feat: support 4bit PQ (#1916)

This commit is contained in:
BubbleCal
2024-12-10 10:36:03 +08:00
committed by GitHub
parent ab5316b4fa
commit 3324e7d525
10 changed files with 94 additions and 5 deletions

View File

@@ -83,6 +83,7 @@ The following IVF_PQ paramters can be specified:
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
@@ -142,11 +143,11 @@ There are a couple of parameters that can be used to fine-tune the search:
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
@@ -288,4 +289,4 @@ less space distortion, and thus yields better accuracy. However, a higher `num_s
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -567,6 +567,15 @@ describe("When creating an index", () => {
// TODO: Verify parameters when we can load index config as part of list indices
});
it("should be able to create 4bit IVF_PQ", async () => {
await tbl.createIndex("vec", {
config: Index.ivfPq({
numPartitions: 10,
numBits: 4,
}),
});
});
it("should allow me to replace (or not) an existing index", async () => {
await tbl.createIndex("id");
// Default is replace=true

View File

@@ -47,6 +47,16 @@ export interface IvfPqOptions {
*/
numSubVectors?: number;
/**
* Number of bits per sub-vector.
*
* This value controls how much each subvector is compressed. The more bits the more
* accurate the index will be but the slower search. The default is 8 bits.
*
* The number of bits must be 4 or 8.
*/
numBits?: number;
/**
* Distance type to use to build the index.
*

View File

@@ -45,6 +45,7 @@ impl Index {
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) -> napi::Result<Self> {
@@ -59,6 +60,9 @@ impl Index {
if let Some(num_sub_vectors) = num_sub_vectors {
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(num_bits) = num_bits {
ivf_pq_builder = ivf_pq_builder.num_bits(num_bits);
}
if let Some(max_iterations) = max_iterations {
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
}

View File

@@ -178,6 +178,12 @@ class HnswPq:
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
num_bits: int, default 8
Number of bits to encode each sub-vector.
This value controls how much the sub-vectors are compressed. The more bits
the more accurate the index but the slower search. Only 4 and 8 are supported.
max_iterations, default 50
Max iterations to train kmeans.
@@ -232,6 +238,7 @@ class HnswPq:
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
num_bits: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
m: Optional[int] = None,
@@ -241,6 +248,7 @@ class HnswPq:
distance_type=distance_type,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
max_iterations=max_iterations,
sample_rate=sample_rate,
m=m,
@@ -387,6 +395,7 @@ class IvfPq:
distance_type: Optional[str] = None,
num_partitions: Optional[int] = None,
num_sub_vectors: Optional[int] = None,
num_bits: Optional[int] = None,
max_iterations: Optional[int] = None,
sample_rate: Optional[int] = None,
):
@@ -449,6 +458,12 @@ class IvfPq:
If the dimension is not visible by 8 then we use 1 subvector. This is not
ideal and will likely result in poor performance.
num_bits: int, default 8
Number of bits to encode each sub-vector.
This value controls how much the sub-vectors are compressed. The more bits
the more accurate the index but the slower search. The default is 8
bits. Only 4 and 8 are supported.
max_iterations: int, default 50
Max iteration to train kmeans.
@@ -482,6 +497,7 @@ class IvfPq:
distance_type=distance_type,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
max_iterations=max_iterations,
sample_rate=sample_rate,
)

View File

@@ -413,6 +413,8 @@ class Table(ABC):
replace: bool = True,
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
*,
num_bits: int = 8,
):
"""Create an index on the table.
@@ -439,6 +441,9 @@ class Table(ABC):
Only support "cuda" for now.
index_cache_size : int, optional
The size of the index cache in number of entries. Default value is 256.
num_bits: int
The number of bits to encode sub-vectors. Only used with the IVF_PQ index.
Only 4 and 8 are supported.
"""
raise NotImplementedError
@@ -1430,6 +1435,8 @@ class LanceTable(Table):
accelerator: Optional[str] = None,
index_cache_size: Optional[int] = None,
index_type="IVF_PQ",
*,
num_bits: int = 8,
):
"""Create an index on the table."""
self._dataset_mut.create_index(
@@ -1441,6 +1448,7 @@ class LanceTable(Table):
replace=replace,
accelerator=accelerator,
index_cache_size=index_cache_size,
num_bits=num_bits,
)
def create_scalar_index(

View File

@@ -108,6 +108,29 @@ async def test_create_vector_index(some_table: AsyncTable):
assert stats.num_indices == 1
@pytest.mark.asyncio
async def test_create_4bit_ivfpq_index(some_table: AsyncTable):
# Can create
await some_table.create_index("vector", config=IvfPq(num_bits=4))
# Can recreate if replace=True
await some_table.create_index("vector", config=IvfPq(num_bits=4), replace=True)
# Can't recreate if replace=False
with pytest.raises(RuntimeError, match="already exists"):
await some_table.create_index("vector", replace=False)
indices = await some_table.list_indices()
assert len(indices) == 1
assert indices[0].index_type == "IvfPq"
assert indices[0].columns == ["vector"]
assert indices[0].name == "vector_idx"
stats = await some_table.index_stats("vector_idx")
assert stats.index_type == "IVF_PQ"
assert stats.distance_type == "l2"
assert stats.num_indexed_rows == await some_table.count_rows()
assert stats.num_unindexed_rows == 0
assert stats.num_indices == 1
@pytest.mark.asyncio
async def test_create_hnswpq_index(some_table: AsyncTable):
await some_table.create_index("vector", config=HnswPq(num_partitions=10))

View File

@@ -530,6 +530,7 @@ def test_create_index_method():
replace=True,
accelerator=None,
index_cache_size=256,
num_bits=8,
)

View File

@@ -47,12 +47,13 @@ impl Index {
#[pymethods]
impl Index {
#[pyo3(signature = (distance_type=None, num_partitions=None, num_sub_vectors=None, max_iterations=None, sample_rate=None))]
#[pyo3(signature = (distance_type=None, num_partitions=None, num_sub_vectors=None,num_bits=None, max_iterations=None, sample_rate=None))]
#[staticmethod]
pub fn ivf_pq(
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
) -> PyResult<Self> {
@@ -75,6 +76,9 @@ impl Index {
if let Some(num_sub_vectors) = num_sub_vectors {
ivf_pq_builder = ivf_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(num_bits) = num_bits {
ivf_pq_builder = ivf_pq_builder.num_bits(num_bits);
}
if let Some(max_iterations) = max_iterations {
ivf_pq_builder = ivf_pq_builder.max_iterations(max_iterations);
}
@@ -148,12 +152,14 @@ impl Index {
}
}
#[pyo3(signature = (distance_type=None, num_partitions=None, num_sub_vectors=None, max_iterations=None, sample_rate=None, m=None, ef_construction=None))]
#[pyo3(signature = (distance_type=None, num_partitions=None, num_sub_vectors=None,num_bits=None, max_iterations=None, sample_rate=None, m=None, ef_construction=None))]
#[staticmethod]
#[allow(clippy::too_many_arguments)]
pub fn hnsw_pq(
distance_type: Option<String>,
num_partitions: Option<u32>,
num_sub_vectors: Option<u32>,
num_bits: Option<u32>,
max_iterations: Option<u32>,
sample_rate: Option<u32>,
m: Option<u32>,
@@ -170,6 +176,9 @@ impl Index {
if let Some(num_sub_vectors) = num_sub_vectors {
hnsw_pq_builder = hnsw_pq_builder.num_sub_vectors(num_sub_vectors);
}
if let Some(num_bits) = num_bits {
hnsw_pq_builder = hnsw_pq_builder.num_bits(num_bits);
}
if let Some(max_iterations) = max_iterations {
hnsw_pq_builder = hnsw_pq_builder.max_iterations(max_iterations);
}

View File

@@ -132,6 +132,10 @@ macro_rules! impl_pq_params_setter {
self.num_sub_vectors = Some(num_sub_vectors);
self
}
pub fn num_bits(mut self, num_bits: u32) -> Self {
self.num_bits = Some(num_bits);
self
}
};
}
@@ -189,6 +193,7 @@ pub struct IvfPqIndexBuilder {
// PQ
pub(crate) num_sub_vectors: Option<u32>,
pub(crate) num_bits: Option<u32>,
}
impl Default for IvfPqIndexBuilder {
@@ -197,6 +202,7 @@ impl Default for IvfPqIndexBuilder {
distance_type: DistanceType::L2,
num_partitions: None,
num_sub_vectors: None,
num_bits: None,
sample_rate: 256,
max_iterations: 50,
}
@@ -256,6 +262,7 @@ pub struct IvfHnswPqIndexBuilder {
// PQ
pub(crate) num_sub_vectors: Option<u32>,
pub(crate) num_bits: Option<u32>,
}
impl Default for IvfHnswPqIndexBuilder {
@@ -264,6 +271,7 @@ impl Default for IvfHnswPqIndexBuilder {
distance_type: DistanceType::L2,
num_partitions: None,
num_sub_vectors: None,
num_bits: None,
sample_rate: 256,
max_iterations: 50,
m: 20,