This adds LanceTable.restore as a temporary feature. It reads data from
a previous version and creates
a new snapshot version using that data. This makes the version writeable
unlike checkout. This should be replaced once the feature is implemented
in pylance.
Co-authored-by: Chang She <chang@lancedb.com>
BREAKING CHANGE: The `score` column has been renamed to `_distance` to
more accurately describe the semantics (smaller means closer / better).
---------
Co-authored-by: Lei Xu <lei@lancedb.com>
#416 Fixed.
added drop_database() method . This deletes all the tables from the
database with a single command.
---------
Signed-off-by: Ashis Kumar Naik <ashishami2002@gmail.com>
Saves users from having to explicitly call
`LanceModel.to_arrow_schema()` when creating an empty table.
See new docs for full details.
---------
Co-authored-by: Chang She <chang@lancedb.com>
Makes the following work so all the formats accepted by `create_table()`
are also accepted by `add()`
```
import lancedb
import pyarrow as pa
db = lancedb.connect("/tmp")
def make_batches():
for i in range(5):
yield pa.RecordBatch.from_arrays(
[
pa.array([[3.1, 4.1], [5.9, 26.5]]),
pa.array(["foo", "bar"]),
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
)
schema = pa.schema([
pa.field("vector", pa.list_(pa.float32())),
pa.field("item", pa.utf8()),
pa.field("price", pa.float32()),
])
tbl = db.create_table("table4", make_batches(), schema=schema)
tbl.add(make_batches())
```
It's inconvenient to always require data at table creation time.
Here we enable you to create an empty table and add data and set schema
later.
---------
Co-authored-by: Chang She <chang@lancedb.com>
Sometimes LangChain would insert a single `[np.nan]` as a placeholder if
the embedding function failed. This causes a problem for Lance format
because then the array can't be stored as a FixedSizedListArray.
Instead:
1. By default we remove rows with embedding lengths less than the
maximum length in the batch
2. If `strict=True` kwargs is set to True, then a `ValueError` is raised
if the embeddings aren't all the same length
---------
Co-authored-by: Chang She <chang@lancedb.com>
* to_df() is now async, added `to_df_blocking` to convenience
* add remote lancedb client to public lancedb
* make lancedb connection class understand url scheme
`lancedb+<connection_type>://<host>:<port>`.
Changes include:
- Contexts of sizes less than window param to be included as well
- Added optional threshold parameter to to_df in Contextualizer
This should close#165
- If maintainers are satisfied with the implementation will add more
examples and test cases and update the documentations as well.
---------
Co-authored-by: Nithin PS <47279496+Nithinps021@users.noreply.github.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
Adds:
* Make `mkdocstrings` aware we are using numpy-style docstrings
* Fixes broken link on `index.md` to Python API docs (and added link to
node ones)
* Added examples to various classes.
* Added doctest to verify examples work.
pypi does not allow packages to be uploaded that has a direct reference
for now we'll just ask the user to install tantivy separately
---------
Co-authored-by: Chang She <chang@lancedb.com>
This is v1 of integrating full text search index into LanceDB.
# API
The query API is roughly the same as before, except if the input is text
instead of a vector we assume that its fts search.
## Example
If `table` is a LanceDB LanceTable, then:
Build index: `table.create_fts_index("text")`
Query: `df = table.search("puppy").limit(10).select(["text"]).to_df()`
# Implementation
Here we use the tantivy-py package to build the index. We then use the
row id's as the full-text-search index's doc id then we just do a Take
operation to fetch the rows.
# Limitations
1. don't support incremental row appends yet. New data won't show up in
search
2. local filesystem only
3. requires building tantivy explicitly
---------
Co-authored-by: Chang She <chang@lancedb.com>
- Fixed `add` unit test to create the correct expected result
- Added a unit test for LanceTable.add
- Need to discuss if len(LanceTable) is handled correctly