mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-06 20:02:58 +00:00
[Doc] Split the python integration into different topics (#292)
This commit is contained in:
67
docs/src/python/arrow.md
Normal file
67
docs/src/python/arrow.md
Normal file
@@ -0,0 +1,67 @@
|
||||
# Pandas and PyArrow
|
||||
|
||||
|
||||
Built on top of [Apache Arrow](https://arrow.apache.org/),
|
||||
`LanceDB` is easy to integrate with the Python ecosystem, including [Pandas](https://pandas.pydata.org/)
|
||||
and PyArrow.
|
||||
|
||||
First, we need to connect to a `LanceDB` database.
|
||||
|
||||
```py
|
||||
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("data/sample-lancedb")
|
||||
```
|
||||
|
||||
Afterwards, we write a `Pandas DataFrame` to LanceDB directly.
|
||||
|
||||
```py
|
||||
import pandas as pd
|
||||
|
||||
data = pd.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pd_table", data=data)
|
||||
```
|
||||
|
||||
You will find detailed instructions of creating dataset and index in
|
||||
[Basic Operations](basic.md) and [Indexing](ann_indexes.md)
|
||||
sections.
|
||||
|
||||
|
||||
We can now perform similarity search via `LanceDB` Python API.
|
||||
|
||||
```py
|
||||
# Open the table previously created.
|
||||
table = db.open_table("pd_table")
|
||||
|
||||
query_vector = [100, 100]
|
||||
# Pandas DataFrame
|
||||
df = table.search(query_vector).limit(1).to_df()
|
||||
print(df)
|
||||
```
|
||||
|
||||
```
|
||||
vector item price score
|
||||
0 [5.9, 26.5] bar 20.0 14257.05957
|
||||
```
|
||||
|
||||
If you have a simple filter, it's faster to provide a `where clause` to `LanceDB`'s search query.
|
||||
If you have more complex criteria, you can always apply the filter to the resulting Pandas `DataFrame`.
|
||||
|
||||
```python
|
||||
|
||||
# Apply the filter via LanceDB
|
||||
results = table.search([100, 100]).where("price < 15").to_df()
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
|
||||
# Apply the filter via Pandas
|
||||
df = results = table.search([100, 100]).to_df()
|
||||
results = df[df.price < 15]
|
||||
assert len(results) == 1
|
||||
assert results["item"].iloc[0] == "foo"
|
||||
```
|
||||
56
docs/src/python/duckdb.md
Normal file
56
docs/src/python/duckdb.md
Normal file
@@ -0,0 +1,56 @@
|
||||
# DuckDB
|
||||
|
||||
`LanceDB` works with `DuckDB` via [PyArrow integration](https://duckdb.org/docs/guides/python/sql_on_arrow).
|
||||
|
||||
Let us start with installing `duckdb` and `lancedb`.
|
||||
|
||||
```shell
|
||||
pip install duckdb lancedb
|
||||
```
|
||||
|
||||
We will re-use [the dataset created previously](./arrow.md):
|
||||
|
||||
```python
|
||||
import pandas as pd
|
||||
import lancedb
|
||||
|
||||
db = lancedb.connect("data/sample-lancedb")
|
||||
data = pd.DataFrame({
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0]
|
||||
})
|
||||
table = db.create_table("pd_table", data=data)
|
||||
arrow_table = table.to_arrow()
|
||||
```
|
||||
|
||||
`DuckDB` can directly query the `arrow_table`:
|
||||
|
||||
```python
|
||||
import duckdb
|
||||
|
||||
duckdb.query("SELECT * FROM arrow_table")
|
||||
```
|
||||
|
||||
```
|
||||
┌─────────────┬─────────┬────────┐
|
||||
│ vector │ item │ price │
|
||||
│ float[] │ varchar │ double │
|
||||
├─────────────┼─────────┼────────┤
|
||||
│ [3.1, 4.1] │ foo │ 10.0 │
|
||||
│ [5.9, 26.5] │ bar │ 20.0 │
|
||||
└─────────────┴─────────┴────────┘
|
||||
```
|
||||
|
||||
```py
|
||||
duckdb.query("SELECT mean(price) FROM arrow_table")
|
||||
```
|
||||
|
||||
```
|
||||
┌─────────────┐
|
||||
│ mean(price) │
|
||||
│ double │
|
||||
├─────────────┤
|
||||
│ 15.0 │
|
||||
└─────────────┘
|
||||
```
|
||||
7
docs/src/python/integration.md
Normal file
7
docs/src/python/integration.md
Normal file
@@ -0,0 +1,7 @@
|
||||
# Integration
|
||||
|
||||
Built on top of [Apache Arrow](https://arrow.apache.org/),
|
||||
`LanceDB` is very easy to be integrate with Python ecosystems.
|
||||
|
||||
* [Pandas and Arrow Integration](./arrow.md)
|
||||
* [DuckDB Integration](./duckdb.md)
|
||||
Reference in New Issue
Block a user