## Summary
This PR adds the missing `name` parameter to `create_scalar_index` and
`create_fts_index` methods in the Python SDK, which was inadvertently
omitted when it was added to `create_index` in PR #2586.
## Changes
- Add `name: Optional[str] = None` parameter to abstract
`Table.create_scalar_index` and `Table.create_fts_index` methods
- Update `LanceTable` implementation to accept and pass the `name`
parameter to the underlying Rust layer
- Update `RemoteTable` implementation to accept and pass the `name`
parameter
- Enhanced tests to verify custom index names work correctly for both
scalar and FTS indices
- When `name` is not provided, default names are generated (e.g.,
`{column}_idx`)
## Test plan
- [x] Added test cases for custom names in scalar index creation
- [x] Added test cases for custom names in FTS index creation
- [x] Verified existing tests continue to pass
- [x] Code formatting and linting checks pass
This ensures API consistency across all index creation methods in the
LanceDB Python SDK.
Fixes#2616🤖 Generated with [Claude Code](https://claude.ai/code)
---------
Co-authored-by: Claude <noreply@anthropic.com>
Enables two new parameters when building indices:
* `name`: Allows explicitly setting a name on the index. Default is
`{col_name}_idx`.
* `train` (default `True`): When set to `False`, an empty index will be
immediately created.
The upgrade of Lance means there are also additional behaviors from
cd76a993b8:
* When a scalar index is created on a Table, it will be kept around even
if all rows are deleted or updated.
* Scalar indices can be created on empty tables. They will default to
`train=False` if the table is empty.
---------
Co-authored-by: Weston Pace <weston.pace@gmail.com>
## Summary
Fixes IndexError when creating tables with empty list data and a
provided schema. Previously, `_into_pyarrow_reader()` would attempt to
access `data[0]` on empty lists, causing an IndexError. Now properly
handles empty lists by using the provided schema.
Also adds regression tests for GitHub issues #1968 and #303 to prevent
future regressions with empty table scenarios.
## Changes
- Fix IndexError in `_into_pyarrow_reader()` for empty list + schema
case
- Add Optional[pa.Schema] parameter to handle empty data gracefully
- Add `test_create_table_empty_list_with_schema` for the IndexError fix
- Add `test_create_empty_then_add_data` for issue #1968
- Add `test_search_empty_table` for issue #303
## Test plan
- [x] All new regression tests pass
- [x] Existing tests continue to pass
- [x] Code formatted with `make format`
Provides the ability to set a timeout for merge insert. The default
underlying timeout is however long the first attempt takes, or if there
are multiple attempts, 30 seconds. This has two use cases:
1. Make the timeout shorter, when you want to fail if it takes too long.
2. Allow taking more time to do retries.
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **New Features**
- Added support for specifying a timeout when performing merge insert
operations in Python, Node.js, and Rust APIs.
- Introduced a new option to control the maximum allowed execution time
for merge inserts, including retry timeout handling.
- **Documentation**
- Updated and added documentation to describe the new timeout option and
its usage in APIs.
- **Tests**
- Added and updated tests to verify correct timeout behavior during
merge insert operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
add restore with tag API in python and nodejs API and add tests to guard
them
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
- Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
- Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
return version info for all write operations (add, update, merge_insert
and column modification operations)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **New Features**
- Table modification operations (add, update, delete, merge,
add/alter/drop columns) now return detailed result objects including
version numbers and operation statistics.
- Result objects provide clearer feedback such as rows affected and new
table version after each operation.
- **Documentation**
- Updated documentation to describe new result objects and their fields
for all relevant table operations.
- Added documentation for new result interfaces and updated method
return types in Node.js and Python APIs.
- **Tests**
- Enhanced test coverage to assert correctness of returned versioning
and operation metadata after table modifications.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
* Add a new "table stats" API to expose basic table and fragment
statistics with local and remote table implementations
### Questions
* This is using `calculate_data_stats` to determine total bytes in the
table. This seems like a potentially expensive operation - are there any
concerns about performance for large datasets?
### Notes
* bytes_on_disk seems to be stored at the column level but there does
not seem to be a way to easily calculate total bytes per fragment. This
may need to be added in lance before we can support fragment size
(bytes) statistics.
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **New Features**
- Added a method to retrieve comprehensive table statistics, including
total rows, index counts, storage size, and detailed fragment size
metrics such as minimum, maximum, mean, and percentiles.
- Enabled fetching of table statistics from remote sources through
asynchronous requests.
- Extended table interfaces across Python, Rust, and Node.js to support
synchronous and asynchronous retrieval of table statistics.
- **Tests**
- Introduced tests to verify the accuracy of the new table statistics
feature for both populated and empty tables.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
add the tag related API to list existing tags, attach tag to a version,
update the tag version, delete tag, get the version of the tag, and
checkout the version that the tag bounded to.
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **New Features**
- Introduced table version tagging, allowing users to create, update,
delete, and list human-readable tags for specific table versions.
- Enabled checking out a table by either version number or tag name.
- Added new interfaces for tag management in both Python and Node.js
APIs, supporting synchronous and asynchronous workflows.
- **Bug Fixes**
- None.
- **Documentation**
- Updated documentation to describe the new tagging features, including
usage examples.
- **Tests**
- Added comprehensive tests for tag creation, updating, deletion,
listing, and version checkout by tag in both Python and Node.js
environments.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
Fixes#2344
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **Tests**
- Updated tests to use PyArrow Tables instead of pandas DataFrames where
possible, reducing reliance on pandas.
- Tests that require pandas are now automatically skipped if pandas is
not installed.
- **Chores**
- Improved workflow to uninstall both pylance and pandas in a specific
test step.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
This reverts commit a547c523c2 or #2281
The current implementation can cause panics and performance degradation.
I will bring this back with more testing in
https://github.com/lancedb/lancedb/pull/2311
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit
- **Documentation**
- Enhanced clarity on read consistency settings with updated
descriptions and default behavior.
- Removed outdated warnings about eventual consistency from the
troubleshooting guide.
- **Refactor**
- Streamlined the handling of the read consistency interval across
integrations, now defaulting to "None" for improved performance.
- Simplified internal logic to offer a more consistent experience.
- **Tests**
- Updated test expectations to reflect the new default representation
for the read consistency interval.
- Removed redundant tests related to "no consistency" settings for
streamlined testing.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
---------
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.
Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
Closes#2114
Starting in #1965, we no longer pass the table schema into
`pa.Table.from_pylist()`. This means PyArrow is choosing the order of
the struct subfields, and apparently it does them in alphabetical order.
This is fine in theory, since in Lance we support providing fields in
any order. However, before we pass it to Lance, we call
`pa.Table.cast()` to align column types to the table types.
`pa.Table.cast()` is strict about field order, so we need to create a
cast target schema that aligns with the input data. We were doing this
at the top-level fields, but weren't doing this in nested fields. This
PR adds support to do this for nested ones.
In earlier PRs (#1886, #1191) we made the default limit 10 regardless of
the query type. This was confusing for users and in many cases a
breaking change. Users would have queries that used to return all
results, but instead only returned the first 10, causing silent bugs.
Part of the cause was consistency: the Python sync API seems to have
always had a limit of 10, while newer APIs (Python async and Nodejs)
didn't.
This PR sets the default limit only for searches (vector search, FTS),
while letting scans (even with filters) be unbounded. It does this
consistently for all SDKs.
Fixes#1983Fixes#1852Fixes#2141
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.
This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.
This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.
Closes#2110Closes#521
---------
Co-authored-by: Weston Pace <weston.pace@gmail.com>
This PR aims to fix#2047 by doing the following things:
- Add a distance_type parameter to the sync query builders of Python
SDK.
- Make metric an alias to distance_type.
BREAKING CHANGE: For a field "vector", list of integers will now be
converted to binary (uint8) vectors instead of f32 vectors. Use float
values instead for f32 vectors.
* Adds proper support for inserting and upserting subsets of the full
schema. I thought I had previously implemented this in #1827, but it
turns out I had not tested carefully enough.
* Refactors `_santize_data` and other utility functions to be simpler
and not require `numpy` or `combine_chunks()`.
* Added a new suite of unit tests to validate sanitization utilities.
## Examples
```python
import pandas as pd
import lancedb
db = lancedb.connect("memory://demo")
intial_data = pd.DataFrame({
"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]
})
table = db.create_table("demo", intial_data)
# Insert a subschema
new_data = pd.DataFrame({"a": [10, 11]})
table.add(new_data)
table.to_pandas()
```
```
a b c
0 1 4.0 7.0
1 2 5.0 8.0
2 3 6.0 9.0
3 10 NaN NaN
4 11 NaN NaN
```
```python
# Upsert a subschema
upsert_data = pd.DataFrame({
"a": [3, 10, 15],
"b": [6, 7, 8],
})
table.merge_insert(on="a").when_matched_update_all().when_not_matched_insert_all().execute(upsert_data)
table.to_pandas()
```
```
a b c
0 1 4.0 7.0
1 2 5.0 8.0
2 3 6.0 9.0
3 10 7.0 NaN
4 11 NaN NaN
5 15 8.0 NaN
```
### Changes to sync API
* Updated `LanceTable` and `LanceDBConnection` reprs
* Add `storage_options`, `data_storage_version`, and
`enable_v2_manifest_paths` to sync create table API.
* Add `storage_options` to `open_table` in sync API.
* Add `list_indices()` and `index_stats()` to sync API
* `create_table()` will now create only 1 version when data is passed.
Previously it would always create two versions: 1 to create an empty
table and 1 to add data to it.
### Changes to async API
* Add `embedding_functions` to async `create_table()` API.
* Added `head()` to async API
### Refactors
* Refactor index parameters into dataclasses so they are easier to use
from Python
* Moved most tests to use an in-memory DB so we don't need to create so
many temp directories
Closes#1792Closes#1932
---------
Co-authored-by: Weston Pace <weston.pace@gmail.com>
Closes#1791Closes#1764Closes#1897 (Makes this unnecessary)
BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
* Test that we can insert subschemas (omit nullable columns) in Python.
* More work is needed to support this in Node. See:
https://github.com/lancedb/lancedb/issues/1832
* Test that we can insert data with nullable schema but no nulls in
non-nullable schema.
* Add `"null"` option for `on_bad_vectors` where we fill with null if
the vector is bad.
* Make null values not considered bad if the field itself is nullable.
Right now when passing vector and query explicitly for hybrid search ,
vector_column_name is not deduced.
(https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/#hybrid-search-in-lancedb
). Because vector and query can be both none when initialising the
QueryBuilder in this case. This PR forces deduction of query type if it
is set to "hybrid"
first off, apologies for any folly since i'm new to contributing to
lancedb. this PR is the continuation of [a discord
thread](https://discord.com/channels/1030247538198061086/1030247538667827251/1278844345713299599):
## user story
here's the lance db search query i'd like to run:
```
def search(phrase):
logger.info(f'Searching for phrase: {phrase}')
phrase_embedding = get_embedding(phrase)
df = (table.search((phrase_embedding, phrase), query_type='hybrid')
.limit(10).to_list())
logger.info(f'Success search with row count: {len(df)}')
search('howdy (howdy)')
search('howdy(howdy)')
```
the second search fails due to `ValueError: Syntax Error: howdy(howdy)`
i saw on the
[docs](https://lancedb.github.io/lancedb/fts/#phrase-queries-vs-terms-queries)
that i can use `phrase_query()` to [enable a
flag](https://github.com/lancedb/lancedb/blob/main/python/python/lancedb/query.py#L790-L792)
to wrap the query in double quotes (as well as sanitize single quotes)
prior to sending the query to search. this works for [normal
FTS](https://lancedb.github.io/lancedb/fts/), but the command is
unavailable on [hybrid
search](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/).
## changes
i added `phrase_query()` function to `LanceHybridQueryBuilder` by
propagating the call down to its `self. _fts_query` object. i'm not too
familiar with the codebase and am not sure if this is the best way to
implement the functionality. feel free to riff on this PR or discard
## tests
```
(lancedb) JamesMPB:python james$ pwd
/Users/james/src/lancedb/python
(lancedb) JamesMPB:python james$ pytest python/tests/test_table.py
python/tests/test_table.py ....................................... [100%]
====================================================== 39 passed, 1 warning in 2.23s =======================================================
```
The optimize function is pretty crucial for getting good performance
when building a large scale dataset but it was only exposed in rust
(many sync python users are probably doing this via to_lance today)
This PR adds the optimize function to nodejs and to python.
I left the function marked experimental because I think there will
likely be changes to optimization (e.g. if we add features like
"optimize on write"). I also only exposed the `cleanup_older_than`
configuration parameter since this one is very commonly used and the
rest have sensible defaults and we don't really know why we would
recommend different values for these defaults anyways.
1. filtering with fts mutated the schema, which caused schema mistmatch
problems with hybrid search as it combines fts and vector search tables.
2. fts with filter failed with `with_row_id`. This was because row_id
was calculated before filtering which caused size mismatch on attaching
it after.
3. The fix for 1 meant that now row_id is attached before filtering but
passing a filter to `to_lance` on a dataset that already contains
`_rowid` raises a panic from lance. So temporarily, in case where fts is
used with a filter AND `with_row_id`, we just force user to using the
duckdb pathway.
---------
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
In order to add support for `add` we needed to migrate the rust `Table`
trait to a `Table` struct and `TableInternal` trait (similar to the way
the connection is designed).
While doing this we also cleaned up some inconsistencies between the
SDKs:
* Python and Node are garbage collected languages and it can be
difficult to trigger something to be freed. The convention for these
languages is to have some kind of close method. I added a close method
to both the table and connection which will drop the underlying rust
object.
* We made significant improvements to table creation in
cc5f2136a6
for the `node` SDK. I copied these changes to the `nodejs` SDK.
* The nodejs tables were using fs to create tmp directories and these
were not getting cleaned up. This is mostly harmless but annoying and so
I changed it up a bit to ensure we cleanup tmp directories.
* ~~countRows in the node SDK was returning `bigint`. I changed it to
return `number`~~ (this actually happened in a previous PR)
* Tables and connections now implement `std::fmt::Display` which is
hooked into python's `__repr__`. Node has no concept of a regular "to
string" function and so I added a `display` method.
* Python method signatures are changing so that optional parameters are
always `Optional[foo] = None` instead of something like `foo = False`.
This is because we want those defaults to be in rust whenever possible
(though we still need to mention the default in documentation).
* I changed the python `AsyncConnection/AsyncTable` classes from
abstract classes with a single implementation to just classes because we
no longer have the remote implementation in python.
Note: this does NOT add the `add` function to the remote table. This PR
was already large enough, and the remote implementation is unique
enough, that I am going to do all the remote stuff at a later date (we
should have the structure in place and correct so there shouldn't be any
refactor concerns)
---------
Co-authored-by: Will Jones <willjones127@gmail.com>
This changes `lancedb` from a "pure python" setuptools project to a
maturin project and adds a rust lancedb dependency.
The async python client is extremely minimal (only `connect` and
`Connection.table_names` are supported). The purpose of this PR is to
get the infrastructure in place for building out the rest of the async
client.
Although this is not technically a breaking change (no APIs are
changing) it is still a considerable change in the way the wheels are
built because they now include the native shared library.