- adds `loss` into the index stats for vector index
- now `optimize` can retrain the vector index
---------
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Previously, users could only specify new data types in `alterColumns` as
strings:
```ts
await tbl.alterColumns([
path: "price",
dataType: "float"
]);
```
But this has some problems:
1. It wasn't clear what were valid types
2. It was impossible to specify nested types, like lists and vector
columns.
This PR changes it to take an Arrow data type, similar to how the Python
API works. This allows casting vector types:
```ts
await tbl.alterColumns([
{
path: "vector",
dataType: new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float16(), false),
),
},
]);
```
Closes#2185
In earlier PRs (#1886, #1191) we made the default limit 10 regardless of
the query type. This was confusing for users and in many cases a
breaking change. Users would have queries that used to return all
results, but instead only returned the first 10, causing silent bugs.
Part of the cause was consistency: the Python sync API seems to have
always had a limit of 10, while newer APIs (Python async and Nodejs)
didn't.
This PR sets the default limit only for searches (vector search, FTS),
while letting scans (even with filters) be unbounded. It does this
consistently for all SDKs.
Fixes#1983Fixes#1852Fixes#2141
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.
This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.
This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.
Closes#2110Closes#521
---------
Co-authored-by: Weston Pace <weston.pace@gmail.com>
* Test that we can insert subschemas (omit nullable columns) in Python.
* More work is needed to support this in Node. See:
https://github.com/lancedb/lancedb/issues/1832
* Test that we can insert data with nullable schema but no nulls in
non-nullable schema.
* Add `"null"` option for `on_bad_vectors` where we fill with null if
the vector is bad.
* Make null values not considered bad if the field itself is nullable.
Allows users to pass multiple query vector as part of a single query
plan. This just runs the queries in parallel without any further
optimization. It's mostly a convenience.
Previously, I think this was only handled by the sync Python remote API.
This makes it common across all SDKs.
Closes https://github.com/lancedb/lancedb/issues/1803
```python
>>> import lancedb
>>> import asyncio
>>>
>>> async def main():
... db = await lancedb.connect_async("./demo")
... table = await db.create_table("demo", [{"id": 1, "vector": [1, 2, 3]}, {"id": 2, "vector": [4, 5, 6]}], mode="overwrite")
... return await table.query().nearest_to([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [4.0, 5.0, 6.0]]).limit(1).to_pandas()
...
>>> asyncio.run(main())
query_index id vector _distance
0 2 2 [4.0, 5.0, 6.0] 0.0
1 1 2 [4.0, 5.0, 6.0] 0.0
2 0 1 [1.0, 2.0, 3.0] 0.0
```
Sometimes it is acceptable to users to only search indexed data and skip
and new un-indexed data. For example, if un-indexed data will be shortly
indexed and they don't mind the delay. In these cases, we can save a lot
of CPU time in search, and provide better latency. Users can activate
this on queries using `fast_search()`.
BREAKING CHANGE: the return value of `index_stats` method has changed
and all `index_stats` APIs now take index name instead of UUID. Also
several deprecated index statistics methods were removed.
* Removes deprecated methods for individual index statistics
* Aligns public `IndexStatistics` struct with API response from LanceDB
Cloud.
* Implements `index_stats` for remote Rust SDK and Python async API.
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.
For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.
For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)
For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search
For Rust
- Support full text search
The others:
- Update the FTS doc
BREAKING CHANGE:
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores
---------
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
previously if you tried to install both vectordb and @lancedb/lancedb,
you would get a peer dependency issue due to `vectordb` requiring
`14.0.2` and `@lancedb/lancedb` requiring `15.0.0`. now
`@lancedb/lancedb` should just work with any arrow version 13-17
so this was annoying me when writing the docs.
for a `search` query, one needed to chain `async` calls.
```ts
const res = await (await tbl.search("greetings")).toArray()
```
now the promise will be deferred until the query is collected, leading
to a more functional API
```ts
const res = await tbl.search("greetings").toArray()
```
It's useful to see the underlying query plan for debugging purposes.
This exposes LanceScanner's `explain_plan` function. Addresses #1288
---------
Co-authored-by: Will Jones <willjones127@gmail.com>
while adding some more docs & examples for the new js sdk, i ran across
a few compatibility issues when using different arrow versions. This
should fix those issues.
The optimize function is pretty crucial for getting good performance
when building a large scale dataset but it was only exposed in rust
(many sync python users are probably doing this via to_lance today)
This PR adds the optimize function to nodejs and to python.
I left the function marked experimental because I think there will
likely be changes to optimization (e.g. if we add features like
"optimize on write"). I also only exposed the `cleanup_older_than`
configuration parameter since this one is very commonly used and the
rest have sensible defaults and we don't really know why we would
recommend different values for these defaults anyways.
I've been noticing a lot of friction with the current toolchain for
'/nodejs'. Particularly with the usage of eslint and prettier.
[Biome](https://biomejs.dev/) is an all in one formatter & linter that
replaces the need for two different ones that can potentially clash with
one another.
I've been using it in the
[nodejs-polars](https://github.com/pola-rs/nodejs-polars) repo for quite
some time & have found it much more pleasant to work with.
---
One other small change included in this PR:
use [ts-jest](https://www.npmjs.com/package/ts-jest) so we can run our
tests without having to rebuild typescript code first