Compare commits

...

47 Commits

Author SHA1 Message Date
rmeng
24526bda4c patch 2024-05-15 13:44:27 -04:00
Cory Grinstead
055efdcdb6 refactor(nodejs): use biomejs instead of eslint & prettier (#1304)
I've been noticing a lot of friction with the current toolchain for
'/nodejs'. Particularly with the usage of eslint and prettier.

[Biome](https://biomejs.dev/) is an all in one formatter & linter that
replaces the need for two different ones that can potentially clash with
one another.

I've been using it in the
[nodejs-polars](https://github.com/pola-rs/nodejs-polars) repo for quite
some time & have found it much more pleasant to work with.

---

One other small change included in this PR:

use [ts-jest](https://www.npmjs.com/package/ts-jest) so we can run our
tests without having to rebuild typescript code first
2024-05-14 11:11:18 -05:00
Cory Grinstead
bc582bb702 fix(nodejs): add better error handling when missing embedding functions (#1290)
note: 
running the default lint command `npm run lint -- --fix` seems to have
made a lot of unrelated changes.
2024-05-14 08:43:39 -05:00
Will Jones
df9c41f342 ci: write down breaking change policy (#1294)
* Enforce conventional commit PR titles
* Add automatic labelling of PRs
* Write down breaking change policy.

Left for another PR:
* Validation of breaking change version bumps. (This is complicated due
to separate releases for Python and other package.)
2024-05-13 10:25:55 -07:00
Raghav Dixit
0bd6ac945e Documentation : Langchain doc bug fix (#1301)
nav bar update
2024-05-13 20:56:34 +05:30
Raghav Dixit
c9d5475333 Documentation: Langchain Integration (#1297)
Integration doc update
2024-05-13 10:19:33 -04:00
asmith26
3850d5fb35 Add ollama embeddings function (#1263)
Following the docs
[here](https://lancedb.github.io/lancedb/python/python/#lancedb.embeddings.openai.OpenAIEmbeddings)
I've been trying to use ollama embedding via the OpenAI API interface,
but unfortunately I couldn't get it to work (possibly related to
https://github.com/ollama/ollama/issues/2416)

Given the popularity of ollama I thought it could be helpful to have a
dedicated Ollama Embedding function in lancedb.

Very much welcome any thought on this or my code etc. Thanks!
2024-05-13 13:09:19 +05:30
Lance Release
b37c58342e [python] Bump version: 0.6.12 → 0.6.13 2024-05-10 16:15:13 +00:00
Lance Release
a06e64f22d Updating package-lock.json 2024-05-09 22:46:19 +00:00
Lance Release
e983198f0e Updating package-lock.json 2024-05-09 22:12:17 +00:00
Lance Release
76e7b4abf8 Updating package-lock.json 2024-05-09 21:14:47 +00:00
Lance Release
5f6eb4651e Bump version: 0.4.19 → 0.4.20 2024-05-09 21:14:30 +00:00
Bert
805c78bb20 chore: bump lance to v0.10.18 (#1287)
https://github.com/lancedb/lance/releases/tag/v0.10.18
2024-05-09 17:06:26 -03:00
QianZhu
4746281b21 fix rename_table api and cache pop (#1283) 2024-05-08 13:41:18 -07:00
Aman Kishore
7b3b6bdccd Remove semvar strict dependancy (#1253) 2024-05-08 11:16:15 -07:00
Ryan Green
37e1124c0f chore: upgrade lance to 0.10.17 (#1280) 2024-05-08 09:56:48 -02:30
Lance Release
93f037ee41 Updating package-lock.json 2024-05-07 20:50:44 +00:00
Lance Release
e4fc06825a Updating package-lock.json 2024-05-07 20:09:25 +00:00
Lance Release
fe89a373a2 [python] Bump version: 0.6.11 → 0.6.12 2024-05-07 19:27:17 +00:00
Lance Release
3d3915edef Updating package-lock.json 2024-05-07 19:04:42 +00:00
Lance Release
e2e8b6aee4 Bump version: 0.4.18 → 0.4.19 2024-05-07 19:04:31 +00:00
Will Jones
12dbca5248 ci: better test for test_syntax (#1278)
The syntax error was fixed in tantivy 0.22.0, so I changed the test case
to something more wrong.
2024-05-07 11:52:39 -07:00
Will Jones
a6babfa651 fix(node/vectordb): parse value not key (#1276) 2024-05-07 10:16:05 -07:00
Will Jones
75ede86fab fix: clearer error that FTS is not supported on object stores (#1273)
Closes #1272
2024-05-07 10:15:53 -07:00
Will Jones
becd649130 docs: add tip about using allow_http on local servers (#1277)
Based on user question
https://discord.com/channels/1030247538198061086/1197630499926057021/1237350091191222293
2024-05-07 10:15:26 -07:00
Cory Grinstead
9d2fb7d602 feat: rust embedding registry (#1259)
Todo:

- [x] add proper documentation
- [x] add unit tests
- [x] better handling of the registry**1
- [x] allow user defined registry**2

**1 The python implementation just uses a global registry so it makes
things a bit easier. I attached it to the db/connection to prevent
future conflicts if running multiple connections/databases. I mostly
modeled the registry & pattern off of datafusion's
[FunctionRegistry](https://docs.rs/datafusion/latest/datafusion/execution/trait.FunctionRegistry.html).

**2 Ideally, the user should be able to provide it's own registry
entirely, but currently it just uses an in memory registry by default
(_which isn't configurable_)

`rust/lancedb/examples/embedding_registry.rs` provides a thorough
example of expected usage.

---

Some additional notes:

This does not provide any of the out of box functionality that the
python registry does.

_i.e there are no built-in embedding functions._ 

You can think of this as the ground work for adding those built in
functions, So while this is part of
https://github.com/lancedb/lancedb/issues/994, it does not yet offer
feature parity.
2024-05-06 18:39:07 -05:00
Ben Poulson
fdb5d6fdf1 Update README.md to correct LangChain URL (#1262)
URL in the README for LangChain is currently 404ing. Here's the new URL.
2024-05-06 11:50:34 +05:30
Ayush Chaurasia
2f13fa225f Chore (python): Better retry loop logging when embedding api fails (#1267)
https://github.com/lancedb/lancedb/issues/1266#event-12703166915

This happens because openai API errors out with None values. The current
log level didn't really print out the msg on screen. Changed the log
level to warning, which better suits this case.

Also, retry loop can be disabled by setting `max_retries=0` (I'm not
sure if we should also set this as the default behaviour as hitting api
rate is quite common when ingesting large corpus)

```
func = get_registry().get("openai").create(max_retries=0)
````
2024-05-06 11:49:11 +05:30
Nehil Jain
e933de003d fix: Docs for embed_func fixed in youtube transcript search notebook (#1269)
Fixes issue https://github.com/lancedb/lancedb/issues/1268
2024-05-06 11:48:25 +05:30
Ikko Eltociear Ashimine
05fd387425 docs: update README.md (#1270)
retrevial -> retrieval
2024-05-06 11:46:48 +05:30
Will Jones
82a1da554c fix(python): return ValueError if passed unknown args to connect() (#1265)
It's confusing to users that keyword arguments from the async API like
`storage_options` are accepted by `connect()`, but don't do anything. We
should error if unknown arguments are passed instead.
2024-05-03 17:00:08 -07:00
Rohit Rastogi
a7c0d80b9e Implement convertors to and from Polars DataFrames in Rust SDK using convertors based on C FFI #1099 (#1260)
https://github.com/lancedb/lancedb/issues/1099

Took the same general approach from:
https://github.com/lancedb/lancedb/pull/1235. Instead of using
high-level convertors implemented in polars-arrow (with the arrow-rs
feature flag, which adds a dependency on arrow-rs), I used convertors
based on the C FFI to avoid dependency conflicts.

---------

Co-authored-by: Rohit Rastogi <rohitrastogi@Rohits-MacBook-Pro.local>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-05-03 16:15:14 -07:00
Cory Grinstead
71323a064a chore(nodejs): update docs on "table.ts" (#1255)
closes https://github.com/lancedb/lancedb/issues/1007
2024-05-01 23:00:22 -05:00
asmith26
df48454b70 Update embedding_functions.md (#1250)
`clip.ndims` seems to be a function (I installed with `pip install
open_clip_torch`).
2024-05-01 09:33:42 -07:00
Lance Release
6603414885 Updating package-lock.json 2024-04-30 20:57:12 +00:00
Lance Release
c256f6c502 Updating package-lock.json 2024-04-30 19:58:49 +00:00
Lance Release
cc03f90379 Updating package-lock.json 2024-04-30 19:21:48 +00:00
Lance Release
975da09b02 Bump version: 0.4.17 → 0.4.18 2024-04-30 19:21:37 +00:00
Cory Grinstead
c32e17b497 chore(nodejs): remove "optionalDependencies" (#1252)
closes #1248 

the binding specific `optionalDependencies` are added automatically as
part of the `prepublishOnly` hook, and they are not supposed to be
committed to `package.json`.



--- 

npm lifecycle scripts: 
https://docs.npmjs.com/cli/v7/using-npm/scripts#life-cycle-scripts
2024-04-30 10:51:10 -05:00
Ryan Green
0528abdf97 fix: fix path on remote create_table and check for error response (#1244) 2024-04-28 11:33:05 -02:30
Lance Release
1090c311e8 [python] Bump version: 0.6.10 → 0.6.11 2024-04-27 03:54:58 +00:00
Weston Pace
e767cbb374 chore: update to Lance version 0.10.16 and Arrow version 51 (#1247) 2024-04-26 16:26:57 -07:00
Weston Pace
3d7c48feca feat: allow the index_cache_size to be configured when opening a table (#1245)
This was already configurable in the rust API but it wasn't actually
being passed down to the underlying dataset. I added this option to both
the async python API and the new nodejs API.

I also added this option to the synchronous python API.

I did not add the option to vectordb.
2024-04-26 13:42:02 -07:00
Bert
08d62550bb fix: passing data to createTable as option (#1242)
Fixes issue where we would throw `Either data or schema needs to
defined` when passing `data` to `createTable` as a property of the first
argument (an object).

```ts
await db.createTable({
  name: 'table1',
  data,
  schema
})
```
2024-04-26 15:26:08 -04:00
Lei Xu
b272408b05 chore: fix main branch test failure (#1240) 2024-04-24 13:49:37 -07:00
Weston Pace
46ffa87cd4 chore: disable the remote feature by default (#1239)
The rust implementation of the remote client is not yet ready. This is
understandably confusing for users since it is enabled by default. This
PR disables it by default. We can re-enable it when we are ready (even
then it is not clear this is something that should be a default
feature).

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-04-24 09:28:24 -07:00
QianZhu
cd9fc37b95 add rename_table fn and more data for index_stats to return (#1234)
1. added rename_table fn to enable dashboard to rename a table
2. added index_type and distance_type (for vector index) to index_stats
so that more detailed data can be shown on the table page.
2024-04-23 16:42:26 -07:00
83 changed files with 11367 additions and 9228 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.4.17
current_version = 0.4.20
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

33
.github/labeler.yml vendored Normal file
View File

@@ -0,0 +1,33 @@
version: 1
appendOnly: true
# Labels are applied based on conventional commits standard
# https://www.conventionalcommits.org/en/v1.0.0/
# These labels are later used in release notes. See .github/release.yml
labels:
# If the PR title has an ! before the : it will be considered a breaking change
# For example, `feat!: add new feature` will be considered a breaking change
- label: breaking-change
title: "^[^:]+!:.*"
- label: breaking-change
body: "BREAKING CHANGE"
- label: enhancement
title: "^feat(\\(.+\\))?!?:.*"
- label: bug
title: "^fix(\\(.+\\))?!?:.*"
- label: documentation
title: "^docs(\\(.+\\))?!?:.*"
- label: performance
title: "^perf(\\(.+\\))?!?:.*"
- label: ci
title: "^ci(\\(.+\\))?!?:.*"
- label: chore
title: "^(chore|test|build|style)(\\(.+\\))?!?:.*"
- label: Python
files:
- "^python\\/.*"
- label: Rust
files:
- "^rust\\/.*"
- label: typescript
files:
- "^node\\/.*"

25
.github/release.yml vendored Normal file
View File

@@ -0,0 +1,25 @@
# TODO: create separate templates for Python and other releases.
changelog:
exclude:
labels:
- ci
- chore
categories:
- title: Breaking Changes 🛠
labels:
- breaking-change
- title: New Features 🎉
labels:
- enhancement
- title: Bug Fixes 🐛
labels:
- bug
- title: Documentation 📚
labels:
- documentation
- title: Performance Improvements 🚀
labels:
- performance
- title: Other Changes
labels:
- "*"

81
.github/workflows/dev.yml vendored Normal file
View File

@@ -0,0 +1,81 @@
name: PR Checks
on:
pull_request_target:
types: [opened, edited, synchronize, reopened]
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
jobs:
labeler:
permissions:
pull-requests: write
name: Label PR
runs-on: ubuntu-latest
steps:
- uses: srvaroa/labeler@master
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
commitlint:
permissions:
pull-requests: write
name: Verify PR title / description conforms to semantic-release
runs-on: ubuntu-latest
steps:
- uses: actions/setup-node@v3
with:
node-version: "18"
# These rules are disabled because Github will always ensure there
# is a blank line between the title and the body and Github will
# word wrap the description field to ensure a reasonable max line
# length.
- run: npm install @commitlint/config-conventional
- run: >
echo 'module.exports = {
"rules": {
"body-max-line-length": [0, "always", Infinity],
"footer-max-line-length": [0, "always", Infinity],
"body-leading-blank": [0, "always"]
}
}' > .commitlintrc.js
- run: npx commitlint --extends @commitlint/config-conventional --verbose <<< $COMMIT_MSG
env:
COMMIT_MSG: >
${{ github.event.pull_request.title }}
${{ github.event.pull_request.body }}
- if: failure()
uses: actions/github-script@v6
with:
script: |
const message = `**ACTION NEEDED**
Lance follows the [Conventional Commits specification](https://www.conventionalcommits.org/en/v1.0.0/) for release automation.
The PR title and description are used as the merge commit message.\
Please update your PR title and description to match the specification.
For details on the error please inspect the "PR Title Check" action.
`
// Get list of current comments
const comments = await github.paginate(github.rest.issues.listComments, {
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
// Check if this job already commented
for (const comment of comments) {
if (comment.body === message) {
return // Already commented
}
}
// Post the comment about Conventional Commits
github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: message
})
core.setFailed(message)

View File

@@ -52,8 +52,7 @@ jobs:
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint
npm run chkformat
npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30

2
.gitignore vendored
View File

@@ -6,7 +6,7 @@
venv
.vscode
.zed
rust/target
rust/Cargo.lock

View File

@@ -10,9 +10,12 @@ repos:
rev: v0.2.2
hooks:
- id: ruff
- repo: https://github.com/pre-commit/mirrors-prettier
rev: v3.1.0
- repo: local
hooks:
- id: prettier
- id: local-biome-check
name: biome check
entry: npx biome check
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*

View File

@@ -14,22 +14,22 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
lance = { "version" = "=0.10.15", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.15" }
lance-linalg = { "version" = "=0.10.15" }
lance-testing = { "version" = "=0.10.15" }
lance = { "version" = "=0.10.18", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.10.18" }
lance-linalg = { "version" = "=0.10.18" }
lance-testing = { "version" = "=0.10.18" }
# Note that this one does not include pyarrow
arrow = { version = "50.0", optional = false }
arrow-array = "50.0"
arrow-data = "50.0"
arrow-ipc = "50.0"
arrow-ord = "50.0"
arrow-schema = "50.0"
arrow-arith = "50.0"
arrow-cast = "50.0"
arrow = { version = "51.0", optional = false }
arrow-array = "51.0"
arrow-data = "51.0"
arrow-ipc = "51.0"
arrow-ord = "51.0"
arrow-schema = "51.0"
arrow-arith = "51.0"
arrow-cast = "51.0"
async-trait = "0"
chrono = "0.4.35"
half = { "version" = "=2.3.1", default-features = false, features = [
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }
futures = "0"

View File

@@ -20,7 +20,7 @@
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrevial, filtering and management of embeddings.
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include:
@@ -36,7 +36,7 @@ The key features of LanceDB include:
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.

View File

@@ -119,7 +119,7 @@ nav:
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain:
- LangChain 🔗: https://python.langchain.com/docs/integrations/vectorstores/lancedb/
- LangChain 🔗: integrations/langchain.md
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙: https://docs.llamaindex.ai/en/stable/examples/vector_stores/LanceDBIndexDemo/
- Pydantic: python/pydantic.md

View File

@@ -206,6 +206,44 @@ print(actual.text)
```
### Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the [Modelfile](./modelfile.md#valid-parameters-and-values) such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:

View File

@@ -46,7 +46,7 @@ For this purpose, LanceDB introduces an **embedding functions API**, that allow
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField()
```
@@ -149,7 +149,7 @@ You can also use the integration for adding utility operations in the schema. Fo
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField()
vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField()
@property
@@ -166,4 +166,4 @@ rs[2].image
![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -299,6 +299,14 @@ LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you m
This can also be done with the ``AWS_ENDPOINT`` and ``AWS_DEFAULT_REGION`` environment variables.
!!! tip "Local servers"
For local development, the server often has a `http` endpoint rather than a
secure `https` endpoint. In this case, you must also set the `ALLOW_HTTP`
environment variable to `true` to allow non-TLS connections, or pass the
storage option `allow_http` as `true`. If you do not do this, you will get
an error like `URL scheme is not allowed`.
#### S3 Express
LanceDB supports [S3 Express One Zone](https://aws.amazon.com/s3/storage-classes/express-one-zone/) endpoints, but requires additional configuration. Also, S3 Express endpoints only support connecting from an EC2 instance within the same region.

View File

@@ -13,7 +13,7 @@ Get started using these examples and quick links.
| Integrations | |
|---|---:|
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/docs/integrations/vectorstores/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://lancedb.github.io/lancedb/integrations/langchain/) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|

View File

@@ -0,0 +1,92 @@
# Langchain
![Illustration](../assets/langchain.png)
## Quick Start
You can load your document data using langchain's loaders, for this example we are using `TextLoader` and `OpenAIEmbeddings` as the embedding model.
```python
import os
from langchain.document_loaders import TextLoader
from langchain.vectorstores import LanceDB
from langchain_openai import OpenAIEmbeddings
from langchain_text_splitters import CharacterTextSplitter
os.environ["OPENAI_API_KEY"] = "sk-..."
loader = TextLoader("../../modules/state_of_the_union.txt") # Replace with your data path
documents = loader.load()
documents = CharacterTextSplitter().split_documents(documents)
embeddings = OpenAIEmbeddings()
docsearch = LanceDB.from_documents(documents, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs = docsearch.similarity_search(query)
print(docs[0].page_content)
```
## Documentation
In the above example `LanceDB` vector store class object is created using `from_documents()` method which is a `classmethod` and returns the initialized class object.
You can also use `LanceDB.from_texts(texts: List[str],embedding: Embeddings)` class method.
The exhaustive list of parameters for `LanceDB` vector store are :
- `connection`: (Optional) `lancedb.db.LanceDBConnection` connection object to use. If not provided, a new connection will be created.
- `embedding`: Langchain embedding model.
- `vector_key`: (Optional) Column name to use for vector's in the table. Defaults to `'vector'`.
- `id_key`: (Optional) Column name to use for id's in the table. Defaults to `'id'`.
- `text_key`: (Optional) Column name to use for text in the table. Defaults to `'text'`.
- `table_name`: (Optional) Name of your table in the database. Defaults to `'vectorstore'`.
- `api_key`: (Optional) API key to use for LanceDB cloud database. Defaults to `None`.
- `region`: (Optional) Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to `None`.
- `mode`: (Optional) Mode to use for adding data to the table. Defaults to `'overwrite'`.
```python
db_url = "db://lang_test" # url of db you created
api_key = "xxxxx" # your API key
region="us-east-1-dev" # your selected region
vector_store = LanceDB(
uri=db_url,
api_key=api_key, #(dont include for local API)
region=region, #(dont include for local API)
embedding=embeddings,
table_name='langchain_test' #Optional
)
```
### Methods
To add texts and store respective embeddings automatically:
##### add_texts()
- `texts`: `Iterable` of strings to add to the vectorstore.
- `metadatas`: Optional `list[dict()]` of metadatas associated with the texts.
- `ids`: Optional `list` of ids to associate with the texts.
```python
vector_store.add_texts(texts = ['test_123'], metadatas =[{'source' :'wiki'}])
#Additionaly, to explore the table you can load it into a df or save it in a csv file:
tbl = vector_store.get_table()
print("tbl:", tbl)
pd_df = tbl.to_pandas()
pd_df.to_csv("docsearch.csv", index=False)
# you can also create a new vector store object using an older connection object:
vector_store = LanceDB(connection=tbl, embedding=embeddings)
```
For index creation make sure your table has enough data in it. An ANN index is ususally not needed for datasets ~100K vectors. For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
##### create_index()
- `col_name`: `Optional[str] = None`
- `vector_col`: `Optional[str] = None`
- `num_partitions`: `Optional[int] = 256`
- `num_sub_vectors`: `Optional[int] = 96`
- `index_cache_size`: `Optional[int] = None`
```python
# for creating vector index
vector_store.create_index(vector_col='vector', metric = 'cosine')
# for creating scalar index(for non-vector columns)
vector_store.create_index(col_name='text')
```

View File

@@ -36,7 +36,7 @@
}
],
"source": [
"!pip install --quiet openai datasets \n",
"!pip install --quiet openai datasets\n",
"!pip install --quiet -U lancedb"
]
},
@@ -213,7 +213,7 @@
"if \"OPENAI_API_KEY\" not in os.environ:\n",
" # OR set the key here as a variable\n",
" os.environ[\"OPENAI_API_KEY\"] = \"sk-...\"\n",
" \n",
"\n",
"client = OpenAI()\n",
"assert len(client.models.list().data) > 0"
]
@@ -234,9 +234,12 @@
"metadata": {},
"outputs": [],
"source": [
"def embed_func(c): \n",
"def embed_func(c):\n",
" rs = client.embeddings.create(input=c, model=\"text-embedding-ada-002\")\n",
" return [rs.data[0].embedding]"
" return [\n",
" data.embedding\n",
" for data in rs.data\n",
" ]"
]
},
{
@@ -514,7 +517,7 @@
" prompt_start +\n",
" \"\\n\\n---\\n\\n\".join(context.text) +\n",
" prompt_end\n",
" ) \n",
" )\n",
" return prompt"
]
},

View File

@@ -8,6 +8,7 @@ excluded_globs = [
"../src/embedding.md",
"../src/examples/*.md",
"../src/integrations/voxel51.md",
"../src/integrations/langchain.md",
"../src/guides/tables.md",
"../src/python/duckdb.md",
"../src/embeddings/*.md",

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.4.17",
"version": "0.4.20",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.4.17",
"version": "0.4.20",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.17",
"@lancedb/vectordb-darwin-x64": "0.4.17",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.17",
"@lancedb/vectordb-linux-x64-gnu": "0.4.17",
"@lancedb/vectordb-win32-x64-msvc": "0.4.17"
"@lancedb/vectordb-darwin-arm64": "0.4.20",
"@lancedb/vectordb-darwin-x64": "0.4.20",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.20",
"@lancedb/vectordb-linux-x64-gnu": "0.4.20",
"@lancedb/vectordb-win32-x64-msvc": "0.4.20"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -333,6 +333,66 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.20",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.20.tgz",
"integrity": "sha512-ffP2K4sA5mQTgePyARw1y8dPN996FmpvyAYoWO+TSItaXlhcXvc+KVa5udNMCZMDYeEnEv2Xpj6k4PwW3oBz+A==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.20",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.20.tgz",
"integrity": "sha512-GSYsXE20RIehDu30FjREhJdEzhnwOTV7ZsrSXagStzLY1gr7pyd7sfqxmmUtdD09di7LnQoiM71AOpPTa01YwQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.20",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.20.tgz",
"integrity": "sha512-FpNOjOsz3nJVm6EBGyNgbOW2aFhsWZ/igeY45Z8hbZaaK2YBwrg/DASoNlUzgv6IR8cUaGJ2irNVJfsKR2cG6g==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.20",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.20.tgz",
"integrity": "sha512-pOqWjrRZQSrLTlQPkjidRii7NZDw8Xu9pN6ouVu2JAK8n81FXaPtFCyAI+Y3v9GpnYDN0rvD4eQ36aHAVPsa2g==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.20",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.20.tgz",
"integrity": "sha512-5J5SsYSJ7jRCmU/sgwVHdrGz43B/7R2T9OEoFTKyVAtqTZdu75rkytXyn9SyEayXVhlUOaw76N0ASm0hAoDS/A==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.4.17",
"version": "0.4.20",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -88,10 +88,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.17",
"@lancedb/vectordb-darwin-x64": "0.4.17",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.17",
"@lancedb/vectordb-linux-x64-gnu": "0.4.17",
"@lancedb/vectordb-win32-x64-msvc": "0.4.17"
"@lancedb/vectordb-darwin-arm64": "0.4.20",
"@lancedb/vectordb-darwin-x64": "0.4.20",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.20",
"@lancedb/vectordb-linux-x64-gnu": "0.4.20",
"@lancedb/vectordb-win32-x64-msvc": "0.4.20"
}
}

View File

@@ -27,23 +27,23 @@ import {
RecordBatch,
makeData,
Struct,
Float,
type Float,
DataType,
Binary,
Float32
} from 'apache-arrow'
import { type EmbeddingFunction } from './index'
import { sanitizeSchema } from './sanitize'
} from "apache-arrow";
import { type EmbeddingFunction } from "./index";
import { sanitizeSchema } from "./sanitize";
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions {
/** Vector column type. */
type: Float = new Float32()
type: Float = new Float32();
constructor (values?: Partial<VectorColumnOptions>) {
Object.assign(this, values)
constructor(values?: Partial<VectorColumnOptions>) {
Object.assign(this, values);
}
}
@@ -60,7 +60,7 @@ export class MakeArrowTableOptions {
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema
schema?: Schema;
/*
* Mapping from vector column name to expected type
@@ -80,7 +80,9 @@ export class MakeArrowTableOptions {
*/
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions()
}
};
embeddings?: EmbeddingFunction<any>;
/**
* If true then string columns will be encoded with dictionary encoding
@@ -91,10 +93,10 @@ export class MakeArrowTableOptions {
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
dictionaryEncodeStrings: boolean = false;
constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values)
constructor(values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values);
}
}
@@ -193,59 +195,68 @@ export class MakeArrowTableOptions {
* assert.deepEqual(table.schema, schema)
* ```
*/
export function makeArrowTable (
export function makeArrowTable(
data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions>
): ArrowTable {
if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record or a schema needs to be provided')
if (
data.length === 0 &&
(options?.schema === undefined || options?.schema === null)
) {
throw new Error("At least one record or a schema needs to be provided");
}
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const opt = new MakeArrowTableOptions(options !== undefined ? options : {});
if (opt.schema !== undefined && opt.schema !== null) {
opt.schema = sanitizeSchema(opt.schema)
opt.schema = sanitizeSchema(opt.schema);
opt.schema = validateSchemaEmbeddings(opt.schema, data, opt.embeddings);
}
const columns: Record<string, Vector> = {}
const columns: Record<string, Vector> = {};
// TODO: sample dataset to find missing columns
// Prefer the field ordering of the schema, if present
const columnNames = ((opt.schema) != null) ? (opt.schema.names as string[]) : Object.keys(data[0])
const columnNames =
opt.schema != null ? (opt.schema.names as string[]) : Object.keys(data[0]);
for (const colName of columnNames) {
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
if (
data.length !== 0 &&
!Object.prototype.hasOwnProperty.call(data[0], colName)
) {
// The field is present in the schema, but not in the data, skip it
continue
continue;
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
let values = data.map((datum) => datum[colName]);
// By default (type === undefined) arrow will infer the type from the JS type
let type
let type;
if (opt.schema !== undefined) {
// If there is a schema provided, then use that for the type instead
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type;
if (DataType.isInt(type) && type.bitWidth === 64) {
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
values = values.map((v) => {
if (v === null) {
return v
return v;
}
return BigInt(v)
})
return BigInt(v);
});
}
} else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName]
const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) {
type = newVectorType(values[0].length, vectorColumnOptions.type)
type = newVectorType(values[0].length, vectorColumnOptions.type);
}
}
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings);
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`);
}
}
@@ -260,97 +271,116 @@ export function makeArrowTable (
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
const firstTable = new ArrowTable(columns);
const batchesFixed = firstTable.batches.map(
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
(batch) => new RecordBatch(opt.schema!, batch.data)
);
return new ArrowTable(opt.schema, batchesFixed);
} else {
return new ArrowTable(columns)
return new ArrowTable(columns);
}
}
/**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
export function makeEmptyTable(schema: Schema): ArrowTable {
return makeArrowTable([], { schema });
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
function makeListVector(lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
throw Error("Cannot infer list vector from empty array or empty list");
}
const sampleList = lists[0]
let inferredType
const sampleList = lists[0];
let inferredType;
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
const sampleVector = makeVector(sampleList);
inferredType = sampleVector.type;
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`);
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
type: new List(new Field("item", inferredType, true))
});
for (const list of lists) {
listBuilder.append(list)
listBuilder.append(list);
}
return listBuilder.finish().toVector()
return listBuilder.finish().toVector();
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
function makeVector(
values: any[],
type?: DataType,
stringAsDictionary?: boolean
): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
return vectorFromArray(values, type);
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
throw Error(
"makeVector requires at least one value or the type must be specfied"
);
}
const sampleValue = values.find(val => val !== null && val !== undefined)
const sampleValue = values.find((val) => val !== null && val !== undefined);
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
throw Error(
"makeVector cannot infer the type if all values are null or undefined"
);
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
return makeListVector(values);
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
return vectorFromArray(values, new Binary());
} else if (
!(stringAsDictionary ?? false) &&
(typeof sampleValue === "string" || sampleValue instanceof String)
) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
return vectorFromArray(values, new Utf8());
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
return vectorFromArray(values);
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
async function applyEmbeddings<T>(
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<ArrowTable> {
if (embeddings == null) {
return table
return table;
}
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema)
schema = sanitizeSchema(schema);
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
const name = table.schema.fields[idx].name;
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const vec = table.getChildAt(idx)!;
return [name, vec];
});
const newColumns = Object.fromEntries(colEntries);
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
const sourceColumn = newColumns[embeddings.sourceColumn];
const destColumn = embeddings.destColumn ?? "vector";
const innerDestType = embeddings.embeddingDataType ?? new Float32();
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
throw new Error(
`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`
);
}
if (table.numRows === 0) {
@@ -358,45 +388,60 @@ async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunc
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
return table;
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
const destType = newVectorType(
embeddings.embeddingDimension,
innerDestType
);
newColumns[destColumn] = makeVector([], destType);
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
const destField = schema.fields.find((f) => f.name === destColumn);
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
newColumns[destColumn] = makeVector([], destField.type);
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
throw new Error(
`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`
);
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
throw new Error(
"Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`"
);
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`
);
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch"
);
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
const values = sourceColumn.toArray();
const vectors = await embeddings.embed(values as T[]);
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
throw new Error(
"Embedding function did not return an embedding for each input element"
);
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
const destType = newVectorType(vectors[0].length, innerDestType);
newColumns[destColumn] = makeVector(vectors, destType);
}
const newTable = new ArrowTable(newColumns)
const newTable = new ArrowTable(newColumns);
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
if (schema.fields.find((f) => f.name === destColumn) === undefined) {
throw new Error(
`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`
);
}
return alignTable(newTable, schema)
return alignTable(newTable, schema);
}
return newTable
return newTable;
}
/*
@@ -417,21 +462,24 @@ async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunc
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
export async function convertToTable<T> (
export async function convertToTable<T>(
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
): Promise<ArrowTable> {
const table = makeArrowTable(data, makeTableOptions)
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
const table = makeArrowTable(data, makeTableOptions);
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema);
}
// Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
function newVectorType<T extends Float>(
dim: number,
innerType: T
): FixedSizeList<T> {
// Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<T>('item', innerType, true)
return new FixedSizeList(dim, children)
const children = new Field<T>("item", innerType, true);
return new FixedSizeList(dim, children);
}
/**
@@ -441,17 +489,17 @@ function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeL
*
* `schema` is required if data is empty
*/
export async function fromRecordsToBuffer<T> (
export async function fromRecordsToBuffer<T>(
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema)
schema = sanitizeSchema(schema);
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
const table = await convertToTable(data, embeddings, { schema, embeddings });
const writer = RecordBatchFileWriter.writeAll(table);
return Buffer.from(await writer.toUint8Array());
}
/**
@@ -461,17 +509,17 @@ export async function fromRecordsToBuffer<T> (
*
* `schema` is required if data is empty
*/
export async function fromRecordsToStreamBuffer<T> (
export async function fromRecordsToStreamBuffer<T>(
data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (schema !== null && schema !== undefined) {
schema = sanitizeSchema(schema)
schema = sanitizeSchema(schema);
}
const table = await convertToTable(data, embeddings, { schema })
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array())
const table = await convertToTable(data, embeddings, { schema });
const writer = RecordBatchStreamWriter.writeAll(table);
return Buffer.from(await writer.toUint8Array());
}
/**
@@ -482,17 +530,17 @@ export async function fromRecordsToStreamBuffer<T> (
*
* `schema` is required if the table is empty
*/
export async function fromTableToBuffer<T> (
export async function fromTableToBuffer<T>(
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (schema !== null && schema !== undefined) {
schema = sanitizeSchema(schema)
schema = sanitizeSchema(schema);
}
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings);
return Buffer.from(await writer.toUint8Array());
}
/**
@@ -503,49 +551,87 @@ export async function fromTableToBuffer<T> (
*
* `schema` is required if the table is empty
*/
export async function fromTableToStreamBuffer<T> (
export async function fromTableToStreamBuffer<T>(
table: ArrowTable,
embeddings?: EmbeddingFunction<T>,
schema?: Schema
): Promise<Buffer> {
if (schema !== null && schema !== undefined) {
schema = sanitizeSchema(schema)
schema = sanitizeSchema(schema);
}
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
return Buffer.from(await writer.toUint8Array())
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings);
return Buffer.from(await writer.toUint8Array());
}
function alignBatch (batch: RecordBatch, schema: Schema): RecordBatch {
const alignedChildren = []
function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
const alignedChildren = [];
for (const field of schema.fields) {
const indexInBatch = batch.schema.fields?.findIndex(
(f) => f.name === field.name
)
);
if (indexInBatch < 0) {
throw new Error(
`The column ${field.name} was not found in the Arrow Table`
)
);
}
alignedChildren.push(batch.data.children[indexInBatch])
alignedChildren.push(batch.data.children[indexInBatch]);
}
const newData = makeData({
type: new Struct(schema.fields),
length: batch.numRows,
nullCount: batch.nullCount,
children: alignedChildren
})
return new RecordBatch(schema, newData)
});
return new RecordBatch(schema, newData);
}
function alignTable (table: ArrowTable, schema: Schema): ArrowTable {
function alignTable(table: ArrowTable, schema: Schema): ArrowTable {
const alignedBatches = table.batches.map((batch) =>
alignBatch(batch, schema)
)
return new ArrowTable(schema, alignedBatches)
);
return new ArrowTable(schema, alignedBatches);
}
// Creates an empty Arrow Table
export function createEmptyTable (schema: Schema): ArrowTable {
return new ArrowTable(sanitizeSchema(schema))
export function createEmptyTable(schema: Schema): ArrowTable {
return new ArrowTable(sanitizeSchema(schema));
}
function validateSchemaEmbeddings(
schema: Schema<any>,
data: Array<Record<string, unknown>>,
embeddings: EmbeddingFunction<any> | undefined
) {
const fields = [];
const missingEmbeddingFields = [];
// First we check if the field is a `FixedSizeList`
// Then we check if the data contains the field
// if it does not, we add it to the list of missing embedding fields
// Finally, we check if those missing embedding fields are `this._embeddings`
// if they are not, we throw an error
for (const field of schema.fields) {
if (field.type instanceof FixedSizeList) {
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
missingEmbeddingFields.push(field);
} else {
fields.push(field);
}
} else {
fields.push(field);
}
}
if (missingEmbeddingFields.length > 0 && embeddings === undefined) {
console.log({ missingEmbeddingFields, embeddings });
throw new Error(
`Table has embeddings: "${missingEmbeddingFields
.map((f) => f.name)
.join(",")}", but no embedding function was provided`
);
}
return new Schema(fields);
}

View File

@@ -12,19 +12,20 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { type Schema, Table as ArrowTable, tableFromIPC } from 'apache-arrow'
import { type Schema, Table as ArrowTable, tableFromIPC } from "apache-arrow";
import {
createEmptyTable,
fromRecordsToBuffer,
fromTableToBuffer,
makeArrowTable
} from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote'
import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
import { type Literal, toSQL } from './util'
import { type HttpMiddleware } from './middleware'
} from "./arrow";
import type { EmbeddingFunction } from "./embedding/embedding_function";
import { RemoteConnection } from "./remote";
import { Query } from "./query";
import { isEmbeddingFunction } from "./embedding/embedding_function";
import { type Literal, toSQL } from "./util";
import { type HttpMiddleware } from "./middleware";
const {
databaseNew,
@@ -48,14 +49,18 @@ const {
tableAlterColumns,
tableDropColumns
// eslint-disable-next-line @typescript-eslint/no-var-requires
} = require('../native.js')
} = require("../native.js");
export { Query }
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
export { Query };
export type { EmbeddingFunction };
export { OpenAIEmbeddingFunction } from "./embedding/openai";
export {
convertToTable,
makeArrowTable,
type MakeArrowTableOptions
} from "./arrow";
const defaultAwsRegion = 'us-west-2'
const defaultAwsRegion = "us-west-2";
export interface AwsCredentials {
accessKeyId: string
@@ -128,19 +133,19 @@ export interface ConnectionOptions {
readConsistencyInterval?: number
}
function getAwsArgs (opts: ConnectionOptions): any[] {
const callArgs: any[] = []
const awsCredentials = opts.awsCredentials
function getAwsArgs(opts: ConnectionOptions): any[] {
const callArgs: any[] = [];
const awsCredentials = opts.awsCredentials;
if (awsCredentials !== undefined) {
callArgs.push(awsCredentials.accessKeyId)
callArgs.push(awsCredentials.secretKey)
callArgs.push(awsCredentials.sessionToken)
callArgs.push(awsCredentials.accessKeyId);
callArgs.push(awsCredentials.secretKey);
callArgs.push(awsCredentials.sessionToken);
} else {
callArgs.fill(undefined, 0, 3)
callArgs.fill(undefined, 0, 3);
}
callArgs.push(opts.awsRegion)
return callArgs
callArgs.push(opts.awsRegion);
return callArgs;
}
export interface CreateTableOptions<T> {
@@ -173,56 +178,56 @@ export interface CreateTableOptions<T> {
*
* @see {@link ConnectionOptions} for more details on the URI format.
*/
export async function connect (uri: string): Promise<Connection>
export async function connect(uri: string): Promise<Connection>;
/**
* Connect to a LanceDB instance with connection options.
*
* @param opts The {@link ConnectionOptions} to use when connecting to the database.
*/
export async function connect (
export async function connect(
opts: Partial<ConnectionOptions>
): Promise<Connection>
export async function connect (
): Promise<Connection>;
export async function connect(
arg: string | Partial<ConnectionOptions>
): Promise<Connection> {
let opts: ConnectionOptions
if (typeof arg === 'string') {
opts = { uri: arg }
let opts: ConnectionOptions;
if (typeof arg === "string") {
opts = { uri: arg };
} else {
const keys = Object.keys(arg)
if (keys.length === 1 && keys[0] === 'uri' && typeof arg.uri === 'string') {
opts = { uri: arg.uri }
const keys = Object.keys(arg);
if (keys.length === 1 && keys[0] === "uri" && typeof arg.uri === "string") {
opts = { uri: arg.uri };
} else {
opts = Object.assign(
{
uri: '',
uri: "",
awsCredentials: undefined,
awsRegion: defaultAwsRegion,
apiKey: undefined,
region: defaultAwsRegion
},
arg
)
);
}
}
if (opts.uri.startsWith('db://')) {
if (opts.uri.startsWith("db://")) {
// Remote connection
return new RemoteConnection(opts)
return new RemoteConnection(opts);
}
const storageOptions = opts.storageOptions ?? {};
if (opts.awsCredentials?.accessKeyId !== undefined) {
storageOptions.aws_access_key_id = opts.awsCredentials.accessKeyId
storageOptions.aws_access_key_id = opts.awsCredentials.accessKeyId;
}
if (opts.awsCredentials?.secretKey !== undefined) {
storageOptions.aws_secret_access_key = opts.awsCredentials.secretKey
storageOptions.aws_secret_access_key = opts.awsCredentials.secretKey;
}
if (opts.awsCredentials?.sessionToken !== undefined) {
storageOptions.aws_session_token = opts.awsCredentials.sessionToken
storageOptions.aws_session_token = opts.awsCredentials.sessionToken;
}
if (opts.awsRegion !== undefined) {
storageOptions.region = opts.awsRegion
storageOptions.region = opts.awsRegion;
}
// It's a pain to pass a record to Rust, so we convert it to an array of key-value pairs
const storageOptionsArr = Object.entries(storageOptions);
@@ -231,8 +236,8 @@ export async function connect (
opts.uri,
storageOptionsArr,
opts.readConsistencyInterval
)
return new LocalConnection(db, opts)
);
return new LocalConnection(db, opts);
}
/**
@@ -533,7 +538,11 @@ export interface Table<T = number[]> {
* @param data the new data to insert
* @param args parameters controlling how the operation should behave
*/
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
mergeInsert: (
on: string,
data: Array<Record<string, unknown>> | ArrowTable,
args: MergeInsertArgs
) => Promise<void>
/**
* List the indicies on this table.
@@ -558,7 +567,9 @@ export interface Table<T = number[]> {
* expressions will be evaluated for each row in the
* table, and can reference existing columns in the table.
*/
addColumns(newColumnTransforms: Array<{ name: string, valueSql: string }>): Promise<void>
addColumns(
newColumnTransforms: Array<{ name: string, valueSql: string }>
): Promise<void>
/**
* Alter the name or nullability of columns.
@@ -699,23 +710,23 @@ export interface IndexStats {
* A connection to a LanceDB database.
*/
export class LocalConnection implements Connection {
private readonly _options: () => ConnectionOptions
private readonly _db: any
private readonly _options: () => ConnectionOptions;
private readonly _db: any;
constructor (db: any, options: ConnectionOptions) {
this._options = () => options
this._db = db
constructor(db: any, options: ConnectionOptions) {
this._options = () => options;
this._db = db;
}
get uri (): string {
return this._options().uri
get uri(): string {
return this._options().uri;
}
/**
* Get the names of all tables in the database.
*/
async tableNames (): Promise<string[]> {
return databaseTableNames.call(this._db)
async tableNames(): Promise<string[]> {
return databaseTableNames.call(this._db);
}
/**
@@ -723,7 +734,7 @@ export class LocalConnection implements Connection {
*
* @param name The name of the table.
*/
async openTable (name: string): Promise<Table>
async openTable(name: string): Promise<Table>;
/**
* Open a table in the database.
@@ -734,23 +745,20 @@ export class LocalConnection implements Connection {
async openTable<T>(
name: string,
embeddings: EmbeddingFunction<T>
): Promise<Table<T>>
): Promise<Table<T>>;
async openTable<T>(
name: string,
embeddings?: EmbeddingFunction<T>
): Promise<Table<T>>
): Promise<Table<T>>;
async openTable<T>(
name: string,
embeddings?: EmbeddingFunction<T>
): Promise<Table<T>> {
const tbl = await databaseOpenTable.call(
this._db,
name,
)
const tbl = await databaseOpenTable.call(this._db, name);
if (embeddings !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddings)
return new LocalTable(tbl, name, this._options(), embeddings);
} else {
return new LocalTable(tbl, name, this._options())
return new LocalTable(tbl, name, this._options());
}
}
@@ -760,32 +768,32 @@ export class LocalConnection implements Connection {
optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>,
opt?: WriteOptions
): Promise<Table<T>> {
if (typeof name === 'string') {
let writeOptions: WriteOptions = new DefaultWriteOptions()
if (typeof name === "string") {
let writeOptions: WriteOptions = new DefaultWriteOptions();
if (opt !== undefined && isWriteOptions(opt)) {
writeOptions = opt
writeOptions = opt;
} else if (
optsOrEmbedding !== undefined &&
isWriteOptions(optsOrEmbedding)
) {
writeOptions = optsOrEmbedding
writeOptions = optsOrEmbedding;
}
let embeddings: undefined | EmbeddingFunction<T>
let embeddings: undefined | EmbeddingFunction<T>;
if (
optsOrEmbedding !== undefined &&
isEmbeddingFunction(optsOrEmbedding)
) {
embeddings = optsOrEmbedding
embeddings = optsOrEmbedding;
}
return await this.createTableImpl({
name,
data,
embeddingFunction: embeddings,
writeOptions
})
});
}
return await this.createTableImpl(name)
return await this.createTableImpl(name);
}
private async createTableImpl<T>({
@@ -801,27 +809,27 @@ export class LocalConnection implements Connection {
embeddingFunction?: EmbeddingFunction<T> | undefined
writeOptions?: WriteOptions | undefined
}): Promise<Table<T>> {
let buffer: Buffer
let buffer: Buffer;
function isEmpty (
function isEmpty(
data: Array<Record<string, unknown>> | ArrowTable<any>
): boolean {
if (data instanceof ArrowTable) {
return data.data.length === 0
return data.data.length === 0;
}
return data.length === 0
return data.length === 0;
}
if (data === undefined || isEmpty(data)) {
if (schema === undefined) {
throw new Error('Either data or schema needs to defined')
throw new Error("Either data or schema needs to defined");
}
buffer = await fromTableToBuffer(createEmptyTable(schema))
buffer = await fromTableToBuffer(createEmptyTable(schema));
} else if (data instanceof ArrowTable) {
buffer = await fromTableToBuffer(data, embeddingFunction, schema)
buffer = await fromTableToBuffer(data, embeddingFunction, schema);
} else {
// data is Array<Record<...>>
buffer = await fromRecordsToBuffer(data, embeddingFunction, schema)
buffer = await fromRecordsToBuffer(data, embeddingFunction, schema);
}
const tbl = await tableCreate.call(
@@ -830,11 +838,11 @@ export class LocalConnection implements Connection {
buffer,
writeOptions?.writeMode?.toString(),
...getAwsArgs(this._options())
)
);
if (embeddingFunction !== undefined) {
return new LocalTable(tbl, name, this._options(), embeddingFunction)
return new LocalTable(tbl, name, this._options(), embeddingFunction);
} else {
return new LocalTable(tbl, name, this._options())
return new LocalTable(tbl, name, this._options());
}
}
@@ -842,69 +850,69 @@ export class LocalConnection implements Connection {
* Drop an existing table.
* @param name The name of the table to drop.
*/
async dropTable (name: string): Promise<void> {
await databaseDropTable.call(this._db, name)
async dropTable(name: string): Promise<void> {
await databaseDropTable.call(this._db, name);
}
withMiddleware (middleware: HttpMiddleware): Connection {
return this
withMiddleware(middleware: HttpMiddleware): Connection {
return this;
}
}
export class LocalTable<T = number[]> implements Table<T> {
private _tbl: any
private readonly _name: string
private readonly _isElectron: boolean
private readonly _embeddings?: EmbeddingFunction<T>
private readonly _options: () => ConnectionOptions
private _tbl: any;
private readonly _name: string;
private readonly _isElectron: boolean;
private readonly _embeddings?: EmbeddingFunction<T>;
private readonly _options: () => ConnectionOptions;
constructor (tbl: any, name: string, options: ConnectionOptions)
constructor(tbl: any, name: string, options: ConnectionOptions);
/**
* @param tbl
* @param name
* @param options
* @param embeddings An embedding function to use when interacting with this table
*/
constructor (
constructor(
tbl: any,
name: string,
options: ConnectionOptions,
embeddings: EmbeddingFunction<T>
)
constructor (
);
constructor(
tbl: any,
name: string,
options: ConnectionOptions,
embeddings?: EmbeddingFunction<T>
) {
this._tbl = tbl
this._name = name
this._embeddings = embeddings
this._options = () => options
this._isElectron = this.checkElectron()
this._tbl = tbl;
this._name = name;
this._embeddings = embeddings;
this._options = () => options;
this._isElectron = this.checkElectron();
}
get name (): string {
return this._name
get name(): string {
return this._name;
}
/**
* Creates a search query to find the nearest neighbors of the given search term
* @param query The query search term
*/
search (query: T): Query<T> {
return new Query(query, this._tbl, this._embeddings)
search(query: T): Query<T> {
return new Query(query, this._tbl, this._embeddings);
}
/**
* Creates a filter query to find all rows matching the specified criteria
* @param value The filter criteria (like SQL where clause syntax)
*/
filter (value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value)
filter(value: string): Query<T> {
return new Query(undefined, this._tbl, this._embeddings).filter(value);
}
where = this.filter
where = this.filter;
/**
* Insert records into this Table.
@@ -912,16 +920,19 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async add (
async add(
data: Array<Record<string, unknown>> | ArrowTable
): Promise<number> {
const schema = await this.schema
let tbl: ArrowTable
const schema = await this.schema;
let tbl: ArrowTable;
if (data instanceof ArrowTable) {
tbl = data
tbl = data;
} else {
tbl = makeArrowTable(data, { schema })
tbl = makeArrowTable(data, { schema, embeddings: this._embeddings });
}
return tableAdd
.call(
this._tbl,
@@ -930,8 +941,8 @@ export class LocalTable<T = number[]> implements Table<T> {
...getAwsArgs(this._options())
)
.then((newTable: any) => {
this._tbl = newTable
})
this._tbl = newTable;
});
}
/**
@@ -940,14 +951,14 @@ export class LocalTable<T = number[]> implements Table<T> {
* @param data Records to be inserted into the Table
* @return The number of rows added to the table
*/
async overwrite (
async overwrite(
data: Array<Record<string, unknown>> | ArrowTable
): Promise<number> {
let buffer: Buffer
let buffer: Buffer;
if (data instanceof ArrowTable) {
buffer = await fromTableToBuffer(data, this._embeddings)
buffer = await fromTableToBuffer(data, this._embeddings);
} else {
buffer = await fromRecordsToBuffer(data, this._embeddings)
buffer = await fromRecordsToBuffer(data, this._embeddings);
}
return tableAdd
.call(
@@ -957,8 +968,8 @@ export class LocalTable<T = number[]> implements Table<T> {
...getAwsArgs(this._options())
)
.then((newTable: any) => {
this._tbl = newTable
})
this._tbl = newTable;
});
}
/**
@@ -966,26 +977,26 @@ export class LocalTable<T = number[]> implements Table<T> {
*
* @param indexParams The parameters of this Index, @see VectorIndexParams.
*/
async createIndex (indexParams: VectorIndexParams): Promise<any> {
async createIndex(indexParams: VectorIndexParams): Promise<any> {
return tableCreateVectorIndex
.call(this._tbl, indexParams)
.then((newTable: any) => {
this._tbl = newTable
})
this._tbl = newTable;
});
}
async createScalarIndex (column: string, replace?: boolean): Promise<void> {
async createScalarIndex(column: string, replace?: boolean): Promise<void> {
if (replace === undefined) {
replace = true
replace = true;
}
return tableCreateScalarIndex.call(this._tbl, column, replace)
return tableCreateScalarIndex.call(this._tbl, column, replace);
}
/**
* Returns the number of rows in this table.
*/
async countRows (filter?: string): Promise<number> {
return tableCountRows.call(this._tbl, filter)
async countRows(filter?: string): Promise<number> {
return tableCountRows.call(this._tbl, filter);
}
/**
@@ -993,10 +1004,10 @@ export class LocalTable<T = number[]> implements Table<T> {
*
* @param filter A filter in the same format used by a sql WHERE clause.
*/
async delete (filter: string): Promise<void> {
async delete(filter: string): Promise<void> {
return tableDelete.call(this._tbl, filter).then((newTable: any) => {
this._tbl = newTable
})
this._tbl = newTable;
});
}
/**
@@ -1006,55 +1017,65 @@ export class LocalTable<T = number[]> implements Table<T> {
*
* @returns
*/
async update (args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null
let updates: Record<string, string>
async update(args: UpdateArgs | UpdateSqlArgs): Promise<void> {
let filter: string | null;
let updates: Record<string, string>;
if ('valuesSql' in args) {
filter = args.where ?? null
updates = args.valuesSql
if ("valuesSql" in args) {
filter = args.where ?? null;
updates = args.valuesSql;
} else {
filter = args.where ?? null
updates = {}
filter = args.where ?? null;
updates = {};
for (const [key, value] of Object.entries(args.values)) {
updates[key] = toSQL(value)
updates[key] = toSQL(value);
}
}
return tableUpdate
.call(this._tbl, filter, updates)
.then((newTable: any) => {
this._tbl = newTable
})
this._tbl = newTable;
});
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let whenMatchedUpdateAll = false
let whenMatchedUpdateAllFilt = null
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
whenMatchedUpdateAll = true
async mergeInsert(
on: string,
data: Array<Record<string, unknown>> | ArrowTable,
args: MergeInsertArgs
): Promise<void> {
let whenMatchedUpdateAll = false;
let whenMatchedUpdateAllFilt = null;
if (
args.whenMatchedUpdateAll !== undefined &&
args.whenMatchedUpdateAll !== null
) {
whenMatchedUpdateAll = true;
if (args.whenMatchedUpdateAll !== true) {
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll;
}
}
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
let whenNotMatchedBySourceDelete = false
let whenNotMatchedBySourceDeleteFilt = null
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
whenNotMatchedBySourceDelete = true
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false;
let whenNotMatchedBySourceDelete = false;
let whenNotMatchedBySourceDeleteFilt = null;
if (
args.whenNotMatchedBySourceDelete !== undefined &&
args.whenNotMatchedBySourceDelete !== null
) {
whenNotMatchedBySourceDelete = true;
if (args.whenNotMatchedBySourceDelete !== true) {
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete;
}
}
const schema = await this.schema
let tbl: ArrowTable
const schema = await this.schema;
let tbl: ArrowTable;
if (data instanceof ArrowTable) {
tbl = data
tbl = data;
} else {
tbl = makeArrowTable(data, { schema })
tbl = makeArrowTable(data, { schema });
}
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema);
this._tbl = await tableMergeInsert.call(
this._tbl,
@@ -1065,7 +1086,7 @@ export class LocalTable<T = number[]> implements Table<T> {
whenNotMatchedBySourceDelete,
whenNotMatchedBySourceDeleteFilt,
buffer
)
);
}
/**
@@ -1083,16 +1104,16 @@ export class LocalTable<T = number[]> implements Table<T> {
* uphold this promise can lead to corrupted tables.
* @returns
*/
async cleanupOldVersions (
async cleanupOldVersions(
olderThan?: number,
deleteUnverified?: boolean
): Promise<CleanupStats> {
return tableCleanupOldVersions
.call(this._tbl, olderThan, deleteUnverified)
.then((res: { newTable: any, metrics: CleanupStats }) => {
this._tbl = res.newTable
return res.metrics
})
this._tbl = res.newTable;
return res.metrics;
});
}
/**
@@ -1106,62 +1127,64 @@ export class LocalTable<T = number[]> implements Table<T> {
* for most tables.
* @returns Metrics about the compaction operation.
*/
async compactFiles (options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {}
async compactFiles(options?: CompactionOptions): Promise<CompactionMetrics> {
const optionsArg = options ?? {};
return tableCompactFiles
.call(this._tbl, optionsArg)
.then((res: { newTable: any, metrics: CompactionMetrics }) => {
this._tbl = res.newTable
return res.metrics
})
this._tbl = res.newTable;
return res.metrics;
});
}
async listIndices (): Promise<VectorIndex[]> {
return tableListIndices.call(this._tbl)
async listIndices(): Promise<VectorIndex[]> {
return tableListIndices.call(this._tbl);
}
async indexStats (indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid)
async indexStats(indexUuid: string): Promise<IndexStats> {
return tableIndexStats.call(this._tbl, indexUuid);
}
get schema (): Promise<Schema> {
get schema(): Promise<Schema> {
// empty table
return this.getSchema()
return this.getSchema();
}
private async getSchema (): Promise<Schema> {
const buffer = await tableSchema.call(this._tbl, this._isElectron)
const table = tableFromIPC(buffer)
return table.schema
private async getSchema(): Promise<Schema> {
const buffer = await tableSchema.call(this._tbl, this._isElectron);
const table = tableFromIPC(buffer);
return table.schema;
}
// See https://github.com/electron/electron/issues/2288
private checkElectron (): boolean {
private checkElectron(): boolean {
try {
// eslint-disable-next-line no-prototype-builtins
return (
Object.prototype.hasOwnProperty.call(process?.versions, 'electron') ||
navigator?.userAgent?.toLowerCase()?.includes(' electron')
)
Object.prototype.hasOwnProperty.call(process?.versions, "electron") ||
navigator?.userAgent?.toLowerCase()?.includes(" electron")
);
} catch (e) {
return false
return false;
}
}
async addColumns (newColumnTransforms: Array<{ name: string, valueSql: string }>): Promise<void> {
return tableAddColumns.call(this._tbl, newColumnTransforms)
async addColumns(
newColumnTransforms: Array<{ name: string, valueSql: string }>
): Promise<void> {
return tableAddColumns.call(this._tbl, newColumnTransforms);
}
async alterColumns (columnAlterations: ColumnAlteration[]): Promise<void> {
return tableAlterColumns.call(this._tbl, columnAlterations)
async alterColumns(columnAlterations: ColumnAlteration[]): Promise<void> {
return tableAlterColumns.call(this._tbl, columnAlterations);
}
async dropColumns (columnNames: string[]): Promise<void> {
return tableDropColumns.call(this._tbl, columnNames)
async dropColumns(columnNames: string[]): Promise<void> {
return tableDropColumns.call(this._tbl, columnNames);
}
withMiddleware (middleware: HttpMiddleware): Table<T> {
return this
withMiddleware(middleware: HttpMiddleware): Table<T> {
return this;
}
}
@@ -1184,7 +1207,7 @@ export interface CompactionOptions {
*/
targetRowsPerFragment?: number
/**
* The maximum number of rows per group. Defaults to 1024.
* The maximum number of T per group. Defaults to 1024.
*/
maxRowsPerGroup?: number
/**
@@ -1284,21 +1307,21 @@ export interface IvfPQIndexConfig {
*/
index_cache_size?: number
type: 'ivf_pq'
type: "ivf_pq"
}
export type VectorIndexParams = IvfPQIndexConfig
export type VectorIndexParams = IvfPQIndexConfig;
/**
* Write mode for writing a table.
*/
export enum WriteMode {
/** Create a new {@link Table}. */
Create = 'create',
Create = "create",
/** Overwrite the existing {@link Table} if presented. */
Overwrite = 'overwrite',
Overwrite = "overwrite",
/** Append new data to the table. */
Append = 'append',
Append = "append",
}
/**
@@ -1310,14 +1333,14 @@ export interface WriteOptions {
}
export class DefaultWriteOptions implements WriteOptions {
writeMode = WriteMode.Create
writeMode = WriteMode.Create;
}
export function isWriteOptions (value: any): value is WriteOptions {
export function isWriteOptions(value: any): value is WriteOptions {
return (
Object.keys(value).length === 1 &&
(value.writeMode === undefined || typeof value.writeMode === 'string')
)
(value.writeMode === undefined || typeof value.writeMode === "string")
);
}
/**
@@ -1327,15 +1350,15 @@ export enum MetricType {
/**
* Euclidean distance
*/
L2 = 'l2',
L2 = "l2",
/**
* Cosine distance
*/
Cosine = 'cosine',
Cosine = "cosine",
/**
* Dot product
*/
Dot = 'dot',
Dot = "dot",
}

View File

@@ -51,7 +51,7 @@ describe('LanceDB Mirrored Store Integration test', function () {
const dir = tmpdir()
console.log(dir)
const conn = await lancedb.connect(`s3://lancedb-integtest?mirroredStore=${dir}`)
const conn = await lancedb.connect({ uri: `s3://lancedb-integtest?mirroredStore=${dir}`, storageOptions: { allowHttp: 'true' } })
const data = Array(200).fill({ vector: Array(128).fill(1.0), id: 0 })
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 1 }))
data.push(...Array(200).fill({ vector: Array(128).fill(1.0), id: 2 }))

View File

@@ -140,6 +140,9 @@ export class RemoteConnection implements Connection {
schema = nameOrOpts.schema
embeddings = nameOrOpts.embeddingFunction
tableName = nameOrOpts.name
if (data === undefined) {
data = nameOrOpts.data
}
}
let buffer: Buffer

View File

@@ -32,7 +32,7 @@ import {
Bool,
Date_,
Decimal,
DataType,
type DataType,
Dictionary,
Binary,
Float32,
@@ -74,12 +74,12 @@ import {
DurationNanosecond,
DurationMicrosecond,
DurationMillisecond,
DurationSecond,
DurationSecond
} from "apache-arrow";
import type { IntBitWidth, TimeBitWidth } from "apache-arrow/type";
function sanitizeMetadata(
metadataLike?: unknown,
metadataLike?: unknown
): Map<string, string> | undefined {
if (metadataLike === undefined || metadataLike === null) {
return undefined;
@@ -90,7 +90,7 @@ function sanitizeMetadata(
for (const item of metadataLike) {
if (!(typeof item[0] === "string" || !(typeof item[1] === "string"))) {
throw Error(
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values",
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values"
);
}
}
@@ -105,7 +105,7 @@ function sanitizeInt(typeLike: object) {
typeof typeLike.isSigned !== "boolean"
) {
throw Error(
"Expected an Int Type to have a `bitWidth` and `isSigned` property",
"Expected an Int Type to have a `bitWidth` and `isSigned` property"
);
}
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
@@ -128,7 +128,7 @@ function sanitizeDecimal(typeLike: object) {
typeof typeLike.bitWidth !== "number"
) {
throw Error(
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties",
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties"
);
}
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
@@ -149,7 +149,7 @@ function sanitizeTime(typeLike: object) {
typeof typeLike.bitWidth !== "number"
) {
throw Error(
"Expected a Time type to have `unit` and `bitWidth` properties",
"Expected a Time type to have `unit` and `bitWidth` properties"
);
}
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
@@ -172,7 +172,7 @@ function sanitizeTypedTimestamp(
| typeof TimestampNanosecond
| typeof TimestampMicrosecond
| typeof TimestampMillisecond
| typeof TimestampSecond,
| typeof TimestampSecond
) {
let timezone = null;
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
@@ -191,7 +191,7 @@ function sanitizeInterval(typeLike: object) {
function sanitizeList(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a List type to have an array-like `children` property",
"Expected a List type to have an array-like `children` property"
);
}
if (typeLike.children.length !== 1) {
@@ -203,7 +203,7 @@ function sanitizeList(typeLike: object) {
function sanitizeStruct(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Struct type to have an array-like `children` property",
"Expected a Struct type to have an array-like `children` property"
);
}
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
@@ -216,47 +216,47 @@ function sanitizeUnion(typeLike: object) {
typeof typeLike.mode !== "number"
) {
throw Error(
"Expected a Union type to have `typeIds` and `mode` properties",
"Expected a Union type to have `typeIds` and `mode` properties"
);
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Union type to have an array-like `children` property",
"Expected a Union type to have an array-like `children` property"
);
}
return new Union(
typeLike.mode,
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child)),
typeLike.children.map((child) => sanitizeField(child))
);
}
function sanitizeTypedUnion(
typeLike: object,
UnionType: typeof DenseUnion | typeof SparseUnion,
UnionType: typeof DenseUnion | typeof SparseUnion
) {
if (!("typeIds" in typeLike)) {
throw Error(
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property",
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property"
);
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property",
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property"
);
}
return new UnionType(
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child)),
typeLike.children.map((child) => sanitizeField(child))
);
}
function sanitizeFixedSizeBinary(typeLike: object) {
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
throw Error(
"Expected a FixedSizeBinary type to have a `byteWidth` property",
"Expected a FixedSizeBinary type to have a `byteWidth` property"
);
}
return new FixedSizeBinary(typeLike.byteWidth);
@@ -268,7 +268,7 @@ function sanitizeFixedSizeList(typeLike: object) {
}
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a FixedSizeList type to have an array-like `children` property",
"Expected a FixedSizeList type to have an array-like `children` property"
);
}
if (typeLike.children.length !== 1) {
@@ -276,14 +276,14 @@ function sanitizeFixedSizeList(typeLike: object) {
}
return new FixedSizeList(
typeLike.listSize,
sanitizeField(typeLike.children[0]),
sanitizeField(typeLike.children[0])
);
}
function sanitizeMap(typeLike: object) {
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
throw Error(
"Expected a Map type to have an array-like `children` property",
"Expected a Map type to have an array-like `children` property"
);
}
if (!("keysSorted" in typeLike) || typeof typeLike.keysSorted !== "boolean") {
@@ -291,7 +291,7 @@ function sanitizeMap(typeLike: object) {
}
return new Map_(
typeLike.children.map((field) => sanitizeField(field)) as any,
typeLike.keysSorted,
typeLike.keysSorted
);
}
@@ -319,7 +319,7 @@ function sanitizeDictionary(typeLike: object) {
sanitizeType(typeLike.dictionary),
sanitizeType(typeLike.indices) as any,
typeLike.id,
typeLike.isOrdered,
typeLike.isOrdered
);
}
@@ -454,7 +454,7 @@ function sanitizeField(fieldLike: unknown): Field {
!("nullable" in fieldLike)
) {
throw Error(
"The field passed in is missing a `type`/`name`/`nullable` property",
"The field passed in is missing a `type`/`name`/`nullable` property"
);
}
const type = sanitizeType(fieldLike.type);
@@ -489,7 +489,7 @@ export function sanitizeSchema(schemaLike: unknown): Schema {
}
if (!("fields" in schemaLike)) {
throw Error(
"The schema passed in does not appear to be a schema (no 'fields' property)",
"The schema passed in does not appear to be a schema (no 'fields' property)"
);
}
let metadata;
@@ -498,11 +498,11 @@ export function sanitizeSchema(schemaLike: unknown): Schema {
}
if (!Array.isArray(schemaLike.fields)) {
throw Error(
"The schema passed in had a 'fields' property but it was not an array",
"The schema passed in had a 'fields' property but it was not an array"
);
}
const sanitizedFields = schemaLike.fields.map((field) =>
sanitizeField(field),
sanitizeField(field)
);
return new Schema(sanitizedFields, metadata);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,3 +0,0 @@
**/dist/**/*
**/native.js
**/native.d.ts

1
nodejs/.gitignore vendored Normal file
View File

@@ -0,0 +1 @@
yarn.lock

View File

@@ -1 +0,0 @@
.eslintignore

View File

@@ -43,29 +43,20 @@ npm run test
### Running lint / format
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
set to true. Also, if your vscode root folder is the repo root then you will need to set
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
To manually lint your code you can run:
```sh
npm run lint
```
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
for typescript and you should enable format on save. To manually check your code's format you
can run:
to automatically fix all fixable issues:
```sh
npm run chkformat
npm run lint-fix
```
If you need to manually format your code you can run:
```sh
npx prettier --write .
```
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
### Generating docs

View File

@@ -13,32 +13,26 @@
// limitations under the License.
import {
convertToTable,
fromTableToBuffer,
makeArrowTable,
makeEmptyTable,
} from "../dist/arrow";
import {
Field,
FixedSizeList,
Float16,
Float32,
Int32,
tableFromIPC,
Schema,
Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64,
Field,
FixedSizeList,
Float,
Precision,
Float16,
Float32,
Float64,
Int32,
Int64,
List,
MetadataVersion,
Precision,
Schema,
Struct,
type Table,
Utf8,
tableFromIPC,
} from "apache-arrow";
import {
Dictionary as OldDictionary,
@@ -46,14 +40,20 @@ import {
FixedSizeList as OldFixedSizeList,
Float32 as OldFloat32,
Int32 as OldInt32,
Struct as OldStruct,
Schema as OldSchema,
Struct as OldStruct,
TimestampNanosecond as OldTimestampNanosecond,
Utf8 as OldUtf8,
} from "apache-arrow-old";
import { type EmbeddingFunction } from "../dist/embedding/embedding_function";
import {
convertToTable,
fromTableToBuffer,
makeArrowTable,
makeEmptyTable,
} from "../lancedb/arrow";
import { type EmbeddingFunction } from "../lancedb/embedding/embedding_function";
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
function sampleRecords(): Array<Record<string, any>> {
return [
{
@@ -438,7 +438,7 @@ describe("when using two versions of arrow", function () {
new OldField("ts_no_tz", new OldTimestampNanosecond(null)),
]),
),
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
]) as any;
schema.metadataVersion = MetadataVersion.V5;
const table = makeArrowTable([], { schema });

View File

@@ -14,11 +14,13 @@
import * as tmp from "tmp";
import { Connection, connect } from "../dist/index.js";
import { Connection, connect } from "../lancedb";
describe("when connecting", () => {
let tmpDir: tmp.DirResult;
beforeEach(() => (tmpDir = tmp.dirSync({ unsafeCleanup: true })));
beforeEach(() => {
tmpDir = tmp.dirSync({ unsafeCleanup: true });
});
afterEach(() => tmpDir.removeCallback());
it("should connect", async () => {

View File

@@ -14,7 +14,11 @@
/* eslint-disable @typescript-eslint/naming-convention */
import { connect } from "../dist";
import {
CreateKeyCommand,
KMSClient,
ScheduleKeyDeletionCommand,
} from "@aws-sdk/client-kms";
import {
CreateBucketCommand,
DeleteBucketCommand,
@@ -23,11 +27,7 @@ import {
ListObjectsV2Command,
S3Client,
} from "@aws-sdk/client-s3";
import {
CreateKeyCommand,
ScheduleKeyDeletionCommand,
KMSClient,
} from "@aws-sdk/client-kms";
import { connect } from "../lancedb";
// Skip these tests unless the S3_TEST environment variable is set
const maybeDescribe = process.env.S3_TEST ? describe : describe.skip;
@@ -63,9 +63,10 @@ class S3Bucket {
// Delete the bucket if it already exists
try {
await this.deleteBucket(client, name);
} catch (e) {
} catch {
// It's fine if the bucket doesn't exist
}
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new CreateBucketCommand({ Bucket: name }));
return new S3Bucket(name);
}
@@ -78,27 +79,32 @@ class S3Bucket {
static async deleteBucket(client: S3Client, name: string) {
// Must delete all objects before we can delete the bucket
const objects = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new ListObjectsV2Command({ Bucket: name }),
);
if (objects.Contents) {
for (const object of objects.Contents) {
await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new DeleteObjectCommand({ Bucket: name, Key: object.Key }),
);
}
}
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new DeleteBucketCommand({ Bucket: name }));
}
public async assertAllEncrypted(path: string, keyId: string) {
const client = S3Bucket.s3Client();
const objects = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new ListObjectsV2Command({ Bucket: this.name, Prefix: path }),
);
if (objects.Contents) {
for (const object of objects.Contents) {
const metadata = await client.send(
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
new HeadObjectCommand({ Bucket: this.name, Key: object.Key }),
);
expect(metadata.ServerSideEncryption).toBe("aws:kms");
@@ -137,6 +143,7 @@ class KmsKey {
public async delete() {
const client = KmsKey.kmsClient();
// biome-ignore lint/style/useNamingConvention: we dont control s3's api
await client.send(new ScheduleKeyDeletionCommand({ KeyId: this.keyId }));
}
}

View File

@@ -16,18 +16,18 @@ import * as fs from "fs";
import * as path from "path";
import * as tmp from "tmp";
import { Table, connect } from "../dist";
import {
Schema,
Field,
Float32,
Int32,
FixedSizeList,
Int64,
Float32,
Float64,
Int32,
Int64,
Schema,
} from "apache-arrow";
import { makeArrowTable } from "../dist/arrow";
import { Index } from "../dist/indices";
import { Table, connect } from "../lancedb";
import { makeArrowTable } from "../lancedb/arrow";
import { Index } from "../lancedb/indices";
describe("Given a table", () => {
let tmpDir: tmp.DirResult;

136
nodejs/biome.json Normal file
View File

@@ -0,0 +1,136 @@
{
"$schema": "https://biomejs.dev/schemas/1.7.3/schema.json",
"organizeImports": {
"enabled": true
},
"files": {
"ignore": [
"**/dist/**/*",
"**/native.js",
"**/native.d.ts",
"**/npm/**/*",
"**/.vscode/**"
]
},
"formatter": {
"indentStyle": "space"
},
"linter": {
"enabled": true,
"rules": {
"recommended": false,
"complexity": {
"noBannedTypes": "error",
"noExtraBooleanCast": "error",
"noMultipleSpacesInRegularExpressionLiterals": "error",
"noUselessCatch": "error",
"noUselessThisAlias": "error",
"noUselessTypeConstraint": "error",
"noWith": "error"
},
"correctness": {
"noConstAssign": "error",
"noConstantCondition": "error",
"noEmptyCharacterClassInRegex": "error",
"noEmptyPattern": "error",
"noGlobalObjectCalls": "error",
"noInnerDeclarations": "error",
"noInvalidConstructorSuper": "error",
"noNewSymbol": "error",
"noNonoctalDecimalEscape": "error",
"noPrecisionLoss": "error",
"noSelfAssign": "error",
"noSetterReturn": "error",
"noSwitchDeclarations": "error",
"noUndeclaredVariables": "error",
"noUnreachable": "error",
"noUnreachableSuper": "error",
"noUnsafeFinally": "error",
"noUnsafeOptionalChaining": "error",
"noUnusedLabels": "error",
"noUnusedVariables": "error",
"useIsNan": "error",
"useValidForDirection": "error",
"useYield": "error"
},
"style": {
"noNamespace": "error",
"useAsConstAssertion": "error",
"useBlockStatements": "off",
"useNamingConvention": {
"level": "error",
"options": {
"strictCase": false
}
}
},
"suspicious": {
"noAssignInExpressions": "error",
"noAsyncPromiseExecutor": "error",
"noCatchAssign": "error",
"noClassAssign": "error",
"noCompareNegZero": "error",
"noControlCharactersInRegex": "error",
"noDebugger": "error",
"noDuplicateCase": "error",
"noDuplicateClassMembers": "error",
"noDuplicateObjectKeys": "error",
"noDuplicateParameters": "error",
"noEmptyBlockStatements": "error",
"noExplicitAny": "error",
"noExtraNonNullAssertion": "error",
"noFallthroughSwitchClause": "error",
"noFunctionAssign": "error",
"noGlobalAssign": "error",
"noImportAssign": "error",
"noMisleadingCharacterClass": "error",
"noMisleadingInstantiator": "error",
"noPrototypeBuiltins": "error",
"noRedeclare": "error",
"noShadowRestrictedNames": "error",
"noUnsafeDeclarationMerging": "error",
"noUnsafeNegation": "error",
"useGetterReturn": "error",
"useValidTypeof": "error"
}
},
"ignore": ["**/dist/**/*", "**/native.js", "**/native.d.ts"]
},
"javascript": {
"globals": []
},
"overrides": [
{
"include": ["**/*.ts", "**/*.tsx", "**/*.mts", "**/*.cts"],
"linter": {
"rules": {
"correctness": {
"noConstAssign": "off",
"noGlobalObjectCalls": "off",
"noInvalidConstructorSuper": "off",
"noNewSymbol": "off",
"noSetterReturn": "off",
"noUndeclaredVariables": "off",
"noUnreachable": "off",
"noUnreachableSuper": "off"
},
"style": {
"noArguments": "error",
"noVar": "error",
"useConst": "error"
},
"suspicious": {
"noDuplicateClassMembers": "off",
"noDuplicateObjectKeys": "off",
"noDuplicateParameters": "off",
"noFunctionAssign": "off",
"noImportAssign": "off",
"noRedeclare": "off",
"noUnsafeNegation": "off",
"useGetterReturn": "off"
}
}
}
}
]
}

View File

@@ -1,28 +0,0 @@
/* eslint-disable @typescript-eslint/naming-convention */
// @ts-check
const eslint = require("@eslint/js");
const tseslint = require("typescript-eslint");
const eslintConfigPrettier = require("eslint-config-prettier");
const jsdoc = require("eslint-plugin-jsdoc");
module.exports = tseslint.config(
eslint.configs.recommended,
jsdoc.configs["flat/recommended"],
eslintConfigPrettier,
...tseslint.configs.recommended,
{
rules: {
"@typescript-eslint/naming-convention": "error",
"jsdoc/require-returns": "off",
"jsdoc/require-param": "off",
"jsdoc/require-jsdoc": [
"error",
{
publicOnly: true,
},
],
},
plugins: jsdoc,
},
);

View File

@@ -13,25 +13,25 @@
// limitations under the License.
import {
Field,
makeBuilder,
RecordBatchFileWriter,
Utf8,
type Vector,
FixedSizeList,
vectorFromArray,
type Schema,
Table as ArrowTable,
RecordBatchStreamWriter,
Binary,
DataType,
Field,
FixedSizeList,
type Float,
Float32,
List,
RecordBatch,
makeData,
RecordBatchFileWriter,
RecordBatchStreamWriter,
Schema,
Struct,
type Float,
DataType,
Binary,
Float32,
Utf8,
type Vector,
makeBuilder,
makeData,
type makeTable,
vectorFromArray,
} from "apache-arrow";
import { type EmbeddingFunction } from "./embedding/embedding_function";
import { sanitizeSchema } from "./sanitize";
@@ -85,6 +85,7 @@ export class MakeArrowTableOptions {
vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions(),
};
embeddings?: EmbeddingFunction<unknown>;
/**
* If true then string columns will be encoded with dictionary encoding
@@ -208,6 +209,7 @@ export function makeArrowTable(
const opt = new MakeArrowTableOptions(options !== undefined ? options : {});
if (opt.schema !== undefined && opt.schema !== null) {
opt.schema = sanitizeSchema(opt.schema);
opt.schema = validateSchemaEmbeddings(opt.schema, data, opt.embeddings);
}
const columns: Record<string, Vector> = {};
// TODO: sample dataset to find missing columns
@@ -287,8 +289,8 @@ export function makeArrowTable(
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns);
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
(batch) => new RecordBatch(opt.schema!, batch.data),
);
return new ArrowTable(opt.schema, batchesFixed);
@@ -313,7 +315,7 @@ function makeListVector(lists: unknown[][]): Vector<unknown> {
throw Error("Cannot infer list vector from empty array or empty list");
}
const sampleList = lists[0];
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
let inferredType: any;
try {
const sampleVector = makeVector(sampleList);
@@ -337,7 +339,7 @@ function makeVector(
values: unknown[],
type?: DataType,
stringAsDictionary?: boolean,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
@@ -648,3 +650,41 @@ function alignTable(table: ArrowTable, schema: Schema): ArrowTable {
export function createEmptyTable(schema: Schema): ArrowTable {
return new ArrowTable(sanitizeSchema(schema));
}
function validateSchemaEmbeddings(
schema: Schema,
data: Array<Record<string, unknown>>,
embeddings: EmbeddingFunction<unknown> | undefined,
) {
const fields = [];
const missingEmbeddingFields = [];
// First we check if the field is a `FixedSizeList`
// Then we check if the data contains the field
// if it does not, we add it to the list of missing embedding fields
// Finally, we check if those missing embedding fields are `this._embeddings`
// if they are not, we throw an error
for (const field of schema.fields) {
if (field.type instanceof FixedSizeList) {
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
missingEmbeddingFields.push(field);
} else {
fields.push(field);
}
} else {
fields.push(field);
}
}
if (missingEmbeddingFields.length > 0 && embeddings === undefined) {
console.log({ missingEmbeddingFields, embeddings });
throw new Error(
`Table has embeddings: "${missingEmbeddingFields
.map((f) => f.name)
.join(",")}", but no embedding function was provided`,
);
}
return new Schema(fields);
}

View File

@@ -12,10 +12,10 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { Table as ArrowTable, Schema } from "apache-arrow";
import { fromTableToBuffer, makeArrowTable, makeEmptyTable } from "./arrow";
import { ConnectionOptions, Connection as LanceDbConnection } from "./native";
import { Table } from "./table";
import { Table as ArrowTable, Schema } from "apache-arrow";
/**
* Connect to a LanceDB instance at the given URI.
@@ -77,6 +77,18 @@ export interface OpenTableOptions {
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
*/
storageOptions?: Record<string, string>;
/**
* Set the size of the index cache, specified as a number of entries
*
* The exact meaning of an "entry" will depend on the type of index:
* - IVF: there is one entry for each IVF partition
* - BTREE: there is one entry for the entire index
*
* This cache applies to the entire opened table, across all indices.
* Setting this value higher will increase performance on larger datasets
* at the expense of more RAM
*/
indexCacheSize?: number;
}
export interface TableNamesOptions {
@@ -160,6 +172,7 @@ export class Connection {
const innerTable = await this.inner.openTable(
name,
cleanseStorageOptions(options?.storageOptions),
options?.indexCacheSize,
);
return new Table(innerTable);
}

View File

@@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { type EmbeddingFunction } from "./embedding_function";
import type OpenAI from "openai";
import { type EmbeddingFunction } from "./embedding_function";
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
private readonly _openai: OpenAI;

View File

@@ -12,14 +12,14 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
import { Table as ArrowTable, RecordBatch, tableFromIPC } from "apache-arrow";
import { type IvfPqOptions } from "./indices";
import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
VectorQuery as NativeVectorQuery,
} from "./native";
import { type IvfPqOptions } from "./indices";
export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
private promisedInner?: Promise<NativeBatchIterator>;
private inner?: NativeBatchIterator;
@@ -29,7 +29,7 @@ export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
this.promisedInner = promise;
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
async next(): Promise<IteratorResult<RecordBatch<any>>> {
if (this.inner === undefined) {
this.inner = await this.promisedInner;
@@ -56,7 +56,9 @@ export class QueryBase<
QueryType,
> implements AsyncIterable<RecordBatch>
{
protected constructor(protected inner: NativeQueryType) {}
protected constructor(protected inner: NativeQueryType) {
// intentionally empty
}
/**
* A filter statement to be applied to this query.
@@ -150,7 +152,7 @@ export class QueryBase<
return new RecordBatchIterator(this.nativeExecute());
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.nativeExecute();
return new RecordBatchIterator(promise);
@@ -368,7 +370,7 @@ export class Query extends QueryBase<NativeQuery, Query> {
* a default `limit` of 10 will be used. @see {@link Query#limit}
*/
nearestTo(vector: unknown): VectorQuery {
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
const vectorQuery = this.inner.nearestTo(Float32Array.from(vector as any));
return new VectorQuery(vectorQuery);
}

View File

@@ -21,60 +21,60 @@
// and so we must sanitize the input to ensure that it is compatible.
import {
Field,
Utf8,
FixedSizeBinary,
FixedSizeList,
Schema,
List,
Struct,
Float,
Binary,
Bool,
DataType,
DateDay,
DateMillisecond,
type DateUnit,
Date_,
Decimal,
DataType,
DenseUnion,
Dictionary,
Binary,
Float32,
Interval,
Map_,
Duration,
Union,
Time,
Timestamp,
Type,
Null,
DurationMicrosecond,
DurationMillisecond,
DurationNanosecond,
DurationSecond,
Field,
FixedSizeBinary,
FixedSizeList,
Float,
Float16,
Float32,
Float64,
Int,
type Precision,
type DateUnit,
Int8,
Int16,
Int32,
Int64,
Interval,
IntervalDayTime,
IntervalYearMonth,
List,
Map_,
Null,
type Precision,
Schema,
SparseUnion,
Struct,
Time,
TimeMicrosecond,
TimeMillisecond,
TimeNanosecond,
TimeSecond,
Timestamp,
TimestampMicrosecond,
TimestampMillisecond,
TimestampNanosecond,
TimestampSecond,
Type,
Uint8,
Uint16,
Uint32,
Uint64,
Float16,
Float64,
DateDay,
DateMillisecond,
DenseUnion,
SparseUnion,
TimeNanosecond,
TimeMicrosecond,
TimeMillisecond,
TimeSecond,
TimestampNanosecond,
TimestampMicrosecond,
TimestampMillisecond,
TimestampSecond,
IntervalDayTime,
IntervalYearMonth,
DurationNanosecond,
DurationMicrosecond,
DurationMillisecond,
DurationSecond,
Union,
Utf8,
} from "apache-arrow";
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
@@ -228,7 +228,7 @@ function sanitizeUnion(typeLike: object) {
return new Union(
typeLike.mode,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
typeLike.typeIds as any,
typeLike.children.map((child) => sanitizeField(child)),
);
@@ -294,7 +294,7 @@ function sanitizeMap(typeLike: object) {
}
return new Map_(
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
typeLike.children.map((field) => sanitizeField(field)) as any,
typeLike.keysSorted,
);
@@ -328,7 +328,7 @@ function sanitizeDictionary(typeLike: object) {
);
}
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
function sanitizeType(typeLike: unknown): DataType<any> {
if (typeof typeLike !== "object" || typeLike === null) {
throw Error("Expected a Type but object was null/undefined");

View File

@@ -13,6 +13,8 @@
// limitations under the License.
import { Schema, tableFromIPC } from "apache-arrow";
import { Data, fromDataToBuffer } from "./arrow";
import { IndexOptions } from "./indices";
import {
AddColumnsSql,
ColumnAlteration,
@@ -20,8 +22,6 @@ import {
Table as _NativeTable,
} from "./native";
import { Query, VectorQuery } from "./query";
import { IndexOptions } from "./indices";
import { Data, fromDataToBuffer } from "./arrow";
export { IndexConfig } from "./native";
/**
@@ -169,21 +169,24 @@ export class Table {
* // If the column has a vector (fixed size list) data type then
* // an IvfPq vector index will be created.
* const table = await conn.openTable("my_table");
* await table.createIndex(["vector"]);
* await table.createIndex("vector");
* @example
* // For advanced control over vector index creation you can specify
* // the index type and options.
* const table = await conn.openTable("my_table");
* await table.createIndex(["vector"], I)
* .ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
* .build();
* await table.createIndex("vector", {
* config: lancedb.Index.ivfPq({
* numPartitions: 128,
* numSubVectors: 16,
* }),
* });
* @example
* // Or create a Scalar index
* await table.createIndex("my_float_col").build();
* await table.createIndex("my_float_col");
*/
async createIndex(column: string, options?: Partial<IndexOptions>) {
// Bit of a hack to get around the fact that TS has no package-scope.
// eslint-disable-next-line @typescript-eslint/no-explicit-any
// biome-ignore lint/suspicious/noExplicitAny: skip
const nativeIndex = (options?.config as any)?.inner;
await this.inner.createIndex(nativeIndex, column, options?.replace);
}
@@ -197,8 +200,7 @@ export class Table {
* vector similarity, sorting, and more.
*
* Note: By default, all columns are returned. For best performance, you should
* only fetch the columns you need. See [`Query::select_with_projection`] for
* more details.
* only fetch the columns you need.
*
* When appropriate, various indices and statistics based pruning will be used to
* accelerate the query.
@@ -206,10 +208,13 @@ export class Table {
* // SQL-style filtering
* //
* // This query will return up to 1000 rows whose value in the `id` column
* // is greater than 5. LanceDb supports a broad set of filtering functions.
* for await (const batch of table.query()
* .filter("id > 1").select(["id"]).limit(20)) {
* console.log(batch);
* // is greater than 5. LanceDb supports a broad set of filtering functions.
* for await (const batch of table
* .query()
* .where("id > 1")
* .select(["id"])
* .limit(20)) {
* console.log(batch);
* }
* @example
* // Vector Similarity Search
@@ -218,13 +223,14 @@ export class Table {
* // closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
* // on the "vector" column then this will perform an ANN search.
* //
* // The `refine_factor` and `nprobes` methods are used to control the recall /
* // The `refineFactor` and `nprobes` methods are used to control the recall /
* // latency tradeoff of the search.
* for await (const batch of table.query()
* .nearestTo([1, 2, 3])
* .refineFactor(5).nprobe(10)
* .limit(10)) {
* console.log(batch);
* for await (const batch of table
* .query()
* .where("id > 1")
* .select(["id"])
* .limit(20)) {
* console.log(batch);
* }
* @example
* // Scan the full dataset
@@ -286,43 +292,45 @@ export class Table {
await this.inner.dropColumns(columnNames);
}
/**
* Retrieve the version of the table
*
* LanceDb supports versioning. Every operation that modifies the table increases
* version. As long as a version hasn't been deleted you can `[Self::checkout]` that
* version to view the data at that point. In addition, you can `[Self::restore]` the
* version to replace the current table with a previous version.
*/
/** Retrieve the version of the table */
async version(): Promise<number> {
return await this.inner.version();
}
/**
* Checks out a specific version of the Table
* Checks out a specific version of the table _This is an in-place operation._
*
* Any read operation on the table will now access the data at the checked out version.
* As a consequence, calling this method will disable any read consistency interval
* that was previously set.
* This allows viewing previous versions of the table. If you wish to
* keep writing to the dataset starting from an old version, then use
* the `restore` function.
*
* This is a read-only operation that turns the table into a sort of "view"
* or "detached head". Other table instances will not be affected. To make the change
* permanent you can use the `[Self::restore]` method.
* Calling this method will set the table into time-travel mode. If you
* wish to return to standard mode, call `checkoutLatest`.
* @param {number} version The version to checkout
* @example
* ```typescript
* import * as lancedb from "@lancedb/lancedb"
* const db = await lancedb.connect("./.lancedb");
* const table = await db.createTable("my_table", [
* { vector: [1.1, 0.9], type: "vector" },
* ]);
*
* Any operation that modifies the table will fail while the table is in a checked
* out state.
*
* To return the table to a normal state use `[Self::checkout_latest]`
* console.log(await table.version()); // 1
* console.log(table.display());
* await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
* await table.checkout(1);
* console.log(await table.version()); // 2
* ```
*/
async checkout(version: number): Promise<void> {
await this.inner.checkout(version);
}
/**
* Ensures the table is pointing at the latest version
* Checkout the latest version of the table. _This is an in-place operation._
*
* This can be used to manually update a table when the read_consistency_interval is None
* It can also be used to undo a `[Self::checkout]` operation
* The table will be set back into standard mode, and will track the latest
* version of the table.
*/
async checkoutLatest(): Promise<void> {
await this.inner.checkoutLatest();
@@ -344,9 +352,7 @@ export class Table {
await this.inner.restore();
}
/**
* List all indices that have been created with Self::create_index
*/
/** List all indices that have been created with {@link Table.createIndex} */
async listIndices(): Promise<IndexConfig[]> {
return await this.inner.listIndices();
}

View File

@@ -1,18 +1,12 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.4.17",
"os": [
"darwin"
],
"cpu": [
"arm64"
],
"main": "lancedb.darwin-arm64.node",
"files": [
"lancedb.darwin-arm64.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.4.20",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",
"files": ["lancedb.darwin-arm64.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
}

View File

@@ -1,18 +1,12 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.4.17",
"os": [
"darwin"
],
"cpu": [
"x64"
],
"main": "lancedb.darwin-x64.node",
"files": [
"lancedb.darwin-x64.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.4.20",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",
"files": ["lancedb.darwin-x64.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
}

View File

@@ -1,21 +1,13 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.4.17",
"os": [
"linux"
],
"cpu": [
"arm64"
],
"main": "lancedb.linux-arm64-gnu.node",
"files": [
"lancedb.linux-arm64-gnu.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": [
"glibc"
]
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.4.20",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",
"files": ["lancedb.linux-arm64-gnu.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": ["glibc"]
}

View File

@@ -1,21 +1,13 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.4.17",
"os": [
"linux"
],
"cpu": [
"x64"
],
"main": "lancedb.linux-x64-gnu.node",
"files": [
"lancedb.linux-x64-gnu.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": [
"glibc"
]
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.4.20",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",
"files": ["lancedb.linux-x64-gnu.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
},
"libc": ["glibc"]
}

View File

@@ -1,18 +1,12 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.4.14",
"os": [
"win32"
],
"cpu": [
"x64"
],
"main": "lancedb.win32-x64-msvc.node",
"files": [
"lancedb.win32-x64-msvc.node"
],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.4.14",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",
"files": ["lancedb.win32-x64-msvc.node"],
"license": "Apache 2.0",
"engines": {
"node": ">= 18"
}
}

15661
nodejs/package-lock.json generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb",
"version": "0.4.17",
"version": "0.4.20",
"main": "./dist/index.js",
"types": "./dist/index.d.ts",
"napi": {
@@ -18,19 +18,16 @@
},
"license": "Apache 2.0",
"devDependencies": {
"@aws-sdk/client-s3": "^3.33.0",
"@aws-sdk/client-kms": "^3.33.0",
"@aws-sdk/client-s3": "^3.33.0",
"@biomejs/biome": "^1.7.3",
"@jest/globals": "^29.7.0",
"@napi-rs/cli": "^2.18.0",
"@types/jest": "^29.1.2",
"@types/tmp": "^0.2.6",
"@typescript-eslint/eslint-plugin": "^6.19.0",
"@typescript-eslint/parser": "^6.19.0",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"eslint": "^8.57.0",
"eslint-config-prettier": "^9.1.0",
"eslint-plugin-jsdoc": "^48.2.1",
"jest": "^29.7.0",
"prettier": "^3.1.0",
"shx": "^0.3.4",
"tmp": "^0.2.3",
"ts-jest": "^29.1.2",
@@ -45,39 +42,26 @@
"engines": {
"node": ">= 18"
},
"cpu": [
"x64",
"arm64"
],
"os": [
"darwin",
"linux",
"win32"
],
"cpu": ["x64", "arm64"],
"os": ["darwin", "linux", "win32"],
"scripts": {
"artifacts": "napi artifacts",
"build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/",
"build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js lancedb",
"build:release": "napi build --platform --release --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/",
"build": "npm run build:debug && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts",
"build": "npm run build:debug && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts && shx cp lancedb/*.node dist/",
"build-release": "npm run build:release && tsc -b && shx cp lancedb/native.d.ts dist/native.d.ts",
"chkformat": "prettier . --check",
"lint-ci": "biome ci .",
"docs": "typedoc --plugin typedoc-plugin-markdown --out ../docs/src/js lancedb/index.ts",
"lint": "eslint lancedb && eslint __test__",
"lint": "biome check . && biome format .",
"lint-fix": "biome check --apply-unsafe . && biome format --write .",
"prepublishOnly": "napi prepublish -t npm",
"test": "npm run build && jest --verbose",
"test": "jest --verbose",
"integration": "S3_TEST=1 npm run test",
"universal": "napi universal",
"version": "napi version"
},
"optionalDependencies": {
"@lancedb/lancedb-darwin-arm64": "0.4.17",
"@lancedb/lancedb-darwin-x64": "0.4.17",
"@lancedb/lancedb-linux-arm64-gnu": "0.4.17",
"@lancedb/lancedb-linux-x64-gnu": "0.4.17",
"@lancedb/lancedb-win32-x64-msvc": "0.4.17"
},
"dependencies": {
"openai": "^4.29.2",
"apache-arrow": "^15.0.0"
"apache-arrow": "^15.0.0",
"openai": "^4.29.2"
}
}

View File

@@ -176,6 +176,7 @@ impl Connection {
&self,
name: String,
storage_options: Option<HashMap<String, String>>,
index_cache_size: Option<u32>,
) -> napi::Result<Table> {
let mut builder = self.get_inner()?.open_table(&name);
if let Some(storage_options) = storage_options {
@@ -183,6 +184,9 @@ impl Connection {
builder = builder.storage_option(key, value);
}
}
if let Some(index_cache_size) = index_cache_size {
builder = builder.index_cache_size(index_cache_size);
}
let tbl = builder
.execute()
.await

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.6.10
current_version = 0.6.13
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -14,7 +14,7 @@ name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
arrow = { version = "50.0.0", features = ["pyarrow"] }
arrow = { version = "51.0.0", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb" }
env_logger = "0.10"
pyo3 = { version = "0.20", features = ["extension-module", "abi3-py38"] }

View File

@@ -1,6 +1,6 @@
[project]
name = "lancedb"
version = "0.6.10"
version = "0.6.13"
dependencies = [
"deprecation",
"pylance==0.10.12",
@@ -10,7 +10,7 @@ dependencies = [
"tqdm>=4.27.0",
"pydantic>=1.10",
"attrs>=21.3.0",
"semver>=3.0",
"semver",
"cachetools",
"overrides>=0.7",
]
@@ -80,6 +80,7 @@ embeddings = [
"boto3>=1.28.57",
"awscli>=1.29.57",
"botocore>=1.31.57",
"ollama",
]
azure = ["adlfs>=2024.2.0"]

View File

@@ -107,6 +107,9 @@ def connect(
request_thread_pool=request_thread_pool,
**kwargs,
)
if kwargs:
raise ValueError(f"Unknown keyword arguments: {kwargs}")
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -224,13 +224,23 @@ class DBConnection(EnforceOverrides):
def __getitem__(self, name: str) -> LanceTable:
return self.open_table(name)
def open_table(self, name: str) -> Table:
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
"""Open a Lance Table in the database.
Parameters
----------
name: str
The name of the table.
index_cache_size: int, default 256
Set the size of the index cache, specified as a number of entries
The exact meaning of an "entry" will depend on the type of index:
* IVF - there is one entry for each IVF partition
* BTREE - there is one entry for the entire index
This cache applies to the entire opened table, across all indices.
Setting this value higher will increase performance on larger datasets
at the expense of more RAM
Returns
-------
@@ -248,6 +258,18 @@ class DBConnection(EnforceOverrides):
"""
raise NotImplementedError
def rename_table(self, cur_name: str, new_name: str):
"""Rename a table in the database.
Parameters
----------
cur_name: str
The current name of the table.
new_name: str
The new name of the table.
"""
raise NotImplementedError
def drop_database(self):
"""
Drop database
@@ -407,7 +429,9 @@ class LanceDBConnection(DBConnection):
return tbl
@override
def open_table(self, name: str) -> LanceTable:
def open_table(
self, name: str, *, index_cache_size: Optional[int] = None
) -> LanceTable:
"""Open a table in the database.
Parameters
@@ -419,7 +443,7 @@ class LanceDBConnection(DBConnection):
-------
A LanceTable object representing the table.
"""
return LanceTable.open(self, name)
return LanceTable.open(self, name, index_cache_size=index_cache_size)
@override
def drop_table(self, name: str, ignore_missing: bool = False):
@@ -751,7 +775,10 @@ class AsyncConnection(object):
return AsyncTable(new_table)
async def open_table(
self, name: str, storage_options: Optional[Dict[str, str]] = None
self,
name: str,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
"""Open a Lance Table in the database.
@@ -764,12 +791,22 @@ class AsyncConnection(object):
connection will be inherited by the table, but can be overridden here.
See available options at
https://lancedb.github.io/lancedb/guides/storage/
index_cache_size: int, default 256
Set the size of the index cache, specified as a number of entries
The exact meaning of an "entry" will depend on the type of index:
* IVF - there is one entry for each IVF partition
* BTREE - there is one entry for the entire index
This cache applies to the entire opened table, across all indices.
Setting this value higher will increase performance on larger datasets
at the expense of more RAM
Returns
-------
A LanceTable object representing the table.
"""
table = await self._inner.open_table(name, storage_options)
table = await self._inner.open_table(name, storage_options, index_cache_size)
return AsyncTable(table)
async def drop_table(self, name: str):

View File

@@ -16,6 +16,7 @@ from .bedrock import BedRockText
from .cohere import CohereEmbeddingFunction
from .gemini_text import GeminiText
from .instructor import InstructorEmbeddingFunction
from .ollama import OllamaEmbeddings
from .open_clip import OpenClipEmbeddings
from .openai import OpenAIEmbeddings
from .registry import EmbeddingFunctionRegistry, get_registry

View File

@@ -0,0 +1,69 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Union
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
if TYPE_CHECKING:
import numpy as np
@register("ollama")
class OllamaEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses Ollama
https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings
https://ollama.com/blog/embedding-models
"""
name: str = "nomic-embed-text"
host: str = "http://localhost:11434"
options: Optional[dict] = None # type = ollama.Options
keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {}
def ndims(self):
return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text):
return self._ollama_client.embeddings(
model=self.name,
prompt=text,
options=self.options,
keep_alive=self.keep_alive,
)["embedding"]
def generate_embeddings(
self, texts: Union[List[str], "np.ndarray"]
) -> List["np.array"]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
# TODO retry, rate limit, token limit
embeddings = [self._compute_embedding(text) for text in texts]
return embeddings
@cached_property
def _ollama_client(self):
ollama = attempt_import_or_raise("ollama")
# ToDo explore ollama.AsyncClient
return ollama.Client(host=self.host, **self.ollama_client_kwargs)

View File

@@ -255,7 +255,13 @@ def retry_with_exponential_backoff(
)
delay *= exponential_base * (1 + jitter * random.random())
logging.info("Retrying in %s seconds...", delay)
logging.warning(
"Error occurred: %s \n Retrying in %s seconds (retry %s of %s) \n",
e,
delay,
num_retries,
max_retries,
)
time.sleep(delay)
return wrapper

View File

@@ -37,7 +37,7 @@ import pyarrow as pa
import pydantic
import semver
PYDANTIC_VERSION = semver.Version.parse(pydantic.__version__)
PYDANTIC_VERSION = semver.parse_version_info(pydantic.__version__)
try:
from pydantic_core import CoreSchema, core_schema
except ImportError:

View File

@@ -30,6 +30,7 @@ from typing import (
import deprecation
import numpy as np
import pyarrow as pa
import pyarrow.fs as pa_fs
import pydantic
from . import __version__
@@ -37,7 +38,7 @@ from .arrow import AsyncRecordBatchReader
from .common import VEC
from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker
from .util import safe_import_pandas
from .util import fs_from_uri, safe_import_pandas
if TYPE_CHECKING:
import PIL
@@ -665,6 +666,14 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
# get the index path
index_path = self._table._get_fts_index_path()
# Check that we are on local filesystem
fs, _path = fs_from_uri(index_path)
if not isinstance(fs, pa_fs.LocalFileSystem):
raise NotImplementedError(
"Full-text search is only supported on the local filesystem"
)
# check if the index exist
if not Path(index_path).exists():
raise FileNotFoundError(

View File

@@ -94,7 +94,7 @@ class RemoteDBConnection(DBConnection):
yield item
@override
def open_table(self, name: str) -> Table:
def open_table(self, name: str, *, index_cache_size: Optional[int] = None) -> Table:
"""Open a Lance Table in the database.
Parameters
@@ -110,6 +110,12 @@ class RemoteDBConnection(DBConnection):
self._client.mount_retry_adapter_for_table(name)
if index_cache_size is not None:
logging.info(
"index_cache_size is ignored in LanceDb Cloud"
" (there is no local cache to configure)"
)
# check if table exists
if self._table_cache.get(name) is None:
self._client.post(f"/v1/table/{name}/describe/")
@@ -279,7 +285,25 @@ class RemoteDBConnection(DBConnection):
self._client.post(
f"/v1/table/{name}/drop/",
)
self._table_cache.pop(name)
self._table_cache.pop(name, default=None)
@override
def rename_table(self, cur_name: str, new_name: str):
"""Rename a table in the database.
Parameters
----------
cur_name: str
The current name of the table.
new_name: str
The new name of the table.
"""
self._client.post(
f"/v1/table/{cur_name}/rename/",
data={"new_table_name": new_name},
)
self._table_cache.pop(cur_name, default=None)
self._table_cache[new_name] = True
async def close(self):
"""Close the connection to the database."""

View File

@@ -72,7 +72,7 @@ class RemoteTable(Table):
return resp
def index_stats(self, index_uuid: str):
"""List all the indices on the table"""
"""List all the stats of a specified index"""
resp = self._conn._client.post(
f"/v1/table/{self._name}/index/{index_uuid}/stats/"
)

View File

@@ -806,6 +806,7 @@ class _LanceLatestDatasetRef(_LanceDatasetRef):
"""Reference to the latest version of a LanceDataset."""
uri: str
index_cache_size: Optional[int] = None
read_consistency_interval: Optional[timedelta] = None
last_consistency_check: Optional[float] = None
_dataset: Optional[LanceDataset] = None
@@ -813,7 +814,9 @@ class _LanceLatestDatasetRef(_LanceDatasetRef):
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri)
self._dataset = lance.dataset(
self.uri, index_cache_size=self.index_cache_size
)
self.last_consistency_check = time.monotonic()
elif self.read_consistency_interval is not None:
now = time.monotonic()
@@ -842,12 +845,15 @@ class _LanceLatestDatasetRef(_LanceDatasetRef):
class _LanceTimeTravelRef(_LanceDatasetRef):
uri: str
version: int
index_cache_size: Optional[int] = None
_dataset: Optional[LanceDataset] = None
@property
def dataset(self) -> LanceDataset:
if not self._dataset:
self._dataset = lance.dataset(self.uri, version=self.version)
self._dataset = lance.dataset(
self.uri, version=self.version, index_cache_size=self.index_cache_size
)
return self._dataset
@dataset.setter
@@ -884,6 +890,8 @@ class LanceTable(Table):
connection: "LanceDBConnection",
name: str,
version: Optional[int] = None,
*,
index_cache_size: Optional[int] = None,
):
self._conn = connection
self.name = name
@@ -892,11 +900,13 @@ class LanceTable(Table):
self._ref = _LanceTimeTravelRef(
uri=self._dataset_uri,
version=version,
index_cache_size=index_cache_size,
)
else:
self._ref = _LanceLatestDatasetRef(
uri=self._dataset_uri,
read_consistency_interval=connection.read_consistency_interval,
index_cache_size=index_cache_size,
)
@classmethod
@@ -1199,6 +1209,11 @@ class LanceTable(Table):
raise ValueError("Index already exists. Use replace=True to overwrite.")
fs.delete_dir(path)
if not isinstance(fs, pa_fs.LocalFileSystem):
raise NotImplementedError(
"Full-text search is only supported on the local filesystem"
)
index = create_index(
self._get_fts_index_path(),
field_names,

View File

@@ -368,6 +368,15 @@ async def test_create_exist_ok_async(tmp_path):
# await db.create_table("test", schema=bad_schema, exist_ok=True)
def test_open_table_sync(tmp_path):
db = lancedb.connect(tmp_path)
db.create_table("test", data=[{"id": 0}])
assert db.open_table("test").count_rows() == 1
assert db.open_table("test", index_cache_size=0).count_rows() == 1
with pytest.raises(FileNotFoundError, match="does not exist"):
db.open_table("does_not_exist")
@pytest.mark.asyncio
async def test_open_table(tmp_path):
db = await lancedb.connect_async(tmp_path)
@@ -397,6 +406,10 @@ async def test_open_table(tmp_path):
}
)
# No way to verify this yet, but at least make sure we
# can pass the parameter
await db.open_table("test", index_cache_size=0)
with pytest.raises(ValueError, match="was not found"):
await db.open_table("does_not_exist")

View File

@@ -45,7 +45,9 @@ except Exception:
@pytest.mark.slow
@pytest.mark.parametrize("alias", ["sentence-transformers", "openai", "huggingface"])
@pytest.mark.parametrize(
"alias", ["sentence-transformers", "openai", "huggingface", "ollama"]
)
def test_basic_text_embeddings(alias, tmp_path):
db = lancedb.connect(tmp_path)
registry = get_registry()

View File

@@ -213,7 +213,7 @@ def test_syntax(table):
# https://github.com/lancedb/lancedb/issues/769
table.create_fts_index("text")
with pytest.raises(ValueError, match="Syntax Error"):
table.search("they could have been dogs OR cats").limit(10).to_list()
table.search("they could have been dogs OR").limit(10).to_list()
# these should work

View File

@@ -134,17 +134,21 @@ impl Connection {
})
}
#[pyo3(signature = (name, storage_options = None))]
#[pyo3(signature = (name, storage_options = None, index_cache_size = None))]
pub fn open_table(
self_: PyRef<'_, Self>,
name: String,
storage_options: Option<HashMap<String, String>>,
index_cache_size: Option<u32>,
) -> PyResult<&PyAny> {
let inner = self_.get_inner()?.clone();
let mut builder = inner.open_table(name);
if let Some(storage_options) = storage_options {
builder = builder.storage_options(storage_options);
}
if let Some(index_cache_size) = index_cache_size {
builder = builder.index_cache_size(index_cache_size);
}
future_into_py(self_.py(), async move {
let table = builder.execute().await.infer_error()?;
Ok(Table::new(table))

View File

@@ -35,21 +35,16 @@ impl<T> PythonErrorExt<T> for std::result::Result<T, LanceError> {
match &self {
Ok(_) => Ok(self.unwrap()),
Err(err) => match err {
LanceError::InvalidInput { .. } => self.value_error(),
LanceError::InvalidTableName { .. } => self.value_error(),
LanceError::TableNotFound { .. } => self.value_error(),
LanceError::Schema { .. } => self.value_error(),
LanceError::InvalidInput { .. }
| LanceError::InvalidTableName { .. }
| LanceError::TableNotFound { .. }
| LanceError::Schema { .. } => self.value_error(),
LanceError::CreateDir { .. } => self.os_error(),
LanceError::TableAlreadyExists { .. } => self.runtime_error(),
LanceError::ObjectStore { .. } => Err(PyIOError::new_err(err.to_string())),
LanceError::Lance { .. } => self.runtime_error(),
LanceError::Runtime { .. } => self.runtime_error(),
LanceError::Http { .. } => self.runtime_error(),
LanceError::Arrow { .. } => self.runtime_error(),
LanceError::NotSupported { .. } => {
Err(PyNotImplementedError::new_err(err.to_string()))
}
LanceError::Other { .. } => self.runtime_error(),
_ => self.runtime_error(),
},
}
}

44
release_process.md Normal file
View File

@@ -0,0 +1,44 @@
# Release process
There are five total packages we release. Three are the `lancedb` packages
for Python, Rust, and Node.js. The other two are the legacy `vectordb`
packages for Rust and node.js.
The Python package is versioned and released separately from the Rust and Node.js
ones. For Rust and Node.js, the release process is shared between `lancedb` and
`vectordb` for now.
## Breaking changes
We try to avoid breaking changes, but sometimes they are necessary. When there
are breaking changes, we will increment the minor version. (This is valid
semantic versioning because we are still in `0.x` versions.)
When a PR makes a breaking change, the PR author should mark the PR using the
conventional commit markers: either exclamation mark after the type
(such as `feat!: change signature of func`) or have `BREAKING CHANGE` in the
body of the PR. A CI job will add a `breaking-change` label to the PR, which is
what will ultimately be used to CI to determine if the minor version should be
incremented.
A CI job will validate that if a `breaking-change` label is added, the minor
version is incremented in the `Cargo.toml` and `pyproject.toml` files. The only
exception is if it has already been incremented since the last stable release.
**It is the responsibility of the PR author to increment the minor version when
appropriate.**
Some things that are considered breaking changes:
* Upgrading `lance` to a new minor version. Minor version bumps in Lance are
considered breaking changes during `0.x` releases. This can change behavior
in LanceDB.
* Upgrading a dependency pin that is in the Rust API. In particular, upgrading
`DataFusion` and `Arrow` are breaking changes. Changing dependencies that are
not exposed in our public API are not considered breaking changes.
* Changing the signature of a public function or method.
* Removing a public function or method.
We do make exceptions for APIs that are marked as experimental. These are APIs
that are under active development and not in major use. These changes should not
receive the `breaking-change` label.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.4.17"
version = "0.4.20"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -59,7 +59,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
for handle in storage_options_js {
let obj = handle.downcast::<JsArray, _>(&mut cx).unwrap();
let key = obj.get::<JsString, _, _>(&mut cx, 0)?.value(&mut cx);
let value = obj.get::<JsString, _, _>(&mut cx, 0)?.value(&mut cx);
let value = obj.get::<JsString, _, _>(&mut cx, 1)?.value(&mut cx);
storage_options.push((key, value));
}

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.4.17"
version = "0.4.20"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -40,6 +40,8 @@ serde = { version = "^1" }
serde_json = { version = "1" }
# For remote feature
reqwest = { version = "0.11.24", features = ["gzip", "json"], optional = true }
polars-arrow = { version = ">=0.37", optional = true }
polars = { version = ">=0.37", optional = true}
[dev-dependencies]
tempfile = "3.5.0"
@@ -52,7 +54,8 @@ aws-sdk-kms = { version = "1.0" }
aws-config = { version = "1.0" }
[features]
default = ["remote"]
default = []
remote = ["dep:reqwest"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
s3-test = []
polars = ["dep:polars-arrow", "dep:polars"]

View File

@@ -14,10 +14,12 @@
use std::{pin::Pin, sync::Arc};
pub use arrow_array;
pub use arrow_schema;
use futures::{Stream, StreamExt};
#[cfg(feature = "polars")]
use {crate::polars_arrow_convertors, polars::frame::ArrowChunk, polars::prelude::DataFrame};
use crate::error::Result;
/// An iterator of batches that also has a schema
@@ -114,8 +116,183 @@ pub trait IntoArrow {
fn into_arrow(self) -> Result<Box<dyn arrow_array::RecordBatchReader + Send>>;
}
pub type BoxedRecordBatchReader = Box<dyn arrow_array::RecordBatchReader + Send>;
impl<T: arrow_array::RecordBatchReader + Send + 'static> IntoArrow for T {
fn into_arrow(self) -> Result<Box<dyn arrow_array::RecordBatchReader + Send>> {
Ok(Box::new(self))
}
}
impl<S: Stream<Item = Result<arrow_array::RecordBatch>>> SimpleRecordBatchStream<S> {
pub fn new(stream: S, schema: Arc<arrow_schema::Schema>) -> Self {
Self { schema, stream }
}
}
#[cfg(feature = "polars")]
/// An iterator of record batches formed from a Polars DataFrame.
pub struct PolarsDataFrameRecordBatchReader {
chunks: std::vec::IntoIter<ArrowChunk>,
arrow_schema: Arc<arrow_schema::Schema>,
}
#[cfg(feature = "polars")]
impl PolarsDataFrameRecordBatchReader {
/// Creates a new `PolarsDataFrameRecordBatchReader` from a given Polars DataFrame.
/// If the input dataframe does not have aligned chunks, this function undergoes
/// the costly operation of reallocating each series as a single contigous chunk.
pub fn new(mut df: DataFrame) -> Result<Self> {
df.align_chunks();
let arrow_schema =
polars_arrow_convertors::convert_polars_df_schema_to_arrow_rb_schema(df.schema())?;
Ok(Self {
chunks: df
.iter_chunks(polars_arrow_convertors::POLARS_ARROW_FLAVOR)
.collect::<Vec<ArrowChunk>>()
.into_iter(),
arrow_schema,
})
}
}
#[cfg(feature = "polars")]
impl Iterator for PolarsDataFrameRecordBatchReader {
type Item = std::result::Result<arrow_array::RecordBatch, arrow_schema::ArrowError>;
fn next(&mut self) -> Option<Self::Item> {
self.chunks.next().map(|chunk| {
let columns: std::result::Result<Vec<arrow_array::ArrayRef>, arrow_schema::ArrowError> =
chunk
.into_arrays()
.into_iter()
.zip(self.arrow_schema.fields.iter())
.map(|(polars_array, arrow_field)| {
polars_arrow_convertors::convert_polars_arrow_array_to_arrow_rs_array(
polars_array,
arrow_field.data_type().clone(),
)
})
.collect();
arrow_array::RecordBatch::try_new(self.arrow_schema.clone(), columns?)
})
}
}
#[cfg(feature = "polars")]
impl arrow_array::RecordBatchReader for PolarsDataFrameRecordBatchReader {
fn schema(&self) -> Arc<arrow_schema::Schema> {
self.arrow_schema.clone()
}
}
/// A trait for converting the result of a LanceDB query into a Polars DataFrame with aligned
/// chunks. The resulting Polars DataFrame will have aligned chunks, but the series's
/// chunks are not guaranteed to be contiguous.
#[cfg(feature = "polars")]
pub trait IntoPolars {
fn into_polars(self) -> impl std::future::Future<Output = Result<DataFrame>> + Send;
}
#[cfg(feature = "polars")]
impl IntoPolars for SendableRecordBatchStream {
async fn into_polars(mut self) -> Result<DataFrame> {
let polars_schema =
polars_arrow_convertors::convert_arrow_rb_schema_to_polars_df_schema(&self.schema())?;
let mut acc_df: DataFrame = DataFrame::from(&polars_schema);
while let Some(record_batch) = self.next().await {
let new_df = polars_arrow_convertors::convert_arrow_rb_to_polars_df(
&record_batch?,
&polars_schema,
)?;
acc_df = acc_df.vstack(&new_df)?;
}
Ok(acc_df)
}
}
#[cfg(all(test, feature = "polars"))]
mod tests {
use super::SendableRecordBatchStream;
use crate::arrow::{
IntoArrow, IntoPolars, PolarsDataFrameRecordBatchReader, SimpleRecordBatchStream,
};
use polars::prelude::{DataFrame, NamedFrom, Series};
fn get_record_batch_reader_from_polars() -> Box<dyn arrow_array::RecordBatchReader + Send> {
let mut string_series = Series::new("string", &["ab"]);
let mut int_series = Series::new("int", &[1]);
let mut float_series = Series::new("float", &[1.0]);
let df1 = DataFrame::new(vec![string_series, int_series, float_series]).unwrap();
string_series = Series::new("string", &["bc"]);
int_series = Series::new("int", &[2]);
float_series = Series::new("float", &[2.0]);
let df2 = DataFrame::new(vec![string_series, int_series, float_series]).unwrap();
PolarsDataFrameRecordBatchReader::new(df1.vstack(&df2).unwrap())
.unwrap()
.into_arrow()
.unwrap()
}
#[test]
fn from_polars_to_arrow() {
let record_batch_reader = get_record_batch_reader_from_polars();
let schema = record_batch_reader.schema();
// Test schema conversion
assert_eq!(
schema
.fields
.iter()
.map(|field| (field.name().as_str(), field.data_type()))
.collect::<Vec<_>>(),
vec![
("string", &arrow_schema::DataType::LargeUtf8),
("int", &arrow_schema::DataType::Int32),
("float", &arrow_schema::DataType::Float64)
]
);
let record_batches: Vec<arrow_array::RecordBatch> =
record_batch_reader.map(|result| result.unwrap()).collect();
assert_eq!(record_batches.len(), 2);
assert_eq!(schema, record_batches[0].schema());
assert_eq!(record_batches[0].schema(), record_batches[1].schema());
// Test number of rows
assert_eq!(record_batches[0].num_rows(), 1);
assert_eq!(record_batches[1].num_rows(), 1);
}
#[tokio::test]
async fn from_arrow_to_polars() {
let record_batch_reader = get_record_batch_reader_from_polars();
let schema = record_batch_reader.schema();
let stream: SendableRecordBatchStream = Box::pin(SimpleRecordBatchStream {
schema: schema.clone(),
stream: futures::stream::iter(
record_batch_reader
.into_iter()
.map(|r| r.map_err(Into::into)),
),
});
let df = stream.into_polars().await.unwrap();
// Test number of chunks and rows
assert_eq!(df.n_chunks(), 2);
assert_eq!(df.height(), 2);
// Test schema conversion
assert_eq!(
df.schema()
.into_iter()
.map(|(name, datatype)| (name.to_string(), datatype))
.collect::<Vec<_>>(),
vec![
("string".to_string(), polars::prelude::DataType::String),
("int".to_owned(), polars::prelude::DataType::Int32),
("float".to_owned(), polars::prelude::DataType::Float64)
]
);
}
}

View File

@@ -27,12 +27,18 @@ use object_store::{aws::AwsCredential, local::LocalFileSystem};
use snafu::prelude::*;
use crate::arrow::IntoArrow;
use crate::embeddings::{
EmbeddingDefinition, EmbeddingFunction, EmbeddingRegistry, MemoryRegistry, WithEmbeddings,
};
use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result};
use crate::io::object_store::MirroringObjectStoreWrapper;
use crate::table::{NativeTable, WriteOptions};
use crate::table::{NativeTable, TableDefinition, WriteOptions};
use crate::utils::validate_table_name;
use crate::Table;
#[cfg(feature = "remote")]
use log::warn;
pub const LANCE_FILE_EXTENSION: &str = "lance";
pub type TableBuilderCallback = Box<dyn FnOnce(OpenTableBuilder) -> OpenTableBuilder + Send>;
@@ -130,9 +136,10 @@ pub struct CreateTableBuilder<const HAS_DATA: bool, T: IntoArrow> {
parent: Arc<dyn ConnectionInternal>,
pub(crate) name: String,
pub(crate) data: Option<T>,
pub(crate) schema: Option<SchemaRef>,
pub(crate) mode: CreateTableMode,
pub(crate) write_options: WriteOptions,
pub(crate) table_definition: Option<TableDefinition>,
pub(crate) embeddings: Vec<(EmbeddingDefinition, Arc<dyn EmbeddingFunction>)>,
}
// Builder methods that only apply when we have initial data
@@ -142,9 +149,10 @@ impl<T: IntoArrow> CreateTableBuilder<true, T> {
parent,
name,
data: Some(data),
schema: None,
mode: CreateTableMode::default(),
write_options: WriteOptions::default(),
table_definition: None,
embeddings: Vec::new(),
}
}
@@ -172,24 +180,43 @@ impl<T: IntoArrow> CreateTableBuilder<true, T> {
parent: self.parent,
name: self.name,
data: None,
schema: self.schema,
table_definition: self.table_definition,
mode: self.mode,
write_options: self.write_options,
embeddings: self.embeddings,
};
Ok((data, builder))
}
pub fn add_embedding(mut self, definition: EmbeddingDefinition) -> Result<Self> {
// Early verification of the embedding name
let embedding_func = self
.parent
.embedding_registry()
.get(&definition.embedding_name)
.ok_or_else(|| Error::EmbeddingFunctionNotFound {
name: definition.embedding_name.to_string(),
reason: "No embedding function found in the connection's embedding_registry"
.to_string(),
})?;
self.embeddings.push((definition, embedding_func));
Ok(self)
}
}
// Builder methods that only apply when we do not have initial data
impl CreateTableBuilder<false, NoData> {
fn new(parent: Arc<dyn ConnectionInternal>, name: String, schema: SchemaRef) -> Self {
let table_definition = TableDefinition::new_from_schema(schema);
Self {
parent,
name,
data: None,
schema: Some(schema),
table_definition: Some(table_definition),
mode: CreateTableMode::default(),
write_options: WriteOptions::default(),
embeddings: Vec::new(),
}
}
@@ -347,6 +374,7 @@ impl OpenTableBuilder {
pub(crate) trait ConnectionInternal:
Send + Sync + std::fmt::Debug + std::fmt::Display + 'static
{
fn embedding_registry(&self) -> &dyn EmbeddingRegistry;
async fn table_names(&self, options: TableNamesBuilder) -> Result<Vec<String>>;
async fn do_create_table(
&self,
@@ -363,7 +391,7 @@ pub(crate) trait ConnectionInternal:
) -> Result<Table> {
let batches = Box::new(RecordBatchIterator::new(
vec![],
options.schema.as_ref().unwrap().clone(),
options.table_definition.clone().unwrap().schema.clone(),
));
self.do_create_table(options, batches).await
}
@@ -450,6 +478,13 @@ impl Connection {
pub async fn drop_db(&self) -> Result<()> {
self.internal.drop_db().await
}
/// Get the in-memory embedding registry.
/// It's important to note that the embedding registry is not persisted across connections.
/// So if a table contains embeddings, you will need to make sure that you are using a connection that has the same embedding functions registered
pub fn embedding_registry(&self) -> &dyn EmbeddingRegistry {
self.internal.embedding_registry()
}
}
#[derive(Debug)]
@@ -483,6 +518,7 @@ pub struct ConnectBuilder {
/// consistency only applies to read operations. Write operations are
/// always consistent.
read_consistency_interval: Option<std::time::Duration>,
embedding_registry: Option<Arc<dyn EmbeddingRegistry>>,
}
impl ConnectBuilder {
@@ -495,6 +531,7 @@ impl ConnectBuilder {
host_override: None,
read_consistency_interval: None,
storage_options: HashMap::new(),
embedding_registry: None,
}
}
@@ -513,6 +550,12 @@ impl ConnectBuilder {
self
}
/// Provide a custom [`EmbeddingRegistry`] to use for this connection.
pub fn embedding_registry(mut self, registry: Arc<dyn EmbeddingRegistry>) -> Self {
self.embedding_registry = Some(registry);
self
}
/// [`AwsCredential`] to use when connecting to S3.
#[deprecated(note = "Pass through storage_options instead")]
pub fn aws_creds(mut self, aws_creds: AwsCredential) -> Self {
@@ -579,6 +622,7 @@ impl ConnectBuilder {
let api_key = self.api_key.ok_or_else(|| Error::InvalidInput {
message: "An api_key is required when connecting to LanceDb Cloud".to_string(),
})?;
warn!("The rust implementation of the remote client is not yet ready for use.");
let internal = Arc::new(crate::remote::db::RemoteDatabase::try_new(
&self.uri,
&api_key,
@@ -638,6 +682,7 @@ struct Database {
// Storage options to be inherited by tables created from this connection
storage_options: HashMap<String, String>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
}
impl std::fmt::Display for Database {
@@ -671,7 +716,12 @@ impl Database {
// TODO: pass params regardless of OS
match parse_res {
Ok(url) if url.scheme().len() == 1 && cfg!(windows) => {
Self::open_path(uri, options.read_consistency_interval).await
Self::open_path(
uri,
options.read_consistency_interval,
options.embedding_registry.clone(),
)
.await
}
Ok(mut url) => {
// iter thru the query params and extract the commit store param
@@ -741,6 +791,10 @@ impl Database {
None => None,
};
let embedding_registry = options
.embedding_registry
.clone()
.unwrap_or_else(|| Arc::new(MemoryRegistry::new()));
Ok(Self {
uri: table_base_uri,
query_string,
@@ -749,20 +803,33 @@ impl Database {
store_wrapper: write_store_wrapper,
read_consistency_interval: options.read_consistency_interval,
storage_options,
embedding_registry,
})
}
Err(_) => Self::open_path(uri, options.read_consistency_interval).await,
Err(_) => {
Self::open_path(
uri,
options.read_consistency_interval,
options.embedding_registry.clone(),
)
.await
}
}
}
async fn open_path(
path: &str,
read_consistency_interval: Option<std::time::Duration>,
embedding_registry: Option<Arc<dyn EmbeddingRegistry>>,
) -> Result<Self> {
let (object_store, base_path) = ObjectStore::from_uri(path).await?;
if object_store.is_local() {
Self::try_create_dir(path).context(CreateDirSnafu { path })?;
}
let embedding_registry =
embedding_registry.unwrap_or_else(|| Arc::new(MemoryRegistry::new()));
Ok(Self {
uri: path.to_string(),
query_string: None,
@@ -771,6 +838,7 @@ impl Database {
store_wrapper: None,
read_consistency_interval,
storage_options: HashMap::new(),
embedding_registry,
})
}
@@ -811,6 +879,9 @@ impl Database {
#[async_trait::async_trait]
impl ConnectionInternal for Database {
fn embedding_registry(&self) -> &dyn EmbeddingRegistry {
self.embedding_registry.as_ref()
}
async fn table_names(&self, options: TableNamesBuilder) -> Result<Vec<String>> {
let mut f = self
.object_store
@@ -847,7 +918,7 @@ impl ConnectionInternal for Database {
data: Box<dyn RecordBatchReader + Send>,
) -> Result<Table> {
let table_uri = self.table_uri(&options.name)?;
let embedding_registry = self.embedding_registry.clone();
// Inherit storage options from the connection
let storage_options = options
.write_options
@@ -862,6 +933,11 @@ impl ConnectionInternal for Database {
storage_options.insert(key.clone(), value.clone());
}
}
let data = if options.embeddings.is_empty() {
data
} else {
Box::new(WithEmbeddings::new(data, options.embeddings))
};
let mut write_params = options.write_options.lance_write_params.unwrap_or_default();
if matches!(&options.mode, CreateTableMode::Overwrite) {
@@ -878,7 +954,10 @@ impl ConnectionInternal for Database {
)
.await
{
Ok(table) => Ok(Table::new(Arc::new(table))),
Ok(table) => Ok(Table::new_with_embedding_registry(
Arc::new(table),
embedding_registry,
)),
Err(Error::TableAlreadyExists { name }) => match options.mode {
CreateTableMode::Create => Err(Error::TableAlreadyExists { name }),
CreateTableMode::ExistOk(callback) => {
@@ -909,12 +988,23 @@ impl ConnectionInternal for Database {
}
}
// Some ReadParams are exposed in the OpenTableBuilder, but we also
// let the user provide their own ReadParams.
//
// If we have a user provided ReadParams use that
// If we don't then start with the default ReadParams and customize it with
// the options from the OpenTableBuilder
let read_params = options.lance_read_params.unwrap_or_else(|| ReadParams {
index_cache_size: options.index_cache_size as usize,
..Default::default()
});
let native_table = Arc::new(
NativeTable::open_with_params(
&table_uri,
&options.name,
self.store_wrapper.clone(),
options.lance_read_params,
Some(read_params),
self.read_consistency_interval,
)
.await?,
@@ -1032,7 +1122,6 @@ mod tests {
}
#[tokio::test]
#[ignore = "this can't pass due to https://github.com/lancedb/lancedb/issues/1019, enable it after the bug fixed"]
async fn test_open_table() {
let tmp_dir = tempdir().unwrap();
let uri = tmp_dir.path().to_str().unwrap();

View File

@@ -0,0 +1,307 @@
// Copyright 2024 LanceDB Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use lance::arrow::RecordBatchExt;
use std::{
borrow::Cow,
collections::{HashMap, HashSet},
sync::{Arc, RwLock},
};
use arrow_array::{Array, RecordBatch, RecordBatchReader};
use arrow_schema::{DataType, Field, SchemaBuilder};
// use async_trait::async_trait;
use serde::{Deserialize, Serialize};
use crate::{
error::Result,
table::{ColumnDefinition, ColumnKind, TableDefinition},
Error,
};
/// Trait for embedding functions
///
/// An embedding function is a function that is applied to a column of input data
/// to produce an "embedding" of that input. This embedding is then stored in the
/// database alongside (or instead of) the original input.
///
/// An "embedding" is often a lower-dimensional representation of the input data.
/// For example, sentence-transformers can be used to embed sentences into a 768-dimensional
/// vector space. This is useful for tasks like similarity search, where we want to find
/// similar sentences to a query sentence.
///
/// To use an embedding function you must first register it with the `EmbeddingsRegistry`.
/// Then you can define it on a column in the table schema. That embedding will then be used
/// to embed the data in that column.
pub trait EmbeddingFunction: std::fmt::Debug + Send + Sync {
fn name(&self) -> &str;
/// The type of the input data
fn source_type(&self) -> Result<Cow<DataType>>;
/// The type of the output data
/// This should **always** match the output of the `embed` function
fn dest_type(&self) -> Result<Cow<DataType>>;
/// Embed the input
fn embed(&self, source: Arc<dyn Array>) -> Result<Arc<dyn Array>>;
}
/// Defines an embedding from input data into a lower-dimensional space
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq, Hash)]
pub struct EmbeddingDefinition {
/// The name of the column in the input data
pub source_column: String,
/// The name of the embedding column, if not specified
/// it will be the source column with `_embedding` appended
pub dest_column: Option<String>,
/// The name of the embedding function to apply
pub embedding_name: String,
}
impl EmbeddingDefinition {
pub fn new<S: Into<String>>(source_column: S, embedding_name: S, dest: Option<S>) -> Self {
Self {
source_column: source_column.into(),
dest_column: dest.map(|d| d.into()),
embedding_name: embedding_name.into(),
}
}
}
/// A registry of embedding
pub trait EmbeddingRegistry: Send + Sync + std::fmt::Debug {
/// Return the names of all registered embedding functions
fn functions(&self) -> HashSet<String>;
/// Register a new [`EmbeddingFunction
/// Returns an error if the function can not be registered
fn register(&self, name: &str, function: Arc<dyn EmbeddingFunction>) -> Result<()>;
/// Get an embedding function by name
fn get(&self, name: &str) -> Option<Arc<dyn EmbeddingFunction>>;
}
/// A [`EmbeddingRegistry`] that uses in-memory [`HashMap`]s
#[derive(Debug, Default, Clone)]
pub struct MemoryRegistry {
functions: Arc<RwLock<HashMap<String, Arc<dyn EmbeddingFunction>>>>,
}
impl EmbeddingRegistry for MemoryRegistry {
fn functions(&self) -> HashSet<String> {
self.functions.read().unwrap().keys().cloned().collect()
}
fn register(&self, name: &str, function: Arc<dyn EmbeddingFunction>) -> Result<()> {
self.functions
.write()
.unwrap()
.insert(name.to_string(), function);
Ok(())
}
fn get(&self, name: &str) -> Option<Arc<dyn EmbeddingFunction>> {
self.functions.read().unwrap().get(name).cloned()
}
}
impl MemoryRegistry {
/// Create a new `MemoryRegistry`
pub fn new() -> Self {
Self::default()
}
}
/// A record batch reader that has embeddings applied to it
/// This is a wrapper around another record batch reader that applies an embedding function
/// when reading from the record batch
pub struct WithEmbeddings<R: RecordBatchReader> {
inner: R,
embeddings: Vec<(EmbeddingDefinition, Arc<dyn EmbeddingFunction>)>,
}
/// A record batch that might have embeddings applied to it.
pub enum MaybeEmbedded<R: RecordBatchReader> {
/// The record batch reader has embeddings applied to it
Yes(WithEmbeddings<R>),
/// The record batch reader does not have embeddings applied to it
/// The inner record batch reader is returned as-is
No(R),
}
impl<R: RecordBatchReader> MaybeEmbedded<R> {
/// Create a new RecordBatchReader with embeddings applied to it if the table definition
/// specifies an embedding column and the registry contains an embedding function with that name
/// Otherwise, this is a no-op and the inner RecordBatchReader is returned.
pub fn try_new(
inner: R,
table_definition: TableDefinition,
registry: Option<Arc<dyn EmbeddingRegistry>>,
) -> Result<Self> {
if let Some(registry) = registry {
let mut embeddings = Vec::with_capacity(table_definition.column_definitions.len());
for cd in table_definition.column_definitions.iter() {
if let ColumnKind::Embedding(embedding_def) = &cd.kind {
match registry.get(&embedding_def.embedding_name) {
Some(func) => {
embeddings.push((embedding_def.clone(), func));
}
None => {
return Err(Error::EmbeddingFunctionNotFound {
name: embedding_def.embedding_name.to_string(),
reason: format!(
"Table was defined with an embedding column `{}` but no embedding function was found with that name within the registry.",
embedding_def.embedding_name
),
});
}
}
}
}
if !embeddings.is_empty() {
return Ok(Self::Yes(WithEmbeddings { inner, embeddings }));
}
};
// No embeddings to apply
Ok(Self::No(inner))
}
}
impl<R: RecordBatchReader> WithEmbeddings<R> {
pub fn new(
inner: R,
embeddings: Vec<(EmbeddingDefinition, Arc<dyn EmbeddingFunction>)>,
) -> Self {
Self { inner, embeddings }
}
}
impl<R: RecordBatchReader> WithEmbeddings<R> {
fn dest_fields(&self) -> Result<Vec<Field>> {
let schema = self.inner.schema();
self.embeddings
.iter()
.map(|(ed, func)| {
let src_field = schema.field_with_name(&ed.source_column).unwrap();
let field_name = ed
.dest_column
.clone()
.unwrap_or_else(|| format!("{}_embedding", &ed.source_column));
Ok(Field::new(
field_name,
func.dest_type()?.into_owned(),
src_field.is_nullable(),
))
})
.collect()
}
fn column_defs(&self) -> Vec<ColumnDefinition> {
let base_schema = self.inner.schema();
base_schema
.fields()
.iter()
.map(|_| ColumnDefinition {
kind: ColumnKind::Physical,
})
.chain(self.embeddings.iter().map(|(ed, _)| ColumnDefinition {
kind: ColumnKind::Embedding(ed.clone()),
}))
.collect::<Vec<_>>()
}
pub fn table_definition(&self) -> Result<TableDefinition> {
let base_schema = self.inner.schema();
let output_fields = self.dest_fields()?;
let column_definitions = self.column_defs();
let mut sb: SchemaBuilder = base_schema.as_ref().into();
sb.extend(output_fields);
let schema = Arc::new(sb.finish());
Ok(TableDefinition {
schema,
column_definitions,
})
}
}
impl<R: RecordBatchReader> Iterator for MaybeEmbedded<R> {
type Item = std::result::Result<RecordBatch, arrow_schema::ArrowError>;
fn next(&mut self) -> Option<Self::Item> {
match self {
Self::Yes(inner) => inner.next(),
Self::No(inner) => inner.next(),
}
}
}
impl<R: RecordBatchReader> RecordBatchReader for MaybeEmbedded<R> {
fn schema(&self) -> Arc<arrow_schema::Schema> {
match self {
Self::Yes(inner) => inner.schema(),
Self::No(inner) => inner.schema(),
}
}
}
impl<R: RecordBatchReader> Iterator for WithEmbeddings<R> {
type Item = std::result::Result<RecordBatch, arrow_schema::ArrowError>;
fn next(&mut self) -> Option<Self::Item> {
let batch = self.inner.next()?;
match batch {
Ok(mut batch) => {
// todo: parallelize this
for (fld, func) in self.embeddings.iter() {
let src_column = batch.column_by_name(&fld.source_column).unwrap();
let embedding = match func.embed(src_column.clone()) {
Ok(embedding) => embedding,
Err(e) => {
return Some(Err(arrow_schema::ArrowError::ComputeError(format!(
"Error computing embedding: {}",
e
))))
}
};
let dst_field_name = fld
.dest_column
.clone()
.unwrap_or_else(|| format!("{}_embedding", &fld.source_column));
let dst_field = Field::new(
dst_field_name,
embedding.data_type().clone(),
embedding.nulls().is_some(),
);
match batch.try_with_column(dst_field.clone(), embedding) {
Ok(b) => batch = b,
Err(e) => return Some(Err(e)),
};
}
Some(Ok(batch))
}
Err(e) => Some(Err(e)),
}
}
}
impl<R: RecordBatchReader> RecordBatchReader for WithEmbeddings<R> {
fn schema(&self) -> Arc<arrow_schema::Schema> {
self.table_definition()
.expect("table definition should be infallible at this point")
.into_rich_schema()
}
}

View File

@@ -26,6 +26,9 @@ pub enum Error {
InvalidInput { message: String },
#[snafu(display("Table '{name}' was not found"))]
TableNotFound { name: String },
#[snafu(display("Embedding function '{name}' was not found. : {reason}"))]
EmbeddingFunctionNotFound { name: String, reason: String },
#[snafu(display("Table '{name}' already exists"))]
TableAlreadyExists { name: String },
#[snafu(display("Unable to created lance dataset at {path}: {source}"))]
@@ -112,3 +115,13 @@ impl From<url::ParseError> for Error {
}
}
}
#[cfg(feature = "polars")]
impl From<polars::prelude::PolarsError> for Error {
fn from(source: polars::prelude::PolarsError) -> Self {
Self::Other {
message: "Error in Polars DataFrame integration.".to_string(),
source: Some(Box::new(source)),
}
}
}

View File

@@ -46,10 +46,18 @@ impl VectorIndex {
}
}
#[derive(Debug, Deserialize)]
pub struct VectorIndexMetadata {
pub metric_type: String,
pub index_type: String,
}
#[derive(Debug, Deserialize)]
pub struct VectorIndexStatistics {
pub num_indexed_rows: usize,
pub num_unindexed_rows: usize,
pub index_type: String,
pub indices: Vec<VectorIndexMetadata>,
}
/// Builder for an IVF PQ index.

View File

@@ -350,8 +350,16 @@ mod test {
#[tokio::test]
async fn test_e2e() {
let dir1 = tempfile::tempdir().unwrap().into_path();
let dir2 = tempfile::tempdir().unwrap().into_path();
let dir1 = tempfile::tempdir()
.unwrap()
.into_path()
.canonicalize()
.unwrap();
let dir2 = tempfile::tempdir()
.unwrap()
.into_path()
.canonicalize()
.unwrap();
let secondary_store = LocalFileSystem::new_with_prefix(dir2.to_str().unwrap()).unwrap();
let object_store_wrapper = Arc::new(MirroringObjectStoreWrapper {

View File

@@ -34,6 +34,16 @@
//! cargo install lancedb
//! ```
//!
//! ## Crate Features
//!
//! ### Experimental Features
//!
//! These features are not enabled by default. They are experimental or in-development features that
//! are not yet ready to be released.
//!
//! - `remote` - Enable remote client to connect to LanceDB cloud. This is not yet fully implemented
//! and should not be enabled.
//!
//! ### Quick Start
//!
//! #### Connect to a database.
@@ -184,10 +194,13 @@
pub mod arrow;
pub mod connection;
pub mod data;
pub mod embeddings;
pub mod error;
pub mod index;
pub mod io;
pub mod ipc;
#[cfg(feature = "polars")]
mod polars_arrow_convertors;
pub mod query;
#[cfg(feature = "remote")]
pub(crate) mod remote;

View File

@@ -0,0 +1,123 @@
/// Polars and LanceDB both use Arrow for their in memory-representation, but use
/// different Rust Arrow implementations. LanceDB uses the arrow-rs crate and
/// Polars uses the polars-arrow crate.
///
/// This crate defines zero-copy conversions (of the underlying buffers)
/// between polars-arrow and arrow-rs using the C FFI.
///
/// The polars-arrow does implement conversions to and from arrow-rs, but
/// requires a feature flagged dependency on arrow-rs. The version of arrow-rs
/// depended on by polars-arrow and LanceDB may not be compatible,
/// which necessitates using the C FFI.
use crate::error::Result;
use polars::prelude::{DataFrame, Series};
use std::{mem, sync::Arc};
/// When interpreting Polars dataframes as polars-arrow record batches,
/// one must decide whether to use Arrow string/binary view types
/// instead of the standard Arrow string/binary types.
/// For now, we will not use string view types because conversions
/// for string view types from polars-arrow to arrow-rs are not yet implemented.
/// See: https://lists.apache.org/thread/w88tpz76ox8h3rxkjl4so6rg3f1rv7wt for the
/// differences in the types.
pub const POLARS_ARROW_FLAVOR: bool = false;
const IS_ARRAY_NULLABLE: bool = true;
/// Converts a Polars DataFrame schema to an Arrow RecordBatch schema.
pub fn convert_polars_df_schema_to_arrow_rb_schema(
polars_df_schema: polars::prelude::Schema,
) -> Result<Arc<arrow_schema::Schema>> {
let arrow_fields: Result<Vec<arrow_schema::Field>> = polars_df_schema
.into_iter()
.map(|(name, df_dtype)| {
let polars_arrow_dtype = df_dtype.to_arrow(POLARS_ARROW_FLAVOR);
let polars_field =
polars_arrow::datatypes::Field::new(name, polars_arrow_dtype, IS_ARRAY_NULLABLE);
convert_polars_arrow_field_to_arrow_rs_field(polars_field)
})
.collect();
Ok(Arc::new(arrow_schema::Schema::new(arrow_fields?)))
}
/// Converts an Arrow RecordBatch schema to a Polars DataFrame schema.
pub fn convert_arrow_rb_schema_to_polars_df_schema(
arrow_schema: &arrow_schema::Schema,
) -> Result<polars::prelude::Schema> {
let polars_df_fields: Result<Vec<polars::prelude::Field>> = arrow_schema
.fields()
.iter()
.map(|arrow_rs_field| {
let polars_arrow_field = convert_arrow_rs_field_to_polars_arrow_field(arrow_rs_field)?;
Ok(polars::prelude::Field::new(
arrow_rs_field.name(),
polars::datatypes::DataType::from(polars_arrow_field.data_type()),
))
})
.collect();
Ok(polars::prelude::Schema::from_iter(polars_df_fields?))
}
/// Converts an Arrow RecordBatch to a Polars DataFrame, using a provided Polars DataFrame schema.
pub fn convert_arrow_rb_to_polars_df(
arrow_rb: &arrow::record_batch::RecordBatch,
polars_schema: &polars::prelude::Schema,
) -> Result<DataFrame> {
let mut columns: Vec<Series> = Vec::with_capacity(arrow_rb.num_columns());
for (i, column) in arrow_rb.columns().iter().enumerate() {
let polars_df_dtype = polars_schema.try_get_at_index(i)?.1;
let polars_arrow_dtype = polars_df_dtype.to_arrow(POLARS_ARROW_FLAVOR);
let polars_array =
convert_arrow_rs_array_to_polars_arrow_array(column, polars_arrow_dtype)?;
columns.push(Series::from_arrow(
polars_schema.try_get_at_index(i)?.0,
polars_array,
)?);
}
Ok(DataFrame::from_iter(columns))
}
/// Converts a polars-arrow Arrow array to an arrow-rs Arrow array.
pub fn convert_polars_arrow_array_to_arrow_rs_array(
polars_array: Box<dyn polars_arrow::array::Array>,
arrow_datatype: arrow_schema::DataType,
) -> std::result::Result<arrow_array::ArrayRef, arrow_schema::ArrowError> {
let polars_c_array = polars_arrow::ffi::export_array_to_c(polars_array);
let arrow_c_array = unsafe { mem::transmute(polars_c_array) };
Ok(arrow_array::make_array(unsafe {
arrow::ffi::from_ffi_and_data_type(arrow_c_array, arrow_datatype)
}?))
}
/// Converts an arrow-rs Arrow array to a polars-arrow Arrow array.
fn convert_arrow_rs_array_to_polars_arrow_array(
arrow_rs_array: &Arc<dyn arrow_array::Array>,
polars_arrow_dtype: polars::datatypes::ArrowDataType,
) -> Result<Box<dyn polars_arrow::array::Array>> {
let arrow_c_array = arrow::ffi::FFI_ArrowArray::new(&arrow_rs_array.to_data());
let polars_c_array = unsafe { mem::transmute(arrow_c_array) };
Ok(unsafe { polars_arrow::ffi::import_array_from_c(polars_c_array, polars_arrow_dtype) }?)
}
fn convert_polars_arrow_field_to_arrow_rs_field(
polars_arrow_field: polars_arrow::datatypes::Field,
) -> Result<arrow_schema::Field> {
let polars_c_schema = polars_arrow::ffi::export_field_to_c(&polars_arrow_field);
let arrow_c_schema: arrow::ffi::FFI_ArrowSchema = unsafe { mem::transmute(polars_c_schema) };
let arrow_rs_dtype = arrow_schema::DataType::try_from(&arrow_c_schema)?;
Ok(arrow_schema::Field::new(
polars_arrow_field.name,
arrow_rs_dtype,
IS_ARRAY_NULLABLE,
))
}
fn convert_arrow_rs_field_to_polars_arrow_field(
arrow_rs_field: &arrow_schema::Field,
) -> Result<polars_arrow::datatypes::Field> {
let arrow_rs_dtype = arrow_rs_field.data_type();
let arrow_c_schema = arrow::ffi::FFI_ArrowSchema::try_from(arrow_rs_dtype)?;
let polars_c_schema: polars_arrow::ffi::ArrowSchema = unsafe { mem::transmute(arrow_c_schema) };
Ok(unsafe { polars_arrow::ffi::import_field_from_c(&polars_c_schema) }?)
}

View File

@@ -23,6 +23,7 @@ use tokio::task::spawn_blocking;
use crate::connection::{
ConnectionInternal, CreateTableBuilder, NoData, OpenTableBuilder, TableNamesBuilder,
};
use crate::embeddings::EmbeddingRegistry;
use crate::error::Result;
use crate::Table;
@@ -87,14 +88,16 @@ impl ConnectionInternal for RemoteDatabase {
.await
.unwrap()?;
self.client
.post(&format!("/v1/table/{}/create", options.name))
let rsp = self
.client
.post(&format!("/v1/table/{}/create/", options.name))
.body(data_buffer)
.header(CONTENT_TYPE, ARROW_STREAM_CONTENT_TYPE)
// This is currently expected by LanceDb cloud but will be removed soon.
.header("x-request-id", "na")
.send()
.await?;
self.client.check_response(rsp).await?;
Ok(Table::new(Arc::new(RemoteTable::new(
self.client.clone(),
@@ -113,4 +116,8 @@ impl ConnectionInternal for RemoteDatabase {
async fn drop_db(&self) -> Result<()> {
todo!()
}
fn embedding_registry(&self) -> &dyn EmbeddingRegistry {
todo!()
}
}

View File

@@ -10,7 +10,7 @@ use crate::{
query::{Query, QueryExecutionOptions, VectorQuery},
table::{
merge::MergeInsertBuilder, AddDataBuilder, NativeTable, OptimizeAction, OptimizeStats,
TableInternal, UpdateBuilder,
TableDefinition, TableInternal, UpdateBuilder,
},
};
@@ -120,4 +120,7 @@ impl TableInternal for RemoteTable {
async fn list_indices(&self) -> Result<Vec<IndexConfig>> {
todo!()
}
async fn table_definition(&self) -> Result<TableDefinition> {
todo!()
}
}

View File

@@ -41,10 +41,12 @@ use lance::io::WrappingObjectStore;
use lance_index::IndexType;
use lance_index::{optimize::OptimizeOptions, DatasetIndexExt};
use log::info;
use serde::{Deserialize, Serialize};
use snafu::whatever;
use crate::arrow::IntoArrow;
use crate::connection::NoData;
use crate::embeddings::{EmbeddingDefinition, EmbeddingRegistry, MaybeEmbedded, MemoryRegistry};
use crate::error::{Error, Result};
use crate::index::vector::{IvfPqIndexBuilder, VectorIndex, VectorIndexStatistics};
use crate::index::IndexConfig;
@@ -63,6 +65,79 @@ use self::merge::MergeInsertBuilder;
pub(crate) mod dataset;
pub mod merge;
/// Defines the type of column
#[derive(Debug, Clone, Serialize, Deserialize)]
pub enum ColumnKind {
/// Columns populated by data from the user (this is the most common case)
Physical,
/// Columns populated by applying an embedding function to the input
Embedding(EmbeddingDefinition),
}
/// Defines a column in a table
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct ColumnDefinition {
/// The source of the column data
pub kind: ColumnKind,
}
#[derive(Debug, Clone)]
pub struct TableDefinition {
pub column_definitions: Vec<ColumnDefinition>,
pub schema: SchemaRef,
}
impl TableDefinition {
pub fn new(schema: SchemaRef, column_definitions: Vec<ColumnDefinition>) -> Self {
Self {
column_definitions,
schema,
}
}
pub fn new_from_schema(schema: SchemaRef) -> Self {
let column_definitions = schema
.fields()
.iter()
.map(|_| ColumnDefinition {
kind: ColumnKind::Physical,
})
.collect();
Self::new(schema, column_definitions)
}
pub fn try_from_rich_schema(schema: SchemaRef) -> Result<Self> {
let column_definitions = schema.metadata.get("lancedb::column_definitions");
if let Some(column_definitions) = column_definitions {
let column_definitions: Vec<ColumnDefinition> =
serde_json::from_str(column_definitions).map_err(|e| Error::Runtime {
message: format!("Failed to deserialize column definitions: {}", e),
})?;
Ok(Self::new(schema, column_definitions))
} else {
let column_definitions = schema
.fields()
.iter()
.map(|_| ColumnDefinition {
kind: ColumnKind::Physical,
})
.collect();
Ok(Self::new(schema, column_definitions))
}
}
pub fn into_rich_schema(self) -> SchemaRef {
// We have full control over the structure of column definitions. This should
// not fail, except for a bug
let lancedb_metadata = serde_json::to_string(&self.column_definitions).unwrap();
let mut schema_with_metadata = (*self.schema).clone();
schema_with_metadata
.metadata
.insert("lancedb::column_definitions".to_string(), lancedb_metadata);
Arc::new(schema_with_metadata)
}
}
/// Optimize the dataset.
///
/// Similar to `VACUUM` in PostgreSQL, it offers different options to
@@ -132,6 +207,7 @@ pub struct AddDataBuilder<T: IntoArrow> {
pub(crate) data: T,
pub(crate) mode: AddDataMode,
pub(crate) write_options: WriteOptions,
embedding_registry: Option<Arc<dyn EmbeddingRegistry>>,
}
impl<T: IntoArrow> std::fmt::Debug for AddDataBuilder<T> {
@@ -163,6 +239,7 @@ impl<T: IntoArrow> AddDataBuilder<T> {
mode: self.mode,
parent: self.parent,
write_options: self.write_options,
embedding_registry: self.embedding_registry,
};
parent.add(without_data, data).await
}
@@ -280,6 +357,7 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
async fn checkout(&self, version: u64) -> Result<()>;
async fn checkout_latest(&self) -> Result<()>;
async fn restore(&self) -> Result<()>;
async fn table_definition(&self) -> Result<TableDefinition>;
}
/// A Table is a collection of strong typed Rows.
@@ -288,6 +366,7 @@ pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Syn
#[derive(Clone)]
pub struct Table {
inner: Arc<dyn TableInternal>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
}
impl std::fmt::Display for Table {
@@ -298,7 +377,20 @@ impl std::fmt::Display for Table {
impl Table {
pub(crate) fn new(inner: Arc<dyn TableInternal>) -> Self {
Self { inner }
Self {
inner,
embedding_registry: Arc::new(MemoryRegistry::new()),
}
}
pub(crate) fn new_with_embedding_registry(
inner: Arc<dyn TableInternal>,
embedding_registry: Arc<dyn EmbeddingRegistry>,
) -> Self {
Self {
inner,
embedding_registry,
}
}
/// Cast as [`NativeTable`], or return None it if is not a [`NativeTable`].
@@ -340,6 +432,7 @@ impl Table {
data: batches,
mode: AddDataMode::Append,
write_options: WriteOptions::default(),
embedding_registry: Some(self.embedding_registry.clone()),
}
}
@@ -743,11 +836,10 @@ impl Table {
impl From<NativeTable> for Table {
fn from(table: NativeTable) -> Self {
Self {
inner: Arc::new(table),
}
Self::new(Arc::new(table))
}
}
/// A table in a LanceDB database.
#[derive(Debug, Clone)]
pub struct NativeTable {
@@ -918,7 +1010,6 @@ impl NativeTable {
Some(wrapper) => params.patch_with_store_wrapper(wrapper)?,
None => params,
};
let storage_options = params
.store_params
.clone()
@@ -1061,6 +1152,26 @@ impl NativeTable {
}
}
pub async fn get_index_type(&self, index_uuid: &str) -> Result<Option<String>> {
match self.load_index_stats(index_uuid).await? {
Some(stats) => Ok(Some(stats.index_type)),
None => Ok(None),
}
}
pub async fn get_distance_type(&self, index_uuid: &str) -> Result<Option<String>> {
match self.load_index_stats(index_uuid).await? {
Some(stats) => Ok(Some(
stats
.indices
.iter()
.map(|i| i.metric_type.clone())
.collect(),
)),
None => Ok(None),
}
}
pub async fn load_indices(&self) -> Result<Vec<VectorIndex>> {
let dataset = self.dataset.get().await?;
let (indices, mf) = futures::try_join!(dataset.load_indices(), dataset.latest_manifest())?;
@@ -1322,6 +1433,11 @@ impl TableInternal for NativeTable {
Ok(Arc::new(Schema::from(&lance_schema)))
}
async fn table_definition(&self) -> Result<TableDefinition> {
let schema = self.schema().await?;
TableDefinition::try_from_rich_schema(schema)
}
async fn count_rows(&self, filter: Option<String>) -> Result<usize> {
Ok(self.dataset.get().await?.count_rows(filter).await?)
}
@@ -1331,6 +1447,9 @@ impl TableInternal for NativeTable {
add: AddDataBuilder<NoData>,
data: Box<dyn RecordBatchReader + Send>,
) -> Result<()> {
let data =
MaybeEmbedded::try_new(data, self.table_definition().await?, add.embedding_registry)?;
let mut lance_params = add.write_options.lance_write_params.unwrap_or(WriteParams {
mode: match add.mode {
AddDataMode::Append => WriteMode::Append,
@@ -1358,8 +1477,8 @@ impl TableInternal for NativeTable {
};
self.dataset.ensure_mutable().await?;
let dataset = Dataset::write(data, &self.uri, Some(lance_params)).await?;
self.dataset.set_latest(dataset).await;
Ok(())
}

View File

@@ -0,0 +1,320 @@
use std::{
borrow::Cow,
collections::{HashMap, HashSet},
iter::repeat,
sync::Arc,
};
use arrow::buffer::NullBuffer;
use arrow_array::{
Array, FixedSizeListArray, Float32Array, Int32Array, RecordBatch, RecordBatchIterator,
StringArray,
};
use arrow_schema::{DataType, Field, Schema};
use futures::StreamExt;
use lancedb::{
arrow::IntoArrow,
connect,
embeddings::{EmbeddingDefinition, EmbeddingFunction, EmbeddingRegistry},
query::ExecutableQuery,
Error, Result,
};
#[tokio::test]
async fn test_custom_func() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
let db = connect(tempdir).execute().await?;
let embed_fun = MockEmbed::new("embed_fun".to_string(), 1);
db.embedding_registry()
.register("embed_fun", Arc::new(embed_fun.clone()))?;
let tbl = db
.create_table("test", create_some_records()?)
.add_embedding(EmbeddingDefinition::new(
"text",
&embed_fun.name,
Some("embeddings"),
))?
.execute()
.await?;
let mut res = tbl.query().execute().await?;
while let Some(Ok(batch)) = res.next().await {
let embeddings = batch.column_by_name("embeddings");
assert!(embeddings.is_some());
let embeddings = embeddings.unwrap();
assert_eq!(embeddings.data_type(), embed_fun.dest_type()?.as_ref());
}
// now make sure the embeddings are applied when
// we add new records too
tbl.add(create_some_records()?).execute().await?;
let mut res = tbl.query().execute().await?;
while let Some(Ok(batch)) = res.next().await {
let embeddings = batch.column_by_name("embeddings");
assert!(embeddings.is_some());
let embeddings = embeddings.unwrap();
assert_eq!(embeddings.data_type(), embed_fun.dest_type()?.as_ref());
}
Ok(())
}
#[tokio::test]
async fn test_custom_registry() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
let db = connect(tempdir)
.embedding_registry(Arc::new(MyRegistry::default()))
.execute()
.await?;
let tbl = db
.create_table("test", create_some_records()?)
.add_embedding(EmbeddingDefinition::new(
"text",
"func_1",
Some("embeddings"),
))?
.execute()
.await?;
let mut res = tbl.query().execute().await?;
while let Some(Ok(batch)) = res.next().await {
let embeddings = batch.column_by_name("embeddings");
assert!(embeddings.is_some());
let embeddings = embeddings.unwrap();
assert_eq!(
embeddings.data_type(),
MockEmbed::new("func_1".to_string(), 1)
.dest_type()?
.as_ref()
);
}
Ok(())
}
#[tokio::test]
async fn test_multiple_embeddings() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
let db = connect(tempdir).execute().await?;
let func_1 = MockEmbed::new("func_1".to_string(), 1);
let func_2 = MockEmbed::new("func_2".to_string(), 10);
db.embedding_registry()
.register(&func_1.name, Arc::new(func_1.clone()))?;
db.embedding_registry()
.register(&func_2.name, Arc::new(func_2.clone()))?;
let tbl = db
.create_table("test", create_some_records()?)
.add_embedding(EmbeddingDefinition::new(
"text",
&func_1.name,
Some("first_embeddings"),
))?
.add_embedding(EmbeddingDefinition::new(
"text",
&func_2.name,
Some("second_embeddings"),
))?
.execute()
.await?;
let mut res = tbl.query().execute().await?;
while let Some(Ok(batch)) = res.next().await {
let embeddings = batch.column_by_name("first_embeddings");
assert!(embeddings.is_some());
let second_embeddings = batch.column_by_name("second_embeddings");
assert!(second_embeddings.is_some());
let embeddings = embeddings.unwrap();
assert_eq!(embeddings.data_type(), func_1.dest_type()?.as_ref());
let second_embeddings = second_embeddings.unwrap();
assert_eq!(second_embeddings.data_type(), func_2.dest_type()?.as_ref());
}
// now make sure the embeddings are applied when
// we add new records too
tbl.add(create_some_records()?).execute().await?;
let mut res = tbl.query().execute().await?;
while let Some(Ok(batch)) = res.next().await {
let embeddings = batch.column_by_name("first_embeddings");
assert!(embeddings.is_some());
let second_embeddings = batch.column_by_name("second_embeddings");
assert!(second_embeddings.is_some());
let embeddings = embeddings.unwrap();
assert_eq!(embeddings.data_type(), func_1.dest_type()?.as_ref());
let second_embeddings = second_embeddings.unwrap();
assert_eq!(second_embeddings.data_type(), func_2.dest_type()?.as_ref());
}
Ok(())
}
#[tokio::test]
async fn test_no_func_in_registry() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
let db = connect(tempdir).execute().await?;
let res = db
.create_table("test", create_some_records()?)
.add_embedding(EmbeddingDefinition::new(
"text",
"some_func",
Some("first_embeddings"),
));
assert!(res.is_err());
assert!(matches!(
res.err().unwrap(),
Error::EmbeddingFunctionNotFound { .. }
));
Ok(())
}
#[tokio::test]
async fn test_no_func_in_registry_on_add() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
let db = connect(tempdir).execute().await?;
db.embedding_registry().register(
"some_func",
Arc::new(MockEmbed::new("some_func".to_string(), 1)),
)?;
db.create_table("test", create_some_records()?)
.add_embedding(EmbeddingDefinition::new(
"text",
"some_func",
Some("first_embeddings"),
))?
.execute()
.await?;
let db = connect(tempdir).execute().await?;
let tbl = db.open_table("test").execute().await?;
// This should fail because 'tbl' is expecting "some_func" to be in the registry
let res = tbl.add(create_some_records()?).execute().await;
assert!(res.is_err());
assert!(matches!(
res.unwrap_err(),
crate::Error::EmbeddingFunctionNotFound { .. }
));
Ok(())
}
fn create_some_records() -> Result<impl IntoArrow> {
const TOTAL: usize = 2;
let schema = Arc::new(Schema::new(vec![
Field::new("id", DataType::Int32, false),
Field::new("text", DataType::Utf8, true),
]));
// Create a RecordBatch stream.
let batches = RecordBatchIterator::new(
vec![RecordBatch::try_new(
schema.clone(),
vec![
Arc::new(Int32Array::from_iter_values(0..TOTAL as i32)),
Arc::new(StringArray::from_iter(
repeat(Some("hello world".to_string())).take(TOTAL),
)),
],
)
.unwrap()]
.into_iter()
.map(Ok),
schema.clone(),
);
Ok(Box::new(batches))
}
#[derive(Debug)]
struct MyRegistry {
functions: HashMap<String, Arc<dyn EmbeddingFunction>>,
}
impl Default for MyRegistry {
fn default() -> Self {
let funcs: Vec<Arc<dyn EmbeddingFunction>> = vec![
Arc::new(MockEmbed::new("func_1".to_string(), 1)),
Arc::new(MockEmbed::new("func_2".to_string(), 10)),
];
Self {
functions: funcs
.into_iter()
.map(|f| (f.name().to_string(), f))
.collect(),
}
}
}
/// a mock registry that only has one function called `embed_fun`
impl EmbeddingRegistry for MyRegistry {
fn functions(&self) -> HashSet<String> {
self.functions.keys().cloned().collect()
}
fn register(&self, _name: &str, _function: Arc<dyn EmbeddingFunction>) -> Result<()> {
Err(Error::Other {
message: "MyRegistry is read-only".to_string(),
source: None,
})
}
fn get(&self, name: &str) -> Option<Arc<dyn EmbeddingFunction>> {
self.functions.get(name).cloned()
}
}
#[derive(Debug, Clone)]
struct MockEmbed {
source_type: DataType,
dest_type: DataType,
name: String,
dim: usize,
}
impl MockEmbed {
pub fn new(name: String, dim: usize) -> Self {
Self {
source_type: DataType::Utf8,
dest_type: DataType::new_fixed_size_list(DataType::Float32, dim as _, true),
name,
dim,
}
}
}
impl EmbeddingFunction for MockEmbed {
fn name(&self) -> &str {
&self.name
}
fn source_type(&self) -> Result<Cow<DataType>> {
Ok(Cow::Borrowed(&self.source_type))
}
fn dest_type(&self) -> Result<Cow<DataType>> {
Ok(Cow::Borrowed(&self.dest_type))
}
fn embed(&self, source: Arc<dyn Array>) -> Result<Arc<dyn Array>> {
// We can't use the FixedSizeListBuilder here because it always adds a null bitmap
// and we want to explicitly work with non-nullable arrays.
let len = source.len();
let inner = Arc::new(Float32Array::from(vec![Some(1.0); len * self.dim]));
let field = Field::new("item", inner.data_type().clone(), false);
let arr = FixedSizeListArray::new(
Arc::new(field),
self.dim as _,
inner,
Some(NullBuffer::new_valid(len)),
);
Ok(Arc::new(arr))
}
}