[Doc] Split the python integration into different topics (#292)

This commit is contained in:
Lei Xu
2023-07-12 21:26:59 -07:00
committed by GitHub
parent c385c55629
commit ff1d206182
6 changed files with 135 additions and 119 deletions

View File

@@ -56,7 +56,9 @@ nav:
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Python integrations: integrations.md
- Python integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb

View File

@@ -46,7 +46,7 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
const table = await db.createTable("my_table",
const table = await db.createTable("my_table",
[{ id: 1, vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ id: 2, vector: [5.9, 26.5], item: "bar", price: 20.0 }])
const results = await table.search([100, 100]).limit(2).execute();
@@ -67,6 +67,6 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
* [`Embedding Functions`](embedding.md) - functions for working with embeddings.
* [`Indexing`](ann_indexes.md) - create vector indexes to speed up queries.
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
* [`Ecosystem Integrations`](integrations.md) - integrating LanceDB with python data tooling ecosystem.
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.

View File

@@ -1,116 +0,0 @@
# Integrations
Built on top of Apache Arrow, `LanceDB` is easy to integrate with the Python ecosystem, including Pandas, PyArrow and DuckDB.
## Pandas and PyArrow
First, we need to connect to a `LanceDB` database.
```py
import lancedb
db = lancedb.connect("data/sample-lancedb")
```
And write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
You will find detailed instructions of creating dataset and index in [Basic Operations](basic.md) and [Indexing](ann_indexes.md)
sections.
We can now perform similarity searches via `LanceDB`.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a where clause to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting pandas `DataFrame` from the search query.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```
## DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use the dataset created previously
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
table = db.open_table("pd_table")
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
import duckdb
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
```python
duckdb.query("SELECT mean(price) FROM arrow_table")
```
```
Out[16]:
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

67
docs/src/python/arrow.md Normal file
View File

@@ -0,0 +1,67 @@
# Pandas and PyArrow
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
and PyArrow.
First, we need to connect to a `LanceDB` database.
```py
import lancedb
db = lancedb.connect("data/sample-lancedb")
```
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
```py
import pandas as pd
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
```
You will find detailed instructions of creating dataset and index in
[Basic Operations](basic.md) and [Indexing](ann_indexes.md)
sections.
We can now perform similarity search via `LanceDB` Python API.
```py
# Open the table previously created.
table = db.open_table("pd_table")
query_vector = [100, 100]
# Pandas DataFrame
df = table.search(query_vector).limit(1).to_df()
print(df)
```
```
vector item price score
0 [5.9, 26.5] bar 20.0 14257.05957
```
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
```python
# Apply the filter via LanceDB
results = table.search([100, 100]).where("price < 15").to_df()
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
# Apply the filter via Pandas
df = results = table.search([100, 100]).to_df()
results = df[df.price < 15]
assert len(results) == 1
assert results["item"].iloc[0] == "foo"
```

56
docs/src/python/duckdb.md Normal file
View File

@@ -0,0 +1,56 @@
# DuckDB
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
Let us start with installing `duckdb` and `lancedb`.
```shell
pip install duckdb lancedb
```
We will re-use [the dataset created previously](./arrow.md):
```python
import pandas as pd
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = pd.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
```
`DuckDB` can directly query the `arrow_table`:
```python
import duckdb
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
```py
duckdb.query("SELECT mean(price) FROM arrow_table")
```
```
┌─────────────┐
│ mean(price) │
│ double │
├─────────────┤
│ 15.0 │
└─────────────┘
```

View File

@@ -0,0 +1,7 @@
# Integration
Built on top of [Apache Arrow](https://arrow.apache.org/),
`LanceDB` is very easy to be integrate with Python ecosystems.
* [Pandas and Arrow Integration](./arrow.md)
* [DuckDB Integration](./duckdb.md)