mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-09 13:22:58 +00:00
Merge pull request #31 from lancedb/lei/doc
[Doc] Pandas, Parrow, DuckDB integration
This commit is contained in:
@@ -3,6 +3,8 @@ docs_dir: src
|
||||
|
||||
theme:
|
||||
name: "material"
|
||||
features:
|
||||
- content.code.copy
|
||||
|
||||
plugins:
|
||||
- search
|
||||
@@ -11,4 +13,14 @@ plugins:
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
- Integrations: integrations.md
|
||||
- Python API: python.md
|
||||
|
||||
markdown_extensions:
|
||||
- pymdownx.highlight:
|
||||
anchor_linenums: true
|
||||
line_spans: __span
|
||||
pygments_lang_class: true
|
||||
- pymdownx.inlinehilite
|
||||
- pymdownx.snippets
|
||||
- pymdownx.superfences
|
||||
111
docs/src/integrations.md
Normal file
111
docs/src/integrations.md
Normal file
@@ -0,0 +1,111 @@
|
||||
# Integrations
|
||||
|
||||
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
|
||||
|
||||
## Pandas and PyArrow
|
||||
|
||||
First, we need to connect to a `LanceDB` database.
|
||||
|
||||
``` py
|
||||
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("/tmp/lancedb")
|
||||
```
|
||||
|
||||
And write a `Pandas DataFrame` to LanceDB directly.
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pd_table", data=data)
|
||||
|
||||
# Optionally, create a IVF_PQ index
|
||||
table.create_index(num_partitions=256, num_sub_vectors=96)
|
||||
```
|
||||
|
||||
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](indexing.md)
|
||||
sections.
|
||||
|
||||
|
||||
We can now perform similarity searches via `LanceDB`.
|
||||
|
||||
```py
|
||||
# Open the table previously created.
|
||||
table = db.open_table("pd_table")
|
||||
|
||||
query_vector = [100, 100]
|
||||
# Pandas DataFrame
|
||||
df = table.search(query_vector).limit(1).to_df()
|
||||
print(df)
|
||||
```
|
||||
|
||||
```
|
||||
vector item price score
|
||||
0 [5.9, 26.5] bar 20.0 14257.05957
|
||||
```
|
||||
|
||||
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
|
||||
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
|
||||
|
||||
```python
|
||||
|
||||
# Apply the filter via LanceDB
|
||||
results = table.search([100, 100]).where("price < 15").to_df()
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
|
||||
# Apply the filter via Pandas
|
||||
df = results = table.search([100, 100]).to_df()
|
||||
results = df[df.price < 15]
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
```
|
||||
|
||||
## DuckDB
|
||||
|
||||
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
|
||||
|
||||
Let us start with installing `duckdb` and `lancedb`.
|
||||
|
||||
```shell
|
||||
pip install duckdb lancedb
|
||||
```
|
||||
|
||||
We will re-use the dataset created previously
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("/tmp/lancedb")
|
||||
table = db.open_table("pd_table")
|
||||
arrow_table = table.to_arrow()
|
||||
```
|
||||
|
||||
`DuckDB` can directly query the `arrow_table`:
|
||||
|
||||
```python
|
||||
In [15]: duckdb.query("SELECT * FROM t")
|
||||
Out[15]:
|
||||
┌─────────────┬─────────┬────────┐
|
||||
│ vector │ item │ price │
|
||||
│ float[] │ varchar │ double │
|
||||
├─────────────┼─────────┼────────┤
|
||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||
└─────────────┴─────────┴────────┘
|
||||
|
||||
In [16]: duckdb.query("SELECT mean(price) FROM t")
|
||||
Out[16]:
|
||||
┌─────────────┐
|
||||
│ mean(price) │
|
||||
│ double │
|
||||
├─────────────┤
|
||||
│ 15.0 │
|
||||
└─────────────┘
|
||||
```
|
||||
@@ -12,6 +12,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
import lancedb
|
||||
import pandas as pd
|
||||
|
||||
|
||||
def test_basic(tmp_path):
|
||||
@@ -40,3 +41,26 @@ def test_basic(tmp_path):
|
||||
assert len(db) == 1
|
||||
|
||||
assert db.open_table("test").name == db["test"].name
|
||||
|
||||
|
||||
def test_ingest_pd(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
|
||||
assert db.uri == str(tmp_path)
|
||||
assert db.table_names() == []
|
||||
|
||||
data = pd.DataFrame({"vector": [[3.1, 4.1], [5.9, 26.5]], "item": ["foo", "bar"], "price": [10.0, 20.0]})
|
||||
table = db.create_table("test", data=data)
|
||||
rs = table.search([100, 100]).limit(1).to_df()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "bar"
|
||||
|
||||
rs = table.search([100, 100]).where("price < 15").limit(2).to_df()
|
||||
assert len(rs) == 1
|
||||
assert rs["item"].iloc[0] == "foo"
|
||||
|
||||
assert db.table_names() == ["test"]
|
||||
assert "test" in db
|
||||
assert len(db) == 1
|
||||
|
||||
assert db.open_table("test").name == db["test"].name
|
||||
|
||||
Reference in New Issue
Block a user