Merge pull request #31 from lancedb/lei/doc

[Doc] Pandas, Parrow, DuckDB integration
This commit is contained in:
Lei Xu
2023-04-19 14:55:42 -07:00
committed by GitHub
3 changed files with 147 additions and 0 deletions

View File

@@ -3,6 +3,8 @@ docs_dir: src
theme:
name: "material"
features:
- content.code.copy
plugins:
- search
@@ -11,4 +13,14 @@ plugins:
nav:
- Home: index.md
- Integrations: integrations.md
- Python API: python.md
markdown_extensions:
- pymdownx.highlight:
anchor_linenums: true
line_spans: __span
pygments_lang_class: true
- pymdownx.inlinehilite
- pymdownx.snippets
- pymdownx.superfences

111
docs/src/integrations.md Normal file
View File

@@ -0,0 +1,111 @@
# Integrations
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
## Pandas and PyArrow
First, we need to connect to a `LanceDB` database.
``` py
import lancedb
db = lancedb.connect("/tmp/lancedb")
```
And write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
# Optionally, create a IVF_PQ index
table.create_index(num_partitions=256, num_sub_vectors=96)
```
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)
sections.
We can now perform similarity searches via `LanceDB`.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```
## DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use the dataset created previously
```python
import lancedb
db = lancedb.connect("/tmp/lancedb")
table = db.open_table("pd_table")
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
In [15]: duckdb.query("SELECT * FROM t")
Out[15]:
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
In [16]: duckdb.query("SELECT mean(price) FROM t")
Out[16]:
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -12,6 +12,7 @@
# limitations under the License.
import lancedb
import pandas as pd
def test_basic(tmp_path):
@@ -40,3 +41,26 @@ def test_basic(tmp_path):
assert len(db) == 1
assert db.open_table("test").name == db["test"].name
def test_ingest_pd(tmp_path):
db = lancedb.connect(tmp_path)
assert db.uri == str(tmp_path)
assert db.table_names() == []
data = pd.DataFrame({"vector": [[3.1, 4.1], [5.9, 26.5]], "item": ["foo", "bar"], "price": [10.0, 20.0]})
table = db.create_table("test", data=data)
rs = table.search([100, 100]).limit(1).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "bar"
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
assert len(rs) == 1
assert rs["item"].iloc[0] == "foo"
assert db.table_names() == ["test"]
assert "test" in db
assert len(db) == 1
assert db.open_table("test").name == db["test"].name