mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 22:09:58 +00:00
Compare commits
41 Commits
ayush/pyla
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4f7b24d1a9 | ||
|
|
f9540724b7 | ||
|
|
aeac9c7644 | ||
|
|
6ddd271627 | ||
|
|
f0d7520bdf | ||
|
|
7ef8bafd51 | ||
|
|
aed4a7c98e | ||
|
|
273ba18426 | ||
|
|
8b94308cf2 | ||
|
|
0b7b27481e | ||
|
|
e1f9b011f8 | ||
|
|
d664b8739f | ||
|
|
20bec61ecb | ||
|
|
45255be42c | ||
|
|
93c2cf2f59 | ||
|
|
9d29c83f81 | ||
|
|
2a6143b5bd | ||
|
|
b2242886e0 | ||
|
|
199904ab35 | ||
|
|
1fa888615f | ||
|
|
40967f3baa | ||
|
|
0bfc7de32c | ||
|
|
d43880a585 | ||
|
|
59a886958b | ||
|
|
c36f6746d1 | ||
|
|
25ce6d311f | ||
|
|
92a4e46f9f | ||
|
|
845641c480 | ||
|
|
d96404c635 | ||
|
|
02d31ee412 | ||
|
|
308623577d | ||
|
|
8ee3ae378f | ||
|
|
3372a2aae0 | ||
|
|
4cfcd95320 | ||
|
|
a70ff04bc9 | ||
|
|
a9daa18be9 | ||
|
|
3f2e3986e9 | ||
|
|
bf55feb9b6 | ||
|
|
8f8e06a2da | ||
|
|
03eab0f091 | ||
|
|
143184c0ae |
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.22.2"
|
||||
current_version = "0.22.3-beta.5"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
107
.github/workflows/codex-update-lance-dependency.yml
vendored
Normal file
107
.github/workflows/codex-update-lance-dependency.yml
vendored
Normal file
@@ -0,0 +1,107 @@
|
||||
name: Codex Update Lance Dependency
|
||||
|
||||
on:
|
||||
workflow_call:
|
||||
inputs:
|
||||
tag:
|
||||
description: "Tag name from Lance"
|
||||
required: true
|
||||
type: string
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
tag:
|
||||
description: "Tag name from Lance"
|
||||
required: true
|
||||
type: string
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
actions: read
|
||||
|
||||
jobs:
|
||||
update:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Show inputs
|
||||
run: |
|
||||
echo "tag = ${{ inputs.tag }}"
|
||||
|
||||
- name: Checkout Repo LanceDB
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
persist-credentials: true
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 20
|
||||
|
||||
- name: Install Codex CLI
|
||||
run: npm install -g @openai/codex
|
||||
|
||||
- name: Install Rust toolchain
|
||||
uses: dtolnay/rust-toolchain@stable
|
||||
with:
|
||||
toolchain: stable
|
||||
components: clippy, rustfmt
|
||||
|
||||
- name: Install system dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y protobuf-compiler libssl-dev
|
||||
|
||||
- name: Install cargo-info
|
||||
run: cargo install cargo-info
|
||||
|
||||
- name: Install Python dependencies
|
||||
run: python3 -m pip install --upgrade pip packaging
|
||||
|
||||
- name: Configure git user
|
||||
run: |
|
||||
git config user.name "lancedb automation"
|
||||
git config user.email "robot@lancedb.com"
|
||||
|
||||
- name: Configure Codex authentication
|
||||
env:
|
||||
CODEX_TOKEN_B64: ${{ secrets.CODEX_TOKEN }}
|
||||
run: |
|
||||
if [ -z "${CODEX_TOKEN_B64}" ]; then
|
||||
echo "Repository secret CODEX_TOKEN is not defined; skipping Codex execution."
|
||||
exit 1
|
||||
fi
|
||||
mkdir -p ~/.codex
|
||||
echo "${CODEX_TOKEN_B64}" | base64 --decode > ~/.codex/auth.json
|
||||
|
||||
- name: Run Codex to update Lance dependency
|
||||
env:
|
||||
TAG: ${{ inputs.tag }}
|
||||
GITHUB_TOKEN: ${{ secrets.ROBOT_TOKEN }}
|
||||
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
|
||||
run: |
|
||||
set -euo pipefail
|
||||
VERSION="${TAG#refs/tags/}"
|
||||
VERSION="${VERSION#v}"
|
||||
BRANCH_NAME="codex/update-lance-${VERSION//[^a-zA-Z0-9]/-}"
|
||||
cat <<EOF >/tmp/codex-prompt.txt
|
||||
You are running inside the lancedb repository on a GitHub Actions runner. Update the Lance dependency to version ${VERSION} and prepare a pull request for maintainers to review.
|
||||
|
||||
Follow these steps exactly:
|
||||
1. Use script "ci/set_lance_version.py" to update Lance dependencies. The script already refreshes Cargo metadata, so allow it to finish even if it takes time.
|
||||
2. Run "cargo clippy --workspace --tests --all-features -- -D warnings". If diagnostics appear, fix them yourself and rerun clippy until it exits cleanly. Do not skip any warnings.
|
||||
3. After clippy succeeds, run "cargo fmt --all" to format the workspace.
|
||||
4. Ensure the repository is clean except for intentional changes. Inspect "git status --short" and "git diff" to confirm the dependency update and any required fixes.
|
||||
5. Create and switch to a new branch named "${BRANCH_NAME}" (replace any duplicated hyphens if necessary).
|
||||
6. Stage all relevant files with "git add -A". Commit using the message "chore: update lance dependency to v${VERSION}".
|
||||
7. Push the branch to origin. If the branch already exists, force-push your changes.
|
||||
8. env "GH_TOKEN" is available, use "gh" tools for github related operations like creating pull request.
|
||||
9. Create a pull request targeting "main" with title "chore: update lance dependency to v${VERSION}". In the body, summarize the dependency bump, clippy/fmt verification, and link the triggering tag (${TAG}).
|
||||
10. After creating the PR, display the PR URL, "git status --short", and a concise summary of the commands run and their results.
|
||||
|
||||
Constraints:
|
||||
- Use bash commands; avoid modifying GitHub workflow files other than through the scripted task above.
|
||||
- Do not merge the PR.
|
||||
- If any command fails, diagnose and fix the issue instead of aborting.
|
||||
EOF
|
||||
codex --config shell_environment_policy.ignore_default_excludes=true exec --dangerously-bypass-approvals-and-sandbox "$(cat /tmp/codex-prompt.txt)"
|
||||
101
AGENTS.md
Normal file
101
AGENTS.md
Normal file
@@ -0,0 +1,101 @@
|
||||
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
|
||||
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
|
||||
remote (against LanceDB Cloud).
|
||||
|
||||
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
|
||||
|
||||
Project layout:
|
||||
|
||||
* `rust/lancedb`: The LanceDB core Rust implementation.
|
||||
* `python`: The Python bindings, using PyO3.
|
||||
* `nodejs`: The Typescript bindings, using napi-rs
|
||||
* `java`: The Java bindings
|
||||
|
||||
Common commands:
|
||||
|
||||
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
|
||||
* Run tests: `cargo test --quiet --features remote --tests`
|
||||
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
|
||||
* Lint: `cargo clippy --quiet --features remote --tests --examples`
|
||||
* Format: `cargo fmt --all`
|
||||
|
||||
Before committing changes, run formatting.
|
||||
|
||||
## Coding tips
|
||||
|
||||
* When writing Rust doctests for things that require a connection or table reference,
|
||||
write them as a function instead of a fully executable test. This allows type checking
|
||||
to run but avoids needing a full test environment. For example:
|
||||
```rust
|
||||
/// ```
|
||||
/// use lance_index::scalar::FullTextSearchQuery;
|
||||
/// use lancedb::query::{QueryBase, ExecutableQuery};
|
||||
///
|
||||
/// # use lancedb::Table;
|
||||
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
|
||||
/// let results = table.query()
|
||||
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
|
||||
/// .execute()
|
||||
/// .await?;
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
```
|
||||
|
||||
## Example plan: adding a new method on Table
|
||||
|
||||
Adding a new method involves first adding it to the Rust core, then exposing it
|
||||
in the Python and TypeScript bindings. There are both local and remote tables.
|
||||
Remote tables are implemented via a HTTP API and require the `remote` cargo
|
||||
feature flag to be enabled. Python has both sync and async methods.
|
||||
|
||||
Rust core changes:
|
||||
|
||||
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
|
||||
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
|
||||
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
|
||||
* Test with unit test in `rust/lancedb/src/table.rs`.
|
||||
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
|
||||
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
|
||||
|
||||
Python bindings changes:
|
||||
|
||||
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
|
||||
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
|
||||
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
|
||||
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
|
||||
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
|
||||
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
|
||||
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
|
||||
7. Add unit test in `python/tests/test_table.py`.
|
||||
|
||||
TypeScript bindings changes:
|
||||
|
||||
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
|
||||
2. Run `npm run build` to generate TypeScript definitions.
|
||||
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
|
||||
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
|
||||
* Note: despite the name, this class is also used for remote tables.
|
||||
5. Add test in `nodejs/__test__/table.test.ts`.
|
||||
6. Run `npm run docs` to generate TypeScript documentation.
|
||||
|
||||
## Review Guidelines
|
||||
|
||||
Please consider the following when reviewing code contributions.
|
||||
|
||||
### Rust API design
|
||||
* Design public APIs so they can be evolved easily in the future without breaking
|
||||
changes. Often this means using builder patterns or options structs instead of
|
||||
long argument lists.
|
||||
* For public APIs, prefer inputs that use `Into<T>` or `AsRef<T>` traits to allow
|
||||
more flexible inputs. For example, use `name: Into<String>` instead of `name: String`,
|
||||
so we don't have to write `func("my_string".to_string())`.
|
||||
|
||||
### Testing
|
||||
* Ensure all new public APIs have documentation and examples.
|
||||
* Ensure that all bugfixes and features have corresponding tests. **We do not merge
|
||||
code without tests.**
|
||||
|
||||
### Documentation
|
||||
* New features must include updates to the rust documentation comments. Link to
|
||||
relevant structs and methods to increase the value of documentation.
|
||||
80
CLAUDE.md
80
CLAUDE.md
@@ -1,80 +0,0 @@
|
||||
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
|
||||
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
|
||||
remote (against LanceDB Cloud).
|
||||
|
||||
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
|
||||
|
||||
Project layout:
|
||||
|
||||
* `rust/lancedb`: The LanceDB core Rust implementation.
|
||||
* `python`: The Python bindings, using PyO3.
|
||||
* `nodejs`: The Typescript bindings, using napi-rs
|
||||
* `java`: The Java bindings
|
||||
|
||||
Common commands:
|
||||
|
||||
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
|
||||
* Run tests: `cargo test --quiet --features remote --tests`
|
||||
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
|
||||
* Lint: `cargo clippy --quiet --features remote --tests --examples`
|
||||
* Format: `cargo fmt --all`
|
||||
|
||||
Before committing changes, run formatting.
|
||||
|
||||
## Coding tips
|
||||
|
||||
* When writing Rust doctests for things that require a connection or table reference,
|
||||
write them as a function instead of a fully executable test. This allows type checking
|
||||
to run but avoids needing a full test environment. For example:
|
||||
```rust
|
||||
/// ```
|
||||
/// use lance_index::scalar::FullTextSearchQuery;
|
||||
/// use lancedb::query::{QueryBase, ExecutableQuery};
|
||||
///
|
||||
/// # use lancedb::Table;
|
||||
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
|
||||
/// let results = table.query()
|
||||
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
|
||||
/// .execute()
|
||||
/// .await?;
|
||||
/// # Ok(())
|
||||
/// # }
|
||||
/// ```
|
||||
```
|
||||
|
||||
## Example plan: adding a new method on Table
|
||||
|
||||
Adding a new method involves first adding it to the Rust core, then exposing it
|
||||
in the Python and TypeScript bindings. There are both local and remote tables.
|
||||
Remote tables are implemented via a HTTP API and require the `remote` cargo
|
||||
feature flag to be enabled. Python has both sync and async methods.
|
||||
|
||||
Rust core changes:
|
||||
|
||||
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
|
||||
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
|
||||
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
|
||||
* Test with unit test in `rust/lancedb/src/table.rs`.
|
||||
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
|
||||
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
|
||||
|
||||
Python bindings changes:
|
||||
|
||||
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
|
||||
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
|
||||
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
|
||||
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
|
||||
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
|
||||
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
|
||||
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
|
||||
7. Add unit test in `python/tests/test_table.py`.
|
||||
|
||||
TypeScript bindings changes:
|
||||
|
||||
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
|
||||
2. Run `npm run build` to generate TypeScript definitions.
|
||||
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
|
||||
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
|
||||
* Note: despite the name, this class is also used for remote tables.
|
||||
5. Add test in `nodejs/__test__/table.test.ts`.
|
||||
6. Run `npm run docs` to generate TypeScript documentation.
|
||||
142
Cargo.lock
generated
142
Cargo.lock
generated
@@ -2933,18 +2933,6 @@ version = "0.2.3"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "f8eb564c5c7423d25c886fb561d1e4ee69f72354d16918afa32c08811f6b6a55"
|
||||
|
||||
[[package]]
|
||||
name = "fastbloom"
|
||||
version = "0.14.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "18c1ddb9231d8554c2d6bdf4cfaabf0c59251658c68b6c95cd52dd0c513a912a"
|
||||
dependencies = [
|
||||
"getrandom 0.3.3",
|
||||
"libm",
|
||||
"rand 0.9.2",
|
||||
"siphasher",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "fastdivide"
|
||||
version = "0.4.2"
|
||||
@@ -3044,8 +3032,9 @@ checksum = "42703706b716c37f96a77aea830392ad231f44c9e9a67872fa5548707e11b11c"
|
||||
|
||||
[[package]]
|
||||
name = "fsst"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "1d2475ce218217196b161b025598f77e2b405d5e729f7c37bfff145f5df00a41"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"rand 0.9.2",
|
||||
@@ -4229,8 +4218,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a2f0ca022d0424d991933a62d2898864cf5621873962bd84e65e7d1f023f9c36"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-arith",
|
||||
@@ -4269,6 +4259,7 @@ dependencies = [
|
||||
"lance-index",
|
||||
"lance-io",
|
||||
"lance-linalg",
|
||||
"lance-namespace",
|
||||
"lance-table",
|
||||
"log",
|
||||
"moka",
|
||||
@@ -4279,6 +4270,7 @@ dependencies = [
|
||||
"prost-types",
|
||||
"rand 0.9.2",
|
||||
"roaring",
|
||||
"semver",
|
||||
"serde",
|
||||
"serde_json",
|
||||
"snafu",
|
||||
@@ -4292,8 +4284,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-arrow"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7552f8d528775bf0ab21e1f75dcb70bdb2a828eeae58024a803b5a4655fd9a11"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-buffer",
|
||||
@@ -4311,8 +4304,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-bitpacking"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a2ea14583cc6fa0bb190bcc2d3bc364b0aa545b345702976025f810e4740e8ce"
|
||||
dependencies = [
|
||||
"arrayref",
|
||||
"paste",
|
||||
@@ -4321,8 +4315,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-core"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "69c752dedd207384892006c40930f898d6634e05e3d489e89763abfe4b9307e7"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-buffer",
|
||||
@@ -4358,8 +4353,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-datafusion"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "21e1e98ca6e5cd337bdda2d9fb66063f295c0c2852d2bc6831366fea833ee608"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-array",
|
||||
@@ -4368,6 +4364,7 @@ dependencies = [
|
||||
"arrow-schema",
|
||||
"arrow-select",
|
||||
"async-trait",
|
||||
"chrono",
|
||||
"datafusion",
|
||||
"datafusion-common",
|
||||
"datafusion-functions",
|
||||
@@ -4387,8 +4384,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-datagen"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "483c643fc2806ed1a2766edf4d180511bbd1d549bcc60373e33f4785c6185891"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-array",
|
||||
@@ -4405,8 +4403,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-encoding"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a199d1fa3487529c5ffc433fbd1721231330b9350c2ff9b0c7b7dbdb98f0806a"
|
||||
dependencies = [
|
||||
"arrow-arith",
|
||||
"arrow-array",
|
||||
@@ -4443,8 +4442,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-file"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "b57def2279465232cf5a8cd996300c632442e368745768bbed661c7f0a35334b"
|
||||
dependencies = [
|
||||
"arrow-arith",
|
||||
"arrow-array",
|
||||
@@ -4469,7 +4469,6 @@ dependencies = [
|
||||
"prost",
|
||||
"prost-build",
|
||||
"prost-types",
|
||||
"roaring",
|
||||
"snafu",
|
||||
"tokio",
|
||||
"tracing",
|
||||
@@ -4477,8 +4476,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-index"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "a75938c61e986aef8c615dc44c92e4c19e393160a59e2b57402ccfe08c5e63af"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-arith",
|
||||
@@ -4500,7 +4500,6 @@ dependencies = [
|
||||
"datafusion-sql",
|
||||
"deepsize",
|
||||
"dirs",
|
||||
"fastbloom",
|
||||
"fst",
|
||||
"futures",
|
||||
"half",
|
||||
@@ -4540,8 +4539,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-io"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "fa6c3b5b28570d6c951206c5b043f1b35c936928af14fca6f2ac25b0097e4c32"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-arith",
|
||||
@@ -4562,6 +4562,7 @@ dependencies = [
|
||||
"futures",
|
||||
"lance-arrow",
|
||||
"lance-core",
|
||||
"lance-namespace",
|
||||
"log",
|
||||
"object_store",
|
||||
"object_store_opendal",
|
||||
@@ -4580,43 +4581,55 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-linalg"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "b3cbc7e85a89ff9cb3a4627559dea3fd1c1fb16c0d8bc46ede75eefef51eec06"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-buffer",
|
||||
"arrow-ord",
|
||||
"arrow-schema",
|
||||
"bitvec",
|
||||
"cc",
|
||||
"deepsize",
|
||||
"futures",
|
||||
"half",
|
||||
"lance-arrow",
|
||||
"lance-core",
|
||||
"log",
|
||||
"num-traits",
|
||||
"rand 0.9.2",
|
||||
"rayon",
|
||||
"tokio",
|
||||
"tracing",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "lance-namespace"
|
||||
version = "0.0.18"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "7c0629165b5d85ff305f2de8833dcee507e899b36b098864c59f14f3b8b8e62d"
|
||||
checksum = "897dd6726816515bb70a698ce7cda44670dca5761637696d7905b45f405a8cd9"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"async-trait",
|
||||
"bytes",
|
||||
"lance",
|
||||
"lance-core",
|
||||
"lance-namespace-reqwest-client",
|
||||
"opendal",
|
||||
"snafu",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "lance-namespace-impls"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "5e3cfcd3ba369de2719abf6fb6233f69cda639eb5cbcb328487a790e745ab988"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-ipc",
|
||||
"arrow-schema",
|
||||
"async-trait",
|
||||
"bytes",
|
||||
"lance",
|
||||
"lance-core",
|
||||
"lance-io",
|
||||
"lance-namespace",
|
||||
"object_store",
|
||||
"reqwest",
|
||||
"serde_json",
|
||||
"thiserror 1.0.69",
|
||||
"snafu",
|
||||
"url",
|
||||
]
|
||||
|
||||
@@ -4635,8 +4648,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-table"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "c8facc13760ba034b6c38767b16adba85e44cbcbea8124dc0c63c43865c60630"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"arrow-array",
|
||||
@@ -4663,6 +4677,7 @@ dependencies = [
|
||||
"rand 0.9.2",
|
||||
"rangemap",
|
||||
"roaring",
|
||||
"semver",
|
||||
"serde",
|
||||
"serde_json",
|
||||
"snafu",
|
||||
@@ -4674,8 +4689,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lance-testing"
|
||||
version = "0.38.2"
|
||||
source = "git+https://github.com/lancedb/lance.git?tag=v0.38.3-beta.2#73a2c7e1f52932f589ad0ac63eb41194b9f9421a"
|
||||
version = "0.39.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "b05052ef86188d6ae6339bdd9f2c5d77190e8ad1158f3dc8a42fa91bde9e5246"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-schema",
|
||||
@@ -4686,7 +4702,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lancedb"
|
||||
version = "0.22.2"
|
||||
version = "0.22.3-beta.5"
|
||||
dependencies = [
|
||||
"ahash",
|
||||
"anyhow",
|
||||
@@ -4697,6 +4713,7 @@ dependencies = [
|
||||
"arrow-ipc",
|
||||
"arrow-ord",
|
||||
"arrow-schema",
|
||||
"arrow-select",
|
||||
"async-openai",
|
||||
"async-trait",
|
||||
"aws-config",
|
||||
@@ -4705,13 +4722,11 @@ dependencies = [
|
||||
"aws-sdk-kms",
|
||||
"aws-sdk-s3",
|
||||
"aws-smithy-runtime",
|
||||
"bytemuck_derive",
|
||||
"bytes",
|
||||
"candle-core",
|
||||
"candle-nn",
|
||||
"candle-transformers",
|
||||
"chrono",
|
||||
"crunchy",
|
||||
"datafusion",
|
||||
"datafusion-catalog",
|
||||
"datafusion-common",
|
||||
@@ -4724,6 +4739,7 @@ dependencies = [
|
||||
"http 1.3.1",
|
||||
"http-body 1.0.1",
|
||||
"lance",
|
||||
"lance-arrow",
|
||||
"lance-core",
|
||||
"lance-datafusion",
|
||||
"lance-datagen",
|
||||
@@ -4733,6 +4749,7 @@ dependencies = [
|
||||
"lance-io",
|
||||
"lance-linalg",
|
||||
"lance-namespace",
|
||||
"lance-namespace-impls",
|
||||
"lance-table",
|
||||
"lance-testing",
|
||||
"lazy_static",
|
||||
@@ -4780,7 +4797,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lancedb-nodejs"
|
||||
version = "0.22.2"
|
||||
version = "0.22.3-beta.5"
|
||||
dependencies = [
|
||||
"arrow-array",
|
||||
"arrow-ipc",
|
||||
@@ -4800,7 +4817,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "lancedb-python"
|
||||
version = "0.25.2"
|
||||
version = "0.25.3-beta.5"
|
||||
dependencies = [
|
||||
"arrow",
|
||||
"async-trait",
|
||||
@@ -5160,12 +5177,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "mock_instant"
|
||||
version = "0.3.2"
|
||||
version = "0.6.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "9366861eb2a2c436c20b12c8dbec5f798cea6b47ad99216be0282942e2c81ea0"
|
||||
dependencies = [
|
||||
"once_cell",
|
||||
]
|
||||
checksum = "dce6dd36094cac388f119d2e9dc82dc730ef91c32a6222170d630e5414b956e6"
|
||||
|
||||
[[package]]
|
||||
name = "moka"
|
||||
|
||||
42
Cargo.toml
42
Cargo.toml
@@ -15,18 +15,20 @@ categories = ["database-implementations"]
|
||||
rust-version = "1.78.0"
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.38.2", default-features = false, "features" = ["dynamodb"], "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-core = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-datagen = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-file = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-io = { "version" = "=0.38.2", default-features = false, "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-index = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-linalg = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-table = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-testing = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-datafusion = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-encoding = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-namespace = "0.0.18"
|
||||
lance = { "version" = "=0.39.0", default-features = false }
|
||||
lance-core = "=0.39.0"
|
||||
lance-datagen = "=0.39.0"
|
||||
lance-file = "=0.39.0"
|
||||
lance-io = { "version" = "=0.39.0", default-features = false }
|
||||
lance-index = "=0.39.0"
|
||||
lance-linalg = "=0.39.0"
|
||||
lance-namespace = "=0.39.0"
|
||||
lance-namespace-impls = { "version" = "=0.39.0", "features" = ["dir-aws", "dir-gcp", "dir-azure", "dir-oss", "rest"] }
|
||||
lance-table = "=0.39.0"
|
||||
lance-testing = "=0.39.0"
|
||||
lance-datafusion = "=0.39.0"
|
||||
lance-encoding = "=0.39.0"
|
||||
lance-arrow = "=0.39.0"
|
||||
ahash = "0.8"
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "56.2", optional = false }
|
||||
@@ -35,6 +37,7 @@ arrow-data = "56.2"
|
||||
arrow-ipc = "56.2"
|
||||
arrow-ord = "56.2"
|
||||
arrow-schema = "56.2"
|
||||
arrow-select = "56.2"
|
||||
arrow-cast = "56.2"
|
||||
async-trait = "0"
|
||||
datafusion = { version = "50.1", default-features = false }
|
||||
@@ -59,19 +62,4 @@ num-traits = "0.2"
|
||||
regex = "1.10"
|
||||
lazy_static = "1"
|
||||
semver = "1.0.25"
|
||||
crunchy = "0.2.4"
|
||||
chrono = "0.4"
|
||||
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
|
||||
bytemuck_derive = ">=1.8.1, <1.9.0"
|
||||
|
||||
# This is only needed when we reference preview releases of lance
|
||||
# Force to use the same lance version as the rest of the project to avoid duplicate dependencies
|
||||
[patch.crates-io]
|
||||
lance = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-io = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-index = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-linalg = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-table = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-testing = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-datafusion = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
lance-encoding = { "version" = "=0.38.2", "tag" = "v0.38.3-beta.2", "git" = "https://github.com/lancedb/lance.git" }
|
||||
|
||||
@@ -55,7 +55,7 @@ def extract_features(line: str) -> list:
|
||||
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
|
||||
if match:
|
||||
features_str = match.group(1)
|
||||
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
|
||||
return [f.strip().strip('"') for f in features_str.split(",") if f.strip()]
|
||||
return []
|
||||
|
||||
|
||||
@@ -117,7 +117,7 @@ def update_cargo_toml(line_updater):
|
||||
lance_line = ""
|
||||
is_parsing_lance_line = False
|
||||
for line in lines:
|
||||
if line.startswith("lance") and not line.startswith("lance-namespace"):
|
||||
if line.startswith("lance"):
|
||||
# Check if this is a single-line or multi-line entry
|
||||
# Single-line entries either:
|
||||
# 1. End with } (complete inline table)
|
||||
@@ -183,10 +183,8 @@ def set_preview_version(version: str):
|
||||
|
||||
def line_updater(line: str) -> str:
|
||||
package_name = line.split("=", maxsplit=1)[0].strip()
|
||||
base_version = version.split("-")[0] # Get the base version without beta suffix
|
||||
|
||||
# Build config in desired order: version, default-features, features, tag, git
|
||||
config = {"version": f"={base_version}"}
|
||||
config = {"version": f"={version}"}
|
||||
|
||||
if extract_default_features(line):
|
||||
config["default-features"] = False
|
||||
|
||||
@@ -0,0 +1,97 @@
|
||||
# VoyageAI Embeddings : Multimodal
|
||||
|
||||
VoyageAI embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
|
||||
under [https://docs.voyageai.com/docs/multimodal-embeddings](https://docs.voyageai.com/docs/multimodal-embeddings)
|
||||
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|-------------------------|-------------------------------------------|
|
||||
| `name` | `str` | `"voyage-multimodal-3"` | The model ID of the VoyageAI model to use |
|
||||
|
||||
Usage Example:
|
||||
|
||||
```python
|
||||
import base64
|
||||
import os
|
||||
from io import BytesIO
|
||||
|
||||
import requests
|
||||
import lancedb
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.embeddings import get_registry
|
||||
import pandas as pd
|
||||
|
||||
os.environ['VOYAGE_API_KEY'] = 'YOUR_VOYAGE_API_KEY'
|
||||
|
||||
db = lancedb.connect(".lancedb")
|
||||
func = get_registry().get("voyageai").create(name="voyage-multimodal-3")
|
||||
|
||||
|
||||
def image_to_base64(image_bytes: bytes):
|
||||
buffered = BytesIO(image_bytes)
|
||||
img_str = base64.b64encode(buffered.getvalue())
|
||||
return img_str.decode("utf-8")
|
||||
|
||||
|
||||
class Images(LanceModel):
|
||||
label: str
|
||||
image_uri: str = func.SourceField() # image uri as the source
|
||||
image_bytes: str = func.SourceField() # image bytes base64 encoded as the source
|
||||
vector: Vector(func.ndims()) = func.VectorField() # vector column
|
||||
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
|
||||
|
||||
|
||||
if "images" in db.table_names():
|
||||
db.drop_table("images")
|
||||
table = db.create_table("images", schema=Images)
|
||||
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
# get each uri as bytes
|
||||
images_bytes = [image_to_base64(requests.get(uri).content) for uri in uris]
|
||||
table.add(
|
||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": images_bytes})
|
||||
)
|
||||
```
|
||||
Now we can search using text from both the default vector column and the custom vector column
|
||||
```python
|
||||
|
||||
# text search
|
||||
actual = table.search("man's best friend", "vec_from_bytes").limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label) # prints "dog"
|
||||
|
||||
frombytes = (
|
||||
table.search("man's best friend", vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(frombytes.label)
|
||||
|
||||
```
|
||||
|
||||
Because we're using a multi-modal embedding function, we can also search using images
|
||||
|
||||
```python
|
||||
# image search
|
||||
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
|
||||
image_bytes = requests.get(query_image_uri).content
|
||||
query_image = Image.open(BytesIO(image_bytes))
|
||||
actual = table.search(query_image, "vec_from_bytes").limit(1).to_pydantic(Images)[0]
|
||||
print(actual.label == "dog")
|
||||
|
||||
# image search using a custom vector column
|
||||
other = (
|
||||
table.search(query_image, vector_column_name="vec_from_bytes")
|
||||
.limit(1)
|
||||
.to_pydantic(Images)[0]
|
||||
)
|
||||
print(actual.label)
|
||||
|
||||
```
|
||||
@@ -397,117 +397,6 @@ For **read-only access**, LanceDB will need a policy such as:
|
||||
}
|
||||
```
|
||||
|
||||
#### DynamoDB Commit Store for concurrent writes
|
||||
|
||||
By default, S3 does not support concurrent writes. Having two or more processes
|
||||
writing to the same table at the same time can lead to data corruption. This is
|
||||
because S3, unlike other object stores, does not have any atomic put or copy
|
||||
operation.
|
||||
|
||||
To enable concurrent writes, you can configure LanceDB to use a DynamoDB table
|
||||
as a commit store. This table will be used to coordinate writes between
|
||||
different processes. To enable this feature, you must modify your connection
|
||||
URI to use the `s3+ddb` scheme and add a query parameter `ddbTableName` with the
|
||||
name of the table to use.
|
||||
|
||||
=== "Python"
|
||||
|
||||
=== "Sync API"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
db = lancedb.connect(
|
||||
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||
)
|
||||
```
|
||||
=== "Async API"
|
||||
|
||||
```python
|
||||
import lancedb
|
||||
async_db = await lancedb.connect_async(
|
||||
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript
|
||||
const lancedb = require("lancedb");
|
||||
|
||||
const db = await lancedb.connect(
|
||||
"s3+ddb://bucket/path?ddbTableName=my-dynamodb-table",
|
||||
);
|
||||
```
|
||||
|
||||
The DynamoDB table must be created with the following schema:
|
||||
|
||||
- Hash key: `base_uri` (string)
|
||||
- Range key: `version` (number)
|
||||
|
||||
You can create this programmatically with:
|
||||
|
||||
=== "Python"
|
||||
|
||||
<!-- skip-test -->
|
||||
```python
|
||||
import boto3
|
||||
|
||||
dynamodb = boto3.client("dynamodb")
|
||||
table = dynamodb.create_table(
|
||||
TableName=table_name,
|
||||
KeySchema=[
|
||||
{"AttributeName": "base_uri", "KeyType": "HASH"},
|
||||
{"AttributeName": "version", "KeyType": "RANGE"},
|
||||
],
|
||||
AttributeDefinitions=[
|
||||
{"AttributeName": "base_uri", "AttributeType": "S"},
|
||||
{"AttributeName": "version", "AttributeType": "N"},
|
||||
],
|
||||
ProvisionedThroughput={"ReadCapacityUnits": 1, "WriteCapacityUnits": 1},
|
||||
)
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
<!-- skip-test -->
|
||||
```javascript
|
||||
import {
|
||||
CreateTableCommand,
|
||||
DynamoDBClient,
|
||||
} from "@aws-sdk/client-dynamodb";
|
||||
|
||||
const dynamodb = new DynamoDBClient({
|
||||
region: CONFIG.awsRegion,
|
||||
credentials: {
|
||||
accessKeyId: CONFIG.awsAccessKeyId,
|
||||
secretAccessKey: CONFIG.awsSecretAccessKey,
|
||||
},
|
||||
endpoint: CONFIG.awsEndpoint,
|
||||
});
|
||||
const command = new CreateTableCommand({
|
||||
TableName: table_name,
|
||||
AttributeDefinitions: [
|
||||
{
|
||||
AttributeName: "base_uri",
|
||||
AttributeType: "S",
|
||||
},
|
||||
{
|
||||
AttributeName: "version",
|
||||
AttributeType: "N",
|
||||
},
|
||||
],
|
||||
KeySchema: [
|
||||
{ AttributeName: "base_uri", KeyType: "HASH" },
|
||||
{ AttributeName: "version", KeyType: "RANGE" },
|
||||
],
|
||||
ProvisionedThroughput: {
|
||||
ReadCapacityUnits: 1,
|
||||
WriteCapacityUnits: 1,
|
||||
},
|
||||
});
|
||||
await client.send(command);
|
||||
```
|
||||
|
||||
|
||||
#### S3-compatible stores
|
||||
|
||||
|
||||
@@ -64,6 +64,36 @@ builder.filter("age > 18 AND status = 'active'");
|
||||
|
||||
***
|
||||
|
||||
### persist()
|
||||
|
||||
```ts
|
||||
persist(connection, tableName): PermutationBuilder
|
||||
```
|
||||
|
||||
Configure the permutation to be persisted.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **connection**: [`Connection`](Connection.md)
|
||||
The connection to persist the permutation to
|
||||
|
||||
* **tableName**: `string`
|
||||
The name of the table to create
|
||||
|
||||
#### Returns
|
||||
|
||||
[`PermutationBuilder`](PermutationBuilder.md)
|
||||
|
||||
A new PermutationBuilder instance
|
||||
|
||||
#### Example
|
||||
|
||||
```ts
|
||||
builder.persist(connection, "permutation_table");
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### shuffle()
|
||||
|
||||
```ts
|
||||
@@ -98,15 +128,15 @@ builder.shuffle({ seed: 42, clumpSize: 10 });
|
||||
### splitCalculated()
|
||||
|
||||
```ts
|
||||
splitCalculated(calculation): PermutationBuilder
|
||||
splitCalculated(options): PermutationBuilder
|
||||
```
|
||||
|
||||
Configure calculated splits for the permutation.
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **calculation**: `string`
|
||||
SQL expression for calculating splits
|
||||
* **options**: [`SplitCalculatedOptions`](../interfaces/SplitCalculatedOptions.md)
|
||||
Configuration for calculated splitting
|
||||
|
||||
#### Returns
|
||||
|
||||
|
||||
@@ -80,7 +80,7 @@ AnalyzeExec verbose=true, metrics=[]
|
||||
### execute()
|
||||
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
@@ -91,7 +91,7 @@ Execute the query and return the results as an
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
`AsyncGenerator`<`RecordBatch`<`any`>, `void`, `unknown`>
|
||||
|
||||
#### See
|
||||
|
||||
@@ -343,6 +343,29 @@ This is useful for pagination.
|
||||
|
||||
***
|
||||
|
||||
### outputSchema()
|
||||
|
||||
```ts
|
||||
outputSchema(): Promise<Schema<any>>
|
||||
```
|
||||
|
||||
Returns the schema of the output that will be returned by this query.
|
||||
|
||||
This can be used to inspect the types and names of the columns that will be
|
||||
returned by the query before executing it.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Schema`<`any`>>
|
||||
|
||||
An Arrow Schema describing the output columns.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
`StandardQueryBase.outputSchema`
|
||||
|
||||
***
|
||||
|
||||
### select()
|
||||
|
||||
```ts
|
||||
|
||||
@@ -81,7 +81,7 @@ AnalyzeExec verbose=true, metrics=[]
|
||||
### execute()
|
||||
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
@@ -92,7 +92,7 @@ Execute the query and return the results as an
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
`AsyncGenerator`<`RecordBatch`<`any`>, `void`, `unknown`>
|
||||
|
||||
#### See
|
||||
|
||||
@@ -140,6 +140,25 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
|
||||
***
|
||||
|
||||
### outputSchema()
|
||||
|
||||
```ts
|
||||
outputSchema(): Promise<Schema<any>>
|
||||
```
|
||||
|
||||
Returns the schema of the output that will be returned by this query.
|
||||
|
||||
This can be used to inspect the types and names of the columns that will be
|
||||
returned by the query before executing it.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Schema`<`any`>>
|
||||
|
||||
An Arrow Schema describing the output columns.
|
||||
|
||||
***
|
||||
|
||||
### select()
|
||||
|
||||
```ts
|
||||
|
||||
@@ -1,43 +0,0 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
|
||||
|
||||
# Class: RecordBatchIterator
|
||||
|
||||
## Implements
|
||||
|
||||
- `AsyncIterator`<`RecordBatch`>
|
||||
|
||||
## Constructors
|
||||
|
||||
### new RecordBatchIterator()
|
||||
|
||||
```ts
|
||||
new RecordBatchIterator(promise?): RecordBatchIterator
|
||||
```
|
||||
|
||||
#### Parameters
|
||||
|
||||
* **promise?**: `Promise`<`RecordBatchIterator`>
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
|
||||
## Methods
|
||||
|
||||
### next()
|
||||
|
||||
```ts
|
||||
next(): Promise<IteratorResult<RecordBatch<any>, any>>
|
||||
```
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`IteratorResult`<`RecordBatch`<`any`>, `any`>>
|
||||
|
||||
#### Implementation of
|
||||
|
||||
`AsyncIterator.next`
|
||||
@@ -76,7 +76,7 @@ AnalyzeExec verbose=true, metrics=[]
|
||||
### execute()
|
||||
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
@@ -87,7 +87,7 @@ Execute the query and return the results as an
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
`AsyncGenerator`<`RecordBatch`<`any`>, `void`, `unknown`>
|
||||
|
||||
#### See
|
||||
|
||||
@@ -143,6 +143,29 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||
|
||||
***
|
||||
|
||||
### outputSchema()
|
||||
|
||||
```ts
|
||||
outputSchema(): Promise<Schema<any>>
|
||||
```
|
||||
|
||||
Returns the schema of the output that will be returned by this query.
|
||||
|
||||
This can be used to inspect the types and names of the columns that will be
|
||||
returned by the query before executing it.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Schema`<`any`>>
|
||||
|
||||
An Arrow Schema describing the output columns.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
[`QueryBase`](QueryBase.md).[`outputSchema`](QueryBase.md#outputschema)
|
||||
|
||||
***
|
||||
|
||||
### select()
|
||||
|
||||
```ts
|
||||
|
||||
@@ -221,7 +221,7 @@ also increase the latency of your query. The default value is 1.5*limit.
|
||||
### execute()
|
||||
|
||||
```ts
|
||||
protected execute(options?): RecordBatchIterator
|
||||
protected execute(options?): AsyncGenerator<RecordBatch<any>, void, unknown>
|
||||
```
|
||||
|
||||
Execute the query and return the results as an
|
||||
@@ -232,7 +232,7 @@ Execute the query and return the results as an
|
||||
|
||||
#### Returns
|
||||
|
||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||
`AsyncGenerator`<`RecordBatch`<`any`>, `void`, `unknown`>
|
||||
|
||||
#### See
|
||||
|
||||
@@ -498,6 +498,29 @@ This is useful for pagination.
|
||||
|
||||
***
|
||||
|
||||
### outputSchema()
|
||||
|
||||
```ts
|
||||
outputSchema(): Promise<Schema<any>>
|
||||
```
|
||||
|
||||
Returns the schema of the output that will be returned by this query.
|
||||
|
||||
This can be used to inspect the types and names of the columns that will be
|
||||
returned by the query before executing it.
|
||||
|
||||
#### Returns
|
||||
|
||||
`Promise`<`Schema`<`any`>>
|
||||
|
||||
An Arrow Schema describing the output columns.
|
||||
|
||||
#### Inherited from
|
||||
|
||||
`StandardQueryBase.outputSchema`
|
||||
|
||||
***
|
||||
|
||||
### postfilter()
|
||||
|
||||
```ts
|
||||
|
||||
19
docs/src/js/functions/RecordBatchIterator.md
Normal file
19
docs/src/js/functions/RecordBatchIterator.md
Normal file
@@ -0,0 +1,19 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
|
||||
|
||||
# Function: RecordBatchIterator()
|
||||
|
||||
```ts
|
||||
function RecordBatchIterator(promisedInner): AsyncGenerator<RecordBatch<any>, void, unknown>
|
||||
```
|
||||
|
||||
## Parameters
|
||||
|
||||
* **promisedInner**: `Promise`<`RecordBatchIterator`>
|
||||
|
||||
## Returns
|
||||
|
||||
`AsyncGenerator`<`RecordBatch`<`any`>, `void`, `unknown`>
|
||||
@@ -7,7 +7,7 @@
|
||||
# Function: permutationBuilder()
|
||||
|
||||
```ts
|
||||
function permutationBuilder(table, destTableName): PermutationBuilder
|
||||
function permutationBuilder(table): PermutationBuilder
|
||||
```
|
||||
|
||||
Create a permutation builder for the given table.
|
||||
@@ -17,9 +17,6 @@ Create a permutation builder for the given table.
|
||||
* **table**: [`Table`](../classes/Table.md)
|
||||
The source table to create a permutation from
|
||||
|
||||
* **destTableName**: `string`
|
||||
The name for the destination permutation table
|
||||
|
||||
## Returns
|
||||
|
||||
[`PermutationBuilder`](../classes/PermutationBuilder.md)
|
||||
|
||||
@@ -32,7 +32,6 @@
|
||||
- [PhraseQuery](classes/PhraseQuery.md)
|
||||
- [Query](classes/Query.md)
|
||||
- [QueryBase](classes/QueryBase.md)
|
||||
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
||||
- [Session](classes/Session.md)
|
||||
- [StaticHeaderProvider](classes/StaticHeaderProvider.md)
|
||||
- [Table](classes/Table.md)
|
||||
@@ -78,6 +77,7 @@
|
||||
- [RemovalStats](interfaces/RemovalStats.md)
|
||||
- [RetryConfig](interfaces/RetryConfig.md)
|
||||
- [ShuffleOptions](interfaces/ShuffleOptions.md)
|
||||
- [SplitCalculatedOptions](interfaces/SplitCalculatedOptions.md)
|
||||
- [SplitHashOptions](interfaces/SplitHashOptions.md)
|
||||
- [SplitRandomOptions](interfaces/SplitRandomOptions.md)
|
||||
- [SplitSequentialOptions](interfaces/SplitSequentialOptions.md)
|
||||
@@ -105,6 +105,7 @@
|
||||
|
||||
## Functions
|
||||
|
||||
- [RecordBatchIterator](functions/RecordBatchIterator.md)
|
||||
- [connect](functions/connect.md)
|
||||
- [makeArrowTable](functions/makeArrowTable.md)
|
||||
- [packBits](functions/packBits.md)
|
||||
|
||||
101
docs/src/js/interfaces/IvfRqOptions.md
Normal file
101
docs/src/js/interfaces/IvfRqOptions.md
Normal file
@@ -0,0 +1,101 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / IvfRqOptions
|
||||
|
||||
# Interface: IvfRqOptions
|
||||
|
||||
## Properties
|
||||
|
||||
### distanceType?
|
||||
|
||||
```ts
|
||||
optional distanceType: "l2" | "cosine" | "dot";
|
||||
```
|
||||
|
||||
Distance type to use to build the index.
|
||||
|
||||
Default value is "l2".
|
||||
|
||||
This is used when training the index to calculate the IVF partitions
|
||||
(vectors are grouped in partitions with similar vectors according to this
|
||||
distance type) and during quantization.
|
||||
|
||||
The distance type used to train an index MUST match the distance type used
|
||||
to search the index. Failure to do so will yield inaccurate results.
|
||||
|
||||
The following distance types are available:
|
||||
|
||||
"l2" - Euclidean distance.
|
||||
"cosine" - Cosine distance.
|
||||
"dot" - Dot product.
|
||||
|
||||
***
|
||||
|
||||
### maxIterations?
|
||||
|
||||
```ts
|
||||
optional maxIterations: number;
|
||||
```
|
||||
|
||||
Max iterations to train IVF kmeans.
|
||||
|
||||
When training an IVF index we use kmeans to calculate the partitions. This parameter
|
||||
controls how many iterations of kmeans to run.
|
||||
|
||||
The default value is 50.
|
||||
|
||||
***
|
||||
|
||||
### numBits?
|
||||
|
||||
```ts
|
||||
optional numBits: number;
|
||||
```
|
||||
|
||||
Number of bits per dimension for residual quantization.
|
||||
|
||||
This value controls how much each residual component is compressed. The more
|
||||
bits, the more accurate the index will be but the slower search. Typical values
|
||||
are small integers; the default is 1 bit per dimension.
|
||||
|
||||
***
|
||||
|
||||
### numPartitions?
|
||||
|
||||
```ts
|
||||
optional numPartitions: number;
|
||||
```
|
||||
|
||||
The number of IVF partitions to create.
|
||||
|
||||
This value should generally scale with the number of rows in the dataset.
|
||||
By default the number of partitions is the square root of the number of
|
||||
rows.
|
||||
|
||||
If this value is too large then the first part of the search (picking the
|
||||
right partition) will be slow. If this value is too small then the second
|
||||
part of the search (searching within a partition) will be slow.
|
||||
|
||||
***
|
||||
|
||||
### sampleRate?
|
||||
|
||||
```ts
|
||||
optional sampleRate: number;
|
||||
```
|
||||
|
||||
The number of vectors, per partition, to sample when training IVF kmeans.
|
||||
|
||||
When an IVF index is trained, we need to calculate partitions. These are groups
|
||||
of vectors that are similar to each other. To do this we use an algorithm called kmeans.
|
||||
|
||||
Running kmeans on a large dataset can be slow. To speed this up we run kmeans on a
|
||||
random sample of the data. This parameter controls the size of the sample. The total
|
||||
number of vectors used to train the index is `sample_rate * num_partitions`.
|
||||
|
||||
Increasing this value might improve the quality of the index but in most cases the
|
||||
default should be sufficient.
|
||||
|
||||
The default value is 256.
|
||||
23
docs/src/js/interfaces/SplitCalculatedOptions.md
Normal file
23
docs/src/js/interfaces/SplitCalculatedOptions.md
Normal file
@@ -0,0 +1,23 @@
|
||||
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||
|
||||
***
|
||||
|
||||
[@lancedb/lancedb](../globals.md) / SplitCalculatedOptions
|
||||
|
||||
# Interface: SplitCalculatedOptions
|
||||
|
||||
## Properties
|
||||
|
||||
### calculation
|
||||
|
||||
```ts
|
||||
calculation: string;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### splitNames?
|
||||
|
||||
```ts
|
||||
optional splitNames: string[];
|
||||
```
|
||||
@@ -24,6 +24,14 @@ optional discardWeight: number;
|
||||
|
||||
***
|
||||
|
||||
### splitNames?
|
||||
|
||||
```ts
|
||||
optional splitNames: string[];
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### splitWeights
|
||||
|
||||
```ts
|
||||
|
||||
@@ -37,3 +37,11 @@ optional ratios: number[];
|
||||
```ts
|
||||
optional seed: number;
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### splitNames?
|
||||
|
||||
```ts
|
||||
optional splitNames: string[];
|
||||
```
|
||||
|
||||
@@ -29,3 +29,11 @@ optional fixed: number;
|
||||
```ts
|
||||
optional ratios: number[];
|
||||
```
|
||||
|
||||
***
|
||||
|
||||
### splitNames?
|
||||
|
||||
```ts
|
||||
optional splitNames: string[];
|
||||
```
|
||||
|
||||
@@ -51,8 +51,11 @@ pub enum Error {
|
||||
DatasetAlreadyExists { uri: String, location: Location },
|
||||
#[snafu(display("Table '{name}' already exists"))]
|
||||
TableAlreadyExists { name: String },
|
||||
#[snafu(display("Table '{name}' was not found"))]
|
||||
TableNotFound { name: String },
|
||||
#[snafu(display("Table '{name}' was not found: {source}"))]
|
||||
TableNotFound {
|
||||
name: String,
|
||||
source: Box<dyn std::error::Error + Send + Sync>,
|
||||
},
|
||||
#[snafu(display("Invalid table name '{name}': {reason}"))]
|
||||
InvalidTableName { name: String, reason: String },
|
||||
#[snafu(display("Embedding function '{name}' was not found: {reason}, {location}"))]
|
||||
@@ -191,7 +194,7 @@ impl From<lancedb::Error> for Error {
|
||||
message,
|
||||
location: std::panic::Location::caller().to_snafu_location(),
|
||||
},
|
||||
lancedb::Error::TableNotFound { name } => Self::TableNotFound { name },
|
||||
lancedb::Error::TableNotFound { name, source } => Self::TableNotFound { name, source },
|
||||
lancedb::Error::TableAlreadyExists { name } => Self::TableAlreadyExists { name },
|
||||
lancedb::Error::EmbeddingFunctionNotFound { name, reason } => {
|
||||
Self::EmbeddingFunctionNotFound {
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.22.2-final.0</version>
|
||||
<version>0.22.3-beta.5</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
<parent>
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.22.2-final.0</version>
|
||||
<version>0.22.3-beta.5</version>
|
||||
<relativePath>../pom.xml</relativePath>
|
||||
</parent>
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@
|
||||
|
||||
<groupId>com.lancedb</groupId>
|
||||
<artifactId>lancedb-parent</artifactId>
|
||||
<version>0.22.2-final.0</version>
|
||||
<version>0.22.3-beta.5</version>
|
||||
<packaging>pom</packaging>
|
||||
<name>${project.artifactId}</name>
|
||||
<description>LanceDB Java SDK Parent POM</description>
|
||||
|
||||
13
nodejs/AGENTS.md
Normal file
13
nodejs/AGENTS.md
Normal file
@@ -0,0 +1,13 @@
|
||||
These are the typescript bindings of LanceDB.
|
||||
The core Rust library is in the `../rust/lancedb` directory, the rust binding
|
||||
code is in the `src/` directory and the typescript bindings are in
|
||||
the `lancedb/` directory.
|
||||
|
||||
Whenever you change the Rust code, you will need to recompile: `npm run build`.
|
||||
|
||||
Common commands:
|
||||
* Build: `npm run build`
|
||||
* Lint: `npm run lint`
|
||||
* Fix lints: `npm run lint-fix`
|
||||
* Test: `npm test`
|
||||
* Run single test file: `npm test __test__/arrow.test.ts`
|
||||
@@ -1,13 +0,0 @@
|
||||
These are the typescript bindings of LanceDB.
|
||||
The core Rust library is in the `../rust/lancedb` directory, the rust binding
|
||||
code is in the `src/` directory and the typescript bindings are in
|
||||
the `lancedb/` directory.
|
||||
|
||||
Whenever you change the Rust code, you will need to recompile: `npm run build`.
|
||||
|
||||
Common commands:
|
||||
* Build: `npm run build`
|
||||
* Lint: `npm run lint`
|
||||
* Fix lints: `npm run lint-fix`
|
||||
* Test: `npm test`
|
||||
* Run single test file: `npm test __test__/arrow.test.ts`
|
||||
1
nodejs/CLAUDE.md
Symbolic link
1
nodejs/CLAUDE.md
Symbolic link
@@ -0,0 +1 @@
|
||||
AGENTS.md
|
||||
@@ -1,7 +1,7 @@
|
||||
[package]
|
||||
name = "lancedb-nodejs"
|
||||
edition.workspace = true
|
||||
version = "0.22.2"
|
||||
version = "0.22.3-beta.5"
|
||||
license.workspace = true
|
||||
description.workspace = true
|
||||
repository.workspace = true
|
||||
|
||||
@@ -38,23 +38,22 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation builder", () => {
|
||||
const builder = permutationBuilder(table, "permutation_table");
|
||||
const builder = permutationBuilder(table);
|
||||
expect(builder).toBeDefined();
|
||||
});
|
||||
|
||||
test("should execute basic permutation", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table");
|
||||
const builder = permutationBuilder(table);
|
||||
const permutationTable = await builder.execute();
|
||||
|
||||
expect(permutationTable).toBeDefined();
|
||||
expect(permutationTable.name).toBe("permutation_table");
|
||||
|
||||
const rowCount = await permutationTable.countRows();
|
||||
expect(rowCount).toBe(10);
|
||||
});
|
||||
|
||||
test("should create permutation with random splits", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").splitRandom({
|
||||
const builder = permutationBuilder(table).splitRandom({
|
||||
ratios: [1.0],
|
||||
seed: 42,
|
||||
});
|
||||
@@ -65,7 +64,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with percentage splits", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").splitRandom({
|
||||
const builder = permutationBuilder(table).splitRandom({
|
||||
ratios: [0.3, 0.7],
|
||||
seed: 42,
|
||||
});
|
||||
@@ -84,7 +83,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with count splits", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").splitRandom({
|
||||
const builder = permutationBuilder(table).splitRandom({
|
||||
counts: [3, 7],
|
||||
seed: 42,
|
||||
});
|
||||
@@ -102,7 +101,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with hash splits", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").splitHash({
|
||||
const builder = permutationBuilder(table).splitHash({
|
||||
columns: ["id"],
|
||||
splitWeights: [50, 50],
|
||||
discardWeight: 0,
|
||||
@@ -122,10 +121,9 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with sequential splits", async () => {
|
||||
const builder = permutationBuilder(
|
||||
table,
|
||||
"permutation_table",
|
||||
).splitSequential({ ratios: [0.5, 0.5] });
|
||||
const builder = permutationBuilder(table).splitSequential({
|
||||
ratios: [0.5, 0.5],
|
||||
});
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
@@ -140,10 +138,9 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with calculated splits", async () => {
|
||||
const builder = permutationBuilder(
|
||||
table,
|
||||
"permutation_table",
|
||||
).splitCalculated("id % 2");
|
||||
const builder = permutationBuilder(table).splitCalculated({
|
||||
calculation: "id % 2",
|
||||
});
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
@@ -159,7 +156,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with shuffle", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").shuffle({
|
||||
const builder = permutationBuilder(table).shuffle({
|
||||
seed: 42,
|
||||
});
|
||||
|
||||
@@ -169,7 +166,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with shuffle and clump size", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").shuffle({
|
||||
const builder = permutationBuilder(table).shuffle({
|
||||
seed: 42,
|
||||
clumpSize: 2,
|
||||
});
|
||||
@@ -180,9 +177,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should create permutation with filter", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table").filter(
|
||||
"value > 50",
|
||||
);
|
||||
const builder = permutationBuilder(table).filter("value > 50");
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
@@ -190,7 +185,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should chain multiple operations", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table")
|
||||
const builder = permutationBuilder(table)
|
||||
.filter("value <= 80")
|
||||
.splitRandom({ ratios: [0.5, 0.5], seed: 42 })
|
||||
.shuffle({ seed: 123 });
|
||||
@@ -209,7 +204,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should throw error for invalid split arguments", () => {
|
||||
const builder = permutationBuilder(table, "permutation_table");
|
||||
const builder = permutationBuilder(table);
|
||||
|
||||
// Test no arguments provided
|
||||
expect(() => builder.splitRandom({})).toThrow(
|
||||
@@ -223,7 +218,7 @@ describe("PermutationBuilder", () => {
|
||||
});
|
||||
|
||||
test("should throw error when builder is consumed", async () => {
|
||||
const builder = permutationBuilder(table, "permutation_table");
|
||||
const builder = permutationBuilder(table);
|
||||
|
||||
// Execute once
|
||||
await builder.execute();
|
||||
@@ -231,4 +226,146 @@ describe("PermutationBuilder", () => {
|
||||
// Should throw error on second execution
|
||||
await expect(builder.execute()).rejects.toThrow("Builder already consumed");
|
||||
});
|
||||
|
||||
test("should accept custom split names with random splits", async () => {
|
||||
const builder = permutationBuilder(table).splitRandom({
|
||||
ratios: [0.3, 0.7],
|
||||
seed: 42,
|
||||
splitNames: ["train", "test"],
|
||||
});
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
expect(rowCount).toBe(10);
|
||||
|
||||
// Split names are provided but split_id is still numeric (0, 1, etc.)
|
||||
// The names are metadata that can be used by higher-level APIs
|
||||
const split0Count = await permutationTable.countRows("split_id = 0");
|
||||
const split1Count = await permutationTable.countRows("split_id = 1");
|
||||
|
||||
expect(split0Count).toBeGreaterThan(0);
|
||||
expect(split1Count).toBeGreaterThan(0);
|
||||
expect(split0Count + split1Count).toBe(10);
|
||||
});
|
||||
|
||||
test("should accept custom split names with hash splits", async () => {
|
||||
const builder = permutationBuilder(table).splitHash({
|
||||
columns: ["id"],
|
||||
splitWeights: [50, 50],
|
||||
discardWeight: 0,
|
||||
splitNames: ["set_a", "set_b"],
|
||||
});
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
expect(rowCount).toBe(10);
|
||||
|
||||
// Split names are provided but split_id is still numeric
|
||||
const split0Count = await permutationTable.countRows("split_id = 0");
|
||||
const split1Count = await permutationTable.countRows("split_id = 1");
|
||||
|
||||
expect(split0Count).toBeGreaterThan(0);
|
||||
expect(split1Count).toBeGreaterThan(0);
|
||||
expect(split0Count + split1Count).toBe(10);
|
||||
});
|
||||
|
||||
test("should accept custom split names with sequential splits", async () => {
|
||||
const builder = permutationBuilder(table).splitSequential({
|
||||
ratios: [0.5, 0.5],
|
||||
splitNames: ["first", "second"],
|
||||
});
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
expect(rowCount).toBe(10);
|
||||
|
||||
// Split names are provided but split_id is still numeric
|
||||
const split0Count = await permutationTable.countRows("split_id = 0");
|
||||
const split1Count = await permutationTable.countRows("split_id = 1");
|
||||
|
||||
expect(split0Count).toBe(5);
|
||||
expect(split1Count).toBe(5);
|
||||
});
|
||||
|
||||
test("should accept custom split names with calculated splits", async () => {
|
||||
const builder = permutationBuilder(table).splitCalculated({
|
||||
calculation: "id % 2",
|
||||
splitNames: ["even", "odd"],
|
||||
});
|
||||
|
||||
const permutationTable = await builder.execute();
|
||||
const rowCount = await permutationTable.countRows();
|
||||
expect(rowCount).toBe(10);
|
||||
|
||||
// Split names are provided but split_id is still numeric
|
||||
const split0Count = await permutationTable.countRows("split_id = 0");
|
||||
const split1Count = await permutationTable.countRows("split_id = 1");
|
||||
|
||||
expect(split0Count).toBeGreaterThan(0);
|
||||
expect(split1Count).toBeGreaterThan(0);
|
||||
expect(split0Count + split1Count).toBe(10);
|
||||
});
|
||||
|
||||
test("should persist permutation to a new table", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const builder = permutationBuilder(table)
|
||||
.splitRandom({
|
||||
ratios: [0.7, 0.3],
|
||||
seed: 42,
|
||||
splitNames: ["train", "validation"],
|
||||
})
|
||||
.persist(db, "my_permutation");
|
||||
|
||||
// Execute the builder which will persist the table
|
||||
const permutationTable = await builder.execute();
|
||||
|
||||
// Verify the persisted table exists and can be opened
|
||||
const persistedTable = await db.openTable("my_permutation");
|
||||
expect(persistedTable).toBeDefined();
|
||||
|
||||
// Verify the persisted table has the correct number of rows
|
||||
const rowCount = await persistedTable.countRows();
|
||||
expect(rowCount).toBe(10);
|
||||
|
||||
// Verify splits exist (numeric split_id values)
|
||||
const split0Count = await persistedTable.countRows("split_id = 0");
|
||||
const split1Count = await persistedTable.countRows("split_id = 1");
|
||||
|
||||
expect(split0Count).toBeGreaterThan(0);
|
||||
expect(split1Count).toBeGreaterThan(0);
|
||||
expect(split0Count + split1Count).toBe(10);
|
||||
|
||||
// Verify the table returned by execute is the same as the persisted one
|
||||
const executedRowCount = await permutationTable.countRows();
|
||||
expect(executedRowCount).toBe(10);
|
||||
});
|
||||
|
||||
test("should persist permutation with multiple operations", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
const builder = permutationBuilder(table)
|
||||
.filter("value > 30")
|
||||
.splitRandom({ ratios: [0.5, 0.5], seed: 123, splitNames: ["a", "b"] })
|
||||
.shuffle({ seed: 456 })
|
||||
.persist(db, "filtered_permutation");
|
||||
|
||||
// Execute the builder
|
||||
const permutationTable = await builder.execute();
|
||||
|
||||
// Verify the persisted table
|
||||
const persistedTable = await db.openTable("filtered_permutation");
|
||||
const rowCount = await persistedTable.countRows();
|
||||
expect(rowCount).toBe(7); // Values 40, 50, 60, 70, 80, 90, 100
|
||||
|
||||
// Verify splits exist (numeric split_id values)
|
||||
const split0Count = await persistedTable.countRows("split_id = 0");
|
||||
const split1Count = await persistedTable.countRows("split_id = 1");
|
||||
|
||||
expect(split0Count).toBeGreaterThan(0);
|
||||
expect(split1Count).toBeGreaterThan(0);
|
||||
expect(split0Count + split1Count).toBe(7);
|
||||
|
||||
// Verify the executed table matches
|
||||
const executedRowCount = await permutationTable.countRows();
|
||||
expect(executedRowCount).toBe(7);
|
||||
});
|
||||
});
|
||||
|
||||
111
nodejs/__test__/query.test.ts
Normal file
111
nodejs/__test__/query.test.ts
Normal file
@@ -0,0 +1,111 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { type Table, connect } from "../lancedb";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float32,
|
||||
Int64,
|
||||
Schema,
|
||||
Utf8,
|
||||
makeArrowTable,
|
||||
} from "../lancedb/arrow";
|
||||
import { Index } from "../lancedb/indices";
|
||||
|
||||
describe("Query outputSchema", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
const db = await connect(tmpDir.name);
|
||||
|
||||
// Create table with explicit schema to ensure proper types
|
||||
const schema = new Schema([
|
||||
new Field("a", new Int64(), true),
|
||||
new Field("text", new Utf8(), true),
|
||||
new Field(
|
||||
"vec",
|
||||
new FixedSizeList(2, new Field("item", new Float32())),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
|
||||
const data = makeArrowTable(
|
||||
[
|
||||
{ a: 1n, text: "foo", vec: [1, 2] },
|
||||
{ a: 2n, text: "bar", vec: [3, 4] },
|
||||
{ a: 3n, text: "baz", vec: [5, 6] },
|
||||
],
|
||||
{ schema },
|
||||
);
|
||||
table = await db.createTable("test", data);
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
});
|
||||
|
||||
it("should return schema for plain query", async () => {
|
||||
const schema = await table.query().outputSchema();
|
||||
|
||||
expect(schema.fields.length).toBe(3);
|
||||
expect(schema.fields.map((f) => f.name)).toEqual(["a", "text", "vec"]);
|
||||
expect(schema.fields[0].type.toString()).toBe("Int64");
|
||||
expect(schema.fields[1].type.toString()).toBe("Utf8");
|
||||
});
|
||||
|
||||
it("should return schema with dynamic projection", async () => {
|
||||
const schema = await table.query().select({ bl: "a * 2" }).outputSchema();
|
||||
|
||||
expect(schema.fields.length).toBe(1);
|
||||
expect(schema.fields[0].name).toBe("bl");
|
||||
expect(schema.fields[0].type.toString()).toBe("Int64");
|
||||
});
|
||||
|
||||
it("should return schema for vector search with _distance column", async () => {
|
||||
const schema = await table
|
||||
.vectorSearch([1, 2])
|
||||
.select(["a"])
|
||||
.outputSchema();
|
||||
|
||||
expect(schema.fields.length).toBe(2);
|
||||
expect(schema.fields.map((f) => f.name)).toEqual(["a", "_distance"]);
|
||||
expect(schema.fields[0].type.toString()).toBe("Int64");
|
||||
expect(schema.fields[1].type.toString()).toBe("Float32");
|
||||
});
|
||||
|
||||
it("should return schema for FTS search", async () => {
|
||||
await table.createIndex("text", { config: Index.fts() });
|
||||
|
||||
const schema = await table
|
||||
.search("foo", "fts")
|
||||
.select(["a"])
|
||||
.outputSchema();
|
||||
|
||||
// FTS search includes _score column in addition to selected columns
|
||||
expect(schema.fields.length).toBe(2);
|
||||
expect(schema.fields.map((f) => f.name)).toContain("a");
|
||||
expect(schema.fields.map((f) => f.name)).toContain("_score");
|
||||
const aField = schema.fields.find((f) => f.name === "a");
|
||||
expect(aField?.type.toString()).toBe("Int64");
|
||||
});
|
||||
|
||||
it("should return schema for take query", async () => {
|
||||
const schema = await table.takeOffsets([0]).select(["text"]).outputSchema();
|
||||
|
||||
expect(schema.fields.length).toBe(1);
|
||||
expect(schema.fields[0].name).toBe("text");
|
||||
expect(schema.fields[0].type.toString()).toBe("Utf8");
|
||||
});
|
||||
|
||||
it("should return full schema when no select is specified", async () => {
|
||||
const schema = await table.query().outputSchema();
|
||||
|
||||
// Should return all columns
|
||||
expect(schema.fields.length).toBe(3);
|
||||
});
|
||||
});
|
||||
@@ -43,6 +43,7 @@ export {
|
||||
DeleteResult,
|
||||
DropColumnsResult,
|
||||
UpdateResult,
|
||||
SplitCalculatedOptions,
|
||||
SplitRandomOptions,
|
||||
SplitHashOptions,
|
||||
SplitSequentialOptions,
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import { Connection, LocalConnection } from "./connection.js";
|
||||
import {
|
||||
PermutationBuilder as NativePermutationBuilder,
|
||||
Table as NativeTable,
|
||||
ShuffleOptions,
|
||||
SplitCalculatedOptions,
|
||||
SplitHashOptions,
|
||||
SplitRandomOptions,
|
||||
SplitSequentialOptions,
|
||||
@@ -29,6 +31,23 @@ export class PermutationBuilder {
|
||||
this.inner = inner;
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure the permutation to be persisted.
|
||||
*
|
||||
* @param connection - The connection to persist the permutation to
|
||||
* @param tableName - The name of the table to create
|
||||
* @returns A new PermutationBuilder instance
|
||||
* @example
|
||||
* ```ts
|
||||
* builder.persist(connection, "permutation_table");
|
||||
* ```
|
||||
*/
|
||||
persist(connection: Connection, tableName: string): PermutationBuilder {
|
||||
const localConnection = connection as LocalConnection;
|
||||
const newInner = this.inner.persist(localConnection.inner, tableName);
|
||||
return new PermutationBuilder(newInner);
|
||||
}
|
||||
|
||||
/**
|
||||
* Configure random splits for the permutation.
|
||||
*
|
||||
@@ -95,15 +114,15 @@ export class PermutationBuilder {
|
||||
/**
|
||||
* Configure calculated splits for the permutation.
|
||||
*
|
||||
* @param calculation - SQL expression for calculating splits
|
||||
* @param options - Configuration for calculated splitting
|
||||
* @returns A new PermutationBuilder instance
|
||||
* @example
|
||||
* ```ts
|
||||
* builder.splitCalculated("user_id % 3");
|
||||
* ```
|
||||
*/
|
||||
splitCalculated(calculation: string): PermutationBuilder {
|
||||
const newInner = this.inner.splitCalculated(calculation);
|
||||
splitCalculated(options: SplitCalculatedOptions): PermutationBuilder {
|
||||
const newInner = this.inner.splitCalculated(options);
|
||||
return new PermutationBuilder(newInner);
|
||||
}
|
||||
|
||||
@@ -161,7 +180,6 @@ export class PermutationBuilder {
|
||||
* Create a permutation builder for the given table.
|
||||
*
|
||||
* @param table - The source table to create a permutation from
|
||||
* @param destTableName - The name for the destination permutation table
|
||||
* @returns A PermutationBuilder instance
|
||||
* @example
|
||||
* ```ts
|
||||
@@ -172,17 +190,13 @@ export class PermutationBuilder {
|
||||
* const trainingTable = await builder.execute();
|
||||
* ```
|
||||
*/
|
||||
export function permutationBuilder(
|
||||
table: Table,
|
||||
destTableName: string,
|
||||
): PermutationBuilder {
|
||||
export function permutationBuilder(table: Table): PermutationBuilder {
|
||||
// Extract the inner native table from the TypeScript wrapper
|
||||
const localTable = table as LocalTable;
|
||||
// Access inner through type assertion since it's private
|
||||
const nativeBuilder = nativePermutationBuilder(
|
||||
// biome-ignore lint/suspicious/noExplicitAny: need access to private variable
|
||||
(localTable as any).inner,
|
||||
destTableName,
|
||||
);
|
||||
return new PermutationBuilder(nativeBuilder);
|
||||
}
|
||||
|
||||
@@ -20,35 +20,25 @@ import {
|
||||
} from "./native";
|
||||
import { Reranker } from "./rerankers";
|
||||
|
||||
export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
|
||||
private promisedInner?: Promise<NativeBatchIterator>;
|
||||
private inner?: NativeBatchIterator;
|
||||
export async function* RecordBatchIterator(
|
||||
promisedInner: Promise<NativeBatchIterator>,
|
||||
) {
|
||||
const inner = await promisedInner;
|
||||
|
||||
constructor(promise?: Promise<NativeBatchIterator>) {
|
||||
// TODO: check promise reliably so we dont need to pass two arguments.
|
||||
this.promisedInner = promise;
|
||||
if (inner === undefined) {
|
||||
throw new Error("Invalid iterator state");
|
||||
}
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
async next(): Promise<IteratorResult<RecordBatch<any>>> {
|
||||
if (this.inner === undefined) {
|
||||
this.inner = await this.promisedInner;
|
||||
}
|
||||
if (this.inner === undefined) {
|
||||
throw new Error("Invalid iterator state state");
|
||||
}
|
||||
const n = await this.inner.next();
|
||||
if (n == null) {
|
||||
return Promise.resolve({ done: true, value: null });
|
||||
}
|
||||
const tbl = tableFromIPC(n);
|
||||
if (tbl.batches.length != 1) {
|
||||
for (let buffer = await inner.next(); buffer; buffer = await inner.next()) {
|
||||
const { batches } = tableFromIPC(buffer);
|
||||
|
||||
if (batches.length !== 1) {
|
||||
throw new Error("Expected only one batch");
|
||||
}
|
||||
return Promise.resolve({ done: false, value: tbl.batches[0] });
|
||||
|
||||
yield batches[0];
|
||||
}
|
||||
}
|
||||
/* eslint-enable */
|
||||
|
||||
class RecordBatchIterable<
|
||||
NativeQueryType extends NativeQuery | NativeVectorQuery | NativeTakeQuery,
|
||||
@@ -64,7 +54,7 @@ class RecordBatchIterable<
|
||||
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>, any, undefined> {
|
||||
return new RecordBatchIterator(
|
||||
return RecordBatchIterator(
|
||||
this.inner.execute(this.options?.maxBatchLength, this.options?.timeoutMs),
|
||||
);
|
||||
}
|
||||
@@ -231,10 +221,8 @@ export class QueryBase<
|
||||
* single query)
|
||||
*
|
||||
*/
|
||||
protected execute(
|
||||
options?: Partial<QueryExecutionOptions>,
|
||||
): RecordBatchIterator {
|
||||
return new RecordBatchIterator(this.nativeExecute(options));
|
||||
protected execute(options?: Partial<QueryExecutionOptions>) {
|
||||
return RecordBatchIterator(this.nativeExecute(options));
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -242,8 +230,7 @@ export class QueryBase<
|
||||
*/
|
||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
|
||||
const promise = this.nativeExecute();
|
||||
return new RecordBatchIterator(promise);
|
||||
return RecordBatchIterator(this.nativeExecute());
|
||||
}
|
||||
|
||||
/** Collect the results as an Arrow @see {@link ArrowTable}. */
|
||||
@@ -326,6 +313,25 @@ export class QueryBase<
|
||||
return this.inner.analyzePlan();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the schema of the output that will be returned by this query.
|
||||
*
|
||||
* This can be used to inspect the types and names of the columns that will be
|
||||
* returned by the query before executing it.
|
||||
*
|
||||
* @returns An Arrow Schema describing the output columns.
|
||||
*/
|
||||
async outputSchema(): Promise<import("./arrow").Schema> {
|
||||
let schemaBuffer: Buffer;
|
||||
if (this.inner instanceof Promise) {
|
||||
schemaBuffer = await this.inner.then((inner) => inner.outputSchema());
|
||||
} else {
|
||||
schemaBuffer = await this.inner.outputSchema();
|
||||
}
|
||||
const schema = tableFromIPC(schemaBuffer).schema;
|
||||
return schema;
|
||||
}
|
||||
}
|
||||
|
||||
export class StandardQueryBase<
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-arm64",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.darwin-arm64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-darwin-x64",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["darwin"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.darwin-x64.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-gnu",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-arm64-musl",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["linux"],
|
||||
"cpu": ["arm64"],
|
||||
"main": "lancedb.linux-arm64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-gnu",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-gnu.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-linux-x64-musl",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["linux"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.linux-x64-musl.node",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-arm64-msvc",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": [
|
||||
"win32"
|
||||
],
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb-win32-x64-msvc",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"os": ["win32"],
|
||||
"cpu": ["x64"],
|
||||
"main": "lancedb.win32-x64-msvc.node",
|
||||
|
||||
4
nodejs/package-lock.json
generated
4
nodejs/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@lancedb/lancedb",
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
|
||||
@@ -11,7 +11,7 @@
|
||||
"ann"
|
||||
],
|
||||
"private": false,
|
||||
"version": "0.22.2",
|
||||
"version": "0.22.3-beta.5",
|
||||
"main": "dist/index.js",
|
||||
"exports": {
|
||||
".": "./dist/index.js",
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
use lancedb::database::CreateTableMode;
|
||||
use lancedb::database::{CreateTableMode, Database};
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::*;
|
||||
|
||||
@@ -41,6 +41,10 @@ impl Connection {
|
||||
_ => Err(napi::Error::from_reason(format!("Invalid mode {}", mode))),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn database(&self) -> napi::Result<Arc<dyn Database>> {
|
||||
Ok(self.get_inner()?.database().clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
|
||||
@@ -5,8 +5,8 @@ use std::sync::{Arc, Mutex};
|
||||
|
||||
use crate::{error::NapiErrorExt, table::Table};
|
||||
use lancedb::dataloader::{
|
||||
permutation::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
|
||||
split::{SplitSizes, SplitStrategy},
|
||||
permutation::builder::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
|
||||
permutation::split::{SplitSizes, SplitStrategy},
|
||||
};
|
||||
use napi_derive::napi;
|
||||
|
||||
@@ -16,6 +16,7 @@ pub struct SplitRandomOptions {
|
||||
pub counts: Option<Vec<i64>>,
|
||||
pub fixed: Option<i64>,
|
||||
pub seed: Option<i64>,
|
||||
pub split_names: Option<Vec<String>>,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
@@ -23,6 +24,7 @@ pub struct SplitHashOptions {
|
||||
pub columns: Vec<String>,
|
||||
pub split_weights: Vec<i64>,
|
||||
pub discard_weight: Option<i64>,
|
||||
pub split_names: Option<Vec<String>>,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
@@ -30,6 +32,13 @@ pub struct SplitSequentialOptions {
|
||||
pub ratios: Option<Vec<f64>>,
|
||||
pub counts: Option<Vec<i64>>,
|
||||
pub fixed: Option<i64>,
|
||||
pub split_names: Option<Vec<String>>,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
pub struct SplitCalculatedOptions {
|
||||
pub calculation: String,
|
||||
pub split_names: Option<Vec<String>>,
|
||||
}
|
||||
|
||||
#[napi(object)]
|
||||
@@ -40,7 +49,6 @@ pub struct ShuffleOptions {
|
||||
|
||||
pub struct PermutationBuilderState {
|
||||
pub builder: Option<LancePermutationBuilder>,
|
||||
pub dest_table_name: String,
|
||||
}
|
||||
|
||||
#[napi]
|
||||
@@ -49,11 +57,10 @@ pub struct PermutationBuilder {
|
||||
}
|
||||
|
||||
impl PermutationBuilder {
|
||||
pub fn new(builder: LancePermutationBuilder, dest_table_name: String) -> Self {
|
||||
pub fn new(builder: LancePermutationBuilder) -> Self {
|
||||
Self {
|
||||
state: Arc::new(Mutex::new(PermutationBuilderState {
|
||||
builder: Some(builder),
|
||||
dest_table_name,
|
||||
})),
|
||||
}
|
||||
}
|
||||
@@ -78,6 +85,16 @@ impl PermutationBuilder {
|
||||
|
||||
#[napi]
|
||||
impl PermutationBuilder {
|
||||
#[napi]
|
||||
pub fn persist(
|
||||
&self,
|
||||
connection: &crate::connection::Connection,
|
||||
table_name: String,
|
||||
) -> napi::Result<Self> {
|
||||
let database = connection.database()?;
|
||||
self.modify(|builder| builder.persist(database, table_name))
|
||||
}
|
||||
|
||||
/// Configure random splits
|
||||
#[napi]
|
||||
pub fn split_random(&self, options: SplitRandomOptions) -> napi::Result<Self> {
|
||||
@@ -109,7 +126,12 @@ impl PermutationBuilder {
|
||||
|
||||
let seed = options.seed.map(|s| s as u64);
|
||||
|
||||
self.modify(|builder| builder.with_split_strategy(SplitStrategy::Random { seed, sizes }))
|
||||
self.modify(|builder| {
|
||||
builder.with_split_strategy(
|
||||
SplitStrategy::Random { seed, sizes },
|
||||
options.split_names.clone(),
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
/// Configure hash-based splits
|
||||
@@ -122,12 +144,15 @@ impl PermutationBuilder {
|
||||
.collect();
|
||||
let discard_weight = options.discard_weight.unwrap_or(0) as u64;
|
||||
|
||||
self.modify(|builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Hash {
|
||||
columns: options.columns,
|
||||
split_weights,
|
||||
discard_weight,
|
||||
})
|
||||
self.modify(move |builder| {
|
||||
builder.with_split_strategy(
|
||||
SplitStrategy::Hash {
|
||||
columns: options.columns,
|
||||
split_weights,
|
||||
discard_weight,
|
||||
},
|
||||
options.split_names,
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
@@ -160,14 +185,21 @@ impl PermutationBuilder {
|
||||
unreachable!("One of the split arguments must be provided");
|
||||
};
|
||||
|
||||
self.modify(|builder| builder.with_split_strategy(SplitStrategy::Sequential { sizes }))
|
||||
self.modify(move |builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Sequential { sizes }, options.split_names)
|
||||
})
|
||||
}
|
||||
|
||||
/// Configure calculated splits
|
||||
#[napi]
|
||||
pub fn split_calculated(&self, calculation: String) -> napi::Result<Self> {
|
||||
self.modify(|builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Calculated { calculation })
|
||||
pub fn split_calculated(&self, options: SplitCalculatedOptions) -> napi::Result<Self> {
|
||||
self.modify(move |builder| {
|
||||
builder.with_split_strategy(
|
||||
SplitStrategy::Calculated {
|
||||
calculation: options.calculation,
|
||||
},
|
||||
options.split_names,
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
@@ -191,32 +223,26 @@ impl PermutationBuilder {
|
||||
/// Execute the permutation builder and create the table
|
||||
#[napi]
|
||||
pub async fn execute(&self) -> napi::Result<Table> {
|
||||
let (builder, dest_table_name) = {
|
||||
let builder = {
|
||||
let mut state = self.state.lock().unwrap();
|
||||
let builder = state
|
||||
state
|
||||
.builder
|
||||
.take()
|
||||
.ok_or_else(|| napi::Error::from_reason("Builder already consumed"))?;
|
||||
|
||||
let dest_table_name = std::mem::take(&mut state.dest_table_name);
|
||||
(builder, dest_table_name)
|
||||
.ok_or_else(|| napi::Error::from_reason("Builder already consumed"))?
|
||||
};
|
||||
|
||||
let table = builder.build(&dest_table_name).await.default_error()?;
|
||||
let table = builder.build().await.default_error()?;
|
||||
Ok(Table::new(table))
|
||||
}
|
||||
}
|
||||
|
||||
/// Create a permutation builder for the given table
|
||||
#[napi]
|
||||
pub fn permutation_builder(
|
||||
table: &crate::table::Table,
|
||||
dest_table_name: String,
|
||||
) -> napi::Result<PermutationBuilder> {
|
||||
use lancedb::dataloader::permutation::PermutationBuilder as LancePermutationBuilder;
|
||||
pub fn permutation_builder(table: &crate::table::Table) -> napi::Result<PermutationBuilder> {
|
||||
use lancedb::dataloader::permutation::builder::PermutationBuilder as LancePermutationBuilder;
|
||||
|
||||
let inner_table = table.inner_ref()?.clone();
|
||||
let inner_builder = LancePermutationBuilder::new(inner_table);
|
||||
|
||||
Ok(PermutationBuilder::new(inner_builder, dest_table_name))
|
||||
Ok(PermutationBuilder::new(inner_builder))
|
||||
}
|
||||
|
||||
@@ -22,7 +22,7 @@ use crate::error::NapiErrorExt;
|
||||
use crate::iterator::RecordBatchIterator;
|
||||
use crate::rerankers::Reranker;
|
||||
use crate::rerankers::RerankerCallbacks;
|
||||
use crate::util::parse_distance_type;
|
||||
use crate::util::{parse_distance_type, schema_to_buffer};
|
||||
|
||||
#[napi]
|
||||
pub struct Query {
|
||||
@@ -88,6 +88,12 @@ impl Query {
|
||||
self.inner = self.inner.clone().with_row_id();
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn output_schema(&self) -> napi::Result<Buffer> {
|
||||
let schema = self.inner.output_schema().await.default_error()?;
|
||||
schema_to_buffer(&schema)
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn execute(
|
||||
&self,
|
||||
@@ -273,6 +279,12 @@ impl VectorQuery {
|
||||
.rerank(Arc::new(Reranker::new(callbacks)));
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn output_schema(&self) -> napi::Result<Buffer> {
|
||||
let schema = self.inner.output_schema().await.default_error()?;
|
||||
schema_to_buffer(&schema)
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn execute(
|
||||
&self,
|
||||
@@ -346,6 +358,12 @@ impl TakeQuery {
|
||||
self.inner = self.inner.clone().with_row_id();
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn output_schema(&self) -> napi::Result<Buffer> {
|
||||
let schema = self.inner.output_schema().await.default_error()?;
|
||||
schema_to_buffer(&schema)
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn execute(
|
||||
&self,
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
|
||||
use std::collections::HashMap;
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::table::{
|
||||
AddDataMode, ColumnAlteration as LanceColumnAlteration, Duration, NewColumnTransform,
|
||||
@@ -16,6 +15,7 @@ use crate::error::NapiErrorExt;
|
||||
use crate::index::Index;
|
||||
use crate::merge::NativeMergeInsertBuilder;
|
||||
use crate::query::{Query, TakeQuery, VectorQuery};
|
||||
use crate::util::schema_to_buffer;
|
||||
|
||||
#[napi]
|
||||
pub struct Table {
|
||||
@@ -64,14 +64,7 @@ impl Table {
|
||||
#[napi(catch_unwind)]
|
||||
pub async fn schema(&self) -> napi::Result<Buffer> {
|
||||
let schema = self.inner_ref()?.schema().await.default_error()?;
|
||||
let mut writer = FileWriter::try_new(vec![], &schema)
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
|
||||
writer
|
||||
.finish()
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to finish IPC file: {}", e)))?;
|
||||
Ok(Buffer::from(writer.into_inner().map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to get IPC file: {}", e))
|
||||
})?))
|
||||
schema_to_buffer(&schema)
|
||||
}
|
||||
|
||||
#[napi(catch_unwind)]
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use arrow_schema::Schema;
|
||||
use lancedb::DistanceType;
|
||||
use napi::bindgen_prelude::Buffer;
|
||||
|
||||
pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<DistanceType> {
|
||||
match distance_type.as_ref().to_lowercase().as_str() {
|
||||
@@ -15,3 +18,15 @@ pub fn parse_distance_type(distance_type: impl AsRef<str>) -> napi::Result<Dista
|
||||
))),
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert an Arrow Schema to an Arrow IPC file buffer
|
||||
pub fn schema_to_buffer(schema: &Schema) -> napi::Result<Buffer> {
|
||||
let mut writer = FileWriter::try_new(vec![], schema)
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to create IPC file: {}", e)))?;
|
||||
writer
|
||||
.finish()
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to finish IPC file: {}", e)))?;
|
||||
Ok(Buffer::from(writer.into_inner().map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to get IPC file: {}", e))
|
||||
})?))
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[tool.bumpversion]
|
||||
current_version = "0.25.2"
|
||||
current_version = "0.25.3"
|
||||
parse = """(?x)
|
||||
(?P<major>0|[1-9]\\d*)\\.
|
||||
(?P<minor>0|[1-9]\\d*)\\.
|
||||
|
||||
19
python/AGENTS.md
Normal file
19
python/AGENTS.md
Normal file
@@ -0,0 +1,19 @@
|
||||
These are the Python bindings of LanceDB.
|
||||
The core Rust library is in the `../rust/lancedb` directory, the rust binding
|
||||
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
|
||||
|
||||
Common commands:
|
||||
|
||||
* Build: `make develop`
|
||||
* Format: `make format`
|
||||
* Lint: `make check`
|
||||
* Fix lints: `make fix`
|
||||
* Test: `make test`
|
||||
* Doc test: `make doctest`
|
||||
|
||||
Before committing changes, run lints and then formatting.
|
||||
|
||||
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
|
||||
|
||||
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
|
||||
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.
|
||||
@@ -1,19 +0,0 @@
|
||||
These are the Python bindings of LanceDB.
|
||||
The core Rust library is in the `../rust/lancedb` directory, the rust binding
|
||||
code is in the `src/` directory and the Python bindings are in the `lancedb/` directory.
|
||||
|
||||
Common commands:
|
||||
|
||||
* Build: `make develop`
|
||||
* Format: `make format`
|
||||
* Lint: `make check`
|
||||
* Fix lints: `make fix`
|
||||
* Test: `make test`
|
||||
* Doc test: `make doctest`
|
||||
|
||||
Before committing changes, run lints and then formatting.
|
||||
|
||||
When you change the Rust code, you will need to recompile the Python bindings: `make develop`.
|
||||
|
||||
When you export new types from Rust to Python, you must manually update `python/lancedb/_lancedb.pyi`
|
||||
with the corresponding type hints. You can run `pyright` to check for type errors in the Python code.
|
||||
1
python/CLAUDE.md
Symbolic link
1
python/CLAUDE.md
Symbolic link
@@ -0,0 +1 @@
|
||||
AGENTS.md
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb-python"
|
||||
version = "0.25.2"
|
||||
version = "0.25.3"
|
||||
edition.workspace = true
|
||||
description = "Python bindings for LanceDB"
|
||||
license.workspace = true
|
||||
|
||||
@@ -80,7 +80,7 @@ embeddings = [
|
||||
"pillow",
|
||||
"open-clip-torch",
|
||||
"cohere",
|
||||
"colpali-engine>=0.3.12",
|
||||
"colpali-engine>=0.3.10",
|
||||
"huggingface_hub",
|
||||
"InstructorEmbedding",
|
||||
"google.generativeai",
|
||||
|
||||
@@ -17,7 +17,7 @@ from .db import AsyncConnection, DBConnection, LanceDBConnection
|
||||
from .remote import ClientConfig
|
||||
from .remote.db import RemoteDBConnection
|
||||
from .schema import vector
|
||||
from .table import AsyncTable
|
||||
from .table import AsyncTable, Table
|
||||
from ._lancedb import Session
|
||||
from .namespace import connect_namespace, LanceNamespaceDBConnection
|
||||
|
||||
@@ -233,6 +233,7 @@ __all__ = [
|
||||
"LanceNamespaceDBConnection",
|
||||
"RemoteDBConnection",
|
||||
"Session",
|
||||
"Table",
|
||||
"__version__",
|
||||
]
|
||||
|
||||
|
||||
@@ -123,6 +123,8 @@ class Table:
|
||||
@property
|
||||
def tags(self) -> Tags: ...
|
||||
def query(self) -> Query: ...
|
||||
def take_offsets(self, offsets: list[int]) -> TakeQuery: ...
|
||||
def take_row_ids(self, row_ids: list[int]) -> TakeQuery: ...
|
||||
def vector_search(self) -> VectorQuery: ...
|
||||
|
||||
class Tags:
|
||||
@@ -165,6 +167,7 @@ class Query:
|
||||
def postfilter(self): ...
|
||||
def nearest_to(self, query_vec: pa.Array) -> VectorQuery: ...
|
||||
def nearest_to_text(self, query: dict) -> FTSQuery: ...
|
||||
async def output_schema(self) -> pa.Schema: ...
|
||||
async def execute(
|
||||
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
|
||||
) -> RecordBatchStream: ...
|
||||
@@ -172,6 +175,13 @@ class Query:
|
||||
async def analyze_plan(self) -> str: ...
|
||||
def to_query_request(self) -> PyQueryRequest: ...
|
||||
|
||||
class TakeQuery:
|
||||
def select(self, columns: List[str]): ...
|
||||
def with_row_id(self): ...
|
||||
async def output_schema(self) -> pa.Schema: ...
|
||||
async def execute(self) -> RecordBatchStream: ...
|
||||
def to_query_request(self) -> PyQueryRequest: ...
|
||||
|
||||
class FTSQuery:
|
||||
def where(self, filter: str): ...
|
||||
def select(self, columns: List[str]): ...
|
||||
@@ -183,12 +193,14 @@ class FTSQuery:
|
||||
def get_query(self) -> str: ...
|
||||
def add_query_vector(self, query_vec: pa.Array) -> None: ...
|
||||
def nearest_to(self, query_vec: pa.Array) -> HybridQuery: ...
|
||||
async def output_schema(self) -> pa.Schema: ...
|
||||
async def execute(
|
||||
self, max_batch_length: Optional[int], timeout: Optional[timedelta]
|
||||
) -> RecordBatchStream: ...
|
||||
def to_query_request(self) -> PyQueryRequest: ...
|
||||
|
||||
class VectorQuery:
|
||||
async def output_schema(self) -> pa.Schema: ...
|
||||
async def execute(self) -> RecordBatchStream: ...
|
||||
def where(self, filter: str): ...
|
||||
def select(self, columns: List[str]): ...
|
||||
@@ -327,3 +339,7 @@ class AsyncPermutationBuilder:
|
||||
def async_permutation_builder(
|
||||
table: Table, dest_table_name: str
|
||||
) -> AsyncPermutationBuilder: ...
|
||||
def fts_query_to_json(query: Any) -> str: ...
|
||||
|
||||
class PermutationReader:
|
||||
def __init__(self, base_table: Table, permutation_table: Table): ...
|
||||
|
||||
@@ -19,5 +19,5 @@ from .imagebind import ImageBindEmbeddings
|
||||
from .jinaai import JinaEmbeddings
|
||||
from .watsonx import WatsonxEmbeddings
|
||||
from .voyageai import VoyageAIEmbeddingFunction
|
||||
from .colpali import MultimodalLateInteractionEmbeddings, ColPaliEmbeddings # noqa: F401
|
||||
from .colpali import ColPaliEmbeddings
|
||||
from .siglip import SigLipEmbeddings
|
||||
|
||||
588
python/python/lancedb/embeddings/colpali.py
Executable file → Normal file
588
python/python/lancedb/embeddings/colpali.py
Executable file → Normal file
@@ -1,347 +1,345 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
"""Late-interaction embeddings powered by colpali-engine."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from functools import lru_cache
|
||||
from logging import warning
|
||||
from typing import List, Union, Optional, Any, Callable
|
||||
import numpy as np
|
||||
import io
|
||||
from typing import Any, Dict, List, Optional, Sequence
|
||||
import warnings
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import EmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import IMAGES, TEXT, is_flash_attn_2_available, weak_lru
|
||||
from .utils import TEXT, IMAGES, is_flash_attn_2_available
|
||||
|
||||
|
||||
_FAMILY_ALIASES = {
|
||||
"colsmol": {"colsmol", "colsmolvlm", "smol"},
|
||||
"colqwen2.5": {"colqwen2.5", "colqwen25", "colqwen-2.5"},
|
||||
"colqwen2": {"colqwen2", "colqwen-2"},
|
||||
"colpali": {"colpali", "paligemma"},
|
||||
}
|
||||
@register("colpali")
|
||||
class ColPaliEmbeddings(EmbeddingFunction):
|
||||
"""
|
||||
An embedding function that uses the ColPali engine for
|
||||
multimodal multi-vector embeddings.
|
||||
|
||||
_FAMILY_CLASSES = {
|
||||
"colpali": ("ColPali", "ColPaliProcessor"),
|
||||
"colqwen2.5": ("ColQwen2_5", "ColQwen2_5_Processor"),
|
||||
"colqwen2": ("ColQwen2", "ColQwen2Processor"),
|
||||
"colsmol": ("ColIdefics3", "ColIdefics3Processor"),
|
||||
}
|
||||
This embedding function supports ColPali models, producing multivector outputs
|
||||
for both text and image inputs.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model_name : str
|
||||
The name of the model to use (e.g., "Metric-AI/ColQwen2.5-3b-multilingual-v1.0")
|
||||
Supports models based on these engines:
|
||||
- ColPali: "vidore/colpali-v1.3" and others
|
||||
- ColQwen2.5: "Metric-AI/ColQwen2.5-3b-multilingual-v1.0" and others
|
||||
- ColQwen2: "vidore/colqwen2-v1.0" and others
|
||||
- ColSmol: "vidore/colSmol-256M" and others
|
||||
|
||||
def _torch() -> Any:
|
||||
return attempt_import_or_raise("torch", "torch")
|
||||
device : str
|
||||
The device for inference (default "auto").
|
||||
dtype : str
|
||||
Data type for model weights (default "bfloat16").
|
||||
use_token_pooling : bool
|
||||
DEPRECATED. Whether to use token pooling. Use `pooling_strategy` instead.
|
||||
pooling_strategy : str, optional
|
||||
The token pooling strategy to use, by default "hierarchical".
|
||||
- "hierarchical": Progressively pools tokens to reduce sequence length.
|
||||
- "lambda": A simpler pooling that uses a custom `pooling_func`.
|
||||
pooling_func: typing.Callable, optional
|
||||
A function to use for pooling when `pooling_strategy` is "lambda".
|
||||
pool_factor : int
|
||||
Factor to reduce sequence length if token pooling is enabled (default 2).
|
||||
quantization_config : Optional[BitsAndBytesConfig]
|
||||
Quantization configuration for the model. (default None, bitsandbytes needed)
|
||||
batch_size : int
|
||||
Batch size for processing inputs (default 2).
|
||||
offload_folder: str, optional
|
||||
Folder to offload model weights if using CPU offloading (default None). This is
|
||||
useful for large models that do not fit in memory.
|
||||
"""
|
||||
|
||||
|
||||
def _torch_dtype(dtype: str) -> Any:
|
||||
torch = _torch()
|
||||
mapping = {
|
||||
"bfloat16": torch.bfloat16,
|
||||
"float16": torch.float16,
|
||||
"float32": torch.float32,
|
||||
"float64": torch.float64,
|
||||
}
|
||||
if dtype not in mapping:
|
||||
raise ValueError(
|
||||
"Unsupported dtype '{}'. Expected one of {}".format(
|
||||
dtype, ", ".join(sorted(mapping))
|
||||
)
|
||||
)
|
||||
return mapping[dtype]
|
||||
|
||||
|
||||
def _load_pooler(use_pooler: bool) -> Optional[Any]:
|
||||
if not use_pooler:
|
||||
return None
|
||||
token_pooling = attempt_import_or_raise(
|
||||
"colpali_engine.compression.token_pooling", "colpali-engine"
|
||||
)
|
||||
pooler_cls = getattr(token_pooling, "HierarchicalTokenPooler", None)
|
||||
if pooler_cls is None:
|
||||
raise ImportError(
|
||||
"colpali_engine HierarchicalTokenPooler not available; update colpali-engine"
|
||||
)
|
||||
return pooler_cls()
|
||||
|
||||
|
||||
def _move_to_device(batch: Any, device: Any) -> Any:
|
||||
if device is None:
|
||||
return batch
|
||||
torch = _torch()
|
||||
if isinstance(device, str):
|
||||
device_obj = torch.device(device)
|
||||
else:
|
||||
device_obj = device
|
||||
if isinstance(batch, dict):
|
||||
return {k: _move_to_device(v, device_obj) for k, v in batch.items()}
|
||||
if hasattr(batch, "to"):
|
||||
return batch.to(device_obj)
|
||||
return batch
|
||||
|
||||
|
||||
@register("multimodal-late-interaction")
|
||||
class MultimodalLateInteractionEmbeddings(EmbeddingFunction):
|
||||
"""Late-interaction embeddings for ViDoRe models."""
|
||||
|
||||
model_name: str = "vidore/colSmol-256M"
|
||||
model_family: Optional[str] = None
|
||||
model_name: str = "Metric-AI/ColQwen2.5-3b-multilingual-v1.0"
|
||||
device: str = "auto"
|
||||
dtype: str = "bfloat16"
|
||||
use_token_pooling: bool = True
|
||||
pooling_strategy: Optional[str] = "hierarchical"
|
||||
pooling_func: Optional[Any] = None
|
||||
pool_factor: int = 2
|
||||
batch_size: int = 4
|
||||
quantization_config: Optional[Any] = None
|
||||
batch_size: int = 2
|
||||
offload_folder: Optional[str] = None
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
_model = None
|
||||
_processor = None
|
||||
_token_pooler = None
|
||||
_vector_dim = None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._family = self._resolve_family(self.model_name, self.model_family)
|
||||
self._vector_dim: Optional[int] = None
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
|
||||
@property
|
||||
def model(self) -> Any:
|
||||
"""The cached model."""
|
||||
return self._get_models()[0]
|
||||
|
||||
@property
|
||||
def processor(self) -> Any:
|
||||
"""The cached processor."""
|
||||
return self._get_models()[1]
|
||||
|
||||
@property
|
||||
def pooler(self) -> Optional[Any]:
|
||||
"""The cached pooler."""
|
||||
return self._get_models()[2]
|
||||
|
||||
@property
|
||||
def target_device(self) -> Optional[Any]:
|
||||
"""The cached target device."""
|
||||
return self._get_models()[3]
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Family detection
|
||||
# ------------------------------------------------------------------
|
||||
@classmethod
|
||||
def _resolve_family(cls, model_name: str, explicit: Optional[str]) -> str:
|
||||
if explicit:
|
||||
family = explicit.lower()
|
||||
if family not in _FAMILY_CLASSES:
|
||||
raise ValueError(
|
||||
"Unknown model_family '{}'. Expected one of {}".format(
|
||||
explicit, ", ".join(sorted(_FAMILY_CLASSES))
|
||||
)
|
||||
)
|
||||
return family
|
||||
|
||||
lowered = model_name.lower()
|
||||
for family, aliases in _FAMILY_ALIASES.items():
|
||||
if any(alias in lowered for alias in aliases):
|
||||
return family
|
||||
return "colpali"
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Model loading
|
||||
# ------------------------------------------------------------------
|
||||
@weak_lru(maxsize=1)
|
||||
def _get_models(self) -> tuple[Any, Optional[Any], Optional[Any], Optional[Any]]:
|
||||
colpali_engine = attempt_import_or_raise("colpali_engine", "colpali-engine")
|
||||
transformers = attempt_import_or_raise("transformers", "transformers")
|
||||
|
||||
if (
|
||||
self.quantization_config is not None
|
||||
and not isinstance(
|
||||
self.quantization_config, transformers.BitsAndBytesConfig
|
||||
if not self.use_token_pooling:
|
||||
warnings.warn(
|
||||
"use_token_pooling is deprecated, use pooling_strategy=None instead",
|
||||
DeprecationWarning,
|
||||
)
|
||||
):
|
||||
self.pooling_strategy = None
|
||||
|
||||
if self.pooling_strategy == "lambda" and self.pooling_func is None:
|
||||
raise ValueError(
|
||||
"quantization_config must be a transformers.BitsAndBytesConfig instance"
|
||||
"pooling_func must be provided when pooling_strategy is 'lambda'"
|
||||
)
|
||||
|
||||
model_cls_name, processor_cls_name = _FAMILY_CLASSES[self._family]
|
||||
model_cls = getattr(colpali_engine.models, model_cls_name)
|
||||
processor_cls = getattr(colpali_engine.models, processor_cls_name)
|
||||
|
||||
torch = _torch()
|
||||
device_map = self.device
|
||||
target_device: Optional[Any] = None
|
||||
if device_map == "auto":
|
||||
device = self.device
|
||||
if device == "auto":
|
||||
if torch.cuda.is_available():
|
||||
device_map = "cuda:0"
|
||||
target_device = torch.device("cuda:0")
|
||||
elif (
|
||||
getattr(torch.backends, "mps", None)
|
||||
and torch.backends.mps.is_available()
|
||||
):
|
||||
device_map = "mps"
|
||||
target_device = torch.device("mps")
|
||||
device = "cuda"
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
else:
|
||||
device_map = "cpu"
|
||||
target_device = torch.device("cpu")
|
||||
else:
|
||||
try:
|
||||
target_device = torch.device(device_map)
|
||||
except (TypeError, ValueError): # pragma: no cover - device map dicts
|
||||
target_device = None
|
||||
device = "cpu"
|
||||
|
||||
torch_dtype = _torch_dtype(self.dtype)
|
||||
if isinstance(device_map, str) and device_map == "cpu" and torch_dtype in {
|
||||
torch.bfloat16,
|
||||
torch.float16,
|
||||
}:
|
||||
dtype = self.dtype
|
||||
if device == "mps" and dtype == "bfloat16":
|
||||
dtype = "float32" # Avoid NaNs on MPS
|
||||
|
||||
(
|
||||
self._model,
|
||||
self._processor,
|
||||
self._token_pooler,
|
||||
) = self._load_model(
|
||||
self.model_name,
|
||||
dtype,
|
||||
device,
|
||||
self.pooling_strategy,
|
||||
self.pooling_func,
|
||||
self.quantization_config,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
@lru_cache(maxsize=1)
|
||||
def _load_model(
|
||||
model_name: str,
|
||||
dtype: str,
|
||||
device: str,
|
||||
pooling_strategy: Optional[str],
|
||||
pooling_func: Optional[Callable],
|
||||
quantization_config: Optional[Any],
|
||||
):
|
||||
"""
|
||||
Initialize and cache the ColPali model, processor, and token pooler.
|
||||
"""
|
||||
if device.startswith("mps"):
|
||||
# warn some torch ops in late interaction architecture result in nans on mps
|
||||
warning(
|
||||
"MPS device detected. Some operations may result in NaNs. "
|
||||
"If you encounter issues, consider using 'cpu' or 'cuda' devices."
|
||||
)
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
transformers = attempt_import_or_raise("transformers", "transformers")
|
||||
colpali_engine = attempt_import_or_raise("colpali_engine", "colpali_engine")
|
||||
from colpali_engine.compression.token_pooling import (
|
||||
HierarchicalTokenPooler,
|
||||
LambdaTokenPooler,
|
||||
)
|
||||
|
||||
if quantization_config is not None:
|
||||
if not isinstance(quantization_config, transformers.BitsAndBytesConfig):
|
||||
raise ValueError("quantization_config must be a BitsAndBytesConfig")
|
||||
|
||||
if dtype == "bfloat16":
|
||||
torch_dtype = torch.bfloat16
|
||||
elif dtype == "float16":
|
||||
torch_dtype = torch.float16
|
||||
elif dtype == "float64":
|
||||
torch_dtype = torch.float64
|
||||
else:
|
||||
torch_dtype = torch.float32
|
||||
|
||||
load_kwargs: Dict[str, Any] = {
|
||||
"torch_dtype": torch_dtype,
|
||||
"device_map": device_map,
|
||||
}
|
||||
if self.quantization_config is not None:
|
||||
load_kwargs["quantization_config"] = self.quantization_config
|
||||
attn_impl = "flash_attention_2" if is_flash_attn_2_available() else None
|
||||
if attn_impl is not None:
|
||||
load_kwargs["attn_implementation"] = attn_impl
|
||||
model_class, processor_class = None, None
|
||||
model_name_lower = model_name.lower()
|
||||
if "colqwen2.5" in model_name_lower:
|
||||
model_class = colpali_engine.models.ColQwen2_5
|
||||
processor_class = colpali_engine.models.ColQwen2_5_Processor
|
||||
elif "colsmol" in model_name_lower or "colidefics3" in model_name_lower:
|
||||
model_class = colpali_engine.models.ColIdefics3
|
||||
processor_class = colpali_engine.models.ColIdefics3Processor
|
||||
elif "colqwen" in model_name_lower:
|
||||
model_class = colpali_engine.models.ColQwen2
|
||||
processor_class = colpali_engine.models.ColQwen2Processor
|
||||
elif "colpali" in model_name_lower:
|
||||
model_class = colpali_engine.models.ColPali
|
||||
processor_class = colpali_engine.models.ColPaliProcessor
|
||||
|
||||
model = model_cls.from_pretrained(self.model_name, **load_kwargs)
|
||||
if hasattr(model, "eval"):
|
||||
model = model.eval()
|
||||
if model_class is None:
|
||||
raise ValueError(f"Unsupported model: {model_name}")
|
||||
|
||||
processor = processor_cls.from_pretrained(self.model_name)
|
||||
pooler = _load_pooler(self.use_token_pooling)
|
||||
if target_device is None and hasattr(model, "device"):
|
||||
target_device = getattr(model, "device")
|
||||
model = model_class.from_pretrained(
|
||||
model_name,
|
||||
torch_dtype=torch_dtype,
|
||||
quantization_config=quantization_config
|
||||
if quantization_config is not None
|
||||
else None,
|
||||
attn_implementation="flash_attention_2"
|
||||
if is_flash_attn_2_available()
|
||||
else None,
|
||||
low_cpu_mem_usage=True,
|
||||
).eval()
|
||||
model = model.to(device)
|
||||
model = model.to(torch_dtype) # Force cast after moving to device
|
||||
processor = processor_class.from_pretrained(model_name)
|
||||
|
||||
return model, processor, pooler, target_device
|
||||
token_pooler = None
|
||||
if pooling_strategy == "hierarchical":
|
||||
token_pooler = HierarchicalTokenPooler()
|
||||
elif pooling_strategy == "lambda":
|
||||
token_pooler = LambdaTokenPooler(pool_func=pooling_func)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Encoding helpers
|
||||
# ------------------------------------------------------------------
|
||||
def _pool_tensor(self, tensor: Any) -> Any:
|
||||
if self.pooler is None:
|
||||
return tensor
|
||||
torch = _torch()
|
||||
assert isinstance(tensor, torch.Tensor)
|
||||
expanded = False
|
||||
if tensor.ndim == 2:
|
||||
tensor = tensor.unsqueeze(0)
|
||||
expanded = True
|
||||
kwargs = {"pool_factor": self.pool_factor, "padding": True}
|
||||
tokenizer = getattr(
|
||||
getattr(self.processor, "tokenizer", None), "padding_side", None
|
||||
)
|
||||
if tokenizer is not None:
|
||||
kwargs["padding_side"] = tokenizer
|
||||
pooled = self.pooler.pool_embeddings(tensor, **kwargs)
|
||||
if expanded:
|
||||
pooled = pooled.squeeze(0)
|
||||
return pooled
|
||||
return model, processor, token_pooler
|
||||
|
||||
def ndims(self):
|
||||
"""
|
||||
Return the dimension of a vector in the multivector output (e.g., 128).
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
if self._vector_dim is None:
|
||||
dummy_query = "test"
|
||||
batch_queries = self._processor.process_queries([dummy_query]).to(
|
||||
self._model.device
|
||||
)
|
||||
with torch.no_grad():
|
||||
query_embeddings = self._model(**batch_queries)
|
||||
|
||||
if self.pooling_strategy and self._token_pooler is not None:
|
||||
query_embeddings = self._token_pooler.pool_embeddings(
|
||||
query_embeddings,
|
||||
pool_factor=self.pool_factor,
|
||||
padding=True,
|
||||
padding_side=self._processor.tokenizer.padding_side,
|
||||
)
|
||||
|
||||
self._vector_dim = query_embeddings[0].shape[-1]
|
||||
return self._vector_dim
|
||||
|
||||
def _process_embeddings(self, embeddings):
|
||||
"""
|
||||
Format model embeddings into List[List[float]].
|
||||
Use token pooling if enabled.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
if self.pooling_strategy and self._token_pooler is not None:
|
||||
if self.pooling_strategy == "hierarchical":
|
||||
embeddings = self._token_pooler.pool_embeddings(
|
||||
embeddings,
|
||||
pool_factor=self.pool_factor,
|
||||
padding=True,
|
||||
padding_side=self._processor.tokenizer.padding_side,
|
||||
)
|
||||
elif self.pooling_strategy == "lambda":
|
||||
embeddings = self._token_pooler.pool_embeddings(
|
||||
embeddings,
|
||||
padding=True,
|
||||
padding_side=self._processor.tokenizer.padding_side,
|
||||
)
|
||||
|
||||
def _normalize_output(self, embeddings: Any) -> List[List[List[float]]]:
|
||||
torch = _torch()
|
||||
if hasattr(embeddings, "last_hidden_state"):
|
||||
return self._normalize_output(embeddings.last_hidden_state)
|
||||
if isinstance(embeddings, dict) and "last_hidden_state" in embeddings:
|
||||
return self._normalize_output(embeddings["last_hidden_state"])
|
||||
if isinstance(embeddings, torch.Tensor):
|
||||
pooled = self._pool_tensor(embeddings).detach().cpu()
|
||||
if pooled.ndim == 2:
|
||||
pooled = pooled.unsqueeze(0)
|
||||
target = torch.float64 if self.dtype == "float64" else torch.float32
|
||||
return pooled.to(target).numpy().tolist()
|
||||
if isinstance(embeddings, (list, tuple)):
|
||||
results: List[List[List[float]]] = []
|
||||
for item in embeddings:
|
||||
results.extend(self._normalize_output(item))
|
||||
return results
|
||||
raise TypeError(f"Unsupported embedding type {type(embeddings)}")
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Text encoding
|
||||
# ------------------------------------------------------------------
|
||||
def _encode_text(self, batch: Sequence[str]) -> List[List[List[float]]]:
|
||||
if not self.processor or not hasattr(self.processor, "process_queries"):
|
||||
raise RuntimeError("Processor for text queries is not available for this model")
|
||||
payload = self.processor.process_queries(batch)
|
||||
payload = _move_to_device(payload, self.target_device)
|
||||
torch = _torch()
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**payload)
|
||||
return self._normalize_output(outputs)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Image encoding
|
||||
# ------------------------------------------------------------------
|
||||
def _prepare_images(self, images: IMAGES) -> List[Any]:
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
requests = attempt_import_or_raise("requests", "requests")
|
||||
prepared: List[Any] = []
|
||||
for image in self.sanitize_input(images):
|
||||
if isinstance(image, str) and image.startswith(("http://", "https://")):
|
||||
response = requests.get(image, timeout=10)
|
||||
response.raise_for_status()
|
||||
prepared.append(PIL.Image.open(io.BytesIO(response.content)))
|
||||
elif isinstance(image, str):
|
||||
with PIL.Image.open(image) as img:
|
||||
prepared.append(img.copy())
|
||||
elif isinstance(image, bytes):
|
||||
prepared.append(PIL.Image.open(io.BytesIO(image)))
|
||||
else:
|
||||
prepared.append(image)
|
||||
return prepared
|
||||
|
||||
def _encode_images(self, images: Sequence[Any]) -> List[List[List[float]]]:
|
||||
if not self.processor or not hasattr(self.processor, "process_images"):
|
||||
raise RuntimeError("Processor for images is not available for this model")
|
||||
payload = self.processor.process_images(images)
|
||||
payload = _move_to_device(payload, self.target_device)
|
||||
torch = _torch()
|
||||
with torch.no_grad():
|
||||
outputs = self.model(**payload)
|
||||
return self._normalize_output(outputs)
|
||||
|
||||
# ------------------------------------------------------------------
|
||||
# Public API
|
||||
# ------------------------------------------------------------------
|
||||
def _batched(self, values: Sequence[Any], encoder) -> List[List[List[float]]]:
|
||||
results: List[List[List[float]]] = []
|
||||
for start in range(0, len(values), self.batch_size):
|
||||
chunk = values[start : start + self.batch_size]
|
||||
results.extend(encoder(chunk))
|
||||
return results
|
||||
tensors = embeddings.detach().cpu()
|
||||
if tensors.dtype == torch.bfloat16:
|
||||
tensors = tensors.to(torch.float32)
|
||||
return (
|
||||
tensors.numpy()
|
||||
.astype(np.float64 if self.dtype == "float64" else np.float32)
|
||||
.tolist()
|
||||
)
|
||||
return []
|
||||
|
||||
def generate_text_embeddings(self, text: TEXT) -> List[List[List[float]]]:
|
||||
"""
|
||||
Generate embeddings for text input.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
text = self.sanitize_input(text)
|
||||
if len(text) == 0:
|
||||
return []
|
||||
return self._batched(text, self._encode_text)
|
||||
all_embeddings = []
|
||||
|
||||
for i in range(0, len(text), self.batch_size):
|
||||
batch_text = text[i : i + self.batch_size]
|
||||
batch_queries = self._processor.process_queries(batch_text).to(
|
||||
self._model.device
|
||||
)
|
||||
with torch.no_grad():
|
||||
query_embeddings = self._model(**batch_queries)
|
||||
query_embeddings = torch.nan_to_num(query_embeddings)
|
||||
all_embeddings.extend(self._process_embeddings(query_embeddings))
|
||||
return all_embeddings
|
||||
|
||||
def _prepare_images(self, images: IMAGES) -> List:
|
||||
"""
|
||||
Convert image inputs to PIL Images.
|
||||
"""
|
||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||
requests = attempt_import_or_raise("requests", "requests")
|
||||
images = self.sanitize_input(images)
|
||||
pil_images = []
|
||||
try:
|
||||
for image in images:
|
||||
if isinstance(image, str):
|
||||
if image.startswith(("http://", "https://")):
|
||||
response = requests.get(image, timeout=10)
|
||||
response.raise_for_status()
|
||||
pil_images.append(PIL.Image.open(io.BytesIO(response.content)))
|
||||
else:
|
||||
with PIL.Image.open(image) as im:
|
||||
pil_images.append(im.copy())
|
||||
elif isinstance(image, bytes):
|
||||
pil_images.append(PIL.Image.open(io.BytesIO(image)))
|
||||
else:
|
||||
# Assume it's a PIL Image; will raise if invalid
|
||||
pil_images.append(image)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to process image: {e}")
|
||||
|
||||
return pil_images
|
||||
|
||||
def generate_image_embeddings(self, images: IMAGES) -> List[List[List[float]]]:
|
||||
prepared = self._prepare_images(images)
|
||||
if len(prepared) == 0:
|
||||
return []
|
||||
return self._batched(prepared, self._encode_images)
|
||||
"""
|
||||
Generate embeddings for a batch of images.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
pil_images = self._prepare_images(images)
|
||||
all_embeddings = []
|
||||
|
||||
for i in range(0, len(pil_images), self.batch_size):
|
||||
batch_images = pil_images[i : i + self.batch_size]
|
||||
batch_images = self._processor.process_images(batch_images).to(
|
||||
self._model.device
|
||||
)
|
||||
with torch.no_grad():
|
||||
image_embeddings = self._model(**batch_images)
|
||||
image_embeddings = torch.nan_to_num(image_embeddings)
|
||||
all_embeddings.extend(self._process_embeddings(image_embeddings))
|
||||
return all_embeddings
|
||||
|
||||
def compute_query_embeddings(
|
||||
self, query: str, *args: Any, **kwargs: Any
|
||||
self, query: Union[str, IMAGES], *args, **kwargs
|
||||
) -> List[List[List[float]]]:
|
||||
"""
|
||||
Compute embeddings for a single user query (text only).
|
||||
"""
|
||||
if not isinstance(query, str):
|
||||
raise ValueError("Late interaction queries must be text")
|
||||
raise ValueError(
|
||||
"Query must be a string, image to image search is not supported"
|
||||
)
|
||||
return self.generate_text_embeddings([query])
|
||||
|
||||
def compute_source_embeddings(
|
||||
self, images: IMAGES, *args: Any, **kwargs: Any
|
||||
self, images: IMAGES, *args, **kwargs
|
||||
) -> List[List[List[float]]]:
|
||||
"""
|
||||
Compute embeddings for a batch of source images.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
images : Union[str, bytes, List, pa.Array, pa.ChunkedArray, np.ndarray]
|
||||
Batch of images (paths, URLs, bytes, or PIL Images).
|
||||
"""
|
||||
images = self.sanitize_input(images)
|
||||
return self.generate_image_embeddings(images)
|
||||
|
||||
def ndims(self) -> int:
|
||||
if self._vector_dim is None:
|
||||
probe = self.generate_text_embeddings(["probe"])
|
||||
if not probe or not probe[0]:
|
||||
raise RuntimeError("Failed to determine embedding dimension")
|
||||
self._vector_dim = len(probe[0][0])
|
||||
return self._vector_dim
|
||||
|
||||
|
||||
# Backwards compatibility: keep the historical "colpali" key
|
||||
register("colpali")(MultimodalLateInteractionEmbeddings)
|
||||
|
||||
|
||||
# Legacy class name kept for backwards compatibility in imports
|
||||
ColPaliEmbeddings = MultimodalLateInteractionEmbeddings
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
import base64
|
||||
import os
|
||||
from typing import ClassVar, TYPE_CHECKING, List, Union, Any
|
||||
from typing import ClassVar, TYPE_CHECKING, List, Union, Any, Generator
|
||||
|
||||
from pathlib import Path
|
||||
from urllib.parse import urlparse
|
||||
@@ -19,6 +19,23 @@ from .utils import api_key_not_found_help, IMAGES, TEXT
|
||||
if TYPE_CHECKING:
|
||||
import PIL
|
||||
|
||||
# Token limits for different VoyageAI models
|
||||
VOYAGE_TOTAL_TOKEN_LIMITS = {
|
||||
"voyage-context-3": 32_000,
|
||||
"voyage-3.5-lite": 1_000_000,
|
||||
"voyage-3.5": 320_000,
|
||||
"voyage-3-lite": 120_000,
|
||||
"voyage-3": 120_000,
|
||||
"voyage-multimodal-3": 120_000,
|
||||
"voyage-finance-2": 120_000,
|
||||
"voyage-multilingual-2": 120_000,
|
||||
"voyage-law-2": 120_000,
|
||||
"voyage-code-2": 120_000,
|
||||
}
|
||||
|
||||
# Batch size for embedding requests (max number of items per batch)
|
||||
BATCH_SIZE = 1000
|
||||
|
||||
|
||||
def is_valid_url(text):
|
||||
try:
|
||||
@@ -120,6 +137,9 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
name: str
|
||||
The name of the model to use. List of acceptable models:
|
||||
|
||||
* voyage-context-3
|
||||
* voyage-3.5
|
||||
* voyage-3.5-lite
|
||||
* voyage-3
|
||||
* voyage-3-lite
|
||||
* voyage-multimodal-3
|
||||
@@ -157,25 +177,35 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
name: str
|
||||
client: ClassVar = None
|
||||
text_embedding_models: list = [
|
||||
"voyage-3.5",
|
||||
"voyage-3.5-lite",
|
||||
"voyage-3",
|
||||
"voyage-3-lite",
|
||||
"voyage-finance-2",
|
||||
"voyage-multilingual-2",
|
||||
"voyage-law-2",
|
||||
"voyage-code-2",
|
||||
]
|
||||
multimodal_embedding_models: list = ["voyage-multimodal-3"]
|
||||
contextual_embedding_models: list = ["voyage-context-3"]
|
||||
|
||||
def _is_multimodal_model(self, model_name: str):
|
||||
return (
|
||||
model_name in self.multimodal_embedding_models or "multimodal" in model_name
|
||||
)
|
||||
|
||||
def _is_contextual_model(self, model_name: str):
|
||||
return model_name in self.contextual_embedding_models or "context" in model_name
|
||||
|
||||
def ndims(self):
|
||||
if self.name == "voyage-3-lite":
|
||||
return 512
|
||||
elif self.name == "voyage-code-2":
|
||||
return 1536
|
||||
elif self.name in [
|
||||
"voyage-context-3",
|
||||
"voyage-3.5",
|
||||
"voyage-3.5-lite",
|
||||
"voyage-3",
|
||||
"voyage-multimodal-3",
|
||||
"voyage-finance-2",
|
||||
@@ -207,6 +237,11 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
result = client.multimodal_embed(
|
||||
inputs=[[query]], model=self.name, input_type="query", **kwargs
|
||||
)
|
||||
elif self._is_contextual_model(self.name):
|
||||
result = client.contextualized_embed(
|
||||
inputs=[[query]], model=self.name, input_type="query", **kwargs
|
||||
)
|
||||
result = result.results[0]
|
||||
else:
|
||||
result = client.embed(
|
||||
texts=[query], model=self.name, input_type="query", **kwargs
|
||||
@@ -231,18 +266,164 @@ class VoyageAIEmbeddingFunction(EmbeddingFunction):
|
||||
List[np.array]: the list of embeddings
|
||||
"""
|
||||
client = VoyageAIEmbeddingFunction._get_client()
|
||||
|
||||
# For multimodal models, check if inputs contain images
|
||||
if self._is_multimodal_model(self.name):
|
||||
inputs = sanitize_multimodal_input(inputs)
|
||||
result = client.multimodal_embed(
|
||||
inputs=inputs, model=self.name, input_type="document", **kwargs
|
||||
sanitized = sanitize_multimodal_input(inputs)
|
||||
has_images = any(
|
||||
inp["content"][0].get("type") != "text" for inp in sanitized
|
||||
)
|
||||
if has_images:
|
||||
# Use non-batched API for images
|
||||
result = client.multimodal_embed(
|
||||
inputs=sanitized, model=self.name, input_type="document", **kwargs
|
||||
)
|
||||
return result.embeddings
|
||||
# Extract texts for batching
|
||||
inputs = [inp["content"][0]["text"] for inp in sanitized]
|
||||
else:
|
||||
inputs = sanitize_text_input(inputs)
|
||||
result = client.embed(
|
||||
texts=inputs, model=self.name, input_type="document", **kwargs
|
||||
)
|
||||
|
||||
return result.embeddings
|
||||
# Use batching for all text inputs
|
||||
return self._embed_with_batching(
|
||||
client, inputs, input_type="document", **kwargs
|
||||
)
|
||||
|
||||
def _build_batches(
|
||||
self, client, texts: List[str]
|
||||
) -> Generator[List[str], None, None]:
|
||||
"""
|
||||
Generate batches of texts based on token limits using a generator.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client : voyageai.Client
|
||||
The VoyageAI client instance.
|
||||
texts : List[str]
|
||||
List of texts to batch.
|
||||
|
||||
Yields
|
||||
------
|
||||
List[str]: Batches of texts.
|
||||
"""
|
||||
if not texts:
|
||||
return
|
||||
|
||||
max_tokens_per_batch = VOYAGE_TOTAL_TOKEN_LIMITS.get(self.name, 120_000)
|
||||
current_batch: List[str] = []
|
||||
current_batch_tokens = 0
|
||||
|
||||
# Tokenize all texts in one API call
|
||||
token_lists = client.tokenize(texts, model=self.name)
|
||||
token_counts = [len(token_list) for token_list in token_lists]
|
||||
|
||||
for i, text in enumerate(texts):
|
||||
n_tokens = token_counts[i]
|
||||
|
||||
# Check if adding this text would exceed limits
|
||||
if current_batch and (
|
||||
len(current_batch) >= BATCH_SIZE
|
||||
or (current_batch_tokens + n_tokens > max_tokens_per_batch)
|
||||
):
|
||||
# Yield the current batch and start a new one
|
||||
yield current_batch
|
||||
current_batch = []
|
||||
current_batch_tokens = 0
|
||||
|
||||
current_batch.append(text)
|
||||
current_batch_tokens += n_tokens
|
||||
|
||||
# Yield the last batch (always has at least one text)
|
||||
if current_batch:
|
||||
yield current_batch
|
||||
|
||||
def _get_embed_function(
|
||||
self, client, input_type: str = "document", **kwargs
|
||||
) -> callable:
|
||||
"""
|
||||
Get the appropriate embedding function based on model type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client : voyageai.Client
|
||||
The VoyageAI client instance.
|
||||
input_type : str
|
||||
Either "query" or "document"
|
||||
**kwargs
|
||||
Additional arguments to pass to the embedding API
|
||||
|
||||
Returns
|
||||
-------
|
||||
callable: A function that takes a batch of texts and returns embeddings.
|
||||
"""
|
||||
if self._is_multimodal_model(self.name):
|
||||
|
||||
def embed_batch(batch: List[str]) -> List[np.array]:
|
||||
batch_inputs = sanitize_multimodal_input(batch)
|
||||
result = client.multimodal_embed(
|
||||
inputs=batch_inputs,
|
||||
model=self.name,
|
||||
input_type=input_type,
|
||||
**kwargs,
|
||||
)
|
||||
return result.embeddings
|
||||
|
||||
return embed_batch
|
||||
|
||||
elif self._is_contextual_model(self.name):
|
||||
|
||||
def embed_batch(batch: List[str]) -> List[np.array]:
|
||||
result = client.contextualized_embed(
|
||||
inputs=[batch], model=self.name, input_type=input_type, **kwargs
|
||||
)
|
||||
return result.results[0].embeddings
|
||||
|
||||
return embed_batch
|
||||
|
||||
else:
|
||||
|
||||
def embed_batch(batch: List[str]) -> List[np.array]:
|
||||
result = client.embed(
|
||||
texts=batch, model=self.name, input_type=input_type, **kwargs
|
||||
)
|
||||
return result.embeddings
|
||||
|
||||
return embed_batch
|
||||
|
||||
def _embed_with_batching(
|
||||
self, client, texts: List[str], input_type: str = "document", **kwargs
|
||||
) -> List[np.array]:
|
||||
"""
|
||||
Embed texts with automatic batching based on token limits.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
client : voyageai.Client
|
||||
The VoyageAI client instance.
|
||||
texts : List[str]
|
||||
List of texts to embed.
|
||||
input_type : str
|
||||
Either "query" or "document"
|
||||
**kwargs
|
||||
Additional arguments to pass to the embedding API
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[np.array]: List of embeddings.
|
||||
"""
|
||||
if not texts:
|
||||
return []
|
||||
|
||||
# Get the appropriate embedding function for this model type
|
||||
embed_fn = self._get_embed_function(client, input_type=input_type, **kwargs)
|
||||
|
||||
# Process each batch
|
||||
all_embeddings = []
|
||||
for batch in self._build_batches(client, texts):
|
||||
batch_embeddings = embed_fn(batch)
|
||||
all_embeddings.extend(batch_embeddings)
|
||||
|
||||
return all_embeddings
|
||||
|
||||
@staticmethod
|
||||
def _get_client():
|
||||
|
||||
@@ -1,18 +1,63 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
from ._lancedb import async_permutation_builder
|
||||
from deprecation import deprecated
|
||||
from lancedb import AsyncConnection, DBConnection
|
||||
import pyarrow as pa
|
||||
import json
|
||||
|
||||
from ._lancedb import async_permutation_builder, PermutationReader
|
||||
from .table import LanceTable
|
||||
from .background_loop import LOOP
|
||||
from typing import Optional
|
||||
from .util import batch_to_tensor
|
||||
from typing import Any, Callable, Iterator, Literal, Optional, TYPE_CHECKING, Union
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from lancedb.dependencies import pandas as pd, numpy as np, polars as pl
|
||||
|
||||
|
||||
class PermutationBuilder:
|
||||
def __init__(self, table: LanceTable, dest_table_name: str):
|
||||
self._async = async_permutation_builder(table, dest_table_name)
|
||||
"""
|
||||
A utility for creating a "permutation table" which is a table that defines an
|
||||
ordering on a base table.
|
||||
|
||||
def select(self, projections: dict[str, str]) -> "PermutationBuilder":
|
||||
self._async.select(projections)
|
||||
The permutation table does not store the actual data. It only stores row
|
||||
ids and split ids to define the ordering. The [Permutation] class can be used to
|
||||
read the data from the base table in the order defined by the permutation table.
|
||||
|
||||
Permutations can split, shuffle, and filter the data in the base table.
|
||||
|
||||
A filter limits the rows that are included in the permutation.
|
||||
Splits divide the data into subsets (for example, a test/train split, or K
|
||||
different splits for cross-validation).
|
||||
Shuffling randomizes the order of the rows in the permutation.
|
||||
|
||||
Splits can optionally be named. If names are provided it will enable them to
|
||||
be referenced by name in the future. If names are not provided then they can only
|
||||
be referenced by their ordinal index. There is no requirement to name every split.
|
||||
|
||||
By default, the permutation will be stored in memory and will be lost when the
|
||||
program exits. To persist the permutation (for very large datasets or to share
|
||||
the permutation across multiple workers) use the [persist](#persist) method to
|
||||
create a permanent table.
|
||||
"""
|
||||
|
||||
def __init__(self, table: LanceTable):
|
||||
"""
|
||||
Creates a new permutation builder for the given table.
|
||||
|
||||
By default, the permutation builder will create a single split that contains all
|
||||
rows in the same order as the base table.
|
||||
"""
|
||||
self._async = async_permutation_builder(table)
|
||||
|
||||
def persist(
|
||||
self, database: Union[DBConnection, AsyncConnection], table_name: str
|
||||
) -> "PermutationBuilder":
|
||||
"""
|
||||
Persist the permutation to the given database.
|
||||
"""
|
||||
self._async.persist(database, table_name)
|
||||
return self
|
||||
|
||||
def split_random(
|
||||
@@ -22,8 +67,38 @@ class PermutationBuilder:
|
||||
counts: Optional[list[int]] = None,
|
||||
fixed: Optional[int] = None,
|
||||
seed: Optional[int] = None,
|
||||
split_names: Optional[list[str]] = None,
|
||||
) -> "PermutationBuilder":
|
||||
self._async.split_random(ratios=ratios, counts=counts, fixed=fixed, seed=seed)
|
||||
"""
|
||||
Configure random splits for the permutation.
|
||||
|
||||
One of ratios, counts, or fixed must be provided.
|
||||
|
||||
If ratios are provided, they will be used to determine the relative size of each
|
||||
split. For example, if ratios are [0.3, 0.7] then the first split will contain
|
||||
30% of the rows and the second split will contain 70% of the rows.
|
||||
|
||||
If counts are provided, they will be used to determine the absolute number of
|
||||
rows in each split. For example, if counts are [100, 200] then the first split
|
||||
will contain 100 rows and the second split will contain 200 rows.
|
||||
|
||||
If fixed is provided, it will be used to determine the number of splits.
|
||||
For example, if fixed is 3 then the permutation will be split evenly into 3
|
||||
splits.
|
||||
|
||||
Rows will be randomly assigned to splits. The optional seed can be provided to
|
||||
make the assignment deterministic.
|
||||
|
||||
The optional split_names can be provided to name the splits. If not provided,
|
||||
the splits can only be referenced by their index.
|
||||
"""
|
||||
self._async.split_random(
|
||||
ratios=ratios,
|
||||
counts=counts,
|
||||
fixed=fixed,
|
||||
seed=seed,
|
||||
split_names=split_names,
|
||||
)
|
||||
return self
|
||||
|
||||
def split_hash(
|
||||
@@ -32,8 +107,33 @@ class PermutationBuilder:
|
||||
split_weights: list[int],
|
||||
*,
|
||||
discard_weight: Optional[int] = None,
|
||||
split_names: Optional[list[str]] = None,
|
||||
) -> "PermutationBuilder":
|
||||
self._async.split_hash(columns, split_weights, discard_weight=discard_weight)
|
||||
"""
|
||||
Configure hash-based splits for the permutation.
|
||||
|
||||
First, a hash will be calculated over the specified columns. The splits weights
|
||||
are then used to determine how many rows to assign to each split. For example,
|
||||
if split weights are [1, 2] then the first split will contain 1/3 of the rows
|
||||
and the second split will contain 2/3 of the rows.
|
||||
|
||||
The optional discard weight can be provided to determine what percentage of rows
|
||||
should be discarded. For example, if split weights are [1, 2] and discard
|
||||
weight is 1 then 25% of the rows will be discarded.
|
||||
|
||||
Hash-based splits are useful if you want the split to be more or less random but
|
||||
you don't want the split assignments to change if rows are added or removed
|
||||
from the table.
|
||||
|
||||
The optional split_names can be provided to name the splits. If not provided,
|
||||
the splits can only be referenced by their index.
|
||||
"""
|
||||
self._async.split_hash(
|
||||
columns,
|
||||
split_weights,
|
||||
discard_weight=discard_weight,
|
||||
split_names=split_names,
|
||||
)
|
||||
return self
|
||||
|
||||
def split_sequential(
|
||||
@@ -42,25 +142,85 @@ class PermutationBuilder:
|
||||
ratios: Optional[list[float]] = None,
|
||||
counts: Optional[list[int]] = None,
|
||||
fixed: Optional[int] = None,
|
||||
split_names: Optional[list[str]] = None,
|
||||
) -> "PermutationBuilder":
|
||||
self._async.split_sequential(ratios=ratios, counts=counts, fixed=fixed)
|
||||
"""
|
||||
Configure sequential splits for the permutation.
|
||||
|
||||
One of ratios, counts, or fixed must be provided.
|
||||
|
||||
If ratios are provided, they will be used to determine the relative size of each
|
||||
split. For example, if ratios are [0.3, 0.7] then the first split will contain
|
||||
30% of the rows and the second split will contain 70% of the rows.
|
||||
|
||||
If counts are provided, they will be used to determine the absolute number of
|
||||
rows in each split. For example, if counts are [100, 200] then the first split
|
||||
will contain 100 rows and the second split will contain 200 rows.
|
||||
|
||||
If fixed is provided, it will be used to determine the number of splits.
|
||||
For example, if fixed is 3 then the permutation will be split evenly into 3
|
||||
splits.
|
||||
|
||||
Rows will be assigned to splits sequentially. The first N1 rows are assigned to
|
||||
split 1, the next N2 rows are assigned to split 2, etc.
|
||||
|
||||
The optional split_names can be provided to name the splits. If not provided,
|
||||
the splits can only be referenced by their index.
|
||||
"""
|
||||
self._async.split_sequential(
|
||||
ratios=ratios, counts=counts, fixed=fixed, split_names=split_names
|
||||
)
|
||||
return self
|
||||
|
||||
def split_calculated(self, calculation: str) -> "PermutationBuilder":
|
||||
self._async.split_calculated(calculation)
|
||||
def split_calculated(
|
||||
self, calculation: str, split_names: Optional[list[str]] = None
|
||||
) -> "PermutationBuilder":
|
||||
"""
|
||||
Use pre-calculated splits for the permutation.
|
||||
|
||||
The calculation should be an SQL statement that returns an integer value between
|
||||
0 and the number of splits - 1. For example, if you have 3 splits then the
|
||||
calculation should return 0 for the first split, 1 for the second split, and 2
|
||||
for the third split.
|
||||
|
||||
This can be used to implement any kind of user-defined split strategy.
|
||||
|
||||
The optional split_names can be provided to name the splits. If not provided,
|
||||
the splits can only be referenced by their index.
|
||||
"""
|
||||
self._async.split_calculated(calculation, split_names=split_names)
|
||||
return self
|
||||
|
||||
def shuffle(
|
||||
self, *, seed: Optional[int] = None, clump_size: Optional[int] = None
|
||||
) -> "PermutationBuilder":
|
||||
"""
|
||||
Randomly shuffle the rows in the permutation.
|
||||
|
||||
An optional seed can be provided to make the shuffle deterministic.
|
||||
|
||||
If a clump size is provided, then data will be shuffled as small "clumps"
|
||||
of contiguous rows. This allows for a balance between randomization and
|
||||
I/O performance. It can be useful when reading from cloud storage.
|
||||
"""
|
||||
self._async.shuffle(seed=seed, clump_size=clump_size)
|
||||
return self
|
||||
|
||||
def filter(self, filter: str) -> "PermutationBuilder":
|
||||
"""
|
||||
Configure a filter for the permutation.
|
||||
|
||||
The filter should be an SQL statement that returns a boolean value for each row.
|
||||
Only rows where the filter is true will be included in the permutation.
|
||||
"""
|
||||
self._async.filter(filter)
|
||||
return self
|
||||
|
||||
def execute(self) -> LanceTable:
|
||||
"""
|
||||
Execute the configuration and create the permutation table.
|
||||
"""
|
||||
|
||||
async def do_execute():
|
||||
inner_tbl = await self._async.execute()
|
||||
return LanceTable.from_inner(inner_tbl)
|
||||
@@ -68,5 +228,594 @@ class PermutationBuilder:
|
||||
return LOOP.run(do_execute())
|
||||
|
||||
|
||||
def permutation_builder(table: LanceTable, dest_table_name: str) -> PermutationBuilder:
|
||||
return PermutationBuilder(table, dest_table_name)
|
||||
def permutation_builder(table: LanceTable) -> PermutationBuilder:
|
||||
return PermutationBuilder(table)
|
||||
|
||||
|
||||
class Permutations:
|
||||
"""
|
||||
A collection of permutations indexed by name or ordinal index.
|
||||
|
||||
Splits are defined when the permutation is created. Splits can always be referenced
|
||||
by their ordinal index. If names were provided when the permutation was created
|
||||
then they can also be referenced by name.
|
||||
|
||||
Each permutation or "split" is a view of a portion of the base table. For more
|
||||
details see [Permutation].
|
||||
|
||||
Attributes
|
||||
----------
|
||||
base_table: LanceTable
|
||||
The base table that the permutations are based on.
|
||||
permutation_table: LanceTable
|
||||
The permutation table that defines the splits.
|
||||
split_names: list[str]
|
||||
The names of the splits.
|
||||
split_dict: dict[str, int]
|
||||
A dictionary mapping split names to their ordinal index.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> # Initial data
|
||||
>>> import lancedb
|
||||
>>> db = lancedb.connect("memory:///")
|
||||
>>> tbl = db.create_table("tbl", data=[{"x": x} for x in range(1000)])
|
||||
>>> # Create a permutation
|
||||
>>> perm_tbl = (
|
||||
... permutation_builder(tbl)
|
||||
... .split_random(ratios=[0.95, 0.05], split_names=["train", "test"])
|
||||
... .shuffle()
|
||||
... .execute()
|
||||
... )
|
||||
>>> # Read the permutations
|
||||
>>> permutations = Permutations(tbl, perm_tbl)
|
||||
>>> permutations["train"]
|
||||
<lancedb.permutation.Permutation ...>
|
||||
>>> permutations[0]
|
||||
<lancedb.permutation.Permutation ...>
|
||||
>>> permutations.split_names
|
||||
['train', 'test']
|
||||
>>> permutations.split_dict
|
||||
{'train': 0, 'test': 1}
|
||||
"""
|
||||
|
||||
def __init__(self, base_table: LanceTable, permutation_table: LanceTable):
|
||||
self.base_table = base_table
|
||||
self.permutation_table = permutation_table
|
||||
|
||||
if permutation_table.schema.metadata is not None:
|
||||
split_names = permutation_table.schema.metadata.get(
|
||||
b"split_names", None
|
||||
).decode("utf-8")
|
||||
if split_names is not None:
|
||||
self.split_names = json.loads(split_names)
|
||||
self.split_dict = {
|
||||
name: idx for idx, name in enumerate(self.split_names)
|
||||
}
|
||||
else:
|
||||
# No split names are defined in the permutation table
|
||||
self.split_names = []
|
||||
self.split_dict = {}
|
||||
else:
|
||||
# No metadata is defined in the permutation table
|
||||
self.split_names = []
|
||||
self.split_dict = {}
|
||||
|
||||
def get_by_name(self, name: str) -> "Permutation":
|
||||
"""
|
||||
Get a permutation by name.
|
||||
|
||||
If no split named `name` is found then an error will be raised.
|
||||
"""
|
||||
idx = self.split_dict.get(name, None)
|
||||
if idx is None:
|
||||
raise ValueError(f"No split named `{name}` found")
|
||||
return self.get_by_index(idx)
|
||||
|
||||
def get_by_index(self, index: int) -> "Permutation":
|
||||
"""
|
||||
Get a permutation by index.
|
||||
"""
|
||||
return Permutation.from_tables(self.base_table, self.permutation_table, index)
|
||||
|
||||
def __getitem__(self, name: Union[str, int]) -> "Permutation":
|
||||
if isinstance(name, str):
|
||||
return self.get_by_name(name)
|
||||
elif isinstance(name, int):
|
||||
return self.get_by_index(name)
|
||||
else:
|
||||
raise TypeError(f"Invalid split name or index: {name}")
|
||||
|
||||
|
||||
class Transforms:
|
||||
"""
|
||||
Namespace for common transformation functions
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def arrow2python(batch: pa.RecordBatch) -> dict[str, list[Any]]:
|
||||
return batch.to_pydict()
|
||||
|
||||
@staticmethod
|
||||
def arrow2arrow(batch: pa.RecordBatch) -> pa.RecordBatch:
|
||||
return batch
|
||||
|
||||
@staticmethod
|
||||
def arrow2numpy(batch: pa.RecordBatch) -> "np.ndarray":
|
||||
return batch.to_pandas().to_numpy()
|
||||
|
||||
@staticmethod
|
||||
def arrow2pandas(batch: pa.RecordBatch) -> "pd.DataFrame":
|
||||
return batch.to_pandas()
|
||||
|
||||
@staticmethod
|
||||
def arrow2polars() -> "pl.DataFrame":
|
||||
import polars as pl
|
||||
|
||||
def impl(batch: pa.RecordBatch) -> pl.DataFrame:
|
||||
return pl.from_arrow(batch)
|
||||
|
||||
return impl
|
||||
|
||||
|
||||
# HuggingFace uses 10 which is pretty small
|
||||
DEFAULT_BATCH_SIZE = 100
|
||||
|
||||
|
||||
class Permutation:
|
||||
"""
|
||||
A Permutation is a view of a dataset that can be used as input to model training
|
||||
and evaluation.
|
||||
|
||||
A Permutation fulfills the pytorch Dataset contract and is loosely modeled after the
|
||||
huggingface Dataset so it should be easy to use with existing code.
|
||||
|
||||
A permutation is not a "materialized view" or copy of the underlying data. It is
|
||||
calculated on the fly from the base table. As a result, it is truly "lazy" and does
|
||||
not require materializing the entire dataset in memory.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
reader: PermutationReader,
|
||||
selection: dict[str, str],
|
||||
batch_size: int,
|
||||
transform_fn: Callable[pa.RecordBatch, Any],
|
||||
):
|
||||
"""
|
||||
Internal constructor. Use [from_tables](#from_tables) instead.
|
||||
"""
|
||||
assert reader is not None, "reader is required"
|
||||
assert selection is not None, "selection is required"
|
||||
self.reader = reader
|
||||
self.selection = selection
|
||||
self.transform_fn = transform_fn
|
||||
self.batch_size = batch_size
|
||||
|
||||
def _with_selection(self, selection: dict[str, str]) -> "Permutation":
|
||||
"""
|
||||
Creates a new permutation with the given selection
|
||||
|
||||
Does not validation of the selection and it replaces it entirely. This is not
|
||||
intended for public use.
|
||||
"""
|
||||
return Permutation(self.reader, selection, self.batch_size, self.transform_fn)
|
||||
|
||||
def _with_reader(self, reader: PermutationReader) -> "Permutation":
|
||||
"""
|
||||
Creates a new permutation with the given reader
|
||||
|
||||
This is an internal method and should not be used directly.
|
||||
"""
|
||||
return Permutation(reader, self.selection, self.batch_size, self.transform_fn)
|
||||
|
||||
def with_batch_size(self, batch_size: int) -> "Permutation":
|
||||
"""
|
||||
Creates a new permutation with the given batch size
|
||||
"""
|
||||
return Permutation(self.reader, self.selection, batch_size, self.transform_fn)
|
||||
|
||||
@classmethod
|
||||
def identity(cls, table: LanceTable) -> "Permutation":
|
||||
"""
|
||||
Creates an identity permutation for the given table.
|
||||
"""
|
||||
return Permutation.from_tables(table, None, None)
|
||||
|
||||
@classmethod
|
||||
def from_tables(
|
||||
cls,
|
||||
base_table: LanceTable,
|
||||
permutation_table: Optional[LanceTable] = None,
|
||||
split: Optional[Union[str, int]] = None,
|
||||
) -> "Permutation":
|
||||
"""
|
||||
Creates a permutation from the given base table and permutation table.
|
||||
|
||||
A permutation table identifies which rows, and in what order, the data should
|
||||
be read from the base table. For more details see the [PermutationBuilder]
|
||||
class.
|
||||
|
||||
If no permutation table is provided, then the identity permutation will be
|
||||
created. An identity permutation is a permutation that reads all rows in the
|
||||
base table in the order they are stored.
|
||||
|
||||
The split parameter identifies which split to use. If no split is provided
|
||||
then the first split will be used.
|
||||
"""
|
||||
assert base_table is not None, "base_table is required"
|
||||
if split is not None:
|
||||
if permutation_table is None:
|
||||
raise ValueError(
|
||||
"Cannot create a permutation on split `{split}`"
|
||||
" because no permutation table is provided"
|
||||
)
|
||||
if isinstance(split, str):
|
||||
if permutation_table.schema.metadata is None:
|
||||
raise ValueError(
|
||||
f"Cannot create a permutation on split `{split}`"
|
||||
" because no split names are defined in the permutation table"
|
||||
)
|
||||
split_names = permutation_table.schema.metadata.get(
|
||||
b"split_names", None
|
||||
).decode("utf-8")
|
||||
if split_names is None:
|
||||
raise ValueError(
|
||||
f"Cannot create a permutation on split `{split}`"
|
||||
" because no split names are defined in the permutation table"
|
||||
)
|
||||
split_names = json.loads(split_names)
|
||||
try:
|
||||
split = split_names.index(split)
|
||||
except ValueError:
|
||||
raise ValueError(
|
||||
f"Cannot create a permutation on split `{split}`"
|
||||
f" because split `{split}` is not defined in the "
|
||||
"permutation table"
|
||||
)
|
||||
elif isinstance(split, int):
|
||||
split = split
|
||||
else:
|
||||
raise TypeError(f"Invalid split: {split}")
|
||||
else:
|
||||
split = 0
|
||||
|
||||
async def do_from_tables():
|
||||
reader = await PermutationReader.from_tables(
|
||||
base_table, permutation_table, split
|
||||
)
|
||||
schema = await reader.output_schema(None)
|
||||
initial_selection = {name: name for name in schema.names}
|
||||
return cls(
|
||||
reader, initial_selection, DEFAULT_BATCH_SIZE, Transforms.arrow2python
|
||||
)
|
||||
|
||||
return LOOP.run(do_from_tables())
|
||||
|
||||
@property
|
||||
def schema(self) -> pa.Schema:
|
||||
async def do_output_schema():
|
||||
return await self.reader.output_schema(self.selection)
|
||||
|
||||
return LOOP.run(do_output_schema())
|
||||
|
||||
@property
|
||||
def num_columns(self) -> int:
|
||||
"""
|
||||
The number of columns in the permutation
|
||||
"""
|
||||
return len(self.schema)
|
||||
|
||||
@property
|
||||
def num_rows(self) -> int:
|
||||
"""
|
||||
The number of rows in the permutation
|
||||
"""
|
||||
return self.reader.count_rows()
|
||||
|
||||
@property
|
||||
def column_names(self) -> list[str]:
|
||||
"""
|
||||
The names of the columns in the permutation
|
||||
"""
|
||||
return self.schema.names
|
||||
|
||||
@property
|
||||
def shape(self) -> tuple[int, int]:
|
||||
"""
|
||||
The shape of the permutation
|
||||
|
||||
This will return self.num_rows, self.num_columns
|
||||
"""
|
||||
return self.num_rows, self.num_columns
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""
|
||||
The number of rows in the permutation
|
||||
|
||||
This is an alias for [num_rows][lancedb.permutation.Permutation.num_rows]
|
||||
"""
|
||||
return self.num_rows
|
||||
|
||||
def unique(self, _column: str) -> list[Any]:
|
||||
"""
|
||||
Get the unique values in the given column
|
||||
"""
|
||||
raise Exception("unique is not yet implemented")
|
||||
|
||||
def flatten(self) -> "Permutation":
|
||||
"""
|
||||
Flatten the permutation
|
||||
|
||||
Each column with a struct type will be flattened into multiple columns.
|
||||
|
||||
This flattening operation happens at read time as a post-processing step
|
||||
so this call is cheap and no data is copied or modified in the underlying
|
||||
dataset.
|
||||
"""
|
||||
raise Exception("flatten is not yet implemented")
|
||||
|
||||
def remove_columns(self, columns: list[str]) -> "Permutation":
|
||||
"""
|
||||
Remove the given columns from the permutation
|
||||
|
||||
Note: this does not actually modify the underlying dataset. It only changes
|
||||
which columns are visible from this permutation. Also, this does not introduce
|
||||
a post-processing step. Instead, we simply do not read those columns in the
|
||||
first place.
|
||||
|
||||
If any of the provided columns does not exist in the current permutation then it
|
||||
will be ignored (no error is raised for missing columns)
|
||||
|
||||
Returns a new permutation with the given columns removed. This does not modify
|
||||
self.
|
||||
"""
|
||||
assert columns is not None, "columns is required"
|
||||
|
||||
new_selection = {
|
||||
name: value for name, value in self.selection.items() if name not in columns
|
||||
}
|
||||
|
||||
if len(new_selection) == 0:
|
||||
raise ValueError("Cannot remove all columns")
|
||||
|
||||
return self._with_selection(new_selection)
|
||||
|
||||
def rename_column(self, old_name: str, new_name: str) -> "Permutation":
|
||||
"""
|
||||
Rename a column in the permutation
|
||||
|
||||
If there is no column named old_name then an error will be raised
|
||||
If there is already a column named new_name then an error will be raised
|
||||
|
||||
Note: this does not actually modify the underlying dataset. It only changes
|
||||
the name of the column that is visible from this permutation. This is a
|
||||
post-processing step but done at the batch level and so it is very cheap.
|
||||
No data will be copied.
|
||||
"""
|
||||
assert old_name is not None, "old_name is required"
|
||||
assert new_name is not None, "new_name is required"
|
||||
if old_name not in self.selection:
|
||||
raise ValueError(
|
||||
f"Cannot rename column `{old_name}` because it does not exist"
|
||||
)
|
||||
if new_name in self.selection:
|
||||
raise ValueError(
|
||||
f"Cannot rename column `{old_name}` to `{new_name}` because a column "
|
||||
"with that name already exists"
|
||||
)
|
||||
new_selection = self.selection.copy()
|
||||
new_selection[new_name] = new_selection[old_name]
|
||||
del new_selection[old_name]
|
||||
return self._with_selection(new_selection)
|
||||
|
||||
def rename_columns(self, column_map: dict[str, str]) -> "Permutation":
|
||||
"""
|
||||
Rename the given columns in the permutation
|
||||
|
||||
If any of the columns do not exist then an error will be raised
|
||||
If any of the new names already exist then an error will be raised
|
||||
|
||||
Note: this does not actually modify the underlying dataset. It only changes
|
||||
the name of the column that is visible from this permutation. This is a
|
||||
post-processing step but done at the batch level and so it is very cheap.
|
||||
No data will be copied.
|
||||
"""
|
||||
assert column_map is not None, "column_map is required"
|
||||
|
||||
new_permutation = self
|
||||
for old_name, new_name in column_map.items():
|
||||
new_permutation = new_permutation.rename_column(old_name, new_name)
|
||||
return new_permutation
|
||||
|
||||
def select_columns(self, columns: list[str]) -> "Permutation":
|
||||
"""
|
||||
Select the given columns from the permutation
|
||||
|
||||
This method refines the current selection, potentially removing columns. It
|
||||
will not add back columns that were previously removed.
|
||||
|
||||
If any of the columns do not exist then an error will be raised
|
||||
|
||||
This does not introduce a post-processing step. It simply reduces the amount
|
||||
of data we read.
|
||||
"""
|
||||
assert columns is not None, "columns is required"
|
||||
if len(columns) == 0:
|
||||
raise ValueError("Must select at least one column")
|
||||
|
||||
new_selection = {}
|
||||
for name in columns:
|
||||
value = self.selection.get(name, None)
|
||||
if value is None:
|
||||
raise ValueError(
|
||||
f"Cannot select column `{name}` because it does not exist"
|
||||
)
|
||||
new_selection[name] = value
|
||||
return self._with_selection(new_selection)
|
||||
|
||||
def __iter__(self) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
Iterate over the permutation
|
||||
"""
|
||||
return self.iter(self.batch_size, skip_last_batch=True)
|
||||
|
||||
def iter(
|
||||
self, batch_size: int, skip_last_batch: bool = False
|
||||
) -> Iterator[dict[str, Any]]:
|
||||
"""
|
||||
Iterate over the permutation in batches
|
||||
|
||||
If skip_last_batch is True, the last batch will be skipped if it is not a
|
||||
multiple of batch_size.
|
||||
"""
|
||||
|
||||
async def get_iter():
|
||||
return await self.reader.read(self.selection, batch_size=batch_size)
|
||||
|
||||
async_iter = LOOP.run(get_iter())
|
||||
|
||||
async def get_next():
|
||||
return await async_iter.__anext__()
|
||||
|
||||
try:
|
||||
while True:
|
||||
batch = LOOP.run(get_next())
|
||||
if batch.num_rows == batch_size or not skip_last_batch:
|
||||
yield self.transform_fn(batch)
|
||||
except StopAsyncIteration:
|
||||
return
|
||||
|
||||
def with_format(
|
||||
self, format: Literal["numpy", "python", "pandas", "arrow", "torch", "polars"]
|
||||
) -> "Permutation":
|
||||
"""
|
||||
Set the format for batches
|
||||
|
||||
If this method is not called, the "python" format will be used.
|
||||
|
||||
The format can be one of:
|
||||
- "numpy" - the batch will be a dict of numpy arrays (one per column)
|
||||
- "python" - the batch will be a dict of lists (one per column)
|
||||
- "pandas" - the batch will be a pandas DataFrame
|
||||
- "arrow" - the batch will be a pyarrow RecordBatch
|
||||
- "torch" - the batch will be a two dimensional torch tensor
|
||||
- "polars" - the batch will be a polars DataFrame
|
||||
|
||||
Conversion may or may not involve a data copy. Lance uses Arrow internally
|
||||
and so it is able to zero-copy to the arrow and polars.
|
||||
|
||||
Conversion to torch will be zero-copy but will only support a subset of data
|
||||
types (numeric types).
|
||||
|
||||
Conversion to numpy and/or pandas will typically be zero-copy for numeric
|
||||
types. Conversion of strings, lists, and structs will require creating python
|
||||
objects and this is not zero-copy.
|
||||
|
||||
For custom formatting, use [with_transform](#with_transform) which overrides
|
||||
this method.
|
||||
"""
|
||||
assert format is not None, "format is required"
|
||||
if format == "python":
|
||||
return self.with_transform(Transforms.arrow2python)
|
||||
elif format == "numpy":
|
||||
return self.with_transform(Transforms.arrow2numpy)
|
||||
elif format == "pandas":
|
||||
return self.with_transform(Transforms.arrow2pandas)
|
||||
elif format == "arrow":
|
||||
return self.with_transform(Transforms.arrow2arrow)
|
||||
elif format == "torch":
|
||||
return self.with_transform(batch_to_tensor)
|
||||
elif format == "polars":
|
||||
return self.with_transform(Transforms.arrow2polars())
|
||||
else:
|
||||
raise ValueError(f"Invalid format: {format}")
|
||||
|
||||
def with_transform(self, transform: Callable[pa.RecordBatch, Any]) -> "Permutation":
|
||||
"""
|
||||
Set a custom transform for the permutation
|
||||
|
||||
The transform is a callable that will be invoked with each record batch. The
|
||||
return value will be used as the batch for iteration.
|
||||
|
||||
Note: transforms are not invoked in parallel. This method is not a good place
|
||||
for expensive operations such as image decoding.
|
||||
"""
|
||||
assert transform is not None, "transform is required"
|
||||
return Permutation(self.reader, self.selection, self.batch_size, transform)
|
||||
|
||||
def __getitem__(self, index: int) -> Any:
|
||||
"""
|
||||
Return a single row from the permutation
|
||||
|
||||
The output will always be a python dictionary regardless of the format.
|
||||
|
||||
This method is mostly useful for debugging and exploration. For actual
|
||||
processing use [iter](#iter) or a torch data loader to perform batched
|
||||
processing.
|
||||
"""
|
||||
pass
|
||||
|
||||
@deprecated(details="Use with_skip instead")
|
||||
def skip(self, skip: int) -> "Permutation":
|
||||
"""
|
||||
Skip the first `skip` rows of the permutation
|
||||
|
||||
Note: this method returns a new permutation and does not modify `self`
|
||||
It is provided for compatibility with the huggingface Dataset API.
|
||||
|
||||
Use [with_skip](#with_skip) instead to avoid confusion.
|
||||
"""
|
||||
return self.with_skip(skip)
|
||||
|
||||
def with_skip(self, skip: int) -> "Permutation":
|
||||
"""
|
||||
Skip the first `skip` rows of the permutation
|
||||
"""
|
||||
|
||||
async def do_with_skip():
|
||||
reader = await self.reader.with_offset(skip)
|
||||
return self._with_reader(reader)
|
||||
|
||||
return LOOP.run(do_with_skip())
|
||||
|
||||
@deprecated(details="Use with_take instead")
|
||||
def take(self, limit: int) -> "Permutation":
|
||||
"""
|
||||
Limit the permutation to `limit` rows (following any `skip`)
|
||||
|
||||
Note: this method returns a new permutation and does not modify `self`
|
||||
It is provided for compatibility with the huggingface Dataset API.
|
||||
|
||||
Use [with_take](#with_take) instead to avoid confusion.
|
||||
"""
|
||||
return self.with_take(limit)
|
||||
|
||||
def with_take(self, limit: int) -> "Permutation":
|
||||
"""
|
||||
Limit the permutation to `limit` rows (following any `skip`)
|
||||
"""
|
||||
|
||||
async def do_with_take():
|
||||
reader = await self.reader.with_limit(limit)
|
||||
return self._with_reader(reader)
|
||||
|
||||
return LOOP.run(do_with_take())
|
||||
|
||||
@deprecated(details="Use with_repeat instead")
|
||||
def repeat(self, times: int) -> "Permutation":
|
||||
"""
|
||||
Repeat the permutation `times` times
|
||||
|
||||
Note: this method returns a new permutation and does not modify `self`
|
||||
It is provided for compatibility with the huggingface Dataset API.
|
||||
|
||||
Use [with_repeat](#with_repeat) instead to avoid confusion.
|
||||
"""
|
||||
return self.with_repeat(times)
|
||||
|
||||
def with_repeat(self, times: int) -> "Permutation":
|
||||
"""
|
||||
Repeat the permutation `times` times
|
||||
"""
|
||||
raise Exception("with_repeat is not yet implemented")
|
||||
|
||||
@@ -37,7 +37,7 @@ from .rerankers.base import Reranker
|
||||
from .rerankers.rrf import RRFReranker
|
||||
from .rerankers.util import check_reranker_result
|
||||
from .util import flatten_columns
|
||||
|
||||
from lancedb._lancedb import fts_query_to_json
|
||||
from typing_extensions import Annotated
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -124,6 +124,24 @@ class FullTextQuery(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""
|
||||
Convert the query to a JSON string.
|
||||
|
||||
Returns
|
||||
-------
|
||||
str
|
||||
A JSON string representation of the query.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from lancedb.query import MatchQuery
|
||||
>>> query = MatchQuery("puppy", "text", fuzziness=2)
|
||||
>>> query.to_json()
|
||||
'{"match":{"column":"text","terms":"puppy","boost":1.0,"fuzziness":2,"max_expansions":50,"operator":"Or","prefix_length":0}}'
|
||||
"""
|
||||
return fts_query_to_json(self)
|
||||
|
||||
def __and__(self, other: "FullTextQuery") -> "FullTextQuery":
|
||||
"""
|
||||
Combine two queries with a logical AND operation.
|
||||
@@ -288,6 +306,8 @@ class BooleanQuery(FullTextQuery):
|
||||
----------
|
||||
queries : list[tuple(Occur, FullTextQuery)]
|
||||
The list of queries with their occurrence requirements.
|
||||
Each tuple contains an Occur value (MUST, SHOULD, or MUST_NOT)
|
||||
and a FullTextQuery to apply.
|
||||
"""
|
||||
|
||||
queries: list[tuple[Occur, FullTextQuery]]
|
||||
@@ -1237,6 +1257,14 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
|
||||
self._refine_factor = refine_factor
|
||||
return self
|
||||
|
||||
def output_schema(self) -> pa.Schema:
|
||||
"""
|
||||
Return the output schema for the query
|
||||
|
||||
This does not execute the query.
|
||||
"""
|
||||
return self._table._output_schema(self.to_query_object())
|
||||
|
||||
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
|
||||
"""
|
||||
Execute the query and return the results as an
|
||||
@@ -1452,6 +1480,14 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
offset=self._offset,
|
||||
)
|
||||
|
||||
def output_schema(self) -> pa.Schema:
|
||||
"""
|
||||
Return the output schema for the query
|
||||
|
||||
This does not execute the query.
|
||||
"""
|
||||
return self._table._output_schema(self.to_query_object())
|
||||
|
||||
def to_arrow(self, *, timeout: Optional[timedelta] = None) -> pa.Table:
|
||||
path, fs, exist = self._table._get_fts_index_path()
|
||||
if exist:
|
||||
@@ -1595,6 +1631,10 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
||||
offset=self._offset,
|
||||
)
|
||||
|
||||
def output_schema(self) -> pa.Schema:
|
||||
query = self.to_query_object()
|
||||
return self._table._output_schema(query)
|
||||
|
||||
def to_batches(
|
||||
self, /, batch_size: Optional[int] = None, timeout: Optional[timedelta] = None
|
||||
) -> pa.RecordBatchReader:
|
||||
@@ -2238,6 +2278,14 @@ class AsyncQueryBase(object):
|
||||
)
|
||||
)
|
||||
|
||||
async def output_schema(self) -> pa.Schema:
|
||||
"""
|
||||
Return the output schema for the query
|
||||
|
||||
This does not execute the query.
|
||||
"""
|
||||
return await self._inner.output_schema()
|
||||
|
||||
async def to_arrow(self, timeout: Optional[timedelta] = None) -> pa.Table:
|
||||
"""
|
||||
Execute the query and collect the results into an Apache Arrow Table.
|
||||
@@ -3193,6 +3241,14 @@ class BaseQueryBuilder(object):
|
||||
self._inner.with_row_id()
|
||||
return self
|
||||
|
||||
def output_schema(self) -> pa.Schema:
|
||||
"""
|
||||
Return the output schema for the query
|
||||
|
||||
This does not execute the query.
|
||||
"""
|
||||
return LOOP.run(self._inner.output_schema())
|
||||
|
||||
def to_batches(
|
||||
self,
|
||||
*,
|
||||
|
||||
@@ -436,6 +436,9 @@ class RemoteTable(Table):
|
||||
def _analyze_plan(self, query: Query) -> str:
|
||||
return LOOP.run(self._table._analyze_plan(query))
|
||||
|
||||
def _output_schema(self, query: Query) -> pa.Schema:
|
||||
return LOOP.run(self._table._output_schema(query))
|
||||
|
||||
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
||||
"""Returns a [`LanceMergeInsertBuilder`][lancedb.merge.LanceMergeInsertBuilder]
|
||||
that can be used to create a "merge insert" operation.
|
||||
|
||||
@@ -21,6 +21,8 @@ class VoyageAIReranker(Reranker):
|
||||
----------
|
||||
model_name : str, default "rerank-english-v2.0"
|
||||
The name of the cross encoder model to use. Available voyageai models are:
|
||||
- rerank-2.5
|
||||
- rerank-2.5-lite
|
||||
- rerank-2
|
||||
- rerank-2-lite
|
||||
column : str, default "text"
|
||||
|
||||
@@ -1248,6 +1248,9 @@ class Table(ABC):
|
||||
@abstractmethod
|
||||
def _analyze_plan(self, query: Query) -> str: ...
|
||||
|
||||
@abstractmethod
|
||||
def _output_schema(self, query: Query) -> pa.Schema: ...
|
||||
|
||||
@abstractmethod
|
||||
def _do_merge(
|
||||
self,
|
||||
@@ -2761,6 +2764,9 @@ class LanceTable(Table):
|
||||
def _analyze_plan(self, query: Query) -> str:
|
||||
return LOOP.run(self._table._analyze_plan(query))
|
||||
|
||||
def _output_schema(self, query: Query) -> pa.Schema:
|
||||
return LOOP.run(self._table._output_schema(query))
|
||||
|
||||
def _do_merge(
|
||||
self,
|
||||
merge: LanceMergeInsertBuilder,
|
||||
@@ -3918,6 +3924,10 @@ class AsyncTable:
|
||||
async_query = self._sync_query_to_async(query)
|
||||
return await async_query.analyze_plan()
|
||||
|
||||
async def _output_schema(self, query: Query) -> pa.Schema:
|
||||
async_query = self._sync_query_to_async(query)
|
||||
return await async_query.output_schema()
|
||||
|
||||
async def _do_merge(
|
||||
self,
|
||||
merge: LanceMergeInsertBuilder,
|
||||
|
||||
@@ -366,3 +366,56 @@ def add_note(base_exception: BaseException, note: str):
|
||||
)
|
||||
else:
|
||||
raise ValueError("Cannot add note to exception")
|
||||
|
||||
|
||||
def tbl_to_tensor(tbl: pa.Table):
|
||||
"""
|
||||
Convert a PyArrow Table to a PyTorch Tensor.
|
||||
|
||||
Each column is converted to a tensor (using zero-copy via DLPack)
|
||||
and the columns are then stacked into a single tensor.
|
||||
|
||||
Fails if torch is not installed.
|
||||
Fails if any column is more than one chunk.
|
||||
Fails if a column's data type is not supported by PyTorch.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
tbl : pa.Table or pa.RecordBatch
|
||||
The table or record batch to convert to a tensor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor: The tensor containing the columns of the table.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
|
||||
def to_tensor(col: pa.ChunkedArray):
|
||||
if col.num_chunks > 1:
|
||||
raise Exception("Single batch was too large to fit into a one-chunk table")
|
||||
return torch.from_dlpack(col.chunk(0))
|
||||
|
||||
return torch.stack([to_tensor(tbl.column(i)) for i in range(tbl.num_columns)])
|
||||
|
||||
|
||||
def batch_to_tensor(batch: pa.RecordBatch):
|
||||
"""
|
||||
Convert a PyArrow RecordBatch to a PyTorch Tensor.
|
||||
|
||||
Each column is converted to a tensor (using zero-copy via DLPack)
|
||||
and the columns are then stacked into a single tensor.
|
||||
|
||||
Fails if torch is not installed.
|
||||
Fails if a column's data type is not supported by PyTorch.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
batch : pa.RecordBatch
|
||||
The record batch to convert to a tensor.
|
||||
|
||||
Returns
|
||||
-------
|
||||
torch.Tensor: The tensor containing the columns of the record batch.
|
||||
"""
|
||||
torch = attempt_import_or_raise("torch", "torch")
|
||||
return torch.stack([torch.from_dlpack(col) for col in batch.columns])
|
||||
|
||||
@@ -17,7 +17,6 @@ from lancedb.embeddings import (
|
||||
EmbeddingFunctionRegistry,
|
||||
)
|
||||
from lancedb.embeddings.base import TextEmbeddingFunction
|
||||
from lancedb.embeddings.colpali import MultimodalLateInteractionEmbeddings
|
||||
from lancedb.embeddings.registry import get_registry, register
|
||||
from lancedb.embeddings.utils import retry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
@@ -516,16 +515,3 @@ def test_openai_propagates_api_key(monkeypatch):
|
||||
query = "greetings"
|
||||
actual = table.search(query).limit(1).to_pydantic(Words)[0]
|
||||
assert len(actual.text) > 0
|
||||
|
||||
|
||||
def test_multimodal_late_interaction_family_detection():
|
||||
resolver = MultimodalLateInteractionEmbeddings._resolve_family
|
||||
|
||||
assert resolver("vidore/colSmol-256M", None) == "colsmol"
|
||||
assert resolver("vidore/colqwen2.5-v0.2", None) == "colqwen2.5"
|
||||
assert resolver("vidore/colqwen2-v1.0", None) == "colqwen2"
|
||||
assert resolver("vidore/colpali-v1.3", None) == "colpali"
|
||||
assert resolver("custom/model", None) == "colpali"
|
||||
assert resolver("any/model", "colqwen2") == "colqwen2"
|
||||
with pytest.raises(ValueError):
|
||||
resolver("any/model", "unknown")
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
import importlib
|
||||
import io
|
||||
import os
|
||||
|
||||
import lancedb
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -34,24 +33,6 @@ try:
|
||||
except Exception:
|
||||
_imagebind = None
|
||||
|
||||
try:
|
||||
import torch
|
||||
except ImportError:
|
||||
torch = None
|
||||
|
||||
HAS_ACCEL = bool(
|
||||
torch
|
||||
and (
|
||||
torch.cuda.is_available()
|
||||
or getattr(torch.backends, "mps", None) and torch.backends.mps.is_available()
|
||||
)
|
||||
)
|
||||
RUN_HEAVY_VIDORE = os.getenv("LANCEDB_TEST_FULL_LATE_INTERACTION") in {"1", "true", "yes"}
|
||||
HEAVY_SKIP = pytest.mark.skipif(
|
||||
not (RUN_HEAVY_VIDORE and HAS_ACCEL),
|
||||
reason="Set LANCEDB_TEST_FULL_LATE_INTERACTION=1 and run on GPU to exercise large vidore checkpoints",
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.parametrize(
|
||||
@@ -551,6 +532,27 @@ def test_voyageai_embedding_function():
|
||||
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
)
|
||||
def test_voyageai_embedding_function_contextual_model():
|
||||
voyageai = (
|
||||
get_registry().get("voyageai").create(name="voyage-context-3", max_retries=0)
|
||||
)
|
||||
|
||||
class TextModel(LanceModel):
|
||||
text: str = voyageai.SourceField()
|
||||
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
|
||||
|
||||
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
|
||||
db = lancedb.connect("~/lancedb")
|
||||
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
|
||||
|
||||
tbl.add(df)
|
||||
assert len(tbl.to_pandas()["vector"][0]) == voyageai.ndims()
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
os.environ.get("VOYAGE_API_KEY") is None, reason="VOYAGE_API_KEY not set"
|
||||
@@ -616,44 +618,21 @@ def test_voyageai_multimodal_embedding_text_function():
|
||||
importlib.util.find_spec("colpali_engine") is None,
|
||||
reason="colpali_engine not installed",
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"model_name",
|
||||
[
|
||||
#pytest.param("vidore/colSmol-256M", id="colSmol"),
|
||||
pytest.param(
|
||||
"vidore/colqwen2-v1.0",
|
||||
id="colQwen2",
|
||||
#marks=HEAVY_SKIP,
|
||||
),
|
||||
pytest.param(
|
||||
"vidore/colqwen2.5-v0.2",
|
||||
id="colQwen2.5",
|
||||
# marks=HEAVY_SKIP,
|
||||
),
|
||||
pytest.param(
|
||||
"vidore/colpali-v1.3-merged",
|
||||
id="colPali",
|
||||
#marks=HEAVY_SKIP,
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_multimodal_late_interaction_models(tmp_path, model_name):
|
||||
def test_colpali(tmp_path):
|
||||
import requests
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.pydantic import LanceModel
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = get_registry()
|
||||
func = registry.get("multimodal-late-interaction").create(
|
||||
model_name=model_name,
|
||||
device="auto",
|
||||
batch_size=1,
|
||||
)
|
||||
func = registry.get("colpali").create()
|
||||
|
||||
class MediaItems(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
image_bytes: bytes = func.SourceField()
|
||||
image_vectors: MultiVector(func.ndims()) = func.VectorField()
|
||||
image_vectors: MultiVector(func.ndims()) = (
|
||||
func.VectorField()
|
||||
) # Multivector image embeddings
|
||||
|
||||
table = db.create_table("media", schema=MediaItems)
|
||||
|
||||
@@ -661,12 +640,79 @@ def test_multimodal_late_interaction_models(tmp_path, model_name):
|
||||
"a cute cat playing with yarn",
|
||||
"a puppy in a flower field",
|
||||
"a red sports car on the highway",
|
||||
"a vintage bicycle leaning against a wall",
|
||||
"a plate of delicious pasta",
|
||||
"fresh fruit salad in a bowl",
|
||||
]
|
||||
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
|
||||
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
|
||||
]
|
||||
|
||||
# Get images as bytes
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
|
||||
table.add(
|
||||
pd.DataFrame({"text": texts, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
|
||||
# Test text-to-image search
|
||||
image_results = (
|
||||
table.search("fluffy companion", vector_column_name="image_vectors")
|
||||
.limit(1)
|
||||
.to_pydantic(MediaItems)[0]
|
||||
)
|
||||
assert "cat" in image_results.text.lower() or "puppy" in image_results.text.lower()
|
||||
|
||||
# Verify multivector dimensions
|
||||
first_row = table.to_arrow().to_pylist()[0]
|
||||
assert len(first_row["image_vectors"]) > 1, "Should have multiple image vectors"
|
||||
assert len(first_row["image_vectors"][0]) == func.ndims(), (
|
||||
"Vector dimension mismatch"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("colpali_engine") is None,
|
||||
reason="colpali_engine not installed",
|
||||
)
|
||||
@pytest.mark.parametrize(
|
||||
"model_name",
|
||||
[
|
||||
"vidore/colSmol-256M",
|
||||
"vidore/colqwen2.5-v0.2",
|
||||
"vidore/colpali-v1.3",
|
||||
"vidore/colqwen2-v1.0",
|
||||
],
|
||||
)
|
||||
def test_colpali_models(tmp_path, model_name):
|
||||
import requests
|
||||
from lancedb.pydantic import LanceModel
|
||||
|
||||
db = lancedb.connect(tmp_path)
|
||||
registry = get_registry()
|
||||
func = registry.get("colpali").create(model_name=model_name)
|
||||
|
||||
class MediaItems(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
image_bytes: bytes = func.SourceField()
|
||||
image_vectors: MultiVector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table(f"media_{model_name.replace('/', '_')}", schema=MediaItems)
|
||||
|
||||
texts = [
|
||||
"a cute cat playing with yarn",
|
||||
]
|
||||
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
]
|
||||
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
@@ -675,16 +721,60 @@ def test_multimodal_late_interaction_models(tmp_path, model_name):
|
||||
pd.DataFrame({"text": texts, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
|
||||
result = (
|
||||
image_results = (
|
||||
table.search("fluffy companion", vector_column_name="image_vectors")
|
||||
.limit(1)
|
||||
.to_pydantic(MediaItems)[0]
|
||||
)
|
||||
assert any(keyword in result.text.lower() for keyword in ("cat", "puppy"))
|
||||
assert "cat" in image_results.text.lower() or "puppy" in image_results.text.lower()
|
||||
|
||||
first_row = table.to_arrow().to_pylist()[0]
|
||||
assert len(first_row["image_vectors"]) > 1
|
||||
assert len(first_row["image_vectors"][0]) == func.ndims()
|
||||
assert len(first_row["image_vectors"]) > 1, "Should have multiple image vectors"
|
||||
assert len(first_row["image_vectors"][0]) == func.ndims(), (
|
||||
"Vector dimension mismatch"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
@pytest.mark.skipif(
|
||||
importlib.util.find_spec("colpali_engine") is None,
|
||||
reason="colpali_engine not installed",
|
||||
)
|
||||
def test_colpali_pooling(tmp_path):
|
||||
registry = get_registry()
|
||||
model_name = "vidore/colSmol-256M"
|
||||
test_sentence = "a test sentence for pooling"
|
||||
|
||||
# 1. Get embeddings with no pooling
|
||||
func_no_pool = registry.get("colpali").create(
|
||||
model_name=model_name, pooling_strategy=None
|
||||
)
|
||||
unpooled_embeddings = func_no_pool.generate_text_embeddings([test_sentence])[0]
|
||||
original_length = len(unpooled_embeddings)
|
||||
assert original_length > 1
|
||||
|
||||
# 2. Test hierarchical pooling
|
||||
func_hierarchical = registry.get("colpali").create(
|
||||
model_name=model_name, pooling_strategy="hierarchical", pool_factor=2
|
||||
)
|
||||
hierarchical_embeddings = func_hierarchical.generate_text_embeddings(
|
||||
[test_sentence]
|
||||
)[0]
|
||||
expected_hierarchical_length = (original_length + 1) // 2
|
||||
assert len(hierarchical_embeddings) == expected_hierarchical_length
|
||||
|
||||
# 3. Test lambda pooling
|
||||
def simple_pool_func(tensor):
|
||||
return tensor[::2]
|
||||
|
||||
func_lambda = registry.get("colpali").create(
|
||||
model_name=model_name,
|
||||
pooling_strategy="lambda",
|
||||
pooling_func=simple_pool_func,
|
||||
)
|
||||
lambda_embeddings = func_lambda.generate_text_embeddings([test_sentence])[0]
|
||||
expected_lambda_length = (original_length + 1) // 2
|
||||
assert len(lambda_embeddings) == expected_lambda_length
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
|
||||
@@ -20,7 +20,14 @@ from unittest import mock
|
||||
import lancedb as ldb
|
||||
from lancedb.db import DBConnection
|
||||
from lancedb.index import FTS
|
||||
from lancedb.query import BoostQuery, MatchQuery, MultiMatchQuery, PhraseQuery
|
||||
from lancedb.query import (
|
||||
BoostQuery,
|
||||
MatchQuery,
|
||||
MultiMatchQuery,
|
||||
PhraseQuery,
|
||||
BooleanQuery,
|
||||
Occur,
|
||||
)
|
||||
import numpy as np
|
||||
import pyarrow as pa
|
||||
import pandas as pd
|
||||
@@ -727,3 +734,146 @@ def test_fts_ngram(mem_db: DBConnection):
|
||||
results = table.search("la", query_type="fts").limit(10).to_list()
|
||||
assert len(results) == 2
|
||||
assert set(r["text"] for r in results) == {"lance database", "lance is cool"}
|
||||
|
||||
|
||||
def test_fts_query_to_json():
|
||||
"""Test that FTS query to_json() produces valid JSON strings with exact format."""
|
||||
|
||||
# Test MatchQuery - basic
|
||||
match_query = MatchQuery("hello world", "text")
|
||||
json_str = match_query.to_json()
|
||||
expected = (
|
||||
'{"match":{"column":"text","terms":"hello world","boost":1.0,'
|
||||
'"fuzziness":0,"max_expansions":50,"operator":"Or","prefix_length":0}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test MatchQuery with options
|
||||
match_query = MatchQuery("puppy", "text", fuzziness=2, boost=1.5, prefix_length=3)
|
||||
json_str = match_query.to_json()
|
||||
expected = (
|
||||
'{"match":{"column":"text","terms":"puppy","boost":1.5,"fuzziness":2,'
|
||||
'"max_expansions":50,"operator":"Or","prefix_length":3}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test PhraseQuery
|
||||
phrase_query = PhraseQuery("quick brown fox", "title")
|
||||
json_str = phrase_query.to_json()
|
||||
expected = '{"phrase":{"column":"title","terms":"quick brown fox","slop":0}}'
|
||||
assert json_str == expected
|
||||
|
||||
# Test PhraseQuery with slop
|
||||
phrase_query = PhraseQuery("quick brown", "title", slop=2)
|
||||
json_str = phrase_query.to_json()
|
||||
expected = '{"phrase":{"column":"title","terms":"quick brown","slop":2}}'
|
||||
assert json_str == expected
|
||||
|
||||
# Test BooleanQuery with MUST
|
||||
must_query = BooleanQuery(
|
||||
[
|
||||
(Occur.MUST, MatchQuery("puppy", "text")),
|
||||
(Occur.MUST, MatchQuery("runs", "text")),
|
||||
]
|
||||
)
|
||||
json_str = must_query.to_json()
|
||||
expected = (
|
||||
'{"boolean":{"should":[],"must":[{"match":{"column":"text","terms":"puppy",'
|
||||
'"boost":1.0,"fuzziness":0,"max_expansions":50,"operator":"Or",'
|
||||
'"prefix_length":0}},{"match":{"column":"text","terms":"runs","boost":1.0,'
|
||||
'"fuzziness":0,"max_expansions":50,"operator":"Or","prefix_length":0}}],'
|
||||
'"must_not":[]}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test BooleanQuery with SHOULD
|
||||
should_query = BooleanQuery(
|
||||
[
|
||||
(Occur.SHOULD, MatchQuery("cat", "text")),
|
||||
(Occur.SHOULD, MatchQuery("dog", "text")),
|
||||
]
|
||||
)
|
||||
json_str = should_query.to_json()
|
||||
expected = (
|
||||
'{"boolean":{"should":[{"match":{"column":"text","terms":"cat","boost":1.0,'
|
||||
'"fuzziness":0,"max_expansions":50,"operator":"Or","prefix_length":0}},'
|
||||
'{"match":{"column":"text","terms":"dog","boost":1.0,"fuzziness":0,'
|
||||
'"max_expansions":50,"operator":"Or","prefix_length":0}}],"must":[],'
|
||||
'"must_not":[]}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test BooleanQuery with MUST_NOT
|
||||
must_not_query = BooleanQuery(
|
||||
[
|
||||
(Occur.MUST, MatchQuery("puppy", "text")),
|
||||
(Occur.MUST_NOT, MatchQuery("training", "text")),
|
||||
]
|
||||
)
|
||||
json_str = must_not_query.to_json()
|
||||
expected = (
|
||||
'{"boolean":{"should":[],"must":[{"match":{"column":"text","terms":"puppy",'
|
||||
'"boost":1.0,"fuzziness":0,"max_expansions":50,"operator":"Or",'
|
||||
'"prefix_length":0}}],"must_not":[{"match":{"column":"text",'
|
||||
'"terms":"training","boost":1.0,"fuzziness":0,"max_expansions":50,'
|
||||
'"operator":"Or","prefix_length":0}}]}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test BoostQuery
|
||||
positive = MatchQuery("puppy", "text")
|
||||
negative = MatchQuery("training", "text")
|
||||
boost_query = BoostQuery(positive, negative, negative_boost=0.3)
|
||||
json_str = boost_query.to_json()
|
||||
expected = (
|
||||
'{"boost":{"positive":{"match":{"column":"text","terms":"puppy",'
|
||||
'"boost":1.0,"fuzziness":0,"max_expansions":50,"operator":"Or",'
|
||||
'"prefix_length":0}},"negative":{"match":{"column":"text",'
|
||||
'"terms":"training","boost":1.0,"fuzziness":0,"max_expansions":50,'
|
||||
'"operator":"Or","prefix_length":0}},"negative_boost":0.3}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test MultiMatchQuery
|
||||
multi_match = MultiMatchQuery("python", ["tags", "title"])
|
||||
json_str = multi_match.to_json()
|
||||
expected = (
|
||||
'{"multi_match":{"query":"python","columns":["tags","title"],'
|
||||
'"boost":[1.0,1.0]}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
# Test complex nested BooleanQuery
|
||||
inner1 = BooleanQuery(
|
||||
[
|
||||
(Occur.MUST, MatchQuery("python", "tags")),
|
||||
(Occur.MUST, MatchQuery("tutorial", "title")),
|
||||
]
|
||||
)
|
||||
inner2 = BooleanQuery(
|
||||
[
|
||||
(Occur.MUST, MatchQuery("rust", "tags")),
|
||||
(Occur.MUST, MatchQuery("guide", "title")),
|
||||
]
|
||||
)
|
||||
complex_query = BooleanQuery(
|
||||
[
|
||||
(Occur.SHOULD, inner1),
|
||||
(Occur.SHOULD, inner2),
|
||||
]
|
||||
)
|
||||
json_str = complex_query.to_json()
|
||||
expected = (
|
||||
'{"boolean":{"should":[{"boolean":{"should":[],"must":[{"match":'
|
||||
'{"column":"tags","terms":"python","boost":1.0,"fuzziness":0,'
|
||||
'"max_expansions":50,"operator":"Or","prefix_length":0}},{"match":'
|
||||
'{"column":"title","terms":"tutorial","boost":1.0,"fuzziness":0,'
|
||||
'"max_expansions":50,"operator":"Or","prefix_length":0}}],"must_not":[]}}'
|
||||
',{"boolean":{"should":[],"must":[{"match":{"column":"tags",'
|
||||
'"terms":"rust","boost":1.0,"fuzziness":0,"max_expansions":50,'
|
||||
'"operator":"Or","prefix_length":0}},{"match":{"column":"title",'
|
||||
'"terms":"guide","boost":1.0,"fuzziness":0,"max_expansions":50,'
|
||||
'"operator":"Or","prefix_length":0}}],"must_not":[]}}],"must":[],'
|
||||
'"must_not":[]}}'
|
||||
)
|
||||
assert json_str == expected
|
||||
|
||||
@@ -59,6 +59,14 @@ class TempNamespace(LanceNamespace):
|
||||
root
|
||||
] # Reference to shared namespaces
|
||||
|
||||
def namespace_id(self) -> str:
|
||||
"""Return a human-readable unique identifier for this namespace instance.
|
||||
|
||||
Returns:
|
||||
A unique identifier string based on the root directory
|
||||
"""
|
||||
return f"TempNamespace {{ root: '{self.config.root}' }}"
|
||||
|
||||
def list_tables(self, request: ListTablesRequest) -> ListTablesResponse:
|
||||
"""List all tables in the namespace."""
|
||||
if not request.id:
|
||||
|
||||
@@ -2,9 +2,26 @@
|
||||
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
import pyarrow as pa
|
||||
import math
|
||||
import pytest
|
||||
|
||||
from lancedb.permutation import permutation_builder
|
||||
from lancedb import DBConnection, Table, connect
|
||||
from lancedb.permutation import Permutation, Permutations, permutation_builder
|
||||
|
||||
|
||||
def test_permutation_persistence(tmp_path):
|
||||
db = connect(tmp_path)
|
||||
tbl = db.create_table("test_table", pa.table({"x": range(100), "y": range(100)}))
|
||||
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl).shuffle().persist(db, "test_permutation").execute()
|
||||
)
|
||||
assert permutation_tbl.count_rows() == 100
|
||||
|
||||
re_open = db.open_table("test_permutation")
|
||||
assert re_open.count_rows() == 100
|
||||
|
||||
assert permutation_tbl.to_arrow() == re_open.to_arrow()
|
||||
|
||||
|
||||
def test_split_random_ratios(mem_db):
|
||||
@@ -12,11 +29,7 @@ def test_split_random_ratios(mem_db):
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"x": range(100), "y": range(100)})
|
||||
)
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
.split_random(ratios=[0.3, 0.7])
|
||||
.execute()
|
||||
)
|
||||
permutation_tbl = permutation_builder(tbl).split_random(ratios=[0.3, 0.7]).execute()
|
||||
|
||||
# Check that the table was created and has data
|
||||
assert permutation_tbl.count_rows() == 100
|
||||
@@ -38,11 +51,7 @@ def test_split_random_counts(mem_db):
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"x": range(100), "y": range(100)})
|
||||
)
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
.split_random(counts=[20, 30])
|
||||
.execute()
|
||||
)
|
||||
permutation_tbl = permutation_builder(tbl).split_random(counts=[20, 30]).execute()
|
||||
|
||||
# Check that we have exactly the requested counts
|
||||
assert permutation_tbl.count_rows() == 50
|
||||
@@ -58,9 +67,7 @@ def test_split_random_fixed(mem_db):
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"x": range(100), "y": range(100)})
|
||||
)
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation").split_random(fixed=4).execute()
|
||||
)
|
||||
permutation_tbl = permutation_builder(tbl).split_random(fixed=4).execute()
|
||||
|
||||
# Check that we have 4 splits with 25 rows each
|
||||
assert permutation_tbl.count_rows() == 100
|
||||
@@ -78,17 +85,9 @@ def test_split_random_with_seed(mem_db):
|
||||
tbl = mem_db.create_table("test_table", pa.table({"x": range(50), "y": range(50)}))
|
||||
|
||||
# Create two identical permutations with same seed
|
||||
perm1 = (
|
||||
permutation_builder(tbl, "perm1")
|
||||
.split_random(ratios=[0.6, 0.4], seed=42)
|
||||
.execute()
|
||||
)
|
||||
perm1 = permutation_builder(tbl).split_random(ratios=[0.6, 0.4], seed=42).execute()
|
||||
|
||||
perm2 = (
|
||||
permutation_builder(tbl, "perm2")
|
||||
.split_random(ratios=[0.6, 0.4], seed=42)
|
||||
.execute()
|
||||
)
|
||||
perm2 = permutation_builder(tbl).split_random(ratios=[0.6, 0.4], seed=42).execute()
|
||||
|
||||
# Results should be identical
|
||||
data1 = perm1.search(None).to_arrow().to_pydict()
|
||||
@@ -112,7 +111,7 @@ def test_split_hash(mem_db):
|
||||
)
|
||||
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.split_hash(["category"], [1, 1], discard_weight=0)
|
||||
.execute()
|
||||
)
|
||||
@@ -133,7 +132,7 @@ def test_split_hash(mem_db):
|
||||
# Hash splits should be deterministic - same category should go to same split
|
||||
# Let's verify by creating another permutation and checking consistency
|
||||
perm2 = (
|
||||
permutation_builder(tbl, "test_permutation2")
|
||||
permutation_builder(tbl)
|
||||
.split_hash(["category"], [1, 1], discard_weight=0)
|
||||
.execute()
|
||||
)
|
||||
@@ -150,7 +149,7 @@ def test_split_hash_with_discard(mem_db):
|
||||
)
|
||||
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.split_hash(["category"], [1, 1], discard_weight=2) # Should discard ~50%
|
||||
.execute()
|
||||
)
|
||||
@@ -168,9 +167,7 @@ def test_split_sequential(mem_db):
|
||||
)
|
||||
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
.split_sequential(counts=[30, 40])
|
||||
.execute()
|
||||
permutation_builder(tbl).split_sequential(counts=[30, 40]).execute()
|
||||
)
|
||||
|
||||
assert permutation_tbl.count_rows() == 70
|
||||
@@ -194,7 +191,7 @@ def test_split_calculated(mem_db):
|
||||
)
|
||||
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.split_calculated("id % 3") # Split based on id modulo 3
|
||||
.execute()
|
||||
)
|
||||
@@ -215,24 +212,34 @@ def test_split_error_cases(mem_db):
|
||||
tbl = mem_db.create_table("test_table", pa.table({"x": range(10), "y": range(10)}))
|
||||
|
||||
# Test split_random with no parameters
|
||||
with pytest.raises(Exception):
|
||||
permutation_builder(tbl, "error1").split_random().execute()
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
|
||||
):
|
||||
permutation_builder(tbl).split_random().execute()
|
||||
|
||||
# Test split_random with multiple parameters
|
||||
with pytest.raises(Exception):
|
||||
permutation_builder(tbl, "error2").split_random(
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
|
||||
):
|
||||
permutation_builder(tbl).split_random(
|
||||
ratios=[0.5, 0.5], counts=[5, 5]
|
||||
).execute()
|
||||
|
||||
# Test split_sequential with no parameters
|
||||
with pytest.raises(Exception):
|
||||
permutation_builder(tbl, "error3").split_sequential().execute()
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
|
||||
):
|
||||
permutation_builder(tbl).split_sequential().execute()
|
||||
|
||||
# Test split_sequential with multiple parameters
|
||||
with pytest.raises(Exception):
|
||||
permutation_builder(tbl, "error4").split_sequential(
|
||||
ratios=[0.5, 0.5], fixed=2
|
||||
).execute()
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="Exactly one of 'ratios', 'counts', or 'fixed' must be provided",
|
||||
):
|
||||
permutation_builder(tbl).split_sequential(ratios=[0.5, 0.5], fixed=2).execute()
|
||||
|
||||
|
||||
def test_shuffle_no_seed(mem_db):
|
||||
@@ -242,7 +249,7 @@ def test_shuffle_no_seed(mem_db):
|
||||
)
|
||||
|
||||
# Create a permutation with shuffling (no seed)
|
||||
permutation_tbl = permutation_builder(tbl, "test_permutation").shuffle().execute()
|
||||
permutation_tbl = permutation_builder(tbl).shuffle().execute()
|
||||
|
||||
assert permutation_tbl.count_rows() == 100
|
||||
|
||||
@@ -262,9 +269,9 @@ def test_shuffle_with_seed(mem_db):
|
||||
)
|
||||
|
||||
# Create two identical permutations with same shuffle seed
|
||||
perm1 = permutation_builder(tbl, "perm1").shuffle(seed=42).execute()
|
||||
perm1 = permutation_builder(tbl).shuffle(seed=42).execute()
|
||||
|
||||
perm2 = permutation_builder(tbl, "perm2").shuffle(seed=42).execute()
|
||||
perm2 = permutation_builder(tbl).shuffle(seed=42).execute()
|
||||
|
||||
# Results should be identical due to same seed
|
||||
data1 = perm1.search(None).to_arrow().to_pydict()
|
||||
@@ -282,7 +289,7 @@ def test_shuffle_with_clump_size(mem_db):
|
||||
|
||||
# Create a permutation with shuffling using clumps
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.shuffle(clump_size=10) # 10-row clumps
|
||||
.execute()
|
||||
)
|
||||
@@ -304,19 +311,9 @@ def test_shuffle_different_seeds(mem_db):
|
||||
)
|
||||
|
||||
# Create two permutations with different shuffle seeds
|
||||
perm1 = (
|
||||
permutation_builder(tbl, "perm1")
|
||||
.split_random(fixed=2)
|
||||
.shuffle(seed=42)
|
||||
.execute()
|
||||
)
|
||||
perm1 = permutation_builder(tbl).split_random(fixed=2).shuffle(seed=42).execute()
|
||||
|
||||
perm2 = (
|
||||
permutation_builder(tbl, "perm2")
|
||||
.split_random(fixed=2)
|
||||
.shuffle(seed=123)
|
||||
.execute()
|
||||
)
|
||||
perm2 = permutation_builder(tbl).split_random(fixed=2).shuffle(seed=123).execute()
|
||||
|
||||
# Results should be different due to different seeds
|
||||
data1 = perm1.search(None).to_arrow().to_pydict()
|
||||
@@ -341,7 +338,7 @@ def test_shuffle_combined_with_splits(mem_db):
|
||||
|
||||
# Test shuffle with random splits
|
||||
perm_random = (
|
||||
permutation_builder(tbl, "perm_random")
|
||||
permutation_builder(tbl)
|
||||
.split_random(ratios=[0.6, 0.4], seed=42)
|
||||
.shuffle(seed=123, clump_size=None)
|
||||
.execute()
|
||||
@@ -349,7 +346,7 @@ def test_shuffle_combined_with_splits(mem_db):
|
||||
|
||||
# Test shuffle with hash splits
|
||||
perm_hash = (
|
||||
permutation_builder(tbl, "perm_hash")
|
||||
permutation_builder(tbl)
|
||||
.split_hash(["category"], [1, 1], discard_weight=0)
|
||||
.shuffle(seed=456, clump_size=5)
|
||||
.execute()
|
||||
@@ -357,7 +354,7 @@ def test_shuffle_combined_with_splits(mem_db):
|
||||
|
||||
# Test shuffle with sequential splits
|
||||
perm_sequential = (
|
||||
permutation_builder(tbl, "perm_sequential")
|
||||
permutation_builder(tbl)
|
||||
.split_sequential(counts=[40, 35])
|
||||
.shuffle(seed=789, clump_size=None)
|
||||
.execute()
|
||||
@@ -384,7 +381,7 @@ def test_no_shuffle_maintains_order(mem_db):
|
||||
|
||||
# Create permutation without shuffle (should maintain some order)
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.split_sequential(counts=[25, 25]) # Sequential maintains order
|
||||
.execute()
|
||||
)
|
||||
@@ -405,9 +402,7 @@ def test_filter_basic(mem_db):
|
||||
)
|
||||
|
||||
# Filter to only include rows where id < 50
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation").filter("id < 50").execute()
|
||||
)
|
||||
permutation_tbl = permutation_builder(tbl).filter("id < 50").execute()
|
||||
|
||||
assert permutation_tbl.count_rows() == 50
|
||||
|
||||
@@ -433,7 +428,7 @@ def test_filter_with_splits(mem_db):
|
||||
|
||||
# Filter to only category A and B, then split
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.filter("category IN ('A', 'B')")
|
||||
.split_random(ratios=[0.5, 0.5])
|
||||
.execute()
|
||||
@@ -465,7 +460,7 @@ def test_filter_with_shuffle(mem_db):
|
||||
|
||||
# Filter and shuffle
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.filter("category IN ('A', 'C')")
|
||||
.shuffle(seed=42)
|
||||
.execute()
|
||||
@@ -488,9 +483,461 @@ def test_filter_empty_result(mem_db):
|
||||
|
||||
# Filter that matches nothing
|
||||
permutation_tbl = (
|
||||
permutation_builder(tbl, "test_permutation")
|
||||
permutation_builder(tbl)
|
||||
.filter("value > 100") # No values > 100 in our data
|
||||
.execute()
|
||||
)
|
||||
|
||||
assert permutation_tbl.count_rows() == 0
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mem_db() -> DBConnection:
|
||||
return connect("memory:///")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def some_table(mem_db: DBConnection) -> Table:
|
||||
data = pa.table(
|
||||
{
|
||||
"id": range(1000),
|
||||
"value": range(1000),
|
||||
}
|
||||
)
|
||||
return mem_db.create_table("some_table", data)
|
||||
|
||||
|
||||
def test_no_split_names(some_table: Table):
|
||||
perm_tbl = (
|
||||
permutation_builder(some_table).split_sequential(counts=[500, 500]).execute()
|
||||
)
|
||||
permutations = Permutations(some_table, perm_tbl)
|
||||
assert permutations.split_names == []
|
||||
assert permutations.split_dict == {}
|
||||
assert permutations[0].num_rows == 500
|
||||
assert permutations[1].num_rows == 500
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def some_perm_table(some_table: Table) -> Table:
|
||||
return (
|
||||
permutation_builder(some_table)
|
||||
.split_random(ratios=[0.95, 0.05], seed=42, split_names=["train", "test"])
|
||||
.shuffle(seed=42)
|
||||
.execute()
|
||||
)
|
||||
|
||||
|
||||
def test_nonexistent_split(some_table: Table, some_perm_table: Table):
|
||||
# Reference by name and name does not exist
|
||||
with pytest.raises(ValueError, match="split `nonexistent` is not defined"):
|
||||
Permutation.from_tables(some_table, some_perm_table, "nonexistent")
|
||||
|
||||
# Reference by ordinal and there are no rows
|
||||
with pytest.raises(ValueError, match="No rows found"):
|
||||
Permutation.from_tables(some_table, some_perm_table, 5)
|
||||
|
||||
|
||||
def test_permutations(some_table: Table, some_perm_table: Table):
|
||||
permutations = Permutations(some_table, some_perm_table)
|
||||
assert permutations.split_names == ["train", "test"]
|
||||
assert permutations.split_dict == {"train": 0, "test": 1}
|
||||
assert permutations["train"].num_rows == 950
|
||||
assert permutations[0].num_rows == 950
|
||||
assert permutations["test"].num_rows == 50
|
||||
assert permutations[1].num_rows == 50
|
||||
|
||||
with pytest.raises(ValueError, match="No split named `nonexistent` found"):
|
||||
permutations["nonexistent"]
|
||||
with pytest.raises(ValueError, match="No rows found"):
|
||||
permutations[5]
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def some_permutation(some_table: Table, some_perm_table: Table) -> Permutation:
|
||||
return Permutation.from_tables(some_table, some_perm_table)
|
||||
|
||||
|
||||
def test_num_rows(some_permutation: Permutation):
|
||||
assert some_permutation.num_rows == 950
|
||||
|
||||
|
||||
def test_num_columns(some_permutation: Permutation):
|
||||
assert some_permutation.num_columns == 2
|
||||
|
||||
|
||||
def test_column_names(some_permutation: Permutation):
|
||||
assert some_permutation.column_names == ["id", "value"]
|
||||
|
||||
|
||||
def test_shape(some_permutation: Permutation):
|
||||
assert some_permutation.shape == (950, 2)
|
||||
|
||||
|
||||
def test_schema(some_permutation: Permutation):
|
||||
assert some_permutation.schema == pa.schema(
|
||||
[("id", pa.int64()), ("value", pa.int64())]
|
||||
)
|
||||
|
||||
|
||||
def test_limit_offset(some_permutation: Permutation):
|
||||
assert some_permutation.with_take(100).num_rows == 100
|
||||
assert some_permutation.with_skip(100).num_rows == 850
|
||||
assert some_permutation.with_take(100).with_skip(100).num_rows == 100
|
||||
|
||||
with pytest.raises(Exception):
|
||||
some_permutation.with_take(1000000).num_rows
|
||||
with pytest.raises(Exception):
|
||||
some_permutation.with_skip(1000000).num_rows
|
||||
with pytest.raises(Exception):
|
||||
some_permutation.with_take(500).with_skip(500).num_rows
|
||||
with pytest.raises(Exception):
|
||||
some_permutation.with_skip(500).with_take(500).num_rows
|
||||
|
||||
|
||||
def test_remove_columns(some_permutation: Permutation):
|
||||
assert some_permutation.remove_columns(["value"]).schema == pa.schema(
|
||||
[("id", pa.int64())]
|
||||
)
|
||||
# Should not modify the original permutation
|
||||
assert some_permutation.schema.names == ["id", "value"]
|
||||
# Cannot remove all columns
|
||||
with pytest.raises(ValueError, match="Cannot remove all columns"):
|
||||
some_permutation.remove_columns(["id", "value"])
|
||||
|
||||
|
||||
def test_rename_column(some_permutation: Permutation):
|
||||
assert some_permutation.rename_column("value", "new_value").schema == pa.schema(
|
||||
[("id", pa.int64()), ("new_value", pa.int64())]
|
||||
)
|
||||
# Should not modify the original permutation
|
||||
assert some_permutation.schema.names == ["id", "value"]
|
||||
# Cannot rename to an existing column
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="a column with that name already exists",
|
||||
):
|
||||
some_permutation.rename_column("value", "id")
|
||||
# Cannot rename a non-existent column
|
||||
with pytest.raises(
|
||||
ValueError,
|
||||
match="does not exist",
|
||||
):
|
||||
some_permutation.rename_column("non_existent", "new_value")
|
||||
|
||||
|
||||
def test_rename_columns(some_permutation: Permutation):
|
||||
assert some_permutation.rename_columns({"value": "new_value"}).schema == pa.schema(
|
||||
[("id", pa.int64()), ("new_value", pa.int64())]
|
||||
)
|
||||
# Should not modify the original permutation
|
||||
assert some_permutation.schema.names == ["id", "value"]
|
||||
# Cannot rename to an existing column
|
||||
with pytest.raises(ValueError, match="a column with that name already exists"):
|
||||
some_permutation.rename_columns({"value": "id"})
|
||||
|
||||
|
||||
def test_select_columns(some_permutation: Permutation):
|
||||
assert some_permutation.select_columns(["id"]).schema == pa.schema(
|
||||
[("id", pa.int64())]
|
||||
)
|
||||
# Should not modify the original permutation
|
||||
assert some_permutation.schema.names == ["id", "value"]
|
||||
# Cannot select a non-existent column
|
||||
with pytest.raises(ValueError, match="does not exist"):
|
||||
some_permutation.select_columns(["non_existent"])
|
||||
# Empty selection is not allowed
|
||||
with pytest.raises(ValueError, match="select at least one column"):
|
||||
some_permutation.select_columns([])
|
||||
|
||||
|
||||
def test_iter_basic(some_permutation: Permutation):
|
||||
"""Test basic iteration with custom batch size."""
|
||||
batch_size = 100
|
||||
batches = list(some_permutation.iter(batch_size, skip_last_batch=False))
|
||||
|
||||
# Check that we got the expected number of batches
|
||||
expected_batches = (950 + batch_size - 1) // batch_size # ceiling division
|
||||
assert len(batches) == expected_batches
|
||||
|
||||
# Check that all batches are dicts (default python format)
|
||||
assert all(isinstance(batch, dict) for batch in batches)
|
||||
|
||||
# Check that batches have the correct structure
|
||||
for batch in batches:
|
||||
assert "id" in batch
|
||||
assert "value" in batch
|
||||
assert isinstance(batch["id"], list)
|
||||
assert isinstance(batch["value"], list)
|
||||
|
||||
# Check that all batches except the last have the correct size
|
||||
for batch in batches[:-1]:
|
||||
assert len(batch["id"]) == batch_size
|
||||
assert len(batch["value"]) == batch_size
|
||||
|
||||
# Last batch might be smaller
|
||||
assert len(batches[-1]["id"]) <= batch_size
|
||||
|
||||
|
||||
def test_iter_skip_last_batch(some_permutation: Permutation):
|
||||
"""Test iteration with skip_last_batch=True."""
|
||||
batch_size = 300
|
||||
batches_with_skip = list(some_permutation.iter(batch_size, skip_last_batch=True))
|
||||
batches_without_skip = list(
|
||||
some_permutation.iter(batch_size, skip_last_batch=False)
|
||||
)
|
||||
|
||||
# With skip_last_batch=True, we should have fewer batches if the last one is partial
|
||||
num_full_batches = 950 // batch_size
|
||||
assert len(batches_with_skip) == num_full_batches
|
||||
|
||||
# Without skip_last_batch, we should have one more batch if there's a remainder
|
||||
if 950 % batch_size != 0:
|
||||
assert len(batches_without_skip) == num_full_batches + 1
|
||||
# Last batch should be smaller
|
||||
assert len(batches_without_skip[-1]["id"]) == 950 % batch_size
|
||||
|
||||
# All batches with skip_last_batch should be full size
|
||||
for batch in batches_with_skip:
|
||||
assert len(batch["id"]) == batch_size
|
||||
|
||||
|
||||
def test_iter_different_batch_sizes(some_permutation: Permutation):
|
||||
"""Test iteration with different batch sizes."""
|
||||
|
||||
# Test with small batch size
|
||||
small_batches = list(some_permutation.iter(100, skip_last_batch=False))
|
||||
assert len(small_batches) == 10 # ceiling(950 / 100)
|
||||
|
||||
# Test with large batch size
|
||||
large_batches = list(some_permutation.iter(400, skip_last_batch=False))
|
||||
assert len(large_batches) == 3 # ceiling(950 / 400)
|
||||
|
||||
# Test with batch size equal to total rows
|
||||
single_batch = list(some_permutation.iter(950, skip_last_batch=False))
|
||||
assert len(single_batch) == 1
|
||||
assert len(single_batch[0]["id"]) == 950
|
||||
|
||||
# Test with batch size larger than total rows
|
||||
oversized_batch = list(some_permutation.iter(10000, skip_last_batch=False))
|
||||
assert len(oversized_batch) == 1
|
||||
assert len(oversized_batch[0]["id"]) == 950
|
||||
|
||||
|
||||
def test_dunder_iter(some_permutation: Permutation):
|
||||
"""Test the __iter__ method."""
|
||||
# __iter__ should use DEFAULT_BATCH_SIZE (100) and skip_last_batch=True
|
||||
batches = list(some_permutation)
|
||||
|
||||
# With DEFAULT_BATCH_SIZE=100 and skip_last_batch=True, we should get 9 batches
|
||||
assert len(batches) == 9 # ceiling(950 / 100)
|
||||
|
||||
# All batches should be full size
|
||||
for batch in batches:
|
||||
assert len(batch["id"]) == 100
|
||||
assert len(batch["value"]) == 100
|
||||
|
||||
some_permutation = some_permutation.with_batch_size(400)
|
||||
batches = list(some_permutation)
|
||||
assert len(batches) == 2 # floor(950 / 400) since skip_last_batch=True
|
||||
for batch in batches:
|
||||
assert len(batch["id"]) == 400
|
||||
assert len(batch["value"]) == 400
|
||||
|
||||
|
||||
def test_iter_with_different_formats(some_permutation: Permutation):
|
||||
"""Test iteration with different output formats."""
|
||||
batch_size = 100
|
||||
|
||||
# Test with arrow format
|
||||
arrow_perm = some_permutation.with_format("arrow")
|
||||
arrow_batches = list(arrow_perm.iter(batch_size, skip_last_batch=False))
|
||||
assert all(isinstance(batch, pa.RecordBatch) for batch in arrow_batches)
|
||||
|
||||
# Test with python format (default)
|
||||
python_perm = some_permutation.with_format("python")
|
||||
python_batches = list(python_perm.iter(batch_size, skip_last_batch=False))
|
||||
assert all(isinstance(batch, dict) for batch in python_batches)
|
||||
|
||||
# Test with pandas format
|
||||
pandas_perm = some_permutation.with_format("pandas")
|
||||
pandas_batches = list(pandas_perm.iter(batch_size, skip_last_batch=False))
|
||||
# Import pandas to check the type
|
||||
import pandas as pd
|
||||
|
||||
assert all(isinstance(batch, pd.DataFrame) for batch in pandas_batches)
|
||||
|
||||
|
||||
def test_iter_with_column_selection(some_permutation: Permutation):
|
||||
"""Test iteration after column selection."""
|
||||
# Select only the id column
|
||||
id_only = some_permutation.select_columns(["id"])
|
||||
batches = list(id_only.iter(100, skip_last_batch=False))
|
||||
|
||||
# Check that batches only contain the id column
|
||||
for batch in batches:
|
||||
assert "id" in batch
|
||||
assert "value" not in batch
|
||||
|
||||
|
||||
def test_iter_with_column_rename(some_permutation: Permutation):
|
||||
"""Test iteration after renaming columns."""
|
||||
renamed = some_permutation.rename_column("value", "data")
|
||||
batches = list(renamed.iter(100, skip_last_batch=False))
|
||||
|
||||
# Check that batches have the renamed column
|
||||
for batch in batches:
|
||||
assert "id" in batch
|
||||
assert "data" in batch
|
||||
assert "value" not in batch
|
||||
|
||||
|
||||
def test_iter_with_limit_offset(some_permutation: Permutation):
|
||||
"""Test iteration with limit and offset."""
|
||||
# Test with offset
|
||||
offset_perm = some_permutation.with_skip(100)
|
||||
offset_batches = list(offset_perm.iter(100, skip_last_batch=False))
|
||||
# Should have 850 rows (950 - 100)
|
||||
expected_batches = math.ceil(850 / 100)
|
||||
assert len(offset_batches) == expected_batches
|
||||
|
||||
# Test with limit
|
||||
limit_perm = some_permutation.with_take(500)
|
||||
limit_batches = list(limit_perm.iter(100, skip_last_batch=False))
|
||||
# Should have 5 batches (500 / 100)
|
||||
assert len(limit_batches) == 5
|
||||
|
||||
no_skip = some_permutation.iter(101, skip_last_batch=False)
|
||||
row_100 = next(no_skip)["id"][100]
|
||||
|
||||
# Test with both limit and offset
|
||||
limited_perm = some_permutation.with_skip(100).with_take(300)
|
||||
limited_batches = list(limited_perm.iter(100, skip_last_batch=False))
|
||||
# Should have 3 batches (300 / 100)
|
||||
assert len(limited_batches) == 3
|
||||
assert limited_batches[0]["id"][0] == row_100
|
||||
|
||||
|
||||
def test_iter_empty_permutation(mem_db):
|
||||
"""Test iteration over an empty permutation."""
|
||||
# Create a table and filter it to be empty
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"id": range(10), "value": range(10)})
|
||||
)
|
||||
permutation_tbl = permutation_builder(tbl).filter("value > 100").execute()
|
||||
with pytest.raises(ValueError, match="No rows found"):
|
||||
Permutation.from_tables(tbl, permutation_tbl)
|
||||
|
||||
|
||||
def test_iter_single_row(mem_db):
|
||||
"""Test iteration over a permutation with a single row."""
|
||||
tbl = mem_db.create_table("test_table", pa.table({"id": [42], "value": [100]}))
|
||||
permutation_tbl = permutation_builder(tbl).execute()
|
||||
perm = Permutation.from_tables(tbl, permutation_tbl)
|
||||
|
||||
# With skip_last_batch=False, should get one batch
|
||||
batches = list(perm.iter(10, skip_last_batch=False))
|
||||
assert len(batches) == 1
|
||||
assert len(batches[0]["id"]) == 1
|
||||
|
||||
# With skip_last_batch=True, should skip the single row (since it's < batch_size)
|
||||
batches_skip = list(perm.iter(10, skip_last_batch=True))
|
||||
assert len(batches_skip) == 0
|
||||
|
||||
|
||||
def test_identity_permutation(mem_db):
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"id": range(10), "value": range(10)})
|
||||
)
|
||||
permutation = Permutation.identity(tbl)
|
||||
|
||||
assert permutation.num_rows == 10
|
||||
assert permutation.num_columns == 2
|
||||
|
||||
batches = list(permutation.iter(10, skip_last_batch=False))
|
||||
assert len(batches) == 1
|
||||
assert len(batches[0]["id"]) == 10
|
||||
assert len(batches[0]["value"]) == 10
|
||||
|
||||
permutation = permutation.remove_columns(["value"])
|
||||
assert permutation.num_columns == 1
|
||||
assert permutation.schema == pa.schema([("id", pa.int64())])
|
||||
assert permutation.column_names == ["id"]
|
||||
assert permutation.shape == (10, 1)
|
||||
|
||||
|
||||
def test_transform_fn(mem_db):
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import polars as pl
|
||||
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"id": range(10), "value": range(10)})
|
||||
)
|
||||
permutation = Permutation.identity(tbl)
|
||||
|
||||
np_result = list(permutation.with_format("numpy").iter(10, skip_last_batch=False))[
|
||||
0
|
||||
]
|
||||
assert np_result.shape == (10, 2)
|
||||
assert np_result.dtype == np.int64
|
||||
assert isinstance(np_result, np.ndarray)
|
||||
|
||||
pd_result = list(permutation.with_format("pandas").iter(10, skip_last_batch=False))[
|
||||
0
|
||||
]
|
||||
assert pd_result.shape == (10, 2)
|
||||
assert pd_result.dtypes.tolist() == [np.int64, np.int64]
|
||||
assert isinstance(pd_result, pd.DataFrame)
|
||||
|
||||
pl_result = list(permutation.with_format("polars").iter(10, skip_last_batch=False))[
|
||||
0
|
||||
]
|
||||
assert pl_result.shape == (10, 2)
|
||||
assert pl_result.dtypes == [pl.Int64, pl.Int64]
|
||||
assert isinstance(pl_result, pl.DataFrame)
|
||||
|
||||
py_result = list(permutation.with_format("python").iter(10, skip_last_batch=False))[
|
||||
0
|
||||
]
|
||||
assert len(py_result) == 2
|
||||
assert len(py_result["id"]) == 10
|
||||
assert len(py_result["value"]) == 10
|
||||
assert isinstance(py_result, dict)
|
||||
|
||||
try:
|
||||
import torch
|
||||
|
||||
torch_result = list(
|
||||
permutation.with_format("torch").iter(10, skip_last_batch=False)
|
||||
)[0]
|
||||
assert torch_result.shape == (2, 10)
|
||||
assert torch_result.dtype == torch.int64
|
||||
assert isinstance(torch_result, torch.Tensor)
|
||||
except ImportError:
|
||||
# Skip check if torch is not installed
|
||||
pass
|
||||
|
||||
arrow_result = list(
|
||||
permutation.with_format("arrow").iter(10, skip_last_batch=False)
|
||||
)[0]
|
||||
assert arrow_result.shape == (10, 2)
|
||||
assert arrow_result.schema == pa.schema([("id", pa.int64()), ("value", pa.int64())])
|
||||
assert isinstance(arrow_result, pa.RecordBatch)
|
||||
|
||||
|
||||
def test_custom_transform(mem_db):
|
||||
tbl = mem_db.create_table(
|
||||
"test_table", pa.table({"id": range(10), "value": range(10)})
|
||||
)
|
||||
permutation = Permutation.identity(tbl)
|
||||
|
||||
def transform(batch: pa.RecordBatch) -> pa.RecordBatch:
|
||||
return batch.select(["id"])
|
||||
|
||||
transformed = permutation.with_transform(transform)
|
||||
batches = list(transformed.iter(10, skip_last_batch=False))
|
||||
assert len(batches) == 1
|
||||
batch = batches[0]
|
||||
|
||||
assert batch == pa.record_batch([range(10)], ["id"])
|
||||
|
||||
@@ -1298,6 +1298,79 @@ async def test_query_serialization_async(table_async: AsyncTable):
|
||||
)
|
||||
|
||||
|
||||
def test_query_schema(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
tbl = db.create_table(
|
||||
"test",
|
||||
pa.table(
|
||||
{
|
||||
"a": [1, 2, 3],
|
||||
"text": ["a", "b", "c"],
|
||||
"vec": pa.array(
|
||||
[[1, 2], [3, 4], [5, 6]], pa.list_(pa.float32(), list_size=2)
|
||||
),
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
assert tbl.search(None).output_schema() == pa.schema(
|
||||
{
|
||||
"a": pa.int64(),
|
||||
"text": pa.string(),
|
||||
"vec": pa.list_(pa.float32(), list_size=2),
|
||||
}
|
||||
)
|
||||
assert tbl.search(None).select({"bl": "a * 2"}).output_schema() == pa.schema(
|
||||
{"bl": pa.int64()}
|
||||
)
|
||||
assert tbl.search([1, 2]).select(["a"]).output_schema() == pa.schema(
|
||||
{"a": pa.int64(), "_distance": pa.float32()}
|
||||
)
|
||||
assert tbl.search("blah").select(["a"]).output_schema() == pa.schema(
|
||||
{"a": pa.int64()}
|
||||
)
|
||||
assert tbl.take_offsets([0]).select(["text"]).output_schema() == pa.schema(
|
||||
{"text": pa.string()}
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_schema_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
tbl = await db.create_table(
|
||||
"test",
|
||||
pa.table(
|
||||
{
|
||||
"a": [1, 2, 3],
|
||||
"text": ["a", "b", "c"],
|
||||
"vec": pa.array(
|
||||
[[1, 2], [3, 4], [5, 6]], pa.list_(pa.float32(), list_size=2)
|
||||
),
|
||||
}
|
||||
),
|
||||
)
|
||||
|
||||
assert await tbl.query().output_schema() == pa.schema(
|
||||
{
|
||||
"a": pa.int64(),
|
||||
"text": pa.string(),
|
||||
"vec": pa.list_(pa.float32(), list_size=2),
|
||||
}
|
||||
)
|
||||
assert await tbl.query().select({"bl": "a * 2"}).output_schema() == pa.schema(
|
||||
{"bl": pa.int64()}
|
||||
)
|
||||
assert await tbl.vector_search([1, 2]).select(["a"]).output_schema() == pa.schema(
|
||||
{"a": pa.int64(), "_distance": pa.float32()}
|
||||
)
|
||||
assert await (await tbl.search("blah")).select(["a"]).output_schema() == pa.schema(
|
||||
{"a": pa.int64()}
|
||||
)
|
||||
assert await tbl.take_offsets([0]).select(["text"]).output_schema() == pa.schema(
|
||||
{"text": pa.string()}
|
||||
)
|
||||
|
||||
|
||||
def test_query_timeout(tmp_path):
|
||||
# Use local directory instead of memory:// to add a bit of latency to
|
||||
# operations so a timeout of zero will trigger exceptions.
|
||||
|
||||
@@ -484,7 +484,7 @@ def test_jina_reranker(tmp_path, use_tantivy):
|
||||
@pytest.mark.parametrize("use_tantivy", [True, False])
|
||||
def test_voyageai_reranker(tmp_path, use_tantivy):
|
||||
pytest.importorskip("voyageai")
|
||||
reranker = VoyageAIReranker(model_name="rerank-2")
|
||||
reranker = VoyageAIReranker(model_name="rerank-2.5")
|
||||
table, schema = get_test_table(tmp_path, use_tantivy)
|
||||
_run_test_reranker(reranker, table, "single player experience", None, schema)
|
||||
|
||||
|
||||
@@ -3,19 +3,11 @@
|
||||
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from lancedb.util import tbl_to_tensor
|
||||
|
||||
torch = pytest.importorskip("torch")
|
||||
|
||||
|
||||
def tbl_to_tensor(tbl):
|
||||
def to_tensor(col: pa.ChunkedArray):
|
||||
if col.num_chunks > 1:
|
||||
raise Exception("Single batch was too large to fit into a one-chunk table")
|
||||
return torch.from_dlpack(col.chunk(0))
|
||||
|
||||
return torch.stack([to_tensor(tbl.column(i)) for i in range(tbl.num_columns)])
|
||||
|
||||
|
||||
def test_table_dataloader(mem_db):
|
||||
table = mem_db.create_table("test_table", pa.table({"a": range(1000)}))
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
|
||||
@@ -6,7 +6,7 @@ use std::{collections::HashMap, sync::Arc, time::Duration};
|
||||
use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow};
|
||||
use lancedb::{
|
||||
connection::Connection as LanceConnection,
|
||||
database::{CreateTableMode, ReadConsistency},
|
||||
database::{CreateTableMode, Database, ReadConsistency},
|
||||
};
|
||||
use pyo3::{
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
@@ -42,6 +42,10 @@ impl Connection {
|
||||
_ => Err(PyValueError::new_err(format!("Invalid mode {}", mode))),
|
||||
}
|
||||
}
|
||||
|
||||
pub fn database(&self) -> PyResult<Arc<dyn Database>> {
|
||||
Ok(self.get_inner()?.database().clone())
|
||||
}
|
||||
}
|
||||
|
||||
#[pymethods]
|
||||
|
||||
@@ -5,7 +5,7 @@ use arrow::RecordBatchStream;
|
||||
use connection::{connect, Connection};
|
||||
use env_logger::Env;
|
||||
use index::IndexConfig;
|
||||
use permutation::PyAsyncPermutationBuilder;
|
||||
use permutation::{PyAsyncPermutationBuilder, PyPermutationReader};
|
||||
use pyo3::{
|
||||
pymodule,
|
||||
types::{PyModule, PyModuleMethods},
|
||||
@@ -52,9 +52,11 @@ pub fn _lancedb(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
|
||||
m.add_class::<DropColumnsResult>()?;
|
||||
m.add_class::<UpdateResult>()?;
|
||||
m.add_class::<PyAsyncPermutationBuilder>()?;
|
||||
m.add_class::<PyPermutationReader>()?;
|
||||
m.add_function(wrap_pyfunction!(connect, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(permutation::async_permutation_builder, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(util::validate_table_name, m)?)?;
|
||||
m.add_function(wrap_pyfunction!(query::fts_query_to_json, m)?)?;
|
||||
m.add("__version__", env!("CARGO_PKG_VERSION"))?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
@@ -3,23 +3,29 @@
|
||||
|
||||
use std::sync::{Arc, Mutex};
|
||||
|
||||
use crate::{error::PythonErrorExt, table::Table};
|
||||
use lancedb::dataloader::{
|
||||
permutation::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
|
||||
split::{SplitSizes, SplitStrategy},
|
||||
use crate::{
|
||||
arrow::RecordBatchStream, connection::Connection, error::PythonErrorExt, table::Table,
|
||||
};
|
||||
use arrow::pyarrow::ToPyArrow;
|
||||
use lancedb::{
|
||||
dataloader::permutation::{
|
||||
builder::{PermutationBuilder as LancePermutationBuilder, ShuffleStrategy},
|
||||
reader::PermutationReader,
|
||||
split::{SplitSizes, SplitStrategy},
|
||||
},
|
||||
query::Select,
|
||||
};
|
||||
use pyo3::{
|
||||
exceptions::PyRuntimeError, pyclass, pymethods, types::PyAnyMethods, Bound, PyAny, PyRefMut,
|
||||
PyResult,
|
||||
exceptions::PyRuntimeError,
|
||||
pyclass, pymethods,
|
||||
types::{PyAnyMethods, PyDict, PyDictMethods, PyType},
|
||||
Bound, PyAny, PyRef, PyRefMut, PyResult, Python,
|
||||
};
|
||||
use pyo3_async_runtimes::tokio::future_into_py;
|
||||
|
||||
/// Create a permutation builder for the given table
|
||||
#[pyo3::pyfunction]
|
||||
pub fn async_permutation_builder(
|
||||
table: Bound<'_, PyAny>,
|
||||
dest_table_name: String,
|
||||
) -> PyResult<PyAsyncPermutationBuilder> {
|
||||
pub fn async_permutation_builder(table: Bound<'_, PyAny>) -> PyResult<PyAsyncPermutationBuilder> {
|
||||
let table = table.getattr("_inner")?.downcast_into::<Table>()?;
|
||||
let inner_table = table.borrow().inner_ref()?.clone();
|
||||
let inner_builder = LancePermutationBuilder::new(inner_table);
|
||||
@@ -27,14 +33,12 @@ pub fn async_permutation_builder(
|
||||
Ok(PyAsyncPermutationBuilder {
|
||||
state: Arc::new(Mutex::new(PyAsyncPermutationBuilderState {
|
||||
builder: Some(inner_builder),
|
||||
dest_table_name,
|
||||
})),
|
||||
})
|
||||
}
|
||||
|
||||
struct PyAsyncPermutationBuilderState {
|
||||
builder: Option<LancePermutationBuilder>,
|
||||
dest_table_name: String,
|
||||
}
|
||||
|
||||
#[pyclass(name = "AsyncPermutationBuilder")]
|
||||
@@ -61,13 +65,32 @@ impl PyAsyncPermutationBuilder {
|
||||
|
||||
#[pymethods]
|
||||
impl PyAsyncPermutationBuilder {
|
||||
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None, seed=None))]
|
||||
#[pyo3(signature = (database, table_name))]
|
||||
pub fn persist(
|
||||
slf: PyRefMut<'_, Self>,
|
||||
database: Bound<'_, PyAny>,
|
||||
table_name: String,
|
||||
) -> PyResult<Self> {
|
||||
let conn = if database.hasattr("_conn")? {
|
||||
database
|
||||
.getattr("_conn")?
|
||||
.getattr("_inner")?
|
||||
.downcast_into::<Connection>()?
|
||||
} else {
|
||||
database.getattr("_inner")?.downcast_into::<Connection>()?
|
||||
};
|
||||
let database = conn.borrow().database()?;
|
||||
slf.modify(|builder| builder.persist(database, table_name))
|
||||
}
|
||||
|
||||
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None, seed=None, split_names=None))]
|
||||
pub fn split_random(
|
||||
slf: PyRefMut<'_, Self>,
|
||||
ratios: Option<Vec<f64>>,
|
||||
counts: Option<Vec<u64>>,
|
||||
fixed: Option<u64>,
|
||||
seed: Option<u64>,
|
||||
split_names: Option<Vec<String>>,
|
||||
) -> PyResult<Self> {
|
||||
// Check that exactly one split type is provided
|
||||
let split_args_count = [ratios.is_some(), counts.is_some(), fixed.is_some()]
|
||||
@@ -91,31 +114,38 @@ impl PyAsyncPermutationBuilder {
|
||||
unreachable!("One of the split arguments must be provided");
|
||||
};
|
||||
|
||||
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Random { seed, sizes }))
|
||||
slf.modify(|builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Random { seed, sizes }, split_names)
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (columns, split_weights, *, discard_weight=0))]
|
||||
#[pyo3(signature = (columns, split_weights, *, discard_weight=0, split_names=None))]
|
||||
pub fn split_hash(
|
||||
slf: PyRefMut<'_, Self>,
|
||||
columns: Vec<String>,
|
||||
split_weights: Vec<u64>,
|
||||
discard_weight: u64,
|
||||
split_names: Option<Vec<String>>,
|
||||
) -> PyResult<Self> {
|
||||
slf.modify(|builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Hash {
|
||||
columns,
|
||||
split_weights,
|
||||
discard_weight,
|
||||
})
|
||||
builder.with_split_strategy(
|
||||
SplitStrategy::Hash {
|
||||
columns,
|
||||
split_weights,
|
||||
discard_weight,
|
||||
},
|
||||
split_names,
|
||||
)
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None))]
|
||||
#[pyo3(signature = (*, ratios=None, counts=None, fixed=None, split_names=None))]
|
||||
pub fn split_sequential(
|
||||
slf: PyRefMut<'_, Self>,
|
||||
ratios: Option<Vec<f64>>,
|
||||
counts: Option<Vec<u64>>,
|
||||
fixed: Option<u64>,
|
||||
split_names: Option<Vec<String>>,
|
||||
) -> PyResult<Self> {
|
||||
// Check that exactly one split type is provided
|
||||
let split_args_count = [ratios.is_some(), counts.is_some(), fixed.is_some()]
|
||||
@@ -139,11 +169,19 @@ impl PyAsyncPermutationBuilder {
|
||||
unreachable!("One of the split arguments must be provided");
|
||||
};
|
||||
|
||||
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Sequential { sizes }))
|
||||
slf.modify(|builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Sequential { sizes }, split_names)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn split_calculated(slf: PyRefMut<'_, Self>, calculation: String) -> PyResult<Self> {
|
||||
slf.modify(|builder| builder.with_split_strategy(SplitStrategy::Calculated { calculation }))
|
||||
pub fn split_calculated(
|
||||
slf: PyRefMut<'_, Self>,
|
||||
calculation: String,
|
||||
split_names: Option<Vec<String>>,
|
||||
) -> PyResult<Self> {
|
||||
slf.modify(|builder| {
|
||||
builder.with_split_strategy(SplitStrategy::Calculated { calculation }, split_names)
|
||||
})
|
||||
}
|
||||
|
||||
pub fn shuffle(
|
||||
@@ -167,11 +205,127 @@ impl PyAsyncPermutationBuilder {
|
||||
.take()
|
||||
.ok_or_else(|| PyRuntimeError::new_err("Builder already consumed"))?;
|
||||
|
||||
let dest_table_name = std::mem::take(&mut state.dest_table_name);
|
||||
|
||||
future_into_py(slf.py(), async move {
|
||||
let table = builder.build(&dest_table_name).await.infer_error()?;
|
||||
let table = builder.build().await.infer_error()?;
|
||||
Ok(Table::new(table))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[pyclass(name = "PermutationReader")]
|
||||
pub struct PyPermutationReader {
|
||||
reader: Arc<PermutationReader>,
|
||||
}
|
||||
|
||||
impl PyPermutationReader {
|
||||
fn from_reader(reader: PermutationReader) -> Self {
|
||||
Self {
|
||||
reader: Arc::new(reader),
|
||||
}
|
||||
}
|
||||
|
||||
fn parse_selection(selection: Option<Bound<'_, PyAny>>) -> PyResult<Select> {
|
||||
let Some(selection) = selection else {
|
||||
return Ok(Select::All);
|
||||
};
|
||||
let selection = selection.downcast_into::<PyDict>()?;
|
||||
let selection = selection
|
||||
.iter()
|
||||
.map(|(key, value)| {
|
||||
let key = key.extract::<String>()?;
|
||||
let value = value.extract::<String>()?;
|
||||
Ok((key, value))
|
||||
})
|
||||
.collect::<PyResult<Vec<_>>>()?;
|
||||
Ok(Select::dynamic(&selection))
|
||||
}
|
||||
}
|
||||
|
||||
#[pymethods]
|
||||
impl PyPermutationReader {
|
||||
#[classmethod]
|
||||
pub fn from_tables<'py>(
|
||||
cls: &Bound<'py, PyType>,
|
||||
base_table: Bound<'py, PyAny>,
|
||||
permutation_table: Option<Bound<'py, PyAny>>,
|
||||
split: u64,
|
||||
) -> PyResult<Bound<'py, PyAny>> {
|
||||
let base_table = base_table.getattr("_inner")?.downcast_into::<Table>()?;
|
||||
let permutation_table = permutation_table
|
||||
.map(|p| PyResult::Ok(p.getattr("_inner")?.downcast_into::<Table>()?))
|
||||
.transpose()?;
|
||||
|
||||
let base_table = base_table.borrow().inner_ref()?.base_table().clone();
|
||||
let permutation_table = permutation_table
|
||||
.map(|p| PyResult::Ok(p.borrow().inner_ref()?.base_table().clone()))
|
||||
.transpose()?;
|
||||
|
||||
future_into_py(cls.py(), async move {
|
||||
let reader = if let Some(permutation_table) = permutation_table {
|
||||
PermutationReader::try_from_tables(base_table, permutation_table, split)
|
||||
.await
|
||||
.infer_error()?
|
||||
} else {
|
||||
PermutationReader::identity(base_table).await
|
||||
};
|
||||
Ok(Self::from_reader(reader))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (selection=None))]
|
||||
pub fn output_schema<'py>(
|
||||
slf: PyRef<'py, Self>,
|
||||
selection: Option<Bound<'py, PyAny>>,
|
||||
) -> PyResult<Bound<'py, PyAny>> {
|
||||
let selection = Self::parse_selection(selection)?;
|
||||
let reader = slf.reader.clone();
|
||||
future_into_py(slf.py(), async move {
|
||||
let schema = reader.output_schema(selection).await.infer_error()?;
|
||||
Python::with_gil(|py| schema.to_pyarrow(py))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = ())]
|
||||
pub fn count_rows<'py>(slf: PyRef<'py, Self>) -> u64 {
|
||||
slf.reader.count_rows()
|
||||
}
|
||||
|
||||
#[pyo3(signature = (offset))]
|
||||
pub fn with_offset<'py>(slf: PyRef<'py, Self>, offset: u64) -> PyResult<Bound<'py, PyAny>> {
|
||||
let reader = slf.reader.as_ref().clone();
|
||||
future_into_py(slf.py(), async move {
|
||||
let reader = reader.with_offset(offset).await.infer_error()?;
|
||||
Ok(Self::from_reader(reader))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (limit))]
|
||||
pub fn with_limit<'py>(slf: PyRef<'py, Self>, limit: u64) -> PyResult<Bound<'py, PyAny>> {
|
||||
let reader = slf.reader.as_ref().clone();
|
||||
future_into_py(slf.py(), async move {
|
||||
let reader = reader.with_limit(limit).await.infer_error()?;
|
||||
Ok(Self::from_reader(reader))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (selection=None, *, batch_size=None))]
|
||||
pub fn read<'py>(
|
||||
slf: PyRef<'py, Self>,
|
||||
selection: Option<Bound<'py, PyAny>>,
|
||||
batch_size: Option<u32>,
|
||||
) -> PyResult<Bound<'py, PyAny>> {
|
||||
let selection = Self::parse_selection(selection)?;
|
||||
let reader = slf.reader.clone();
|
||||
let batch_size = batch_size.unwrap_or(1024);
|
||||
future_into_py(slf.py(), async move {
|
||||
use lancedb::query::QueryExecutionOptions;
|
||||
let mut execution_options = QueryExecutionOptions::default();
|
||||
execution_options.max_batch_length = batch_size;
|
||||
let stream = reader
|
||||
.read(selection, execution_options)
|
||||
.await
|
||||
.infer_error()?;
|
||||
Ok(RecordBatchStream::new(stream))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
@@ -9,6 +9,7 @@ use arrow::array::Array;
|
||||
use arrow::array::ArrayData;
|
||||
use arrow::pyarrow::FromPyArrow;
|
||||
use arrow::pyarrow::IntoPyArrow;
|
||||
use arrow::pyarrow::ToPyArrow;
|
||||
use lancedb::index::scalar::{
|
||||
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
|
||||
Operator, PhraseQuery,
|
||||
@@ -22,6 +23,7 @@ use lancedb::query::{
|
||||
};
|
||||
use lancedb::table::AnyQuery;
|
||||
use pyo3::prelude::{PyAnyMethods, PyDictMethods};
|
||||
use pyo3::pyfunction;
|
||||
use pyo3::pymethods;
|
||||
use pyo3::types::PyList;
|
||||
use pyo3::types::{PyDict, PyString};
|
||||
@@ -30,6 +32,7 @@ use pyo3::IntoPyObject;
|
||||
use pyo3::PyAny;
|
||||
use pyo3::PyRef;
|
||||
use pyo3::PyResult;
|
||||
use pyo3::Python;
|
||||
use pyo3::{exceptions::PyRuntimeError, FromPyObject};
|
||||
use pyo3::{
|
||||
exceptions::{PyNotImplementedError, PyValueError},
|
||||
@@ -445,6 +448,15 @@ impl Query {
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = ())]
|
||||
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let schema = inner.output_schema().await.infer_error()?;
|
||||
Python::with_gil(|py| schema.to_pyarrow(py))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
||||
pub fn execute(
|
||||
self_: PyRef<'_, Self>,
|
||||
@@ -515,6 +527,15 @@ impl TakeQuery {
|
||||
self.inner = self.inner.clone().with_row_id();
|
||||
}
|
||||
|
||||
#[pyo3(signature = ())]
|
||||
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let schema = inner.output_schema().await.infer_error()?;
|
||||
Python::with_gil(|py| schema.to_pyarrow(py))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
||||
pub fn execute(
|
||||
self_: PyRef<'_, Self>,
|
||||
@@ -601,6 +622,15 @@ impl FTSQuery {
|
||||
self.inner = self.inner.clone().postfilter();
|
||||
}
|
||||
|
||||
#[pyo3(signature = ())]
|
||||
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let schema = inner.output_schema().await.infer_error()?;
|
||||
Python::with_gil(|py| schema.to_pyarrow(py))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
||||
pub fn execute(
|
||||
self_: PyRef<'_, Self>,
|
||||
@@ -771,6 +801,15 @@ impl VectorQuery {
|
||||
self.inner = self.inner.clone().bypass_vector_index()
|
||||
}
|
||||
|
||||
#[pyo3(signature = ())]
|
||||
pub fn output_schema(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
|
||||
let inner = self_.inner.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let schema = inner.output_schema().await.infer_error()?;
|
||||
Python::with_gil(|py| schema.to_pyarrow(py))
|
||||
})
|
||||
}
|
||||
|
||||
#[pyo3(signature = (max_batch_length=None, timeout=None))]
|
||||
pub fn execute(
|
||||
self_: PyRef<'_, Self>,
|
||||
@@ -944,3 +983,15 @@ impl HybridQuery {
|
||||
req
|
||||
}
|
||||
}
|
||||
|
||||
/// Convert a Python FTS query to JSON string
|
||||
#[pyfunction]
|
||||
pub fn fts_query_to_json(query_obj: &Bound<'_, PyAny>) -> PyResult<String> {
|
||||
let wrapped: PyLanceDB<FtsQuery> = query_obj.extract()?;
|
||||
lancedb::table::datafusion::udtf::fts::to_json(&wrapped.0).map_err(|e| {
|
||||
PyErr::new::<pyo3::exceptions::PyValueError, _>(format!(
|
||||
"Failed to serialize FTS query to JSON: {}",
|
||||
e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
@@ -1,58 +0,0 @@
|
||||
import requests
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
import importlib
|
||||
import io
|
||||
import os
|
||||
|
||||
import lancedb
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from lancedb.embeddings import get_registry
|
||||
from lancedb.pydantic import LanceModel, Vector, MultiVector
|
||||
|
||||
db = lancedb.connect("~/.db")
|
||||
registry = get_registry()
|
||||
func = registry.get("multimodal-late-interaction").create(
|
||||
model_name="vidore/colQwen2.5-v0.2",
|
||||
device="auto",
|
||||
batch_size=1,
|
||||
)
|
||||
|
||||
class MediaItems(LanceModel):
|
||||
text: str
|
||||
image_uri: str = func.SourceField()
|
||||
image_bytes: bytes = func.SourceField()
|
||||
image_vectors: MultiVector(func.ndims()) = func.VectorField()
|
||||
|
||||
table = db.create_table("media", schema=MediaItems, mode="overwrite")
|
||||
|
||||
texts = [
|
||||
"a cute cat playing with yarn",
|
||||
"a puppy in a flower field",
|
||||
"a red sports car on the highway",
|
||||
]
|
||||
|
||||
uris = [
|
||||
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
|
||||
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
|
||||
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
|
||||
]
|
||||
|
||||
image_bytes = [requests.get(uri).content for uri in uris]
|
||||
|
||||
table.add(
|
||||
pd.DataFrame({"text": texts, "image_uri": uris, "image_bytes": image_bytes})
|
||||
)
|
||||
|
||||
result = (
|
||||
table.search("fluffy companion", vector_column_name="image_vectors")
|
||||
.limit(1)
|
||||
.to_pydantic(MediaItems)[0]
|
||||
)
|
||||
assert any(keyword in result.text.lower() for keyword in ("cat", "puppy"))
|
||||
|
||||
first_row = table.to_arrow().to_pylist()[0]
|
||||
assert len(first_row["image_vectors"]) > 1
|
||||
assert len(first_row["image_vectors"][0]) == func.ndims()
|
||||
@@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "lancedb"
|
||||
version = "0.22.2"
|
||||
version = "0.22.3-beta.5"
|
||||
edition.workspace = true
|
||||
description = "LanceDB: A serverless, low-latency vector database for AI applications"
|
||||
license.workspace = true
|
||||
@@ -16,6 +16,7 @@ arrow = { workspace = true }
|
||||
arrow-array = { workspace = true }
|
||||
arrow-data = { workspace = true }
|
||||
arrow-schema = { workspace = true }
|
||||
arrow-select = { workspace = true }
|
||||
arrow-ord = { workspace = true }
|
||||
arrow-cast = { workspace = true }
|
||||
arrow-ipc.workspace = true
|
||||
@@ -41,7 +42,9 @@ lance-table = { workspace = true }
|
||||
lance-linalg = { workspace = true }
|
||||
lance-testing = { workspace = true }
|
||||
lance-encoding = { workspace = true }
|
||||
lance-arrow = { workspace = true }
|
||||
lance-namespace = { workspace = true }
|
||||
lance-namespace-impls = { workspace = true }
|
||||
moka = { workspace = true }
|
||||
pin-project = { workspace = true }
|
||||
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
||||
@@ -83,10 +86,6 @@ candle-nn = { version = "0.9.1", optional = true }
|
||||
tokenizers = { version = "0.19.1", optional = true }
|
||||
semver = { workspace = true }
|
||||
|
||||
# For a workaround, see workspace Cargo.toml
|
||||
crunchy.workspace = true
|
||||
bytemuck_derive.workspace = true
|
||||
|
||||
[dev-dependencies]
|
||||
anyhow = "1"
|
||||
tempfile = "3.5.0"
|
||||
|
||||
@@ -1182,13 +1182,13 @@ mod tests {
|
||||
use crate::database::listing::{ListingDatabaseOptions, NewTableConfig};
|
||||
use crate::query::QueryBase;
|
||||
use crate::query::{ExecutableQuery, QueryExecutionOptions};
|
||||
use crate::test_connection::test_utils::new_test_connection;
|
||||
use crate::test_utils::connection::new_test_connection;
|
||||
use arrow::compute::concat_batches;
|
||||
use arrow_array::RecordBatchReader;
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
use datafusion_physical_plan::stream::RecordBatchStreamAdapter;
|
||||
use futures::{stream, TryStreamExt};
|
||||
use lance::error::{ArrowResult, DataFusionResult};
|
||||
use lance_core::error::{ArrowResult, DataFusionResult};
|
||||
use lance_testing::datagen::{BatchGenerator, IncrementingInt32};
|
||||
use tempfile::tempdir;
|
||||
|
||||
|
||||
@@ -12,7 +12,7 @@ use arrow_array::{
|
||||
use arrow_cast::{can_cast_types, cast};
|
||||
use arrow_schema::{ArrowError, DataType, Field, Schema};
|
||||
use half::f16;
|
||||
use lance::arrow::{DataTypeExt, FixedSizeListArrayExt};
|
||||
use lance_arrow::{DataTypeExt, FixedSizeListArrayExt};
|
||||
use log::warn;
|
||||
use num_traits::cast::AsPrimitive;
|
||||
|
||||
@@ -189,7 +189,7 @@ mod tests {
|
||||
};
|
||||
use arrow_schema::Field;
|
||||
use half::f16;
|
||||
use lance::arrow::FixedSizeListArrayExt;
|
||||
use lance_arrow::FixedSizeListArrayExt;
|
||||
|
||||
#[test]
|
||||
fn test_coerce_list_to_fixed_size_list() {
|
||||
|
||||
@@ -455,6 +455,7 @@ impl ListingDatabase {
|
||||
// `remove_dir_all` may be used to remove something not be a dataset
|
||||
lance::Error::NotFound { .. } => Error::TableNotFound {
|
||||
name: name.to_owned(),
|
||||
source: Box::new(err),
|
||||
},
|
||||
_ => Error::from(err),
|
||||
})?;
|
||||
|
||||
@@ -8,13 +8,13 @@ use std::sync::Arc;
|
||||
|
||||
use async_trait::async_trait;
|
||||
use lance_namespace::{
|
||||
connect as connect_namespace,
|
||||
models::{
|
||||
CreateEmptyTableRequest, CreateNamespaceRequest, DescribeTableRequest,
|
||||
DropNamespaceRequest, DropTableRequest, ListNamespacesRequest, ListTablesRequest,
|
||||
},
|
||||
LanceNamespace,
|
||||
};
|
||||
use lance_namespace_impls::ConnectBuilder;
|
||||
|
||||
use crate::database::listing::ListingDatabase;
|
||||
use crate::error::{Error, Result};
|
||||
@@ -48,11 +48,16 @@ impl LanceNamespaceDatabase {
|
||||
read_consistency_interval: Option<std::time::Duration>,
|
||||
session: Option<Arc<lance::session::Session>>,
|
||||
) -> Result<Self> {
|
||||
let namespace = connect_namespace(ns_impl, ns_properties.clone())
|
||||
.await
|
||||
.map_err(|e| Error::InvalidInput {
|
||||
message: format!("Failed to connect to namespace: {:?}", e),
|
||||
})?;
|
||||
let mut builder = ConnectBuilder::new(ns_impl);
|
||||
for (key, value) in ns_properties.clone() {
|
||||
builder = builder.property(key, value);
|
||||
}
|
||||
if let Some(ref sess) = session {
|
||||
builder = builder.session(sess.clone());
|
||||
}
|
||||
let namespace = builder.connect().await.map_err(|e| Error::InvalidInput {
|
||||
message: format!("Failed to connect to namespace: {:?}", e),
|
||||
})?;
|
||||
|
||||
Ok(Self {
|
||||
namespace,
|
||||
|
||||
@@ -2,6 +2,3 @@
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
pub mod permutation;
|
||||
pub mod shuffle;
|
||||
pub mod split;
|
||||
pub mod util;
|
||||
|
||||
@@ -7,288 +7,12 @@
|
||||
//! The permutation table only stores the split ids and row ids. It is not a materialized copy of
|
||||
//! the underlying data and can be very lightweight.
|
||||
//!
|
||||
//! Building a permutation table should be fairly quick and memory efficient, even for billions or
|
||||
//! trillions of rows.
|
||||
//! Building a permutation table should be fairly quick (it is an O(N) operation where N is
|
||||
//! the number of rows in the base table) and memory efficient, even for billions or trillions
|
||||
//! of rows.
|
||||
|
||||
use datafusion::prelude::{SessionConfig, SessionContext};
|
||||
use datafusion_execution::{disk_manager::DiskManagerBuilder, runtime_env::RuntimeEnvBuilder};
|
||||
use datafusion_expr::col;
|
||||
use futures::TryStreamExt;
|
||||
use lance_datafusion::exec::SessionContextExt;
|
||||
|
||||
use crate::{
|
||||
arrow::{SendableRecordBatchStream, SendableRecordBatchStreamExt, SimpleRecordBatchStream},
|
||||
dataloader::{
|
||||
shuffle::{Shuffler, ShufflerConfig},
|
||||
split::{SplitStrategy, Splitter, SPLIT_ID_COLUMN},
|
||||
util::{rename_column, TemporaryDirectory},
|
||||
},
|
||||
query::{ExecutableQuery, QueryBase},
|
||||
Connection, Error, Result, Table,
|
||||
};
|
||||
|
||||
/// Configuration for creating a permutation table
|
||||
#[derive(Debug, Default)]
|
||||
pub struct PermutationConfig {
|
||||
/// Splitting configuration
|
||||
pub split_strategy: SplitStrategy,
|
||||
/// Shuffle strategy
|
||||
pub shuffle_strategy: ShuffleStrategy,
|
||||
/// Optional filter to apply to the base table
|
||||
pub filter: Option<String>,
|
||||
/// Directory to use for temporary files
|
||||
pub temp_dir: TemporaryDirectory,
|
||||
}
|
||||
|
||||
/// Strategy for shuffling the data.
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum ShuffleStrategy {
|
||||
/// The data is randomly shuffled
|
||||
///
|
||||
/// A seed can be provided to make the shuffle deterministic.
|
||||
///
|
||||
/// If a clump size is provided, then data will be shuffled in small blocks of contiguous rows.
|
||||
/// This decreases the overall randomization but can improve I/O performance when reading from
|
||||
/// cloud storage.
|
||||
///
|
||||
/// For example, a clump size of 16 will means we will shuffle blocks of 16 contiguous rows. This
|
||||
/// will mean 16x fewer IOPS but these 16 rows will always be close together and this can influence
|
||||
/// the performance of the model. Note: shuffling within clumps can still be done at read time but
|
||||
/// this will only provide a local shuffle and not a global shuffle.
|
||||
Random {
|
||||
seed: Option<u64>,
|
||||
clump_size: Option<u64>,
|
||||
},
|
||||
/// The data is not shuffled
|
||||
///
|
||||
/// This is useful for debugging and testing.
|
||||
None,
|
||||
}
|
||||
|
||||
impl Default for ShuffleStrategy {
|
||||
fn default() -> Self {
|
||||
Self::None
|
||||
}
|
||||
}
|
||||
|
||||
/// Builder for creating a permutation table.
|
||||
///
|
||||
/// A permutation table is a table that stores split assignments and a shuffled order of rows. This
|
||||
/// can be used to create a
|
||||
pub struct PermutationBuilder {
|
||||
config: PermutationConfig,
|
||||
base_table: Table,
|
||||
}
|
||||
|
||||
impl PermutationBuilder {
|
||||
pub fn new(base_table: Table) -> Self {
|
||||
Self {
|
||||
config: PermutationConfig::default(),
|
||||
base_table,
|
||||
}
|
||||
}
|
||||
|
||||
/// Configures the strategy for assigning rows to splits.
|
||||
///
|
||||
/// For example, it is common to create a test/train split of the data. Splits can also be used
|
||||
/// to limit the number of rows. For example, to only use 10% of the data in a permutation you can
|
||||
/// create a single split with 10% of the data.
|
||||
///
|
||||
/// Splits are _not_ required for parallel processing. A single split can be loaded in parallel across
|
||||
/// multiple processes and multiple nodes.
|
||||
///
|
||||
/// The default is a single split that contains all rows.
|
||||
pub fn with_split_strategy(mut self, split_strategy: SplitStrategy) -> Self {
|
||||
self.config.split_strategy = split_strategy;
|
||||
self
|
||||
}
|
||||
|
||||
/// Configures the strategy for shuffling the data.
|
||||
///
|
||||
/// The default is to shuffle the data randomly at row-level granularity (no shard size) and
|
||||
/// with a random seed.
|
||||
pub fn with_shuffle_strategy(mut self, shuffle_strategy: ShuffleStrategy) -> Self {
|
||||
self.config.shuffle_strategy = shuffle_strategy;
|
||||
self
|
||||
}
|
||||
|
||||
/// Configures a filter to apply to the base table.
|
||||
///
|
||||
/// Only rows matching the filter will be included in the permutation.
|
||||
pub fn with_filter(mut self, filter: String) -> Self {
|
||||
self.config.filter = Some(filter);
|
||||
self
|
||||
}
|
||||
|
||||
/// Configures the directory to use for temporary files.
|
||||
///
|
||||
/// The default is to use the operating system's default temporary directory.
|
||||
pub fn with_temp_dir(mut self, temp_dir: TemporaryDirectory) -> Self {
|
||||
self.config.temp_dir = temp_dir;
|
||||
self
|
||||
}
|
||||
|
||||
async fn sort_by_split_id(
|
||||
&self,
|
||||
data: SendableRecordBatchStream,
|
||||
) -> Result<SendableRecordBatchStream> {
|
||||
let ctx = SessionContext::new_with_config_rt(
|
||||
SessionConfig::default(),
|
||||
RuntimeEnvBuilder::new()
|
||||
.with_memory_limit(100 * 1024 * 1024, 1.0)
|
||||
.with_disk_manager_builder(
|
||||
DiskManagerBuilder::default()
|
||||
.with_mode(self.config.temp_dir.to_disk_manager_mode()),
|
||||
)
|
||||
.build_arc()
|
||||
.unwrap(),
|
||||
);
|
||||
let df = ctx
|
||||
.read_one_shot(data.into_df_stream())
|
||||
.map_err(|e| Error::Other {
|
||||
message: format!("Failed to setup sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?;
|
||||
let df_stream = df
|
||||
.sort_by(vec![col(SPLIT_ID_COLUMN)])
|
||||
.map_err(|e| Error::Other {
|
||||
message: format!("Failed to plan sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?
|
||||
.execute_stream()
|
||||
.await
|
||||
.map_err(|e| Error::Other {
|
||||
message: format!("Failed to sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?;
|
||||
|
||||
let schema = df_stream.schema();
|
||||
let stream = df_stream.map_err(|e| Error::Other {
|
||||
message: format!("Failed to execute sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
});
|
||||
Ok(Box::pin(SimpleRecordBatchStream { schema, stream }))
|
||||
}
|
||||
|
||||
/// Builds the permutation table and stores it in the given database.
|
||||
pub async fn build(self, dest_table_name: &str) -> Result<Table> {
|
||||
// First pass, apply filter and load row ids
|
||||
let mut rows = self.base_table.query().with_row_id();
|
||||
|
||||
if let Some(filter) = &self.config.filter {
|
||||
rows = rows.only_if(filter);
|
||||
}
|
||||
|
||||
let splitter = Splitter::new(
|
||||
self.config.temp_dir.clone(),
|
||||
self.config.split_strategy.clone(),
|
||||
);
|
||||
|
||||
let mut needs_sort = !splitter.orders_by_split_id();
|
||||
|
||||
// Might need to load additional columns to calculate splits (e.g. hash columns or calculated
|
||||
// split id)
|
||||
rows = splitter.project(rows);
|
||||
|
||||
let num_rows = self
|
||||
.base_table
|
||||
.count_rows(self.config.filter.clone())
|
||||
.await? as u64;
|
||||
|
||||
// Apply splits
|
||||
let rows = rows.execute().await?;
|
||||
let split_data = splitter.apply(rows, num_rows).await?;
|
||||
|
||||
// Shuffle data if requested
|
||||
let shuffled = match self.config.shuffle_strategy {
|
||||
ShuffleStrategy::None => split_data,
|
||||
ShuffleStrategy::Random { seed, clump_size } => {
|
||||
let shuffler = Shuffler::new(ShufflerConfig {
|
||||
seed,
|
||||
clump_size,
|
||||
temp_dir: self.config.temp_dir.clone(),
|
||||
max_rows_per_file: 10 * 1024 * 1024,
|
||||
});
|
||||
shuffler.shuffle(split_data, num_rows).await?
|
||||
}
|
||||
};
|
||||
|
||||
// We want the final permutation to be sorted by the split id. If we shuffled or if
|
||||
// the split was not assigned sequentially then we need to sort the data.
|
||||
needs_sort |= !matches!(self.config.shuffle_strategy, ShuffleStrategy::None);
|
||||
|
||||
let sorted = if needs_sort {
|
||||
self.sort_by_split_id(shuffled).await?
|
||||
} else {
|
||||
shuffled
|
||||
};
|
||||
|
||||
// Rename _rowid to row_id
|
||||
let renamed = rename_column(sorted, "_rowid", "row_id")?;
|
||||
|
||||
// Create permutation table
|
||||
let conn = Connection::new(
|
||||
self.base_table.database().clone(),
|
||||
self.base_table.embedding_registry().clone(),
|
||||
);
|
||||
conn.create_table_streaming(dest_table_name, renamed)
|
||||
.execute()
|
||||
.await
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use arrow::datatypes::Int32Type;
|
||||
use lance_datagen::{BatchCount, RowCount};
|
||||
|
||||
use crate::{arrow::LanceDbDatagenExt, connect, dataloader::split::SplitSizes};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_permutation_builder() {
|
||||
let temp_dir = tempfile::tempdir().unwrap();
|
||||
|
||||
let db = connect(temp_dir.path().to_str().unwrap())
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let initial_data = lance_datagen::gen_batch()
|
||||
.col("some_value", lance_datagen::array::step::<Int32Type>())
|
||||
.into_ldb_stream(RowCount::from(100), BatchCount::from(10));
|
||||
let data_table = db
|
||||
.create_table_streaming("mytbl", initial_data)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let permutation_table = PermutationBuilder::new(data_table)
|
||||
.with_filter("some_value > 57".to_string())
|
||||
.with_split_strategy(SplitStrategy::Random {
|
||||
seed: Some(42),
|
||||
sizes: SplitSizes::Percentages(vec![0.05, 0.30]),
|
||||
})
|
||||
.build("permutation")
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// Potentially brittle seed-dependent values below
|
||||
assert_eq!(permutation_table.count_rows(None).await.unwrap(), 330);
|
||||
assert_eq!(
|
||||
permutation_table
|
||||
.count_rows(Some("split_id = 0".to_string()))
|
||||
.await
|
||||
.unwrap(),
|
||||
47
|
||||
);
|
||||
assert_eq!(
|
||||
permutation_table
|
||||
.count_rows(Some("split_id = 1".to_string()))
|
||||
.await
|
||||
.unwrap(),
|
||||
283
|
||||
);
|
||||
}
|
||||
}
|
||||
pub mod builder;
|
||||
pub mod reader;
|
||||
pub mod shuffle;
|
||||
pub mod split;
|
||||
pub mod util;
|
||||
|
||||
374
rust/lancedb/src/dataloader/permutation/builder.rs
Normal file
374
rust/lancedb/src/dataloader/permutation/builder.rs
Normal file
@@ -0,0 +1,374 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
|
||||
use datafusion::prelude::{SessionConfig, SessionContext};
|
||||
use datafusion_execution::{disk_manager::DiskManagerBuilder, runtime_env::RuntimeEnvBuilder};
|
||||
use datafusion_expr::col;
|
||||
use futures::TryStreamExt;
|
||||
use lance_core::ROW_ID;
|
||||
use lance_datafusion::exec::SessionContextExt;
|
||||
|
||||
use crate::{
|
||||
arrow::{SendableRecordBatchStream, SendableRecordBatchStreamExt, SimpleRecordBatchStream},
|
||||
connect,
|
||||
database::{CreateTableData, CreateTableRequest, Database},
|
||||
dataloader::permutation::{
|
||||
shuffle::{Shuffler, ShufflerConfig},
|
||||
split::{SplitStrategy, Splitter, SPLIT_ID_COLUMN},
|
||||
util::{rename_column, TemporaryDirectory},
|
||||
},
|
||||
query::{ExecutableQuery, QueryBase},
|
||||
Error, Result, Table,
|
||||
};
|
||||
|
||||
pub const SRC_ROW_ID_COL: &str = "row_id";
|
||||
|
||||
pub const SPLIT_NAMES_CONFIG_KEY: &str = "split_names";
|
||||
|
||||
/// Where to store the permutation table
|
||||
#[derive(Debug, Clone, Default)]
|
||||
enum PermutationDestination {
|
||||
/// The permutation table is a temporary table in memory
|
||||
#[default]
|
||||
Temporary,
|
||||
/// The permutation table is a permanent table in a database
|
||||
Permanent(Arc<dyn Database>, String),
|
||||
}
|
||||
|
||||
/// Configuration for creating a permutation table
|
||||
#[derive(Debug, Default)]
|
||||
pub struct PermutationConfig {
|
||||
/// Splitting configuration
|
||||
split_strategy: SplitStrategy,
|
||||
/// Optional names for the splits
|
||||
split_names: Option<Vec<String>>,
|
||||
/// Shuffle strategy
|
||||
shuffle_strategy: ShuffleStrategy,
|
||||
/// Optional filter to apply to the base table
|
||||
filter: Option<String>,
|
||||
/// Directory to use for temporary files
|
||||
temp_dir: TemporaryDirectory,
|
||||
/// Destination
|
||||
destination: PermutationDestination,
|
||||
}
|
||||
|
||||
/// Strategy for shuffling the data.
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum ShuffleStrategy {
|
||||
/// The data is randomly shuffled
|
||||
///
|
||||
/// A seed can be provided to make the shuffle deterministic.
|
||||
///
|
||||
/// If a clump size is provided, then data will be shuffled in small blocks of contiguous rows.
|
||||
/// This decreases the overall randomization but can improve I/O performance when reading from
|
||||
/// cloud storage.
|
||||
///
|
||||
/// For example, a clump size of 16 will means we will shuffle blocks of 16 contiguous rows. This
|
||||
/// will mean 16x fewer IOPS but these 16 rows will always be close together and this can influence
|
||||
/// the performance of the model. Note: shuffling within clumps can still be done at read time but
|
||||
/// this will only provide a local shuffle and not a global shuffle.
|
||||
Random {
|
||||
seed: Option<u64>,
|
||||
clump_size: Option<u64>,
|
||||
},
|
||||
/// The data is not shuffled
|
||||
///
|
||||
/// This is useful for debugging and testing.
|
||||
None,
|
||||
}
|
||||
|
||||
impl Default for ShuffleStrategy {
|
||||
fn default() -> Self {
|
||||
Self::None
|
||||
}
|
||||
}
|
||||
|
||||
/// Builder for creating a permutation table.
|
||||
///
|
||||
/// A permutation table is a table that stores split assignments and a shuffled order of rows. This
|
||||
/// can be used to create a permutation reader that reads rows in the order defined by the permutation.
|
||||
///
|
||||
/// The permutation table is not a materialized copy of the underlying data and can be very lightweight.
|
||||
/// It is not a view of the underlying data and is not a copy of the data. It is a separate table that
|
||||
/// stores just row id and split id.
|
||||
pub struct PermutationBuilder {
|
||||
config: PermutationConfig,
|
||||
base_table: Table,
|
||||
}
|
||||
|
||||
impl PermutationBuilder {
|
||||
pub fn new(base_table: Table) -> Self {
|
||||
Self {
|
||||
config: PermutationConfig::default(),
|
||||
base_table,
|
||||
}
|
||||
}
|
||||
|
||||
/// Configures the strategy for assigning rows to splits.
|
||||
///
|
||||
/// For example, it is common to create a test/train split of the data. Splits can also be used
|
||||
/// to limit the number of rows. For example, to only use 10% of the data in a permutation you can
|
||||
/// create a single split with 10% of the data.
|
||||
///
|
||||
/// Splits are _not_ required for parallel processing. A single split can be loaded in parallel across
|
||||
/// multiple processes and multiple nodes.
|
||||
///
|
||||
/// The default is a single split that contains all rows.
|
||||
///
|
||||
/// An optional list of names can be provided for the splits. This is for convenience and the names
|
||||
/// will be stored in the permutation table's config metadata.
|
||||
pub fn with_split_strategy(
|
||||
mut self,
|
||||
split_strategy: SplitStrategy,
|
||||
split_names: Option<Vec<String>>,
|
||||
) -> Self {
|
||||
self.config.split_strategy = split_strategy;
|
||||
self.config.split_names = split_names;
|
||||
self
|
||||
}
|
||||
|
||||
/// Configures the strategy for shuffling the data.
|
||||
///
|
||||
/// The default is to shuffle the data randomly at row-level granularity (no clump size) and
|
||||
/// with a random seed.
|
||||
pub fn with_shuffle_strategy(mut self, shuffle_strategy: ShuffleStrategy) -> Self {
|
||||
self.config.shuffle_strategy = shuffle_strategy;
|
||||
self
|
||||
}
|
||||
|
||||
/// Configures a filter to apply to the base table.
|
||||
///
|
||||
/// Only rows matching the filter will be included in the permutation.
|
||||
pub fn with_filter(mut self, filter: String) -> Self {
|
||||
self.config.filter = Some(filter);
|
||||
self
|
||||
}
|
||||
|
||||
/// Configures the directory to use for temporary files.
|
||||
///
|
||||
/// The default is to use the operating system's default temporary directory.
|
||||
pub fn with_temp_dir(mut self, temp_dir: TemporaryDirectory) -> Self {
|
||||
self.config.temp_dir = temp_dir;
|
||||
self
|
||||
}
|
||||
|
||||
/// Stores the permutation as a table in a database
|
||||
///
|
||||
/// By default, the permutation is stored in memory. If this method is called then
|
||||
/// the permutation will be stored as a table in the given database.
|
||||
pub fn persist(mut self, database: Arc<dyn Database>, table_name: String) -> Self {
|
||||
self.config.destination = PermutationDestination::Permanent(database, table_name);
|
||||
self
|
||||
}
|
||||
|
||||
async fn sort_by_split_id(
|
||||
&self,
|
||||
data: SendableRecordBatchStream,
|
||||
) -> Result<SendableRecordBatchStream> {
|
||||
let ctx = SessionContext::new_with_config_rt(
|
||||
SessionConfig::default(),
|
||||
RuntimeEnvBuilder::new()
|
||||
.with_memory_limit(100 * 1024 * 1024, 1.0)
|
||||
.with_disk_manager_builder(
|
||||
DiskManagerBuilder::default()
|
||||
.with_mode(self.config.temp_dir.to_disk_manager_mode()),
|
||||
)
|
||||
.build_arc()
|
||||
.unwrap(),
|
||||
);
|
||||
let df = ctx
|
||||
.read_one_shot(data.into_df_stream())
|
||||
.map_err(|e| Error::Other {
|
||||
message: format!("Failed to setup sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?;
|
||||
let df_stream = df
|
||||
.sort_by(vec![col(SPLIT_ID_COLUMN)])
|
||||
.map_err(|e| Error::Other {
|
||||
message: format!("Failed to plan sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?
|
||||
.execute_stream()
|
||||
.await
|
||||
.map_err(|e| Error::Other {
|
||||
message: format!("Failed to sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?;
|
||||
|
||||
let schema = df_stream.schema();
|
||||
let stream = df_stream.map_err(|e| Error::Other {
|
||||
message: format!("Failed to execute sort by split id: {}", e),
|
||||
source: Some(e.into()),
|
||||
});
|
||||
Ok(Box::pin(SimpleRecordBatchStream { schema, stream }))
|
||||
}
|
||||
|
||||
fn add_split_names(
|
||||
data: SendableRecordBatchStream,
|
||||
split_names: &[String],
|
||||
) -> Result<SendableRecordBatchStream> {
|
||||
let schema = data
|
||||
.schema()
|
||||
.as_ref()
|
||||
.clone()
|
||||
.with_metadata(HashMap::from([(
|
||||
SPLIT_NAMES_CONFIG_KEY.to_string(),
|
||||
serde_json::to_string(split_names).map_err(|e| Error::Other {
|
||||
message: format!("Failed to serialize split names: {}", e),
|
||||
source: Some(e.into()),
|
||||
})?,
|
||||
)]));
|
||||
let schema = Arc::new(schema);
|
||||
let schema_clone = schema.clone();
|
||||
let stream = data.map_ok(move |batch| batch.with_schema(schema.clone()).unwrap());
|
||||
Ok(Box::pin(SimpleRecordBatchStream {
|
||||
schema: schema_clone,
|
||||
stream,
|
||||
}))
|
||||
}
|
||||
|
||||
/// Builds the permutation table and stores it in the given database.
|
||||
pub async fn build(self) -> Result<Table> {
|
||||
// First pass, apply filter and load row ids
|
||||
let mut rows = self.base_table.query().with_row_id();
|
||||
|
||||
if let Some(filter) = &self.config.filter {
|
||||
rows = rows.only_if(filter);
|
||||
}
|
||||
|
||||
let splitter = Splitter::new(
|
||||
self.config.temp_dir.clone(),
|
||||
self.config.split_strategy.clone(),
|
||||
);
|
||||
|
||||
let mut needs_sort = !splitter.orders_by_split_id();
|
||||
|
||||
// Might need to load additional columns to calculate splits (e.g. hash columns or calculated
|
||||
// split id)
|
||||
rows = splitter.project(rows);
|
||||
|
||||
let num_rows = self
|
||||
.base_table
|
||||
.count_rows(self.config.filter.clone())
|
||||
.await? as u64;
|
||||
|
||||
// Apply splits
|
||||
let rows = rows.execute().await?;
|
||||
let split_data = splitter.apply(rows, num_rows).await?;
|
||||
|
||||
// Shuffle data if requested
|
||||
let shuffled = match self.config.shuffle_strategy {
|
||||
ShuffleStrategy::None => split_data,
|
||||
ShuffleStrategy::Random { seed, clump_size } => {
|
||||
let shuffler = Shuffler::new(ShufflerConfig {
|
||||
seed,
|
||||
clump_size,
|
||||
temp_dir: self.config.temp_dir.clone(),
|
||||
max_rows_per_file: 10 * 1024 * 1024,
|
||||
});
|
||||
shuffler.shuffle(split_data, num_rows).await?
|
||||
}
|
||||
};
|
||||
|
||||
// We want the final permutation to be sorted by the split id. If we shuffled or if
|
||||
// the split was not assigned sequentially then we need to sort the data.
|
||||
needs_sort |= !matches!(self.config.shuffle_strategy, ShuffleStrategy::None);
|
||||
|
||||
let sorted = if needs_sort {
|
||||
self.sort_by_split_id(shuffled).await?
|
||||
} else {
|
||||
shuffled
|
||||
};
|
||||
|
||||
// Rename _rowid to row_id
|
||||
let renamed = rename_column(sorted, ROW_ID, SRC_ROW_ID_COL)?;
|
||||
|
||||
let streaming_data = if let Some(split_names) = &self.config.split_names {
|
||||
Self::add_split_names(renamed, split_names)?
|
||||
} else {
|
||||
renamed
|
||||
};
|
||||
|
||||
let (name, database) = match &self.config.destination {
|
||||
PermutationDestination::Permanent(database, table_name) => {
|
||||
(table_name.as_str(), database.clone())
|
||||
}
|
||||
PermutationDestination::Temporary => {
|
||||
let conn = connect("memory:///").execute().await?;
|
||||
("permutation", conn.database().clone())
|
||||
}
|
||||
};
|
||||
|
||||
let create_table_request = CreateTableRequest::new(
|
||||
name.to_string(),
|
||||
CreateTableData::StreamingData(streaming_data),
|
||||
);
|
||||
|
||||
let table = database.create_table(create_table_request).await?;
|
||||
|
||||
Ok(Table::new(table, database))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use arrow::datatypes::Int32Type;
|
||||
use lance_datagen::{BatchCount, RowCount};
|
||||
|
||||
use crate::{arrow::LanceDbDatagenExt, connect, dataloader::permutation::split::SplitSizes};
|
||||
|
||||
use super::*;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_permutation_builder() {
|
||||
let temp_dir = tempfile::tempdir().unwrap();
|
||||
|
||||
let db = connect(temp_dir.path().to_str().unwrap())
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let initial_data = lance_datagen::gen_batch()
|
||||
.col("some_value", lance_datagen::array::step::<Int32Type>())
|
||||
.into_ldb_stream(RowCount::from(100), BatchCount::from(10));
|
||||
let data_table = db
|
||||
.create_table_streaming("mytbl", initial_data)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let permutation_table = PermutationBuilder::new(data_table.clone())
|
||||
.with_filter("some_value > 57".to_string())
|
||||
.with_split_strategy(
|
||||
SplitStrategy::Random {
|
||||
seed: Some(42),
|
||||
sizes: SplitSizes::Percentages(vec![0.05, 0.30]),
|
||||
},
|
||||
None,
|
||||
)
|
||||
.build()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
println!("permutation_table: {:?}", permutation_table);
|
||||
|
||||
// Potentially brittle seed-dependent values below
|
||||
assert_eq!(permutation_table.count_rows(None).await.unwrap(), 330);
|
||||
assert_eq!(
|
||||
permutation_table
|
||||
.count_rows(Some("split_id = 0".to_string()))
|
||||
.await
|
||||
.unwrap(),
|
||||
47
|
||||
);
|
||||
assert_eq!(
|
||||
permutation_table
|
||||
.count_rows(Some("split_id = 1".to_string()))
|
||||
.await
|
||||
.unwrap(),
|
||||
283
|
||||
);
|
||||
}
|
||||
}
|
||||
546
rust/lancedb/src/dataloader/permutation/reader.rs
Normal file
546
rust/lancedb/src/dataloader/permutation/reader.rs
Normal file
@@ -0,0 +1,546 @@
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
|
||||
|
||||
//! Row ID-based views for LanceDB tables
|
||||
//!
|
||||
//! This module provides functionality for creating views that are based on specific row IDs.
|
||||
//! The `IdView` allows you to create a virtual table that contains only
|
||||
//! the rows from a source table that correspond to row IDs stored in a separate table.
|
||||
|
||||
use crate::arrow::{SendableRecordBatchStream, SimpleRecordBatchStream};
|
||||
use crate::dataloader::permutation::builder::SRC_ROW_ID_COL;
|
||||
use crate::dataloader::permutation::split::SPLIT_ID_COLUMN;
|
||||
use crate::error::Error;
|
||||
use crate::query::{
|
||||
ExecutableQuery, QueryBase, QueryExecutionOptions, QueryFilter, QueryRequest, Select,
|
||||
};
|
||||
use crate::table::{AnyQuery, BaseTable, Filter};
|
||||
use crate::{Result, Table};
|
||||
use arrow::array::AsArray;
|
||||
use arrow::compute::concat_batches;
|
||||
use arrow::datatypes::UInt64Type;
|
||||
use arrow_array::{RecordBatch, UInt64Array};
|
||||
use arrow_schema::SchemaRef;
|
||||
use futures::{StreamExt, TryStreamExt};
|
||||
use lance::dataset::scanner::DatasetRecordBatchStream;
|
||||
use lance::io::RecordBatchStream;
|
||||
use lance_arrow::RecordBatchExt;
|
||||
use lance_core::error::LanceOptionExt;
|
||||
use lance_core::ROW_ID;
|
||||
use std::collections::HashMap;
|
||||
use std::sync::Arc;
|
||||
|
||||
/// Reads a permutation of a source table based on row IDs stored in a separate table
|
||||
#[derive(Clone)]
|
||||
pub struct PermutationReader {
|
||||
base_table: Arc<dyn BaseTable>,
|
||||
permutation_table: Option<Arc<dyn BaseTable>>,
|
||||
offset: Option<u64>,
|
||||
limit: Option<u64>,
|
||||
available_rows: u64,
|
||||
split: u64,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for PermutationReader {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"PermutationReader(base={}, permutation={}, split={}, offset={:?}, limit={:?})",
|
||||
self.base_table.name(),
|
||||
self.permutation_table
|
||||
.as_ref()
|
||||
.map(|t| t.name())
|
||||
.unwrap_or("--"),
|
||||
self.split,
|
||||
self.offset,
|
||||
self.limit,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
impl PermutationReader {
|
||||
/// Create a new PermutationReader
|
||||
pub async fn inner_new(
|
||||
base_table: Arc<dyn BaseTable>,
|
||||
permutation_table: Option<Arc<dyn BaseTable>>,
|
||||
split: u64,
|
||||
) -> Result<Self> {
|
||||
let mut slf = Self {
|
||||
base_table,
|
||||
permutation_table,
|
||||
offset: None,
|
||||
limit: None,
|
||||
available_rows: 0,
|
||||
split,
|
||||
};
|
||||
slf.validate().await?;
|
||||
// Calculate the number of available rows
|
||||
slf.available_rows = slf.verify_limit_offset(None, None).await?;
|
||||
if slf.available_rows == 0 {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "No rows found in the permutation table for the given split".to_string(),
|
||||
});
|
||||
}
|
||||
Ok(slf)
|
||||
}
|
||||
|
||||
pub async fn try_from_tables(
|
||||
base_table: Arc<dyn BaseTable>,
|
||||
permutation_table: Arc<dyn BaseTable>,
|
||||
split: u64,
|
||||
) -> Result<Self> {
|
||||
Self::inner_new(base_table, Some(permutation_table), split).await
|
||||
}
|
||||
|
||||
pub async fn identity(base_table: Arc<dyn BaseTable>) -> Self {
|
||||
Self::inner_new(base_table, None, 0).await.unwrap()
|
||||
}
|
||||
|
||||
/// Validates the limit and offset and returns the number of rows that will be read
|
||||
fn validate_limit_offset(
|
||||
limit: Option<u64>,
|
||||
offset: Option<u64>,
|
||||
available_rows: u64,
|
||||
) -> Result<u64> {
|
||||
match (limit, offset) {
|
||||
(Some(limit), Some(offset)) => {
|
||||
if offset + limit > available_rows {
|
||||
Err(Error::InvalidInput {
|
||||
message: "Offset + limit is greater than the number of rows in the permutation table"
|
||||
.to_string(),
|
||||
})
|
||||
} else {
|
||||
Ok(limit)
|
||||
}
|
||||
}
|
||||
(None, Some(offset)) => {
|
||||
if offset > available_rows {
|
||||
Err(Error::InvalidInput {
|
||||
message:
|
||||
"Offset is greater than the number of rows in the permutation table"
|
||||
.to_string(),
|
||||
})
|
||||
} else {
|
||||
Ok(available_rows - offset)
|
||||
}
|
||||
}
|
||||
(Some(limit), None) => {
|
||||
if limit > available_rows {
|
||||
Err(Error::InvalidInput {
|
||||
message:
|
||||
"Limit is greater than the number of rows in the permutation table"
|
||||
.to_string(),
|
||||
})
|
||||
} else {
|
||||
Ok(limit)
|
||||
}
|
||||
}
|
||||
(None, None) => Ok(available_rows),
|
||||
}
|
||||
}
|
||||
|
||||
async fn verify_limit_offset(&self, limit: Option<u64>, offset: Option<u64>) -> Result<u64> {
|
||||
let available_rows = if let Some(permutation_table) = &self.permutation_table {
|
||||
permutation_table
|
||||
.count_rows(Some(Filter::Sql(format!(
|
||||
"{} = {}",
|
||||
SPLIT_ID_COLUMN, self.split
|
||||
))))
|
||||
.await? as u64
|
||||
} else {
|
||||
self.base_table.count_rows(None).await? as u64
|
||||
};
|
||||
Self::validate_limit_offset(limit, offset, available_rows)
|
||||
}
|
||||
|
||||
pub async fn with_offset(mut self, offset: u64) -> Result<Self> {
|
||||
let available_rows = self.verify_limit_offset(self.limit, Some(offset)).await?;
|
||||
self.offset = Some(offset);
|
||||
self.available_rows = available_rows;
|
||||
Ok(self)
|
||||
}
|
||||
|
||||
pub async fn with_limit(mut self, limit: u64) -> Result<Self> {
|
||||
let available_rows = self.verify_limit_offset(Some(limit), self.offset).await?;
|
||||
self.available_rows = available_rows;
|
||||
self.limit = Some(limit);
|
||||
Ok(self)
|
||||
}
|
||||
|
||||
fn is_sorted_already<'a, T: Iterator<Item = &'a u64>>(iter: T) -> bool {
|
||||
for (expected, idx) in iter.enumerate() {
|
||||
if *idx != expected as u64 {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
true
|
||||
}
|
||||
|
||||
async fn load_batch(
|
||||
base_table: &Arc<dyn BaseTable>,
|
||||
row_ids: RecordBatch,
|
||||
selection: Select,
|
||||
has_row_id: bool,
|
||||
) -> Result<RecordBatch> {
|
||||
let num_rows = row_ids.num_rows();
|
||||
let row_ids = row_ids
|
||||
.column(0)
|
||||
.as_primitive_opt::<UInt64Type>()
|
||||
.expect_ok()?
|
||||
.values();
|
||||
|
||||
let filter = format!(
|
||||
"_rowid in ({})",
|
||||
row_ids
|
||||
.iter()
|
||||
.map(|o| o.to_string())
|
||||
.collect::<Vec<_>>()
|
||||
.join(",")
|
||||
);
|
||||
|
||||
let base_query = QueryRequest {
|
||||
filter: Some(QueryFilter::Sql(filter)),
|
||||
select: selection,
|
||||
with_row_id: true,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
let data = base_table
|
||||
.query(
|
||||
&AnyQuery::Query(base_query),
|
||||
QueryExecutionOptions {
|
||||
max_batch_length: num_rows as u32,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.await?;
|
||||
let schema = data.schema();
|
||||
|
||||
let batches = data.try_collect::<Vec<_>>().await?;
|
||||
|
||||
if batches.is_empty() {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Base table returned no batches".to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
if batches.iter().map(|b| b.num_rows()).sum::<usize>() != num_rows {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Base table returned different number of rows than the number of row IDs"
|
||||
.to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
let batch = if batches.len() == 1 {
|
||||
batches.into_iter().next().unwrap()
|
||||
} else {
|
||||
concat_batches(&schema, &batches)?
|
||||
};
|
||||
|
||||
// There is no guarantee the result order will match the order provided
|
||||
// so may need to restore order
|
||||
let actual_row_ids = batch
|
||||
.column_by_name(ROW_ID)
|
||||
.expect_ok()?
|
||||
.as_primitive_opt::<UInt64Type>()
|
||||
.expect_ok()?
|
||||
.values();
|
||||
|
||||
// Map from row id to order in batch, used to restore original ordering
|
||||
let ordering = actual_row_ids
|
||||
.iter()
|
||||
.copied()
|
||||
.enumerate()
|
||||
.map(|(i, o)| (o, i as u64))
|
||||
.collect::<HashMap<_, _>>();
|
||||
|
||||
let desired_idx_order = row_ids
|
||||
.iter()
|
||||
.map(|o| ordering.get(o).copied().expect_ok().map_err(Error::from))
|
||||
.collect::<Result<Vec<_>>>()?;
|
||||
|
||||
let ordered_batch = if Self::is_sorted_already(desired_idx_order.iter()) {
|
||||
// Fast path if already sorted, important as data may be large and
|
||||
// re-ordering could be expensive
|
||||
batch
|
||||
} else {
|
||||
let desired_idx_order = UInt64Array::from(desired_idx_order);
|
||||
|
||||
arrow_select::take::take_record_batch(&batch, &desired_idx_order)?
|
||||
};
|
||||
|
||||
if has_row_id {
|
||||
Ok(ordered_batch)
|
||||
} else {
|
||||
// The user didn't ask for row id, we needed it for ordering the data, but now we drop it
|
||||
Ok(ordered_batch.drop_column(ROW_ID)?)
|
||||
}
|
||||
}
|
||||
|
||||
async fn row_ids_to_batches(
|
||||
base_table: Arc<dyn BaseTable>,
|
||||
row_ids: DatasetRecordBatchStream,
|
||||
selection: Select,
|
||||
) -> Result<SendableRecordBatchStream> {
|
||||
let has_row_id = Self::has_row_id(&selection)?;
|
||||
let mut stream = row_ids
|
||||
.map_err(Error::from)
|
||||
.try_filter_map(move |batch| {
|
||||
let selection = selection.clone();
|
||||
let base_table = base_table.clone();
|
||||
async move {
|
||||
Self::load_batch(&base_table, batch, selection, has_row_id)
|
||||
.await
|
||||
.map(Some)
|
||||
}
|
||||
})
|
||||
.boxed();
|
||||
|
||||
// Need to read out first batch to get schema
|
||||
let Some(first_batch) = stream.try_next().await? else {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Permutation was empty".to_string(),
|
||||
});
|
||||
};
|
||||
let schema = first_batch.schema();
|
||||
|
||||
let stream = futures::stream::once(std::future::ready(Ok(first_batch))).chain(stream);
|
||||
|
||||
Ok(Box::pin(SimpleRecordBatchStream::new(stream, schema)))
|
||||
}
|
||||
|
||||
fn has_row_id(selection: &Select) -> Result<bool> {
|
||||
match selection {
|
||||
Select::All => {
|
||||
// _rowid is a system column and is not included in Select::All
|
||||
Ok(false)
|
||||
}
|
||||
Select::Columns(columns) => Ok(columns.contains(&ROW_ID.to_string())),
|
||||
Select::Dynamic(columns) => {
|
||||
for column in columns {
|
||||
if column.0 == ROW_ID {
|
||||
if column.1 == ROW_ID {
|
||||
return Ok(true);
|
||||
} else {
|
||||
return Err(Error::InvalidInput {
|
||||
message: format!(
|
||||
"Dynamic column {} cannot be used to select _rowid",
|
||||
column.1
|
||||
),
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
Ok(false)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
async fn validate(&self) -> Result<()> {
|
||||
if let Some(permutation_table) = &self.permutation_table {
|
||||
let schema = permutation_table.schema().await?;
|
||||
if schema.column_with_name(SRC_ROW_ID_COL).is_none() {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Permutation table must contain a column named row_id".to_string(),
|
||||
});
|
||||
}
|
||||
if schema.column_with_name(SPLIT_ID_COLUMN).is_none() {
|
||||
return Err(Error::InvalidInput {
|
||||
message: "Permutation table must contain a column named split_id".to_string(),
|
||||
});
|
||||
}
|
||||
}
|
||||
let avail_rows = if let Some(permutation_table) = &self.permutation_table {
|
||||
permutation_table.count_rows(None).await? as u64
|
||||
} else {
|
||||
self.base_table.count_rows(None).await? as u64
|
||||
};
|
||||
Self::validate_limit_offset(self.limit, self.offset, avail_rows)?;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn read(
|
||||
&self,
|
||||
selection: Select,
|
||||
execution_options: QueryExecutionOptions,
|
||||
) -> Result<SendableRecordBatchStream> {
|
||||
// Note: this relies on the row ids query here being returned in consistent order
|
||||
let row_ids = if let Some(permutation_table) = &self.permutation_table {
|
||||
permutation_table
|
||||
.query(
|
||||
&AnyQuery::Query(QueryRequest {
|
||||
select: Select::Columns(vec![SRC_ROW_ID_COL.to_string()]),
|
||||
filter: Some(QueryFilter::Sql(format!(
|
||||
"{} = {}",
|
||||
SPLIT_ID_COLUMN, self.split
|
||||
))),
|
||||
offset: self.offset.map(|o| o as usize),
|
||||
limit: self.limit.map(|l| l as usize),
|
||||
..Default::default()
|
||||
}),
|
||||
execution_options,
|
||||
)
|
||||
.await?
|
||||
} else {
|
||||
self.base_table
|
||||
.query(
|
||||
&AnyQuery::Query(QueryRequest {
|
||||
select: Select::Columns(vec![ROW_ID.to_string()]),
|
||||
offset: self.offset.map(|o| o as usize),
|
||||
limit: self.limit.map(|l| l as usize),
|
||||
..Default::default()
|
||||
}),
|
||||
execution_options,
|
||||
)
|
||||
.await?
|
||||
};
|
||||
Self::row_ids_to_batches(self.base_table.clone(), row_ids, selection).await
|
||||
}
|
||||
|
||||
pub async fn output_schema(&self, selection: Select) -> Result<SchemaRef> {
|
||||
let table = Table::from(self.base_table.clone());
|
||||
table.query().select(selection).output_schema().await
|
||||
}
|
||||
|
||||
pub fn count_rows(&self) -> u64 {
|
||||
self.available_rows
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use arrow::datatypes::Int32Type;
|
||||
use arrow_array::{ArrowPrimitiveType, RecordBatch, UInt64Array};
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
use lance_datagen::{BatchCount, RowCount};
|
||||
use rand::seq::SliceRandom;
|
||||
|
||||
use crate::{
|
||||
arrow::SendableRecordBatchStream,
|
||||
query::{ExecutableQuery, QueryBase},
|
||||
test_utils::datagen::{virtual_table, LanceDbDatagenExt},
|
||||
Table,
|
||||
};
|
||||
|
||||
use super::*;
|
||||
|
||||
async fn collect_from_stream<T: ArrowPrimitiveType>(
|
||||
mut stream: SendableRecordBatchStream,
|
||||
column: &str,
|
||||
) -> Vec<T::Native> {
|
||||
let mut row_ids = Vec::new();
|
||||
while let Some(batch) = stream.try_next().await.unwrap() {
|
||||
let col_idx = batch.schema().index_of(column).unwrap();
|
||||
row_ids.extend(batch.column(col_idx).as_primitive::<T>().values().to_vec());
|
||||
}
|
||||
row_ids
|
||||
}
|
||||
|
||||
async fn collect_column<T: ArrowPrimitiveType>(table: &Table, column: &str) -> Vec<T::Native> {
|
||||
collect_from_stream::<T>(
|
||||
table
|
||||
.query()
|
||||
.select(Select::Columns(vec![column.to_string()]))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap(),
|
||||
column,
|
||||
)
|
||||
.await
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_permutation_reader() {
|
||||
let base_table = lance_datagen::gen_batch()
|
||||
.col("idx", lance_datagen::array::step::<Int32Type>())
|
||||
.col("other_col", lance_datagen::array::step::<UInt64Type>())
|
||||
.into_mem_table("tbl", RowCount::from(9), BatchCount::from(1))
|
||||
.await;
|
||||
|
||||
let mut row_ids = collect_column::<UInt64Type>(&base_table, "_rowid").await;
|
||||
row_ids.shuffle(&mut rand::rng());
|
||||
// Put the last two rows in split 1
|
||||
let split_ids = UInt64Array::from_iter_values(
|
||||
std::iter::repeat_n(0, row_ids.len() - 2).chain(std::iter::repeat_n(1, 2)),
|
||||
);
|
||||
let permutation_batch = RecordBatch::try_new(
|
||||
Arc::new(Schema::new(vec![
|
||||
Field::new("row_id", DataType::UInt64, false),
|
||||
Field::new(SPLIT_ID_COLUMN, DataType::UInt64, false),
|
||||
])),
|
||||
vec![
|
||||
Arc::new(UInt64Array::from(row_ids.clone())),
|
||||
Arc::new(split_ids),
|
||||
],
|
||||
)
|
||||
.unwrap();
|
||||
let row_ids_table = virtual_table("row_ids", &permutation_batch).await;
|
||||
|
||||
let reader = PermutationReader::try_from_tables(
|
||||
base_table.base_table().clone(),
|
||||
row_ids_table.base_table().clone(),
|
||||
0,
|
||||
)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// Read split 0
|
||||
let mut stream = reader
|
||||
.read(
|
||||
Select::All,
|
||||
QueryExecutionOptions {
|
||||
max_batch_length: 3,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(stream.schema(), base_table.schema().await.unwrap());
|
||||
|
||||
let check_batch = async |stream: &mut SendableRecordBatchStream,
|
||||
expected_values: &[u64]| {
|
||||
let batch = stream.try_next().await.unwrap().unwrap();
|
||||
assert_eq!(batch.num_rows(), expected_values.len());
|
||||
assert_eq!(
|
||||
batch.column(0).as_primitive::<Int32Type>().values(),
|
||||
&expected_values
|
||||
.iter()
|
||||
.map(|o| *o as i32)
|
||||
.collect::<Vec<_>>()
|
||||
);
|
||||
assert_eq!(
|
||||
batch.column(1).as_primitive::<UInt64Type>().values(),
|
||||
&expected_values
|
||||
);
|
||||
};
|
||||
|
||||
check_batch(&mut stream, &row_ids[0..3]).await;
|
||||
check_batch(&mut stream, &row_ids[3..6]).await;
|
||||
check_batch(&mut stream, &row_ids[6..7]).await;
|
||||
assert!(stream.try_next().await.unwrap().is_none());
|
||||
|
||||
// Read split 1
|
||||
let reader = PermutationReader::try_from_tables(
|
||||
base_table.base_table().clone(),
|
||||
row_ids_table.base_table().clone(),
|
||||
1,
|
||||
)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let mut stream = reader
|
||||
.read(
|
||||
Select::All,
|
||||
QueryExecutionOptions {
|
||||
max_batch_length: 3,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
check_batch(&mut stream, &row_ids[7..9]).await;
|
||||
assert!(stream.try_next().await.unwrap().is_none());
|
||||
}
|
||||
}
|
||||
@@ -22,7 +22,7 @@ use rand::{seq::SliceRandom, Rng, RngCore};
|
||||
|
||||
use crate::{
|
||||
arrow::{SendableRecordBatchStream, SimpleRecordBatchStream},
|
||||
dataloader::util::{non_crypto_rng, TemporaryDirectory},
|
||||
dataloader::permutation::util::{non_crypto_rng, TemporaryDirectory},
|
||||
Error, Result,
|
||||
};
|
||||
|
||||
@@ -13,13 +13,13 @@ use arrow_array::{Array, BooleanArray, RecordBatch, UInt64Array};
|
||||
use arrow_schema::{DataType, Field, Schema};
|
||||
use datafusion_common::hash_utils::create_hashes;
|
||||
use futures::{StreamExt, TryStreamExt};
|
||||
use lance::arrow::SchemaExt;
|
||||
use lance_arrow::SchemaExt;
|
||||
|
||||
use crate::{
|
||||
arrow::{SendableRecordBatchStream, SimpleRecordBatchStream},
|
||||
dataloader::{
|
||||
shuffle::{Shuffler, ShufflerConfig},
|
||||
util::TemporaryDirectory,
|
||||
permutation::shuffle::{Shuffler, ShufflerConfig},
|
||||
permutation::util::TemporaryDirectory,
|
||||
},
|
||||
query::{Query, QueryBase, Select},
|
||||
Error, Result,
|
||||
@@ -10,7 +10,7 @@ pub mod sentence_transformers;
|
||||
#[cfg(feature = "bedrock")]
|
||||
pub mod bedrock;
|
||||
|
||||
use lance::arrow::RecordBatchExt;
|
||||
use lance_arrow::RecordBatchExt;
|
||||
use std::{
|
||||
borrow::Cow,
|
||||
collections::{HashMap, HashSet},
|
||||
|
||||
@@ -6,6 +6,8 @@ use std::sync::PoisonError;
|
||||
use arrow_schema::ArrowError;
|
||||
use snafu::Snafu;
|
||||
|
||||
type BoxError = Box<dyn std::error::Error + Send + Sync>;
|
||||
|
||||
#[derive(Debug, Snafu)]
|
||||
#[snafu(visibility(pub(crate)))]
|
||||
pub enum Error {
|
||||
@@ -14,7 +16,7 @@ pub enum Error {
|
||||
#[snafu(display("Invalid input, {message}"))]
|
||||
InvalidInput { message: String },
|
||||
#[snafu(display("Table '{name}' was not found"))]
|
||||
TableNotFound { name: String },
|
||||
TableNotFound { name: String, source: BoxError },
|
||||
#[snafu(display("Database '{name}' was not found"))]
|
||||
DatabaseNotFound { name: String },
|
||||
#[snafu(display("Database '{name}' already exists."))]
|
||||
|
||||
@@ -207,7 +207,8 @@ pub mod query;
|
||||
pub mod remote;
|
||||
pub mod rerankers;
|
||||
pub mod table;
|
||||
pub mod test_connection;
|
||||
#[cfg(test)]
|
||||
pub mod test_utils;
|
||||
pub mod utils;
|
||||
|
||||
use std::fmt::Display;
|
||||
|
||||
@@ -6,15 +6,13 @@ use std::{future::Future, time::Duration};
|
||||
|
||||
use arrow::compute::concat_batches;
|
||||
use arrow_array::{make_array, Array, Float16Array, Float32Array, Float64Array};
|
||||
use arrow_schema::DataType;
|
||||
use arrow_schema::{DataType, SchemaRef};
|
||||
use datafusion_expr::Expr;
|
||||
use datafusion_physical_plan::ExecutionPlan;
|
||||
use futures::{stream, try_join, FutureExt, TryStreamExt};
|
||||
use futures::{stream, try_join, FutureExt, TryFutureExt, TryStreamExt};
|
||||
use half::f16;
|
||||
use lance::{
|
||||
arrow::RecordBatchExt,
|
||||
dataset::{scanner::DatasetRecordBatchStream, ROW_ID},
|
||||
};
|
||||
use lance::dataset::{scanner::DatasetRecordBatchStream, ROW_ID};
|
||||
use lance_arrow::RecordBatchExt;
|
||||
use lance_datafusion::exec::execute_plan;
|
||||
use lance_index::scalar::inverted::SCORE_COL;
|
||||
use lance_index::scalar::FullTextSearchQuery;
|
||||
@@ -36,7 +34,7 @@ pub(crate) const DEFAULT_TOP_K: usize = 10;
|
||||
/// Which columns should be retrieved from the database
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum Select {
|
||||
/// Select all columns
|
||||
/// Select all non-system columns
|
||||
///
|
||||
/// Warning: This will always be slower than selecting only the columns you need.
|
||||
All,
|
||||
@@ -582,16 +580,40 @@ pub trait ExecutableQuery {
|
||||
options: QueryExecutionOptions,
|
||||
) -> impl Future<Output = Result<SendableRecordBatchStream>> + Send;
|
||||
|
||||
/// Explain the plan for a query
|
||||
///
|
||||
/// This will create a string representation of the plan that will be used to
|
||||
/// execute the query. This will not execute the query.
|
||||
///
|
||||
/// This function can be used to get an understanding of what work will be done by the query
|
||||
/// and is useful for debugging query performance.
|
||||
fn explain_plan(&self, verbose: bool) -> impl Future<Output = Result<String>> + Send;
|
||||
|
||||
/// Execute the query and display the runtime metrics
|
||||
///
|
||||
/// This shows the same plan as [`ExecutableQuery::explain_plan`] but includes runtime metrics.
|
||||
///
|
||||
/// This function will actually execute the query in order to get the runtime metrics.
|
||||
fn analyze_plan(&self) -> impl Future<Output = Result<String>> + Send {
|
||||
self.analyze_plan_with_options(QueryExecutionOptions::default())
|
||||
}
|
||||
|
||||
/// Execute the query and display the runtime metrics
|
||||
///
|
||||
/// This is the same as [`ExecutableQuery::analyze_plan`] but allows for specifying the execution options.
|
||||
fn analyze_plan_with_options(
|
||||
&self,
|
||||
options: QueryExecutionOptions,
|
||||
) -> impl Future<Output = Result<String>> + Send;
|
||||
|
||||
/// Return the output schema for data returned by the query without actually executing the query
|
||||
///
|
||||
/// This can be useful when the selection for a query is built dynamically as it is not always
|
||||
/// obvious what the output schema will be.
|
||||
fn output_schema(&self) -> impl Future<Output = Result<SchemaRef>> + Send {
|
||||
self.create_plan(QueryExecutionOptions::default())
|
||||
.and_then(|plan| std::future::ready(Ok(plan.schema())))
|
||||
}
|
||||
}
|
||||
|
||||
/// A query filter that can be applied to a query
|
||||
@@ -645,6 +667,12 @@ pub struct QueryRequest {
|
||||
|
||||
/// Configure how query results are normalized when doing hybrid search
|
||||
pub norm: Option<NormalizeMethod>,
|
||||
|
||||
/// If set to true, disables automatic projection of scoring columns (_score, _distance).
|
||||
/// When disabled, these columns are only included if explicitly requested in the projection.
|
||||
///
|
||||
/// By default, this is false (scoring columns are auto-projected for backward compatibility).
|
||||
pub disable_scoring_autoprojection: bool,
|
||||
}
|
||||
|
||||
impl Default for QueryRequest {
|
||||
@@ -660,6 +688,7 @@ impl Default for QueryRequest {
|
||||
prefilter: true,
|
||||
reranker: None,
|
||||
norm: None,
|
||||
disable_scoring_autoprojection: false,
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1505,6 +1534,16 @@ mod tests {
|
||||
.query()
|
||||
.limit(10)
|
||||
.select(Select::dynamic(&[("id2", "id * 2"), ("id", "id")]));
|
||||
|
||||
let schema = query.output_schema().await.unwrap();
|
||||
assert_eq!(
|
||||
schema,
|
||||
Arc::new(ArrowSchema::new(vec![
|
||||
ArrowField::new("id2", DataType::Int32, true),
|
||||
ArrowField::new("id", DataType::Int32, true),
|
||||
]))
|
||||
);
|
||||
|
||||
let result = query.execute().await;
|
||||
let mut batches = result
|
||||
.expect("should have result")
|
||||
|
||||
@@ -515,11 +515,8 @@ impl<S: HttpSend> Database for RemoteDatabase<S> {
|
||||
.client
|
||||
.post(&format!("/v1/table/{}/describe/", identifier));
|
||||
let (request_id, rsp) = self.client.send_with_retry(req, None, true).await?;
|
||||
if rsp.status() == StatusCode::NOT_FOUND {
|
||||
return Err(crate::Error::TableNotFound {
|
||||
name: identifier.clone(),
|
||||
});
|
||||
}
|
||||
let rsp =
|
||||
RemoteTable::<S>::handle_table_not_found(&request.name, rsp, &request_id).await?;
|
||||
let rsp = self.client.check_response(&request_id, rsp).await?;
|
||||
let version = parse_server_version(&request_id, &rsp)?;
|
||||
let table_identifier = build_table_identifier(
|
||||
|
||||
@@ -336,16 +336,33 @@ impl<S: HttpSend> RemoteTable<S> {
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
pub(super) async fn handle_table_not_found(
|
||||
table_name: &str,
|
||||
response: reqwest::Response,
|
||||
request_id: &str,
|
||||
) -> Result<reqwest::Response> {
|
||||
let status = response.status();
|
||||
if status == StatusCode::NOT_FOUND {
|
||||
let body = response.text().await.ok().unwrap_or_default();
|
||||
let request_error = Error::Http {
|
||||
source: body.into(),
|
||||
request_id: request_id.into(),
|
||||
status_code: Some(status),
|
||||
};
|
||||
return Err(Error::TableNotFound {
|
||||
name: table_name.to_string(),
|
||||
source: Box::new(request_error),
|
||||
});
|
||||
}
|
||||
Ok(response)
|
||||
}
|
||||
|
||||
async fn check_table_response(
|
||||
&self,
|
||||
request_id: &str,
|
||||
response: reqwest::Response,
|
||||
) -> Result<reqwest::Response> {
|
||||
if response.status() == StatusCode::NOT_FOUND {
|
||||
return Err(Error::TableNotFound {
|
||||
name: self.identifier.clone(),
|
||||
});
|
||||
}
|
||||
let response = Self::handle_table_not_found(&self.name, response, request_id).await?;
|
||||
|
||||
self.client.check_response(request_id, response).await
|
||||
}
|
||||
@@ -681,8 +698,9 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
|
||||
.map_err(|e| match e {
|
||||
// try to map the error to a more user-friendly error telling them
|
||||
// specifically that the version does not exist
|
||||
Error::TableNotFound { name } => Error::TableNotFound {
|
||||
Error::TableNotFound { name, source } => Error::TableNotFound {
|
||||
name: format!("{} (version: {})", name, version),
|
||||
source,
|
||||
},
|
||||
e => e,
|
||||
})?;
|
||||
@@ -1427,6 +1445,10 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
|
||||
"NOT_SUPPORTED"
|
||||
}
|
||||
|
||||
async fn storage_options(&self) -> Option<HashMap<String, String>> {
|
||||
None
|
||||
}
|
||||
|
||||
async fn stats(&self) -> Result<TableStatistics> {
|
||||
let request = self
|
||||
.client
|
||||
@@ -1571,7 +1593,11 @@ mod tests {
|
||||
for result in results {
|
||||
let result = result.await;
|
||||
assert!(result.is_err());
|
||||
assert!(matches!(result, Err(Error::TableNotFound { name }) if name == "my_table"));
|
||||
assert!(
|
||||
matches!(&result, &Err(Error::TableNotFound { ref name, .. }) if name == "my_table")
|
||||
);
|
||||
let full_error_report = snafu::Report::from_error(result.unwrap_err()).to_string();
|
||||
assert!(full_error_report.contains("table my_table not found"));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -2880,7 +2906,7 @@ mod tests {
|
||||
let res = table.checkout(43).await;
|
||||
println!("{:?}", res);
|
||||
assert!(
|
||||
matches!(res, Err(Error::TableNotFound { name }) if name == "my_table (version: 43)")
|
||||
matches!(res, Err(Error::TableNotFound { name, .. }) if name == "my_table (version: 43)")
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user