: Some(42),
sizes: SplitSizes::Fixed(3),
},
);
verify_splitter(splitter, test_data(), 50, &[16, 16, 16], false).await;
}
#[tokio::test]
async fn test_counts_sequential_split() {
let splitter = Splitter::new(
// Sequential splitting doesn't need a temp dir
TemporaryDirectory::None,
SplitStrategy::Sequential {
sizes: SplitSizes::Counts(vec![5, 15, 10]),
},
);
verify_splitter(splitter, test_data(), 50, &[5, 15, 10], true).await;
}
#[tokio::test]
async fn test_counts_random_split() {
let splitter = Splitter::new(
TemporaryDirectory::None,
SplitStrategy::Random {
seed: Some(42),
sizes: SplitSizes::Counts(vec![5, 15, 10]),
},
);
verify_splitter(splitter, test_data(), 50, &[5, 15, 10], false).await;
}
#[tokio::test]
async fn test_percentages_sequential_split() {
let splitter = Splitter::new(
// Sequential splitting doesn't need a temp dir
TemporaryDirectory::None,
SplitStrategy::Sequential {
sizes: SplitSizes::Percentages(vec![0.217, 0.168, 0.17]),
},
);
verify_splitter(splitter, test_data(), 50, &[11, 8, 9], true).await;
}
#[tokio::test]
async fn test_percentages_random_split() {
let splitter = Splitter::new(
TemporaryDirectory::None,
SplitStrategy::Random {
seed: Some(42),
sizes: SplitSizes::Percentages(vec![0.217, 0.168, 0.17]),
},
);
verify_splitter(splitter, test_data(), 50, &[11, 8, 9], false).await;
}
#[tokio::test]
async fn test_hash_split() {
let data = lance_datagen::gen_batch()
.with_seed(Seed::from(42))
.col(
"hash1",
lance_datagen::array::rand_utf8(ByteCount::from(10), false),
)
.col("hash2", lance_datagen::array::step::<Int32Type>())
.col(ID_COLUMN, lance_datagen::array::step::<Int32Type>())
.into_ldb_stream(RowCount::from(10), BatchCount::from(5));
let splitter = Splitter::new(
TemporaryDirectory::None,
SplitStrategy::Hash {
columns: vec!["hash1".to_string(), "hash2".to_string()],
split_weights: vec![1, 2],
discard_weight: 1,
},
);
let split_batches = splitter
.apply(data, 10)
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
let schema = split_batches[0].schema();
let split_batch = concat_batches(&schema, &split_batches).unwrap();
// These assertions are all based on fixed seed in data generation but they match
// up roughly to what we expect (25% discarded, 25% in split 0, 50% in split 1)
// 14 rows (28%) are discarded because discard_weight is 1
assert_eq!(split_batch.num_rows(), 36);
assert_eq!(split_batch.num_columns(), 2);
let split_ids = split_batch.column(1).as_primitive::<UInt64Type>().values();
let num_in_split_0 = split_ids.iter().filter(|v| **v == 0).count();
let num_in_split_1 = split_ids.iter().filter(|v| **v == 1).count();
assert_eq!(num_in_split_0, 11); // 22%
assert_eq!(num_in_split_1, 25); // 50%
}
}

View File

@@ -0,0 +1,98 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::{path::PathBuf, sync::Arc};
use arrow_array::RecordBatch;
use arrow_schema::{Fields, Schema};
use datafusion_execution::disk_manager::DiskManagerMode;
use futures::TryStreamExt;
use rand::{rngs::SmallRng, RngCore, SeedableRng};
use tempfile::TempDir;
use crate::{
arrow::{SendableRecordBatchStream, SimpleRecordBatchStream},
Error, Result,
};
/// Directory to use for temporary files
#[derive(Debug, Clone, Default)]
pub enum TemporaryDirectory {
/// Use the operating system's default temporary directory (e.g. /tmp)
#[default]
OsDefault,
/// Use the specified directory (must be an absolute path)
Specific(PathBuf),
/// If spilling is required, then error out
None,
}
impl TemporaryDirectory {
pub fn create_temp_dir(&self) -> Result<TempDir> {
match self {
Self::OsDefault => tempfile::tempdir(),
Self::Specific(path) => tempfile::Builder::default().tempdir_in(path),
Self::None => {
return Err(Error::Runtime {
message: "No temporary directory was supplied and this operation requires spilling to disk".to_string(),
});
}
}
.map_err(|err| Error::Other {
message: "Failed to create temporary directory".to_string(),
source: Some(err.into()),
})
}
pub fn to_disk_manager_mode(&self) -> DiskManagerMode {
match self {
Self::OsDefault => DiskManagerMode::OsTmpDirectory,
Self::Specific(path) => DiskManagerMode::Directories(vec![path.clone()]),
Self::None => DiskManagerMode::Disabled,
}
}
}
pub fn non_crypto_rng(seed: &Option<u64>) -> Box<dyn RngCore + Send> {
Box::new(
seed.as_ref()
.map(|seed| SmallRng::seed_from_u64(*seed))
.unwrap_or_else(SmallRng::from_os_rng),
)
}
pub fn rename_column(
stream: SendableRecordBatchStream,
old_name: &str,
new_name: &str,
) -> Result<SendableRecordBatchStream> {
let schema = stream.schema();
let field_index = schema.index_of(old_name)?;
let new_fields = schema
.fields
.iter()
.cloned()
.enumerate()
.map(|(idx, f)| {
if idx == field_index {
Arc::new(f.as_ref().clone().with_name(new_name))
} else {
f
}
})
.collect::<Fields>();
let new_schema = Arc::new(Schema::new(new_fields).with_metadata(schema.metadata().clone()));
let new_schema_clone = new_schema.clone();
let renamed_stream = stream.and_then(move |batch| {
let renamed_batch =
RecordBatch::try_new(new_schema.clone(), batch.columns().to_vec()).map_err(Error::from);
std::future::ready(renamed_batch)
});
Ok(Box::pin(SimpleRecordBatchStream::new(
renamed_stream,
new_schema_clone,
)))
}

View File

@@ -194,6 +194,7 @@ pub mod arrow;
pub mod connection;
pub mod data;
pub mod database;
pub mod dataloader;
pub mod embeddings;
pub mod error;
pub mod index;

View File

@@ -16,7 +16,7 @@ use tokio::task::spawn_blocking;
use crate::database::{
CloneTableRequest, CreateNamespaceRequest, CreateTableData, CreateTableMode,
CreateTableRequest, Database, DatabaseOptions, DropNamespaceRequest, ListNamespacesRequest,
OpenTableRequest, TableNamesRequest,
OpenTableRequest, ReadConsistency, TableNamesRequest,
};
use crate::error::Result;
use crate::table::BaseTable;
@@ -189,6 +189,7 @@ struct ListTablesResponse {
pub struct RemoteDatabase<S: HttpSend = Sender> {
client: RestfulLanceDbClient<S>,
table_cache: Cache<String, Arc<RemoteTable<S>>>,
uri: String,
}
impl RemoteDatabase {
@@ -217,6 +218,7 @@ impl RemoteDatabase {
Ok(Self {
client,
table_cache,
uri: uri.to_owned(),
})
}
}
@@ -238,6 +240,7 @@ mod test_utils {
Self {
client,
table_cache: Cache::new(0),
uri: "http://localhost".to_string(),
}
}
@@ -250,6 +253,7 @@ mod test_utils {
Self {
client,
table_cache: Cache::new(0),
uri: "http://localhost".to_string(),
}
}
}
@@ -315,6 +319,17 @@ fn build_cache_key(name: &str, namespace: &[String]) -> String {
#[async_trait]
impl<S: HttpSend> Database for RemoteDatabase<S> {
fn uri(&self) -> &str {
&self.uri
}
async fn read_consistency(&self) -> Result<ReadConsistency> {
Err(Error::NotSupported {
message: "Getting the read consistency of a remote database is not yet supported"
.to_string(),
})
}
async fn table_names(&self, request: TableNamesRequest) -> Result<Vec<String>> {
let mut req = if !request.namespace.is_empty() {
let namespace_id =

View File

@@ -50,6 +50,7 @@ use std::sync::Arc;
use crate::arrow::IntoArrow;
use crate::connection::NoData;
use crate::database::Database;
use crate::embeddings::{EmbeddingDefinition, EmbeddingRegistry, MaybeEmbedded, MemoryRegistry};
use crate::error::{Error, Result};
use crate::index::vector::{suggested_num_partitions_for_hnsw, VectorIndex};
@@ -611,9 +612,10 @@ pub trait BaseTable: std::fmt::Display + std::fmt::Debug + Send + Sync {
/// A Table is a collection of strong typed Rows.
///
/// The type of the each row is defined in Apache Arrow [Schema].
#[derive(Clone)]
#[derive(Clone, Debug)]
pub struct Table {
inner: Arc<dyn BaseTable>,
database: Arc<dyn Database>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
}
@@ -631,11 +633,13 @@ mod test_utils {
{
let inner = Arc::new(crate::remote::table::RemoteTable::new_mock(
name.into(),
handler,
handler.clone(),
None,
));
let database = Arc::new(crate::remote::db::RemoteDatabase::new_mock(handler));
Self {
inner,
database,
// Registry is unused.
embedding_registry: Arc::new(MemoryRegistry::new()),
}
@@ -651,11 +655,13 @@ mod test_utils {
{
let inner = Arc::new(crate::remote::table::RemoteTable::new_mock(
name.into(),
handler,
handler.clone(),
Some(version),
));
let database = Arc::new(crate::remote::db::RemoteDatabase::new_mock(handler));
Self {
inner,
database,
// Registry is unused.
embedding_registry: Arc::new(MemoryRegistry::new()),
}
@@ -670,9 +676,10 @@ impl std::fmt::Display for Table {
}
impl Table {
pub fn new(inner: Arc<dyn BaseTable>) -> Self {
pub fn new(inner: Arc<dyn BaseTable>, database: Arc<dyn Database>) -> Self {
Self {
inner,
database,
embedding_registry: Arc::new(MemoryRegistry::new()),
}
}
@@ -681,12 +688,22 @@ impl Table {
&self.inner
}
pub fn database(&self) -> &Arc<dyn Database> {
&self.database
}
pub fn embedding_registry(&self) -> &Arc<dyn EmbeddingRegistry> {
&self.embedding_registry
}
pub(crate) fn new_with_embedding_registry(
inner: Arc<dyn BaseTable>,
database: Arc<dyn Database>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
) -> Self {
Self {
inner,
database,
embedding_registry,
}
}
@@ -1416,12 +1433,6 @@ impl Tags for NativeTags {
}
}
impl From<NativeTable> for Table {
fn from(table: NativeTable) -> Self {
Self::new(Arc::new(table))
}
}
pub trait NativeTableExt {
/// Cast as [`NativeTable`], or return None it if is not a [`NativeTable`].
fn as_native(&self) -> Option<&NativeTable>;