feat(napi): Issue queries as node SDK (#868)

* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
This commit is contained in:
Lei Xu
2024-01-25 22:14:14 -08:00
committed by GitHub
parent 9a07c9aad8
commit a6cf24b359
12 changed files with 370 additions and 56 deletions

View File

@@ -10,14 +10,15 @@ crate-type = ["cdylib"]
[dependencies]
arrow-ipc.workspace = true
futures.workspace = true
lance-linalg.workspace = true
lance.workspace = true
vectordb = { path = "../rust/vectordb" }
napi = { version = "2.14", default-features = false, features = [
"napi7",
"async"
] }
napi-derive = "2.14"
vectordb = { path = "../rust/vectordb" }
lance.workspace = true
lance-linalg.workspace = true
[build-dependencies]
napi-build = "2.1"

View File

@@ -53,6 +53,16 @@ describe("Test creating index", () => {
const indexDir = path.join(tmpDir, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
// TODO: check index type.
// Search without specifying the column
let query_vector = data.toArray()[5].vec.toJSON();
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
});
test("no vector column available", async () => {
@@ -71,6 +81,80 @@ describe("Test creating index", () => {
await tbl.createIndex("val").build();
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(1);
}
});
test("two columns with different dimensions", async () => {
const db = await connect(tmpDir);
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field(
"vec2",
new FixedSizeList(64, new Field("item", new Float32()))
),
]);
const tbl = await db.createTable(
"two_vectors",
makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
vec2: Array(64) // different dimension
.fill(1)
.map(() => Math.random()),
})),
{ schema }
)
);
// Only build index over v1
await expect(tbl.createIndex().build()).rejects.toThrow(
/.*More than one vector columns found.*/
);
tbl
.createIndex("vec")
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
.build();
const rst = await tbl
.query()
.nearestTo(
Array(32)
.fill(1)
.map(() => Math.random())
)
.limit(2)
.toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
await expect(
tbl
.search(
Array(64)
.fill(1)
.map(() => Math.random()),
"vec"
)
.limit(2)
.toArrow()
).rejects.toThrow(/.*does not match the dimension.*/);
const query64 = Array(64)
.fill(1)
.map(() => Math.random());
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
expect(rst64_1.toString()).toEqual(rst64_2.toString());
expect(rst64_1.numRows).toBe(2);
});
test("create scalar index", async () => {

View File

@@ -91,7 +91,6 @@ impl IndexBuilder {
#[napi]
pub async fn build(&self) -> napi::Result<()> {
println!("nodejs::index.rs : build");
self.inner
.build()
.await

47
nodejs/src/iterator.rs Normal file
View File

@@ -0,0 +1,47 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use futures::StreamExt;
use lance::io::RecordBatchStream;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::ipc::batches_to_ipc_file;
/** Typescript-style Async Iterator over RecordBatches */
#[napi]
pub struct RecordBatchIterator {
inner: Box<dyn RecordBatchStream + Unpin>,
}
#[napi]
impl RecordBatchIterator {
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
Self { inner }
}
#[napi]
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
if let Some(rst) = self.inner.next().await {
let batch = rst.map_err(|e| {
napi::Error::from_reason(format!("Failed to get next batch from stream: {}", e))
})?;
batches_to_ipc_file(&[batch])
.map_err(|e| napi::Error::from_reason(format!("Failed to write IPC file: {}", e)))
.map(|buf| Some(Buffer::from(buf)))
} else {
// We are done with the stream.
Ok(None)
}
}
}

View File

@@ -17,6 +17,7 @@ use napi_derive::*;
mod connection;
mod index;
mod iterator;
mod query;
mod table;

View File

@@ -16,7 +16,7 @@ use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::query::Query as LanceDBQuery;
use crate::table::Table;
use crate::{iterator::RecordBatchIterator, table::Table};
#[napi]
pub struct Query {
@@ -32,17 +32,50 @@ impl Query {
}
#[napi]
pub fn vector(&mut self, vector: Float32Array) {
let inn = self.inner.clone().nearest_to(&vector);
self.inner = inn;
pub fn column(&mut self, column: String) {
self.inner = self.inner.clone().column(&column);
}
#[napi]
pub fn to_arrow(&self) -> napi::Result<()> {
// let buf = self.inner.to_arrow().map_err(|e| {
// napi::Error::from_reason(format!("Failed to convert query to arrow: {}", e))
// })?;
// Ok(buf)
todo!()
pub fn filter(&mut self, filter: String) {
self.inner = self.inner.clone().filter(filter);
}
#[napi]
pub fn select(&mut self, columns: Vec<String>) {
self.inner = self.inner.clone().select(&columns);
}
#[napi]
pub fn limit(&mut self, limit: u32) {
self.inner = self.inner.clone().limit(limit as usize);
}
#[napi]
pub fn prefilter(&mut self, prefilter: bool) {
self.inner = self.inner.clone().prefilter(prefilter);
}
#[napi]
pub fn nearest_to(&mut self, vector: Float32Array) {
self.inner = self.inner.clone().nearest_to(&vector);
}
#[napi]
pub fn refine_factor(&mut self, refine_factor: u32) {
self.inner = self.inner.clone().refine_factor(refine_factor);
}
#[napi]
pub fn nprobes(&mut self, nprobe: u32) {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub async fn execute_stream(&self) -> napi::Result<RecordBatchIterator> {
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
})?;
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
}
}

View File

@@ -54,9 +54,20 @@ export class IndexBuilder {
scalar(): void
build(): Promise<void>
}
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
export class Query {
vector(vector: Float32Array): void
toArrow(): void
column(column: string): void
filter(filter: string): void
select(columns: Array<string>): void
limit(limit: number): void
prefilter(prefilter: boolean): void
nearestTo(vector: Float32Array): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
executeStream(): Promise<RecordBatchIterator>
}
export class Table {
/** Return Schema as empty Arrow IPC file. */

View File

@@ -295,12 +295,13 @@ if (!nativeBinding) {
throw new Error(`Failed to load native binding`)
}
const { Connection, IndexType, MetricType, IndexBuilder, Query, Table, WriteMode, connect } = nativeBinding
const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
module.exports.Connection = Connection
module.exports.IndexType = IndexType
module.exports.MetricType = MetricType
module.exports.IndexBuilder = IndexBuilder
module.exports.RecordBatchIterator = RecordBatchIterator
module.exports.Query = Query
module.exports.Table = Table
module.exports.WriteMode = WriteMode

View File

@@ -12,46 +12,73 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { RecordBatch } from "apache-arrow";
import { Table } from "./table";
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
} from "./native";
// TODO: re-eanble eslint once we have a real implementation
/* eslint-disable */
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
next(
...args: [] | [undefined]
): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented.");
private promised_inner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
constructor(
inner?: NativeBatchIterator,
promise?: Promise<NativeBatchIterator>
) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.inner = inner;
this.promised_inner = promise;
}
return?(value?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented.");
}
throw?(e?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented.");
async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
if (this.inner === undefined) {
this.inner = await this.promised_inner;
}
if (this.inner === undefined) {
throw new Error("Invalid iterator state state");
}
const n = await this.inner.next();
if (n == null) {
return Promise.resolve({ done: true, value: null });
}
const tbl = tableFromIPC(n);
if (tbl.batches.length != 1) {
throw new Error("Expected only one batch");
}
return Promise.resolve({ done: false, value: tbl.batches[0] });
}
}
/* eslint-enable */
/** Query executor */
export class Query implements AsyncIterable<RecordBatch> {
private readonly tbl: Table;
private _filter?: string;
private _limit?: number;
private readonly inner: NativeQuery;
// Vector search
private _vector?: Float32Array;
private _nprobes?: number;
private _refine_factor?: number = 1;
constructor(tbl: NativeTable) {
this.inner = tbl.query();
}
constructor(tbl: Table) {
this.tbl = tbl;
/** Set the column to run query. */
column(column: string): Query {
this.inner.column(column);
return this;
}
/** Set the filter predicate, only returns the results that satisfy the filter.
*
*/
filter(predicate: string): Query {
this._filter = predicate;
this.inner.filter(predicate);
return this;
}
/**
* Select the columns to return. If not set, all columns are returned.
*/
select(columns: string[]): Query {
this.inner.select(columns);
return this;
}
@@ -59,35 +86,67 @@ export class Query implements AsyncIterable<RecordBatch> {
* Set the limit of rows to return.
*/
limit(limit: number): Query {
this._limit = limit;
this.inner.limit(limit);
return this;
}
prefilter(prefilter: boolean): Query {
this.inner.prefilter(prefilter);
return this;
}
/**
* Set the query vector.
*/
vector(vector: number[]): Query {
this._vector = Float32Array.from(vector);
nearestTo(vector: number[]): Query {
this.inner.nearestTo(Float32Array.from(vector));
return this;
}
/**
* Set the number of probes to use for the query.
* Set the number of IVF partitions to use for the query.
*/
nprobes(nprobes: number): Query {
this._nprobes = nprobes;
this.inner.nprobes(nprobes);
return this;
}
/**
* Set the refine factor for the query.
*/
refine_factor(refine_factor: number): Query {
this._refine_factor = refine_factor;
refineFactor(refine_factor: number): Query {
this.inner.refineFactor(refine_factor);
return this;
}
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
throw new RecordBatchIterator();
/**
* Execute the query and return the results as an AsyncIterator.
*/
async executeStream(): Promise<RecordBatchIterator> {
const inner = await this.inner.executeStream();
return new RecordBatchIterator(inner);
}
/** Collect the results as an Arrow Table. */
async toArrow(): Promise<ArrowTable> {
const batches = [];
for await (const batch of this) {
batches.push(batch);
}
return new ArrowTable(batches);
}
/** Returns a JSON Array of All results.
*
*/
async toArray(): Promise<any[]> {
const tbl = await this.toArrow();
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
return tbl.toArray();
}
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.inner.executeStream();
return new RecordBatchIterator(undefined, promise);
}
}

View File

@@ -95,10 +95,58 @@ export class Table {
return builder;
}
search(vector?: number[]): Query {
const q = new Query(this);
if (vector !== undefined) {
q.vector(vector);
/**
* Create a generic {@link Query} Builder.
*
* When appropriate, various indices and statistics based pruning will be used to
* accelerate the query.
*
* @example
*
* ### Run a SQL-style query
* ```typescript
* for await (const batch of table.query()
* .filter("id > 1").select(["id"]).limit(20)) {
* console.log(batch);
* }
* ```
*
* ### Run Top-10 vector similarity search
* ```typescript
* for await (const batch of table.query()
* .nearestTo([1, 2, 3])
* .refineFactor(5).nprobe(10)
* .limit(10)) {
* console.log(batch);
* }
*```
*
* ### Scan the full dataset
* ```typescript
* for await (const batch of table.query()) {
* console.log(batch);
* }
*
* ### Return the full dataset as Arrow Table
* ```typescript
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
* ```
*
* @returns {@link Query}
*/
query(): Query {
return new Query(this.inner);
}
/** Search the table with a given query vector.
*
* This is a convenience method for preparing an ANN {@link Query}.
*/
search(vector: number[], column?: string): Query {
const q = this.query();
q.nearestTo(vector);
if (column !== undefined) {
q.column(column);
}
return q;
}

View File

@@ -16,10 +16,10 @@
use std::io::Cursor;
use arrow_array::RecordBatchReader;
use arrow_ipc::reader::StreamReader;
use arrow_array::{RecordBatch, RecordBatchReader};
use arrow_ipc::{reader::StreamReader, writer::FileWriter};
use crate::Result;
use crate::{Error, Result};
/// Convert a Arrow IPC file to a batch reader
pub fn ipc_file_to_batches(buf: Vec<u8>) -> Result<impl RecordBatchReader> {
@@ -28,6 +28,22 @@ pub fn ipc_file_to_batches(buf: Vec<u8>) -> Result<impl RecordBatchReader> {
Ok(reader)
}
/// Convert record batches to Arrow IPC file
pub fn batches_to_ipc_file(batches: &[RecordBatch]) -> Result<Vec<u8>> {
if batches.is_empty() {
return Err(Error::Store {
message: "No batches to write".to_string(),
});
}
let schema = batches[0].schema();
let mut writer = FileWriter::try_new(vec![], &schema)?;
for batch in batches {
writer.write(batch)?;
}
writer.finish()?;
Ok(writer.into_inner()?)
}
#[cfg(test)]
mod tests {

View File

@@ -22,6 +22,7 @@ use lance_linalg::distance::MetricType;
use crate::error::Result;
use crate::utils::default_vector_column;
use crate::Error;
const DEFAULT_TOP_K: usize = 10;
@@ -93,6 +94,19 @@ impl Query {
let arrow_schema = Schema::from(self.dataset.schema());
default_vector_column(&arrow_schema, Some(query.len() as i32))?
};
let field = self.dataset.schema().field(&column).ok_or(Error::Store {
message: format!("Column {} not found in dataset schema", column),
})?;
if !matches!(field.data_type(), arrow_schema::DataType::FixedSizeList(f, dim) if f.data_type().is_floating() && dim == query.len() as i32)
{
return Err(Error::Store {
message: format!(
"Vector column '{}' does not match the dimension of the query vector: dim={}",
column,
query.len(),
),
});
}
scanner.nearest(&column, query, self.limit.unwrap_or(DEFAULT_TOP_K))?;
} else {
// If there is no vector query, it's ok to not have a limit