Compare commits

...

94 Commits

Author SHA1 Message Date
Lance Release
677b7c1fcc [python] Bump version: 0.5.6 → 0.5.7 2024-02-22 20:07:12 +00:00
Lei Xu
8303a7197b chore: bump pylance to 0.9.18 (#1011) 2024-02-22 11:47:36 -08:00
Raghav Dixit
5fa9bfc4a8 python(feat): Imagebind embedding fn support (#1003)
Added imagebind fn support , steps to install mentioned in docstring. 
pytest slow checks done locally

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-02-22 11:47:08 +05:30
Ayush Chaurasia
bf2e9d0088 Docs: add meta tags (#1006) 2024-02-21 23:22:47 +05:30
Weston Pace
f04590ddad refactor: rust vectordb API stabilization of the Connection trait (#993)
This is the start of a more comprehensive refactor and stabilization of
the Rust API. The `Connection` trait is cleaned up to not require
`lance` and to match the `Connection` trait in other APIs. In addition,
the concrete implementation `Database` is hidden.

BREAKING CHANGE: The struct `crate::connection::Database` is now gone.
Several examples opened a connection using `Database::connect` or
`Database::connect_with_params`. Users should now use
`vectordb::connect`.

BREAKING CHANGE: The `connect`, `create_table`, and `open_table` methods
now all return a builder object. This means that a call like
`conn.open_table(..., opt1, opt2)` will now become
`conn.open_table(...).opt1(opt1).opt2(opt2).execute()` In addition, the
structure of options has changed slightly. However, no options
capability has been removed.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-02-20 18:35:52 -08:00
Lance Release
62c5117def [python] Bump version: 0.5.5 → 0.5.6 2024-02-20 20:45:02 +00:00
Bert
22c196b3e3 lance 0.9.18 (#1000) 2024-02-19 15:20:34 -05:00
Johannes Kolbe
1f4ac71fa3 apply fixes for notebook (#989) 2024-02-19 15:36:52 +05:30
Ayush Chaurasia
b5aad2d856 docs: Add meta tag for image preview (#988)
I think this should work. Need to deploy it to be sure as it can be
tested locally. Can be tested here.

2 things about this solution:
* All pages have a same meta tag, i.e, lancedb banner
* If needed, we can automatically use the first image of each page and
generate meta tags using the ultralytics mkdocs plugin that we did for
this purpose - https://github.com/ultralytics/mkdocs
2024-02-19 14:07:31 +05:30
Chang She
ca6f55b160 doc: update navigation links for embedding functions (#986) 2024-02-17 12:12:11 -08:00
Chang She
6f8cf1e068 doc: improve embedding functions documentation (#983)
Got some user feedback that the `implicit` / `explicit` distinction is
confusing.
Instead I was thinking we would just deprecate the `with_embeddings` API
and then organize working with embeddings into 3 buckets:

1. manually generate embeddings
2. use a provided embedding function
3. define your own custom embedding function
2024-02-17 10:39:28 -08:00
Chang She
e0277383a5 feat(python): add optional threadpool for batch requests (#981)
Currently if a batch request is given to the remote API, each query is
sent sequentially. We should allow the user to specify a threadpool.
2024-02-16 20:22:22 -08:00
Will Jones
d6b408e26f fix: use static C runtime on Windows (#979)
We depend on C static runtime, but not all Windows machines have that.
So might be worth statically linking it.

https://github.com/reorproject/reor/issues/36#issuecomment-1948876463
2024-02-16 15:54:12 -08:00
Will Jones
2447372c1f docs: show DuckDB with dataset, not table (#974)
Using datasets is preferred way to allow filter and projection pushdown,
as well as aggregated larger-than-memory tables.
2024-02-16 09:18:18 -08:00
Ayush Chaurasia
f0298d8372 docs: Minimal reranking evaluation benchmarks (#977) 2024-02-15 22:16:53 +05:30
Lance Release
54693e6bec Updating package-lock.json 2024-02-14 23:20:59 +00:00
Will Jones
73b2977bff chore: upgrade lance to 0.9.16 (#975) 2024-02-14 14:20:03 -08:00
Will Jones
aec85f7875 ci: fix Node ARM release build (#971)
When we turned on fat LTO builds, we made the release build job **much**
more compute and memory intensive. The ARM runners have particularly low
memory per core, which makes them susceptible to OOM errors. To avoid
issues, I have enabled memory swap on ARM and bumped the side of the
runner.
2024-02-14 13:02:09 -08:00
Will Jones
51f92ecb3d ci: reduce number of build jobs on aarch64 to avoid OOM (#970) 2024-02-13 17:33:09 -08:00
Lance Release
5b60412d66 [python] Bump version: 0.5.4 → 0.5.5 2024-02-13 23:30:35 +00:00
Lance Release
53d63966a9 Updating package-lock.json 2024-02-13 23:23:02 +00:00
Lance Release
5ba87575e7 Bump version: 0.4.9 → 0.4.10 2024-02-13 23:22:53 +00:00
Weston Pace
cc5f2136a6 feat: make it easier to create empty tables (#942)
This PR also reworks the table creation utilities significantly so that
they are more consistent, built on top of each other, and thoroughly
documented.
2024-02-13 10:51:18 -08:00
Prashanth Rao
78e5fb5451 [docs]: Fix typos and clarity in hybrid search docs (#966)
- Fixed typos and added some clarity to the hybrid search docs
- Changed "Airbnb" case to be as per the [official company
name](https://en.wikipedia.org/wiki/Airbnb) (the "bnb" shouldn't be
capitalized", and the text in the document aligns with this
- Fixed headers in nav bar
2024-02-13 23:25:59 +05:30
Will Jones
8104c5c18e fix: wrap in BigInt to avoid upstream bug (#962)
Closes #960
2024-02-13 08:13:56 -08:00
Ayush Chaurasia
4fbabdeec3 docs: Add setup cell for colab example (#965) 2024-02-13 20:42:01 +05:30
Ayush Chaurasia
eb31d95fef feat(python): hybrid search updates, examples, & latency benchmarks (#964)
- Rename safe_import -> attempt_import_or_raise (closes
https://github.com/lancedb/lancedb/pull/923)
- Update docs
- Add Notebook example (@changhiskhan you can use it for the talk. Comes
with "open in colab" button)
- Latency benchmark & results comparison, sanity check on real-world
data
- Updates the default openai model to gpt-4
2024-02-13 17:58:39 +05:30
Will Jones
3169c36525 chore: fix clippy lints (#963) 2024-02-12 19:59:00 -08:00
QianZhu
1b990983b3 Qian/make vector col optional (#950)
remote SDK tests were completed through lancedb_integtest
2024-02-12 16:35:44 -08:00
Will Jones
0c21f91c16 fix(node): statically link lzma (#961)
Fixes #956

Same changes as https://github.com/lancedb/lance/pull/1934
2024-02-12 10:07:09 -08:00
Lance Release
7e50c239eb Updating package-lock.json 2024-02-10 18:07:16 +00:00
Weston Pace
24e8043150 chore: use a bigger runner for NPM publish jobs on aarch64 to avoid OOM (#955) 2024-02-10 09:57:33 -08:00
Lance Release
990440385d Updating package-lock.json 2024-02-09 23:37:31 +00:00
Lance Release
a693a9d897 Bump version: 0.4.8 → 0.4.9 2024-02-09 23:37:21 +00:00
Lance Release
82936c77ef [python] Bump version: 0.5.3 → 0.5.4 2024-02-09 22:56:45 +00:00
Weston Pace
dddcddcaf9 chore: bump lance version to 0.9.15 (#949) 2024-02-09 14:55:44 -08:00
Weston Pace
a9727eb318 feat: add support for filter during merge insert when matched (#948)
Closes #940
2024-02-09 10:26:14 -08:00
QianZhu
48d55bf952 added error msg to SaaS APIs (#852)
1. improved error msg for SaaS create_table and create_index

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-09 10:07:47 -08:00
Weston Pace
d2e71c8b08 feat: add a filterable count_rows to all the lancedb APIs (#913)
A `count_rows` method that takes a filter was recently added to
`LanceTable`. This PR adds it everywhere else except `RemoteTable` (that
will come soon).
2024-02-08 09:40:29 -08:00
Nitish Sharma
f53aace89c Minor updates to FAQ (#935)
Based on discussion over discord, adding minor updates to the FAQ
section about benchmarks, practical data size and concurrency in LanceDB
2024-02-07 20:49:25 -08:00
Ayush Chaurasia
d982ee934a feat(python): Reranker DX improvements (#904)
- Most users might not know how to use `QueryBuilder` object. Instead we
should just pass the string query.
- Add new rerankers: Colbert, openai
2024-02-06 13:59:31 +05:30
Will Jones
57605a2d86 feat(python): add read_consistency_interval argument (#828)
This PR refactors how we handle read consistency: does the `LanceTable`
class always pick up modifications to the table made by other instance
or processes. Users have three options they can set at the connection
level:

1. (Default) `read_consistency_interval=None` means it will not check at
all. Users can call `table.checkout_latest()` to manually check for
updates.
2. `read_consistency_interval=timedelta(0)` means **always** check for
updates, giving strong read consistency.
3. `read_consistency_interval=timedelta(seconds=20)` means check for
updates every 20 seconds. This is eventual consistency, a compromise
between the two options above.

## Table reference state

There is now an explicit difference between a `LanceTable` that tracks
the current version and one that is fixed at a historical version. We
now enforce that users cannot write if they have checked out an old
version. They are instructed to call `checkout_latest()` before calling
the write methods.

Since `conn.open_table()` doesn't have a parameter for version, users
will only get fixed references if they call `table.checkout()`.

The difference between these two can be seen in the repr: Table that are
fixed at a particular version will have a `version` displayed in the
repr. Otherwise, the version will not be shown.

```python
>>> table
LanceTable(connection=..., name="my_table")
>>> table.checkout(1)
>>> table
LanceTable(connection=..., name="my_table", version=1)
```

I decided to not create different classes for these states, because I
think we already have enough complexity with the Cloud vs OSS table
references.

Based on #812
2024-02-05 08:12:19 -08:00
Ayush Chaurasia
738511c5f2 feat(python): add support new openai embedding functions (#912)
@PrashantDixit0

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-02-04 18:19:42 -08:00
Lei Xu
0b0f42537e chore: add global cargo config to enable minimal cpu target (#925)
* Closes #895 
* Fix cargo clippy
2024-02-04 14:21:27 -08:00
QianZhu
e412194008 fix hybrid search example (#922) 2024-02-03 09:26:32 +05:30
Lance Release
a9088224c5 [python] Bump version: 0.5.2 → 0.5.3 2024-02-03 03:04:04 +00:00
Ayush Chaurasia
688c57a0d8 fix: revert safe_import_pandas usage (#921) 2024-02-02 18:57:13 -08:00
Lance Release
12a98deded Updating package-lock.json 2024-02-02 22:37:23 +00:00
Lance Release
e4bb042918 Updating package-lock.json 2024-02-02 21:57:07 +00:00
Lance Release
04e1662681 Bump version: 0.4.7 → 0.4.8 2024-02-02 21:56:57 +00:00
Lance Release
ce2242e06d [python] Bump version: 0.5.1 → 0.5.2 2024-02-02 21:33:02 +00:00
Weston Pace
778339388a chore: bump pylance version to latest in pyproject.toml (#918) 2024-02-02 13:32:12 -08:00
Weston Pace
7f8637a0b4 feat: add merge_insert to the node and rust APIs (#915) 2024-02-02 13:16:51 -08:00
QianZhu
09cd08222d make it explicit about the vector column data type (#916)
<img width="837" alt="Screenshot 2024-02-01 at 4 23 34 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/4f0f5c5a-2a24-4b00-aad1-ef80a593d964">
[
<img width="838" alt="Screenshot 2024-02-01 at 4 26 03 PM"
src="https://github.com/lancedb/lancedb/assets/1305083/ca073bc8-b518-4be3-811d-8a7184416f07">
](url)

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-02-02 09:02:02 -08:00
Bert
a248d7feec fix: add request retry to python client (#917)
Adds capability to the remote python SDK to retry requests (fixes #911)

This can be configured through environment:
- `LANCE_CLIENT_MAX_RETRIES`= total number of retries. Set to 0 to
disable retries. default = 3
- `LANCE_CLIENT_CONNECT_RETRIES` = number of times to retry request in
case of TCP connect failure. default = 3
- `LANCE_CLIENT_READ_RETRIES` = number of times to retry request in case
of HTTP request failure. default = 3
- `LANCE_CLIENT_RETRY_STATUSES` = http statuses for which the request
will be retried. passed as comma separated list of ints. default `500,
502, 503`
- `LANCE_CLIENT_RETRY_BACKOFF_FACTOR` = controls time between retry
requests. see
[here](23f2287eb5/src/urllib3/util/retry.py (L141-L146)).
default = 0.25

Only read requests will be retried:
- list table names
- query
- describe table
- list table indices

This does not add retry capabilities for writes as it could possibly
cause issues in the case where the retried write isn't idempotent. For
example, in the case where the LB times-out the request but the server
completes the request anyway, we might not want to blindly retry an
insert request.
2024-02-02 11:27:29 -05:00
Weston Pace
cc9473a94a docs: add cleanup_old_versions and compact_files to Table for documentation purposes (#900)
Closes #819
2024-02-01 15:06:00 -08:00
Weston Pace
d77e95a4f4 feat: upgrade to lance 0.9.11 and expose merge_insert (#906)
This adds the python bindings requested in #870 The javascript/rust
bindings will be added in a future PR.
2024-02-01 11:36:29 -08:00
Lei Xu
62f053ac92 ci: bump to new version of python action to use node 20 gIthub action runtime (#909)
Github action is deprecating old node-16 runtime.
2024-02-01 11:36:03 -08:00
JacobLinCool
34e10caad2 fix the repo link on npm, add links for homepage and bug report (#910)
- fix the repo link on npm
- add links for homepage and bug report
2024-01-31 21:07:11 -08:00
QianZhu
f5726e2d0c arrow table/f16 example (#907) 2024-01-31 14:41:28 -08:00
Lance Release
12b4fb42fc Updating package-lock.json 2024-01-31 21:18:24 +00:00
Lance Release
1328cd46f1 Updating package-lock.json 2024-01-31 20:29:38 +00:00
Lance Release
0c940ed9f8 Bump version: 0.4.6 → 0.4.7 2024-01-31 20:29:28 +00:00
Lei Xu
5f59e51583 fix(node): pass AWS credentials to db level operations (#908)
Passed the following tests

```ts
const keyId = process.env.AWS_ACCESS_KEY_ID;
const secretKey = process.env.AWS_SECRET_ACCESS_KEY;
const sessionToken = process.env.AWS_SESSION_TOKEN;
const region = process.env.AWS_REGION;

const db = await lancedb.connect({
  uri: "s3://bucket/path",
  awsCredentials: {
    accessKeyId: keyId,
    secretKey: secretKey,
    sessionToken: sessionToken,
  },
  awsRegion: region,
} as lancedb.ConnectionOptions);

  console.log(await db.createTable("test", [{ vector: [1, 2, 3] }]));
  console.log(await db.tableNames());
  console.log(await db.dropTable("test"))
```
2024-01-31 12:05:01 -08:00
Will Jones
8d0ea29f89 docs: provide AWS S3 cleanup and permissions advice (#903)
Adding some more quick advice for how to setup AWS S3 with LanceDB.

---------

Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-31 09:24:54 -08:00
Abraham Lopez
b9468bb980 chore: update JS/TS example in README (#898)
- The JS/TS library actually expects named parameters via an object in
`.createTable()` rather than individual arguments
- Added example on how to search rows by criteria without a vector
search. TS type of `.search()` currently has the `query` parameter as
non-optional so we have to pass undefined for now.
2024-01-30 11:09:45 -08:00
Lei Xu
a42df158a3 ci: change apple silicon runner to free OSS macos-14 target (#901) 2024-01-30 11:05:42 -08:00
Raghav Dixit
9df6905d86 chore(python): GTE embedding function model name update (#902)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 23:56:29 +05:30
Ayush Chaurasia
3ffed89793 feat(python): Hybrid search & Reranker API (#824)
based on https://github.com/lancedb/lancedb/pull/713
- The Reranker api can be plugged into vector only or fts only search
but this PR doesn't do that (see example -
https://txt.cohere.com/rerank/)


### Default reranker -- `LinearCombinationReranker(weight=0.7,
fill=1.0)`

```
table.search("hello", query_type="hybrid").rerank(normalize="score").to_pandas()
```
### Available rerankers
LinearCombinationReranker
```
from lancedb.rerankers import LinearCombinationReranker

# Same as default 
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=LinearCombinationReranker()
                                     ).to_pandas()

# with custom params
reranker = LinearCombinationReranker(weight=0.3, fill=1.0)
table.search("hello", query_type="hybrid").rerank(
                                      normalize="score", 
                                      reranker=reranker
                                     ).to_pandas()
```

Cohere Reranker
```
from lancedb.rerankers import CohereReranker

# default model.. English and multi-lingual supported. See docstring for available custom params
table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank",  # score or rank
                                      reranker=CohereReranker()
                                     ).to_pandas()

```

CrossEncoderReranker

```
from lancedb.rerankers import CrossEncoderReranker

table.search("hello", query_type="hybrid").rerank(
                                      normalize="rank", 
                                      reranker=CrossEncoderReranker()
                                     ).to_pandas()

```

## Using custom Reranker
```
from lancedb.reranker import Reranker

class CustomReranker(Reranker):
    def rerank_hybrid(self, vector_result, fts_result):
           combined_res = self.merge_results(vector_results, fts_results) # or use custom combination logic
           # Custom rerank logic here
           
           return combined_res
```

- [x] Expand testing
- [x] Make sure usage makes sense
- [x] Run simple benchmarks for correctness (Seeing weird result from
cohere reranker in the toy example)
- Support diverse rerankers by default:
- [x] Cross encoding
- [x] Cohere
- [x] Reciprocal Rank Fusion

---------

Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
Co-authored-by: Prashanth Rao <35005448+prrao87@users.noreply.github.com>
2024-01-30 19:10:33 +05:30
Prashanth Rao
f150768739 Fix image bgcolor (#891)
Minor fix to change the background color for an image in the docs. It's
now readable in both light and dark modes (earlier version made it
impossible to read in dark mode).
2024-01-30 16:50:29 +05:30
Ayush Chaurasia
b432ecf2f6 doc: Add documentation chatbot for LanceDB (#890)
<img width="1258" alt="Screenshot 2024-01-29 at 10 05 52 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/7c108fde-e993-415c-ad01-72010fd5fe31">
2024-01-30 11:24:57 +05:30
Raghav Dixit
d1a7257810 feat(python): Embedding fn support for gte-mlx/gte-large (#873)
have added testing and an example in the docstring, will be pushing a
separate PR in recipe repo for rag example

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-01-30 11:21:57 +05:30
Ayush Chaurasia
5c5e23bbb9 chore(python): Temporarily extend remote connection timeout (#888)
Context - https://etoai.slack.com/archives/C05NC5YSW5V/p1706371205883149
2024-01-29 17:34:33 +05:30
Lei Xu
e5796a4836 doc: fix js example of create index (#886) 2024-01-28 17:02:36 -08:00
Lei Xu
b9c5323265 doc: use snippet for rust code example and make sure rust examples run through CI (#885) 2024-01-28 14:30:30 -08:00
Lei Xu
e41a52863a fix: fix doc build to include the source snippet correctly (#883) 2024-01-28 11:55:58 -08:00
Chang She
13acc8a480 doc(rust): minor fixes for Rust quick start. (#878) 2024-01-28 11:40:52 -08:00
Lei Xu
22b9eceb12 chore: convert all js doc test to use snippet. (#881) 2024-01-28 11:39:25 -08:00
Lei Xu
5f62302614 doc: use code snippet for typescript examples (#880)
The typescript code is in a fully function file, that will be run via the CI.
2024-01-27 22:52:37 -08:00
Ayush Chaurasia
d84e0d1db8 feat(python): Aws Bedrock embeddings integration (#822)
Supports amazon titan, cohere english & cohere multi-lingual base
models.
2024-01-28 02:04:15 +05:30
Lei Xu
ac94b2a420 chore: upgrade lance, pylance and datafusion (#879) 2024-01-27 12:31:38 -08:00
Lei Xu
b49bc113c4 chore: add one rust SDK e2e example (#876)
Co-authored-by: Chang She <759245+changhiskhan@users.noreply.github.com>
2024-01-26 22:41:20 -08:00
Lei Xu
77b5b1cf0e doc: update quick start for full rust example (#872) 2024-01-26 16:19:43 -08:00
Lei Xu
e910809de0 chore: bump github actions to v4 due to GHA warnings of node version deprecation (#874) 2024-01-26 15:52:47 -08:00
Lance Release
90b5b55126 Updating package-lock.json 2024-01-26 23:35:58 +00:00
Lance Release
488e4f8452 Updating package-lock.json 2024-01-26 22:40:46 +00:00
Lance Release
ba6f949515 Bump version: 0.4.5 → 0.4.6 2024-01-26 22:40:36 +00:00
Lei Xu
3dd8522bc9 feat(rust): provide connect and connect_with_options in Rust SDK (#871)
* Bring the feature parity of Rust connect methods.
* A global connect method that can connect to local and remote / cloud
table, as the same as in js/python today.
2024-01-26 11:40:11 -08:00
Lei Xu
e01ef63488 chore(rust): simplified version of optimize (#869)
Consolidate various optimize() into one method, similar to postgres
VACCUM in the process of preparing Rust API for public use
2024-01-26 11:36:04 -08:00
Lei Xu
a6cf24b359 feat(napi): Issue queries as node SDK (#868)
* Query as a fluent API and `AsyncIterator<RecordBatch>`
* Much more docs
* Add tests for auto infer vector search columns with different
dimensions.
2024-01-25 22:14:14 -08:00
Lance Release
9a07c9aad8 Updating package-lock.json 2024-01-25 21:49:36 +00:00
Lance Release
d405798952 Updating package-lock.json 2024-01-25 20:54:55 +00:00
Lance Release
e8a8b92b2a Bump version: 0.4.4 → 0.4.5 2024-01-25 20:54:44 +00:00
Lei Xu
66362c6506 fix: release build for node sdk (#861) 2024-01-25 12:51:32 -08:00
138 changed files with 8829 additions and 1526 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.4.4 current_version = 0.4.10
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

40
.cargo/config.toml Normal file
View File

@@ -0,0 +1,40 @@
[profile.release]
lto = "fat"
codegen-units = 1
[profile.release-with-debug]
inherits = "release"
debug = true
# Prioritize compile time over runtime performance
codegen-units = 16
lto = "thin"
[target.'cfg(all())']
rustflags = [
"-Wclippy::all",
"-Wclippy::style",
"-Wclippy::fallible_impl_from",
"-Wclippy::manual_let_else",
"-Wclippy::redundant_pub_crate",
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",
# not too much we can do to avoid multiple crate versions
"-Aclippy::multiple-crate-versions",
"-Aclippy::wildcard_dependencies",
]
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
# Not all Windows systems have the C runtime installed, so this avoids library
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -16,7 +16,7 @@ jobs:
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust

View File

@@ -27,9 +27,9 @@ jobs:
runs-on: ubuntu-22.04 runs-on: ubuntu-22.04
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.10"
cache: "pip" cache: "pip"
@@ -42,7 +42,7 @@ jobs:
- name: Set up node - name: Set up node
uses: actions/setup-node@v3 uses: actions/setup-node@v3
with: with:
node-version: ${{ matrix.node-version }} node-version: 20
cache: 'npm' cache: 'npm'
cache-dependency-path: node/package-lock.json cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
@@ -62,8 +62,9 @@ jobs:
run: | run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs - name: Build docs
working-directory: docs
run: | run: |
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml PYTHONPATH=. mkdocs build
- name: Setup Pages - name: Setup Pages
uses: actions/configure-pages@v2 uses: actions/configure-pages@v2
- name: Upload artifact - name: Upload artifact

View File

@@ -18,24 +18,20 @@ on:
env: env:
# Disable full debug symbol generation to speed up CI build and keep memory down # Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks. # "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1" RUSTFLAGS: "-C debuginfo=1 -C target-cpu=native -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1" RUST_BACKTRACE: "1"
jobs: jobs:
test-python: test-python:
name: Test doc python code name: Test doc python code
runs-on: ${{ matrix.os }} runs-on: "ubuntu-latest"
strategy:
matrix:
python-minor-version: [ "11" ]
os: ["ubuntu-22.04"]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.11
cache: "pip" cache: "pip"
cache-dependency-path: "docs/test/requirements.txt" cache-dependency-path: "docs/test/requirements.txt"
- name: Build Python - name: Build Python
@@ -52,45 +48,42 @@ jobs:
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node: test-node:
name: Test doc nodejs code name: Test doc nodejs code
runs-on: ${{ matrix.os }} runs-on: "ubuntu-latest"
timeout-minutes: 45
strategy: strategy:
matrix: fail-fast: false
node-version: [ "18" ]
os: ["ubuntu-22.04"]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Node - name: Set up Node
uses: actions/setup-node@v3 uses: actions/setup-node@v4
with: with:
node-version: ${{ matrix.node-version }} node-version: 20
- name: Install dependecies needed for ubuntu - name: Install dependecies needed for ubuntu
if: ${{ matrix.os == 'ubuntu-22.04' }}
run: | run: |
sudo apt install -y protobuf-compiler libssl-dev sudo apt install -y protobuf-compiler libssl-dev
- name: Install node dependencies
run: |
cd docs/test
npm install
- name: Rust cache - name: Rust cache
uses: swatinem/rust-cache@v2 uses: swatinem/rust-cache@v2
- name: Install LanceDB - name: Install node dependencies
run: | run: |
cd docs/test/node_modules/vectordb sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci npm ci
npm run build-release npm run build-release
npm run tsc cd ../docs
- name: Create test files npm install
run: |
cd docs/test
node md_testing.js
- name: Test - name: Test
env: env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }} LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }} LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: | run: |
cd docs/test/node cd docs
for d in *; do cd "$d"; echo "$d".js; node "$d".js; cd ..; done npm t

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Check out main - name: Check out main
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: | run: |
git config user.name 'Lance Release' git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com' git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10 - name: Set up Python 3.11
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.11"
- name: Bump version, create tag and commit - name: Bump version, create tag and commit
run: | run: |
pip install bump2version pip install bump2version

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash shell: bash
working-directory: node working-directory: node
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -57,7 +57,7 @@ jobs:
shell: bash shell: bash
working-directory: node working-directory: node
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -89,7 +89,7 @@ jobs:
shell: bash shell: bash
working-directory: node working-directory: node
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -128,7 +128,7 @@ jobs:
# this one is for dynamodb # this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566 DYNAMODB_ENDPOINT: http://localhost:4566
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true

View File

@@ -29,7 +29,7 @@ jobs:
shell: bash shell: bash
working-directory: nodejs working-directory: nodejs
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -61,7 +61,7 @@ jobs:
shell: bash shell: bash
working-directory: nodejs working-directory: nodejs
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -84,13 +84,13 @@ jobs:
run: npm run test run: npm run test
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
runs-on: "macos-13" runs-on: "macos-14"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: nodejs working-directory: nodejs
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true

View File

@@ -15,7 +15,7 @@ jobs:
working-directory: node working-directory: node
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- uses: actions/setup-node@v3 - uses: actions/setup-node@v3
with: with:
node-version: 20 node-version: 20
@@ -45,13 +45,13 @@ jobs:
runner: macos-13 runner: macos-13
- arch: aarch64-apple-darwin - arch: aarch64-apple-darwin
# xlarge is implicitly arm64. # xlarge is implicitly arm64.
runner: macos-13-xlarge runner: macos-14
runs-on: ${{ matrix.config.runner }} runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Install system dependencies - name: Install system dependencies
run: brew install protobuf run: brew install protobuf
- name: Install npm dependencies - name: Install npm dependencies
@@ -80,10 +80,25 @@ jobs:
- arch: x86_64 - arch: x86_64
runner: ubuntu-latest runner: ubuntu-latest
- arch: aarch64 - arch: aarch64
runner: buildjet-4vcpu-ubuntu-2204-arm # For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts - name: Build Linux Artifacts
run: | run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
@@ -104,7 +119,7 @@ jobs:
target: [x86_64-pc-windows-msvc] target: [x86_64-pc-windows-msvc]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
- name: Install Protoc v21.12 - name: Install Protoc v21.12
working-directory: C:\ working-directory: C:\
run: | run: |
@@ -154,7 +169,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false

View File

@@ -14,9 +14,9 @@ jobs:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.8" python-version: "3.8"
- name: Build distribution - name: Build distribution

View File

@@ -26,7 +26,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Check out main - name: Check out main
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false
@@ -37,10 +37,10 @@ jobs:
run: | run: |
git config user.name 'Lance Release' git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com' git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10 - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.10" python-version: "3.11"
- name: Bump version, create tag and commit - name: Bump version, create tag and commit
working-directory: python working-directory: python
run: | run: |

View File

@@ -18,19 +18,19 @@ jobs:
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
python-minor-version: [ "8", "9", "10", "11" ] python-minor-version: [ "8", "11" ]
runs-on: "ubuntu-22.04" runs-on: "ubuntu-22.04"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb - name: Install lancedb
@@ -55,7 +55,7 @@ jobs:
- name: x86 Mac - name: x86 Mac
runner: macos-13 runner: macos-13
- name: Arm Mac - name: Arm Mac
runner: macos-13-xlarge runner: macos-14
- name: x86 Windows - name: x86 Windows
runner: windows-latest runner: windows-latest
runs-on: "${{ matrix.config.runner }}" runs-on: "${{ matrix.config.runner }}"
@@ -64,12 +64,12 @@ jobs:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: "3.11" python-version: "3.11"
- name: Install lancedb - name: Install lancedb
@@ -87,12 +87,12 @@ jobs:
shell: bash shell: bash
working-directory: python working-directory: python
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set up Python - name: Set up Python
uses: actions/setup-python@v4 uses: actions/setup-python@v5
with: with:
python-version: 3.9 python-version: 3.9
- name: Install lancedb - name: Install lancedb

View File

@@ -32,7 +32,7 @@ jobs:
shell: bash shell: bash
working-directory: rust working-directory: rust
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -55,7 +55,7 @@ jobs:
shell: bash shell: bash
working-directory: rust working-directory: rust
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -70,18 +70,20 @@ jobs:
run: cargo build --all-features run: cargo build --all-features
- name: Run tests - name: Run tests
run: cargo test --all-features run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
macos: macos:
timeout-minutes: 30 timeout-minutes: 30
strategy: strategy:
matrix: matrix:
mac-runner: [ "macos-13", "macos-13-xlarge" ] mac-runner: [ "macos-13", "macos-14" ]
runs-on: "${{ matrix.mac-runner }}" runs-on: "${{ matrix.mac-runner }}"
defaults: defaults:
run: run:
shell: bash shell: bash
working-directory: rust working-directory: rust
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
with: with:
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
@@ -99,7 +101,7 @@ jobs:
windows: windows:
runs-on: windows-2022 runs-on: windows-2022
steps: steps:
- uses: actions/checkout@v3 - uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2 - uses: Swatinem/rust-cache@v2
with: with:
workspaces: rust workspaces: rust

View File

@@ -8,7 +8,7 @@ jobs:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v4
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false

View File

@@ -6,24 +6,27 @@ resolver = "2"
[workspace.package] [workspace.package]
edition = "2021" edition = "2021"
authors = ["Lance Devs <dev@lancedb.com>"] authors = ["LanceDB Devs <dev@lancedb.com>"]
license = "Apache-2.0" license = "Apache-2.0"
repository = "https://github.com/lancedb/lancedb" repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies] [workspace.dependencies]
lance = { "version" = "=0.9.9", "features" = ["dynamodb"] } lance = { "version" = "=0.9.18", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.9.9" } lance-index = { "version" = "=0.9.18" }
lance-linalg = { "version" = "=0.9.9" } lance-linalg = { "version" = "=0.9.18" }
lance-testing = { "version" = "=0.9.9" } lance-testing = { "version" = "=0.9.18" }
# Note that this one does not include pyarrow # Note that this one does not include pyarrow
arrow = { version = "49.0.0", optional = false } arrow = { version = "50.0", optional = false }
arrow-array = "49.0" arrow-array = "50.0"
arrow-data = "49.0" arrow-data = "50.0"
arrow-ipc = "49.0" arrow-ipc = "50.0"
arrow-ord = "49.0" arrow-ord = "50.0"
arrow-schema = "49.0" arrow-schema = "50.0"
arrow-arith = "49.0" arrow-arith = "50.0"
arrow-cast = "49.0" arrow-cast = "50.0"
async-trait = "0" async-trait = "0"
chrono = "0.4.23" chrono = "0.4.23"
half = { "version" = "=2.3.1", default-features = false, features = [ half = { "version" = "=2.3.1", default-features = false, features = [

View File

@@ -51,12 +51,19 @@ npm install vectordb
const lancedb = require('vectordb'); const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb'); const db = await lancedb.connect('data/sample-lancedb');
const table = await db.createTable('vectors', const table = await db.createTable({
[{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 }, name: 'vectors',
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }]) data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
const query = table.search([0.1, 0.3]).limit(2); const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute(); const results = await query.execute();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
``` ```
**Python** **Python**

View File

@@ -13,7 +13,9 @@ docker build \
. .
popd popd
# We turn on memory swap to avoid OOM killer
docker run \ docker run \
-v $(pwd):/io -w /io \ -v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \ lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH bash ci/manylinux_node/build.sh $ARCH

View File

@@ -33,3 +33,12 @@ You can run a local server to test the docs prior to deployment by navigating to
cd docs cd docs
mkdocs serve mkdocs serve
``` ```
### Run doctest for typescript example
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```

View File

@@ -57,6 +57,16 @@ plugins:
- https://arrow.apache.org/docs/objects.inv - https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv - https://pandas.pydata.org/docs/objects.inv
- mkdocs-jupyter - mkdocs-jupyter
- ultralytics:
verbose: True
enabled: True
default_image: "assets/lancedb_and_lance.png" # Default image for all pages
add_image: True # Automatically add meta image
add_keywords: True # Add page keywords in the header tag
add_share_buttons: True # Add social share buttons
add_authors: False # Display page authors
add_desc: False
add_dates: False
markdown_extensions: markdown_extensions:
- admonition - admonition
@@ -67,7 +77,9 @@ markdown_extensions:
line_spans: __span line_spans: __span
pygments_lang_class: true pygments_lang_class: true
- pymdownx.inlinehilite - pymdownx.inlinehilite
- pymdownx.snippets - pymdownx.snippets:
base_path: ..
dedent_subsections: true
- pymdownx.superfences - pymdownx.superfences
- pymdownx.tabbed: - pymdownx.tabbed:
alternate_style: true alternate_style: true
@@ -88,15 +100,18 @@ nav:
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- 🧬 Managing embeddings: - 🧬 Managing embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md - Embedding functions: embeddings/embedding_functions.md
- Implicit management: embeddings/embedding_functions.md - Available models: embeddings/default_embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations: - 🔌 Integrations:
@@ -130,6 +145,7 @@ nav:
- ⚙️ API reference: - ⚙️ API reference:
- 🐍 Python: python/python.md - 🐍 Python: python/python.md
- 👾 JavaScript: javascript/modules.md - 👾 JavaScript: javascript/modules.md
- 🦀 Rust: https://docs.rs/vectordb/latest/vectordb/
- ☁️ LanceDB Cloud: - ☁️ LanceDB Cloud:
- Overview: cloud/index.md - Overview: cloud/index.md
- API reference: - API reference:
@@ -148,15 +164,18 @@ nav:
- Building an ANN index: ann_indexes.md - Building an ANN index: ann_indexes.md
- Vector Search: search.md - Vector Search: search.md
- Full-text search: fts.md - Full-text search: fts.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Filtering: sql.md - Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb - Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Configuring Storage: guides/storage.md - Configuring Storage: guides/storage.md
- Managing Embeddings: - Managing Embeddings:
- Overview: embeddings/index.md - Overview: embeddings/index.md
- Explicit management: embeddings/embedding_explicit.md - Embedding functions: embeddings/embedding_functions.md
- Implicit management: embeddings/embedding_functions.md - Available models: embeddings/default_embedding_functions.md
- Available Functions: embeddings/default_embedding_functions.md - User-defined embedding functions: embeddings/custom_embedding_function.md
- Custom Embedding Functions: embeddings/api.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb - "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb - "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations: - Integrations:
@@ -195,6 +214,9 @@ extra_css:
- styles/global.css - styles/global.css
- styles/extra.css - styles/extra.css
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
extra: extra:
analytics: analytics:
provider: google provider: google

132
docs/package-lock.json generated Normal file
View File

@@ -0,0 +1,132 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "lancedb-docs-test",
"version": "1.0.0",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0",
"os": [
"darwin",
"linux",
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.160",
"@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
"@types/sinon": "^10.0.15",
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
"eslint": "^8.39.0",
"eslint-config-standard-with-typescript": "^34.0.1",
"eslint-plugin-import": "^2.26.0",
"eslint-plugin-n": "^15.7.0",
"eslint-plugin-promise": "^6.1.1",
"mocha": "^10.2.0",
"openai": "^4.24.1",
"sinon": "^15.1.0",
"temp": "^0.9.4",
"ts-node": "^10.9.1",
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
}
},
"../node/node_modules/apache-arrow": {
"version": "14.0.2",
"license": "Apache-2.0",
"dependencies": {
"@types/command-line-args": "5.2.0",
"@types/command-line-usage": "5.0.2",
"@types/node": "20.3.0",
"@types/pad-left": "2.1.1",
"command-line-args": "5.2.1",
"command-line-usage": "7.0.1",
"flatbuffers": "23.5.26",
"json-bignum": "^0.0.3",
"pad-left": "^2.1.0",
"tslib": "^2.5.3"
},
"bin": {
"arrow2csv": "bin/arrow2csv.js"
}
},
"node_modules/@types/node": {
"version": "20.11.8",
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.11.8.tgz",
"integrity": "sha512-i7omyekpPTNdv4Jb/Rgqg0RU8YqLcNsI12quKSDkRXNfx7Wxdm6HhK1awT3xTgEkgxPn3bvnSpiEAc7a7Lpyow==",
"dev": true,
"dependencies": {
"undici-types": "~5.26.4"
}
},
"node_modules/apache-arrow": {
"resolved": "../node/node_modules/apache-arrow",
"link": true
},
"node_modules/typescript": {
"version": "5.3.3",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.3.3.tgz",
"integrity": "sha512-pXWcraxM0uxAS+tN0AG/BF2TyqmHO014Z070UsJ+pFvYuRSq8KH8DmWpnbXe0pEPDHXZV3FcAbJkijJ5oNEnWw==",
"dev": true,
"bin": {
"tsc": "bin/tsc",
"tsserver": "bin/tsserver"
},
"engines": {
"node": ">=14.17"
}
},
"node_modules/undici-types": {
"version": "5.26.5",
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
"dev": true
},
"node_modules/vectordb": {
"resolved": "../node",
"link": true
}
}
}

20
docs/package.json Normal file
View File

@@ -0,0 +1,20 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "auto-generated tests from doc",
"author": "dev@lancedb.com",
"license": "Apache 2",
"dependencies": {
"apache-arrow": "file:../node/node_modules/apache-arrow",
"vectordb": "file:../node"
},
"scripts": {
"build": "tsc -b && cd ../node && npm run build-release",
"example": "npm run build && node",
"test": "npm run build && ls dist/*.js | xargs -n 1 node"
},
"devDependencies": {
"@types/node": "^20.11.8",
"typescript": "^5.3.3"
}
}

View File

@@ -3,3 +3,4 @@ mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3 mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0 mkdocstrings[python]==0.20.0
pydantic pydantic
mkdocs-ultralytics-plugin==0.0.44

View File

@@ -7,7 +7,7 @@ for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search). A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results. LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
Currently, LanceDB does *not* automatically create the ANN index. Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all. LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall. If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
@@ -17,9 +17,9 @@ In the future we will look to automatically create and configure the ANN index a
Lance can support multiple index types, the most widely used one is `IVF_PQ`. Lance can support multiple index types, the most widely used one is `IVF_PQ`.
* `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions, - `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
and then use **Product Quantization** to compress vectors in each partition. and then use **Product Quantization** to compress vectors in each partition.
* `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately - `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
represent the nearest neighbors of each vector. represent the nearest neighbors of each vector.
## Creating an IVF_PQ Index ## Creating an IVF_PQ Index
@@ -27,6 +27,7 @@ Lance can support multiple index types, the most widely used one is `IVF_PQ`.
Lance supports `IVF_PQ` index type by default. Lance supports `IVF_PQ` index type by default.
=== "Python" === "Python"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method. Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python ```python
@@ -46,25 +47,20 @@ Lance supports `IVF_PQ` index type by default.
tbl.create_index(num_partitions=256, num_sub_vectors=96) tbl.create_index(num_partitions=256, num_sub_vectors=96)
``` ```
=== "Javascript" === "Typescript"
```javascript
const vectordb = require('vectordb')
const db = await vectordb.connect('data/sample-lancedb')
let data = [] ```typescript
for (let i = 0; i < 10_000; i++) { --8<--- "docs/src/ann_indexes.ts:import"
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
} --8<-- "docs/src/ann_indexes.ts:ingest"
const table = await db.createTable('my_vectors', data)
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 256, num_sub_vectors: 96 })
``` ```
- **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`". - **metric** (default: "L2"): The distance metric to use. By default it uses euclidean distance "`L2`".
We also support "cosine" and "dot" distance as well. We also support "cosine" and "dot" distance as well.
- **num_partitions** (default: 256): The number of partitions of the index. - **num_partitions** (default: 256): The number of partitions of the index.
- **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ). - **num_sub_vectors** (default: 96): The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by For D dimensional vector, it will be divided into `M` of `D/M` sub-vectors, each of which is presented by
a single PQ code. a single PQ code.
<figure markdown> <figure markdown>
![IVF PQ](./assets/ivf_pq.png) ![IVF PQ](./assets/ivf_pq.png)
@@ -78,7 +74,7 @@ Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being
You can specify the GPU device to train IVF partitions via You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to ``cuda`` or ``mps`` (on Apple Silicon) to enable GPU training. - **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
=== "Linux" === "Linux"
@@ -106,10 +102,9 @@ You can specify the GPU device to train IVF partitions via
Trouble shootings: Trouble shootings:
If you see ``AssertionError: Torch not compiled with CUDA enabled``, you need to [install If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/). PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index ## Querying an ANN Index
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function. Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
@@ -127,6 +122,7 @@ There are a couple of parameters that can be used to fine-tune the search:
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored. Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))) \ tbl.search(np.random.random((1536))) \
.limit(2) \ .limit(2) \
@@ -134,41 +130,35 @@ There are a couple of parameters that can be used to fine-tune the search:
.refine_factor(10) \ .refine_factor(10) \
.to_pandas() .to_pandas()
``` ```
```
```text
vector item _distance vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333 0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867 1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
``` ```
=== "Javascript" === "Typescript"
```javascript
const results_1 = await table ```typescript
.search(Array(1536).fill(1.2)) --8<-- "docs/src/ann_indexes.ts:search1"
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute()
``` ```
The search will return the data requested in addition to the distance of each item. The search will return the data requested in addition to the distance of each item.
### Filtering (where clause) ### Filtering (where clause)
You can further filter the elements returned by a search using a where clause. You can further filter the elements returned by a search using a where clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas() tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
``` ```
=== "Javascript" === "Typescript"
```javascript ```javascript
const results_2 = await table --8<-- "docs/src/ann_indexes.ts:search2"
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute()
``` ```
### Projections (select clause) ### Projections (select clause)
@@ -176,23 +166,23 @@ You can further filter the elements returned by a search using a where clause.
You can select the columns returned by the query using a select clause. You can select the columns returned by the query using a select clause.
=== "Python" === "Python"
```python ```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas() tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
``` ```
```
```text
vector _distance vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092 0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485 1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
... ...
``` ```
=== "Javascript" === "Typescript"
```javascript
const results_3 = await table ```typescript
.search(Array(1536).fill(1.2)) --8<-- "docs/src/ann_indexes.ts:search3"
.select(["id"])
.limit(2)
.execute()
``` ```
## FAQ ## FAQ

53
docs/src/ann_indexes.ts Normal file
View File

@@ -0,0 +1,53 @@
// --8<-- [start:import]
import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
const table = await db.createTable("my_vectors", data);
await table.createIndex({
type: "ivf_pq",
column: "vector",
num_partitions: 16,
num_sub_vectors: 48,
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute();
// --8<-- [end:search2]
// --8<-- [start:search3]
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
})();

Binary file not shown.

Before

Width:  |  Height:  |  Size: 266 KiB

After

Width:  |  Height:  |  Size: 107 KiB

View File

@@ -11,43 +11,78 @@
## Installation ## Installation
=== "Python" === "Python"
```shell ```shell
pip install lancedb pip install lancedb
``` ```
=== "Javascript" === "Typescript"
```shell ```shell
npm install vectordb npm install vectordb
``` ```
=== "Rust"
!!! warning "Rust SDK is experimental, might introduce breaking changes in the near future"
```shell
cargo add vectordb
```
!!! info "To use the vectordb create, you first need to install protobuf."
=== "macOS"
```shell
brew install protobuf
```
=== "Ubuntu/Debian"
```shell
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
## How to connect to a database ## How to connect to a database
=== "Python" === "Python"
```python ```python
import lancedb import lancedb
uri = "data/sample-lancedb" uri = "data/sample-lancedb"
db = lancedb.connect(uri) db = lancedb.connect(uri)
``` ```
LanceDB will create the directory if it doesn't exist (including parent directories). === "Typescript"
If you need a reminder of the uri, use the `db.uri` property. ```typescript
--8<-- "docs/src/basic_legacy.ts:import"
=== "Javascript" --8<-- "docs/src/basic_legacy.ts:open_db"
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
``` ```
LanceDB will create the directory if it doesn't exist (including parent directories). === "Rust"
If you need a reminder of the uri, you can call `db.uri()`. ```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/vectordb/examples/simple.rs:connect"
}
```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## How to create a table ## How to create a table
=== "Python" === "Python"
```python ```python
tbl = db.create_table("my_table", tbl = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -59,6 +94,7 @@
to the `create_table` method. to the `create_table` method.
You can also pass in a pandas DataFrame directly: You can also pass in a pandas DataFrame directly:
```python ```python
import pandas as pd import pandas as pd
df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0}, df = pd.DataFrame([{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
@@ -66,19 +102,26 @@
tbl = db.create_table("table_from_df", data=df) tbl = db.create_table("table_from_df", data=df)
``` ```
=== "Javascript" === "Typescript"
```javascript
const tb = await db.createTable( ```typescript
"myTable", --8<-- "docs/src/basic_legacy.ts:create_table"
[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}]
)
``` ```
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"` If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `createTable` function. to the `createTable` function.
=== "Rust"
```rust
use arrow_schema::{DataType, Schema, Field};
use arrow_array::{RecordBatch, RecordBatchIterator};
--8<-- "rust/vectordb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default.
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)." !!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
@@ -88,43 +131,73 @@ Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema. In this case, you can create an empty table and specify the schema.
=== "Python" === "Python"
```python ```python
import pyarrow as pa import pyarrow as pa
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))]) schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
tbl = db.create_table("empty_table", schema=schema) tbl = db.create_table("empty_table", schema=schema)
``` ```
=== "Typescript"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
```
## How to open an existing table ## How to open an existing table
Once created, you can open a table using the following code: Once created, you can open a table using the following code:
=== "Python" === "Python"
```python ```python
tbl = db.open_table("my_table") tbl = db.open_table("my_table")
``` ```
If you forget the name of your table, you can always get a listing of all table names: === "Typescript"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
```python ```python
print(db.table_names()) print(db.table_names())
``` ```
=== "Javascript" === "Javascript"
```javascript
const tbl = await db.openTable("myTable");
```
If you forget the name of your table, you can always get a listing of all table names:
```javascript ```javascript
console.log(await db.tableNames()); console.log(await db.tableNames());
``` ```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:list_names"
```
## How to add data to a table ## How to add data to a table
After a table has been created, you can always add more data to it using After a table has been created, you can always add more data to it using
=== "Python" === "Python"
```python ```python
# Option 1: Add a list of dicts to a table # Option 1: Add a list of dicts to a table
@@ -137,10 +210,16 @@ After a table has been created, you can always add more data to it using
tbl.add(data) tbl.add(data)
``` ```
=== "Javascript" === "Typescript"
```javascript
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0}, ```typescript
{vector: [9.5, 56.2], item: "buzz", price: 200.0}]) --8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:add"
``` ```
## How to search for (approximate) nearest neighbors ## How to search for (approximate) nearest neighbors
@@ -148,17 +227,50 @@ After a table has been created, you can always add more data to it using
Once you've embedded the query, you can find its nearest neighbors using the following code: Once you've embedded the query, you can find its nearest neighbors using the following code:
=== "Python" === "Python"
```python ```python
tbl.search([100, 100]).limit(2).to_pandas() tbl.search([100, 100]).limit(2).to_pandas()
``` ```
This returns a pandas DataFrame with the results. This returns a pandas DataFrame with the results.
=== "Javascript" === "Typescript"
```javascript
const query = await tbl.search([100, 100]).limit(2).execute(); ```typescript
--8<-- "docs/src/basic_legacy.ts:search"
``` ```
=== "Rust"
```rust
use futures::TryStreamExt;
--8<-- "rust/vectordb/examples/simple.rs:search"
```
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
=== "Python"
```py
tbl.create_index()
```
=== "Typescript"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:create_index"
```
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
## How to delete rows from a table ## How to delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose Use the `delete()` method on tables to delete rows from a table. To choose
@@ -166,20 +278,27 @@ which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter. This can delete any number of rows that match the filter.
=== "Python" === "Python"
```python ```python
tbl.delete('item = "fizz"') tbl.delete('item = "fizz"')
``` ```
=== "Javascript" === "Typescript"
```javascript
await tbl.delete('item = "fizz"') ```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:delete"
``` ```
The deletion predicate is a SQL expression that supports the same expressions The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause on a search. They can be as simple or complex as needed. as the `where()` clause on a search. They can be as simple or complex as needed.
To see what expressions are supported, see the [SQL filters](sql.md) section. To see what expressions are supported, see the [SQL filters](sql.md) section.
=== "Python" === "Python"
Read more: [lancedb.table.Table.delete][] Read more: [lancedb.table.Table.delete][]
@@ -193,6 +312,7 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
Use the `drop_table()` method on the database to remove a table. Use the `drop_table()` method on the database to remove a table.
=== "Python" === "Python"
```python ```python
db.drop_table("my_table") db.drop_table("my_table")
``` ```
@@ -201,14 +321,21 @@ Use the `drop_table()` method on the database to remove a table.
By default, if the table does not exist an exception is raised. To suppress this, By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`. you can pass in `ignore_missing=True`.
=== "JavaScript" === "Typescript"
```javascript
await db.dropTable('myTable') ```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
``` ```
This permanently removes the table and is not recoverable, unlike deleting rows. This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised. If the table does not exist an exception is raised.
=== "Rust"
```rust
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
```
!!! note "Bundling `vectordb` apps with Webpack" !!! note "Bundling `vectordb` apps with Webpack"
If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel. If you're using the `vectordb` module in JavaScript, since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.

92
docs/src/basic_legacy.ts Normal file
View File

@@ -0,0 +1,92 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
const example = async () => {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
// --8<-- [start:open_db]
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
// --8<-- [end:open_db]
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite }
);
// --8<-- [end:create_table]
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],
item: "fizz",
price: i * 0.1,
}));
await tbl.add(newData);
// --8<-- [end:add]
// --8<-- [start:create_index]
await tbl.createIndex({
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random)
})),
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
};
async function main() {
await example();
console.log("Basic example: done");
}
main();

View File

@@ -17,6 +17,7 @@ Let's implement `SentenceTransformerEmbeddings` class. All you need to do is imp
```python ```python
from lancedb.embeddings import register from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers") @register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction): class SentenceTransformerEmbeddings(TextEmbeddingFunction):
@@ -81,7 +82,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms( model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained self.name, pretrained=self.pretrained
) )
@@ -109,14 +110,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str): if isinstance(query, str):
return [self.generate_text_embeddings(query)] return [self.generate_text_embeddings(query)]
else: else:
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image): if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)] return [self.generate_image_embedding(query)]
else: else:
raise TypeError("OpenClip supports str or PIL Image as query") raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray: def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text) text = self.sanitize_input(text)
text = self._tokenizer(text) text = self._tokenizer(text)
text.to(self.device) text.to(self.device)
@@ -175,7 +176,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri. The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes. If the image is bytes, it is treated as the raw image bytes.
""" """
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https # TODO handle retry and errors for https
image = self._to_pil(image) image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0) image = self._preprocess(image).unsqueeze(0)
@@ -183,7 +184,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image) return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]): def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes): if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image)) return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image): if isinstance(image, PIL.Image.Image):

View File

@@ -9,6 +9,9 @@ Contains the text embedding functions registered by default.
### Sentence transformers ### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object. Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description | | Parameter | Type | Default Value | Description |
|---|---|---|---| |---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model | | `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
@@ -119,7 +122,7 @@ texts = [{"text": "Capitalism has been dominant in the Western world since the e
tbl.add(texts) tbl.add(texts)
``` ```
## Gemini Embedding Function ### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide. With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types: The Gemini Embedding Model API supports various task types:
@@ -155,6 +158,51 @@ tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas() rs = tbl.search("hello").limit(1).to_pandas()
``` ```
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported paramters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
## Multi-modal embedding functions ## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text. Multi-modal embedding functions allow you to query your table using both images and text.

View File

@@ -1,141 +0,0 @@
In this workflow, you define your own embedding function and pass it as a callable to LanceDB, invoking it in your code to generate the embeddings. Let's look at some examples.
### Hugging Face
!!! note
Currently, the Hugging Face method is only supported in the Python SDK.
=== "Python"
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
=== "Python"
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
# verify that the API key is working
assert len(openai.Model.list()["data"]) > 0
def embed_func(c):
rs = openai.Embedding.create(input=c, engine="text-embedding-ada-002")
return [record["embedding"] for record in rs["data"]]
```
=== "JavaScript"
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## Applying an embedding function to data
=== "Python"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
# db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
=== "JavaScript"
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Simply pass the embedding function created above and LanceDB will use it to generate
embeddings for your data.
```javascript
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.

View File

@@ -3,61 +3,126 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline. For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! warning !!! warning
Using the implicit embeddings management approach means that you can forget about the manually passing around embedding Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
functions in your code, as long as you don't intend to change it at a later time. If your embedding function changes, However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
you'll have to re-configure your table with the new embedding function and regenerate the embeddings. and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
## 1. Define the embedding function ## 1. Define the embedding function
We have some pre-defined embedding functions in the global registry, with more coming soon. Here's let's an implementation of CLIP as example.
```
registry = EmbeddingFunctionRegistry.get_instance()
clip = registry.get("open-clip").create()
``` === "Python"
You can also define your own embedding function by implementing the `EmbeddingFunction` abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next! In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "JavaScript""
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
const lancedb = require("vectordb");
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const embedding = new lancedb.OpenAIEmbeddingFunction('text', apiKey)
```
## 2. Define the data model or schema ## 2. Define the data model or schema
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python === "Python"
class Pets(LanceModel): The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python
class Pets(LanceModel):
vector: Vector(clip.ndims) = clip.VectorField() vector: Vector(clip.ndims) = clip.VectorField()
image_uri: str = clip.SourceField() image_uri: str = clip.SourceField()
``` ```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`. `VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
## 3. Create LanceDB table === "JavaScript"
Now that we have chosen/defined our embedding function and the schema, we can create the table:
```python For the TypeScript SDK, a schema can be inferred from input data, or an explicit
db = lancedb.connect("~/lancedb") Arrow schema can be provided.
table = db.create_table("pets", schema=Pets)
``` ## 3. Create table and add data
That's it! We've provided all the information needed to embed the source and query inputs. We can now forget about the model and dimension details and start to build our VectorDB pipeline. Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
## 4. Ingest lots of data and query your table === "Python"
Any new or incoming data can just be added and it'll be vectorized automatically. ```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
```python table.add([{"image_uri": u} for u in uris])
table.add([{"image_uri": u} for u in uris]) ```
```
Our OpenCLIP query embedding function supports querying via both text and images: === "JavaScript"
```python ```javascript
result = table.search("dog") const db = await lancedb.connect("data/sample-lancedb");
``` const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
Let's query an image: const table = await db.createTable("vectors", data, embedding)
```
```python ## 4. Querying your table
p = Path("path/to/images/samoyed_100.jpg") Not only can you forget about the embeddings during ingestion, you also don't
query_image = Image.open(p) need to worry about it when you query the table:
table.search(query_image)
``` === "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "JavaScript"
```javascript
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
--- ---
@@ -100,4 +165,5 @@ rs[2].image
![](../assets/dog_clip_output.png) ![](../assets/dog_clip_output.png)
Now that you have the basic idea about implicit management via embedding functions, let's dive deeper into a [custom API](./api.md) that you can use to implement your own embedding functions. Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -1,8 +1,14 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio. This makes them a very powerful tool for machine learning practitioners. However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs (both commercial and open source) that can be used to generate embeddings from structured/unstructured data. Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 2 methods of vectorizing your raw data into embeddings. LanceDB supports 3 methods of working with embeddings.
1. **Explicit**: By manually calling LanceDB's `with_embedding` function to vectorize your data via an `embed_func` of your choice 1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. **Implicit**: Allow LanceDB to embed the data and queries in the background as they come in, by using the table's `EmbeddingRegistry` information 2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. For python users, you can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
See the [explicit](embedding_explicit.md) and [implicit](embedding_functions.md) embedding sections for more details. For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.

View File

@@ -0,0 +1,99 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -1,6 +1,5 @@
import pickle import pickle
import re import re
import sys
import zipfile import zipfile
from pathlib import Path from pathlib import Path
@@ -79,7 +78,10 @@ def qanda_langchain(query):
download_docs() download_docs()
docs = store_docs() docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200,) text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs) documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings() embeddings = OpenAIEmbeddings()

View File

@@ -0,0 +1,11 @@
document.addEventListener("DOMContentLoaded", function () {
var script = document.createElement("script");
script.src = "https://widget.kapa.ai/kapa-widget.bundle.js";
script.setAttribute("data-website-id", "c5881fae-cec0-490b-b45e-d83d131d4f25");
script.setAttribute("data-project-name", "LanceDB");
script.setAttribute("data-project-color", "#000000");
script.setAttribute("data-project-logo", "https://avatars.githubusercontent.com/u/108903835?s=200&v=4");
script.setAttribute("data-modal-example-questions","Help me create an IVF_PQ index,How do I do an exhaustive search?,How do I create a LanceDB table?,Can I use my own embedding function?");
script.async = true;
document.head.appendChild(script);
});

View File

@@ -69,3 +69,19 @@ MinIO supports an S3 compatible API. In order to connect to a MinIO instance, yo
- Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API - Set the envvar `AWS_ENDPOINT` to the URL of your MinIO API
- Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential - Set the envvars `AWS_ACCESS_KEY_ID` and `AWS_SECRET_ACCESS_KEY` with your MinIO credential
- Call `lancedb.connect("s3://minio_bucket_name")` - Call `lancedb.connect("s3://minio_bucket_name")`
### Where can I find benchmarks for LanceDB?
Refer to this [post](https://blog.lancedb.com/benchmarking-lancedb-92b01032874a) for recent benchmarks.
### How much data can LanceDB practically manage without effecting performance?
We target good performance on ~10-50 billion rows and ~10-30 TB of data.
### Does LanceDB support concurrent operations?
LanceDB can handle concurrent reads very well, and can scale horizontally. The main constraint is how well the [storage layer](https://lancedb.github.io/lancedb/concepts/storage/) you've chosen scales. For writes, we support concurrent writing, though too many concurrent writers can lead to failing writes as there is a limited number of times a writer retries a commit
!!! info "Multiprocessing with LanceDB"
For multiprocessing you should probably not use ```fork``` as lance is multi-threaded internally and ```fork``` and multi-thread do not work well.[Refer to this discussion](https://discuss.python.org/t/concerns-regarding-deprecation-of-fork-with-alive-threads/33555)

View File

@@ -68,6 +68,82 @@ Alternatively, if you are using AWS SSO, you can use the `AWS_PROFILE` and `AWS_
You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env). You can see a full list of environment variables [here](https://docs.rs/object_store/latest/object_store/aws/struct.AmazonS3Builder.html#method.from_env).
!!! tip "Automatic cleanup for failed writes"
LanceDB uses [multi-part uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpuoverview.html) when writing data to S3 in order to maximize write speed. LanceDB will abort these uploads when it shuts down gracefully, such as when cancelled by keyboard interrupt. However, in the rare case that LanceDB crashes, it is possible that some data will be left lingering in your account. To cleanup this data, we recommend (as AWS themselves do) that you setup a lifecycle rule to delete in-progress uploads after 7 days. See the AWS guide:
**[Configuring a bucket lifecycle configuration to delete incomplete multipart uploads](https://docs.aws.amazon.com/AmazonS3/latest/userguide/mpu-abort-incomplete-mpu-lifecycle-config.html)**
#### AWS IAM Permissions
If a bucket is private, then an IAM policy must be specified to allow access to it. For many development scenarios, using broad permissions such as a PowerUser account is more than sufficient for working with LanceDB. However, in many production scenarios, you may wish to have as narrow as possible permissions.
For **read and write access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:PutObject",
"s3:GetObject",
"s3:DeleteObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
For **read-only access**, LanceDB will need a policy such as:
```json
{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
],
"Resource": "arn:aws:s3:::<bucket>/<prefix>/*"
},
{
"Effect": "Allow",
"Action": [
"s3:ListBucket",
"s3:GetBucketLocation"
],
"Resource": "arn:aws:s3:::<bucket>",
"Condition": {
"StringLike": {
"s3:prefix": [
"<prefix>/*"
]
}
}
}
]
}
```
#### S3-compatible stores #### S3-compatible stores
LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use. LanceDB can also connect to S3-compatible stores, such as MinIO. To do so, you must specify two environment variables: `AWS_ENDPOINT` and `AWS_DEFAULT_REGION`. `AWS_ENDPOINT` should be the URL of the S3-compatible store, and `AWS_DEFAULT_REGION` should be the region to use.

View File

@@ -16,9 +16,22 @@ This guide will show how to create tables, insert data into them, and update the
db = lancedb.connect("./.lancedb") db = lancedb.connect("./.lancedb")
``` ```
=== "Javascript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these. LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
### From list of tuples or dictionaries ### From list of tuples or dictionaries
=== "Python"
```python ```python
import lancedb import lancedb
@@ -32,7 +45,6 @@ This guide will show how to create tables, insert data into them, and update the
db["my_table"].head() db["my_table"].head()
``` ```
!!! info "Note" !!! info "Note"
If the table already exists, LanceDB will raise an error by default. If the table already exists, LanceDB will raise an error by default.
@@ -51,6 +63,27 @@ This guide will show how to create tables, insert data into them, and update the
db.create_table("name", data, mode="overwrite") db.create_table("name", data, mode="overwrite")
``` ```
=== "Javascript"
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
### From a Pandas DataFrame ### From a Pandas DataFrame
```python ```python
@@ -69,6 +102,8 @@ This guide will show how to create tables, insert data into them, and update the
!!! info "Note" !!! info "Note"
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly. Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
The **`vector`** column needs to be a [Vector](../python/pydantic.md#vector-field) (defined as [pyarrow.FixedSizeList](https://arrow.apache.org/docs/python/generated/pyarrow.list_.html)) type.
```python ```python
custom_schema = pa.schema([ custom_schema = pa.schema([
pa.field("vector", pa.list_(pa.float32(), 4)), pa.field("vector", pa.list_(pa.float32(), 4)),
@@ -79,7 +114,7 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("my_table", data, schema=custom_schema) table = db.create_table("my_table", data, schema=custom_schema)
``` ```
### From a Polars DataFrame ### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
@@ -97,26 +132,44 @@ This guide will show how to create tables, insert data into them, and update the
table = db.create_table("pl_table", data=data) table = db.create_table("pl_table", data=data)
``` ```
### From PyArrow Tables ### From an Arrow Table
You can also create LanceDB tables directly from PyArrow tables === "Python"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports float16 data type!
```python ```python
table = pa.Table.from_arrays( import pyarrows as pa
import numpy as np
dim = 16
total = 2
schema = pa.schema(
[ [
pa.array([[3.1, 4.1, 5.1, 6.1], [5.9, 26.5, 4.7, 32.8]], pa.field("vector", pa.list_(pa.float16(), dim)),
pa.list_(pa.float32(), 4)), pa.field("text", pa.string())
pa.array(["foo", "bar"]), ]
pa.array([10.0, 20.0]),
],
["vector", "item", "price"],
) )
data = pa.Table.from_arrays(
[
pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],
pa.list_(pa.float16(), dim)),
pa.array(["foo", "bar"])
],
["vector", "text"],
)
tbl = db.create_table("f16_tbl", data, schema=schema)
```
db = lancedb.connect("db") === "Javascript"
You can also create LanceDB tables directly from Arrow tables.
LanceDB supports Float16 data type!
tbl = db.create_table("my_table", table) ```javascript
--8<-- "docs/src/basic_legacy.ts:create_f16_table"
``` ```
### From Pydantic Models ### From Pydantic Models
When you create an empty table without data, you must specify the table schema. When you create an empty table without data, you must specify the table schema.
LanceDB supports creating tables by specifying a PyArrow schema or a specialized LanceDB supports creating tables by specifying a PyArrow schema or a specialized
Pydantic model called `LanceModel`. Pydantic model called `LanceModel`.
@@ -261,37 +314,6 @@ This guide will show how to create tables, insert data into them, and update the
You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example. You can also use iterators of other types like Pandas DataFrame or Pylists directly in the above example.
=== "JavaScript"
Initialize a VectorDB connection and create a table using one of the many methods listed below.
```javascript
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
```
You can create a LanceDB table in JavaScript using an array of JSON records as follows.
```javascript
const tb = await db.createTable("my_table", [{
"vector": [3.1, 4.1],
"item": "foo",
"price": 10.0
}, {
"vector": [5.9, 26.5],
"item": "bar",
"price": 20.0
}]);
```
!!! info "Note"
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
```javascript
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
```
## Open existing tables ## Open existing tables
=== "Python" === "Python"

View File

@@ -0,0 +1,49 @@
# Hybrid Search
Hybrid Search is a broad (often misused) term. It can mean anything from combining multiple methods for searching, to applying ranking methods to better sort the results. In this blog, we use the definition of "hybrid search" to mean using a combination of keyword-based and vector search.
## The challenge of (re)ranking search results
Once you have a group of the most relevant search results from multiple search sources, you'd likely standardize the score and rank them accordingly. This process can also be seen as another independent step-reranking.
There are two approaches for reranking search results from multiple sources.
* <b>Score-based</b>: Calculate final relevance scores based on a weighted linear combination of individual search algorithm scores. Example-Weighted linear combination of semantic search & keyword-based search results.
* <b>Relevance-based</b>: Discards the existing scores and calculates the relevance of each search result-query pair. Example-Cross Encoder models
Even though there are many strategies for reranking search results, none works for all cases. Moreover, evaluating them itself is a challenge. Also, reranking can be dataset, application specific so it's hard to generalize.
### Example evaluation of hybrid search with Reranking
Here's some evaluation numbers from experiment comparing these re-rankers on about 800 queries. It is modified version of an evaluation script from [llama-index](https://github.com/run-llama/finetune-embedding/blob/main/evaluate.ipynb) that measures hit-rate at top-k.
<b> With OpenAI ada2 embedding </b>
Vector Search baseline - `0.64`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.73` | `0.74` | `0.85` |
| Cross Encoder | `0.71` | `0.70` | `0.77` |
| Cohere | `0.81` | `0.81` | `0.85` |
| ColBERT | `0.68` | `0.68` | `0.73` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/d57b1780-ef27-414c-a5c3-73bee7808a45">
</p>
<b> With OpenAI embedding-v3-small </b>
Vector Search baseline - `0.59`
| Reranker | Top-3 | Top-5 | Top-10 |
| --- | --- | --- | --- |
| Linear Combination | `0.68` | `0.70` | `0.84` |
| Cross Encoder | `0.72` | `0.72` | `0.79` |
| Cohere | `0.79` | `0.79` | `0.84` |
| ColBERT | `0.70` | `0.70` | `0.76` |
<p>
<img src="https://github.com/AyushExel/assets/assets/15766192/259adfd2-6ec6-4df6-a77d-1456598970dd">
</p>
### Conclusion
The results show that the reranking methods are able to improve the search results. However, the improvement is not consistent across all rerankers. The choice of reranker depends on the dataset and the application. It is also important to note that the reranking methods are not a replacement for the search methods. They are complementary and should be used together to get the best results. The speed to recall tradeoff is also an important factor to consider when choosing the reranker.

View File

@@ -0,0 +1,242 @@
# Hybrid Search
LanceDB supports both semantic and keyword-based search (also termed full-text search, or FTS). In real world applications, it is often useful to combine these two approaches to get the best best results. For example, you may want to search for a document that is semantically similar to a query document, but also contains a specific keyword. This is an example of *hybrid search*, a search algorithm that combines multiple search techniques.
## Hybrid search in LanceDB
You can perform hybrid search in LanceDB by combining the results of semantic and full-text search via a reranking algorithm of your choice. LanceDB provides multiple rerankers out of the box. However, you can always write a custom reranker if your use case need more sophisticated logic .
```python
import os
import lancedb
import openai
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
db = lancedb.connect("~/.lancedb")
# Ingest embedding function in LanceDB table
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
embeddings = get_registry().get("openai").create()
class Documents(LanceModel):
vector: Vector(embeddings.ndims()) = embeddings.VectorField()
text: str = embeddings.SourceField()
table = db.create_table("documents", schema=Documents)
data = [
{ "text": "rebel spaceships striking from a hidden base"},
{ "text": "have won their first victory against the evil Galactic Empire"},
{ "text": "during the battle rebel spies managed to steal secret plans"},
{ "text": "to the Empire's ultimate weapon the Death Star"}
]
# ingest docs with auto-vectorization
table.add(data)
# Create a fts index before the hybrid search
table.create_fts_index("text")
# hybrid search with default re-ranker
results = table.search("flower moon", query_type="hybrid").to_pandas()
```
By default, LanceDB uses `LinearCombinationReranker(weight=0.7)` to combine and rerank the results of semantic and full-text search. You can customize the hyperparameters as needed or write your own custom reranker. Here's how you can use any of the available rerankers:
### `rerank()` arguments
* `normalize`: `str`, default `"score"`:
The method to normalize the scores. Can be "rank" or "score". If "rank", the scores are converted to ranks and then normalized. If "score", the scores are normalized directly.
* `reranker`: `Reranker`, default `LinearCombinationReranker(weight=0.7)`.
The reranker to use. If not specified, the default reranker is used.
## Available Rerankers
LanceDB provides a number of re-rankers out of the box. You can use any of these re-rankers by passing them to the `rerank()` method. Here's a list of available re-rankers:
### Linear Combination Reranker
This is the default re-ranker used by LanceDB. It combines the results of semantic and full-text search using a linear combination of the scores. The weights for the linear combination can be specified. It defaults to 0.7, i.e, 70% weight for semantic search and 30% weight for full-text search.
```python
from lancedb.rerankers import LinearCombinationReranker
reranker = LinearCombinationReranker(weight=0.3) # Use 0.3 as the weight for vector search
results = table.search("rebel", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `weight`: `float`, default `0.7`:
The weight to use for the semantic search score. The weight for the full-text search score is `1 - weights`.
* `fill`: `float`, default `1.0`:
The score to give to results that are only in one of the two result sets.This is treated as penalty, so a higher value means a lower score.
TODO: We should just hardcode this-- its pretty confusing as we invert scores to calculate final score
* `return_score` : str, default `"relevance"`
options are "relevance" or "all"
The type of score to return. If "relevance", will return only the `_relevance_score. If "all", will return all scores from the vector and FTS search along with the relevance score.
### Cohere Reranker
This re-ranker uses the [Cohere](https://cohere.ai/) API to combine the results of semantic and full-text search. You can use this re-ranker by passing `CohereReranker()` to the `rerank()` method. Note that you'll need to set the `COHERE_API_KEY` environment variable to use this re-ranker.
```python
from lancedb.rerankers import CohereReranker
reranker = CohereReranker()
results = table.search("vampire weekend", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : str, default `"rerank-english-v2.0"`
The name of the cross encoder model to use. Available cohere models are:
- rerank-english-v2.0
- rerank-multilingual-v2.0
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `top_n` : str, default `None`
The number of results to return. If None, will return all results.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### Cross Encoder Reranker
This reranker uses the [Sentence Transformers](https://www.sbert.net/) library to combine the results of semantic and full-text search. You can use it by passing `CrossEncoderReranker()` to the `rerank()` method.
```python
from lancedb.rerankers import CrossEncoderReranker
reranker = CrossEncoderReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model` : str, default `"cross-encoder/ms-marco-TinyBERT-L-6"`
The name of the cross encoder model to use. Available cross encoder models can be found [here](https://www.sbert.net/docs/pretrained_cross-encoders.html)
* `column` : str, default `"text"`
The name of the column to use as input to the cross encoder model.
* `device` : str, default `None`
The device to use for the cross encoder model. If None, will use "cuda" if available, otherwise "cpu".
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### ColBERT Reranker
This reranker uses the ColBERT model to combine the results of semantic and full-text search. You can use it by passing `ColbertrReranker()` to the `rerank()` method.
ColBERT reranker model calculates relevance of given docs against the query and don't take existing fts and vector search scores into account, so it currently only supports `return_score="relevance"`. By default, it looks for `text` column to rerank the results. But you can specify the column name to use as input to the cross encoder model as described below.
```python
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"colbert-ir/colbertv2.0"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are `"relevance"` or `"all"`. Only `"relevance"` is supported for now.
!!! Note
Only returns `_relevance_score`. Does not support `return_score = "all"`.
### OpenAI Reranker
This reranker uses the OpenAI API to combine the results of semantic and full-text search. You can use it by passing `OpenaiReranker()` to the `rerank()` method.
!!! Note
This prompts chat model to rerank results which is not a dedicated reranker model. This should be treated as experimental.
!!! Tip
- You might run out of token limit so set the search `limits` based on your token limit.
- It is recommended to use gpt-4-turbo-preview, the default model, older models might lead to undesired behaviour
```python
from lancedb.rerankers import OpenaiReranker
reranker = OpenaiReranker()
results = table.search("harmony hall", query_type="hybrid").rerank(reranker=reranker).to_pandas()
```
### Arguments
----------------
* `model_name` : `str`, default `"gpt-4-turbo-preview"`
The name of the cross encoder model to use.
* `column` : `str`, default `"text"`
The name of the column to use as input to the cross encoder model.
* `return_score` : `str`, default `"relevance"`
options are "relevance" or "all". Only "relevance" is supported for now.
* `api_key` : `str`, default `None`
The API key to use. If None, will use the OPENAI_API_KEY environment variable.
## Building Custom Rerankers
You can build your own custom reranker by subclassing the `Reranker` class and implementing the `rerank_hybrid()` method. Here's an example of a custom reranker that combines the results of semantic and full-text search using a linear combination of the scores.
The `Reranker` base interface comes with a `merge_results()` method that can be used to combine the results of semantic and full-text search. This is a vanilla merging algorithm that simply concatenates the results and removes the duplicates without taking the scores into consideration. It only keeps the first copy of the row encountered. This works well in cases that don't require the scores of semantic and full-text search to combine the results. If you want to use the scores or want to support `return_score="all"`, you'll need to implement your own merging algorithm.
```python
from lancedb.rerankers import Reranker
import pyarrow as pa
class MyReranker(Reranker):
def __init__(self, param1, param2, ..., return_score="relevance"):
super().__init__(return_score)
self.param1 = param1
self.param2 = param2
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table):
# Use the built-in merging function
combined_result = self.merge_results(vector_results, fts_results)
# Do something with the combined results
# ...
# Return the combined results
return combined_result
```
### Example of a Custom Reranker
For the sake of simplicity let's build custom reranker that just enchances the Cohere Reranker by accepting a filter query, and accept other CohereReranker params as kwags.
```python
from typing import List, Union
import pandas as pd
from lancedb.rerankers import CohereReranker
class MofidifiedCohereReranker(CohereReranker):
def __init__(self, filters: Union[str, List[str]], **kwargs):
super().__init__(**kwargs)
filters = filters if isinstance(filters, list) else [filters]
self.filters = filters
def rerank_hybrid(self, query: str, vector_results: pa.Table, fts_results: pa.Table)-> pa.Table:
combined_result = super().rerank_hybrid(query, vector_results, fts_results)
df = combined_result.to_pandas()
for filter in self.filters:
df = df.query("not text.str.contains(@filter)")
return pa.Table.from_pandas(df)
```
!!! tip
The `vector_results` and `fts_results` are pyarrow tables. You can convert them to pandas dataframes using `to_pandas()` method and perform any operations you want. After you are done, you can convert the dataframe back to pyarrow table using `pa.Table.from_pandas()` method and return it.

View File

@@ -290,7 +290,7 @@
"from lancedb.pydantic import LanceModel, Vector\n", "from lancedb.pydantic import LanceModel, Vector\n",
"\n", "\n",
"class Pets(LanceModel):\n", "class Pets(LanceModel):\n",
" vector: Vector(clip.ndims) = clip.VectorField()\n", " vector: Vector(clip.ndims()) = clip.VectorField()\n",
" image_uri: str = clip.SourceField()\n", " image_uri: str = clip.SourceField()\n",
"\n", "\n",
" @property\n", " @property\n",
@@ -360,7 +360,7 @@
" table = db.create_table(\"pets\", schema=Pets)\n", " table = db.create_table(\"pets\", schema=Pets)\n",
" # use a sampling of 1000 images\n", " # use a sampling of 1000 images\n",
" p = Path(\"~/Downloads/images\").expanduser()\n", " p = Path(\"~/Downloads/images\").expanduser()\n",
" uris = [str(f) for f in p.iterdir()]\n", " uris = [str(f) for f in p.glob(\"*.jpg\")]\n",
" uris = sample(uris, 1000)\n", " uris = sample(uris, 1000)\n",
" table.add(pd.DataFrame({\"image_uri\": uris}))" " table.add(pd.DataFrame({\"image_uri\": uris}))"
] ]
@@ -543,7 +543,7 @@
], ],
"source": [ "source": [
"from PIL import Image\n", "from PIL import Image\n",
"p = Path(\"/Users/changshe/Downloads/images/samoyed_100.jpg\")\n", "p = Path(\"~/Downloads/images/samoyed_100.jpg\").expanduser()\n",
"query_image = Image.open(p)\n", "query_image = Image.open(p)\n",
"query_image" "query_image"
] ]

View File

@@ -23,10 +23,8 @@ from multiprocessing import Pool
import lance import lance
import pyarrow as pa import pyarrow as pa
from datasets import load_dataset from datasets import load_dataset
from PIL import Image
from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast from transformers import CLIPModel, CLIPProcessor, CLIPTokenizerFast
import lancedb
MODEL_ID = "openai/clip-vit-base-patch32" MODEL_ID = "openai/clip-vit-base-patch32"

File diff suppressed because it is too large Load Diff

View File

@@ -13,7 +13,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 50, "execution_count": 2,
"id": "c1b4e34b-a49c-471d-a343-a5940bb5138a", "id": "c1b4e34b-a49c-471d-a343-a5940bb5138a",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -23,7 +23,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 1, "execution_count": 3,
"id": "4e5a8d07-d9a1-48c1-913a-8e0629289579", "id": "4e5a8d07-d9a1-48c1-913a-8e0629289579",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -44,7 +44,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 4,
"id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9", "id": "5df12f66-8d99-43ad-8d0b-22189ec0a6b9",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -62,7 +62,7 @@
"long: [[-122.7,-74.1]]" "long: [[-122.7,-74.1]]"
] ]
}, },
"execution_count": 2, "execution_count": 4,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -90,7 +90,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 3, "execution_count": 5,
"id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e", "id": "f4d87ae9-0ccb-48eb-b31d-bb8f2370e47e",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -108,7 +108,7 @@
"long: [[-122.7,-74.1]]" "long: [[-122.7,-74.1]]"
] ]
}, },
"execution_count": 3, "execution_count": 5,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -135,10 +135,17 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 8, "execution_count": 6,
"id": "25f34bcf-fca0-4431-8601-eac95d1bd347", "id": "25f34bcf-fca0-4431-8601-eac95d1bd347",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[2024-01-31T18:59:33Z WARN lance::dataset] No existing dataset at /Users/qian/Work/LanceDB/lancedb/docs/src/notebooks/.lancedb/table3.lance, it will be created\n"
]
},
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
@@ -148,7 +155,7 @@
"long: float" "long: float"
] ]
}, },
"execution_count": 8, "execution_count": 6,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -171,45 +178,51 @@
"id": "4df51925-7ca2-4005-9c72-38b3d26240c6", "id": "4df51925-7ca2-4005-9c72-38b3d26240c6",
"metadata": {}, "metadata": {},
"source": [ "source": [
"### From PyArrow Tables\n", "### From an Arrow Table\n",
"\n", "\n",
"You can also create LanceDB tables directly from pyarrow tables" "You can also create LanceDB tables directly from pyarrow tables. LanceDB supports float16 type."
] ]
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 12, "execution_count": 7,
"id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f", "id": "90a880f6-be43-4c9d-ba65-0b05197c0f6f",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"vector: fixed_size_list<item: float>[2]\n", "vector: fixed_size_list<item: halffloat>[16]\n",
" child 0, item: float\n", " child 0, item: halffloat\n",
"item: string\n", "text: string"
"price: double"
] ]
}, },
"execution_count": 12, "execution_count": 7,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
], ],
"source": [ "source": [
"table = pa.Table.from_arrays(\n", "import numpy as np\n",
"\n",
"dim = 16\n",
"total = 2\n",
"schema = pa.schema(\n",
" [\n", " [\n",
" pa.array([[3.1, 4.1], [5.9, 26.5]],\n", " pa.field(\"vector\", pa.list_(pa.float16(), dim)),\n",
" pa.list_(pa.float32(), 2)),\n", " pa.field(\"text\", pa.string())\n",
" pa.array([\"foo\", \"bar\"]),\n", " ]\n",
" pa.array([10.0, 20.0]),\n", ")\n",
"data = pa.Table.from_arrays(\n",
" [\n",
" pa.array([np.random.randn(dim).astype(np.float16) for _ in range(total)],\n",
" pa.list_(pa.float16(), dim)),\n",
" pa.array([\"foo\", \"bar\"])\n",
" ],\n", " ],\n",
" [\"vector\", \"item\", \"price\"],\n", " [\"vector\", \"text\"],\n",
" )\n", ")\n",
"\n", "\n",
"db = lancedb.connect(\"db\")\n", "tbl = db.create_table(\"f16_tbl\", data, schema=schema)\n",
"\n",
"tbl = db.create_table(\"test1\", table, mode=\"overwrite\")\n",
"tbl.schema" "tbl.schema"
] ]
}, },
@@ -225,7 +238,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 13, "execution_count": 8,
"id": "d81121d7-e4b7-447c-a48c-974b6ebb464a", "id": "d81121d7-e4b7-447c-a48c-974b6ebb464a",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -240,7 +253,7 @@
"imdb_id: int64 not null" "imdb_id: int64 not null"
] ]
}, },
"execution_count": 13, "execution_count": 8,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -282,7 +295,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 14, "execution_count": 9,
"id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508", "id": "bc247142-4e3c-41a2-b94c-8e00d2c2a508",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -292,7 +305,7 @@
"LanceTable(table4)" "LanceTable(table4)"
] ]
}, },
"execution_count": 14, "execution_count": 9,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -333,7 +346,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 16, "execution_count": 10,
"id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f", "id": "25ad3523-e0c9-4c28-b3df-38189c4e0e5f",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -346,7 +359,7 @@
"price: double not null" "price: double not null"
] ]
}, },
"execution_count": 16, "execution_count": 10,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -385,7 +398,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 17, "execution_count": 11,
"id": "2814173a-eacc-4dd8-a64d-6312b44582cc", "id": "2814173a-eacc-4dd8-a64d-6312b44582cc",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -411,7 +424,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 18, "execution_count": 12,
"id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45", "id": "df9e13c0-41f6-437f-9dfa-2fd71d3d9c45",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -421,7 +434,7 @@
"['table6', 'table4', 'table5', 'movielens_small']" "['table6', 'table4', 'table5', 'movielens_small']"
] ]
}, },
"execution_count": 18, "execution_count": 12,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -432,7 +445,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 20, "execution_count": 13,
"id": "9343f5ad-6024-42ee-ac2f-6c1471df8679", "id": "9343f5ad-6024-42ee-ac2f-6c1471df8679",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -541,7 +554,7 @@
"9 [5.9, 26.5] bar 20.0" "9 [5.9, 26.5] bar 20.0"
] ]
}, },
"execution_count": 20, "execution_count": 13,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -564,7 +577,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 21, "execution_count": 14,
"id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab", "id": "8a56250f-73a1-4c26-a6ad-5c7a0ce3a9ab",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -590,7 +603,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 22, "execution_count": 15,
"id": "030c7057-b98e-4e2f-be14-b8c1f927f83c", "id": "030c7057-b98e-4e2f-be14-b8c1f927f83c",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -621,7 +634,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 24, "execution_count": 16,
"id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f", "id": "e7a17de2-08d2-41b7-bd05-f63d1045ab1f",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -629,16 +642,16 @@
"name": "stdout", "name": "stdout",
"output_type": "stream", "output_type": "stream",
"text": [ "text": [
"32\n" "22\n"
] ]
}, },
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"17" "12"
] ]
}, },
"execution_count": 24, "execution_count": 16,
"metadata": {}, "metadata": {},
"output_type": "execute_result" "output_type": "execute_result"
} }
@@ -661,7 +674,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 17,
"id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7", "id": "fe3310bd-08f4-4a22-a63b-b3127d22f9f7",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -681,25 +694,20 @@
"8 [3.1, 4.1] foo 10.0\n", "8 [3.1, 4.1] foo 10.0\n",
"9 [3.1, 4.1] foo 10.0\n", "9 [3.1, 4.1] foo 10.0\n",
"10 [3.1, 4.1] foo 10.0\n", "10 [3.1, 4.1] foo 10.0\n",
"11 [3.1, 4.1] foo 10.0\n", "11 [3.1, 4.1] foo 10.0\n"
"12 [3.1, 4.1] foo 10.0\n",
"13 [3.1, 4.1] foo 10.0\n",
"14 [3.1, 4.1] foo 10.0\n",
"15 [3.1, 4.1] foo 10.0\n",
"16 [3.1, 4.1] foo 10.0\n"
] ]
}, },
{ {
"ename": "OSError", "ename": "OSError",
"evalue": "LanceError(IO): Error during planning: column foo does not exist", "evalue": "LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23",
"output_type": "error", "output_type": "error",
"traceback": [ "traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)", "\u001b[0;31mOSError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[30], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m tbl\u001b[38;5;241m.\u001b[39mto_pandas()\n", "Cell \u001b[0;32mIn[17], line 4\u001b[0m\n\u001b[1;32m 2\u001b[0m to_remove \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m, \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;241m.\u001b[39mjoin(\u001b[38;5;28mstr\u001b[39m(v) \u001b[38;5;28;01mfor\u001b[39;00m v \u001b[38;5;129;01min\u001b[39;00m to_remove)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(tbl\u001b[38;5;241m.\u001b[39mto_pandas())\n\u001b[0;32m----> 4\u001b[0m \u001b[43mtbl\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mitem IN (\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mto_remove\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m)\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/python/lancedb/table.py:610\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 609\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 610\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lancedb/table.py:872\u001b[0m, in \u001b[0;36mLanceTable.delete\u001b[0;34m(self, where)\u001b[0m\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdelete\u001b[39m(\u001b[38;5;28mself\u001b[39m, where: \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m--> 872\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_dataset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mwhere\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/Documents/lancedb/lancedb/env/lib/python3.11/site-packages/lance/dataset.py:489\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 487\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 488\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 489\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n", "File \u001b[0;32m~/Work/LanceDB/lancedb/docs/doc-venv/lib/python3.11/site-packages/lance/dataset.py:596\u001b[0m, in \u001b[0;36mLanceDataset.delete\u001b[0;34m(self, predicate)\u001b[0m\n\u001b[1;32m 594\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(predicate, pa\u001b[38;5;241m.\u001b[39mcompute\u001b[38;5;241m.\u001b[39mExpression):\n\u001b[1;32m 595\u001b[0m predicate \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mstr\u001b[39m(predicate)\n\u001b[0;32m--> 596\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_ds\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdelete\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpredicate\u001b[49m\u001b[43m)\u001b[49m\n",
"\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist" "\u001b[0;31mOSError\u001b[0m: LanceError(IO): Error during planning: column foo does not exist, /Users/runner/work/lance/lance/rust/lance-core/src/error.rs:212:23"
] ]
} }
], ],
@@ -712,7 +720,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 43, "execution_count": null,
"id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac", "id": "87d5bc21-847f-4c81-b56e-f6dbe5d05aac",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -729,7 +737,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 44, "execution_count": null,
"id": "9cba4519-eb3a-4941-ab7e-873d762e750f", "id": "9cba4519-eb3a-4941-ab7e-873d762e750f",
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
@@ -742,7 +750,7 @@
}, },
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 46, "execution_count": null,
"id": "5bdc9801-d5ed-4871-92d0-88b27108e788", "id": "5bdc9801-d5ed-4871-92d0-88b27108e788",
"metadata": {}, "metadata": {},
"outputs": [ "outputs": [
@@ -817,7 +825,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.4" "version": "3.11.7"
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@@ -1,6 +1,9 @@
# DuckDB # DuckDB
LanceDB is very well-integrated with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This integration is done via [Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow) . In Python, LanceDB tables can also be queried with [DuckDB](https://duckdb.org/), an in-process SQL OLAP database. This means you can write complex SQL queries to analyze your data in LanceDB.
This integration is done via [Apache Arrow](https://duckdb.org/docs/guides/python/sql_on_arrow), which provides zero-copy data sharing between LanceDB and DuckDB. DuckDB is capable of passing down column selections and basic filters to LanceDB, reducing the amount of data that needs to be scanned to perform your query. Finally, the integration allows streaming data from LanceDB tables, allowing you to aggregate tables that won't fit into memory. All of this uses the same mechanism described in DuckDB's blog post *[DuckDB quacks Arrow](https://duckdb.org/2021/12/03/duck-arrow.html)*.
We can demonstrate this by first installing `duckdb` and `lancedb`. We can demonstrate this by first installing `duckdb` and `lancedb`.
@@ -19,14 +22,15 @@ data = [
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0} {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
] ]
table = db.create_table("pd_table", data=data) table = db.create_table("pd_table", data=data)
arrow_table = table.to_arrow()
``` ```
DuckDB can directly query the `pyarrow.Table` object: To query the table, first call `to_lance` to convert the table to a "dataset", which is an object that can be queried by DuckDB. Then all you need to do is reference that dataset by the same name in your SQL query.
```python ```python
import duckdb import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table") duckdb.query("SELECT * FROM arrow_table")
``` ```

View File

@@ -58,6 +58,8 @@ pip install lancedb
::: lancedb.schema.vector ::: lancedb.schema.vector
::: lancedb.merge.LanceMergeInsertBuilder
## Integrations ## Integrations
### Pydantic ### Pydantic

View File

@@ -2,11 +2,11 @@
A vector search finds the approximate or exact nearest neighbors to a given query vector. A vector search finds the approximate or exact nearest neighbors to a given query vector.
* In a recommendation system or search engine, you can find similar records to - In a recommendation system or search engine, you can find similar records to
the one you searched. the one you searched.
* In LLM and other AI applications, - In LLM and other AI applications,
each data point can be represented by [embeddings generated from existing models](embeddings/index.md), each data point can be represented by [embeddings generated from existing models](embeddings/index.md),
following which the search returns the most relevant features. following which the search returns the most relevant features.
## Distance metrics ## Distance metrics
@@ -14,15 +14,14 @@ Distance metrics are a measure of the similarity between a pair of vectors.
Currently, LanceDB supports the following metrics: Currently, LanceDB supports the following metrics:
| Metric | Description | | Metric | Description |
| ----------- | ------------------------------------ | | -------- | --------------------------------------------------------------------------- |
| `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) | | `l2` | [Euclidean / L2 distance](https://en.wikipedia.org/wiki/Euclidean_distance) |
| `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity)| | `cosine` | [Cosine Similarity](https://en.wikipedia.org/wiki/Cosine_similarity) |
| `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) | | `dot` | [Dot Production](https://en.wikipedia.org/wiki/Dot_product) |
## Exhaustive search (kNN) ## Exhaustive search (kNN)
If you do not create a vector index, LanceDB exhaustively scans the *entire* vector space If you do not create a vector index, LanceDB exhaustively scans the _entire_ vector space
and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search. and compute the distance to every vector in order to find the exact nearest neighbors. This is effectively a kNN search.
<!-- Setup Code <!-- Setup Code
@@ -38,22 +37,9 @@ data = [{"vector": row, "item": f"item {i}"}
db.create_table("my_vectors", data=data) db.create_table("my_vectors", data=data)
``` ```
--> -->
<!-- Setup Code
```javascript
const vectordb_setup = require('vectordb')
const db_setup = await vectordb_setup.connect('data/sample-lancedb')
let data = []
for (let i = 0; i < 10_000; i++) {
data.push({vector: Array(1536).fill(i), id: `${i}`, content: "", longId: `${i}`},)
}
await db_setup.createTable('my_vectors', data)
```
-->
=== "Python" === "Python"
```python ```python
import lancedb import lancedb
import numpy as np import numpy as np
@@ -70,14 +56,9 @@ await db_setup.createTable('my_vectors', data)
=== "JavaScript" === "JavaScript"
```javascript ```javascript
const vectordb = require('vectordb') --8<-- "docs/src/search_legacy.ts:import"
const db = await vectordb.connect('data/sample-lancedb')
const tbl = await db.openTable("my_vectors") --8<-- "docs/src/search_legacy.ts:search1"
const results_1 = await tbl.search(Array(1536).fill(1.2))
.limit(10)
.execute()
``` ```
By default, `l2` will be used as metric type. You can specify the metric type as By default, `l2` will be used as metric type. You can specify the metric type as
@@ -92,14 +73,10 @@ By default, `l2` will be used as metric type. You can specify the metric type as
.to_list() .to_list()
``` ```
=== "JavaScript" === "JavaScript"
```javascript ```javascript
const results_2 = await tbl.search(Array(1536).fill(1.2)) --8<-- "docs/src/search_legacy.ts:search2"
.metricType("cosine")
.limit(10)
.execute()
``` ```
## Approximate nearest neighbor (ANN) search ## Approximate nearest neighbor (ANN) search
@@ -117,7 +94,9 @@ LanceDB returns vector search results via different formats commonly used in pyt
Let's create a LanceDB table with a nested schema: Let's create a LanceDB table with a nested schema:
=== "Python" === "Python"
```python ```python
from datetime import datetime from datetime import datetime
import lancedb import lancedb
from lancedb.pydantic import LanceModel, Vector from lancedb.pydantic import LanceModel, Vector

41
docs/src/search_legacy.ts Normal file
View File

@@ -0,0 +1,41 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
// --8<-- [end:import]
import * as fs from "fs";
async function setup() {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
const db = await lancedb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
await db.createTable("my_vectors", data);
}
async () => {
await setup();
// --8<-- [start:search1]
const db = await lancedb.connect("data/sample-lancedb");
const tbl = await db.openTable("my_vectors");
const results_1 = await tbl.search(Array(1536).fill(1.2)).limit(10).execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await tbl
.search(Array(1536).fill(1.2))
.metricType(lancedb.MetricType.Cosine)
.limit(10)
.execute();
// --8<-- [end:search2]
console.log("search: done");
};

View File

@@ -34,6 +34,7 @@ const tbl = await db.createTable('myVectors', data)
--> -->
=== "Python" === "Python"
```py ```py
result = ( result = (
tbl.search([0.5, 0.2]) tbl.search([0.5, 0.2])
@@ -44,12 +45,9 @@ const tbl = await db.createTable('myVectors', data)
``` ```
=== "JavaScript" === "JavaScript"
```javascript ```javascript
let result = await tbl.search(Array(1536).fill(0.5)) --8<-- "docs/src/sql_legacy.ts:search"
.limit(1)
.filter("id = 10")
.prefilter(true)
.execute()
``` ```
## SQL filters ## SQL filters
@@ -60,14 +58,14 @@ It can be used during vector search, update, and deletion operations.
Currently, Lance supports a growing list of SQL expressions. Currently, Lance supports a growing list of SQL expressions.
* ``>``, ``>=``, ``<``, ``<=``, ``=`` - `>`, `>=`, `<`, `<=`, `=`
* ``AND``, ``OR``, ``NOT`` - `AND`, `OR`, `NOT`
* ``IS NULL``, ``IS NOT NULL`` - `IS NULL`, `IS NOT NULL`
* ``IS TRUE``, ``IS NOT TRUE``, ``IS FALSE``, ``IS NOT FALSE`` - `IS TRUE`, `IS NOT TRUE`, `IS FALSE`, `IS NOT FALSE`
* ``IN`` - `IN`
* ``LIKE``, ``NOT LIKE`` - `LIKE`, `NOT LIKE`
* ``CAST`` - `CAST`
* ``regexp_match(column, pattern)`` - `regexp_match(column, pattern)`
For example, the following filter string is acceptable: For example, the following filter string is acceptable:
@@ -82,29 +80,27 @@ For example, the following filter string is acceptable:
=== "Javascript" === "Javascript"
```javascript ```javascript
await tbl.search(Array(1536).fill(0)) --8<-- "docs/src/sql_legacy.ts:vec_search"
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute()
``` ```
If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html), If your column name contains special characters or is a [SQL Keyword](https://docs.rs/sqlparser/latest/sqlparser/keywords/index.html),
you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the you can use backtick (`` ` ``) to escape it. For nested fields, each segment of the
path must be wrapped in backticks. path must be wrapped in backticks.
=== "SQL" === "SQL"
```sql ```sql
`CUBE` = 10 AND `column name with space` IS NOT NULL `CUBE` = 10 AND `column name with space` IS NOT NULL
AND `nested with space`.`inner with space` < 2 AND `nested with space`.`inner with space` < 2
``` ```
!!! warning !!!warning "Field names containing periods (`.`) are not supported."
Field names containing periods (``.``) are not supported.
Literals for dates, timestamps, and decimals can be written by writing the string Literals for dates, timestamps, and decimals can be written by writing the string
value after the type name. For example value after the type name. For example
=== "SQL" === "SQL"
```sql ```sql
date_col = date '2021-01-01' date_col = date '2021-01-01'
and timestamp_col = timestamp '2021-01-01 00:00:00' and timestamp_col = timestamp '2021-01-01 00:00:00'
@@ -115,48 +111,46 @@ For timestamp columns, the precision can be specified as a number in the type
parameter. Microsecond precision (6) is the default. parameter. Microsecond precision (6) is the default.
| SQL | Time unit | | SQL | Time unit |
|------------------|--------------| | -------------- | ------------ |
| ``timestamp(0)`` | Seconds | | `timestamp(0)` | Seconds |
| ``timestamp(3)`` | Milliseconds | | `timestamp(3)` | Milliseconds |
| ``timestamp(6)`` | Microseconds | | `timestamp(6)` | Microseconds |
| ``timestamp(9)`` | Nanoseconds | | `timestamp(9)` | Nanoseconds |
LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format. LanceDB internally stores data in [Apache Arrow](https://arrow.apache.org/) format.
The mapping from SQL types to Arrow types is: The mapping from SQL types to Arrow types is:
| SQL type | Arrow type | | SQL type | Arrow type |
|----------|------------| | --------------------------------------------------------- | ------------------ |
| ``boolean`` | ``Boolean`` | | `boolean` | `Boolean` |
| ``tinyint`` / ``tinyint unsigned`` | ``Int8`` / ``UInt8`` | | `tinyint` / `tinyint unsigned` | `Int8` / `UInt8` |
| ``smallint`` / ``smallint unsigned`` | ``Int16`` / ``UInt16`` | | `smallint` / `smallint unsigned` | `Int16` / `UInt16` |
| ``int`` or ``integer`` / ``int unsigned`` or ``integer unsigned`` | ``Int32`` / ``UInt32`` | | `int` or `integer` / `int unsigned` or `integer unsigned` | `Int32` / `UInt32` |
| ``bigint`` / ``bigint unsigned`` | ``Int64`` / ``UInt64`` | | `bigint` / `bigint unsigned` | `Int64` / `UInt64` |
| ``float`` | ``Float32`` | | `float` | `Float32` |
| ``double`` | ``Float64`` | | `double` | `Float64` |
| ``decimal(precision, scale)`` | ``Decimal128`` | | `decimal(precision, scale)` | `Decimal128` |
| ``date`` | ``Date32`` | | `date` | `Date32` |
| ``timestamp`` | ``Timestamp`` [^1] | | `timestamp` | `Timestamp` [^1] |
| ``string`` | ``Utf8`` | | `string` | `Utf8` |
| ``binary`` | ``Binary`` | | `binary` | `Binary` |
[^1]: See precision mapping in previous table. [^1]: See precision mapping in previous table.
## Filtering without Vector Search ## Filtering without Vector Search
You can also filter your data without search. You can also filter your data without search.
=== "Python" === "Python"
```python ```python
tbl.search().where("id = 10").limit(10).to_arrow() tbl.search().where("id = 10").limit(10).to_arrow()
``` ```
=== "JavaScript" === "JavaScript"
```javascript ```javascript
await tbl.where('id = 10').limit(10).execute() --8<---- "docs/src/sql_legacy.ts:sql_search"
``` ```
!!! warning !!!warning "If your table is large, this could potentially return a very large amount of data. Please be sure to use a `limit` clause unless you're sure you want to return the whole result set."
If your table is large, this could potentially return a very large
amount of data. Please be sure to use a `limit` clause unless
you're sure you want to return the whole result set.

38
docs/src/sql_legacy.ts Normal file
View File

@@ -0,0 +1,38 @@
import * as vectordb from "vectordb";
(async () => {
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: i,
item: `item ${i}`,
strId: `${i}`,
});
}
const tbl = await db.createTable("myVectors", data);
// --8<-- [start:search]
let result = await tbl
.search(Array(1536).fill(0.5))
.limit(1)
.filter("id = 10")
.prefilter(true)
.execute();
// --8<-- [end:search]
// --8<-- [start:vec_search]
await tbl
.search(Array(1536).fill(0))
.where("(item IN ('item 0', 'item 2')) AND (id > 10)")
.execute();
// --8<-- [end:vec_search]
// --8<-- [start:sql_search]
await tbl.filter("id = 10").limit(10).execute();
// --8<-- [end:sql_search]
console.log("SQL search: done");
})();

View File

@@ -1,54 +0,0 @@
const glob = require("glob");
const fs = require("fs");
const path = require("path");
const globString = "../src/**/*.md";
const excludedGlobs = [
"../src/fts.md",
"../src/embedding.md",
"../src/examples/*.md",
"../src/guides/tables.md",
"../src/embeddings/*.md",
];
const nodePrefix = "javascript";
const nodeFile = ".js";
const nodeFolder = "node";
const asyncPrefix = "(async () => {\n";
const asyncSuffix = "})();";
function* yieldLines(lines, prefix, suffix) {
let inCodeBlock = false;
for (const line of lines) {
if (line.trim().startsWith(prefix + nodePrefix)) {
inCodeBlock = true;
} else if (inCodeBlock && line.trim().startsWith(suffix)) {
inCodeBlock = false;
yield "\n";
} else if (inCodeBlock) {
yield line;
}
}
}
const files = glob.sync(globString, { recursive: true });
const excludedFiles = glob.sync(excludedGlobs, { recursive: true });
for (const file of files.filter((file) => !excludedFiles.includes(file))) {
const lines = [];
const data = fs.readFileSync(file, "utf-8");
const fileLines = data.split("\n");
for (const line of yieldLines(fileLines, "```", "```")) {
lines.push(line);
}
if (lines.length > 0) {
const fileName = path.basename(file, ".md");
const outPath = path.join(nodeFolder, fileName, `${fileName}${nodeFile}`);
console.log(outPath)
fs.mkdirSync(path.dirname(outPath), { recursive: true });
fs.writeFileSync(outPath, asyncPrefix + "\n" + lines.join("\n") + asyncSuffix);
}
}

View File

@@ -14,6 +14,7 @@ excluded_globs = [
"../src/concepts/*.md", "../src/concepts/*.md",
"../src/ann_indexes.md", "../src/ann_indexes.md",
"../src/basic.md", "../src/basic.md",
"../src/hybrid_search/hybrid_search.md",
] ]
python_prefix = "py" python_prefix = "py"
@@ -48,6 +49,7 @@ def yield_lines(lines: Iterator[str], prefix: str, suffix: str):
if not skip_test: if not skip_test:
yield line[strip_length:] yield line[strip_length:]
for file in filter(lambda file: file not in excluded_files, files): for file in filter(lambda file: file not in excluded_files, files):
with open(file, "r") as f: with open(file, "r") as f:
lines = list(yield_lines(iter(f), "```", "```")) lines = list(yield_lines(iter(f), "```", "```"))

View File

@@ -1,13 +0,0 @@
{
"name": "lancedb-docs-test",
"version": "1.0.0",
"description": "",
"author": "",
"license": "ISC",
"dependencies": {
"fs": "^0.0.1-security",
"glob": "^10.2.7",
"path": "^0.12.7",
"vectordb": "https://gitpkg.now.sh/lancedb/lancedb/node?main"
}
}

17
docs/tsconfig.json Normal file
View File

@@ -0,0 +1,17 @@
{
"include": [
"src/*.ts",
],
"compilerOptions": {
"target": "es2022",
"module": "nodenext",
"declaration": true,
"outDir": "./dist",
"strict": true,
"allowJs": true,
"resolveJsonModule": true,
},
"exclude": [
"./dist/*",
]
}

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.4", "version": "0.4.10",
"lockfileVersion": 3, "lockfileVersion": 3,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.4.4", "version": "0.4.10",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -53,11 +53,11 @@
"uuid": "^9.0.0" "uuid": "^9.0.0"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.4", "@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.4", "@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.4", "@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.4", "@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.4" "@lancedb/vectordb-win32-x64-msvc": "0.4.10"
} }
}, },
"node_modules/@75lb/deep-merge": { "node_modules/@75lb/deep-merge": {
@@ -328,6 +328,66 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.4.10.tgz",
"integrity": "sha512-y/uHOGb0g15pvqv5tdTyZ6oN+0QVpBmZDzKFWW6pPbuSZjB2uPqcs+ti0RB+AUdmS21kavVQqaNsw/HLKEGrHA==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.4.10.tgz",
"integrity": "sha512-XbfR58OkQpAe0xMSTrwJh9ZjGSzG9EZ7zwO6HfYem8PxcLYAcC6eWRWoSG/T0uObyrPTcYYyvHsp0eNQWYBFAQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.4.10.tgz",
"integrity": "sha512-x40WKH9b+KxorRmKr9G7fv8p5mMj8QJQvRMA0v6v+nbZHr2FLlAZV+9mvhHOnm4AGIkPP5335cUgv6Qz6hgwkQ==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.4.10.tgz",
"integrity": "sha512-CTGPpuzlqq2nVjUxI9gAJOT1oBANIovtIaFsOmBSnEAHgX7oeAxKy2b6L/kJzsgqSzvR5vfLwYcWFrr6ZmBxSA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.4.10",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.4.10.tgz",
"integrity": "sha512-Fd7r74coZyrKzkfXg4WthqOL+uKyJyPTia6imcrMNqKOlTGdKmHf02Qi2QxWZrFaabkRYo4Tpn5FeRJ3yYX8CA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": { "node_modules/@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.4.4", "version": "0.4.10",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
"scripts": { "scripts": {
"tsc": "tsc -b", "tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json && tsc -b", "build": "npm run tsc && cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release", "build-release": "npm run build -- --release",
"test": "npm run tsc && mocha -recursive dist/test", "test": "npm run tsc && mocha -recursive dist/test",
"integration-test": "npm run tsc && mocha -recursive dist/integration_test", "integration-test": "npm run tsc && mocha -recursive dist/integration_test",
@@ -17,7 +17,11 @@
}, },
"repository": { "repository": {
"type": "git", "type": "git",
"url": "https://github.com/lancedb/lancedb/node" "url": "https://github.com/lancedb/lancedb.git"
},
"homepage": "https://lancedb.github.io/lancedb/",
"bugs": {
"url": "https://github.com/lancedb/lancedb/issues"
}, },
"keywords": [ "keywords": [
"data-format", "data-format",
@@ -81,10 +85,10 @@
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.4", "@lancedb/vectordb-darwin-arm64": "0.4.10",
"@lancedb/vectordb-darwin-x64": "0.4.4", "@lancedb/vectordb-darwin-x64": "0.4.10",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.4", "@lancedb/vectordb-linux-arm64-gnu": "0.4.10",
"@lancedb/vectordb-linux-x64-gnu": "0.4.4", "@lancedb/vectordb-linux-x64-gnu": "0.4.10",
"@lancedb/vectordb-win32-x64-msvc": "0.4.4" "@lancedb/vectordb-win32-x64-msvc": "0.4.10"
} }
} }

View File

@@ -14,8 +14,6 @@
import { import {
Field, Field,
type FixedSizeListBuilder,
Float32,
makeBuilder, makeBuilder,
RecordBatchFileWriter, RecordBatchFileWriter,
Utf8, Utf8,
@@ -26,14 +24,19 @@ import {
Table as ArrowTable, Table as ArrowTable,
RecordBatchStreamWriter, RecordBatchStreamWriter,
List, List,
Float64,
RecordBatch, RecordBatch,
makeData, makeData,
Struct, Struct,
type Float type Float,
DataType,
Binary,
Float32
} from 'apache-arrow' } from 'apache-arrow'
import { type EmbeddingFunction } from './index' import { type EmbeddingFunction } from './index'
/*
* Options to control how a column should be converted to a vector array
*/
export class VectorColumnOptions { export class VectorColumnOptions {
/** Vector column type. */ /** Vector column type. */
type: Float = new Float32() type: Float = new Float32()
@@ -45,14 +48,50 @@ export class VectorColumnOptions {
/** Options to control the makeArrowTable call. */ /** Options to control the makeArrowTable call. */
export class MakeArrowTableOptions { export class MakeArrowTableOptions {
/** Provided schema. */ /*
* Schema of the data.
*
* If this is not provided then the data type will be inferred from the
* JS type. Integer numbers will become int64, floating point numbers
* will become float64 and arrays will become variable sized lists with
* the data type inferred from the first element in the array.
*
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: Schema schema?: Schema
/** Vector columns */ /*
* Mapping from vector column name to expected type
*
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
* However, `makeArrowTable` will not infer this by default (it creates
* variable size list arrays). This field can be used to indicate that a column
* should be treated as a vector column and converted to a fixed size list.
*
* The keys should be the names of the vector columns. The value specifies the
* expected data type of the vector columns.
*
* If `schema` is provided then this field is ignored.
*
* By default, the column named "vector" will be assumed to be a float32
* vector column.
*/
vectorColumns: Record<string, VectorColumnOptions> = { vectorColumns: Record<string, VectorColumnOptions> = {
vector: new VectorColumnOptions() vector: new VectorColumnOptions()
} }
/**
* If true then string columns will be encoded with dictionary encoding
*
* Set this to true if your string columns tend to repeat the same values
* often. For more precise control use the `schema` property to specify the
* data type for individual columns.
*
* If `schema` is provided then this property is ignored.
*/
dictionaryEncodeStrings: boolean = false
constructor (values?: Partial<MakeArrowTableOptions>) { constructor (values?: Partial<MakeArrowTableOptions>) {
Object.assign(this, values) Object.assign(this, values)
} }
@@ -62,8 +101,29 @@ export class MakeArrowTableOptions {
* An enhanced version of the {@link makeTable} function from Apache Arrow * An enhanced version of the {@link makeTable} function from Apache Arrow
* that supports nested fields and embeddings columns. * that supports nested fields and embeddings columns.
* *
* This function converts an array of Record<String, any> (row-major JS objects)
* to an Arrow Table (a columnar structure)
*
* Note that it currently does not support nulls. * Note that it currently does not support nulls.
* *
* If a schema is provided then it will be used to determine the resulting array
* types. Fields will also be reordered to fit the order defined by the schema.
*
* If a schema is not provided then the types will be inferred and the field order
* will be controlled by the order of properties in the first record.
*
* If the input is empty then a schema must be provided to create an empty table.
*
* When a schema is not specified then data types will be inferred. The inference
* rules are as follows:
*
* - boolean => Bool
* - number => Float64
* - String => Utf8
* - Buffer => Binary
* - Record<String, any> => Struct
* - Array<any> => List
*
* @param data input data * @param data input data
* @param options options to control the makeArrowTable call. * @param options options to control the makeArrowTable call.
* *
@@ -86,8 +146,10 @@ export class MakeArrowTableOptions {
* ], { schema }); * ], { schema });
* ``` * ```
* *
* It guesses the vector columns if the schema is not provided. For example, * By default it assumes that the column named `vector` is a vector column
* by default it assumes that the column named `vector` is a vector column. * and it will be converted into a fixed size list array of type float32.
* The `vectorColumns` option can be used to support other vector column
* names and data types.
* *
* ```ts * ```ts
* *
@@ -134,211 +196,304 @@ export function makeArrowTable (
data: Array<Record<string, any>>, data: Array<Record<string, any>>,
options?: Partial<MakeArrowTableOptions> options?: Partial<MakeArrowTableOptions>
): ArrowTable { ): ArrowTable {
if (data.length === 0) { if (data.length === 0 && (options?.schema === undefined || options?.schema === null)) {
throw new Error('At least one record needs to be provided') throw new Error('At least one record or a schema needs to be provided')
} }
const opt = new MakeArrowTableOptions(options !== undefined ? options : {}) const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
const columns: Record<string, Vector> = {} const columns: Record<string, Vector> = {}
// TODO: sample dataset to find missing columns // TODO: sample dataset to find missing columns
const columnNames = Object.keys(data[0]) // Prefer the field ordering of the schema, if present
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
for (const colName of columnNames) { for (const colName of columnNames) {
const values = data.map((datum) => datum[colName]) if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
let vector: Vector // The field is present in the schema, but not in the data, skip it
continue
}
// Extract a single column from the records (transpose from row-major to col-major)
let values = data.map((datum) => datum[colName])
// By default (type === undefined) arrow will infer the type from the JS type
let type
if (opt.schema !== undefined) { if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority // If there is a schema provided, then use that for the type instead
vector = vectorFromArray( type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type
values, if (DataType.isInt(type) && type.bitWidth === 64) {
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type // wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
) values = values.map((v) => {
if (v === null) {
return v
}
return BigInt(v)
})
}
} else { } else {
// Otherwise, check to see if this column is one of the vector columns
// defined by opt.vectorColumns and, if so, use the fixed size list type
const vectorColumnOptions = opt.vectorColumns[colName] const vectorColumnOptions = opt.vectorColumns[colName]
if (vectorColumnOptions !== undefined) { if (vectorColumnOptions !== undefined) {
const fslType = new FixedSizeList( type = newVectorType(values[0].length, vectorColumnOptions.type)
values[0].length,
new Field('item', vectorColumnOptions.type, false)
)
vector = vectorFromArray(values, fslType)
} else {
// Normal case
vector = vectorFromArray(values)
} }
} }
columns[colName] = vector
}
try {
// Convert an Array of JS values to an arrow vector
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings)
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`)
}
}
if (opt.schema != null) {
// `new ArrowTable(columns)` infers a schema which may sometimes have
// incorrect nullability (it assumes nullable=true if there are 0 rows)
//
// `new ArrowTable(schema, columns)` will also fail because it will create a
// batch with an inferred schema and then complain that the batch schema
// does not match the provided schema.
//
// To work around this we first create a table with the wrong schema and
// then patch the schema of the batches so we can use
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns)
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const batchesFixed = firstTable.batches.map(batch => new RecordBatch(opt.schema!, batch.data))
return new ArrowTable(opt.schema, batchesFixed)
} else {
return new ArrowTable(columns) return new ArrowTable(columns)
}
} }
// Converts an Array of records into an Arrow Table, optionally applying an embeddings function to it. /**
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable (schema: Schema): ArrowTable {
return makeArrowTable([], { schema })
}
// Helper function to convert Array<Array<any>> to a variable sized list array
function makeListVector (lists: any[][]): Vector<any> {
if (lists.length === 0 || lists[0].length === 0) {
throw Error('Cannot infer list vector from empty array or empty list')
}
const sampleList = lists[0]
let inferredType
try {
const sampleVector = makeVector(sampleList)
inferredType = sampleVector.type
} catch (error: unknown) {
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', inferredType, true))
})
for (const list of lists) {
listBuilder.append(list)
}
return listBuilder.finish().toVector()
}
// Helper function to convert an Array of JS values to an Arrow Vector
function makeVector (values: any[], type?: DataType, stringAsDictionary?: boolean): Vector<any> {
if (type !== undefined) {
// No need for inference, let Arrow create it
return vectorFromArray(values, type)
}
if (values.length === 0) {
throw Error('makeVector requires at least one value or the type must be specfied')
}
const sampleValue = values.find(val => val !== null && val !== undefined)
if (sampleValue === undefined) {
throw Error('makeVector cannot infer the type if all values are null or undefined')
}
if (Array.isArray(sampleValue)) {
// Default Arrow inference doesn't handle list types
return makeListVector(values)
} else if (Buffer.isBuffer(sampleValue)) {
// Default Arrow inference doesn't handle Buffer
return vectorFromArray(values, new Binary())
} else if (!(stringAsDictionary ?? false) && (typeof sampleValue === 'string' || sampleValue instanceof String)) {
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
// because it will always use dictionary encoding for strings
return vectorFromArray(values, new Utf8())
} else {
// Convert a JS array of values to an arrow vector
return vectorFromArray(values)
}
}
async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunction<T>, schema?: Schema): Promise<ArrowTable> {
if (embeddings == null) {
return table
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
const vec = table.getChildAt(idx)!
return [name, vec]
})
const newColumns = Object.fromEntries(colEntries)
const sourceColumn = newColumns[embeddings.sourceColumn]
const destColumn = embeddings.destColumn ?? 'vector'
const innerDestType = embeddings.embeddingDataType ?? new Float32()
if (sourceColumn === undefined) {
throw new Error(`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`)
}
if (table.numRows === 0) {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
// We have an empty table and it already has the embedding column so no work needs to be done
// Note: we don't return an error like we did below because this is a common occurrence. For example,
// if we call convertToTable with 0 records and a schema that includes the embedding
return table
}
if (embeddings.embeddingDimension !== undefined) {
const destType = newVectorType(embeddings.embeddingDimension, innerDestType)
newColumns[destColumn] = makeVector([], destType)
} else if (schema != null) {
const destField = schema.fields.find(f => f.name === destColumn)
if (destField != null) {
newColumns[destColumn] = makeVector([], destField.type)
} else {
throw new Error(`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`)
}
} else {
throw new Error('Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`')
}
} else {
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(`Attempt to apply embeddings to table failed because column ${destColumn} already existed`)
}
if (table.batches.length > 1) {
throw new Error('Internal error: `makeArrowTable` unexpectedly created a table with more than one batch')
}
const values = sourceColumn.toArray()
const vectors = await embeddings.embed(values as T[])
if (vectors.length !== values.length) {
throw new Error('Embedding function did not return an embedding for each input element')
}
const destType = newVectorType(vectors[0].length, innerDestType)
newColumns[destColumn] = makeVector(vectors, destType)
}
const newTable = new ArrowTable(newColumns)
if (schema != null) {
if (schema.fields.find(f => f.name === destColumn) === undefined) {
throw new Error(`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`)
}
return alignTable(newTable, schema)
}
return newTable
}
/*
* Convert an Array of records into an Arrow Table, optionally applying an
* embeddings function to it.
*
* This function calls `makeArrowTable` first to create the Arrow Table.
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
* that call.
*
* The embedding function will be passed a column of values (based on the
* `sourceColumn` of the embedding function) and expects to receive back
* number[][] which will be converted into a fixed size list column. By
* default this will be a fixed size list of Float32 but that can be
* customized by the `embeddingDataType` property of the embedding function.
*
* If a schema is provided in `makeTableOptions` then it should include the
* embedding columns. If no schema is provded then embedding columns will
* be placed at the end of the table, after all of the input columns.
*/
export async function convertToTable<T> ( export async function convertToTable<T> (
data: Array<Record<string, unknown>>, data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T> embeddings?: EmbeddingFunction<T>,
makeTableOptions?: Partial<MakeArrowTableOptions>
): Promise<ArrowTable> { ): Promise<ArrowTable> {
if (data.length === 0) { const table = makeArrowTable(data, makeTableOptions)
throw new Error('At least one record needs to be provided') return await applyEmbeddings(table, embeddings, makeTableOptions?.schema)
}
const columns = Object.keys(data[0])
const records: Record<string, Vector> = {}
for (const columnsKey of columns) {
if (columnsKey === 'vector') {
const vectorSize = (data[0].vector as any[]).length
const listBuilder = newVectorBuilder(vectorSize)
for (const datum of data) {
if ((datum[columnsKey] as any[]).length !== vectorSize) {
throw new Error(`Invalid vector size, expected ${vectorSize}`)
}
listBuilder.append(datum[columnsKey])
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
const values = []
for (const datum of data) {
values.push(datum[columnsKey])
}
if (columnsKey === embeddings?.sourceColumn) {
const vectors = await embeddings.embed(values as T[])
records.vector = vectorFromArray(
vectors,
newVectorType(vectors[0].length)
)
}
if (typeof values[0] === 'string') {
// `vectorFromArray` converts strings into dictionary vectors, forcing it back to a string column
records[columnsKey] = vectorFromArray(values, new Utf8())
} else if (Array.isArray(values[0])) {
const elementType = getElementType(values[0])
let innerType
if (elementType === 'string') {
innerType = new Utf8()
} else if (elementType === 'number') {
innerType = new Float64()
} else {
// TODO: pass in schema if it exists, else keep going to the next element
throw new Error(`Unsupported array element type ${elementType}`)
}
const listBuilder = makeBuilder({
type: new List(new Field('item', innerType, true))
})
for (const value of values) {
listBuilder.append(value)
}
records[columnsKey] = listBuilder.finish().toVector()
} else {
// TODO if this is a struct field then recursively align the subfields
records[columnsKey] = vectorFromArray(values)
}
}
}
return new ArrowTable(records)
}
function getElementType (arr: any[]): string {
if (arr.length === 0) {
return 'undefined'
}
return typeof arr[0]
}
// Creates a new Arrow ListBuilder that stores a Vector column
function newVectorBuilder (dim: number): FixedSizeListBuilder<Float32> {
return makeBuilder({
type: newVectorType(dim)
})
} }
// Creates the Arrow Type for a Vector column with dimension `dim` // Creates the Arrow Type for a Vector column with dimension `dim`
function newVectorType (dim: number): FixedSizeList<Float32> { function newVectorType <T extends Float> (dim: number, innerType: T): FixedSizeList<T> {
// Somewhere we always default to have the elements nullable, so we need to set it to true // Somewhere we always default to have the elements nullable, so we need to set it to true
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements // otherwise we often get schema mismatches because the stored data always has schema with nullable elements
const children = new Field<Float32>('item', new Float32(), true) const children = new Field<T>('item', innerType, true)
return new FixedSizeList(dim, children) return new FixedSizeList(dim, children)
} }
// Converts an Array of records into Arrow IPC format /**
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToBuffer<T> ( export async function fromRecordsToBuffer<T> (
data: Array<Record<string, unknown>>, data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
let table = await convertToTable(data, embeddings) const table = await convertToTable(data, embeddings, { schema })
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table) const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Array of records into Arrow IPC stream format /**
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
*
* This function will call `convertToTable` and pass on `embeddings` and `schema`
*
* `schema` is required if data is empty
*/
export async function fromRecordsToStreamBuffer<T> ( export async function fromRecordsToStreamBuffer<T> (
data: Array<Record<string, unknown>>, data: Array<Record<string, unknown>>,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
let table = await convertToTable(data, embeddings) const table = await convertToTable(data, embeddings, { schema })
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table) const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Arrow Table into Arrow IPC format /**
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToBuffer<T> ( export async function fromTableToBuffer<T> (
table: ArrowTable, table: ArrowTable,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (embeddings !== undefined) { const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const source = table.getChild(embeddings.sourceColumn) const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchFileWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }
// Converts an Arrow Table into Arrow IPC stream format /**
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
*
* This function will apply `embeddings` to the table in a manner similar to
* `convertToTable`.
*
* `schema` is required if the table is empty
*/
export async function fromTableToStreamBuffer<T> ( export async function fromTableToStreamBuffer<T> (
table: ArrowTable, table: ArrowTable,
embeddings?: EmbeddingFunction<T>, embeddings?: EmbeddingFunction<T>,
schema?: Schema schema?: Schema
): Promise<Buffer> { ): Promise<Buffer> {
if (embeddings !== undefined) { const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
const source = table.getChild(embeddings.sourceColumn) const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
if (source === null) {
throw new Error(
`The embedding source column ${embeddings.sourceColumn} was not found in the Arrow Table`
)
}
const vectors = await embeddings.embed(source.toArray() as T[])
const column = vectorFromArray(vectors, newVectorType(vectors[0].length))
table = table.assign(new ArrowTable({ vector: column }))
}
if (schema !== undefined) {
table = alignTable(table, schema)
}
const writer = RecordBatchStreamWriter.writeAll(table)
return Buffer.from(await writer.toUint8Array()) return Buffer.from(await writer.toUint8Array())
} }

View File

@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import { type Float } from 'apache-arrow'
/** /**
* An embedding function that automatically creates vector representation for a given column. * An embedding function that automatically creates vector representation for a given column.
*/ */
@@ -21,6 +23,39 @@ export interface EmbeddingFunction<T> {
*/ */
sourceColumn: string sourceColumn: string
/**
* The data type of the embedding
*
* The embedding function should return `number`. This will be converted into
* an Arrow float array. By default this will be Float32 but this property can
* be used to control the conversion.
*/
embeddingDataType?: Float
/**
* The dimension of the embedding
*
* This is optional, normally this can be determined by looking at the results of
* `embed`. If this is not specified, and there is an attempt to apply the embedding
* to an empty table, then that process will fail.
*/
embeddingDimension?: number
/**
* The name of the column that will contain the embedding
*
* By default this is "vector"
*/
destColumn?: string
/**
* Should the source column be excluded from the resulting table
*
* By default the source column is included. Set this to true and
* only the embedding will be stored.
*/
excludeSource?: boolean
/** /**
* Creates a vector representation for the given values. * Creates a vector representation for the given values.
*/ */

View File

@@ -37,6 +37,7 @@ const {
tableCountRows, tableCountRows,
tableDelete, tableDelete,
tableUpdate, tableUpdate,
tableMergeInsert,
tableCleanupOldVersions, tableCleanupOldVersions,
tableCompactFiles, tableCompactFiles,
tableListIndices, tableListIndices,
@@ -48,7 +49,7 @@ const {
export { Query } export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai' export { OpenAIEmbeddingFunction } from './embedding/openai'
export { makeArrowTable, type MakeArrowTableOptions } from './arrow' export { convertToTable, makeArrowTable, type MakeArrowTableOptions } from './arrow'
const defaultAwsRegion = 'us-west-2' const defaultAwsRegion = 'us-west-2'
@@ -163,6 +164,7 @@ export async function connect (
{ {
uri: '', uri: '',
awsCredentials: undefined, awsCredentials: undefined,
awsRegion: defaultAwsRegion,
apiKey: undefined, apiKey: undefined,
region: defaultAwsRegion region: defaultAwsRegion
}, },
@@ -174,7 +176,13 @@ export async function connect (
// Remote connection // Remote connection
return new RemoteConnection(opts) return new RemoteConnection(opts)
} }
const db = await databaseNew(opts.uri) const db = await databaseNew(
opts.uri,
opts.awsCredentials?.accessKeyId,
opts.awsCredentials?.secretKey,
opts.awsCredentials?.sessionToken,
opts.awsRegion
)
return new LocalConnection(db, opts) return new LocalConnection(db, opts)
} }
@@ -364,7 +372,7 @@ export interface Table<T = number[]> {
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
countRows: () => Promise<number> countRows: (filter?: string) => Promise<number>
/** /**
* Delete rows from this table. * Delete rows from this table.
@@ -433,6 +441,38 @@ export interface Table<T = number[]> {
*/ */
update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void> update: (args: UpdateArgs | UpdateSqlArgs) => Promise<void>
/**
* Runs a "merge insert" operation on the table
*
* This operation can add rows, update rows, and remove rows all in a single
* transaction. It is a very generic tool that can be used to create
* behaviors like "insert if not exists", "update or insert (i.e. upsert)",
* or even replace a portion of existing data with new data (e.g. replace
* all data where month="january")
*
* The merge insert operation works by combining new data from a
* **source table** with existing data in a **target table** by using a
* join. There are three categories of records.
*
* "Matched" records are records that exist in both the source table and
* the target table. "Not matched" records exist only in the source table
* (e.g. these are new data) "Not matched by source" records exist only
* in the target table (this is old data)
*
* The MergeInsertArgs can be used to customize what should happen for
* each category of data.
*
* Please note that the data may appear to be reordered as part of this
* operation. This is because updated rows will be deleted from the
* dataset and then reinserted at the end with the new values.
*
* @param on a column to join on. This is how records from the source
* table and target table are matched.
* @param data the new data to insert
* @param args parameters controlling how the operation should behave
*/
mergeInsert: (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs) => Promise<void>
/** /**
* List the indicies on this table. * List the indicies on this table.
*/ */
@@ -443,6 +483,8 @@ export interface Table<T = number[]> {
*/ */
indexStats: (indexUuid: string) => Promise<IndexStats> indexStats: (indexUuid: string) => Promise<IndexStats>
filter(value: string): Query<T>
schema: Promise<Schema> schema: Promise<Schema>
} }
@@ -474,6 +516,47 @@ export interface UpdateSqlArgs {
valuesSql: Record<string, string> valuesSql: Record<string, string>
} }
export interface MergeInsertArgs {
/**
* If true then rows that exist in both the source table (new data) and
* the target table (old data) will be updated, replacing the old row
* with the corresponding matching row.
*
* If there are multiple matches then the behavior is undefined.
* Currently this causes multiple copies of the row to be created
* but that behavior is subject to change.
*
* Optionally, a filter can be specified. This should be an SQL
* filter where fields with the prefix "target." refer to fields
* in the target table (old data) and fields with the prefix
* "source." refer to fields in the source table (new data). For
* example, the filter "target.lastUpdated < source.lastUpdated" will
* only update matched rows when the incoming `lastUpdated` value is
* newer.
*
* Rows that do not match the filter will not be updated. Rows that
* do not match the filter do become "not matched" rows.
*/
whenMatchedUpdateAll?: string | boolean
/**
* If true then rows that exist only in the source table (new data)
* will be inserted into the target table.
*/
whenNotMatchedInsertAll?: boolean
/**
* If true then rows that exist only in the target table (old data)
* will be deleted.
*
* If this is a string then it will be treated as an SQL filter and
* only rows that both do not match any row in the source table and
* match the given filter will be deleted.
*
* This can be used to replace a selection of existing data with
* new data.
*/
whenNotMatchedBySourceDelete?: string | boolean
}
export interface VectorIndex { export interface VectorIndex {
columns: string[] columns: string[]
name: string name: string
@@ -768,8 +851,8 @@ export class LocalTable<T = number[]> implements Table<T> {
/** /**
* Returns the number of rows in this table. * Returns the number of rows in this table.
*/ */
async countRows (): Promise<number> { async countRows (filter?: string): Promise<number> {
return tableCountRows.call(this._tbl) return tableCountRows.call(this._tbl, filter)
} }
/** /**
@@ -812,6 +895,46 @@ export class LocalTable<T = number[]> implements Table<T> {
}) })
} }
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let whenMatchedUpdateAll = false
let whenMatchedUpdateAllFilt = null
if (args.whenMatchedUpdateAll !== undefined && args.whenMatchedUpdateAll !== null) {
whenMatchedUpdateAll = true
if (args.whenMatchedUpdateAll !== true) {
whenMatchedUpdateAllFilt = args.whenMatchedUpdateAll
}
}
const whenNotMatchedInsertAll = args.whenNotMatchedInsertAll ?? false
let whenNotMatchedBySourceDelete = false
let whenNotMatchedBySourceDeleteFilt = null
if (args.whenNotMatchedBySourceDelete !== undefined && args.whenNotMatchedBySourceDelete !== null) {
whenNotMatchedBySourceDelete = true
if (args.whenNotMatchedBySourceDelete !== true) {
whenNotMatchedBySourceDeleteFilt = args.whenNotMatchedBySourceDelete
}
}
const schema = await this.schema
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, { schema })
}
const buffer = await fromTableToBuffer(tbl, this._embeddings, schema)
this._tbl = await tableMergeInsert.call(
this._tbl,
on,
whenMatchedUpdateAll,
whenMatchedUpdateAllFilt,
whenNotMatchedInsertAll,
whenNotMatchedBySourceDelete,
whenNotMatchedBySourceDeleteFilt,
buffer
)
}
/** /**
* Clean up old versions of the table, freeing disk space. * Clean up old versions of the table, freeing disk space.
* *

View File

@@ -24,7 +24,8 @@ import {
type IndexStats, type IndexStats,
type UpdateArgs, type UpdateArgs,
type UpdateSqlArgs, type UpdateSqlArgs,
makeArrowTable makeArrowTable,
type MergeInsertArgs
} from '../index' } from '../index'
import { Query } from '../query' import { Query } from '../query'
@@ -270,6 +271,59 @@ export class RemoteTable<T = number[]> implements Table<T> {
return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new) return new RemoteQuery(query, this._client, this._name) //, this._embeddings_new)
} }
filter (where: string): Query<T> {
throw new Error('Not implemented')
}
async mergeInsert (on: string, data: Array<Record<string, unknown>> | ArrowTable, args: MergeInsertArgs): Promise<void> {
let tbl: ArrowTable
if (data instanceof ArrowTable) {
tbl = data
} else {
tbl = makeArrowTable(data, await this.schema)
}
const queryParams: any = {
on
}
if (args.whenMatchedUpdateAll !== false && args.whenMatchedUpdateAll !== null && args.whenMatchedUpdateAll !== undefined) {
queryParams.when_matched_update_all = 'true'
if (typeof args.whenMatchedUpdateAll === 'string') {
queryParams.when_matched_update_all_filt = args.whenMatchedUpdateAll
}
} else {
queryParams.when_matched_update_all = 'false'
}
if (args.whenNotMatchedInsertAll ?? false) {
queryParams.when_not_matched_insert_all = 'true'
} else {
queryParams.when_not_matched_insert_all = 'false'
}
if (args.whenNotMatchedBySourceDelete !== false && args.whenNotMatchedBySourceDelete !== null && args.whenNotMatchedBySourceDelete !== undefined) {
queryParams.when_not_matched_by_source_delete = 'true'
if (typeof args.whenNotMatchedBySourceDelete === 'string') {
queryParams.when_not_matched_by_source_delete_filt = args.whenNotMatchedBySourceDelete
}
} else {
queryParams.when_not_matched_by_source_delete = 'false'
}
const buffer = await fromTableToStreamBuffer(tbl, this._embeddings)
const res = await this._client.post(
`/v1/table/${this._name}/merge_insert/`,
buffer,
queryParams,
'application/vnd.apache.arrow.stream'
)
if (res.status !== 200) {
throw new Error(
`Server Error, status: ${res.status}, ` +
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
`message: ${res.statusText}: ${res.data}`
)
}
}
async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> { async add (data: Array<Record<string, unknown>> | ArrowTable): Promise<number> {
let tbl: ArrowTable let tbl: ArrowTable
if (data instanceof ArrowTable) { if (data instanceof ArrowTable) {

View File

@@ -13,9 +13,10 @@
// limitations under the License. // limitations under the License.
import { describe } from 'mocha' import { describe } from 'mocha'
import { assert } from 'chai' import { assert, expect, use as chaiUse } from 'chai'
import * as chaiAsPromised from 'chai-as-promised'
import { fromTableToBuffer, makeArrowTable } from '../arrow' import { convertToTable, fromTableToBuffer, makeArrowTable, makeEmptyTable } from '../arrow'
import { import {
Field, Field,
FixedSizeList, FixedSizeList,
@@ -24,21 +25,79 @@ import {
Int32, Int32,
tableFromIPC, tableFromIPC,
Schema, Schema,
Float64 Float64,
type Table,
Binary,
Bool,
Utf8,
Struct,
List,
DataType,
Dictionary,
Int64
} from 'apache-arrow' } from 'apache-arrow'
import { type EmbeddingFunction } from '../embedding/embedding_function'
describe('Apache Arrow tables', function () { chaiUse(chaiAsPromised)
it('customized schema', async function () {
function sampleRecords (): Array<Record<string, any>> {
return [
{
binary: Buffer.alloc(5),
boolean: false,
number: 7,
string: 'hello',
struct: { x: 0, y: 0 },
list: ['anime', 'action', 'comedy']
}
]
}
// Helper method to verify various ways to create a table
async function checkTableCreation (tableCreationMethod: (records: any, recordsReversed: any, schema: Schema) => Promise<Table>): Promise<void> {
const records = sampleRecords()
const recordsReversed = [{
list: ['anime', 'action', 'comedy'],
struct: { x: 0, y: 0 },
string: 'hello',
number: 7,
boolean: false,
binary: Buffer.alloc(5)
}]
const schema = new Schema([
new Field('binary', new Binary(), false),
new Field('boolean', new Bool(), false),
new Field('number', new Float64(), false),
new Field('string', new Utf8(), false),
new Field('struct', new Struct([
new Field('x', new Float64(), false),
new Field('y', new Float64(), false)
])),
new Field('list', new List(new Field('item', new Utf8(), false)), false)
])
const table = await tableCreationMethod(records, recordsReversed, schema)
schema.fields.forEach((field, idx) => {
const actualField = table.schema.fields[idx]
assert.isFalse(actualField.nullable)
assert.equal(table.getChild(field.name)?.type.toString(), field.type.toString())
assert.equal(table.getChildAt(idx)?.type.toString(), field.type.toString())
})
}
describe('The function makeArrowTable', function () {
it('will use data types from a provided schema instead of inference', async function () {
const schema = new Schema([ const schema = new Schema([
new Field('a', new Int32()), new Field('a', new Int32()),
new Field('b', new Float32()), new Field('b', new Float32()),
new Field('c', new FixedSizeList(3, new Field('item', new Float16()))) new Field('c', new FixedSizeList(3, new Field('item', new Float16()))),
new Field('d', new Int64())
]) ])
const table = makeArrowTable( const table = makeArrowTable(
[ [
{ a: 1, b: 2, c: [1, 2, 3] }, { a: 1, b: 2, c: [1, 2, 3], d: 9 },
{ a: 4, b: 5, c: [4, 5, 6] }, { a: 4, b: 5, c: [4, 5, 6], d: 10 },
{ a: 7, b: 8, c: [7, 8, 9] } { a: 7, b: 8, c: [7, 8, 9], d: null }
], ],
{ schema } { schema }
) )
@@ -52,13 +111,13 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema) assert.deepEqual(actualSchema, schema)
}) })
it('default vector column', async function () { it('will assume the column `vector` is FixedSizeList<Float32> by default', async function () {
const schema = new Schema([ const schema = new Schema([
new Field('a', new Float64()), new Field('a', new Float64()),
new Field('b', new Float64()), new Field('b', new Float64()),
new Field( new Field(
'vector', 'vector',
new FixedSizeList(3, new Field('item', new Float32())) new FixedSizeList(3, new Field('item', new Float32(), true))
) )
]) ])
const table = makeArrowTable([ const table = makeArrowTable([
@@ -76,12 +135,12 @@ describe('Apache Arrow tables', function () {
assert.deepEqual(actualSchema, schema) assert.deepEqual(actualSchema, schema)
}) })
it('2 vector columns', async function () { it('can support multiple vector columns', async function () {
const schema = new Schema([ const schema = new Schema([
new Field('a', new Float64()), new Field('a', new Float64()),
new Field('b', new Float64()), new Field('b', new Float64()),
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))), new Field('vec1', new FixedSizeList(3, new Field('item', new Float16(), true))),
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16()))) new Field('vec2', new FixedSizeList(3, new Field('item', new Float16(), true)))
]) ])
const table = makeArrowTable( const table = makeArrowTable(
[ [
@@ -105,4 +164,157 @@ describe('Apache Arrow tables', function () {
const actualSchema = actual.schema const actualSchema = actual.schema
assert.deepEqual(actualSchema, schema) assert.deepEqual(actualSchema, schema)
}) })
it('will allow different vector column types', async function () {
const table = makeArrowTable(
[
{ fp16: [1], fp32: [1], fp64: [1] }
],
{
vectorColumns: {
fp16: { type: new Float16() },
fp32: { type: new Float32() },
fp64: { type: new Float64() }
}
}
)
assert.equal(table.getChild('fp16')?.type.children[0].type.toString(), new Float16().toString())
assert.equal(table.getChild('fp32')?.type.children[0].type.toString(), new Float32().toString())
assert.equal(table.getChild('fp64')?.type.children[0].type.toString(), new Float64().toString())
})
it('will use dictionary encoded strings if asked', async function () {
const table = makeArrowTable([{ str: 'hello' }])
assert.isTrue(DataType.isUtf8(table.getChild('str')?.type))
const tableWithDict = makeArrowTable([{ str: 'hello' }], { dictionaryEncodeStrings: true })
assert.isTrue(DataType.isDictionary(tableWithDict.getChild('str')?.type))
const schema = new Schema([
new Field('str', new Dictionary(new Utf8(), new Int32()))
])
const tableWithDict2 = makeArrowTable([{ str: 'hello' }], { schema })
assert.isTrue(DataType.isDictionary(tableWithDict2.getChild('str')?.type))
})
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => makeArrowTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => makeArrowTable(records, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => makeArrowTable(recordsReversed, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeArrowTable([], { schema }))
})
})
class DummyEmbedding implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
public readonly embeddingDimension = 2
public readonly embeddingDataType = new Float16()
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
public readonly sourceColumn = 'string'
async embed (data: string[]): Promise<number[][]> {
return data.map(
() => [0.0, 0.0]
)
}
}
describe('convertToTable', function () {
it('will infer data types correctly', async function () {
await checkTableCreation(async (records) => await convertToTable(records))
})
it('will allow a schema to be provided', async function () {
await checkTableCreation(async (records, _, schema) => await convertToTable(records, undefined, { schema }))
})
it('will use the field order of any provided schema', async function () {
await checkTableCreation(async (_, recordsReversed, schema) => await convertToTable(recordsReversed, undefined, { schema }))
})
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => await convertToTable([], undefined, { schema }))
})
it('will apply embeddings', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will fail if missing the embedding source column', async function () {
return await expect(convertToTable([{ id: 1 }], new DummyEmbedding())).to.be.rejectedWith("'string' was not present")
})
it('use embeddingDimension if embedding missing from table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
// Simulate getting an empty Arrow table (minus embedding) from some other source
// In other words, we aren't starting with records
const table = makeEmptyTable(schema)
// If the embedding specifies the dimension we are fine
await fromTableToBuffer(table, new DummyEmbedding())
// We can also supply a schema and should be ok
const schemaWithEmbedding = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
await fromTableToBuffer(table, new DummyEmbeddingWithNoDimension(), schemaWithEmbedding)
// Otherwise we will get an error
return await expect(fromTableToBuffer(table, new DummyEmbeddingWithNoDimension())).to.be.rejectedWith('does not specify `embeddingDimension`')
})
it('will apply embeddings to an empty table', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false),
new Field('vector', new FixedSizeList(2, new Field('item', new Float16(), false)), false)
])
const table = await convertToTable([], new DummyEmbedding(), { schema })
assert.isTrue(DataType.isFixedSizeList(table.getChild('vector')?.type))
assert.equal(table.getChild('vector')?.type.children[0].type.toString(), new Float16().toString())
})
it('will complain if embeddings present but schema missing embedding column', async function () {
const schema = new Schema([
new Field('string', new Utf8(), false)
])
return await expect(convertToTable([], new DummyEmbedding(), { schema })).to.be.rejectedWith('column vector was missing')
})
it('will provide a nice error if run twice', async function () {
const records = sampleRecords()
const table = await convertToTable(records, new DummyEmbedding())
// fromTableToBuffer will try and apply the embeddings again
return await expect(fromTableToBuffer(table, new DummyEmbedding())).to.be.rejectedWith('already existed')
})
})
describe('makeEmptyTable', function () {
it('will make an empty table', async function () {
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
})
}) })

View File

@@ -294,6 +294,7 @@ describe('LanceDB client', function () {
}) })
assert.equal(table.name, 'vectors') assert.equal(table.name, 'vectors')
assert.equal(await table.countRows(), 10) assert.equal(await table.countRows(), 10)
assert.equal(await table.countRows('vector IS NULL'), 0)
assert.deepEqual(await con.tableNames(), ['vectors']) assert.deepEqual(await con.tableNames(), ['vectors'])
}) })
@@ -369,6 +370,7 @@ describe('LanceDB client', function () {
const table = await con.createTable('f16', data) const table = await con.createTable('f16', data)
assert.equal(table.name, 'f16') assert.equal(table.name, 'f16')
assert.equal(await table.countRows(), total) assert.equal(await table.countRows(), total)
assert.equal(await table.countRows('id < 5'), 5)
assert.deepEqual(await con.tableNames(), ['f16']) assert.deepEqual(await con.tableNames(), ['f16'])
assert.deepEqual(await table.schema, schema) assert.deepEqual(await table.schema, schema)
@@ -391,24 +393,6 @@ describe('LanceDB client', function () {
}) })
}).timeout(120000) }).timeout(120000)
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{
id: 1,
price: 10
}
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(
Error,
"column 'vector' is missing"
)
})
it('use overwrite flag to overwrite existing table', async function () { it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs') const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir) const con = await lancedb.connect(dir)
@@ -549,6 +533,54 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2) assert.equal(await table.countRows(), 2)
}) })
it('can merge insert records into the table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [{ id: 1, age: 1 }, { id: 2, age: 1 }]
const table = await con.createTable('my_table', data)
// insert if not exists
let newData = [{ id: 2, age: 2 }, { id: 3, age: 2 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 2'), 1)
// conditional update
newData = [{ id: 2, age: 3 }, { id: 3, age: 3 }]
await table.mergeInsert('id', newData, {
whenMatchedUpdateAll: 'target.age = 1'
})
assert.equal(await table.countRows(), 3)
assert.equal(await table.countRows('age = 1'), 1)
assert.equal(await table.countRows('age = 3'), 1)
newData = [{ id: 3, age: 4 }, { id: 4, age: 4 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true
})
assert.equal(await table.countRows(), 4)
assert.equal((await table.filter('age = 4').execute()).length, 2)
newData = [{ id: 5, age: 5 }]
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: 'age < 4'
})
assert.equal(await table.countRows(), 3)
await table.mergeInsert('id', newData, {
whenNotMatchedInsertAll: true,
whenMatchedUpdateAll: true,
whenNotMatchedBySourceDelete: true
})
assert.equal(await table.countRows(), 1)
})
it('can update records in the table', async function () { it('can update records in the table', async function () {
const uri = await createTestDB() const uri = await createTestDB()
const con = await lancedb.connect(uri) const con = await lancedb.connect(uri)

View File

@@ -9,6 +9,6 @@
"declaration": true, "declaration": true,
"outDir": "./dist", "outDir": "./dist",
"strict": true, "strict": true,
// "esModuleInterop": true, "sourceMap": true,
} }
} }

View File

@@ -1,27 +1,30 @@
[package] [package]
name = "vectordb-nodejs" name = "vectordb-nodejs"
edition = "2021" edition.workspace = true
version = "0.0.0" version = "0.0.0"
license.workspace = true license.workspace = true
description.workspace = true
repository.workspace = true repository.workspace = true
keywords.workspace = true
categories.workspace = true
[lib] [lib]
crate-type = ["cdylib"] crate-type = ["cdylib"]
[dependencies] [dependencies]
arrow-ipc.workspace = true arrow-ipc.workspace = true
napi = { version = "2.14", default-features = false, features = [ futures.workspace = true
lance-linalg.workspace = true
lance.workspace = true
vectordb = { path = "../rust/vectordb" }
napi = { version = "2.15", default-features = false, features = [
"napi7", "napi7",
"async" "async"
] } ] }
napi-derive = "2.14" napi-derive = "2"
vectordb = { path = "../rust/vectordb" }
lance.workspace = true # Prevent dynamic linking of lzma, which comes from datafusion
lance-linalg.workspace = true lzma-sys = { version = "*", features = ["static"] }
[build-dependencies] [build-dependencies]
napi-build = "2.1" napi-build = "2.1"
[profile.release]
lto = true
strip = "symbols"

View File

@@ -14,6 +14,7 @@
import { makeArrowTable, toBuffer } from "../vectordb/arrow"; import { makeArrowTable, toBuffer } from "../vectordb/arrow";
import { import {
Int64,
Field, Field,
FixedSizeList, FixedSizeList,
Float16, Float16,
@@ -104,3 +105,16 @@ test("2 vector columns", function () {
const actualSchema = actual.schema; const actualSchema = actual.schema;
expect(actualSchema.toString()).toEqual(schema.toString()); expect(actualSchema.toString()).toEqual(schema.toString());
}); });
test("handles int64", function() {
// https://github.com/lancedb/lancedb/issues/960
const schema = new Schema([
new Field("x", new Int64(), true)
]);
const table = makeArrowTable([
{ x: 1 },
{ x: 2 },
{ x: 3 }
], { schema });
expect(table.schema).toEqual(schema);
})

View File

@@ -53,6 +53,16 @@ describe("Test creating index", () => {
const indexDir = path.join(tmpDir, "test.lance", "_indices"); const indexDir = path.join(tmpDir, "test.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1); expect(fs.readdirSync(indexDir)).toHaveLength(1);
// TODO: check index type. // TODO: check index type.
// Search without specifying the column
let query_vector = data.toArray()[5].vec.toJSON();
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
expect(rst2.numRows).toBe(2);
expect(rst.toString()).toEqual(rst2.toString());
}); });
test("no vector column available", async () => { test("no vector column available", async () => {
@@ -71,6 +81,80 @@ describe("Test creating index", () => {
await tbl.createIndex("val").build(); await tbl.createIndex("val").build();
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices"); const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
expect(fs.readdirSync(indexDir)).toHaveLength(1); expect(fs.readdirSync(indexDir)).toHaveLength(1);
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
expect(r.numRows).toBe(1);
}
});
test("two columns with different dimensions", async () => {
const db = await connect(tmpDir);
const schema = new Schema([
new Field("id", new Int32(), true),
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
new Field(
"vec2",
new FixedSizeList(64, new Field("item", new Float32()))
),
]);
const tbl = await db.createTable(
"two_vectors",
makeArrowTable(
Array(300)
.fill(1)
.map((_, i) => ({
id: i,
vec: Array(32)
.fill(1)
.map(() => Math.random()),
vec2: Array(64) // different dimension
.fill(1)
.map(() => Math.random()),
})),
{ schema }
)
);
// Only build index over v1
await expect(tbl.createIndex().build()).rejects.toThrow(
/.*More than one vector columns found.*/
);
tbl
.createIndex("vec")
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
.build();
const rst = await tbl
.query()
.nearestTo(
Array(32)
.fill(1)
.map(() => Math.random())
)
.limit(2)
.toArrow();
expect(rst.numRows).toBe(2);
// Search with specifying the column
await expect(
tbl
.search(
Array(64)
.fill(1)
.map(() => Math.random()),
"vec"
)
.limit(2)
.toArrow()
).rejects.toThrow(/.*does not match the dimension.*/);
const query64 = Array(64)
.fill(1)
.map(() => Math.random());
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
expect(rst64_1.toString()).toEqual(rst64_2.toString());
expect(rst64_1.numRows).toBe(2);
}); });
test("create scalar index", async () => { test("create scalar index", async () => {

View File

@@ -2,4 +2,6 @@
module.exports = { module.exports = {
preset: 'ts-jest', preset: 'ts-jest',
testEnvironment: 'node', testEnvironment: 'node',
moduleDirectories: ["node_modules", "./dist"],
moduleFileExtensions: ["js", "ts"],
}; };

View File

@@ -12,18 +12,16 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
use std::sync::Arc;
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::*; use napi_derive::*;
use crate::table::Table; use crate::table::Table;
use vectordb::connection::{Connection as LanceDBConnection, Database}; use vectordb::connection::Connection as LanceDBConnection;
use vectordb::ipc::ipc_file_to_batches; use vectordb::ipc::ipc_file_to_batches;
#[napi] #[napi]
pub struct Connection { pub struct Connection {
conn: Arc<dyn LanceDBConnection>, conn: LanceDBConnection,
} }
#[napi] #[napi]
@@ -32,9 +30,9 @@ impl Connection {
#[napi(factory)] #[napi(factory)]
pub async fn new(uri: String) -> napi::Result<Self> { pub async fn new(uri: String) -> napi::Result<Self> {
Ok(Self { Ok(Self {
conn: Arc::new(Database::connect(&uri).await.map_err(|e| { conn: vectordb::connect(&uri).execute().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to connect to database: {}", e)) napi::Error::from_reason(format!("Failed to connect to database: {}", e))
})?), })?,
}) })
} }
@@ -59,7 +57,8 @@ impl Connection {
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
let tbl = self let tbl = self
.conn .conn
.create_table(&name, Box::new(batches), None) .create_table(&name, Box::new(batches))
.execute()
.await .await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?; .map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl)) Ok(Table::new(tbl))
@@ -70,6 +69,7 @@ impl Connection {
let tbl = self let tbl = self
.conn .conn
.open_table(&name) .open_table(&name)
.execute()
.await .await
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?; .map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
Ok(Table::new(tbl)) Ok(Table::new(tbl))

View File

@@ -91,7 +91,6 @@ impl IndexBuilder {
#[napi] #[napi]
pub async fn build(&self) -> napi::Result<()> { pub async fn build(&self) -> napi::Result<()> {
println!("nodejs::index.rs : build");
self.inner self.inner
.build() .build()
.await .await

47
nodejs/src/iterator.rs Normal file
View File

@@ -0,0 +1,47 @@
// Copyright 2024 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use futures::StreamExt;
use lance::io::RecordBatchStream;
use napi::bindgen_prelude::*;
use napi_derive::napi;
use vectordb::ipc::batches_to_ipc_file;
/** Typescript-style Async Iterator over RecordBatches */
#[napi]
pub struct RecordBatchIterator {
inner: Box<dyn RecordBatchStream + Unpin>,
}
#[napi]
impl RecordBatchIterator {
pub(crate) fn new(inner: Box<dyn RecordBatchStream + Unpin>) -> Self {
Self { inner }
}
#[napi]
pub async unsafe fn next(&mut self) -> napi::Result<Option<Buffer>> {
if let Some(rst) = self.inner.next().await {
let batch = rst.map_err(|e| {
napi::Error::from_reason(format!("Failed to get next batch from stream: {}", e))
})?;
batches_to_ipc_file(&[batch])
.map_err(|e| napi::Error::from_reason(format!("Failed to write IPC file: {}", e)))
.map(|buf| Some(Buffer::from(buf)))
} else {
// We are done with the stream.
Ok(None)
}
}
}

View File

@@ -17,6 +17,7 @@ use napi_derive::*;
mod connection; mod connection;
mod index; mod index;
mod iterator;
mod query; mod query;
mod table; mod table;

View File

@@ -16,7 +16,7 @@ use napi::bindgen_prelude::*;
use napi_derive::napi; use napi_derive::napi;
use vectordb::query::Query as LanceDBQuery; use vectordb::query::Query as LanceDBQuery;
use crate::table::Table; use crate::{iterator::RecordBatchIterator, table::Table};
#[napi] #[napi]
pub struct Query { pub struct Query {
@@ -32,17 +32,50 @@ impl Query {
} }
#[napi] #[napi]
pub fn vector(&mut self, vector: Float32Array) { pub fn column(&mut self, column: String) {
let inn = self.inner.clone().nearest_to(&vector); self.inner = self.inner.clone().column(&column);
self.inner = inn;
} }
#[napi] #[napi]
pub fn to_arrow(&self) -> napi::Result<()> { pub fn filter(&mut self, filter: String) {
// let buf = self.inner.to_arrow().map_err(|e| { self.inner = self.inner.clone().filter(filter);
// napi::Error::from_reason(format!("Failed to convert query to arrow: {}", e)) }
// })?;
// Ok(buf) #[napi]
todo!() pub fn select(&mut self, columns: Vec<String>) {
self.inner = self.inner.clone().select(&columns);
}
#[napi]
pub fn limit(&mut self, limit: u32) {
self.inner = self.inner.clone().limit(limit as usize);
}
#[napi]
pub fn prefilter(&mut self, prefilter: bool) {
self.inner = self.inner.clone().prefilter(prefilter);
}
#[napi]
pub fn nearest_to(&mut self, vector: Float32Array) {
self.inner = self.inner.clone().nearest_to(&vector);
}
#[napi]
pub fn refine_factor(&mut self, refine_factor: u32) {
self.inner = self.inner.clone().refine_factor(refine_factor);
}
#[napi]
pub fn nprobes(&mut self, nprobe: u32) {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub async fn execute_stream(&self) -> napi::Result<RecordBatchIterator> {
let inner_stream = self.inner.execute_stream().await.map_err(|e| {
napi::Error::from_reason(format!("Failed to execute query stream: {}", e))
})?;
Ok(RecordBatchIterator::new(Box::new(inner_stream)))
} }
} }

View File

@@ -15,6 +15,7 @@
use arrow_ipc::writer::FileWriter; use arrow_ipc::writer::FileWriter;
use napi::bindgen_prelude::*; use napi::bindgen_prelude::*;
use napi_derive::napi; use napi_derive::napi;
use vectordb::table::AddDataOptions;
use vectordb::{ipc::ipc_file_to_batches, table::TableRef}; use vectordb::{ipc::ipc_file_to_batches, table::TableRef};
use crate::index::IndexBuilder; use crate::index::IndexBuilder;
@@ -48,7 +49,10 @@ impl Table {
pub async fn add(&self, buf: Buffer) -> napi::Result<()> { pub async fn add(&self, buf: Buffer) -> napi::Result<()> {
let batches = ipc_file_to_batches(buf.to_vec()) let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?; .map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
self.table.add(Box::new(batches), None).await.map_err(|e| { self.table
.add(Box::new(batches), AddDataOptions::default())
.await
.map_err(|e| {
napi::Error::from_reason(format!( napi::Error::from_reason(format!(
"Failed to add batches to table {}: {}", "Failed to add batches to table {}: {}",
self.table, e self.table, e
@@ -57,8 +61,8 @@ impl Table {
} }
#[napi] #[napi]
pub async fn count_rows(&self) -> napi::Result<usize> { pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<usize> {
self.table.count_rows().await.map_err(|e| { self.table.count_rows(filter).await.map_err(|e| {
napi::Error::from_reason(format!( napi::Error::from_reason(format!(
"Failed to count rows in table {}: {}", "Failed to count rows in table {}: {}",
self.table, e self.table, e

View File

@@ -13,6 +13,7 @@
// limitations under the License. // limitations under the License.
import { import {
Int64,
Field, Field,
FixedSizeList, FixedSizeList,
Float, Float,
@@ -23,6 +24,7 @@ import {
Vector, Vector,
vectorFromArray, vectorFromArray,
tableToIPC, tableToIPC,
DataType,
} from "apache-arrow"; } from "apache-arrow";
/** Data type accepted by NodeJS SDK */ /** Data type accepted by NodeJS SDK */
@@ -137,15 +139,18 @@ export function makeArrowTable(
const columnNames = Object.keys(data[0]); const columnNames = Object.keys(data[0]);
for (const colName of columnNames) { for (const colName of columnNames) {
// eslint-disable-next-line @typescript-eslint/no-unsafe-return // eslint-disable-next-line @typescript-eslint/no-unsafe-return
const values = data.map((datum) => datum[colName]); let values = data.map((datum) => datum[colName]);
let vector: Vector; let vector: Vector;
if (opt.schema !== undefined) { if (opt.schema !== undefined) {
// Explicit schema is provided, highest priority // Explicit schema is provided, highest priority
vector = vectorFromArray( const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
values, if (fieldType instanceof Int64) {
opt.schema?.fields.filter((f) => f.name === colName)[0]?.type // wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
); // eslint-disable-next-line @typescript-eslint/no-unsafe-argument
values = values.map((v) => BigInt(v));
}
vector = vectorFromArray(values, fieldType);
} else { } else {
const vectorColumnOptions = opt.vectorColumns[colName]; const vectorColumnOptions = opt.vectorColumns[colName];
if (vectorColumnOptions !== undefined) { if (vectorColumnOptions !== undefined) {

View File

@@ -54,15 +54,26 @@ export class IndexBuilder {
scalar(): void scalar(): void
build(): Promise<void> build(): Promise<void>
} }
/** Typescript-style Async Iterator over RecordBatches */
export class RecordBatchIterator {
next(): Promise<Buffer | null>
}
export class Query { export class Query {
vector(vector: Float32Array): void column(column: string): void
toArrow(): void filter(filter: string): void
select(columns: Array<string>): void
limit(limit: number): void
prefilter(prefilter: boolean): void
nearestTo(vector: Float32Array): void
refineFactor(refineFactor: number): void
nprobes(nprobe: number): void
executeStream(): Promise<RecordBatchIterator>
} }
export class Table { export class Table {
/** Return Schema as empty Arrow IPC file. */ /** Return Schema as empty Arrow IPC file. */
schema(): Buffer schema(): Buffer
add(buf: Buffer): Promise<void> add(buf: Buffer): Promise<void>
countRows(): Promise<bigint> countRows(filter?: string | undefined | null): Promise<bigint>
delete(predicate: string): Promise<void> delete(predicate: string): Promise<void>
createIndex(): IndexBuilder createIndex(): IndexBuilder
query(): Query query(): Query

View File

@@ -295,12 +295,13 @@ if (!nativeBinding) {
throw new Error(`Failed to load native binding`) throw new Error(`Failed to load native binding`)
} }
const { Connection, IndexType, MetricType, IndexBuilder, Query, Table, WriteMode, connect } = nativeBinding const { Connection, IndexType, MetricType, IndexBuilder, RecordBatchIterator, Query, Table, WriteMode, connect } = nativeBinding
module.exports.Connection = Connection module.exports.Connection = Connection
module.exports.IndexType = IndexType module.exports.IndexType = IndexType
module.exports.MetricType = MetricType module.exports.MetricType = MetricType
module.exports.IndexBuilder = IndexBuilder module.exports.IndexBuilder = IndexBuilder
module.exports.RecordBatchIterator = RecordBatchIterator
module.exports.Query = Query module.exports.Query = Query
module.exports.Table = Table module.exports.Table = Table
module.exports.WriteMode = WriteMode module.exports.WriteMode = WriteMode

View File

@@ -12,46 +12,73 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
import { RecordBatch } from "apache-arrow"; import { RecordBatch, tableFromIPC, Table as ArrowTable } from "apache-arrow";
import { Table } from "./table"; import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
} from "./native";
// TODO: re-eanble eslint once we have a real implementation
/* eslint-disable */
class RecordBatchIterator implements AsyncIterator<RecordBatch> { class RecordBatchIterator implements AsyncIterator<RecordBatch> {
next( private promised_inner?: Promise<NativeBatchIterator>;
...args: [] | [undefined] private inner?: NativeBatchIterator;
): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented."); constructor(
inner?: NativeBatchIterator,
promise?: Promise<NativeBatchIterator>
) {
// TODO: check promise reliably so we dont need to pass two arguments.
this.inner = inner;
this.promised_inner = promise;
} }
return?(value?: any): Promise<IteratorResult<RecordBatch<any>, any>> {
throw new Error("Method not implemented."); async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
if (this.inner === undefined) {
this.inner = await this.promised_inner;
} }
throw?(e?: any): Promise<IteratorResult<RecordBatch<any>, any>> { if (this.inner === undefined) {
throw new Error("Method not implemented."); throw new Error("Invalid iterator state state");
}
const n = await this.inner.next();
if (n == null) {
return Promise.resolve({ done: true, value: null });
}
const tbl = tableFromIPC(n);
if (tbl.batches.length != 1) {
throw new Error("Expected only one batch");
}
return Promise.resolve({ done: false, value: tbl.batches[0] });
} }
} }
/* eslint-enable */ /* eslint-enable */
/** Query executor */ /** Query executor */
export class Query implements AsyncIterable<RecordBatch> { export class Query implements AsyncIterable<RecordBatch> {
private readonly tbl: Table; private readonly inner: NativeQuery;
private _filter?: string;
private _limit?: number;
// Vector search constructor(tbl: NativeTable) {
private _vector?: Float32Array; this.inner = tbl.query();
private _nprobes?: number; }
private _refine_factor?: number = 1;
constructor(tbl: Table) { /** Set the column to run query. */
this.tbl = tbl; column(column: string): Query {
this.inner.column(column);
return this;
} }
/** Set the filter predicate, only returns the results that satisfy the filter. /** Set the filter predicate, only returns the results that satisfy the filter.
* *
*/ */
filter(predicate: string): Query { filter(predicate: string): Query {
this._filter = predicate; this.inner.filter(predicate);
return this;
}
/**
* Select the columns to return. If not set, all columns are returned.
*/
select(columns: string[]): Query {
this.inner.select(columns);
return this; return this;
} }
@@ -59,35 +86,67 @@ export class Query implements AsyncIterable<RecordBatch> {
* Set the limit of rows to return. * Set the limit of rows to return.
*/ */
limit(limit: number): Query { limit(limit: number): Query {
this._limit = limit; this.inner.limit(limit);
return this;
}
prefilter(prefilter: boolean): Query {
this.inner.prefilter(prefilter);
return this; return this;
} }
/** /**
* Set the query vector. * Set the query vector.
*/ */
vector(vector: number[]): Query { nearestTo(vector: number[]): Query {
this._vector = Float32Array.from(vector); this.inner.nearestTo(Float32Array.from(vector));
return this; return this;
} }
/** /**
* Set the number of probes to use for the query. * Set the number of IVF partitions to use for the query.
*/ */
nprobes(nprobes: number): Query { nprobes(nprobes: number): Query {
this._nprobes = nprobes; this.inner.nprobes(nprobes);
return this; return this;
} }
/** /**
* Set the refine factor for the query. * Set the refine factor for the query.
*/ */
refine_factor(refine_factor: number): Query { refineFactor(refine_factor: number): Query {
this._refine_factor = refine_factor; this.inner.refineFactor(refine_factor);
return this; return this;
} }
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> { /**
throw new RecordBatchIterator(); * Execute the query and return the results as an AsyncIterator.
*/
async executeStream(): Promise<RecordBatchIterator> {
const inner = await this.inner.executeStream();
return new RecordBatchIterator(inner);
}
/** Collect the results as an Arrow Table. */
async toArrow(): Promise<ArrowTable> {
const batches = [];
for await (const batch of this) {
batches.push(batch);
}
return new ArrowTable(batches);
}
/** Returns a JSON Array of All results.
*
*/
async toArray(): Promise<any[]> {
const tbl = await this.toArrow();
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
return tbl.toArray();
}
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
const promise = this.inner.executeStream();
return new RecordBatchIterator(undefined, promise);
} }
} }

View File

@@ -50,8 +50,8 @@ export class Table {
} }
/** Count the total number of rows in the dataset. */ /** Count the total number of rows in the dataset. */
async countRows(): Promise<bigint> { async countRows(filter?: string): Promise<bigint> {
return await this.inner.countRows(); return await this.inner.countRows(filter);
} }
/** Delete the rows that satisfy the predicate. */ /** Delete the rows that satisfy the predicate. */
@@ -95,10 +95,58 @@ export class Table {
return builder; return builder;
} }
search(vector?: number[]): Query { /**
const q = new Query(this); * Create a generic {@link Query} Builder.
if (vector !== undefined) { *
q.vector(vector); * When appropriate, various indices and statistics based pruning will be used to
* accelerate the query.
*
* @example
*
* ### Run a SQL-style query
* ```typescript
* for await (const batch of table.query()
* .filter("id > 1").select(["id"]).limit(20)) {
* console.log(batch);
* }
* ```
*
* ### Run Top-10 vector similarity search
* ```typescript
* for await (const batch of table.query()
* .nearestTo([1, 2, 3])
* .refineFactor(5).nprobe(10)
* .limit(10)) {
* console.log(batch);
* }
*```
*
* ### Scan the full dataset
* ```typescript
* for await (const batch of table.query()) {
* console.log(batch);
* }
*
* ### Return the full dataset as Arrow Table
* ```typescript
* let arrowTbl = await table.query().nearestTo([1.0, 2.0, 0.5, 6.7]).toArrow();
* ```
*
* @returns {@link Query}
*/
query(): Query {
return new Query(this.inner);
}
/** Search the table with a given query vector.
*
* This is a convenience method for preparing an ANN {@link Query}.
*/
search(vector: number[], column?: string): Query {
const q = this.query();
q.nearestTo(vector);
if (column !== undefined) {
q.column(column);
} }
return q; return q;
} }

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.5.1 current_version = 0.5.7
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -42,6 +42,12 @@ To run the unit tests:
pytest pytest
``` ```
To run the doc tests:
```bash
pytest --doctest-modules lancedb
```
To run linter and automatically fix all errors: To run linter and automatically fix all errors:
```bash ```bash

View File

@@ -13,7 +13,9 @@
import importlib.metadata import importlib.metadata
import os import os
from typing import Optional from concurrent.futures import ThreadPoolExecutor
from datetime import timedelta
from typing import Optional, Union
__version__ = importlib.metadata.version("lancedb") __version__ = importlib.metadata.version("lancedb")
@@ -30,6 +32,8 @@ def connect(
api_key: Optional[str] = None, api_key: Optional[str] = None,
region: str = "us-east-1", region: str = "us-east-1",
host_override: Optional[str] = None, host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -45,6 +49,25 @@ def connect(
The region to use for LanceDB Cloud. The region to use for LanceDB Cloud.
host_override: str, optional host_override: str, optional
The override url for LanceDB Cloud. The override url for LanceDB Cloud.
read_consistency_interval: timedelta, default None
(For LanceDB OSS only)
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
request_thread_pool: int or ThreadPoolExecutor, optional
The thread pool to use for making batch requests to the LanceDB Cloud API.
If an integer, then a ThreadPoolExecutor will be created with that
number of threads. If None, then a ThreadPoolExecutor will be created
with the default number of threads. If a ThreadPoolExecutor, then that
executor will be used for making requests. This is for LanceDB Cloud
only and is only used when making batch requests (i.e., passing in
multiple queries to the search method at once).
Examples Examples
-------- --------
@@ -72,5 +95,9 @@ def connect(
api_key = os.environ.get("LANCEDB_API_KEY") api_key = os.environ.get("LANCEDB_API_KEY")
if api_key is None: if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}") raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override) if isinstance(request_thread_pool, int):
return LanceDBConnection(uri) request_thread_pool = ThreadPoolExecutor(request_thread_pool)
return RemoteDBConnection(
uri, api_key, region, host_override, request_thread_pool=request_thread_pool
)
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)

View File

@@ -26,6 +26,8 @@ from .table import LanceTable, Table
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
if TYPE_CHECKING: if TYPE_CHECKING:
from datetime import timedelta
from .common import DATA, URI from .common import DATA, URI
from .embeddings import EmbeddingFunctionConfig from .embeddings import EmbeddingFunctionConfig
from .pydantic import LanceModel from .pydantic import LanceModel
@@ -118,7 +120,7 @@ class DBConnection(EnforceOverrides):
>>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7}, >>> data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}] ... {"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
>>> db.create_table("my_table", data) >>> db.create_table("my_table", data)
LanceTable(my_table) LanceTable(connection=..., name="my_table")
>>> db["my_table"].head() >>> db["my_table"].head()
pyarrow.Table pyarrow.Table
vector: fixed_size_list<item: float>[2] vector: fixed_size_list<item: float>[2]
@@ -139,7 +141,7 @@ class DBConnection(EnforceOverrides):
... "long": [-122.7, -74.1] ... "long": [-122.7, -74.1]
... }) ... })
>>> db.create_table("table2", data) >>> db.create_table("table2", data)
LanceTable(table2) LanceTable(connection=..., name="table2")
>>> db["table2"].head() >>> db["table2"].head()
pyarrow.Table pyarrow.Table
vector: fixed_size_list<item: float>[2] vector: fixed_size_list<item: float>[2]
@@ -161,7 +163,7 @@ class DBConnection(EnforceOverrides):
... pa.field("long", pa.float32()) ... pa.field("long", pa.float32())
... ]) ... ])
>>> db.create_table("table3", data, schema = custom_schema) >>> db.create_table("table3", data, schema = custom_schema)
LanceTable(table3) LanceTable(connection=..., name="table3")
>>> db["table3"].head() >>> db["table3"].head()
pyarrow.Table pyarrow.Table
vector: fixed_size_list<item: float>[2] vector: fixed_size_list<item: float>[2]
@@ -195,7 +197,7 @@ class DBConnection(EnforceOverrides):
... pa.field("price", pa.float32()), ... pa.field("price", pa.float32()),
... ]) ... ])
>>> db.create_table("table4", make_batches(), schema=schema) >>> db.create_table("table4", make_batches(), schema=schema)
LanceTable(table4) LanceTable(connection=..., name="table4")
""" """
raise NotImplementedError raise NotImplementedError
@@ -243,6 +245,16 @@ class LanceDBConnection(DBConnection):
---------- ----------
uri: str or Path uri: str or Path
The root uri of the database. The root uri of the database.
read_consistency_interval: timedelta, default None
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked. For performance
reasons, this is the default. For strong consistency, set this to
zero seconds. Then every read will check for updates from other
processes. As a compromise, you can set this to a non-zero timedelta
for eventual consistency. If more than that interval has passed since
the last check, then the table will be checked for updates. Note: this
consistency only applies to read operations. Write operations are
always consistent.
Examples Examples
-------- --------
@@ -250,22 +262,24 @@ class LanceDBConnection(DBConnection):
>>> db = lancedb.connect("./.lancedb") >>> db = lancedb.connect("./.lancedb")
>>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2}, >>> db.create_table("my_table", data=[{"vector": [1.1, 1.2], "b": 2},
... {"vector": [0.5, 1.3], "b": 4}]) ... {"vector": [0.5, 1.3], "b": 4}])
LanceTable(my_table) LanceTable(connection=..., name="my_table")
>>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}]) >>> db.create_table("another_table", data=[{"vector": [0.4, 0.4], "b": 6}])
LanceTable(another_table) LanceTable(connection=..., name="another_table")
>>> sorted(db.table_names()) >>> sorted(db.table_names())
['another_table', 'my_table'] ['another_table', 'my_table']
>>> len(db) >>> len(db)
2 2
>>> db["my_table"] >>> db["my_table"]
LanceTable(my_table) LanceTable(connection=..., name="my_table")
>>> "my_table" in db >>> "my_table" in db
True True
>>> db.drop_table("my_table") >>> db.drop_table("my_table")
>>> db.drop_table("another_table") >>> db.drop_table("another_table")
""" """
def __init__(self, uri: URI): def __init__(
self, uri: URI, *, read_consistency_interval: Optional[timedelta] = None
):
if not isinstance(uri, Path): if not isinstance(uri, Path):
scheme = get_uri_scheme(uri) scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file" is_local = isinstance(uri, Path) or scheme == "file"
@@ -277,6 +291,14 @@ class LanceDBConnection(DBConnection):
self._uri = str(uri) self._uri = str(uri)
self._entered = False self._entered = False
self.read_consistency_interval = read_consistency_interval
def __repr__(self) -> str:
val = f"{self.__class__.__name__}({self._uri}"
if self.read_consistency_interval is not None:
val += f", read_consistency_interval={repr(self.read_consistency_interval)}"
val += ")"
return val
@property @property
def uri(self) -> str: def uri(self) -> str:

View File

@@ -13,6 +13,7 @@
# ruff: noqa: F401 # ruff: noqa: F401
from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction from .base import EmbeddingFunction, EmbeddingFunctionConfig, TextEmbeddingFunction
from .bedrock import BedRockText
from .cohere import CohereEmbeddingFunction from .cohere import CohereEmbeddingFunction
from .gemini_text import GeminiText from .gemini_text import GeminiText
from .instructor import InstructorEmbeddingFunction from .instructor import InstructorEmbeddingFunction

View File

@@ -10,7 +10,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import importlib
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from typing import List, Union from typing import List, Union
@@ -91,25 +90,6 @@ class EmbeddingFunction(BaseModel, ABC):
texts = texts.combine_chunks().to_pylist() texts = texts.combine_chunks().to_pylist()
return texts return texts
@classmethod
def safe_import(cls, module: str, mitigation=None):
"""
Import the specified module. If the module is not installed,
raise an ImportError with a helpful message.
Parameters
----------
module : str
The name of the module to import
mitigation : Optional[str]
The package(s) to install to mitigate the error.
If not provided then the module name will be used.
"""
try:
return importlib.import_module(module)
except ImportError:
raise ImportError(f"Please install {mitigation or module}")
def safe_model_dump(self): def safe_model_dump(self):
from ..pydantic import PYDANTIC_VERSION from ..pydantic import PYDANTIC_VERSION

View File

@@ -0,0 +1,224 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
from functools import cached_property
from typing import List, Union
import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import TEXT
@register("bedrock-text")
class BedRockText(TextEmbeddingFunction):
"""
Parameters
----------
name: str, default "amazon.titan-embed-text-v1"
The model ID of the bedrock model to use. Supported models for are:
- amazon.titan-embed-text-v1
- cohere.embed-english-v3
- cohere.embed-multilingual-v3
region: str, default "us-east-1"
Optional name of the AWS Region in which the service should be called.
profile_name: str, default None
Optional name of the AWS profile to use for calling the Bedrock service.
If not specified, the default profile will be used.
assumed_role: str, default None
Optional ARN of an AWS IAM role to assume for calling the Bedrock service.
If not specified, the current active credentials will be used.
role_session_name: str, default "lancedb-embeddings"
Optional name of the AWS IAM role session to use for calling the Bedrock
service. If not specified, "lancedb-embeddings" name will be used.
Examples
--------
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "amazon.titan-embed-text-v1"
region: str = "us-east-1"
assumed_role: Union[str, None] = None
profile_name: Union[str, None] = None
role_session_name: str = "lancedb-embeddings"
if PYDANTIC_VERSION < (2, 0): # Pydantic 1.x compat
class Config:
keep_untouched = (cached_property,)
def ndims(self):
# return len(self._generate_embedding("test"))
# TODO: fix hardcoding
if self.name == "amazon.titan-embed-text-v1":
return 1536
elif self.name in {"cohere.embed-english-v3", "cohere.embed-multilingual-v3"}:
return 1024
else:
raise ValueError(f"Unknown model name: {self.name}")
def compute_query_embeddings(
self, query: str, *args, **kwargs
) -> List[List[float]]:
return self.compute_source_embeddings(query)
def compute_source_embeddings(
self, texts: TEXT, *args, **kwargs
) -> List[List[float]]:
texts = self.sanitize_input(texts)
return self.generate_embeddings(texts)
def generate_embeddings(
self, texts: Union[List[str], np.ndarray], *args, **kwargs
) -> List[List[float]]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
Returns
-------
list[list[float]]
The embeddings for the given texts
"""
results = []
for text in texts:
response = self._generate_embedding(text)
results.append(response)
return results
def _generate_embedding(self, text: str) -> List[float]:
"""
Get the embeddings for the given texts
Parameters
----------
texts: str
The texts to embed
Returns
-------
list[float]
The embeddings for the given texts
"""
# format input body for provider
provider = self.name.split(".")[0]
_model_kwargs = {}
input_body = {**_model_kwargs}
if provider == "cohere":
if "input_type" not in input_body.keys():
input_body["input_type"] = "search_document"
input_body["texts"] = [text]
else:
# includes common provider == "amazon"
input_body["inputText"] = text
body = json.dumps(input_body)
try:
# invoke bedrock API
response = self.client.invoke_model(
body=body,
modelId=self.name,
accept="application/json",
contentType="application/json",
)
# format output based on provider
response_body = json.loads(response.get("body").read())
if provider == "cohere":
return response_body.get("embeddings")[0]
else:
# includes common provider == "amazon"
return response_body.get("embedding")
except Exception as e:
help_txt = """
boto3 client failed to invoke the bedrock API. In case of
AWS credentials error:
- Please check your AWS credentials and ensure that you have access.
You can set up aws credentials using `aws configure` command and
verify by running `aws sts get-caller-identity` in your terminal.
"""
raise ValueError(f"Error raised by boto3 client: {e}. \n {help_txt}")
@cached_property
def client(self):
"""Create a boto3 client for Amazon Bedrock service
Returns
-------
boto3.client
The boto3 client for Amazon Bedrock service
"""
botocore = attempt_import_or_raise("botocore")
boto3 = attempt_import_or_raise("boto3")
session_kwargs = {"region_name": self.region}
client_kwargs = {**session_kwargs}
if self.profile_name:
session_kwargs["profile_name"] = self.profile_name
retry_config = botocore.config.Config(
region_name=self.region,
retries={
"max_attempts": 0, # disable this as retries retries are handled
"mode": "standard",
},
)
session = (
boto3.Session(**session_kwargs) if self.profile_name else boto3.Session()
)
if self.assumed_role: # if not using default credentials
sts = session.client("sts")
response = sts.assume_role(
RoleArn=str(self.assumed_role),
RoleSessionName=self.role_session_name,
)
client_kwargs["aws_access_key_id"] = response["Credentials"]["AccessKeyId"]
client_kwargs["aws_secret_access_key"] = response["Credentials"][
"SecretAccessKey"
]
client_kwargs["aws_session_token"] = response["Credentials"]["SessionToken"]
service_name = "bedrock-runtime"
bedrock_client = session.client(
service_name=service_name, config=retry_config, **client_kwargs
)
return bedrock_client

View File

@@ -16,6 +16,7 @@ from typing import ClassVar, List, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import api_key_not_found_help from .utils import api_key_not_found_help
@@ -84,7 +85,7 @@ class CohereEmbeddingFunction(TextEmbeddingFunction):
return [emb for emb in rs.embeddings] return [emb for emb in rs.embeddings]
def _init_client(self): def _init_client(self):
cohere = self.safe_import("cohere") cohere = attempt_import_or_raise("cohere")
if CohereEmbeddingFunction.client is None: if CohereEmbeddingFunction.client is None:
if os.environ.get("COHERE_API_KEY") is None: if os.environ.get("COHERE_API_KEY") is None:
api_key_not_found_help("cohere") api_key_not_found_help("cohere")

View File

@@ -19,6 +19,7 @@ import numpy as np
from lancedb.pydantic import PYDANTIC_VERSION from lancedb.pydantic import PYDANTIC_VERSION
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import TEXT, api_key_not_found_help from .utils import TEXT, api_key_not_found_help
@@ -134,7 +135,7 @@ class GeminiText(TextEmbeddingFunction):
@cached_property @cached_property
def client(self): def client(self):
genai = self.safe_import("google.generativeai", "google.generativeai") genai = attempt_import_or_raise("google.generativeai", "google.generativeai")
if not os.environ.get("GOOGLE_API_KEY"): if not os.environ.get("GOOGLE_API_KEY"):
api_key_not_found_help("google") api_key_not_found_help("google")

View File

@@ -0,0 +1,131 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
from .utils import weak_lru
@register("gte-text")
class GteEmbeddings(TextEmbeddingFunction):
"""
An embedding function that uses GTE-LARGE MLX format(for Apple silicon devices only)
as well as the standard cpu/gpu version from: https://huggingface.co/thenlper/gte-large.
For Apple users, you will need the mlx package insalled, which can be done with:
pip install mlx
Parameters
----------
name: str, default "thenlper/gte-large"
The name of the model to use.
device: str, default "cpu"
Sets the device type for the model.
normalize: str, default "True"
Controls normalize param in encode function for the transformer.
mlx: bool, default False
Controls which model to use. False for gte-large,True for the mlx version.
Examples
--------
import lancedb
import lancedb.embeddings.gte
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
import pandas as pd
model = get_registry().get("gte-text").create() # mlx=True for Apple silicon
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
"""
name: str = "thenlper/gte-large"
device: str = "cpu"
normalize: bool = True
mlx: bool = False
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
if kwargs:
self.mlx = kwargs.get("mlx", False)
if self.mlx is True:
self.name = "gte-mlx"
@property
def embedding_model(self):
"""
Get the embedding model specified by the flag,
name and device. This is cached so that the model is only loaded
once per process.
"""
return self.get_embedding_model()
def ndims(self):
if self.mlx is True:
self._ndims = self.embedding_model.dims
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
def generate_embeddings(
self, texts: Union[List[str], np.ndarray]
) -> List[np.array]:
"""
Get the embeddings for the given texts.
Parameters
----------
texts: list[str] or np.ndarray (of str)
The texts to embed
"""
if self.mlx is True:
return self.embedding_model.run(list(texts)).tolist()
return self.embedding_model.encode(
list(texts),
convert_to_numpy=True,
normalize_embeddings=self.normalize,
).tolist()
@weak_lru(maxsize=1)
def get_embedding_model(self):
"""
Get the embedding model specified by the flag,
name and device. This is cached so that the model is only loaded
once per process.
"""
if self.mlx is True:
from .gte_mlx_model import Model
return Model()
else:
sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers"
)
return sentence_transformers.SentenceTransformer(
self.name, device=self.device
)

View File

@@ -0,0 +1,154 @@
import json
from typing import List, Optional
import numpy as np
from huggingface_hub import snapshot_download
from pydantic import BaseModel
from transformers import BertTokenizer
try:
import mlx.core as mx
import mlx.nn as nn
except ImportError:
raise ImportError("You need to install MLX to use this model use - pip install mlx")
def average_pool(last_hidden_state: mx.array, attention_mask: mx.array) -> mx.array:
last_hidden = mx.multiply(last_hidden_state, attention_mask[..., None])
return last_hidden.sum(axis=1) / attention_mask.sum(axis=1)[..., None]
class ModelConfig(BaseModel):
dim: int = 1024
num_attention_heads: int = 16
num_hidden_layers: int = 24
vocab_size: int = 30522
attention_probs_dropout_prob: float = 0.1
hidden_dropout_prob: float = 0.1
layer_norm_eps: float = 1e-12
max_position_embeddings: int = 512
class TransformerEncoderLayer(nn.Module):
"""
A transformer encoder layer with (the original BERT) post-normalization.
"""
def __init__(
self,
dims: int,
num_heads: int,
mlp_dims: Optional[int] = None,
layer_norm_eps: float = 1e-12,
):
super().__init__()
mlp_dims = mlp_dims or dims * 4
self.attention = nn.MultiHeadAttention(dims, num_heads, bias=True)
self.ln1 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.ln2 = nn.LayerNorm(dims, eps=layer_norm_eps)
self.linear1 = nn.Linear(dims, mlp_dims)
self.linear2 = nn.Linear(mlp_dims, dims)
self.gelu = nn.GELU()
def __call__(self, x, mask):
attention_out = self.attention(x, x, x, mask)
add_and_norm = self.ln1(x + attention_out)
ff = self.linear1(add_and_norm)
ff_gelu = self.gelu(ff)
ff_out = self.linear2(ff_gelu)
x = self.ln2(ff_out + add_and_norm)
return x
class TransformerEncoder(nn.Module):
def __init__(
self, num_layers: int, dims: int, num_heads: int, mlp_dims: Optional[int] = None
):
super().__init__()
self.layers = [
TransformerEncoderLayer(dims, num_heads, mlp_dims)
for i in range(num_layers)
]
def __call__(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return x
class BertEmbeddings(nn.Module):
def __init__(self, config: ModelConfig):
self.word_embeddings = nn.Embedding(config.vocab_size, config.dim)
self.token_type_embeddings = nn.Embedding(2, config.dim)
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.dim
)
self.norm = nn.LayerNorm(config.dim, eps=config.layer_norm_eps)
def __call__(self, input_ids: mx.array, token_type_ids: mx.array) -> mx.array:
words = self.word_embeddings(input_ids)
position = self.position_embeddings(
mx.broadcast_to(mx.arange(input_ids.shape[1]), input_ids.shape)
)
token_types = self.token_type_embeddings(token_type_ids)
embeddings = position + words + token_types
return self.norm(embeddings)
class Bert(nn.Module):
def __init__(self, config: ModelConfig):
self.embeddings = BertEmbeddings(config)
self.encoder = TransformerEncoder(
num_layers=config.num_hidden_layers,
dims=config.dim,
num_heads=config.num_attention_heads,
)
self.pooler = nn.Linear(config.dim, config.dim)
def __call__(
self,
input_ids: mx.array,
token_type_ids: mx.array,
attention_mask: mx.array = None,
) -> tuple[mx.array, mx.array]:
x = self.embeddings(input_ids, token_type_ids)
if attention_mask is not None:
# convert 0's to -infs, 1's to 0's, and make it broadcastable
attention_mask = mx.log(attention_mask)
attention_mask = mx.expand_dims(attention_mask, (1, 2))
y = self.encoder(x, attention_mask)
return y, mx.tanh(self.pooler(y[:, 0]))
class Model:
def __init__(self) -> None:
# get converted embedding model
model_path = snapshot_download(repo_id="vegaluisjose/mlx-rag")
with open(f"{model_path}/config.json") as f:
model_config = ModelConfig(**json.load(f))
self.dims = model_config.dim
self.model = Bert(model_config)
self.model.load_weights(f"{model_path}/model.npz")
self.tokenizer = BertTokenizer.from_pretrained("thenlper/gte-large")
self.embeddings = []
def run(self, input_text: List[str]) -> mx.array:
tokens = self.tokenizer(input_text, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}
last_hidden_state, _ = self.model(**tokens)
embeddings = average_pool(
last_hidden_state, tokens["attention_mask"].astype(mx.float32)
)
self.embeddings = (
embeddings / mx.linalg.norm(embeddings, ord=2, axis=1)[..., None]
)
return np.array(embeddings.astype(mx.float32))

View File

@@ -0,0 +1,172 @@
# Copyright (c) 2023. LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import cached_property
from typing import List, Union
import numpy as np
import pyarrow as pa
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction
from .registry import register
from .utils import AUDIO, IMAGES, TEXT
@register("imagebind")
class ImageBindEmbeddings(EmbeddingFunction):
"""
An embedding function that uses the ImageBind API
For generating multi-modal embeddings across
six different modalities: images, text, audio, depth, thermal, and IMU data
to download package, run :
`pip install imagebind@git+https://github.com/raghavdixit99/ImageBind`
"""
name: str = "imagebind_huge"
device: str = "cpu"
normalize: bool = False
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._ndims = 1024
self._audio_extensions = (".mp3", ".wav", ".flac", ".ogg", ".aac")
self._image_extensions = (".jpg", ".jpeg", ".png", ".gif", ".bmp")
@cached_property
def embedding_model(self):
"""
Get the embedding model. This is cached so that the model is only loaded
once per process.
"""
return self.get_embedding_model()
@cached_property
def _data(self):
"""
Get the data module from imagebind
"""
data = attempt_import_or_raise("imagebind.data", "imagebind")
return data
@cached_property
def _ModalityType(self):
"""
Get the ModalityType from imagebind
"""
imagebind = attempt_import_or_raise("imagebind", "imagebind")
return imagebind.imagebind_model.ModalityType
def ndims(self):
return self._ndims
def compute_query_embeddings(
self, query: Union[str], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str]
The query to embed. A query can be either text, image paths or audio paths.
"""
query = self.sanitize_input(query)
if query[0].endswith(self._audio_extensions):
return [self.generate_audio_embeddings(query)]
elif query[0].endswith(self._image_extensions):
return [self.generate_image_embeddings(query)]
else:
return [self.generate_text_embeddings(query)]
def generate_image_embeddings(self, image: IMAGES) -> np.ndarray:
torch = attempt_import_or_raise("torch")
inputs = {
self._ModalityType.VISION: self._data.load_and_transform_vision_data(
image, self.device
)
}
with torch.no_grad():
image_features = self.embedding_model(inputs)[self._ModalityType.VISION]
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
def generate_audio_embeddings(self, audio: AUDIO) -> np.ndarray:
torch = attempt_import_or_raise("torch")
inputs = {
self._ModalityType.AUDIO: self._data.load_and_transform_audio_data(
audio, self.device
)
}
with torch.no_grad():
audio_features = self.embedding_model(inputs)[self._ModalityType.AUDIO]
if self.normalize:
audio_features /= audio_features.norm(dim=-1, keepdim=True)
return audio_features.cpu().numpy().squeeze()
def generate_text_embeddings(self, text: TEXT) -> np.ndarray:
torch = attempt_import_or_raise("torch")
inputs = {
self._ModalityType.TEXT: self._data.load_and_transform_text(
text, self.device
)
}
with torch.no_grad():
text_features = self.embedding_model(inputs)[self._ModalityType.TEXT]
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def compute_source_embeddings(
self, source: Union[IMAGES, AUDIO], *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given sourcefield column in the pydantic model.
"""
source = self.sanitize_input(source)
embeddings = []
if source[0].endswith(self._audio_extensions):
embeddings.extend(self.generate_audio_embeddings(source))
return embeddings
elif source[0].endswith(self._image_extensions):
embeddings.extend(self.generate_image_embeddings(source))
return embeddings
else:
embeddings.extend(self.generate_text_embeddings(source))
return embeddings
def sanitize_input(
self, input: Union[IMAGES, AUDIO]
) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(input, (str, bytes)):
input = [input]
elif isinstance(input, pa.Array):
input = input.to_pylist()
elif isinstance(input, pa.ChunkedArray):
input = input.combine_chunks().to_pylist()
return input
def get_embedding_model(self):
"""
fetches the imagebind embedding model
"""
imagebind = attempt_import_or_raise("imagebind", "imagebind")
model = imagebind.imagebind_model.imagebind_huge(pretrained=True)
model.eval()
model.to(self.device)
return model

View File

@@ -14,6 +14,7 @@ from typing import List
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import TEXT, weak_lru from .utils import TEXT, weak_lru
@@ -102,9 +103,9 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
# convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly # convert_to_numpy: bool = True # Hardcoding this as numpy can be ingested directly
source_instruction: str = "represent the document for retrieval" source_instruction: str = "represent the document for retrieval"
query_instruction: str = ( query_instruction: (
"represent the document for retrieving the most similar documents" str
) ) = "represent the document for retrieving the most similar documents"
@weak_lru(maxsize=1) @weak_lru(maxsize=1)
def ndims(self): def ndims(self):
@@ -131,10 +132,10 @@ class InstructorEmbeddingFunction(TextEmbeddingFunction):
@weak_lru(maxsize=1) @weak_lru(maxsize=1)
def get_model(self): def get_model(self):
instructor_embedding = self.safe_import( instructor_embedding = attempt_import_or_raise(
"InstructorEmbedding", "InstructorEmbedding" "InstructorEmbedding", "InstructorEmbedding"
) )
torch = self.safe_import("torch", "torch") torch = attempt_import_or_raise("torch", "torch")
model = instructor_embedding.INSTRUCTOR(self.name) model = instructor_embedding.INSTRUCTOR(self.name)
if self.quantize: if self.quantize:

View File

@@ -21,6 +21,7 @@ import pyarrow as pa
from pydantic import PrivateAttr from pydantic import PrivateAttr
from tqdm import tqdm from tqdm import tqdm
from ..util import attempt_import_or_raise
from .base import EmbeddingFunction from .base import EmbeddingFunction
from .registry import register from .registry import register
from .utils import IMAGES, url_retrieve from .utils import IMAGES, url_retrieve
@@ -50,7 +51,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs) super().__init__(*args, **kwargs)
open_clip = self.safe_import("open_clip", "open-clip") open_clip = attempt_import_or_raise("open_clip", "open-clip")
model, _, preprocess = open_clip.create_model_and_transforms( model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained self.name, pretrained=self.pretrained
) )
@@ -78,14 +79,14 @@ class OpenClipEmbeddings(EmbeddingFunction):
if isinstance(query, str): if isinstance(query, str):
return [self.generate_text_embeddings(query)] return [self.generate_text_embeddings(query)]
else: else:
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image): if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)] return [self.generate_image_embedding(query)]
else: else:
raise TypeError("OpenClip supports str or PIL Image as query") raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray: def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text) text = self.sanitize_input(text)
text = self._tokenizer(text) text = self._tokenizer(text)
text.to(self.device) text.to(self.device)
@@ -144,7 +145,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
The image to embed. If the image is a str, it is treated as a uri. The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes. If the image is bytes, it is treated as the raw image bytes.
""" """
torch = self.safe_import("torch") torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https # TODO handle retry and errors for https
image = self._to_pil(image) image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0) image = self._preprocess(image).unsqueeze(0)
@@ -152,7 +153,7 @@ class OpenClipEmbeddings(EmbeddingFunction):
return self._encode_and_normalize_image(image) return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]): def _to_pil(self, image: Union[str, bytes]):
PIL = self.safe_import("PIL", "pillow") PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes): if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image)) return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image): if isinstance(image, PIL.Image.Image):

View File

@@ -12,10 +12,11 @@
# limitations under the License. # limitations under the License.
import os import os
from functools import cached_property from functools import cached_property
from typing import List, Union from typing import List, Optional, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import api_key_not_found_help from .utils import api_key_not_found_help
@@ -30,10 +31,21 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
""" """
name: str = "text-embedding-ada-002" name: str = "text-embedding-ada-002"
dim: Optional[int] = None
def ndims(self): def ndims(self):
# TODO don't hardcode this return self._ndims
@cached_property
def _ndims(self):
if self.name == "text-embedding-ada-002":
return 1536 return 1536
elif self.name == "text-embedding-3-large":
return self.dim or 3072
elif self.name == "text-embedding-3-small":
return self.dim or 1536
else:
raise ValueError(f"Unknown model name {self.name}")
def generate_embeddings( def generate_embeddings(
self, texts: Union[List[str], np.ndarray] self, texts: Union[List[str], np.ndarray]
@@ -47,12 +59,17 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
The texts to embed The texts to embed
""" """
# TODO retry, rate limit, token limit # TODO retry, rate limit, token limit
if self.name == "text-embedding-ada-002":
rs = self._openai_client.embeddings.create(input=texts, model=self.name) rs = self._openai_client.embeddings.create(input=texts, model=self.name)
else:
rs = self._openai_client.embeddings.create(
input=texts, model=self.name, dimensions=self.ndims()
)
return [v.embedding for v in rs.data] return [v.embedding for v in rs.data]
@cached_property @cached_property
def _openai_client(self): def _openai_client(self):
openai = self.safe_import("openai") openai = attempt_import_or_raise("openai")
if not os.environ.get("OPENAI_API_KEY"): if not os.environ.get("OPENAI_API_KEY"):
api_key_not_found_help("openai") api_key_not_found_help("openai")

View File

@@ -14,6 +14,7 @@ from typing import List, Union
import numpy as np import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction from .base import TextEmbeddingFunction
from .registry import register from .registry import register
from .utils import weak_lru from .utils import weak_lru
@@ -75,7 +76,7 @@ class SentenceTransformerEmbeddings(TextEmbeddingFunction):
TODO: use lru_cache instead with a reasonable/configurable maxsize TODO: use lru_cache instead with a reasonable/configurable maxsize
""" """
sentence_transformers = self.safe_import( sentence_transformers = attempt_import_or_raise(
"sentence_transformers", "sentence-transformers" "sentence_transformers", "sentence-transformers"
) )
return sentence_transformers.SentenceTransformer(self.name, device=self.device) return sentence_transformers.SentenceTransformer(self.name, device=self.device)

View File

@@ -26,7 +26,7 @@ import pyarrow as pa
from lance.vector import vec_to_table from lance.vector import vec_to_table
from retry import retry from retry import retry
from ..util import safe_import_pandas from ..util import deprecated, safe_import_pandas
from ..utils.general import LOGGER from ..utils.general import LOGGER
pd = safe_import_pandas() pd = safe_import_pandas()
@@ -36,8 +36,10 @@ TEXT = Union[str, List[str], pa.Array, pa.ChunkedArray, np.ndarray]
IMAGES = Union[ IMAGES = Union[
str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray
] ]
AUDIO = Union[str, bytes, List[str], List[bytes], pa.Array, pa.ChunkedArray, np.ndarray]
@deprecated
def with_embeddings( def with_embeddings(
func: Callable, func: Callable,
data: DATA, data: DATA,

107
python/lancedb/merge.py Normal file
View File

@@ -0,0 +1,107 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import TYPE_CHECKING, List, Optional
if TYPE_CHECKING:
from .common import DATA
class LanceMergeInsertBuilder(object):
"""Builder for a LanceDB merge insert operation
See [`merge_insert`][lancedb.table.Table.merge_insert] for
more context
"""
def __init__(self, table: "Table", on: List[str]): # noqa: F821
# Do not put a docstring here. This method should be hidden
# from API docs. Users should use merge_insert to create
# this object.
self._table = table
self._on = on
self._when_matched_update_all = False
self._when_matched_update_all_condition = None
self._when_not_matched_insert_all = False
self._when_not_matched_by_source_delete = False
self._when_not_matched_by_source_condition = None
def when_matched_update_all(
self, *, where: Optional[str] = None
) -> LanceMergeInsertBuilder:
"""
Rows that exist in both the source table (new data) and
the target table (old data) will be updated, replacing
the old row with the corresponding matching row.
If there are multiple matches then the behavior is undefined.
Currently this causes multiple copies of the row to be created
but that behavior is subject to change.
"""
self._when_matched_update_all = True
self._when_matched_update_all_condition = where
return self
def when_not_matched_insert_all(self) -> LanceMergeInsertBuilder:
"""
Rows that exist only in the source table (new data) should
be inserted into the target table.
"""
self._when_not_matched_insert_all = True
return self
def when_not_matched_by_source_delete(
self, condition: Optional[str] = None
) -> LanceMergeInsertBuilder:
"""
Rows that exist only in the target table (old data) will be
deleted. An optional condition can be provided to limit what
data is deleted.
Parameters
----------
condition: Optional[str], default None
If None then all such rows will be deleted. Otherwise the
condition will be used as an SQL filter to limit what rows
are deleted.
"""
self._when_not_matched_by_source_delete = True
if condition is not None:
self._when_not_matched_by_source_condition = condition
return self
def execute(
self,
new_data: DATA,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
"""
Executes the merge insert operation
Nothing is returned but the [`Table`][lancedb.table.Table] is updated
Parameters
----------
new_data: DATA
New records which will be matched against the existing records
to potentially insert or update into the table. This parameter
can be anything you use for [`add`][lancedb.table.Table.add]
on_bad_vectors: str, default "error"
What to do if any of the vectors are not the same size or contains NaNs.
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
"""
self._table._do_merge(self, new_data, on_bad_vectors, fill_value)

View File

@@ -304,7 +304,7 @@ class LanceModel(pydantic.BaseModel):
... name: str ... name: str
... vector: Vector(2) ... vector: Vector(2)
... ...
>>> db = lancedb.connect("/tmp") >>> db = lancedb.connect("./example")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema()) >>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([ >>> table.add([
... TestModel(name="test", vector=[1.0, 2.0]) ... TestModel(name="test", vector=[1.0, 2.0])

View File

@@ -14,8 +14,9 @@
from __future__ import annotations from __future__ import annotations
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from concurrent.futures import ThreadPoolExecutor
from pathlib import Path from pathlib import Path
from typing import TYPE_CHECKING, List, Literal, Optional, Type, Union from typing import TYPE_CHECKING, List, Literal, Optional, Tuple, Type, Union
import deprecation import deprecation
import numpy as np import numpy as np
@@ -23,7 +24,9 @@ import pyarrow as pa
import pydantic import pydantic
from . import __version__ from . import __version__
from .common import VECTOR_COLUMN_NAME from .common import VEC
from .rerankers.base import Reranker
from .rerankers.linear_combination import LinearCombinationReranker
from .util import safe_import_pandas from .util import safe_import_pandas
if TYPE_CHECKING: if TYPE_CHECKING:
@@ -72,7 +75,7 @@ class Query(pydantic.BaseModel):
tuning advice. tuning advice.
""" """
vector_column: str = VECTOR_COLUMN_NAME vector_column: Optional[str] = None
# vector to search for # vector to search for
vector: Union[List[float], List[List[float]]] vector: Union[List[float], List[List[float]]]
@@ -99,6 +102,8 @@ class Query(pydantic.BaseModel):
# Refine factor. # Refine factor.
refine_factor: Optional[int] = None refine_factor: Optional[int] = None
with_row_id: bool = False
class LanceQueryBuilder(ABC): class LanceQueryBuilder(ABC):
"""Build LanceDB query based on specific query type: """Build LanceDB query based on specific query type:
@@ -109,19 +114,26 @@ class LanceQueryBuilder(ABC):
def create( def create(
cls, cls,
table: "Table", table: "Table",
query: Optional[Union[np.ndarray, str, "PIL.Image.Image"]], query: Optional[Union[np.ndarray, str, "PIL.Image.Image", Tuple]],
query_type: str, query_type: str,
vector_column_name: str, vector_column_name: str,
) -> LanceQueryBuilder: ) -> LanceQueryBuilder:
if query is None: if query is None:
return LanceEmptyQueryBuilder(table) return LanceEmptyQueryBuilder(table)
# convert "auto" query_type to "vector" or "fts" if query_type == "hybrid":
# and convert the query to vector if needed # hybrid fts and vector query
return LanceHybridQueryBuilder(table, query, vector_column_name)
# convert "auto" query_type to "vector", "fts"
# or "hybrid" and convert the query to vector if needed
query, query_type = cls._resolve_query( query, query_type = cls._resolve_query(
table, query, query_type, vector_column_name table, query, query_type, vector_column_name
) )
if query_type == "hybrid":
return LanceHybridQueryBuilder(table, query, vector_column_name)
if isinstance(query, str): if isinstance(query, str):
# fts # fts
return LanceFtsQueryBuilder(table, query) return LanceFtsQueryBuilder(table, query)
@@ -144,17 +156,13 @@ class LanceQueryBuilder(ABC):
raise TypeError(f"'fts' queries must be a string: {type(query)}") raise TypeError(f"'fts' queries must be a string: {type(query)}")
return query, query_type return query, query_type
elif query_type == "vector": elif query_type == "vector":
if not isinstance(query, (list, np.ndarray)): query = cls._query_to_vector(table, query, vector_column_name)
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
query = conf.function.compute_query_embeddings_with_retry(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
return query, query_type return query, query_type
elif query_type == "auto": elif query_type == "auto":
if isinstance(query, (list, np.ndarray)): if isinstance(query, (list, np.ndarray)):
return query, "vector" return query, "vector"
if isinstance(query, tuple):
return query, "hybrid"
else: else:
conf = table.embedding_functions.get(vector_column_name) conf = table.embedding_functions.get(vector_column_name)
if conf is not None: if conf is not None:
@@ -167,11 +175,23 @@ class LanceQueryBuilder(ABC):
f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}" f"Invalid query_type, must be 'vector', 'fts', or 'auto': {query_type}"
) )
@classmethod
def _query_to_vector(cls, table, query, vector_column_name):
if isinstance(query, (list, np.ndarray)):
return query
conf = table.embedding_functions.get(vector_column_name)
if conf is not None:
return conf.function.compute_query_embeddings_with_retry(query)[0]
else:
msg = f"No embedding function for {vector_column_name}"
raise ValueError(msg)
def __init__(self, table: "Table"): def __init__(self, table: "Table"):
self._table = table self._table = table
self._limit = 10 self._limit = 10
self._columns = None self._columns = None
self._where = None self._where = None
self._with_row_id = False
@deprecation.deprecated( @deprecation.deprecated(
deprecated_in="0.3.1", deprecated_in="0.3.1",
@@ -341,6 +361,22 @@ class LanceQueryBuilder(ABC):
self._prefilter = prefilter self._prefilter = prefilter
return self return self
def with_row_id(self, with_row_id: bool) -> LanceQueryBuilder:
"""Set whether to return row ids.
Parameters
----------
with_row_id: bool
If True, return _rowid column in the results.
Returns
-------
LanceQueryBuilder
The LanceQueryBuilder object.
"""
self._with_row_id = with_row_id
return self
class LanceVectorQueryBuilder(LanceQueryBuilder): class LanceVectorQueryBuilder(LanceQueryBuilder):
""" """
@@ -367,7 +403,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
self, self,
table: "Table", table: "Table",
query: Union[np.ndarray, list, "PIL.Image.Image"], query: Union[np.ndarray, list, "PIL.Image.Image"],
vector_column: str = VECTOR_COLUMN_NAME, vector_column: str,
): ):
super().__init__(table) super().__init__(table)
self._query = query self._query = query
@@ -459,6 +495,7 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
nprobes=self._nprobes, nprobes=self._nprobes,
refine_factor=self._refine_factor, refine_factor=self._refine_factor,
vector_column=self._vector_column, vector_column=self._vector_column,
with_row_id=self._with_row_id,
) )
return self._table._execute_query(query) return self._table._execute_query(query)
@@ -568,6 +605,10 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
ds = lance.write_dataset(output_tbl, tmp) ds = lance.write_dataset(output_tbl, tmp)
output_tbl = ds.to_table(filter=self._where) output_tbl = ds.to_table(filter=self._where)
if self._with_row_id:
# Need to set this to uint explicitly as vector results are in uint64
row_ids = pa.array(row_ids, type=pa.uint64())
output_tbl = output_tbl.append_column("_rowid", row_ids)
return output_tbl return output_tbl
@@ -579,3 +620,265 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
filter=self._where, filter=self._where,
limit=self._limit, limit=self._limit,
) )
class LanceHybridQueryBuilder(LanceQueryBuilder):
def __init__(self, table: "Table", query: str, vector_column: str):
super().__init__(table)
self._validate_fts_index()
vector_query, fts_query = self._validate_query(query)
self._fts_query = LanceFtsQueryBuilder(table, fts_query)
vector_query = self._query_to_vector(table, vector_query, vector_column)
self._vector_query = LanceVectorQueryBuilder(table, vector_query, vector_column)
self._norm = "score"
self._reranker = LinearCombinationReranker(weight=0.7, fill=1.0)
def _validate_fts_index(self):
if self._table._get_fts_index_path() is None:
raise ValueError(
"Please create a full-text search index " "to perform hybrid search."
)
def _validate_query(self, query):
# Temp hack to support vectorized queries for hybrid search
if isinstance(query, str):
return query, query
elif isinstance(query, tuple):
if len(query) != 2:
raise ValueError(
"The query must be a tuple of (vector_query, fts_query)."
)
if not isinstance(query[0], (list, np.ndarray, pa.Array, pa.ChunkedArray)):
raise ValueError(f"The vector query must be one of {VEC}.")
if not isinstance(query[1], str):
raise ValueError("The fts query must be a string.")
return query[0], query[1]
else:
raise ValueError(
"The query must be either a string or a tuple of (vector, string)."
)
def to_arrow(self) -> pa.Table:
with ThreadPoolExecutor() as executor:
fts_future = executor.submit(self._fts_query.with_row_id(True).to_arrow)
vector_future = executor.submit(
self._vector_query.with_row_id(True).to_arrow
)
fts_results = fts_future.result()
vector_results = vector_future.result()
# convert to ranks first if needed
if self._norm == "rank":
vector_results = self._rank(vector_results, "_distance")
fts_results = self._rank(fts_results, "score")
# normalize the scores to be between 0 and 1, 0 being most relevant
vector_results = self._normalize_scores(vector_results, "_distance")
# In fts higher scores represent relevance. Not inverting them here as
# rerankers might need to preserve this score to support `return_score="all"`
fts_results = self._normalize_scores(fts_results, "score")
results = self._reranker.rerank_hybrid(
self._fts_query._query, vector_results, fts_results
)
if not isinstance(results, pa.Table): # Enforce type
raise TypeError(
f"rerank_hybrid must return a pyarrow.Table, got {type(results)}"
)
# apply limit after reranking
results = results.slice(length=self._limit)
if not self._with_row_id:
results = results.drop(["_rowid"])
return results
def _rank(self, results: pa.Table, column: str, ascending: bool = True):
if len(results) == 0:
return results
# Get the _score column from results
scores = results.column(column).to_numpy()
sort_indices = np.argsort(scores)
if not ascending:
sort_indices = sort_indices[::-1]
ranks = np.empty_like(sort_indices)
ranks[sort_indices] = np.arange(len(scores)) + 1
# replace the _score column with the ranks
_score_idx = results.column_names.index(column)
results = results.set_column(
_score_idx, column, pa.array(ranks, type=pa.float32())
)
return results
def _normalize_scores(self, results: pa.Table, column: str, invert=False):
if len(results) == 0:
return results
# Get the _score column from results
scores = results.column(column).to_numpy()
# normalize the scores by subtracting the min and dividing by the max
max, min = np.max(scores), np.min(scores)
if np.isclose(max, min):
rng = max
else:
rng = max - min
scores = (scores - min) / rng
if invert:
scores = 1 - scores
# replace the _score column with the ranks
_score_idx = results.column_names.index(column)
results = results.set_column(
_score_idx, column, pa.array(scores, type=pa.float32())
)
return results
def rerank(
self,
normalize="score",
reranker: Reranker = LinearCombinationReranker(weight=0.7, fill=1.0),
) -> LanceHybridQueryBuilder:
"""
Rerank the hybrid search results using the specified reranker. The reranker
must be an instance of Reranker class.
Parameters
----------
normalize: str, default "score"
The method to normalize the scores. Can be "rank" or "score". If "rank",
the scores are converted to ranks and then normalized. If "score", the
scores are normalized directly.
reranker: Reranker, default LinearCombinationReranker(weight=0.7, fill=1.0)
The reranker to use. Must be an instance of Reranker class.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
if normalize not in ["rank", "score"]:
raise ValueError("normalize must be 'rank' or 'score'.")
if reranker and not isinstance(reranker, Reranker):
raise ValueError("reranker must be an instance of Reranker class.")
self._norm = normalize
self._reranker = reranker
return self
def limit(self, limit: int) -> LanceHybridQueryBuilder:
"""
Set the maximum number of results to return for both vector and fts search
components.
Parameters
----------
limit: int
The maximum number of results to return.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.limit(limit)
self._fts_query.limit(limit)
self._limit = limit
return self
def select(self, columns: list) -> LanceHybridQueryBuilder:
"""
Set the columns to return for both vector and fts search.
Parameters
----------
columns: list
The columns to return.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.select(columns)
self._fts_query.select(columns)
return self
def where(self, where: str, prefilter: bool = False) -> LanceHybridQueryBuilder:
"""
Set the where clause for both vector and fts search.
Parameters
----------
where: str
The where clause which is a valid SQL where clause. See
`Lance filter pushdown <https://lancedb.github.io/lance/read_and_write.html#filter-push-down>`_
for valid SQL expressions.
prefilter: bool, default False
If True, apply the filter before vector search, otherwise the
filter is applied on the result of vector search.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.where(where, prefilter=prefilter)
self._fts_query.where(where)
return self
def metric(self, metric: Literal["L2", "cosine"]) -> LanceHybridQueryBuilder:
"""
Set the distance metric to use for vector search.
Parameters
----------
metric: "L2" or "cosine"
The distance metric to use. By default "L2" is used.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.metric(metric)
return self
def nprobes(self, nprobes: int) -> LanceHybridQueryBuilder:
"""
Set the number of probes to use for vector search.
Higher values will yield better recall (more likely to find vectors if
they exist) at the expense of latency.
Parameters
----------
nprobes: int
The number of probes to use.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.nprobes(nprobes)
return self
def refine_factor(self, refine_factor: int) -> LanceHybridQueryBuilder:
"""
Refine the vector search results by reading extra elements and
re-ranking them in memory.
Parameters
----------
refine_factor: int
The refine factor to use.
Returns
-------
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._vector_query.refine_factor(refine_factor)
return self

View File

@@ -13,6 +13,8 @@
import functools import functools
import logging
import os
from typing import Any, Callable, Dict, List, Optional, Union from typing import Any, Callable, Dict, List, Optional, Union
from urllib.parse import urljoin from urllib.parse import urljoin
@@ -20,6 +22,8 @@ import attrs
import pyarrow as pa import pyarrow as pa
import requests import requests
from pydantic import BaseModel from pydantic import BaseModel
from requests.adapters import HTTPAdapter
from urllib3 import Retry
from lancedb.common import Credential from lancedb.common import Credential
from lancedb.remote import VectorQuery, VectorQueryResult from lancedb.remote import VectorQuery, VectorQueryResult
@@ -57,6 +61,10 @@ class RestfulLanceDBClient:
@functools.cached_property @functools.cached_property
def session(self) -> requests.Session: def session(self) -> requests.Session:
sess = requests.Session() sess = requests.Session()
retry_adapter_instance = retry_adapter(retry_adapter_options())
sess.mount(urljoin(self.url, "/v1/table/"), retry_adapter_instance)
adapter_class = LanceDBClientHTTPAdapterFactory() adapter_class = LanceDBClientHTTPAdapterFactory()
sess.mount("https://", adapter_class()) sess.mount("https://", adapter_class())
return sess return sess
@@ -109,7 +117,7 @@ class RestfulLanceDBClient:
urljoin(self.url, uri), urljoin(self.url, uri),
params=params, params=params,
headers=self.headers, headers=self.headers,
timeout=(10.0, 300.0), timeout=(120.0, 300.0),
) as resp: ) as resp:
self._check_status(resp) self._check_status(resp)
return resp.json() return resp.json()
@@ -151,7 +159,7 @@ class RestfulLanceDBClient:
urljoin(self.url, uri), urljoin(self.url, uri),
headers=headers, headers=headers,
params=params, params=params,
timeout=(10.0, 300.0), timeout=(120.0, 300.0),
**req_kwargs, **req_kwargs,
) as resp: ) as resp:
self._check_status(resp) self._check_status(resp)
@@ -170,3 +178,72 @@ class RestfulLanceDBClient:
"""Query a table.""" """Query a table."""
tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc) tbl = self.post(f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc)
return VectorQueryResult(tbl) return VectorQueryResult(tbl)
def mount_retry_adapter_for_table(self, table_name: str) -> None:
"""
Adds an http adapter to session that will retry retryable requests to the table.
"""
retry_options = retry_adapter_options(methods=["GET", "POST"])
retry_adapter_instance = retry_adapter(retry_options)
session = self.session
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/query/"), retry_adapter_instance
)
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/describe/"),
retry_adapter_instance,
)
session.mount(
urljoin(self.url, f"/v1/table/{table_name}/index/list/"),
retry_adapter_instance,
)
def retry_adapter_options(methods=["GET"]) -> Dict[str, Any]:
return {
"retries": int(os.environ.get("LANCE_CLIENT_MAX_RETRIES", "3")),
"connect_retries": int(os.environ.get("LANCE_CLIENT_CONNECT_RETRIES", "3")),
"read_retries": int(os.environ.get("LANCE_CLIENT_READ_RETRIES", "3")),
"backoff_factor": float(
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_FACTOR", "0.25")
),
"backoff_jitter": float(
os.environ.get("LANCE_CLIENT_RETRY_BACKOFF_JITTER", "0.25")
),
"statuses": [
int(i.strip())
for i in os.environ.get(
"LANCE_CLIENT_RETRY_STATUSES", "429, 500, 502, 503"
).split(",")
],
"methods": methods,
}
def retry_adapter(options: Dict[str, Any]) -> HTTPAdapter:
total_retries = options["retries"]
connect_retries = options["connect_retries"]
read_retries = options["read_retries"]
backoff_factor = options["backoff_factor"]
backoff_jitter = options["backoff_jitter"]
statuses = options["statuses"]
methods = frozenset(options["methods"])
logging.debug(
f"Setting up retry adapter with {total_retries} retries," # noqa G003
+ f"connect retries {connect_retries}, read retries {read_retries},"
+ f"backoff factor {backoff_factor}, statuses {statuses}, "
+ f"methods {methods}"
)
return HTTPAdapter(
max_retries=Retry(
total=total_retries,
connect=connect_retries,
read=read_retries,
backoff_factor=backoff_factor,
backoff_jitter=backoff_jitter,
status_forcelist=statuses,
allowed_methods=methods,
)
)

View File

@@ -14,6 +14,7 @@
import inspect import inspect
import logging import logging
import uuid import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List, Optional, Union from typing import Iterable, List, Optional, Union
from urllib.parse import urlparse from urllib.parse import urlparse
@@ -39,6 +40,7 @@ class RemoteDBConnection(DBConnection):
api_key: str, api_key: str,
region: str, region: str,
host_override: Optional[str] = None, host_override: Optional[str] = None,
request_thread_pool: Optional[ThreadPoolExecutor] = None,
): ):
"""Connect to a remote LanceDB database.""" """Connect to a remote LanceDB database."""
parsed = urlparse(db_url) parsed = urlparse(db_url)
@@ -49,6 +51,7 @@ class RemoteDBConnection(DBConnection):
self._client = RestfulLanceDBClient( self._client = RestfulLanceDBClient(
self.db_name, region, api_key, host_override self.db_name, region, api_key, host_override
) )
self._request_thread_pool = request_thread_pool
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoteConnect(name={self.db_name})" return f"RemoteConnect(name={self.db_name})"
@@ -95,6 +98,8 @@ class RemoteDBConnection(DBConnection):
""" """
from .table import RemoteTable from .table import RemoteTable
self._client.mount_retry_adapter_for_table(name)
# check if table exists # check if table exists
try: try:
self._client.post(f"/v1/table/{name}/describe/") self._client.post(f"/v1/table/{name}/describe/")
@@ -116,6 +121,7 @@ class RemoteDBConnection(DBConnection):
schema: Optional[Union[pa.Schema, LanceModel]] = None, schema: Optional[Union[pa.Schema, LanceModel]] = None,
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
fill_value: float = 0.0, fill_value: float = 0.0,
mode: Optional[str] = None,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None, embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> Table: ) -> Table:
"""Create a [Table][lancedb.table.Table] in the database. """Create a [Table][lancedb.table.Table] in the database.
@@ -213,11 +219,13 @@ class RemoteDBConnection(DBConnection):
if data is None and schema is None: if data is None and schema is None:
raise ValueError("Either data or schema must be provided.") raise ValueError("Either data or schema must be provided.")
if embedding_functions is not None: if embedding_functions is not None:
raise NotImplementedError( logging.warning(
"embedding_functions is not supported for remote databases." "embedding_functions is not yet supported on LanceDB Cloud."
"Please vote https://github.com/lancedb/lancedb/issues/626 " "Please vote https://github.com/lancedb/lancedb/issues/626 "
"for this feature." "for this feature."
) )
if mode is not None:
logging.warning("mode is not yet supported on LanceDB Cloud.")
if inspect.isclass(schema) and issubclass(schema, LanceModel): if inspect.isclass(schema) and issubclass(schema, LanceModel):
# convert LanceModel to pyarrow schema # convert LanceModel to pyarrow schema

Some files were not shown because too many files have changed in this diff Show More