Compare commits

..

120 Commits

Author SHA1 Message Date
Xuanwo
16a7e29639 Format python
Signed-off-by: Xuanwo <github@xuanwo.io>
2025-07-10 19:11:02 +08:00
Xuanwo
0e7a218d62 docs: Add examples for where in when_matched_update_all
Signed-off-by: Xuanwo <github@xuanwo.io>
2025-07-10 19:08:45 +08:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
Lance Release
9eb6119468 Bump version: 0.23.0 → 0.23.1-beta.0 2025-06-16 16:29:22 +00:00
Weston Pace
59b57e30ed feat: add maximum and minimum nprobes properties (#2430)
This exposes the maximum_nprobes and minimum_nprobes feature that was
added in https://github.com/lancedb/lance/pull/3903

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying minimum and maximum probe counts in
vector search queries, allowing finer control over search behavior.
- Users can now independently set minimum and maximum probes for vector
and hybrid queries via new methods and parameters in Python, Node.js,
and Rust APIs.

- **Bug Fixes**
- Improved parameter validation to ensure correct usage of minimum and
maximum probe values.

- **Tests**
- Expanded test coverage to validate correct handling, serialization,
and error cases for the new probe parameters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-13 15:18:29 -07:00
BubbleCal
fec8d58f06 feat: support a bunch or FTS features in JS SDK (#2431)
- operator for match query
- slop for phrase query
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for boolean full-text search queries with AND/OR
logic and occurrence conditions.
- Added operator options for match and multi-match queries to control
term combination logic.
- Enabled phrase queries to specify proximity (slop) for flexible phrase
matching.
- Added new enumerations (`Operator`, `Occur`) and the `BooleanQuery`
class for enhanced query expressiveness.

- **Bug Fixes**
- Improved validation and error handling for invalid operator and
occurrence inputs in full-text queries.

- **Tests**
- Expanded test coverage with new cases for boolean queries and
operator-based full-text searches.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-12 17:04:19 +08:00
BubbleCal
84ded9d678 feat: support new FTS features in python SDK (#2411)
- AND operator
- phrase query slop param
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for combining full-text search queries using AND/OR
operators, enabling more flexible query composition.
- Introduced new query types and parameters, including boolean queries,
operator selection, occurrence constraints, and phrase slop for advanced
search scenarios.
- Enhanced asynchronous search to accept rich full-text query objects
directly.

- **Bug Fixes**
- Improved handling and validation of full-text search queries in both
synchronous and asynchronous search operations.

- **Tests**
- Updated and expanded tests to cover new full-text query types and
their usage in search functions.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-06 14:33:46 +08:00
Wyatt Alt
65696d9713 chore: update lance in lancedb (#2424)
This updates lance to v0.29.1-beta.1.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies for improved consistency and
reliability. No changes to user-facing functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 19:06:51 -07:00
Will Jones
e2f2ea32e4 ci: fix vectordb release (#2422)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to include an additional step for
improved process reliability. No changes to user-facing functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 17:06:02 -07:00
Lance Release
d5f2eca754 Bump version: 0.20.0-beta.3 → 0.20.0 2025-06-04 21:08:31 +00:00
Lance Release
7fa455a8a5 Bump version: 0.20.0-beta.2 → 0.20.0-beta.3 2025-06-04 21:07:59 +00:00
Lance Release
8f42b5874e Bump version: 0.23.0-beta.3 → 0.23.0 2025-06-04 21:07:39 +00:00
Lance Release
274f19f560 Bump version: 0.23.0-beta.2 → 0.23.0-beta.3 2025-06-04 21:07:38 +00:00
Will Jones
fbcbc75b5b feat: upgrade lance to stable version (#2420)
Adds a script to change the lance dependency easily. To make this
change, I just had to run:

```bash
python ci/set_lance_version.py stable
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added a script to automate updating the Lance package version in
project dependencies.
- **Chores**
- Updated workflows to improve lockfile management and automate updates
during releases and publishing.
- Switched Lance dependencies from git-based references to fixed version
numbers for improved stability.
- Enhanced lockfile update script with an option to amend commits and
quieter output.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-04 13:34:30 -07:00
Will Jones
008f389bd0 ci: commit updated Cargo.lock (#2418)
Follow up to #2416

Forgot to do `git add`.
Also need to delete old actions updating package lock.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
  - Removed legacy workflows related to updating package lock files.
- Improved the update lockfiles script to ensure updated lockfiles are
always included in amended commits.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 08:40:38 -07:00
Lance Release
91af6518d9 Updating package-lock.json 2025-06-04 07:15:07 +00:00
Lance Release
af6819762c Updating package-lock.json 2025-06-04 07:14:50 +00:00
Lance Release
7acece493d Bump version: 0.20.0-beta.1 → 0.20.0-beta.2 2025-06-04 07:14:39 +00:00
Lance Release
20e017fedc Bump version: 0.23.0-beta.1 → 0.23.0-beta.2 2025-06-04 07:13:44 +00:00
Jack Ye
74e578b3c8 feat: upgrade lance to v0.29.0-beta.2 (#2419)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated various internal dependencies to newer versions for improved
stability and compatibility.
  - Increased the version number for the Python package.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 15:16:26 -07:00
Lance Release
d92d9eb3d2 Updating package-lock.json 2025-06-03 16:28:18 +00:00
Lance Release
b6cdce7bc9 Updating package-lock.json 2025-06-03 16:28:02 +00:00
Lance Release
316b406265 Bump version: 0.20.0-beta.0 → 0.20.0-beta.1 2025-06-03 16:27:53 +00:00
Lance Release
8825c7c1dd Bump version: 0.23.0-beta.0 → 0.23.0-beta.1 2025-06-03 16:26:58 +00:00
David Myriel
81c85ff702 docs: announcement for Documentation (#2410)
Just letting people know where to look starting June 1st. 

Both docsites should be pointing to lancedb.github.io/documentation.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added a notification banner to the documentation site informing users
about a new URL for accessing the latest documentation starting June
1st, 2025. The message includes a clickable link that opens in a new
tab.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-03 08:55:02 -07:00
Will Jones
570f2154d5 ci: automatically update Cargo.lock (#2416)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workflow to ignore changes in the `Cargo.lock` file during
documentation checks, reducing unnecessary workflow failures.
- Enhanced release process by adding automated lockfile updates for
Node.js and Rust components.
- Removed an obsolete package-lock update job from the publishing
workflow to streamline releases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 07:49:21 -07:00
Lance Release
0525c055fc Updating package-lock.json 2025-05-31 04:29:20 +00:00
Lance Release
38d11291da Updating package-lock.json 2025-05-31 03:48:11 +00:00
Lance Release
258e682574 Updating package-lock.json 2025-05-31 03:47:55 +00:00
Lance Release
d7afa600b8 Bump version: 0.19.2-beta.0 → 0.20.0-beta.0 2025-05-31 03:47:37 +00:00
Lance Release
5c7303ab2e Bump version: 0.22.2-beta.0 → 0.23.0-beta.0 2025-05-31 03:47:13 +00:00
Will Jones
5895ef4039 ci: revert unnecessary version bump (#2415)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Downgraded version numbers for the Node.js, Python, and Rust packages.
No other user-facing changes were made.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 16:51:14 -07:00
Jack Ye
0528cd858a fix: avoid failing list_indices for any unknown index (#2413)
Closes #2412 

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved the reliability of listing indices by logging warnings for
errors and skipping problematic entries, ensuring successful results are
returned.
- Internal indices used for optimization are now excluded from the
visible list of indices.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 14:43:12 -07:00
Jack Ye
6582f43422 feat: upgrade lance to v0.29.0-beta.1 (#2414)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility. No user-facing changes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 13:47:41 -07:00
BubbleCal
5c7f63388d feat!: upgrade lance to v0.28.0 (#2404)
this introduces some breaking changes in terms of rust API of creating
FTS index, and the default index params changed

Signed-off-by: BubbleCal <bubble-cal@outlook.com>

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Updated default settings for full-text search (FTS) index creation:
stemming, stop word removal, and ASCII folding are now enabled by
default, while token position storage is disabled by default.

- **Refactor**
- Simplified and streamlined the configuration and handling of FTS index
parameters for improved maintainability and consistency across
interfaces.
- Enhanced serialization and request construction for FTS index
parameters to reduce manual handling and improve code clarity.
- Improved test coverage by explicitly enabling positional indexing in
FTS tests to support phrase queries.

- **Chores**
- Upgraded all internal dependencies related to FTS indexing to the
latest version for enhanced compatibility and performance.
- Updated package versions for Node.js, Python, and Rust components to
the latest beta releases.
- Improved CI workflows by adding Rust toolchain setup with formatting
and linting tools.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-29 15:19:24 -07:00
Renato Marroquin
d0bc671cac docs: add example for querying a lance table with SQL (#2389)
Adds example for querying a dataset with SQL

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added new guides on querying LanceDB tables using SQL with DuckDB and
Apache Datafusion.
- Included detailed instructions for integrating LanceDB with Datafusion
in Python.
- Updated navigation to include Datafusion and SQL querying
documentation.
- Improved formatting in TypeScript and vectordb update examples for
consistency.

- **Tests**
- Added a new test demonstrating SQL querying on Lance tables via
DataFusion integration.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-05-29 06:14:38 -07:00
David Myriel
d37e17593d [doc] Add New Readme Page (#2405)
Added a new readme for better navigation, updated language and more
detail

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Updated the README with a modernized header, improved structure, and
clearer descriptions of features and architecture.
- Expanded and reorganized key features and product offerings for better
clarity.
- Simplified installation instructions and added a table of SDK
interfaces with documentation links.
- Enhanced community and contributor sections with new visuals and links
to social and support channels.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-27 17:45:17 +02:00
Lance Release
cb726d370e Updating package-lock.json 2025-05-23 22:36:54 +00:00
Lance Release
23ee132546 Updating package-lock.json 2025-05-23 21:58:58 +00:00
Lance Release
7fa090d330 Updating package-lock.json 2025-05-23 21:58:43 +00:00
Lance Release
07bc1c5397 Bump version: 0.19.1 → 0.19.2-beta.0 2025-05-23 21:58:31 +00:00
Lance Release
d7a9dbb9fc Bump version: 0.22.1 → 0.22.2-beta.0 2025-05-23 21:58:17 +00:00
Jack Ye
00487afc7d feat: upgrade lance to v0.27.3-beta.2 (#2403)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved compatibility and
stability. No changes to user-facing features.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-23 14:53:13 -07:00
BubbleCal
1902d65aad docs: update the num_partitions recommendation (#2401) 2025-05-23 23:45:37 +08:00
Lance Release
c4fbb65b8e Updating package-lock.json 2025-05-22 07:06:03 +00:00
Lance Release
875ed7ae6f Updating package-lock.json 2025-05-22 05:58:59 +00:00
Lance Release
95a46a57ba Updating package-lock.json 2025-05-22 05:58:43 +00:00
Lance Release
51561e31a0 Bump version: 0.19.1-beta.6 → 0.19.1 2025-05-22 05:58:05 +00:00
Lance Release
7b19120578 Bump version: 0.19.1-beta.5 → 0.19.1-beta.6 2025-05-22 05:58:00 +00:00
Lance Release
745c34a6a9 Bump version: 0.22.1-beta.6 → 0.22.1 2025-05-22 05:57:20 +00:00
Lance Release
db8fa2454d Bump version: 0.22.1-beta.5 → 0.22.1-beta.6 2025-05-22 05:57:20 +00:00
Lei Xu
a67a7b4b42 chore: use stable lance (#2398)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies to use a stable release version for
improved consistency and reliability. No changes to application features
or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-21 22:34:29 -07:00
Lei Xu
496846e532 chore: bump lance version (#2397)
- Bump lance version and prepare a new release.
- Bump rust toolchain to 1.86, because GHA ubuntu does not have 1.83
`cargo-fmt` anymore
2025-05-21 14:15:55 -07:00
Ayush Chaurasia
dadcfebf8e docs: add logos in genkit docs page (#2391)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added an integration banner image to the beginning of the
Genkitx-LanceDB documentation.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-20 01:40:12 +05:30
Lance Release
67033dbd7f Updating package-lock.json 2025-05-16 00:25:41 +00:00
Lance Release
05a85cfc2a Updating package-lock.json 2025-05-15 23:44:27 +00:00
Lance Release
40c5d3d72b Updating package-lock.json 2025-05-15 23:44:10 +00:00
Lance Release
198f0f80c6 Bump version: 0.19.1-beta.4 → 0.19.1-beta.5 2025-05-15 23:43:32 +00:00
Lance Release
e3f2fd3892 Bump version: 0.22.1-beta.4 → 0.22.1-beta.5 2025-05-15 23:42:46 +00:00
Wyatt Alt
f401ccc599 chore: update lance to 0.27.1-beta.1 (#2388)
This is for fe14671f1

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to newer versions for improved stability
and performance. No changes to features or functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-15 16:09:01 -07:00
Ayush Chaurasia
81b59139f8 docs: add genkit integration docs (#2383)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added a comprehensive guide for integrating LanceDB with Genkit,
including installation instructions, setup, indexing, retrieval, and
building a custom RAG pipeline with example code and screenshots.
- Updated the documentation navigation to include the new Genkit
integration, making it accessible from the site menu.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-12 18:18:07 +05:30
ayush chaurasia
1026781ab6 Revert "update"
This reverts commit 9c699b8cd9.
2025-05-11 21:04:59 +05:30
ayush chaurasia
9c699b8cd9 update 2025-05-11 21:01:53 +05:30
Lance Release
34bec59bc3 Updating package-lock.json 2025-05-08 21:34:37 +00:00
Lance Release
a5fbbf0d66 Updating package-lock.json 2025-05-08 20:20:18 +00:00
Lance Release
b42721167b Updating package-lock.json 2025-05-08 20:20:00 +00:00
Lance Release
543dec9ff0 Bump version: 0.19.1-beta.3 → 0.19.1-beta.4 2025-05-08 20:19:17 +00:00
Lance Release
04f962f6b0 Bump version: 0.22.1-beta.3 → 0.22.1-beta.4 2025-05-08 20:18:40 +00:00
LuQQiu
19e896ff69 chore: add default for result structs (#2377)
add default for result structs, when values are not provided, will go
with the default values

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved internal handling of table operation results to support
default values. No changes to user-facing features or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:09:11 -07:00
Will Jones
272e4103b2 feat: provide timeout parameter for merge_insert (#2378)
Provides the ability to set a timeout for merge insert. The default
underlying timeout is however long the first attempt takes, or if there
are multiple attempts, 30 seconds. This has two use cases:

1. Make the timeout shorter, when you want to fail if it takes too long.
2. Allow taking more time to do retries.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying a timeout when performing merge insert
operations in Python, Node.js, and Rust APIs.
- Introduced a new option to control the maximum allowed execution time
for merge inserts, including retry timeout handling.

- **Documentation**
- Updated and added documentation to describe the new timeout option and
its usage in APIs.

- **Tests**
- Added and updated tests to verify correct timeout behavior during
merge insert operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:07:05 -07:00
Wyatt Alt
75c257ebb6 fix: return IndexNotExist on remote drop index 404 (#2380)
Prior to this commit, attempting to drop an index that did not exist
would return a TableNotFound error stating that the target table does
not exist -- even when it did exist. Instead, we now return an
IndexNotFound error.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved error handling when attempting to drop a non-existent index,
providing a more accurate error message.
- **Tests**
- Added a test to verify correct error reporting when dropping an index
that does not exist.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:24:05 -07:00
Wyatt Alt
9ee152eb42 fix: support __len__ on remote table (#2379)
This moves the __len__ method from LanceTable and RemoteTable to Table
so that child classes don't need to implement their own. In the process,
it fixes the implementation of RemoteTable's length method, which was
previously missing a return statement.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Centralized the table length functionality in the base table class,
simplifying subclass behavior.
- Removed redundant or non-functional length methods from specific table
classes.

- **Tests**
- Added a new test to verify correct table length reporting for remote
tables.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:23:39 -07:00
LuQQiu
c9ae1b1737 fix: add restore with tag in python and nodejs API (#2374)
add restore with tag API in python and nodejs API and add tests to guard
them

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
  - Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
  - Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-06 16:12:58 -07:00
Lance Release
89dc80c42a Updating package-lock.json 2025-05-06 03:53:49 +00:00
Wyatt Alt
7b020ac799 chore: run cargo update (#2376) 2025-05-05 20:26:42 -07:00
Lance Release
529e774bbb Updating package-lock.json 2025-05-06 02:45:45 +00:00
Lance Release
7c12239305 Updating package-lock.json 2025-05-06 02:45:29 +00:00
Lance Release
d83424d6b4 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-05-06 02:45:06 +00:00
Lance Release
8bf89f887c Bump version: 0.22.1-beta.2 → 0.22.1-beta.3 2025-05-06 02:44:39 +00:00
LuQQiu
b2160b2304 fix: fix backward compatibility with the add API (#2375)
add API originally returns a struct with request_id, add backward
compatibility for that

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of empty server responses for various data
operations to ensure consistent behavior across server versions.
- Added default values to version and numeric fields to prevent errors
when response data is incomplete.

- **Tests**
- Expanded tests to cover multiple server response scenarios, validating
correct version handling in data operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 19:26:27 -07:00
Lance Release
1bb82597be Updating package-lock.json 2025-05-06 01:21:13 +00:00
Lance Release
e4eee38b3c Updating package-lock.json 2025-05-06 00:09:39 +00:00
Lance Release
64fc2be503 Updating package-lock.json 2025-05-06 00:09:19 +00:00
Lance Release
dc8054e90d Bump version: 0.19.1-beta.1 → 0.19.1-beta.2 2025-05-06 00:08:55 +00:00
Lance Release
1684940946 Bump version: 0.22.1-beta.1 → 0.22.1-beta.2 2025-05-06 00:08:29 +00:00
LuQQiu
695813463c chore: reduce unneeded API calls for return version for write operations and improve test (#2373)
Reduce the duplicate code for remote write operation testing.
Avoid double call to remote to get version info, just return 0 instead
of suddenly adding extra API calls for end users when they are using old
servers.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added version tracking to table operation results, allowing users to
see the commit version associated with add, update, delete, merge, and
column modification operations.
- **Bug Fixes**
- Improved compatibility with legacy servers by standardizing version
information as zero when the server does not return a version.
- **Documentation**
- Clarified the meaning of the version field in operation results,
especially for cases involving legacy server responses.
- **Tests**
- Enhanced test coverage to verify correct behavior with both legacy and
modern server responses.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 16:47:19 -07:00
LuQQiu
ed594b0f76 feat: return version for all write operations (#2368)
return version info for all write operations (add, update, merge_insert
and column modification operations)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Table modification operations (add, update, delete, merge,
add/alter/drop columns) now return detailed result objects including
version numbers and operation statistics.
- Result objects provide clearer feedback such as rows affected and new
table version after each operation.

- **Documentation**
- Updated documentation to describe new result objects and their fields
for all relevant table operations.
- Added documentation for new result interfaces and updated method
return types in Node.js and Python APIs.

- **Tests**
- Enhanced test coverage to assert correctness of returned versioning
and operation metadata after table modifications.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 14:25:34 -07:00
112 changed files with 5420 additions and 2457 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.19.1-beta.1"
current_version = "0.21.1-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -35,6 +35,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -68,6 +71,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -110,4 +116,3 @@ jobs:
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -84,6 +84,7 @@ jobs:
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
@@ -92,11 +93,3 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -47,6 +47,9 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint
run: |
cargo fmt --all -- --check
@@ -113,7 +116,7 @@ jobs:
set -e
npm ci
npm run docs
if ! git diff --exit-code; then
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1

View File

@@ -505,6 +505,8 @@ jobs:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-windows]
runs-on: ubuntu-latest
permissions:
contents: write
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
@@ -537,6 +539,20 @@ jobs:
# We need to deprecate the old package to avoid confusion.
# Each time we publish a new version, it gets undeprecated.
run: npm deprecate vectordb "Use @lancedb/lancedb instead."
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
- name: Update package-lock.json
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
bash ci/update_lockfiles.sh
- name: Push new commit
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
@@ -546,21 +562,3 @@ jobs:
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
run: pytest -m "not slow" -vv --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests

View File

@@ -40,6 +40,9 @@ jobs:
with:
fetch-depth: 0
lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
@@ -160,8 +163,8 @@ jobs:
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

1952
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -21,55 +21,52 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.27.0", "features" = ["dynamodb"], tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-index = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-linalg = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-table = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-testing = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-datafusion = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-encoding = { version = "=0.27.0", tag = "v0.27.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git", features = ["dynamodb"] }
lance-io = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
lance-index = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
lance-linalg = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
lance-table = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
lance-testing = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
lance-datafusion = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
lance-encoding = { "version" = "=0.31.1", tag="v0.31.1-beta.2", git="https://github.com/lancedb/lance.git" }
# Note that this one does not include pyarrow
arrow = { version = "54.1", optional = false }
arrow-array = "54.1"
arrow-data = "54.1"
arrow-ipc = "54.1"
arrow-ord = "54.1"
arrow-schema = "54.1"
arrow-arith = "54.1"
arrow-cast = "54.1"
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
arrow-data = "55.1"
arrow-ipc = "55.1"
arrow-ord = "55.1"
arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
datafusion = { version = "46.0", default-features = false }
datafusion-catalog = "46.0"
datafusion-common = { version = "46.0", default-features = false }
datafusion-execution = "46.0"
datafusion-expr = "46.0"
datafusion-physical-plan = "46.0"
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
env_logger = "0.11"
half = { "version" = "=2.4.1", default-features = false, features = [
half = { "version" = "2.6.0", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.11.0"
object_store = "0.12.0"
pin-project = "1.0.7"
snafu = "0.8"
url = "2"
num-traits = "0.2"
rand = "0.8"
rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.39"
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

129
README.md
View File

@@ -1,94 +1,97 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/user-attachments/assets/ac270358-333e-4bea-a132-acefaa94040e">
<source media="(prefers-color-scheme: light)" srcset="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0">
<img alt="LanceDB Logo" src="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0" width=300>
</picture>
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
**Search More, Manage Less**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
</p>
# **The Multimodal AI Lakehouse**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</p>
</div>
<hr />
<br>
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
The key features of LanceDB include:
## **Star LanceDB to get updates!**
* Production-scale vector search with no servers to manage.
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
## **Key Features**:
* Support for vector similarity search, full-text search and SQL.
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
* Native Python and Javascript/Typescript support.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* GPU support in building vector index(*).
## **How to Install**:
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
**API & SDK:** We also support Python, Typescript and Rust SDKs
## Quick Start
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
**Javascript**
```shell
npm install @lancedb/lancedb
```
## **Join Us and Contribute**
```javascript
import * as lancedb from "@lancedb/lancedb";
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
## **Stay in Touch With Us**
<div align="center">
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
```
</br>
**Python**
```shell
pip install lancedb
```
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>
</div>

174
ci/set_lance_version.py Normal file
View File

@@ -0,0 +1,174 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[(.*?)\]', line)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",")]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
new_lines.append(line_updater(line))
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

30
ci/update_lockfiles.sh Executable file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
pushd node || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -105,8 +105,7 @@ markdown_extensions:
nav:
- Home:
- LanceDB: index.md
- 👉 Quickstart: quickstart.md
- 🏃🏼‍♂️ Basic Usage: basic.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
@@ -194,6 +193,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
@@ -206,6 +206,7 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
@@ -238,9 +239,7 @@ nav:
- 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- Getting Started:
- Quickstart: quickstart.md
- Basic Usage: basic.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
@@ -250,6 +249,7 @@ nav:
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
@@ -326,6 +326,7 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
@@ -334,6 +335,7 @@ nav:
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md
- 🐍 Python:

View File

@@ -0,0 +1,5 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

View File

@@ -291,7 +291,7 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

BIN
docs/src/assets/lancedb.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

View File

@@ -1,4 +1,4 @@
# Basic Usage
# Quick start
!!! info "LanceDB can be run in a number of ways:"

View File

@@ -0,0 +1,68 @@
You can use DuckDB and Apache Datafusion to query your LanceDB tables using SQL.
This guide will show how to query Lance tables them using both.
We will re-use the dataset [created previously](./pandas_and_pyarrow.md):
```python
import lancedb
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
table = db.create_table("pd_table", data=data)
```
## Querying a LanceDB Table with DuckDb
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to DuckDB through the Arrow compatibility layer.
To query the resulting Lance dataset in DuckDB, all you need to do is reference the dataset by the same name in your SQL query.
```python
import duckdb
arrow_table = table.to_lance()
duckdb.query("SELECT * FROM arrow_table")
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```
## Querying a LanceDB Table with Apache Datafusion
Have the required imports before doing any querying.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-session-context"
--8<-- "python/python/tests/docs/test_guide_tables.py:import-ffi-dataset"
```
Register the table created with the Datafusion session context.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_guide_tables.py:lance_sql_basic"
```
```
┌─────────────┬─────────┬────────┐
│ vector │ item │ price │
│ float[] │ varchar │ double │
├─────────────┼─────────┼────────┤
│ [3.1, 4.1] │ foo │ 10.0 │
│ [5.9, 26.5] │ bar │ 20.0 │
└─────────────┴─────────┴────────┘
```

View File

@@ -765,7 +765,7 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({
await tbl.update({
values: { vector: [10, 10] },
where: "x = 2"
});
@@ -787,9 +787,9 @@ This can be used to update zero to all rows depending on how many rows match the
];
const tbl = await db.createTable("my_table", data)
await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
await tbl.update({
where: "x = 2",
values: { vector: [10, 10] }
});
```

View File

@@ -71,6 +71,45 @@ with merge insert, enable both `when_matched_update_all()` and
If a column is nullable, it can be omitted from input data and it will be
considered `null`. Columns can also be provided in any order.
### Conditional Updates
You can add a `where` clause to `when_matched_update_all()` to only update rows
that meet certain conditions. When using the `where` parameter, you must prefix
column names with either `source.` (for the new data) or `target.` (for the
existing data) to specify which table you're referencing.
=== "Python"
```python
# Only update rows where the target's status is 'active'
table.merge_insert("id")
.when_matched_update_all(where="target.status = 'active'")
.when_not_matched_insert_all()
.execute(new_data)
# Only update if the new price is higher than the existing price
table.merge_insert("product_id")
.when_matched_update_all(where="source.price > target.price")
.when_not_matched_insert_all()
.execute(new_data)
```
=== "Typescript"
```typescript
// Only update rows where the target's status is 'active'
await table.mergeInsert("id")
.whenMatchedUpdateAll({ where: "target.status = 'active'" })
.whenNotMatchedInsertAll()
.execute(newData);
// Only update if the new price is higher than the existing price
await table.mergeInsert("product_id")
.whenMatchedUpdateAll({ where: "source.price > target.price" })
.whenNotMatchedInsertAll()
.execute(newData);
```
## Insert-if-not-exists
To avoid inserting duplicate rows, you can use the insert-if-not-exists command.

View File

@@ -0,0 +1,183 @@
### genkitx-lancedb
This is a lancedb plugin for genkit framework. It allows you to use LanceDB for ingesting and rereiving data using genkit framework.
![integration-banner-genkit](https://github.com/user-attachments/assets/a6cc28af-98e9-4425-b87c-7ab139bd7893)
### Installation
```bash
pnpm install genkitx-lancedb
```
### Usage
Adding LanceDB plugin to your genkit instance.
```ts
import { lancedbIndexerRef, lancedb, lancedbRetrieverRef, WriteMode } from 'genkitx-lancedb';
import { textEmbedding004, vertexAI } from '@genkit-ai/vertexai';
import { gemini } from '@genkit-ai/vertexai';
import { z, genkit } from 'genkit';
import { Document } from 'genkit/retriever';
import { chunk } from 'llm-chunk';
import { readFile } from 'fs/promises';
import path from 'path';
import pdf from 'pdf-parse/lib/pdf-parse';
const ai = genkit({
plugins: [
// vertexAI provides the textEmbedding004 embedder
vertexAI(),
// the local vector store requires an embedder to translate from text to vector
lancedb([
{
dbUri: '.db', // optional lancedb uri, default to .db
tableName: 'table', // optional table name, default to table
embedder: textEmbedding004,
},
]),
],
});
```
You can run this app with the following command:
```bash
genkit start -- tsx --watch src/index.ts
```
This'll add LanceDB as a retriever and indexer to the genkit instance. You can see it in the GUI view
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/e752f7f4-785b-4797-a11e-72ab06a531b7" />
**Testing retrieval on a sample table**
Let's see the raw retrieval results
<img width="1710" alt="Screenshot 2025-05-11 at 7 21 05PM" src="https://github.com/user-attachments/assets/b8d356ed-8421-4790-8fc0-d6af563b9657" />
On running this query, you'll 5 results fetched from the lancedb table, where each result looks something like this:
<img width="1417" alt="Screenshot 2025-05-11 at 7 21 18PM" src="https://github.com/user-attachments/assets/77429525-36e2-4da6-a694-e58c1cf9eb83" />
## Creating a custom RAG flow
Now that we've seen how you can use LanceDB for in a genkit pipeline, let's refine the flow and create a RAG. A RAG flow will consist of an index and a retreiver with its outputs postprocessed an fed into an LLM for final response
### Creating custom indexer flows
You can also create custom indexer flows, utilizing more options and features provided by LanceDB.
```ts
export const menuPdfIndexer = lancedbIndexerRef({
// Using all defaults, for dbUri, tableName, and embedder, etc
});
const chunkingConfig = {
minLength: 1000,
maxLength: 2000,
splitter: 'sentence',
overlap: 100,
delimiters: '',
} as any;
async function extractTextFromPdf(filePath: string) {
const pdfFile = path.resolve(filePath);
const dataBuffer = await readFile(pdfFile);
const data = await pdf(dataBuffer);
return data.text;
}
export const indexMenu = ai.defineFlow(
{
name: 'indexMenu',
inputSchema: z.string().describe('PDF file path'),
outputSchema: z.void(),
},
async (filePath: string) => {
filePath = path.resolve(filePath);
// Read the pdf.
const pdfTxt = await ai.run('extract-text', () =>
extractTextFromPdf(filePath)
);
// Divide the pdf text into segments.
const chunks = await ai.run('chunk-it', async () =>
chunk(pdfTxt, chunkingConfig)
);
// Convert chunks of text into documents to store in the index.
const documents = chunks.map((text) => {
return Document.fromText(text, { filePath });
});
// Add documents to the index.
await ai.index({
indexer: menuPdfIndexer,
documents,
options: {
writeMode: WriteMode.Overwrite,
} as any
});
}
);
```
<img width="1316" alt="Screenshot 2025-05-11 at 8 35 56PM" src="https://github.com/user-attachments/assets/e2a20ce4-d1d0-4fa2-9a84-f2cc26e3a29f" />
In your console, you can see the logs
<img width="511" alt="Screenshot 2025-05-11 at 7 19 14PM" src="https://github.com/user-attachments/assets/243f26c5-ed38-40b6-b661-002f40f0423a" />
### Creating custom retriever flows
You can also create custom retriever flows, utilizing more options and features provided by LanceDB.
```ts
export const menuRetriever = lancedbRetrieverRef({
tableName: "table", // Use the same table name as the indexer.
displayName: "Menu", // Use a custom display name.
export const menuQAFlow = ai.defineFlow(
{ name: "Menu", inputSchema: z.string(), outputSchema: z.string() },
async (input: string) => {
// retrieve relevant documents
const docs = await ai.retrieve({
retriever: menuRetriever,
query: input,
options: {
k: 3,
},
});
const extractedContent = docs.map(doc => {
if (doc.content && Array.isArray(doc.content) && doc.content.length > 0) {
if (doc.content[0].media && doc.content[0].media.url) {
return doc.content[0].media.url;
}
}
return "No content found";
});
console.log("Extracted content:", extractedContent);
const { text } = await ai.generate({
model: gemini('gemini-2.0-flash'),
prompt: `
You are acting as a helpful AI assistant that can answer
questions about the food available on the menu at Genkit Grub Pub.
Use only the context provided to answer the question.
If you don't know, do not make up an answer.
Do not add or change items on the menu.
Context:
${extractedContent.join('\n\n')}
Question: ${input}`,
docs,
});
return text;
}
);
```
Now using our retrieval flow, we can ask question about the ingsted PDF
<img width="1306" alt="Screenshot 2025-05-11 at 7 18 45PM" src="https://github.com/user-attachments/assets/86c66b13-7c12-4d5f-9d81-ae36bfb1c346" />

View File

@@ -0,0 +1,53 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / BooleanQuery
# Class: BooleanQuery
Represents a full-text query interface.
This interface defines the structure and behavior for full-text queries,
including methods to retrieve the query type and convert the query to a dictionary format.
## Implements
- [`FullTextQuery`](../interfaces/FullTextQuery.md)
## Constructors
### new BooleanQuery()
```ts
new BooleanQuery(queries): BooleanQuery
```
Creates an instance of BooleanQuery.
#### Parameters
* **queries**: [[`Occur`](../enumerations/Occur.md), [`FullTextQuery`](../interfaces/FullTextQuery.md)][]
An array of (Occur, FullTextQuery objects) to combine.
Occur specifies whether the query must match, or should match.
#### Returns
[`BooleanQuery`](BooleanQuery.md)
## Methods
### queryType()
```ts
queryType(): FullTextQueryType
```
The type of the full-text query.
#### Returns
[`FullTextQueryType`](../enumerations/FullTextQueryType.md)
#### Implementation of
[`FullTextQuery`](../interfaces/FullTextQuery.md).[`queryType`](../interfaces/FullTextQuery.md#querytype)

View File

@@ -40,6 +40,7 @@ Creates an instance of MatchQuery.
- `boost`: The boost factor for the query (default is 1.0).
- `fuzziness`: The fuzziness level for the query (default is 0).
- `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boost?**: `number`
@@ -47,6 +48,8 @@ Creates an instance of MatchQuery.
* **options.maxExpansions?**: `number`
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns
[`MatchQuery`](MatchQuery.md)

View File

@@ -33,7 +33,7 @@ Construct a MergeInsertBuilder. __Internal use only.__
### execute()
```ts
execute(data): Promise<MergeStats>
execute(data, execOptions?): Promise<MergeResult>
```
Executes the merge insert operation
@@ -42,11 +42,13 @@ Executes the merge insert operation
* **data**: [`Data`](../type-aliases/Data.md)
* **execOptions?**: `Partial`&lt;[`WriteExecutionOptions`](../interfaces/WriteExecutionOptions.md)&gt;
#### Returns
`Promise`&lt;[`MergeStats`](../interfaces/MergeStats.md)&gt;
`Promise`&lt;[`MergeResult`](../interfaces/MergeResult.md)&gt;
Statistics about the merge operation: counts of inserted, updated, and deleted rows
the merge result
***

View File

@@ -38,9 +38,12 @@ Creates an instance of MultiMatchQuery.
* **options?**
Optional parameters for the multi-match query.
- `boosts`: An array of boost factors for each column (default is 1.0 for all).
- `operator`: The logical operator to use for combining terms in the query (default is "OR").
* **options.boosts?**: `number`[]
* **options.operator?**: [`Operator`](../enumerations/Operator.md)
#### Returns
[`MultiMatchQuery`](MultiMatchQuery.md)

View File

@@ -19,7 +19,10 @@ including methods to retrieve the query type and convert the query to a dictiona
### new PhraseQuery()
```ts
new PhraseQuery(query, column): PhraseQuery
new PhraseQuery(
query,
column,
options?): PhraseQuery
```
Creates an instance of `PhraseQuery`.
@@ -32,6 +35,12 @@ Creates an instance of `PhraseQuery`.
* **column**: `string`
The name of the column to search within.
* **options?**
Optional parameters for the phrase query.
- `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
* **options.slop?**: `number`
#### Returns
[`PhraseQuery`](PhraseQuery.md)

View File

@@ -40,7 +40,7 @@ Returns the name of the table
### add()
```ts
abstract add(data, options?): Promise<void>
abstract add(data, options?): Promise<AddResult>
```
Insert records into this Table.
@@ -54,14 +54,17 @@ Insert records into this Table.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`AddResult`](../interfaces/AddResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table
***
### addColumns()
```ts
abstract addColumns(newColumnTransforms): Promise<void>
abstract addColumns(newColumnTransforms): Promise<AddColumnsResult>
```
Add new columns with defined values.
@@ -76,14 +79,17 @@ Add new columns with defined values.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`AddColumnsResult`](../interfaces/AddColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after adding the columns.
***
### alterColumns()
```ts
abstract alterColumns(columnAlterations): Promise<void>
abstract alterColumns(columnAlterations): Promise<AlterColumnsResult>
```
Alter the name or nullability of columns.
@@ -96,7 +102,10 @@ Alter the name or nullability of columns.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`AlterColumnsResult`](../interfaces/AlterColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after altering the columns.
***
@@ -252,7 +261,7 @@ await table.createIndex("my_float_col");
### delete()
```ts
abstract delete(predicate): Promise<void>
abstract delete(predicate): Promise<DeleteResult>
```
Delete the rows that satisfy the predicate.
@@ -263,7 +272,10 @@ Delete the rows that satisfy the predicate.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`DeleteResult`](../interfaces/DeleteResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table
***
@@ -284,7 +296,7 @@ Return a brief description of the table
### dropColumns()
```ts
abstract dropColumns(columnNames): Promise<void>
abstract dropColumns(columnNames): Promise<DropColumnsResult>
```
Drop one or more columns from the dataset
@@ -303,7 +315,10 @@ then call ``cleanup_files`` to remove the old files.
#### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`DropColumnsResult`](../interfaces/DropColumnsResult.md)&gt;
A promise that resolves to an object
containing the new version number of the table after dropping the columns.
***
@@ -678,7 +693,7 @@ Return the table as an arrow table
#### update(opts)
```ts
abstract update(opts): Promise<void>
abstract update(opts): Promise<UpdateResult>
```
Update existing records in the Table
@@ -689,7 +704,10 @@ Update existing records in the Table
##### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object containing
the number of rows updated and the new version number
##### Example
@@ -700,7 +718,7 @@ table.update({where:"x = 2", values:{"vector": [10, 10]}})
#### update(opts)
```ts
abstract update(opts): Promise<void>
abstract update(opts): Promise<UpdateResult>
```
Update existing records in the Table
@@ -711,7 +729,10 @@ Update existing records in the Table
##### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object containing
the number of rows updated and the new version number
##### Example
@@ -722,7 +743,7 @@ table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
#### update(updates, options)
```ts
abstract update(updates, options?): Promise<void>
abstract update(updates, options?): Promise<UpdateResult>
```
Update existing records in the Table
@@ -745,10 +766,6 @@ repeatedly calilng this method.
* **updates**: `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
the
columns to update
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
* **options?**: `Partial`&lt;[`UpdateOptions`](../interfaces/UpdateOptions.md)&gt;
additional options to control
@@ -756,7 +773,15 @@ repeatedly calilng this method.
##### Returns
`Promise`&lt;`void`&gt;
`Promise`&lt;[`UpdateResult`](../interfaces/UpdateResult.md)&gt;
A promise that resolves to an object
containing the number of rows updated and the new version number
Keys in the map should specify the name of the column to update.
Values in the map provide the new value of the column. These can
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
based on the row being updated (e.g. "my_col + 1")
***

View File

@@ -15,6 +15,14 @@ Enum representing the types of full-text queries supported.
## Enumeration Members
### Boolean
```ts
Boolean: "boolean";
```
***
### Boost
```ts

View File

@@ -0,0 +1,28 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Occur
# Enumeration: Occur
Enum representing the occurrence of terms in full-text queries.
- `Must`: The term must be present in the document.
- `Should`: The term should contribute to the document score, but is not required.
## Enumeration Members
### Must
```ts
Must: "MUST";
```
***
### Should
```ts
Should: "SHOULD";
```

View File

@@ -0,0 +1,28 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / Operator
# Enumeration: Operator
Enum representing the logical operators used in full-text queries.
- `And`: All terms must match.
- `Or`: At least one term must match.
## Enumeration Members
### And
```ts
And: "AND";
```
***
### Or
```ts
Or: "OR";
```

View File

@@ -12,9 +12,12 @@
## Enumerations
- [FullTextQueryType](enumerations/FullTextQueryType.md)
- [Occur](enumerations/Occur.md)
- [Operator](enumerations/Operator.md)
## Classes
- [BooleanQuery](classes/BooleanQuery.md)
- [BoostQuery](classes/BoostQuery.md)
- [Connection](classes/Connection.md)
- [Index](classes/Index.md)
@@ -34,13 +37,18 @@
## Interfaces
- [AddColumnsResult](interfaces/AddColumnsResult.md)
- [AddColumnsSql](interfaces/AddColumnsSql.md)
- [AddDataOptions](interfaces/AddDataOptions.md)
- [AddResult](interfaces/AddResult.md)
- [AlterColumnsResult](interfaces/AlterColumnsResult.md)
- [ClientConfig](interfaces/ClientConfig.md)
- [ColumnAlteration](interfaces/ColumnAlteration.md)
- [CompactionStats](interfaces/CompactionStats.md)
- [ConnectionOptions](interfaces/ConnectionOptions.md)
- [CreateTableOptions](interfaces/CreateTableOptions.md)
- [DeleteResult](interfaces/DeleteResult.md)
- [DropColumnsResult](interfaces/DropColumnsResult.md)
- [ExecutableQuery](interfaces/ExecutableQuery.md)
- [FragmentStatistics](interfaces/FragmentStatistics.md)
- [FragmentSummaryStats](interfaces/FragmentSummaryStats.md)
@@ -54,7 +62,7 @@
- [IndexStatistics](interfaces/IndexStatistics.md)
- [IvfFlatOptions](interfaces/IvfFlatOptions.md)
- [IvfPqOptions](interfaces/IvfPqOptions.md)
- [MergeStats](interfaces/MergeStats.md)
- [MergeResult](interfaces/MergeResult.md)
- [OpenTableOptions](interfaces/OpenTableOptions.md)
- [OptimizeOptions](interfaces/OptimizeOptions.md)
- [OptimizeStats](interfaces/OptimizeStats.md)
@@ -65,7 +73,9 @@
- [TableStatistics](interfaces/TableStatistics.md)
- [TimeoutConfig](interfaces/TimeoutConfig.md)
- [UpdateOptions](interfaces/UpdateOptions.md)
- [UpdateResult](interfaces/UpdateResult.md)
- [Version](interfaces/Version.md)
- [WriteExecutionOptions](interfaces/WriteExecutionOptions.md)
## Type Aliases

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AddColumnsResult
# Interface: AddColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AddResult
# Interface: AddResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / AlterColumnsResult
# Interface: AlterColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / DeleteResult
# Interface: DeleteResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,15 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / DropColumnsResult
# Interface: DropColumnsResult
## Properties
### version
```ts
version: number;
```

View File

@@ -0,0 +1,39 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MergeResult
# Interface: MergeResult
## Properties
### numDeletedRows
```ts
numDeletedRows: number;
```
***
### numInsertedRows
```ts
numInsertedRows: number;
```
***
### numUpdatedRows
```ts
numUpdatedRows: number;
```
***
### version
```ts
version: number;
```

View File

@@ -1,31 +0,0 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / MergeStats
# Interface: MergeStats
## Properties
### numDeletedRows
```ts
numDeletedRows: bigint;
```
***
### numInsertedRows
```ts
numInsertedRows: bigint;
```
***
### numUpdatedRows
```ts
numUpdatedRows: bigint;
```

View File

@@ -0,0 +1,23 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / UpdateResult
# Interface: UpdateResult
## Properties
### rowsUpdated
```ts
rowsUpdated: number;
```
***
### version
```ts
version: number;
```

View File

@@ -0,0 +1,26 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / WriteExecutionOptions
# Interface: WriteExecutionOptions
## Properties
### timeoutMs?
```ts
optional timeoutMs: number;
```
Maximum time to run the operation before cancelling it.
By default, there is a 30-second timeout that is only enforced after the
first attempt. This is to prevent spending too long retrying to resolve
conflicts. For example, if a write attempt takes 20 seconds and fails,
the second attempt will be cancelled after 10 seconds, hitting the
30-second timeout. However, a write that takes one hour and succeeds on the
first attempt will not be cancelled.
When this is set, the timeout is enforced on all attempts, including the first.

View File

@@ -428,7 +428,7 @@
"\n",
"**Why?** \n",
"Embedding the UFO dataset and ingesting it into LanceDB takes **~2 hours on a T4 GPU**. To save time: \n",
"- **Use the pre-prepared table with index created ** (provided below) to proceed directly to step7: search. \n",
"- **Use the pre-prepared table with index created** (provided below) to proceed directly to **Step 7**: search. \n",
"- **Step 5a** contains the full ingestion code for reference (run it only if necessary). \n",
"- **Step 6** contains the details on creating the index on the multivector column"
]

View File

@@ -0,0 +1,53 @@
# Apache Datafusion
In Python, LanceDB tables can also be queried with [Apache Datafusion](https://datafusion.apache.org/), an extensible query engine written in Rust that uses Apache Arrow as its in-memory format. This means you can write complex SQL queries to analyze your data in LanceDB.
This integration is done via [Datafusion FFI](https://docs.rs/datafusion-ffi/latest/datafusion_ffi/), which provides a native integration between LanceDB and Datafusion.
The Datafusion FFI allows to pass down column selections and basic filters to LanceDB, reducing the amount of scanned data when executing your query. Additionally, the integration allows streaming data from LanceDB tables which allows to do aggregation larger-than-memory.
We can demonstrate this by first installing `datafusion` and `lancedb`.
```shell
pip install datafusion lancedb
```
We will re-use the dataset [created previously](./pandas_and_pyarrow.md):
```python
import lancedb
from datafusion import SessionContext
from lance import FFILanceTableProvider
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}
]
lance_table = db.create_table("lance_table", data)
ctx = SessionContext()
ffi_lance_table = FFILanceTableProvider(
lance_table.to_lance(), with_row_id=True, with_row_addr=True
)
ctx.register_table_provider("ffi_lance_table", ffi_lance_table)
```
The `to_lance` method converts the LanceDB table to a `LanceDataset`, which is accessible to Datafusion through the Datafusion FFI integration layer.
To query the resulting Lance dataset in Datafusion, you first need to register the dataset with Datafusion and then just reference it by the same name in your SQL query.
```python
ctx.table("ffi_lance_table")
ctx.sql("SELECT * FROM ffi_lance_table")
```
```
┌─────────────┬─────────┬────────┬─────────────────┬─────────────────┐
│ vector │ item │ price │ _rowid │ _rowaddr │
│ float[] │ varchar │ double │ bigint unsigned │ bigint unsigned │
├─────────────┼─────────┼────────┼─────────────────┼─────────────────┤
│ [3.1, 4.1] │ foo │ 10.0 │ 0 │ 0 │
│ [5.9, 26.5] │ bar │ 20.0 │ 1 │ 1 │
└─────────────┴─────────┴────────┴─────────────────┴─────────────────┘
```

View File

@@ -1,101 +0,0 @@
# Getting Started with LanceDB: A Minimal Vector Search Tutorial
Let's set up a LanceDB database, insert vector data, and perform a simple vector search. We'll use simple character classes like "knight" and "rogue" to illustrate semantic relevance.
## 1. Install Dependencies
Before starting, make sure you have the necessary packages:
```bash
pip install lancedb pandas numpy
```
## 2. Import Required Libraries
```python
import lancedb
import pandas as pd
import numpy as np
```
## 3. Connect to LanceDB
You can use a local directory to store your database:
```python
db = lancedb.connect("./lancedb")
```
## 4. Create Sample Data
Add sample text data and corresponding 4D vectors:
```python
data = pd.DataFrame([
{"id": "1", "vector": [1.0, 0.0, 0.0, 0.0], "text": "knight"},
{"id": "2", "vector": [0.9, 0.1, 0.0, 0.0], "text": "warrior"},
{"id": "3", "vector": [0.0, 1.0, 0.0, 0.0], "text": "rogue"},
{"id": "4", "vector": [0.0, 0.9, 0.1, 0.0], "text": "thief"},
{"id": "5", "vector": [0.5, 0.5, 0.0, 0.0], "text": "ranger"},
])
```
## 5. Create a Table in LanceDB
```python
table = db.create_table("rpg_classes", data=data, mode="overwrite")
```
Let's see how the table looks:
```python
print(data)
```
| id | vector | text |
|----|--------|------|
| 1 | [1.0, 0.0, 0.0, 0.0] | knight |
| 2 | [0.9, 0.1, 0.0, 0.0] | warrior |
| 3 | [0.0, 1.0, 0.0, 0.0] | rogue |
| 4 | [0.0, 0.9, 0.1, 0.0] | thief |
| 5 | [0.5, 0.5, 0.0, 0.0] | ranger |
## 6. Perform a Vector Search
Search for the most similar character classes to our query vector:
```python
# Query as if we are searching for "rogue"
results = table.search([0.95, 0.05, 0.0, 0.0]).limit(3).to_df()
print(results)
```
This will return the top 3 closest classes to the vector, effectively showing how LanceDB can be used for semantic search.
| id | vector | text | _distance |
|------|------------------------|----------|-----------|
| 3 | [0.0, 1.0, 0.0, 0.0] | rogue | 0.00 |
| 4 | [0.0, 0.9, 0.1, 0.0] | thief | 0.02 |
| 5 | [0.5, 0.5, 0.0, 0.0] | ranger | 0.50 |
Let's try searching for "knight"
```python
query_vector = [1.0, 0.0, 0.0, 0.0]
results = table.search(query_vector).limit(3).to_pandas()
print(results)
```
| id | vector | text | _distance |
|------|------------------------|----------|-----------|
| 1 | [1.0, 0.0, 0.0, 0.0] | knight | 0.00 |
| 2 | [0.9, 0.1, 0.0, 0.0] | warrior | 0.02 |
| 5 | [0.5, 0.5, 0.0, 0.0] | ranger | 0.50 |
## Next Steps
That's it - you just conducted vector search!
For more beginner tips, check out the [Basic Usage](basic.md) guide.

View File

@@ -7,3 +7,4 @@ tantivy==0.20.1
--extra-index-url https://download.pytorch.org/whl/cpu
torch
polars>=0.19, <=1.3.0
datafusion

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.19.1-beta.1</version>
<version>0.21.1-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.19.1-beta.1</version>
<version>0.21.1-beta.1</version>
<packaging>pom</packaging>
<name>LanceDB Parent</name>

79
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"cpu": [
"x64",
"arm64"
@@ -52,11 +52,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.19.1-beta.1",
"@lancedb/vectordb-darwin-x64": "0.19.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.19.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.19.1-beta.1"
"@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
@@ -326,71 +326,6 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.19.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.19.1-beta.1.tgz",
"integrity": "sha512-Epvel0pF5TM6MtIWQ2KhqezqSSHTL3Wr7a2rGAwz6X/XY23i6DbMPpPs0HyeIDzDrhxNfE3cz3S+SiCA6xpR0g==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.19.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.19.1-beta.1.tgz",
"integrity": "sha512-hOiUSlIoISbiXytp46hToi/r6sF5pImAsfbzCsIq8ExDV4TPa8fjbhcIT80vxxOwc2mpSSK4HsVJYod95RSbEQ==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.19.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.19.1-beta.1.tgz",
"integrity": "sha512-/1JhGVDEngwrlM8o2TNW8G6nJ9U/VgHKAORmj/cTA7O30helJIoo9jfvUAUy+vZ4VoEwRXQbMI+gaYTg0l3MTg==",
"cpu": [
"arm64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.19.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.19.1-beta.1.tgz",
"integrity": "sha512-zNRGSSUt8nTJMmll4NdxhQjwxR8Rezq3T4dsRoiDts5ienMam5HFjYiZ3FkDZQo16rgq2BcbFuH1G8u1chywlg==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.19.1-beta.1",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.19.1-beta.1.tgz",
"integrity": "sha512-yV550AJGlsIFdm1KoHQPJ1TZx121ZXCIdebBtBZj3wOObIhyB/i0kZAtGvwjkmr7EYyfzt1EHZzbjSGVdehIAA==",
"cpu": [
"x64"
],
"license": "Apache-2.0",
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz",

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"description": " Serverless, low-latency vector database for AI applications",
"private": false,
"main": "dist/index.js",
@@ -89,10 +89,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-x64": "0.19.1-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.19.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.19.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.19.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.19.1-beta.1"
"@lancedb/vectordb-darwin-x64": "0.21.1-beta.1",
"@lancedb/vectordb-darwin-arm64": "0.21.1-beta.1",
"@lancedb/vectordb-linux-x64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.1-beta.1",
"@lancedb/vectordb-win32-x64-msvc": "0.21.1-beta.1"
}
}

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.19.1-beta.1"
version = "0.21.1-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true
@@ -30,6 +30,7 @@ log.workspace = true
# Workaround for build failure until we can fix it.
aws-lc-sys = "=0.28.0"
aws-lc-rs = "=1.13.0"
[build-dependencies]
napi-build = "2.1"

View File

@@ -592,14 +592,14 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
).rejects.toThrow("column vector was missing");
});
it("will provide a nice error if run twice", async function () {
it("will skip embedding application if already applied", async function () {
const records = sampleRecords();
const table = await convertToTable(records, dummyEmbeddingConfig);
// fromTableToBuffer will try and apply the embeddings again
await expect(
fromTableToBuffer(table, dummyEmbeddingConfig),
).rejects.toThrow("already existed");
// but should skip since the column already has non-null values
const result = await fromTableToBuffer(table, dummyEmbeddingConfig);
expect(result.byteLength).toBeGreaterThan(0);
});
});

View File

@@ -33,7 +33,13 @@ import {
register,
} from "../lancedb/embedding";
import { Index } from "../lancedb/indices";
import { instanceOfFullTextQuery } from "../lancedb/query";
import {
BooleanQuery,
Occur,
Operator,
instanceOfFullTextQuery,
} from "../lancedb/query";
import exp = require("constants");
describe.each([arrow15, arrow16, arrow17, arrow18])(
"Given a table",
@@ -95,7 +101,9 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
});
it("should overwrite data if asked", async () => {
await table.add([{ id: 1 }, { id: 2 }]);
const addRes = await table.add([{ id: 1 }, { id: 2 }]);
expect(addRes).toHaveProperty("version");
expect(addRes.version).toBe(2);
await table.add([{ id: 1 }], { mode: "overwrite" });
await expect(table.countRows()).resolves.toBe(1);
});
@@ -111,7 +119,11 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
await table.add([{ id: 1 }]);
expect(await table.countRows("id == 1")).toBe(1);
expect(await table.countRows("id == 7")).toBe(0);
await table.update({ id: "7" });
const updateRes = await table.update({ id: "7" });
expect(updateRes).toHaveProperty("version");
expect(updateRes.version).toBe(3);
expect(updateRes).toHaveProperty("rowsUpdated");
expect(updateRes.rowsUpdated).toBe(1);
expect(await table.countRows("id == 1")).toBe(0);
expect(await table.countRows("id == 7")).toBe(1);
await table.add([{ id: 2 }]);
@@ -338,15 +350,16 @@ describe("merge insert", () => {
{ a: 3, b: "y" },
{ a: 4, b: "z" },
];
const stats = await table
const mergeInsertRes = await table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute(newData);
expect(stats.numInsertedRows).toBe(1n);
expect(stats.numUpdatedRows).toBe(2n);
expect(stats.numDeletedRows).toBe(0n);
.execute(newData, { timeoutMs: 10_000 });
expect(mergeInsertRes).toHaveProperty("version");
expect(mergeInsertRes.version).toBe(2);
expect(mergeInsertRes.numInsertedRows).toBe(1);
expect(mergeInsertRes.numUpdatedRows).toBe(2);
expect(mergeInsertRes.numDeletedRows).toBe(0);
const expected = [
{ a: 1, b: "a" },
@@ -355,9 +368,9 @@ describe("merge insert", () => {
{ a: 4, b: "z" },
];
expect(
JSON.parse(JSON.stringify((await table.toArrow()).toArray())),
).toEqual(expected);
const result = (await table.toArrow()).toArray().sort((a, b) => a.a - b.a);
expect(result.map((row) => ({ ...row }))).toEqual(expected);
});
test("conditional update", async () => {
const newData = [
@@ -365,10 +378,12 @@ describe("merge insert", () => {
{ a: 3, b: "y" },
{ a: 4, b: "z" },
];
await table
const mergeInsertRes = await table
.mergeInsert("a")
.whenMatchedUpdateAll({ where: "target.b = 'b'" })
.execute(newData);
expect(mergeInsertRes).toHaveProperty("version");
expect(mergeInsertRes.version).toBe(2);
const expected = [
{ a: 1, b: "a" },
@@ -453,6 +468,20 @@ describe("merge insert", () => {
res = res.sort((a, b) => a.a - b.a);
expect(res).toEqual(expected);
});
test("timeout", async () => {
const newData = [
{ a: 2, b: "x" },
{ a: 4, b: "z" },
];
await expect(
table
.mergeInsert("a")
.whenMatchedUpdateAll()
.whenNotMatchedInsertAll()
.execute(newData, { timeoutMs: 0 }),
).rejects.toThrow("merge insert timed out");
});
});
describe("When creating an index", () => {
@@ -530,6 +559,32 @@ describe("When creating an index", () => {
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
// test nprobes
rst = await tbl.query().nearestTo(queryVec).limit(2).nprobes(50).toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(15)
.toArrow();
expect(rst.numRows).toBe(2);
rst = await tbl
.query()
.nearestTo(queryVec)
.limit(2)
.minimumNprobes(10)
.maximumNprobes(20)
.toArrow();
expect(rst.numRows).toBe(2);
expect(() => tbl.query().nearestTo(queryVec).minimumNprobes(0)).toThrow(
"Invalid input, minimum_nprobes must be greater than 0",
);
expect(() => tbl.query().nearestTo(queryVec).maximumNprobes(5)).toThrow(
"Invalid input, maximum_nprobes must be greater than minimum_nprobes",
);
await tbl.dropIndex("vec_idx");
const indices2 = await tbl.listIndices();
expect(indices2.length).toBe(0);
@@ -1028,15 +1083,19 @@ describe("schema evolution", function () {
{ id: 1n, vector: [0.1, 0.2] },
]);
// Can create a non-nullable column only through addColumns at the moment.
await table.addColumns([
const addColumnsRes = await table.addColumns([
{ name: "price", valueSql: "cast(10.0 as double)" },
]);
expect(addColumnsRes).toHaveProperty("version");
expect(addColumnsRes.version).toBe(2);
expect(await table.schema()).toEqual(schema);
await table.alterColumns([
const alterColumnsRes = await table.alterColumns([
{ path: "id", rename: "new_id" },
{ path: "price", nullable: true },
]);
expect(alterColumnsRes).toHaveProperty("version");
expect(alterColumnsRes.version).toBe(3);
const expectedSchema = new Schema([
new Field("new_id", new Int64(), true),
@@ -1154,7 +1213,9 @@ describe("schema evolution", function () {
const table = await con.createTable("vectors", [
{ id: 1n, vector: [0.1, 0.2] },
]);
await table.dropColumns(["vector"]);
const dropColumnsRes = await table.dropColumns(["vector"]);
expect(dropColumnsRes).toHaveProperty("version");
expect(dropColumnsRes.version).toBe(2);
const expectedSchema = new Schema([new Field("id", new Int64(), true)]);
expect(await table.schema()).toEqual(expectedSchema);
@@ -1271,6 +1332,32 @@ describe("when dealing with tags", () => {
await table.checkoutLatest();
expect(await table.version()).toBe(4);
});
it("can checkout and restore tags", async () => {
const conn = await connect(tmpDir.name, {
readConsistencyInterval: 0,
});
const table = await conn.createTable("my_table", [
{ id: 1n, vector: [0.1, 0.2] },
]);
expect(await table.version()).toBe(1);
expect(await table.countRows()).toBe(1);
const tagsManager = await table.tags();
const tag1 = "tag1";
await tagsManager.create(tag1, 1);
await table.add([{ id: 2n, vector: [0.3, 0.4] }]);
const tag2 = "tag2";
await tagsManager.create(tag2, 2);
expect(await table.version()).toBe(2);
await table.checkout(tag1);
expect(await table.version()).toBe(1);
await table.restore();
expect(await table.version()).toBe(3);
expect(await table.countRows()).toBe(1);
await table.add([{ id: 3n, vector: [0.5, 0.6] }]);
expect(await table.countRows()).toBe(2);
});
});
describe("when optimizing a dataset", () => {
@@ -1450,7 +1537,9 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
config: Index.fts({
withPosition: true,
}),
});
const results = await table.search("lance").toArray();
@@ -1473,6 +1562,18 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
const results = await table.search("hello").toArray();
expect(results[0].text).toBe(data[0].text);
const results2 = await table
.search(new MatchQuery("hello world", "text"))
.toArray();
expect(results2.length).toBe(2);
const results3 = await table
.search(
new MatchQuery("hello world", "text", { operator: Operator.And }),
)
.toArray();
expect(results3.length).toBe(1);
});
test("full text search without lowercase", async () => {
@@ -1503,7 +1604,9 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts(),
config: Index.fts({
withPosition: true,
}),
});
const results = await table.search("world").toArray();
@@ -1547,6 +1650,60 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(resultSet.has("fob")).toBe(true);
expect(resultSet.has("fo")).toBe(true);
expect(resultSet.has("food")).toBe(true);
const prefixResults = await table
.search(
new MatchQuery("foo", "text", { fuzziness: 3, prefixLength: 3 }),
)
.toArray();
expect(prefixResults.length).toBe(2);
const resultSet2 = new Set(prefixResults.map((r) => r.text));
expect(resultSet2.has("foo")).toBe(true);
expect(resultSet2.has("food")).toBe(true);
});
test("full text search boolean query", async () => {
const db = await connect(tmpDir.name);
const data = [
{ text: "The cat and dog are playing" },
{ text: "The cat is sleeping" },
{ text: "The dog is barking" },
{ text: "The dog chases the cat" },
];
const table = await db.createTable("test", data);
await table.createIndex("text", {
config: Index.fts({ withPosition: false }),
});
const shouldResults = await table
.search(
new BooleanQuery([
[Occur.Should, new MatchQuery("cat", "text")],
[Occur.Should, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(shouldResults.length).toBe(4);
const mustResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.Must, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustResults.length).toBe(2);
const mustNotResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("cat", "text")],
[Occur.MustNot, new MatchQuery("dog", "text")],
]),
)
.toArray();
expect(mustNotResults.length).toBe(1);
});
test.each([

View File

@@ -417,7 +417,9 @@ function inferSchema(
} else {
const inferredType = inferType(value, path, opts);
if (inferredType === undefined) {
throw new Error(`Failed to infer data type for field ${path.join(".")} at row ${rowI}. \
throw new Error(`Failed to infer data type for field ${path.join(
".",
)} at row ${rowI}. \
Consider providing an explicit schema.`);
}
pathTree.set(path, inferredType);
@@ -799,11 +801,17 @@ async function applyEmbeddingsFromMetadata(
`Cannot apply embedding function because the source column '${functionEntry.sourceColumn}' was not present in the data`,
);
}
// Check if destination column exists and handle accordingly
if (columns[destColumn] !== undefined) {
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
);
const existingColumn = columns[destColumn];
// If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application
continue;
}
}
if (table.batches.length > 1) {
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
@@ -903,11 +911,23 @@ async function applyEmbeddings<T>(
);
}
} else {
// Check if destination column exists and handle accordingly
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
throw new Error(
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
);
const existingColumn = newColumns[destColumn];
// If the column exists but is all null, we can fill it with embeddings
if (existingColumn.nullCount !== existingColumn.length) {
// Column has non-null values, skip embedding application and return table as-is
let newTable = new ArrowTable(newColumns);
if (schema != null) {
newTable = alignTable(newTable, schema as Schema);
}
return new ArrowTable(
new Schema(newTable.schema.fields, schemaMetadata),
newTable.batches,
);
}
}
if (table.batches.length > 1) {
throw new Error(
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",

View File

@@ -28,7 +28,13 @@ export {
FragmentSummaryStats,
Tags,
TagContents,
MergeStats,
MergeResult,
AddResult,
AddColumnsResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
UpdateResult,
} from "./native.js";
export {
@@ -58,7 +64,10 @@ export {
PhraseQuery,
BoostQuery,
MultiMatchQuery,
BooleanQuery,
FullTextQueryType,
Operator,
Occur,
} from "./query";
export {
@@ -80,7 +89,7 @@ export {
ColumnAlteration,
} from "./table";
export { MergeInsertBuilder } from "./merge";
export { MergeInsertBuilder, WriteExecutionOptions } from "./merge";
export * as embedding from "./embedding";
export * as rerankers from "./rerankers";

View File

@@ -1,7 +1,7 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
import { Data, Schema, fromDataToBuffer } from "./arrow";
import { MergeStats, NativeMergeInsertBuilder } from "./native";
import { MergeResult, NativeMergeInsertBuilder } from "./native";
/** A builder used to create and run a merge insert operation */
export class MergeInsertBuilder {
@@ -73,9 +73,12 @@ export class MergeInsertBuilder {
/**
* Executes the merge insert operation
*
* @returns Statistics about the merge operation: counts of inserted, updated, and deleted rows
* @returns {Promise<MergeResult>} the merge result
*/
async execute(data: Data): Promise<MergeStats> {
async execute(
data: Data,
execOptions?: Partial<WriteExecutionOptions>,
): Promise<MergeResult> {
let schema: Schema;
if (this.#schema instanceof Promise) {
schema = await this.#schema;
@@ -83,7 +86,28 @@ export class MergeInsertBuilder {
} else {
schema = this.#schema;
}
if (execOptions?.timeoutMs !== undefined) {
this.#native.setTimeout(execOptions.timeoutMs);
}
const buffer = await fromDataToBuffer(data, undefined, schema);
return await this.#native.execute(buffer);
}
}
export interface WriteExecutionOptions {
/**
* Maximum time to run the operation before cancelling it.
*
* By default, there is a 30-second timeout that is only enforced after the
* first attempt. This is to prevent spending too long retrying to resolve
* conflicts. For example, if a write attempt takes 20 seconds and fails,
* the second attempt will be cancelled after 10 seconds, hitting the
* 30-second timeout. However, a write that takes one hour and succeeds on the
* first attempt will not be cancelled.
*
* When this is set, the timeout is enforced on all attempts, including the first.
*/
timeoutMs?: number;
}

View File

@@ -448,6 +448,10 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
* For best results we recommend tuning this parameter with a benchmark against
* your actual data to find the smallest possible value that will still give
* you the desired recall.
*
* For more fine grained control over behavior when you have a very narrow filter
* you can use `minimumNprobes` and `maximumNprobes`. This method sets both
* the minimum and maximum to the same value.
*/
nprobes(nprobes: number): VectorQuery {
super.doCall((inner) => inner.nprobes(nprobes));
@@ -455,6 +459,33 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
return this;
}
/**
* Set the minimum number of probes used.
*
* This controls the minimum number of partitions that will be searched. This
* parameter will impact every query against a vector index, regardless of the
* filter. See `nprobes` for more details. Higher values will increase recall
* but will also increase latency.
*/
minimumNprobes(minimumNprobes: number): VectorQuery {
super.doCall((inner) => inner.minimumNprobes(minimumNprobes));
return this;
}
/**
* Set the maximum number of probes used.
*
* This controls the maximum number of partitions that will be searched. If this
* number is greater than minimumNprobes then the excess partitions will _only_ be
* searched if we have not found enough results. This can be useful when there is
* a narrow filter to allow these queries to spend more time searching and avoid
* potential false negatives.
*/
maximumNprobes(maximumNprobes: number): VectorQuery {
super.doCall((inner) => inner.maximumNprobes(maximumNprobes));
return this;
}
/*
* Set the distance range to use
*
@@ -762,6 +793,31 @@ export enum FullTextQueryType {
MatchPhrase = "match_phrase",
Boost = "boost",
MultiMatch = "multi_match",
Boolean = "boolean",
}
/**
* Enum representing the logical operators used in full-text queries.
*
* - `And`: All terms must match.
* - `Or`: At least one term must match.
*/
export enum Operator {
And = "AND",
Or = "OR",
}
/**
* Enum representing the occurrence of terms in full-text queries.
*
* - `Must`: The term must be present in the document.
* - `Should`: The term should contribute to the document score, but is not required.
* - `MustNot`: The term must not be present in the document.
*/
export enum Occur {
Should = "SHOULD",
Must = "MUST",
MustNot = "MUST_NOT",
}
/**
@@ -791,6 +847,7 @@ export function instanceOfFullTextQuery(obj: any): obj is FullTextQuery {
export class MatchQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of MatchQuery.
*
@@ -800,6 +857,8 @@ export class MatchQuery implements FullTextQuery {
* - `boost`: The boost factor for the query (default is 1.0).
* - `fuzziness`: The fuzziness level for the query (default is 0).
* - `maxExpansions`: The maximum number of terms to consider for fuzzy matching (default is 50).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
* - `prefixLength`: The number of beginning characters being unchanged for fuzzy matching.
*/
constructor(
query: string,
@@ -808,6 +867,8 @@ export class MatchQuery implements FullTextQuery {
boost?: number;
fuzziness?: number;
maxExpansions?: number;
operator?: Operator;
prefixLength?: number;
},
) {
let fuzziness = options?.fuzziness;
@@ -820,6 +881,8 @@ export class MatchQuery implements FullTextQuery {
options?.boost ?? 1.0,
fuzziness,
options?.maxExpansions ?? 50,
options?.operator ?? Operator.Or,
options?.prefixLength ?? 0,
);
}
@@ -836,9 +899,11 @@ export class PhraseQuery implements FullTextQuery {
*
* @param query - The phrase to search for in the specified column.
* @param column - The name of the column to search within.
* @param options - Optional parameters for the phrase query.
* - `slop`: The maximum number of intervening unmatched positions allowed between words in the phrase (default is 0).
*/
constructor(query: string, column: string) {
this.inner = JsFullTextQuery.phraseQuery(query, column);
constructor(query: string, column: string, options?: { slop?: number }) {
this.inner = JsFullTextQuery.phraseQuery(query, column, options?.slop ?? 0);
}
queryType(): FullTextQueryType {
@@ -889,18 +954,21 @@ export class MultiMatchQuery implements FullTextQuery {
* @param columns - An array of column names to search within.
* @param options - Optional parameters for the multi-match query.
* - `boosts`: An array of boost factors for each column (default is 1.0 for all).
* - `operator`: The logical operator to use for combining terms in the query (default is "OR").
*/
constructor(
query: string,
columns: string[],
options?: {
boosts?: number[];
operator?: Operator;
},
) {
this.inner = JsFullTextQuery.multiMatchQuery(
query,
columns,
options?.boosts,
options?.operator ?? Operator.Or,
);
}
@@ -908,3 +976,23 @@ export class MultiMatchQuery implements FullTextQuery {
return FullTextQueryType.MultiMatch;
}
}
export class BooleanQuery implements FullTextQuery {
/** @ignore */
public readonly inner: JsFullTextQuery;
/**
* Creates an instance of BooleanQuery.
*
* @param queries - An array of (Occur, FullTextQuery objects) to combine.
* Occur specifies whether the query must match, or should match.
*/
constructor(queries: [Occur, FullTextQuery][]) {
this.inner = JsFullTextQuery.booleanQuery(
queries.map(([occur, query]) => [occur, query.inner]),
);
}
queryType(): FullTextQueryType {
return FullTextQueryType.Boolean;
}
}

View File

@@ -16,12 +16,18 @@ import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
import { IndexOptions } from "./indices";
import { MergeInsertBuilder } from "./merge";
import {
AddColumnsResult,
AddColumnsSql,
AddResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
IndexConfig,
IndexStatistics,
OptimizeStats,
TableStatistics,
Tags,
UpdateResult,
Table as _NativeTable,
} from "./native";
import {
@@ -126,12 +132,19 @@ export abstract class Table {
/**
* Insert records into this Table.
* @param {Data} data Records to be inserted into the Table
* @returns {Promise<AddResult>} A promise that resolves to an object
* containing the new version number of the table
*/
abstract add(data: Data, options?: Partial<AddDataOptions>): Promise<void>;
abstract add(
data: Data,
options?: Partial<AddDataOptions>,
): Promise<AddResult>;
/**
* Update existing records in the Table
* @param opts.values The values to update. The keys are the column names and the values
* are the values to set.
* @returns {Promise<UpdateResult>} A promise that resolves to an object containing
* the number of rows updated and the new version number
* @example
* ```ts
* table.update({where:"x = 2", values:{"vector": [10, 10]}})
@@ -141,11 +154,13 @@ export abstract class Table {
opts: {
values: Map<string, IntoSql> | Record<string, IntoSql>;
} & Partial<UpdateOptions>,
): Promise<void>;
): Promise<UpdateResult>;
/**
* Update existing records in the Table
* @param opts.valuesSql The values to update. The keys are the column names and the values
* are the values to set. The values are SQL expressions.
* @returns {Promise<UpdateResult>} A promise that resolves to an object containing
* the number of rows updated and the new version number
* @example
* ```ts
* table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
@@ -155,7 +170,7 @@ export abstract class Table {
opts: {
valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>,
): Promise<void>;
): Promise<UpdateResult>;
/**
* Update existing records in the Table
*
@@ -173,6 +188,8 @@ export abstract class Table {
* repeatedly calilng this method.
* @param {Map<string, string> | Record<string, string>} updates - the
* columns to update
* @returns {Promise<UpdateResult>} A promise that resolves to an object
* containing the number of rows updated and the new version number
*
* Keys in the map should specify the name of the column to update.
* Values in the map provide the new value of the column. These can
@@ -184,12 +201,16 @@ export abstract class Table {
abstract update(
updates: Map<string, string> | Record<string, string>,
options?: Partial<UpdateOptions>,
): Promise<void>;
): Promise<UpdateResult>;
/** Count the total number of rows in the dataset. */
abstract countRows(filter?: string): Promise<number>;
/** Delete the rows that satisfy the predicate. */
abstract delete(predicate: string): Promise<void>;
/**
* Delete the rows that satisfy the predicate.
* @returns {Promise<DeleteResult>} A promise that resolves to an object
* containing the new version number of the table
*/
abstract delete(predicate: string): Promise<DeleteResult>;
/**
* Create an index to speed up queries.
*
@@ -343,15 +364,23 @@ export abstract class Table {
* the SQL expression to use to calculate the value of the new column. These
* expressions will be evaluated for each row in the table, and can
* reference existing columns in the table.
* @returns {Promise<AddColumnsResult>} A promise that resolves to an object
* containing the new version number of the table after adding the columns.
*/
abstract addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void>;
abstract addColumns(
newColumnTransforms: AddColumnsSql[],
): Promise<AddColumnsResult>;
/**
* Alter the name or nullability of columns.
* @param {ColumnAlteration[]} columnAlterations One or more alterations to
* apply to columns.
* @returns {Promise<AlterColumnsResult>} A promise that resolves to an object
* containing the new version number of the table after altering the columns.
*/
abstract alterColumns(columnAlterations: ColumnAlteration[]): Promise<void>;
abstract alterColumns(
columnAlterations: ColumnAlteration[],
): Promise<AlterColumnsResult>;
/**
* Drop one or more columns from the dataset
*
@@ -362,8 +391,10 @@ export abstract class Table {
* @param {string[]} columnNames The names of the columns to drop. These can
* be nested column references (e.g. "a.b.c") or top-level column names
* (e.g. "a").
* @returns {Promise<DropColumnsResult>} A promise that resolves to an object
* containing the new version number of the table after dropping the columns.
*/
abstract dropColumns(columnNames: string[]): Promise<void>;
abstract dropColumns(columnNames: string[]): Promise<DropColumnsResult>;
/** Retrieve the version of the table */
abstract version(): Promise<number>;
@@ -529,12 +560,12 @@ export class LocalTable extends Table {
return tbl.schema;
}
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
async add(data: Data, options?: Partial<AddDataOptions>): Promise<AddResult> {
const mode = options?.mode ?? "append";
const schema = await this.schema();
const buffer = await fromDataToBuffer(data, undefined, schema);
await this.inner.add(buffer, mode);
return await this.inner.add(buffer, mode);
}
async update(
@@ -547,7 +578,7 @@ export class LocalTable extends Table {
valuesSql: Map<string, string> | Record<string, string>;
} & Partial<UpdateOptions>),
options?: Partial<UpdateOptions>,
) {
): Promise<UpdateResult> {
const isValues =
"values" in optsOrUpdates && typeof optsOrUpdates.values !== "string";
const isValuesSql =
@@ -594,15 +625,15 @@ export class LocalTable extends Table {
columns = Object.entries(optsOrUpdates as Record<string, string>);
predicate = options?.where;
}
await this.inner.update(predicate, columns);
return await this.inner.update(predicate, columns);
}
async countRows(filter?: string): Promise<number> {
return await this.inner.countRows(filter);
}
async delete(predicate: string): Promise<void> {
await this.inner.delete(predicate);
async delete(predicate: string): Promise<DeleteResult> {
return await this.inner.delete(predicate);
}
async createIndex(column: string, options?: Partial<IndexOptions>) {
@@ -690,11 +721,15 @@ export class LocalTable extends Table {
// TODO: Support BatchUDF
async addColumns(newColumnTransforms: AddColumnsSql[]): Promise<void> {
await this.inner.addColumns(newColumnTransforms);
async addColumns(
newColumnTransforms: AddColumnsSql[],
): Promise<AddColumnsResult> {
return await this.inner.addColumns(newColumnTransforms);
}
async alterColumns(columnAlterations: ColumnAlteration[]): Promise<void> {
async alterColumns(
columnAlterations: ColumnAlteration[],
): Promise<AlterColumnsResult> {
const processedAlterations = columnAlterations.map((alteration) => {
if (typeof alteration.dataType === "string") {
return {
@@ -715,11 +750,11 @@ export class LocalTable extends Table {
}
});
await this.inner.alterColumns(processedAlterations);
return await this.inner.alterColumns(processedAlterations);
}
async dropColumns(columnNames: string[]): Promise<void> {
await this.inner.dropColumns(columnNames);
async dropColumns(columnNames: string[]): Promise<DropColumnsResult> {
return await this.inner.dropColumns(columnNames);
}
async version(): Promise<number> {

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.19.1-beta.1",
"version": "0.21.1-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -125,32 +125,30 @@ impl Index {
ascii_folding: Option<bool>,
) -> Self {
let mut opts = FtsIndexBuilder::default();
let mut tokenizer_configs = opts.tokenizer_configs.clone();
if let Some(with_position) = with_position {
opts = opts.with_position(with_position);
}
if let Some(base_tokenizer) = base_tokenizer {
tokenizer_configs = tokenizer_configs.base_tokenizer(base_tokenizer);
opts = opts.base_tokenizer(base_tokenizer);
}
if let Some(language) = language {
tokenizer_configs = tokenizer_configs.language(&language).unwrap();
opts = opts.language(&language).unwrap();
}
if let Some(max_token_length) = max_token_length {
tokenizer_configs = tokenizer_configs.max_token_length(Some(max_token_length as usize));
opts = opts.max_token_length(Some(max_token_length as usize));
}
if let Some(lower_case) = lower_case {
tokenizer_configs = tokenizer_configs.lower_case(lower_case);
opts = opts.lower_case(lower_case);
}
if let Some(stem) = stem {
tokenizer_configs = tokenizer_configs.stem(stem);
opts = opts.stem(stem);
}
if let Some(remove_stop_words) = remove_stop_words {
tokenizer_configs = tokenizer_configs.remove_stop_words(remove_stop_words);
opts = opts.remove_stop_words(remove_stop_words);
}
if let Some(ascii_folding) = ascii_folding {
tokenizer_configs = tokenizer_configs.ascii_folding(ascii_folding);
opts = opts.ascii_folding(ascii_folding);
}
opts.tokenizer_configs = tokenizer_configs;
Self {
inner: Mutex::new(Some(LanceDbIndex::FTS(opts))),

View File

@@ -1,11 +1,13 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use std::time::Duration;
use lancedb::{arrow::IntoArrow, ipc::ipc_file_to_batches, table::merge::MergeInsertBuilder};
use napi::bindgen_prelude::*;
use napi_derive::napi;
use crate::error::convert_error;
use crate::{error::convert_error, table::MergeResult};
#[napi]
#[derive(Clone)]
@@ -36,8 +38,13 @@ impl NativeMergeInsertBuilder {
this
}
#[napi]
pub fn set_timeout(&mut self, timeout: u32) {
self.inner.timeout(Duration::from_millis(timeout as u64));
}
#[napi(catch_unwind)]
pub async fn execute(&self, buf: Buffer) -> napi::Result<MergeStats> {
pub async fn execute(&self, buf: Buffer) -> napi::Result<MergeResult> {
let data = ipc_file_to_batches(buf.to_vec())
.and_then(IntoArrow::into_arrow)
.map_err(|e| {
@@ -46,14 +53,13 @@ impl NativeMergeInsertBuilder {
let this = self.clone();
let stats = this.inner.execute(data).await.map_err(|e| {
let res = this.inner.execute(data).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to execute merge insert: {}",
convert_error(&e)
))
})?;
Ok(stats.into())
Ok(res.into())
}
}
@@ -62,20 +68,3 @@ impl From<MergeInsertBuilder> for NativeMergeInsertBuilder {
Self { inner }
}
}
#[napi(object)]
pub struct MergeStats {
pub num_inserted_rows: BigInt,
pub num_updated_rows: BigInt,
pub num_deleted_rows: BigInt,
}
impl From<lancedb::table::MergeStats> for MergeStats {
fn from(stats: lancedb::table::MergeStats) -> Self {
Self {
num_inserted_rows: stats.num_inserted_rows.into(),
num_updated_rows: stats.num_updated_rows.into(),
num_deleted_rows: stats.num_deleted_rows.into(),
}
}
}

View File

@@ -4,7 +4,8 @@
use std::sync::Arc;
use lancedb::index::scalar::{
BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, PhraseQuery,
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
};
use lancedb::query::ExecutableQuery;
use lancedb::query::Query as LanceDbQuery;
@@ -177,6 +178,31 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
#[napi]
pub fn minimum_nprobes(&mut self, minimum_nprobe: u32) -> napi::Result<()> {
self.inner = self
.inner
.clone()
.minimum_nprobes(minimum_nprobe as usize)
.default_error()?;
Ok(())
}
#[napi]
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> napi::Result<()> {
let maximum_nprobes = if maximum_nprobes == 0 {
None
} else {
Some(maximum_nprobes as usize)
};
self.inner = self
.inner
.clone()
.maximum_nprobes(maximum_nprobes)
.default_error()?;
Ok(())
}
#[napi]
pub fn distance_range(&mut self, lower_bound: Option<f64>, upper_bound: Option<f64>) {
// napi doesn't support f32, so we have to convert to f32
@@ -308,6 +334,8 @@ impl JsFullTextQuery {
boost: f64,
fuzziness: Option<u32>,
max_expansions: u32,
operator: String,
prefix_length: u32,
) -> napi::Result<Self> {
Ok(Self {
inner: MatchQuery::new(query)
@@ -315,14 +343,23 @@ impl JsFullTextQuery {
.with_boost(boost as f32)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions as usize)
.with_operator(
Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator: {}", e))
})?,
)
.with_prefix_length(prefix_length)
.into(),
})
}
#[napi(factory)]
pub fn phrase_query(query: String, column: String) -> napi::Result<Self> {
pub fn phrase_query(query: String, column: String, slop: u32) -> napi::Result<Self> {
Ok(Self {
inner: PhraseQuery::new(query).with_column(Some(column)).into(),
inner: PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
.into(),
})
}
@@ -348,6 +385,7 @@ impl JsFullTextQuery {
query: String,
columns: Vec<String>,
boosts: Option<Vec<f64>>,
operator: String,
) -> napi::Result<Self> {
let q = match boosts {
Some(boosts) => MultiMatchQuery::try_new(query, columns)
@@ -358,7 +396,37 @@ impl JsFullTextQuery {
napi::Error::from_reason(format!("Failed to create multi match query: {}", e))
})?;
Ok(Self { inner: q.into() })
let operator = Operator::try_from(operator.as_str()).map_err(|e| {
napi::Error::from_reason(format!("Invalid operator for multi match query: {}", e))
})?;
Ok(Self {
inner: q.with_operator(operator).into(),
})
}
#[napi(factory)]
pub fn boolean_query(queries: Vec<(String, &JsFullTextQuery)>) -> napi::Result<Self> {
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| napi::Error::from_reason(e.to_string()))?;
sub_queries.push((occur, q.inner.clone()));
}
Ok(Self {
inner: BooleanQuery::new(sub_queries).into(),
})
}
#[napi(getter)]
pub fn query_type(&self) -> String {
match self.inner {
FtsQuery::Match(_) => "match".to_string(),
FtsQuery::Phrase(_) => "phrase".to_string(),
FtsQuery::Boost(_) => "boost".to_string(),
FtsQuery::MultiMatch(_) => "multi_match".to_string(),
FtsQuery::Boolean(_) => "boolean".to_string(),
}
}
}

View File

@@ -75,7 +75,7 @@ impl Table {
}
#[napi(catch_unwind)]
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<()> {
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<AddResult> {
let batches = ipc_file_to_batches(buf.to_vec())
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
let mut op = self.inner_ref()?.add(batches);
@@ -88,7 +88,8 @@ impl Table {
return Err(napi::Error::from_reason(format!("Invalid mode: {}", mode)));
};
op.execute().await.default_error()
let res = op.execute().await.default_error()?;
Ok(res.into())
}
#[napi(catch_unwind)]
@@ -101,8 +102,9 @@ impl Table {
}
#[napi(catch_unwind)]
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
self.inner_ref()?.delete(&predicate).await.default_error()
pub async fn delete(&self, predicate: String) -> napi::Result<DeleteResult> {
let res = self.inner_ref()?.delete(&predicate).await.default_error()?;
Ok(res.into())
}
#[napi(catch_unwind)]
@@ -168,7 +170,7 @@ impl Table {
&self,
only_if: Option<String>,
columns: Vec<(String, String)>,
) -> napi::Result<u64> {
) -> napi::Result<UpdateResult> {
let mut op = self.inner_ref()?.update();
if let Some(only_if) = only_if {
op = op.only_if(only_if);
@@ -176,7 +178,8 @@ impl Table {
for (column_name, value) in columns {
op = op.column(column_name, value);
}
op.execute().await.default_error()
let res = op.execute().await.default_error()?;
Ok(res.into())
}
#[napi(catch_unwind)]
@@ -190,21 +193,28 @@ impl Table {
}
#[napi(catch_unwind)]
pub async fn add_columns(&self, transforms: Vec<AddColumnsSql>) -> napi::Result<()> {
pub async fn add_columns(
&self,
transforms: Vec<AddColumnsSql>,
) -> napi::Result<AddColumnsResult> {
let transforms = transforms
.into_iter()
.map(|sql| (sql.name, sql.value_sql))
.collect::<Vec<_>>();
let transforms = NewColumnTransform::SqlExpressions(transforms);
self.inner_ref()?
let res = self
.inner_ref()?
.add_columns(transforms, None)
.await
.default_error()?;
Ok(())
Ok(res.into())
}
#[napi(catch_unwind)]
pub async fn alter_columns(&self, alterations: Vec<ColumnAlteration>) -> napi::Result<()> {
pub async fn alter_columns(
&self,
alterations: Vec<ColumnAlteration>,
) -> napi::Result<AlterColumnsResult> {
for alteration in &alterations {
if alteration.rename.is_none()
&& alteration.nullable.is_none()
@@ -221,21 +231,23 @@ impl Table {
.collect::<std::result::Result<Vec<_>, String>>()
.map_err(napi::Error::from_reason)?;
self.inner_ref()?
let res = self
.inner_ref()?
.alter_columns(&alterations)
.await
.default_error()?;
Ok(())
Ok(res.into())
}
#[napi(catch_unwind)]
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<()> {
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<DropColumnsResult> {
let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>();
self.inner_ref()?
let res = self
.inner_ref()?
.drop_columns(&col_refs)
.await
.default_error()?;
Ok(())
Ok(res.into())
}
#[napi(catch_unwind)]
@@ -642,6 +654,105 @@ pub struct Version {
pub metadata: HashMap<String, String>,
}
#[napi(object)]
pub struct UpdateResult {
pub rows_updated: i64,
pub version: i64,
}
impl From<lancedb::table::UpdateResult> for UpdateResult {
fn from(value: lancedb::table::UpdateResult) -> Self {
Self {
rows_updated: value.rows_updated as i64,
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct AddResult {
pub version: i64,
}
impl From<lancedb::table::AddResult> for AddResult {
fn from(value: lancedb::table::AddResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct DeleteResult {
pub version: i64,
}
impl From<lancedb::table::DeleteResult> for DeleteResult {
fn from(value: lancedb::table::DeleteResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct MergeResult {
pub version: i64,
pub num_inserted_rows: i64,
pub num_updated_rows: i64,
pub num_deleted_rows: i64,
}
impl From<lancedb::table::MergeResult> for MergeResult {
fn from(value: lancedb::table::MergeResult) -> Self {
Self {
version: value.version as i64,
num_inserted_rows: value.num_inserted_rows as i64,
num_updated_rows: value.num_updated_rows as i64,
num_deleted_rows: value.num_deleted_rows as i64,
}
}
}
#[napi(object)]
pub struct AddColumnsResult {
pub version: i64,
}
impl From<lancedb::table::AddColumnsResult> for AddColumnsResult {
fn from(value: lancedb::table::AddColumnsResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct AlterColumnsResult {
pub version: i64,
}
impl From<lancedb::table::AlterColumnsResult> for AlterColumnsResult {
fn from(value: lancedb::table::AlterColumnsResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi(object)]
pub struct DropColumnsResult {
pub version: i64,
}
impl From<lancedb::table::DropColumnsResult> for DropColumnsResult {
fn from(value: lancedb::table::DropColumnsResult) -> Self {
Self {
version: value.version as i64,
}
}
}
#[napi]
pub struct TagContents {
pub version: i64,

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.22.1-beta.1"
current_version = "0.24.1-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.22.1-beta.1"
version = "0.24.1-beta.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -14,11 +14,11 @@ name = "_lancedb"
crate-type = ["cdylib"]
[dependencies]
arrow = { version = "54.1", features = ["pyarrow"] }
arrow = { version = "55.1", features = ["pyarrow"] }
lancedb = { path = "../rust/lancedb", default-features = false }
env_logger.workspace = true
pyo3 = { version = "0.23", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.23", features = [
pyo3 = { version = "0.24", features = ["extension-module", "abi3-py39"] }
pyo3-async-runtimes = { version = "0.24", features = [
"attributes",
"tokio-runtime",
] }
@@ -27,7 +27,7 @@ futures.workspace = true
tokio = { version = "1.40", features = ["sync"] }
[build-dependencies]
pyo3-build-config = { version = "0.23", features = [
pyo3-build-config = { version = "0.24", features = [
"extension-module",
"abi3-py39",
] }

View File

@@ -60,6 +60,7 @@ tests = [
"pyarrow-stubs",
"pylance>=0.25",
"requests",
"datafusion",
]
dev = [
"ruff",
@@ -84,7 +85,7 @@ embeddings = [
"boto3>=1.28.57",
"awscli>=1.29.57",
"botocore>=1.31.57",
"ollama",
"ollama>=0.3.0",
"ibm-watsonx-ai>=1.1.2",
]
azure = ["adlfs>=2024.2.0"]

View File

@@ -36,8 +36,10 @@ class Table:
async def schema(self) -> pa.Schema: ...
async def add(
self, data: pa.RecordBatchReader, mode: Literal["append", "overwrite"]
) -> None: ...
async def update(self, updates: Dict[str, str], where: Optional[str]) -> None: ...
) -> AddResult: ...
async def update(
self, updates: Dict[str, str], where: Optional[str]
) -> UpdateResult: ...
async def count_rows(self, filter: Optional[str]) -> int: ...
async def create_index(
self,
@@ -49,12 +51,14 @@ class Table:
async def version(self) -> int: ...
async def checkout(self, version: Union[int, str]): ...
async def checkout_latest(self): ...
async def restore(self, version: Optional[int] = None): ...
async def restore(self, version: Optional[Union[int, str]] = None): ...
async def list_indices(self) -> list[IndexConfig]: ...
async def delete(self, filter: str): ...
async def add_columns(self, columns: list[tuple[str, str]]) -> None: ...
async def add_columns_with_schema(self, schema: pa.Schema) -> None: ...
async def alter_columns(self, columns: list[dict[str, Any]]) -> None: ...
async def delete(self, filter: str) -> DeleteResult: ...
async def add_columns(self, columns: list[tuple[str, str]]) -> AddColumnsResult: ...
async def add_columns_with_schema(self, schema: pa.Schema) -> AddColumnsResult: ...
async def alter_columns(
self, columns: list[dict[str, Any]]
) -> AlterColumnsResult: ...
async def optimize(
self,
*,
@@ -139,6 +143,8 @@ class VectorQuery:
def postfilter(self): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ...
def nearest_to_text(self, query: dict) -> HybridQuery: ...
def to_query_request(self) -> PyQueryRequest: ...
@@ -154,6 +160,8 @@ class HybridQuery:
def distance_type(self, distance_type: str): ...
def refine_factor(self, refine_factor: int): ...
def nprobes(self, nprobes: int): ...
def minimum_nprobes(self, minimum_nprobes: int): ...
def maximum_nprobes(self, maximum_nprobes: int): ...
def bypass_vector_index(self): ...
def to_vector_query(self) -> VectorQuery: ...
def to_fts_query(self) -> FTSQuery: ...
@@ -161,23 +169,21 @@ class HybridQuery:
def get_with_row_id(self) -> bool: ...
def to_query_request(self) -> PyQueryRequest: ...
class PyFullTextSearchQuery:
columns: Optional[List[str]]
query: str
limit: Optional[int]
wand_factor: Optional[float]
class FullTextQuery:
pass
class PyQueryRequest:
limit: Optional[int]
offset: Optional[int]
filter: Optional[Union[str, bytes]]
full_text_search: Optional[PyFullTextSearchQuery]
full_text_search: Optional[FullTextQuery]
select: Optional[Union[str, List[str]]]
fast_search: Optional[bool]
with_row_id: Optional[bool]
column: Optional[str]
query_vector: Optional[List[pa.Array]]
nprobes: Optional[int]
minimum_nprobes: Optional[int]
maximum_nprobes: Optional[int]
lower_bound: Optional[float]
upper_bound: Optional[float]
ef: Optional[int]
@@ -208,3 +214,28 @@ class OptimizeStats:
class Tag(TypedDict):
version: int
manifest_size: int
class AddResult:
version: int
class DeleteResult:
version: int
class UpdateResult:
rows_updated: int
version: int
class MergeResult:
version: int
num_updated_rows: int
num_inserted_rows: int
num_deleted_rows: int
class AddColumnsResult:
version: int
class AlterColumnsResult:
version: int
class DropColumnsResult:
version: int

View File

@@ -2,14 +2,15 @@
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
from functools import cached_property
from typing import TYPE_CHECKING, List, Optional, Union
from typing import TYPE_CHECKING, List, Optional, Sequence, Union
import numpy as np
from ..util import attempt_import_or_raise
from .base import TextEmbeddingFunction
from .registry import register
if TYPE_CHECKING:
import numpy as np
import ollama
@@ -28,23 +29,21 @@ class OllamaEmbeddings(TextEmbeddingFunction):
keep_alive: Optional[Union[float, str]] = None
ollama_client_kwargs: Optional[dict] = {}
def ndims(self):
def ndims(self) -> int:
return len(self.generate_embeddings(["foo"])[0])
def _compute_embedding(self, text) -> Union["np.array", None]:
return (
self._ollama_client.embeddings(
model=self.name,
prompt=text,
options=self.options,
keep_alive=self.keep_alive,
)["embedding"]
or None
def _compute_embedding(self, text: Sequence[str]) -> Sequence[Sequence[float]]:
response = self._ollama_client.embed(
model=self.name,
input=text,
options=self.options,
keep_alive=self.keep_alive,
)
return response.embeddings
def generate_embeddings(
self, texts: Union[List[str], "np.ndarray"]
) -> list[Union["np.array", None]]:
self, texts: Union[List[str], np.ndarray]
) -> list[Union[np.array, None]]:
"""
Get the embeddings for the given texts
@@ -54,8 +53,8 @@ class OllamaEmbeddings(TextEmbeddingFunction):
The texts to embed
"""
# TODO retry, rate limit, token limit
embeddings = [self._compute_embedding(text) for text in texts]
return embeddings
embeddings = self._compute_embedding(texts)
return list(embeddings)
@cached_property
def _ollama_client(self) -> "ollama.Client":

View File

@@ -102,7 +102,7 @@ class FTS:
Attributes
----------
with_position : bool, default True
with_position : bool, default False
Whether to store the position of the token in the document. Setting this
to False can reduce the size of the index and improve indexing speed,
but it will disable support for phrase queries.
@@ -118,25 +118,25 @@ class FTS:
ignored.
lower_case : bool, default True
Whether to convert the token to lower case. This makes queries case-insensitive.
stem : bool, default False
stem : bool, default True
Whether to stem the token. Stemming reduces words to their root form.
For example, in English "running" and "runs" would both be reduced to "run".
remove_stop_words : bool, default False
remove_stop_words : bool, default True
Whether to remove stop words. Stop words are common words that are often
removed from text before indexing. For example, in English "the" and "and".
ascii_folding : bool, default False
ascii_folding : bool, default True
Whether to fold ASCII characters. This converts accented characters to
their ASCII equivalent. For example, "café" would be converted to "cafe".
"""
with_position: bool = True
with_position: bool = False
base_tokenizer: Literal["simple", "raw", "whitespace"] = "simple"
language: str = "English"
max_token_length: Optional[int] = 40
lower_case: bool = True
stem: bool = False
remove_stop_words: bool = False
ascii_folding: bool = False
stem: bool = True
remove_stop_words: bool = True
ascii_folding: bool = True
@dataclass

View File

@@ -4,10 +4,14 @@
from __future__ import annotations
from datetime import timedelta
from typing import TYPE_CHECKING, List, Optional
if TYPE_CHECKING:
from .common import DATA
from ._lancedb import (
MergeInsertResult,
)
class LanceMergeInsertBuilder(object):
@@ -28,6 +32,7 @@ class LanceMergeInsertBuilder(object):
self._when_not_matched_insert_all = False
self._when_not_matched_by_source_delete = False
self._when_not_matched_by_source_condition = None
self._timeout = None
def when_matched_update_all(
self, *, where: Optional[str] = None
@@ -40,6 +45,16 @@ class LanceMergeInsertBuilder(object):
If there are multiple matches then the behavior is undefined.
Currently this causes multiple copies of the row to be created
but that behavior is subject to change.
Parameters
----------
where : Optional[str], default None
A SQL filter expression to apply to matched rows. The filter must
specify whether you are referencing the source table (new data) or
the target table (existing data) by prefixing column names with
"source." or "target." respectively.
Example: "target.status = 'active'" or "source.price > target.price"
"""
self._when_matched_update_all = True
self._when_matched_update_all_condition = where
@@ -78,7 +93,8 @@ class LanceMergeInsertBuilder(object):
new_data: DATA,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
):
timeout: Optional[timedelta] = None,
) -> MergeInsertResult:
"""
Executes the merge insert operation
@@ -95,5 +111,24 @@ class LanceMergeInsertBuilder(object):
One of "error", "drop", "fill".
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
timeout: Optional[timedelta], default None
Maximum time to run the operation before cancelling it.
By default, there is a 30-second timeout that is only enforced after the
first attempt. This is to prevent spending too long retrying to resolve
conflicts. For example, if a write attempt takes 20 seconds and fails,
the second attempt will be cancelled after 10 seconds, hitting the
30-second timeout. However, a write that takes one hour and succeeds on the
first attempt will not be cancelled.
When this is set, the timeout is enforced on all attempts, including
the first.
Returns
-------
MergeInsertResult
version: the new version number of the table after doing merge insert.
"""
if timeout is not None:
self._timeout = timeout
return self._table._do_merge(self, new_data, on_bad_vectors, fill_value)

View File

@@ -415,6 +415,7 @@ class LanceModel(pydantic.BaseModel):
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
AddResult(version=2)
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""

View File

@@ -4,7 +4,6 @@
from __future__ import annotations
from abc import ABC, abstractmethod
import abc
from concurrent.futures import ThreadPoolExecutor
from enum import Enum
from datetime import timedelta
@@ -88,15 +87,28 @@ def ensure_vector_query(
return val
class FullTextQueryType(Enum):
class FullTextQueryType(str, Enum):
MATCH = "match"
MATCH_PHRASE = "match_phrase"
BOOST = "boost"
MULTI_MATCH = "multi_match"
BOOLEAN = "boolean"
class FullTextQuery(abc.ABC, pydantic.BaseModel):
@abc.abstractmethod
class FullTextOperator(str, Enum):
AND = "AND"
OR = "OR"
class Occur(str, Enum):
SHOULD = "SHOULD"
MUST = "MUST"
MUST_NOT = "MUST_NOT"
@pydantic.dataclasses.dataclass
class FullTextQuery(ABC):
@abstractmethod
def query_type(self) -> FullTextQueryType:
"""
Get the query type of the query.
@@ -106,193 +118,178 @@ class FullTextQuery(abc.ABC, pydantic.BaseModel):
str
The type of the query.
"""
pass
@abc.abstractmethod
def to_dict(self) -> dict:
def __and__(self, other: "FullTextQuery") -> "FullTextQuery":
"""
Convert the query to a dictionary.
Returns
-------
dict
The query as a dictionary.
"""
class MatchQuery(FullTextQuery):
query: str
column: str
boost: float = 1.0
fuzziness: int = 0
max_expansions: int = 50
def __init__(
self,
query: str,
column: str,
*,
boost: float = 1.0,
fuzziness: int = 0,
max_expansions: int = 50,
):
"""
Match query for full-text search.
Combine two queries with a logical AND operation.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
boost : float, default 1.0
The boost factor for the query.
The score of each matching document is multiplied by this value.
fuzziness : int, optional
The maximum edit distance for each term in the match query.
Defaults to 0 (exact match).
If None, fuzziness is applied automatically by the rules:
- 0 for terms with length <= 2
- 1 for terms with length <= 5
- 2 for terms with length > 5
max_expansions : int, optional
The maximum number of terms to consider for fuzzy matching.
Defaults to 50.
other : FullTextQuery
The other query to combine with.
Returns
-------
FullTextQuery
A new query that combines both queries with AND.
"""
super().__init__(
query=query,
column=column,
boost=boost,
fuzziness=fuzziness,
max_expansions=max_expansions,
)
return BooleanQuery([(Occur.MUST, self), (Occur.MUST, other)])
def __or__(self, other: "FullTextQuery") -> "FullTextQuery":
"""
Combine two queries with a logical OR operation.
Parameters
----------
other : FullTextQuery
The other query to combine with.
Returns
-------
FullTextQuery
A new query that combines both queries with OR.
"""
return BooleanQuery([(Occur.SHOULD, self), (Occur.SHOULD, other)])
@pydantic.dataclasses.dataclass
class MatchQuery(FullTextQuery):
"""
Match query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
boost : float, default 1.0
The boost factor for the query.
The score of each matching document is multiplied by this value.
fuzziness : int, optional
The maximum edit distance for each term in the match query.
Defaults to 0 (exact match).
If None, fuzziness is applied automatically by the rules:
- 0 for terms with length <= 2
- 1 for terms with length <= 5
- 2 for terms with length > 5
max_expansions : int, optional
The maximum number of terms to consider for fuzzy matching.
Defaults to 50.
operator : FullTextOperator, default OR
The operator to use for combining the query results.
Can be either `AND` or `OR`.
If `AND`, all terms in the query must match.
If `OR`, at least one term in the query must match.
prefix_length : int, optional
The number of beginning characters being unchanged for fuzzy matching.
This is useful to achieve prefix matching.
"""
query: str
column: str
boost: float = pydantic.Field(1.0, kw_only=True)
fuzziness: int = pydantic.Field(0, kw_only=True)
max_expansions: int = pydantic.Field(50, kw_only=True)
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
prefix_length: int = pydantic.Field(0, kw_only=True)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH
def to_dict(self) -> dict:
return {
"match": {
self.column: {
"query": self.query,
"boost": self.boost,
"fuzziness": self.fuzziness,
"max_expansions": self.max_expansions,
}
}
}
@pydantic.dataclasses.dataclass
class PhraseQuery(FullTextQuery):
"""
Phrase query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
"""
query: str
column: str
def __init__(self, query: str, column: str):
"""
Phrase query for full-text search.
Parameters
----------
query : str
The query string to match against.
column : str
The name of the column to match against.
"""
super().__init__(query=query, column=column)
slop: int = pydantic.Field(0, kw_only=True)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MATCH_PHRASE
def to_dict(self) -> dict:
return {
"match_phrase": {
self.column: self.query,
}
}
@pydantic.dataclasses.dataclass
class BoostQuery(FullTextQuery):
"""
Boost query for full-text search.
Parameters
----------
positive : dict
The positive query object.
negative : dict
The negative query object.
negative_boost : float, default 0.5
The boost factor for the negative query.
"""
positive: FullTextQuery
negative: FullTextQuery
negative_boost: float = 0.5
def __init__(
self,
positive: FullTextQuery,
negative: FullTextQuery,
*,
negative_boost: float = 0.5,
):
"""
Boost query for full-text search.
Parameters
----------
positive : dict
The positive query object.
negative : dict
The negative query object.
negative_boost : float
The boost factor for the negative query.
"""
super().__init__(
positive=positive, negative=negative, negative_boost=negative_boost
)
negative_boost: float = pydantic.Field(0.5, kw_only=True)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOST
def to_dict(self) -> dict:
return {
"boost": {
"positive": self.positive.to_dict(),
"negative": self.negative.to_dict(),
"negative_boost": self.negative_boost,
}
}
@pydantic.dataclasses.dataclass
class MultiMatchQuery(FullTextQuery):
"""
Multi-match query for full-text search.
Parameters
----------
query : str | list[Query]
If a string, the query string to match against.
columns : list[str]
The list of columns to match against.
boosts : list[float], optional
The list of boost factors for each column. If not provided,
all columns will have the same boost factor.
operator : FullTextOperator, default OR
The operator to use for combining the query results.
Can be either `AND` or `OR`.
It would be applied to all columns individually.
For example, if the operator is `AND`,
then the query "hello world" is equal to
`match("hello AND world", column1) OR match("hello AND world", column2)`.
"""
query: str
columns: list[str]
boosts: list[float]
def __init__(
self,
query: str,
columns: list[str],
*,
boosts: Optional[list[float]] = None,
):
"""
Multi-match query for full-text search.
Parameters
----------
query : str
The query string to match against.
columns : list[str]
The list of columns to match against.
boosts : list[float], optional
The list of boost factors for each column. If not provided,
all columns will have the same boost factor.
"""
if boosts is None:
boosts = [1.0] * len(columns)
super().__init__(query=query, columns=columns, boosts=boosts)
boosts: Optional[list[float]] = pydantic.Field(None, kw_only=True)
operator: FullTextOperator = pydantic.Field(FullTextOperator.OR, kw_only=True)
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.MULTI_MATCH
def to_dict(self) -> dict:
return {
"multi_match": {
"query": self.query,
"columns": self.columns,
"boost": self.boosts,
}
}
@pydantic.dataclasses.dataclass
class BooleanQuery(FullTextQuery):
"""
Boolean query for full-text search.
Parameters
----------
queries : list[tuple(Occur, FullTextQuery)]
The list of queries with their occurrence requirements.
"""
queries: list[tuple[Occur, FullTextQuery]]
def query_type(self) -> FullTextQueryType:
return FullTextQueryType.BOOLEAN
class FullTextSearchQuery(pydantic.BaseModel):
@@ -445,8 +442,18 @@ class Query(pydantic.BaseModel):
# which columns to return in the results
columns: Optional[Union[List[str], Dict[str, str]]] = None
# number of IVF partitions to search
nprobes: Optional[int] = None
# minimum number of IVF partitions to search
#
# If None then a default value (20) will be used.
minimum_nprobes: Optional[int] = None
# maximum number of IVF partitions to search
#
# If None then a default value (20) will be used.
#
# If 0 then no limit will be applied and all partitions could be searched
# if needed to satisfy the limit.
maximum_nprobes: Optional[int] = None
# lower bound for distance search
lower_bound: Optional[float] = None
@@ -484,7 +491,8 @@ class Query(pydantic.BaseModel):
query.vector_column = req.column
query.vector = req.query_vector
query.distance_type = req.distance_type
query.nprobes = req.nprobes
query.minimum_nprobes = req.minimum_nprobes
query.maximum_nprobes = req.maximum_nprobes
query.lower_bound = req.lower_bound
query.upper_bound = req.upper_bound
query.ef = req.ef
@@ -493,10 +501,8 @@ class Query(pydantic.BaseModel):
query.postfilter = req.postfilter
if req.full_text_search is not None:
query.full_text_query = FullTextSearchQuery(
columns=req.full_text_search.columns,
query=req.full_text_search.query,
limit=req.full_text_search.limit,
wand_factor=req.full_text_search.wand_factor,
columns=None,
query=req.full_text_search,
)
return query
@@ -1047,7 +1053,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
super().__init__(table)
self._query = query
self._distance_type = None
self._nprobes = None
self._minimum_nprobes = None
self._maximum_nprobes = None
self._lower_bound = None
self._upper_bound = None
self._refine_factor = None
@@ -1110,6 +1117,10 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
See discussion in [Querying an ANN Index][querying-an-ann-index] for
tuning advice.
This method sets both the minimum and maximum number of probes to the same
value. See `minimum_nprobes` and `maximum_nprobes` for more fine-grained
control.
Parameters
----------
nprobes: int
@@ -1120,7 +1131,36 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
LanceVectorQueryBuilder
The LanceQueryBuilder object.
"""
self._nprobes = nprobes
self._minimum_nprobes = nprobes
self._maximum_nprobes = nprobes
return self
def minimum_nprobes(self, minimum_nprobes: int) -> LanceVectorQueryBuilder:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
These partitions will be searched on every vector query and will increase recall
at the expense of latency.
"""
self._minimum_nprobes = minimum_nprobes
return self
def maximum_nprobes(self, maximum_nprobes: int) -> LanceVectorQueryBuilder:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
If this value is greater than `minimum_nprobes` then the excess partitions
will be searched only if we have not found enough results.
This can be useful when there is a narrow filter to allow these queries to
spend more time searching and avoid potential false negatives.
If this value is 0 then no limit will be applied and all partitions could be
searched if needed to satisfy the limit.
"""
self._maximum_nprobes = maximum_nprobes
return self
def distance_range(
@@ -1224,7 +1264,8 @@ class LanceVectorQueryBuilder(LanceQueryBuilder):
limit=self._limit,
distance_type=self._distance_type,
columns=self._columns,
nprobes=self._nprobes,
minimum_nprobes=self._minimum_nprobes,
maximum_nprobes=self._maximum_nprobes,
lower_bound=self._lower_bound,
upper_bound=self._upper_bound,
refine_factor=self._refine_factor,
@@ -1410,10 +1451,13 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
query = self._query
if self._phrase_query:
raise NotImplementedError(
"Phrase query is not yet supported in Lance FTS. "
"Use tantivy-based index instead for now."
)
if isinstance(query, str):
if not query.startswith('"') or not query.endswith('"'):
query = f'"{query}"'
elif isinstance(query, FullTextQuery) and not isinstance(
query, PhraseQuery
):
raise TypeError("Please use PhraseQuery for phrase queries.")
query = self.to_query_object()
results = self._table._execute_query(query, timeout=timeout)
results = results.read_all()
@@ -1588,7 +1632,8 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._fts_columns = fts_columns
self._norm = None
self._reranker = None
self._nprobes = None
self._minimum_nprobes = None
self._maximum_nprobes = None
self._refine_factor = None
self._distance_type = None
self._phrase_query = None
@@ -1820,7 +1865,24 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
LanceHybridQueryBuilder
The LanceHybridQueryBuilder object.
"""
self._nprobes = nprobes
self._minimum_nprobes = nprobes
self._maximum_nprobes = nprobes
return self
def minimum_nprobes(self, minimum_nprobes: int) -> LanceHybridQueryBuilder:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
"""
self._minimum_nprobes = minimum_nprobes
return self
def maximum_nprobes(self, maximum_nprobes: int) -> LanceHybridQueryBuilder:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
"""
self._maximum_nprobes = maximum_nprobes
return self
def distance_range(
@@ -2049,8 +2111,10 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
self._fts_query.phrase_query(True)
if self._distance_type:
self._vector_query.metric(self._distance_type)
if self._nprobes:
self._vector_query.nprobes(self._nprobes)
if self._minimum_nprobes:
self._vector_query.minimum_nprobes(self._minimum_nprobes)
if self._maximum_nprobes is not None:
self._vector_query.maximum_nprobes(self._maximum_nprobes)
if self._refine_factor:
self._vector_query.refine_factor(self._refine_factor)
if self._ef:
@@ -2513,7 +2577,7 @@ class AsyncQuery(AsyncQueryBase):
self._inner.nearest_to_text({"query": query, "columns": columns})
)
# FullTextQuery object
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query}))
class AsyncFTSQuery(AsyncQueryBase):
@@ -2661,6 +2725,34 @@ class AsyncVectorQueryBase:
self._inner.nprobes(nprobes)
return self
def minimum_nprobes(self, minimum_nprobes: int) -> Self:
"""Set the minimum number of probes to use.
See `nprobes` for more details.
These partitions will be searched on every indexed vector query and will
increase recall at the expense of latency.
"""
self._inner.minimum_nprobes(minimum_nprobes)
return self
def maximum_nprobes(self, maximum_nprobes: int) -> Self:
"""Set the maximum number of probes to use.
See `nprobes` for more details.
If this value is greater than `minimum_nprobes` then the excess partitions
will be searched only if we have not found enough results.
This can be useful when there is a narrow filter to allow these queries to
spend more time searching and avoid potential false negatives.
If this value is 0 then no limit will be applied and all partitions could be
searched if needed to satisfy the limit.
"""
self._inner.maximum_nprobes(maximum_nprobes)
return self
def distance_range(
self, lower_bound: Optional[float] = None, upper_bound: Optional[float] = None
) -> Self:
@@ -2835,7 +2927,7 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
self._inner.nearest_to_text({"query": query, "columns": columns})
)
# FullTextQuery object
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query.to_dict()}))
return AsyncHybridQuery(self._inner.nearest_to_text({"query": query}))
async def to_batches(
self,
@@ -2950,15 +3042,21 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
Vector Search Plan:
ProjectionExec: expr=[vector@0 as vector, text@3 as text, _distance@2 as _distance]
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
Take: columns="vector, _rowid, _distance, (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceScan: uri=..., projection=[vector], row_id=true, row_addr=false, ordered=false
<BLANKLINE>
FTS Search Plan:
LanceScan: uri=..., projection=[vector, text], row_id=false, row_addr=false, ordered=true
ProjectionExec: expr=[vector@2 as vector, text@3 as text, _score@1 as _score]
Take: columns="_rowid, _score, (vector), (text)"
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
MatchQuery: query=hello
<BLANKLINE>
Parameters
----------

View File

@@ -7,9 +7,18 @@ from functools import cached_property
from typing import Dict, Iterable, List, Optional, Union, Literal
import warnings
from lancedb._lancedb import IndexConfig
from lancedb._lancedb import (
AddColumnsResult,
AddResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
IndexConfig,
MergeResult,
UpdateResult,
)
from lancedb.embeddings.base import EmbeddingFunctionConfig
from lancedb.index import FTS, BTree, Bitmap, HnswPq, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.index import FTS, BTree, Bitmap, HnswSq, IvfFlat, IvfPq, LabelList
from lancedb.remote.db import LOOP
import pyarrow as pa
@@ -38,9 +47,6 @@ class RemoteTable(Table):
def __repr__(self) -> str:
return f"RemoteTable({self.db_name}.{self.name})"
def __len__(self) -> int:
self.count_rows(None)
@property
def schema(self) -> pa.Schema:
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
@@ -83,7 +89,7 @@ class RemoteTable(Table):
def to_pandas(self):
"""to_pandas() is not yet supported on LanceDB cloud."""
return NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
raise NotImplementedError("to_pandas() is not yet supported on LanceDB cloud.")
def checkout(self, version: Union[int, str]):
return LOOP.run(self._table.checkout(version))
@@ -91,7 +97,7 @@ class RemoteTable(Table):
def checkout_latest(self):
return LOOP.run(self._table.checkout_latest())
def restore(self, version: Optional[int] = None):
def restore(self, version: Optional[Union[int, str]] = None):
return LOOP.run(self._table.restore(version))
def list_indices(self) -> Iterable[IndexConfig]:
@@ -143,15 +149,15 @@ class RemoteTable(Table):
*,
replace: bool = False,
wait_timeout: timedelta = None,
with_position: bool = True,
with_position: bool = False,
# tokenizer configs:
base_tokenizer: str = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
stem: bool = True,
remove_stop_words: bool = True,
ascii_folding: bool = True,
):
config = FTS(
with_position=with_position,
@@ -180,6 +186,8 @@ class RemoteTable(Table):
accelerator: Optional[str] = None,
index_type="vector",
wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -214,11 +222,6 @@ class RemoteTable(Table):
>>> table.create_index("l2", "vector") # doctest: +SKIP
"""
if num_partitions is not None:
logging.warning(
"num_partitions is not supported on LanceDB cloud."
"This parameter will be tuned automatically."
)
if num_sub_vectors is not None:
logging.warning(
"num_sub_vectors is not supported on LanceDB cloud."
@@ -238,13 +241,21 @@ class RemoteTable(Table):
index_type = index_type.upper()
if index_type == "VECTOR" or index_type == "IVF_PQ":
config = IvfPq(distance_type=metric)
config = IvfPq(
distance_type=metric,
num_partitions=num_partitions,
num_sub_vectors=num_sub_vectors,
num_bits=num_bits,
)
elif index_type == "IVF_HNSW_PQ":
config = HnswPq(distance_type=metric)
raise ValueError(
"IVF_HNSW_PQ is not supported on LanceDB cloud."
"Please use IVF_HNSW_SQ instead."
)
elif index_type == "IVF_HNSW_SQ":
config = HnswSq(distance_type=metric)
config = HnswSq(distance_type=metric, num_partitions=num_partitions)
elif index_type == "IVF_FLAT":
config = IvfFlat(distance_type=metric)
config = IvfFlat(distance_type=metric, num_partitions=num_partitions)
else:
raise ValueError(
f"Unknown vector index type: {index_type}. Valid options are"
@@ -263,7 +274,7 @@ class RemoteTable(Table):
mode: str = "append",
on_bad_vectors: str = "error",
fill_value: float = 0.0,
) -> int:
) -> AddResult:
"""Add more data to the [Table](Table). It has the same API signature as
the OSS version.
@@ -286,8 +297,12 @@ class RemoteTable(Table):
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
AddResult
An object containing the new version number of the table after adding data.
"""
LOOP.run(
return LOOP.run(
self._table.add(
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
@@ -413,10 +428,12 @@ class RemoteTable(Table):
new_data: DATA,
on_bad_vectors: str,
fill_value: float,
):
LOOP.run(self._table._do_merge(merge, new_data, on_bad_vectors, fill_value))
) -> MergeResult:
return LOOP.run(
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
)
def delete(self, predicate: str):
def delete(self, predicate: str) -> DeleteResult:
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
@@ -431,6 +448,11 @@ class RemoteTable(Table):
The filter must not be empty, or it will error.
Returns
-------
DeleteResult
An object containing the new version number of the table after deletion.
Examples
--------
>>> import lancedb
@@ -463,7 +485,7 @@ class RemoteTable(Table):
x vector _distance # doctest: +SKIP
0 2 [3.0, 4.0] 85.0 # doctest: +SKIP
"""
LOOP.run(self._table.delete(predicate))
return LOOP.run(self._table.delete(predicate))
def update(
self,
@@ -471,7 +493,7 @@ class RemoteTable(Table):
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
) -> UpdateResult:
"""
This can be used to update zero to all rows depending on how many
rows match the where clause.
@@ -489,6 +511,12 @@ class RemoteTable(Table):
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Returns
-------
UpdateResult
- rows_updated: The number of rows that were updated
- version: The new version number of the table after the update
Examples
--------
>>> import lancedb
@@ -513,7 +541,7 @@ class RemoteTable(Table):
2 2 [10.0, 10.0] # doctest: +SKIP
"""
LOOP.run(
return LOOP.run(
self._table.update(where=where, updates=values, updates_sql=values_sql)
)
@@ -561,13 +589,15 @@ class RemoteTable(Table):
def count_rows(self, filter: Optional[str] = None) -> int:
return LOOP.run(self._table.count_rows(filter))
def add_columns(self, transforms: Dict[str, str]):
def add_columns(self, transforms: Dict[str, str]) -> AddColumnsResult:
return LOOP.run(self._table.add_columns(transforms))
def alter_columns(self, *alterations: Iterable[Dict[str, str]]):
def alter_columns(
self, *alterations: Iterable[Dict[str, str]]
) -> AlterColumnsResult:
return LOOP.run(self._table.alter_columns(*alterations))
def drop_columns(self, columns: Iterable[str]):
def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
return LOOP.run(self._table.drop_columns(columns))
def drop_index(self, index_name: str):

View File

@@ -78,6 +78,13 @@ if TYPE_CHECKING:
CleanupStats,
CompactionStats,
Tag,
AddColumnsResult,
AddResult,
AlterColumnsResult,
DeleteResult,
DropColumnsResult,
MergeResult,
UpdateResult,
)
from .db import LanceDBConnection
from .index import IndexConfig
@@ -550,6 +557,7 @@ class Table(ABC):
Can append new data with [Table.add()][lancedb.table.Table.add].
>>> table.add([{"vector": [0.5, 1.3], "b": 4}])
AddResult(version=2)
Can query the table with [Table.search][lancedb.table.Table.search].
@@ -612,6 +620,10 @@ class Table(ABC):
"""
raise NotImplementedError
def __len__(self) -> int:
"""The number of rows in this Table"""
return self.count_rows(None)
@property
@abstractmethod
def embedding_functions(self) -> Dict[str, EmbeddingFunctionConfig]:
@@ -815,17 +827,17 @@ class Table(ABC):
ordering_field_names: Optional[Union[str, List[str]]] = None,
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
use_tantivy: bool = True,
use_tantivy: bool = False,
tokenizer_name: Optional[str] = None,
with_position: bool = True,
with_position: bool = False,
# tokenizer configs:
base_tokenizer: BaseTokenizerType = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
stem: bool = True,
remove_stop_words: bool = True,
ascii_folding: bool = True,
wait_timeout: Optional[timedelta] = None,
):
"""Create a full-text search index on the table.
@@ -852,10 +864,10 @@ class Table(ABC):
The tokenizer to use for the index. Can be "raw", "default" or the 2 letter
language code followed by "_stem". So for english it would be "en_stem".
For available languages see: https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html
use_tantivy: bool, default True
use_tantivy: bool, default False
If True, use the legacy full-text search implementation based on tantivy.
If False, use the new full-text search implementation based on lance-index.
with_position: bool, default True
with_position: bool, default False
Only available with use_tantivy=False
If False, do not store the positions of the terms in the text.
This can reduce the size of the index and improve indexing speed.
@@ -873,13 +885,13 @@ class Table(ABC):
lower_case : bool, default True
Whether to convert the token to lower case. This makes queries
case-insensitive.
stem : bool, default False
stem : bool, default True
Whether to stem the token. Stemming reduces words to their root form.
For example, in English "running" and "runs" would both be reduced to "run".
remove_stop_words : bool, default False
remove_stop_words : bool, default True
Whether to remove stop words. Stop words are common words that are often
removed from text before indexing. For example, in English "the" and "and".
ascii_folding : bool, default False
ascii_folding : bool, default True
Whether to fold ASCII characters. This converts accented characters to
their ASCII equivalent. For example, "café" would be converted to "cafe".
wait_timeout: timedelta, optional
@@ -894,7 +906,7 @@ class Table(ABC):
mode: AddMode = "append",
on_bad_vectors: OnBadVectorsType = "error",
fill_value: float = 0.0,
):
) -> AddResult:
"""Add more data to the [Table](Table).
Parameters
@@ -916,6 +928,10 @@ class Table(ABC):
fill_value: float, default 0.
The value to use when filling vectors. Only used if on_bad_vectors="fill".
Returns
-------
AddResult
An object containing the new version number of the table after adding data.
"""
raise NotImplementedError
@@ -962,12 +978,12 @@ class Table(ABC):
>>> table = db.create_table("my_table", data)
>>> new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
>>> # Perform a "upsert" operation
>>> stats = table.merge_insert("a") \\
>>> res = table.merge_insert("a") \\
... .when_matched_update_all() \\
... .when_not_matched_insert_all() \\
... .execute(new_data)
>>> stats
{'num_inserted_rows': 1, 'num_updated_rows': 2, 'num_deleted_rows': 0}
>>> res
MergeResult(version=2, num_updated_rows=2, num_inserted_rows=1, num_deleted_rows=0)
>>> # The order of new rows is non-deterministic since we use
>>> # a hash-join as part of this operation and so we sort here
>>> table.to_arrow().sort_by("a").to_pandas()
@@ -976,7 +992,7 @@ class Table(ABC):
1 2 x
2 3 y
3 4 z
"""
""" # noqa: E501
on = [on] if isinstance(on, str) else list(iter(on))
return LanceMergeInsertBuilder(self, on)
@@ -1091,10 +1107,10 @@ class Table(ABC):
new_data: DATA,
on_bad_vectors: OnBadVectorsType,
fill_value: float,
): ...
) -> MergeResult: ...
@abstractmethod
def delete(self, where: str):
def delete(self, where: str) -> DeleteResult:
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
@@ -1109,6 +1125,11 @@ class Table(ABC):
The filter must not be empty, or it will error.
Returns
-------
DeleteResult
An object containing the new version number of the table after deletion.
Examples
--------
>>> import lancedb
@@ -1125,6 +1146,7 @@ class Table(ABC):
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
DeleteResult(version=2)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
@@ -1138,6 +1160,7 @@ class Table(ABC):
>>> to_remove
'1, 5'
>>> table.delete(f"x IN ({to_remove})")
DeleteResult(version=3)
>>> table.to_pandas()
x vector
0 3 [5.0, 6.0]
@@ -1151,7 +1174,7 @@ class Table(ABC):
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
) -> UpdateResult:
"""
This can be used to update zero to all rows depending on how many
rows match the where clause. If no where clause is provided, then
@@ -1173,6 +1196,12 @@ class Table(ABC):
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Returns
-------
UpdateResult
- rows_updated: The number of rows that were updated
- version: The new version number of the table after the update
Examples
--------
>>> import lancedb
@@ -1186,12 +1215,14 @@ class Table(ABC):
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.update(where="x = 2", values={"vector": [10.0, 10]})
UpdateResult(rows_updated=1, version=2)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
1 3 [5.0, 6.0]
2 2 [10.0, 10.0]
>>> table.update(values_sql={"x": "x + 1"})
UpdateResult(rows_updated=3, version=3)
>>> table.to_pandas()
x vector
0 2 [1.0, 2.0]
@@ -1354,6 +1385,11 @@ class Table(ABC):
Alternatively, a pyarrow Field or Schema can be provided to add
new columns with the specified data types. The new columns will
be initialized with null values.
Returns
-------
AddColumnsResult
version: the new version number of the table after adding columns.
"""
@abstractmethod
@@ -1379,10 +1415,15 @@ class Table(ABC):
nullability is not changed. Only non-nullable columns can be changed
to nullable. Currently, you cannot change a nullable column to
non-nullable.
Returns
-------
AlterColumnsResult
version: the new version number of the table after the alteration.
"""
@abstractmethod
def drop_columns(self, columns: Iterable[str]):
def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
"""
Drop columns from the table.
@@ -1390,6 +1431,11 @@ class Table(ABC):
----------
columns : Iterable[str]
The names of the columns to drop.
Returns
-------
DropColumnsResult
version: the new version number of the table dropping the columns.
"""
@abstractmethod
@@ -1428,7 +1474,7 @@ class Table(ABC):
"""
@abstractmethod
def restore(self, version: Optional[int] = None):
def restore(self, version: Optional[Union[int, str]] = None):
"""Restore a version of the table. This is an in-place operation.
This creates a new version where the data is equivalent to the
@@ -1436,9 +1482,10 @@ class Table(ABC):
Parameters
----------
version : int, default None
The version to restore. If unspecified then restores the currently
checked out version. If the currently checked out version is the
version : int or str, default None
The version number or version tag to restore.
If unspecified then restores the currently checked out version.
If the currently checked out version is the
latest version then this is a no-op.
"""
@@ -1611,6 +1658,7 @@ class LanceTable(Table):
... [{"vector": [1.1, 0.9], "type": "vector"}])
>>> table.tags.create("v1", table.version)
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
AddResult(version=2)
>>> tags = table.tags.list()
>>> print(tags["v1"]["version"])
1
@@ -1649,6 +1697,7 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
AddResult(version=2)
>>> table.version
2
>>> table.checkout(1)
@@ -1666,7 +1715,7 @@ class LanceTable(Table):
"""
LOOP.run(self._table.checkout_latest())
def restore(self, version: Optional[int] = None):
def restore(self, version: Optional[Union[int, str]] = None):
"""Restore a version of the table. This is an in-place operation.
This creates a new version where the data is equivalent to the
@@ -1674,9 +1723,10 @@ class LanceTable(Table):
Parameters
----------
version : int, default None
The version to restore. If unspecified then restores the currently
checked out version. If the currently checked out version is the
version : int or str, default None
The version number or version tag to restore.
If unspecified then restores the currently checked out version.
If the currently checked out version is the
latest version then this is a no-op.
Examples
@@ -1691,14 +1741,23 @@ class LanceTable(Table):
vector type
0 [1.1, 0.9] vector
>>> table.add([{"vector": [0.5, 0.2], "type": "vector"}])
AddResult(version=2)
>>> table.version
2
>>> table.tags.create("v2", 2)
>>> table.restore(1)
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
>>> len(table.list_versions())
3
>>> table.restore("v2")
>>> table.to_pandas()
vector type
0 [1.1, 0.9] vector
1 [0.5, 0.2] vector
>>> len(table.list_versions())
4
"""
if version is not None:
LOOP.run(self._table.checkout(version))
@@ -1707,9 +1766,6 @@ class LanceTable(Table):
def count_rows(self, filter: Optional[str] = None) -> int:
return LOOP.run(self._table.count_rows(filter))
def __len__(self) -> int:
return self.count_rows()
def __repr__(self) -> str:
val = f"{self.__class__.__name__}(name={self.name!r}, version={self.version}"
if self._conn.read_consistency_interval is not None:
@@ -1914,17 +1970,17 @@ class LanceTable(Table):
ordering_field_names: Optional[Union[str, List[str]]] = None,
replace: bool = False,
writer_heap_size: Optional[int] = 1024 * 1024 * 1024,
use_tantivy: bool = True,
use_tantivy: bool = False,
tokenizer_name: Optional[str] = None,
with_position: bool = True,
with_position: bool = False,
# tokenizer configs:
base_tokenizer: BaseTokenizerType = "simple",
language: str = "English",
max_token_length: Optional[int] = 40,
lower_case: bool = True,
stem: bool = False,
remove_stop_words: bool = False,
ascii_folding: bool = False,
stem: bool = True,
remove_stop_words: bool = True,
ascii_folding: bool = True,
):
if not use_tantivy:
if not isinstance(field_names, str):
@@ -1934,6 +1990,7 @@ class LanceTable(Table):
tokenizer_configs = {
"base_tokenizer": base_tokenizer,
"language": language,
"with_position": with_position,
"max_token_length": max_token_length,
"lower_case": lower_case,
"stem": stem,
@@ -1944,7 +2001,6 @@ class LanceTable(Table):
tokenizer_configs = self.infer_tokenizer_configs(tokenizer_name)
config = FTS(
with_position=with_position,
**tokenizer_configs,
)
@@ -2055,7 +2111,7 @@ class LanceTable(Table):
mode: AddMode = "append",
on_bad_vectors: OnBadVectorsType = "error",
fill_value: float = 0.0,
):
) -> AddResult:
"""Add data to the table.
If vector columns are missing and the table
has embedding functions, then the vector columns
@@ -2079,7 +2135,7 @@ class LanceTable(Table):
int
The number of vectors in the table.
"""
LOOP.run(
return LOOP.run(
self._table.add(
data, mode=mode, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
@@ -2409,8 +2465,8 @@ class LanceTable(Table):
)
return self
def delete(self, where: str):
LOOP.run(self._table.delete(where))
def delete(self, where: str) -> DeleteResult:
return LOOP.run(self._table.delete(where))
def update(
self,
@@ -2418,7 +2474,7 @@ class LanceTable(Table):
values: Optional[dict] = None,
*,
values_sql: Optional[Dict[str, str]] = None,
):
) -> UpdateResult:
"""
This can be used to update zero to all rows depending on how many
rows match the where clause.
@@ -2436,6 +2492,12 @@ class LanceTable(Table):
reference existing columns. For example, {"x": "x + 1"} will increment
the x column by 1.
Returns
-------
UpdateResult
- rows_updated: The number of rows that were updated
- version: The new version number of the table after the update
Examples
--------
>>> import lancedb
@@ -2449,6 +2511,7 @@ class LanceTable(Table):
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.update(where="x = 2", values={"vector": [10.0, 10]})
UpdateResult(rows_updated=1, version=2)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
@@ -2456,7 +2519,7 @@ class LanceTable(Table):
2 2 [10.0, 10.0]
"""
LOOP.run(self._table.update(values, where=where, updates_sql=values_sql))
return LOOP.run(self._table.update(values, where=where, updates_sql=values_sql))
def _execute_query(
self,
@@ -2490,7 +2553,7 @@ class LanceTable(Table):
new_data: DATA,
on_bad_vectors: OnBadVectorsType,
fill_value: float,
):
) -> MergeResult:
return LOOP.run(
self._table._do_merge(merge, new_data, on_bad_vectors, fill_value)
)
@@ -2635,14 +2698,16 @@ class LanceTable(Table):
def add_columns(
self, transforms: Dict[str, str] | pa.field | List[pa.field] | pa.Schema
):
LOOP.run(self._table.add_columns(transforms))
) -> AddColumnsResult:
return LOOP.run(self._table.add_columns(transforms))
def alter_columns(self, *alterations: Iterable[Dict[str, str]]):
LOOP.run(self._table.alter_columns(*alterations))
def alter_columns(
self, *alterations: Iterable[Dict[str, str]]
) -> AlterColumnsResult:
return LOOP.run(self._table.alter_columns(*alterations))
def drop_columns(self, columns: Iterable[str]):
LOOP.run(self._table.drop_columns(columns))
def drop_columns(self, columns: Iterable[str]) -> DropColumnsResult:
return LOOP.run(self._table.drop_columns(columns))
def uses_v2_manifest_paths(self) -> bool:
"""
@@ -3197,7 +3262,7 @@ class AsyncTable:
mode: Optional[Literal["append", "overwrite"]] = "append",
on_bad_vectors: Optional[OnBadVectorsType] = None,
fill_value: Optional[float] = None,
):
) -> AddResult:
"""Add more data to the [Table](Table).
Parameters
@@ -3236,7 +3301,7 @@ class AsyncTable:
if isinstance(data, pa.Table):
data = data.to_reader()
await self._inner.add(data, mode or "append")
return await self._inner.add(data, mode or "append")
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
"""
@@ -3281,12 +3346,12 @@ class AsyncTable:
>>> table = db.create_table("my_table", data)
>>> new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
>>> # Perform a "upsert" operation
>>> stats = table.merge_insert("a") \\
>>> res = table.merge_insert("a") \\
... .when_matched_update_all() \\
... .when_not_matched_insert_all() \\
... .execute(new_data)
>>> stats
{'num_inserted_rows': 1, 'num_updated_rows': 2, 'num_deleted_rows': 0}
>>> res
MergeResult(version=2, num_updated_rows=2, num_inserted_rows=1, num_deleted_rows=0)
>>> # The order of new rows is non-deterministic since we use
>>> # a hash-join as part of this operation and so we sort here
>>> table.to_arrow().sort_by("a").to_pandas()
@@ -3295,7 +3360,7 @@ class AsyncTable:
1 2 x
2 3 y
3 4 z
"""
""" # noqa: E501
on = [on] if isinstance(on, str) else list(iter(on))
return LanceMergeInsertBuilder(self, on)
@@ -3572,8 +3637,10 @@ class AsyncTable:
)
if query.distance_type is not None:
async_query = async_query.distance_type(query.distance_type)
if query.nprobes is not None:
async_query = async_query.nprobes(query.nprobes)
if query.minimum_nprobes is not None:
async_query = async_query.minimum_nprobes(query.minimum_nprobes)
if query.maximum_nprobes is not None:
async_query = async_query.maximum_nprobes(query.maximum_nprobes)
if query.refine_factor is not None:
async_query = async_query.refine_factor(query.refine_factor)
if query.vector_column:
@@ -3626,7 +3693,7 @@ class AsyncTable:
new_data: DATA,
on_bad_vectors: OnBadVectorsType,
fill_value: float,
):
) -> MergeResult:
schema = await self.schema()
if on_bad_vectors is None:
on_bad_vectors = "error"
@@ -3651,10 +3718,11 @@ class AsyncTable:
when_not_matched_insert_all=merge._when_not_matched_insert_all,
when_not_matched_by_source_delete=merge._when_not_matched_by_source_delete,
when_not_matched_by_source_condition=merge._when_not_matched_by_source_condition,
timeout=merge._timeout,
),
)
async def delete(self, where: str):
async def delete(self, where: str) -> DeleteResult:
"""Delete rows from the table.
This can be used to delete a single row, many rows, all rows, or
@@ -3685,6 +3753,7 @@ class AsyncTable:
1 2 [3.0, 4.0]
2 3 [5.0, 6.0]
>>> table.delete("x = 2")
DeleteResult(version=2)
>>> table.to_pandas()
x vector
0 1 [1.0, 2.0]
@@ -3698,6 +3767,7 @@ class AsyncTable:
>>> to_remove
'1, 5'
>>> table.delete(f"x IN ({to_remove})")
DeleteResult(version=3)
>>> table.to_pandas()
x vector
0 3 [5.0, 6.0]
@@ -3710,7 +3780,7 @@ class AsyncTable:
*,
where: Optional[str] = None,
updates_sql: Optional[Dict[str, str]] = None,
):
) -> UpdateResult:
"""
This can be used to update zero to all rows in the table.
@@ -3732,6 +3802,13 @@ class AsyncTable:
literals (e.g. "7" or "'foo'") or they can be expressions based on the
previous value of the row (e.g. "x + 1" to increment the x column by 1)
Returns
-------
UpdateResult
An object containing:
- rows_updated: The number of rows that were updated
- version: The new version number of the table after the update
Examples
--------
>>> import asyncio
@@ -3760,7 +3837,7 @@ class AsyncTable:
async def add_columns(
self, transforms: dict[str, str] | pa.field | List[pa.field] | pa.Schema
):
) -> AddColumnsResult:
"""
Add new columns with defined values.
@@ -3772,6 +3849,12 @@ class AsyncTable:
each row in the table, and can reference existing columns.
Alternatively, you can pass a pyarrow field or schema to add
new columns with NULLs.
Returns
-------
AddColumnsResult
version: the new version number of the table after adding columns.
"""
if isinstance(transforms, pa.Field):
transforms = [transforms]
@@ -3780,11 +3863,13 @@ class AsyncTable:
):
transforms = pa.schema(transforms)
if isinstance(transforms, pa.Schema):
await self._inner.add_columns_with_schema(transforms)
return await self._inner.add_columns_with_schema(transforms)
else:
await self._inner.add_columns(list(transforms.items()))
return await self._inner.add_columns(list(transforms.items()))
async def alter_columns(self, *alterations: Iterable[dict[str, Any]]):
async def alter_columns(
self, *alterations: Iterable[dict[str, Any]]
) -> AlterColumnsResult:
"""
Alter column names and nullability.
@@ -3804,8 +3889,13 @@ class AsyncTable:
nullability is not changed. Only non-nullable columns can be changed
to nullable. Currently, you cannot change a nullable column to
non-nullable.
Returns
-------
AlterColumnsResult
version: the new version number of the table after the alteration.
"""
await self._inner.alter_columns(alterations)
return await self._inner.alter_columns(alterations)
async def drop_columns(self, columns: Iterable[str]):
"""
@@ -3816,7 +3906,7 @@ class AsyncTable:
columns : Iterable[str]
The names of the columns to drop.
"""
await self._inner.drop_columns(columns)
return await self._inner.drop_columns(columns)
async def version(self) -> int:
"""
@@ -3886,7 +3976,7 @@ class AsyncTable:
"""
await self._inner.checkout_latest()
async def restore(self, version: Optional[int] = None):
async def restore(self, version: Optional[int | str] = None):
"""
Restore the table to the currently checked out version

View File

@@ -25,6 +25,10 @@ import numpy as np
from lancedb.pydantic import Vector, LanceModel
# --8<-- [end:import-lancedb-pydantic]
# --8<-- [start:import-session-context]
from datafusion import SessionContext
# --8<-- [end:import-session-context]
# --8<-- [start:import-datetime]
from datetime import timedelta
@@ -33,6 +37,10 @@ from datetime import timedelta
from lancedb.embeddings import get_registry
# --8<-- [end:import-embeddings]
# --8<-- [start:import-ffi-dataset]
from lance import FFILanceTableProvider
# --8<-- [end:import-ffi-dataset]
# --8<-- [start:import-pydantic-basemodel]
from pydantic import BaseModel
@@ -341,6 +349,27 @@ def test_table_with_embedding():
# --8<-- [end:create_table_with_embedding]
def test_sql_query():
db = lancedb.connect("data/sample-lancedb")
data = [
{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1},
]
table = db.create_table("lance_table", data)
# --8<-- [start:lance_sql_basic]
ctx = SessionContext()
ffi_lance_table = FFILanceTableProvider(
table.to_lance(), with_row_id=False, with_row_addr=False
)
ctx.register_table_provider("ffi_lance_table", ffi_lance_table)
ctx.table("ffi_lance_table")
ctx.sql("SELECT vector FROM ffi_lance_table")
# --8<-- [end:lance_sql_basic]
@pytest.mark.skip
async def test_table_with_embedding_async():
async_db = await lancedb.connect_async("data/sample-lancedb")

View File

@@ -18,19 +18,19 @@ def test_upsert(mem_db):
{"id": 1, "name": "Bobby"},
{"id": 2, "name": "Charlie"},
]
stats = (
res = (
table.merge_insert("id")
.when_matched_update_all()
.when_not_matched_insert_all()
.execute(new_users)
)
table.count_rows() # 3
stats # {'num_inserted_rows': 1, 'num_updated_rows': 1, 'num_deleted_rows': 0}
res # {'num_inserted_rows': 1, 'num_updated_rows': 1, 'num_deleted_rows': 0}
# --8<-- [end:upsert_basic]
assert table.count_rows() == 3
assert stats["num_inserted_rows"] == 1
assert stats["num_updated_rows"] == 1
assert stats["num_deleted_rows"] == 0
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 1
@pytest.mark.asyncio
@@ -48,19 +48,22 @@ async def test_upsert_async(mem_db_async):
{"id": 1, "name": "Bobby"},
{"id": 2, "name": "Charlie"},
]
stats = await (
res = await (
table.merge_insert("id")
.when_matched_update_all()
.when_not_matched_insert_all()
.execute(new_users)
)
await table.count_rows() # 3
stats # {'num_inserted_rows': 1, 'num_updated_rows': 1, 'num_deleted_rows': 0}
res
# MergeResult(version=2, num_updated_rows=1,
# num_inserted_rows=1, num_deleted_rows=0)
# --8<-- [end:upsert_basic_async]
assert await table.count_rows() == 3
assert stats["num_inserted_rows"] == 1
assert stats["num_updated_rows"] == 1
assert stats["num_deleted_rows"] == 0
assert res.version == 2
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 1
def test_insert_if_not_exists(mem_db):
@@ -77,16 +80,19 @@ def test_insert_if_not_exists(mem_db):
{"domain": "google.com", "name": "Google"},
{"domain": "facebook.com", "name": "Facebook"},
]
stats = (
res = (
table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)
)
table.count_rows() # 3
stats # {'num_inserted_rows': 1, 'num_updated_rows': 0, 'num_deleted_rows': 0}
res
# MergeResult(version=2, num_updated_rows=0,
# num_inserted_rows=1, num_deleted_rows=0)
# --8<-- [end:insert_if_not_exists]
assert table.count_rows() == 3
assert stats["num_inserted_rows"] == 1
assert stats["num_updated_rows"] == 0
assert stats["num_deleted_rows"] == 0
assert res.version == 2
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 0
@pytest.mark.asyncio
@@ -104,16 +110,19 @@ async def test_insert_if_not_exists_async(mem_db_async):
{"domain": "google.com", "name": "Google"},
{"domain": "facebook.com", "name": "Facebook"},
]
stats = await (
res = await (
table.merge_insert("domain").when_not_matched_insert_all().execute(new_domains)
)
await table.count_rows() # 3
stats # {'num_inserted_rows': 1, 'num_updated_rows': 0, 'num_deleted_rows': 0}
# --8<-- [end:insert_if_not_exists_async]
res
# MergeResult(version=2, num_updated_rows=0,
# num_inserted_rows=1, num_deleted_rows=0)
# --8<-- [end:insert_if_not_exists]
assert await table.count_rows() == 3
assert stats["num_inserted_rows"] == 1
assert stats["num_updated_rows"] == 0
assert stats["num_deleted_rows"] == 0
assert res.version == 2
assert res.num_inserted_rows == 1
assert res.num_deleted_rows == 0
assert res.num_updated_rows == 0
def test_replace_range(mem_db):
@@ -131,7 +140,7 @@ def test_replace_range(mem_db):
new_chunks = [
{"doc_id": 1, "chunk_id": 0, "text": "Baz"},
]
stats = (
res = (
table.merge_insert(["doc_id", "chunk_id"])
.when_matched_update_all()
.when_not_matched_insert_all()
@@ -139,12 +148,15 @@ def test_replace_range(mem_db):
.execute(new_chunks)
)
table.count_rows("doc_id = 1") # 1
stats # {'num_inserted_rows': 0, 'num_updated_rows': 1, 'num_deleted_rows': 1}
# --8<-- [end:replace_range]
res
# MergeResult(version=2, num_updated_rows=1,
# num_inserted_rows=0, num_deleted_rows=1)
# --8<-- [end:insert_if_not_exists]
assert table.count_rows("doc_id = 1") == 1
assert stats["num_inserted_rows"] == 0
assert stats["num_updated_rows"] == 1
assert stats["num_deleted_rows"] == 1
assert res.version == 2
assert res.num_inserted_rows == 0
assert res.num_deleted_rows == 1
assert res.num_updated_rows == 1
@pytest.mark.asyncio
@@ -163,7 +175,7 @@ async def test_replace_range_async(mem_db_async):
new_chunks = [
{"doc_id": 1, "chunk_id": 0, "text": "Baz"},
]
stats = await (
res = await (
table.merge_insert(["doc_id", "chunk_id"])
.when_matched_update_all()
.when_not_matched_insert_all()
@@ -171,9 +183,12 @@ async def test_replace_range_async(mem_db_async):
.execute(new_chunks)
)
await table.count_rows("doc_id = 1") # 1
stats # {'num_inserted_rows': 0, 'num_updated_rows': 1, 'num_deleted_rows': 1}
# --8<-- [end:replace_range_async]
res
# MergeResult(version=2, num_updated_rows=1,
# num_inserted_rows=0, num_deleted_rows=1)
# --8<-- [end:insert_if_not_exists]
assert await table.count_rows("doc_id = 1") == 1
assert stats["num_inserted_rows"] == 0
assert stats["num_updated_rows"] == 1
assert stats["num_deleted_rows"] == 1
assert res.version == 2
assert res.num_inserted_rows == 0
assert res.num_deleted_rows == 1
assert res.num_updated_rows == 1

View File

@@ -6,7 +6,7 @@ import lancedb
# --8<-- [end:import-lancedb]
# --8<-- [start:import-numpy]
from lancedb.query import BoostQuery, MatchQuery
from lancedb.query import BooleanQuery, BoostQuery, MatchQuery, Occur
import numpy as np
import pyarrow as pa
@@ -156,6 +156,9 @@ async def test_vector_search_async():
# --8<-- [end:search_result_async_as_list]
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_fuzzy_query():
uri = "data/fuzzy-example"
db = lancedb.connect(uri)
@@ -188,7 +191,19 @@ def test_fts_fuzzy_query():
"food", # 1 insertion
}
results = table.search(
MatchQuery("foo", "text", fuzziness=1, prefix_length=3)
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"foo",
"food",
}
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_boost_query():
uri = "data/boost-example"
db = lancedb.connect(uri)
@@ -234,6 +249,63 @@ def test_fts_boost_query():
)
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_boolean_query(tmp_path):
uri = tmp_path / "boolean-example"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts_boolean",
data=[
{"text": "The cat and dog are playing"},
{"text": "The cat is sleeping"},
{"text": "The dog is barking"},
{"text": "The dog chases the cat"},
],
mode="overwrite",
)
table.create_fts_index("text", use_tantivy=False, replace=True)
# SHOULD
results = table.search(
MatchQuery("cat", "text") | MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 4
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The cat is sleeping",
"The dog is barking",
"The dog chases the cat",
}
# MUST
results = table.search(
MatchQuery("cat", "text") & MatchQuery("dog", "text")
).to_pandas()
assert len(results) == 2
assert set(results["text"].to_list()) == {
"The cat and dog are playing",
"The dog chases the cat",
}
# MUST NOT
results = table.search(
BooleanQuery(
[
(Occur.MUST, MatchQuery("cat", "text")),
(Occur.MUST_NOT, MatchQuery("dog", "text")),
]
)
).to_pandas()
assert len(results) == 1
assert set(results["text"].to_list()) == {
"The cat is sleeping",
}
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
def test_fts_native():
# --8<-- [start:basic_fts]
uri = "data/sample-lancedb"
@@ -282,6 +354,9 @@ def test_fts_native():
# --8<-- [end:fts_incremental_index]
@pytest.mark.skipif(
os.name == "nt", reason="Need to fix https://github.com/lancedb/lance/issues/3905"
)
@pytest.mark.asyncio
async def test_fts_native_async():
# --8<-- [start:basic_fts_async]

View File

@@ -215,6 +215,19 @@ def test_search_fts(table, use_tantivy):
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
# Test boolean query
results = (
table.search(MatchQuery("puppy", "text") & MatchQuery("runs", "text"))
.select(["id", "text"])
.limit(5)
.to_list()
)
assert len(results) == 5
assert len(results[0]) == 3 # id, text, _score
for r in results:
assert "puppy" in r["text"]
assert "runs" in r["text"]
@pytest.mark.asyncio
async def test_fts_select_async(async_table):
@@ -287,7 +300,7 @@ def test_search_fts_phrase_query(table):
assert False
except Exception:
pass
table.create_fts_index("text", use_tantivy=False, replace=True)
table.create_fts_index("text", use_tantivy=False, with_position=True, replace=True)
results = table.search("puppy").limit(100).to_list()
phrase_results = table.search('"puppy runs"').limit(100).to_list()
assert len(results) > len(phrase_results)
@@ -312,7 +325,7 @@ async def test_search_fts_phrase_query_async(async_table):
assert False
except Exception:
pass
await async_table.create_index("text", config=FTS())
await async_table.create_index("text", config=FTS(with_position=True))
results = await async_table.query().nearest_to_text("puppy").limit(100).to_list()
phrase_results = (
await async_table.query().nearest_to_text('"puppy runs"').limit(100).to_list()
@@ -649,7 +662,7 @@ def test_fts_on_list(mem_db: DBConnection):
}
)
table = mem_db.create_table("test", data=data)
table.create_fts_index("text", use_tantivy=False)
table.create_fts_index("text", use_tantivy=False, with_position=True)
res = table.search("lance").limit(5).to_list()
assert len(res) == 3

View File

@@ -25,6 +25,8 @@ from lancedb.query import (
AsyncQueryBase,
AsyncVectorQuery,
LanceVectorQueryBuilder,
MatchQuery,
PhraseQuery,
Query,
FullTextSearchQuery,
)
@@ -437,6 +439,33 @@ def test_query_builder_with_filter(table):
assert all(np.array(rs[0]["vector"]) == [3, 4])
def test_invalid_nprobes_sync(table):
with pytest.raises(ValueError, match="minimum_nprobes must be greater than 0"):
LanceVectorQueryBuilder(table, [0, 0], "vector").minimum_nprobes(0).to_list()
with pytest.raises(
ValueError, match="maximum_nprobes must be greater than minimum_nprobes"
):
LanceVectorQueryBuilder(table, [0, 0], "vector").maximum_nprobes(5).to_list()
with pytest.raises(
ValueError, match="minimum_nprobes must be less or equal to maximum_nprobes"
):
LanceVectorQueryBuilder(table, [0, 0], "vector").minimum_nprobes(100).to_list()
@pytest.mark.asyncio
async def test_invalid_nprobes_async(table_async: AsyncTable):
with pytest.raises(ValueError, match="minimum_nprobes must be greater than 0"):
await table_async.vector_search([0, 0]).minimum_nprobes(0).to_list()
with pytest.raises(
ValueError, match="maximum_nprobes must be greater than minimum_nprobes"
):
await table_async.vector_search([0, 0]).maximum_nprobes(5).to_list()
with pytest.raises(
ValueError, match="minimum_nprobes must be less or equal to maximum_nprobes"
):
await table_async.vector_search([0, 0]).minimum_nprobes(100).to_list()
def test_query_builder_with_prefilter(table):
df = (
LanceVectorQueryBuilder(table, [0, 0], "vector")
@@ -583,6 +612,21 @@ async def test_query_async(table_async: AsyncTable):
table_async.query().nearest_to(pa.array([1, 2])).nprobes(10),
expected_num_rows=2,
)
await check_query(
table_async.query().nearest_to(pa.array([1, 2])).minimum_nprobes(10),
expected_num_rows=2,
)
await check_query(
table_async.query().nearest_to(pa.array([1, 2])).maximum_nprobes(30),
expected_num_rows=2,
)
await check_query(
table_async.query()
.nearest_to(pa.array([1, 2]))
.minimum_nprobes(10)
.maximum_nprobes(20),
expected_num_rows=2,
)
await check_query(
table_async.query().nearest_to(pa.array([1, 2])).bypass_vector_index(),
expected_num_rows=2,
@@ -731,6 +775,82 @@ async def test_explain_plan_async(table_async: AsyncTable):
assert "KNN" in plan
@pytest.mark.asyncio
async def test_explain_plan_fts(table_async: AsyncTable):
"""Test explain plan for FTS queries"""
# Create FTS index
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
# Test pure FTS query
query = await table_async.search("dog", query_type="fts", fts_columns="text")
plan = await query.explain_plan()
# Should show FTS details (issue #2465 is now fixed)
assert "MatchQuery: query=dog" in plan
assert "GlobalLimitExec" in plan # Default limit
# Test FTS query with limit
query_with_limit = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_limit = await query_with_limit.limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test FTS query with offset and limit
query_with_offset = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_with_offset = await query_with_offset.offset(1).limit(1).explain_plan()
assert "MatchQuery: query=dog" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_vector_with_limit_offset(table_async: AsyncTable):
"""Test explain plan for vector queries with limit and offset"""
# Test vector query with limit
plan_with_limit = await (
table_async.query().nearest_to(pa.array([1, 2])).limit(1).explain_plan()
)
assert "KNN" in plan_with_limit
assert "GlobalLimitExec: skip=0, fetch=1" in plan_with_limit
# Test vector query with offset and limit
plan_with_offset = await (
table_async.query()
.nearest_to(pa.array([1, 2]))
.offset(1)
.limit(1)
.explain_plan()
)
assert "KNN" in plan_with_offset
assert "GlobalLimitExec: skip=1, fetch=1" in plan_with_offset
@pytest.mark.asyncio
async def test_explain_plan_with_filters(table_async: AsyncTable):
"""Test explain plan for queries with filters"""
# Test vector query with filter
plan_with_filter = await (
table_async.query().nearest_to(pa.array([1, 2])).where("id = 1").explain_plan()
)
assert "KNN" in plan_with_filter
assert "FilterExec" in plan_with_filter
# Test FTS query with filter
from lancedb.index import FTS
await table_async.create_index("text", config=FTS())
query_fts_filter = await table_async.search(
"dog", query_type="fts", fts_columns="text"
)
plan_fts_filter = await query_fts_filter.where("id = 1").explain_plan()
assert "MatchQuery: query=dog" in plan_fts_filter
assert "FilterExec: id@" in plan_fts_filter # Should show filter details
@pytest.mark.asyncio
async def test_query_camelcase_async(tmp_path):
db = await lancedb.connect_async(tmp_path)
@@ -909,7 +1029,39 @@ def test_query_serialization_sync(table: lancedb.table.Table):
q = table.search([5.0, 6.0]).nprobes(10).refine_factor(5).to_query_object()
check_set_props(
q, vector_column="vector", vector=[5.0, 6.0], nprobes=10, refine_factor=5
q,
vector_column="vector",
vector=[5.0, 6.0],
minimum_nprobes=10,
maximum_nprobes=10,
refine_factor=5,
)
q = table.search([5.0, 6.0]).minimum_nprobes(10).to_query_object()
check_set_props(
q,
vector_column="vector",
vector=[5.0, 6.0],
minimum_nprobes=10,
maximum_nprobes=None,
)
q = table.search([5.0, 6.0]).nprobes(50).to_query_object()
check_set_props(
q,
vector_column="vector",
vector=[5.0, 6.0],
minimum_nprobes=50,
maximum_nprobes=50,
)
q = table.search([5.0, 6.0]).maximum_nprobes(10).to_query_object()
check_set_props(
q,
vector_column="vector",
vector=[5.0, 6.0],
maximum_nprobes=10,
minimum_nprobes=None,
)
q = table.search([5.0, 6.0]).distance_range(0.0, 1.0).to_query_object()
@@ -961,7 +1113,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
limit=10,
vector=sample_vector,
postfilter=False,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
)
@@ -971,7 +1124,20 @@ async def test_query_serialization_async(table_async: AsyncTable):
q,
vector=sample_vector,
postfilter=False,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
limit=10,
)
q = (await table_async.search([5.0, 6.0])).nprobes(50).to_query_object()
check_set_props(
q,
vector=sample_vector,
postfilter=False,
minimum_nprobes=50,
maximum_nprobes=50,
with_row_id=False,
bypass_vector_index=False,
limit=10,
@@ -990,7 +1156,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
filter="id = 1",
postfilter=True,
vector=sample_vector,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
)
@@ -1004,7 +1171,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
check_set_props(
q,
vector=sample_vector,
nprobes=10,
minimum_nprobes=10,
maximum_nprobes=10,
refine_factor=5,
postfilter=False,
with_row_id=False,
@@ -1012,6 +1180,18 @@ async def test_query_serialization_async(table_async: AsyncTable):
limit=10,
)
q = (await table_async.search([5.0, 6.0])).minimum_nprobes(5).to_query_object()
check_set_props(
q,
vector=sample_vector,
minimum_nprobes=5,
maximum_nprobes=20,
postfilter=False,
with_row_id=False,
bypass_vector_index=False,
limit=10,
)
q = (
(await table_async.search([5.0, 6.0]))
.distance_range(0.0, 1.0)
@@ -1023,7 +1203,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
lower_bound=0.0,
upper_bound=1.0,
postfilter=False,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
limit=10,
@@ -1035,7 +1216,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
distance_type="cosine",
vector=sample_vector,
postfilter=False,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
limit=10,
@@ -1047,7 +1229,8 @@ async def test_query_serialization_async(table_async: AsyncTable):
ef=7,
vector=sample_vector,
postfilter=False,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
bypass_vector_index=False,
limit=10,
@@ -1059,24 +1242,34 @@ async def test_query_serialization_async(table_async: AsyncTable):
bypass_vector_index=True,
vector=sample_vector,
postfilter=False,
nprobes=20,
minimum_nprobes=20,
maximum_nprobes=20,
with_row_id=False,
limit=10,
)
# FTS queries
q = (await table_async.search("foo")).limit(10).to_query_object()
match_query = MatchQuery("foo", "text")
q = (await table_async.search(match_query)).limit(10).to_query_object()
check_set_props(
q,
limit=10,
full_text_query=FullTextSearchQuery(columns=[], query="foo"),
full_text_query=FullTextSearchQuery(columns=None, query=match_query),
with_row_id=False,
)
q = (await table_async.search("foo", query_type="fts")).to_query_object()
q = (await table_async.search(match_query)).to_query_object()
check_set_props(
q,
full_text_query=FullTextSearchQuery(columns=[], query="foo"),
full_text_query=FullTextSearchQuery(columns=None, query=match_query),
with_row_id=False,
)
phrase_query = PhraseQuery("foo", "text", slop=1)
q = (await table_async.search(phrase_query)).to_query_object()
check_set_props(
q,
full_text_query=FullTextSearchQuery(columns=None, query=phrase_query),
with_row_id=False,
)

View File

@@ -149,6 +149,24 @@ async def test_async_checkout():
assert await table.count_rows() == 300
def test_table_len_sync():
def handler(request):
if request.path == "/v1/table/test/create/?mode=create":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(b"{}")
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(json.dumps(1).encode())
with mock_lancedb_connection(handler) as db:
table = db.create_table("test", [{"id": 1}])
assert len(table) == 1
@pytest.mark.asyncio
async def test_http_error():
request_id_holder = {"request_id": None}
@@ -192,6 +210,25 @@ async def test_retry_error():
assert cause.status_code == 429
def test_table_unimplemented_functions():
def handler(request):
if request.path == "/v1/table/test/create/?mode=create":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
request.wfile.write(b"{}")
else:
request.send_response(404)
request.end_headers()
with mock_lancedb_connection(handler) as db:
table = db.create_table("test", [{"id": 1}])
with pytest.raises(NotImplementedError):
table.to_arrow()
with pytest.raises(NotImplementedError):
table.to_pandas()
def test_table_add_in_threadpool():
def handler(request):
if request.path == "/v1/table/test/insert/":
@@ -478,6 +515,8 @@ def test_query_sync_minimal():
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 20,
"minimum_nprobes": 20,
"maximum_nprobes": 20,
"version": None,
}
@@ -518,6 +557,8 @@ def test_query_sync_maximal():
"refine_factor": 10,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"minimum_nprobes": 5,
"maximum_nprobes": 5,
"lower_bound": None,
"upper_bound": None,
"ef": None,
@@ -546,6 +587,66 @@ def test_query_sync_maximal():
)
def test_query_sync_nprobes():
def handler(body):
assert body == {
"distance_type": "l2",
"k": 10,
"prefilter": True,
"fast_search": True,
"vector_column": "vector2",
"refine_factor": None,
"lower_bound": None,
"upper_bound": None,
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"minimum_nprobes": 5,
"maximum_nprobes": 15,
"version": None,
}
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
with query_test_table(handler) as table:
(
table.search([1, 2, 3], vector_column_name="vector2", fast_search=True)
.minimum_nprobes(5)
.maximum_nprobes(15)
.to_list()
)
def test_query_sync_no_max_nprobes():
def handler(body):
assert body == {
"distance_type": "l2",
"k": 10,
"prefilter": True,
"fast_search": True,
"vector_column": "vector2",
"refine_factor": None,
"lower_bound": None,
"upper_bound": None,
"ef": None,
"vector": [1.0, 2.0, 3.0],
"nprobes": 5,
"minimum_nprobes": 5,
"maximum_nprobes": 0,
"version": None,
}
return pa.table({"id": [1, 2, 3], "name": ["a", "b", "c"]})
with query_test_table(handler) as table:
(
table.search([1, 2, 3], vector_column_name="vector2", fast_search=True)
.minimum_nprobes(5)
.maximum_nprobes(0)
.to_list()
)
@pytest.mark.parametrize("server_version", [Version("0.1.0"), Version("0.2.0")])
def test_query_sync_batch_queries(server_version):
def handler(body):
@@ -648,6 +749,8 @@ def test_query_sync_hybrid():
"refine_factor": None,
"vector": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
"nprobes": 20,
"minimum_nprobes": 20,
"maximum_nprobes": 20,
"lower_bound": None,
"upper_bound": None,
"ef": None,

View File

@@ -245,7 +245,7 @@ def test_s3_dynamodb_sync(s3_bucket: str, commit_table: str, monkeypatch):
NotImplementedError,
match="Full-text search is only supported on the local filesystem",
):
table.create_fts_index("x")
table.create_fts_index("x", use_tantivy=True)
# make sure list tables still works
assert db.table_names() == ["test_ddb_sync"]

View File

@@ -106,15 +106,22 @@ async def test_update_async(mem_db_async: AsyncConnection):
table = await mem_db_async.create_table("some_table", data=[{"id": 0}])
assert await table.count_rows("id == 0") == 1
assert await table.count_rows("id == 7") == 0
await table.update({"id": 7})
update_res = await table.update({"id": 7})
assert update_res.rows_updated == 1
assert update_res.version == 2
assert await table.count_rows("id == 7") == 1
assert await table.count_rows("id == 0") == 0
await table.add([{"id": 2}])
await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
add_res = await table.add([{"id": 2}])
assert add_res.version == 3
update_res = await table.update(where="id % 2 == 0", updates_sql={"id": "5"})
assert update_res.rows_updated == 1
assert update_res.version == 4
assert await table.count_rows("id == 7") == 1
assert await table.count_rows("id == 2") == 0
assert await table.count_rows("id == 5") == 1
await table.update({"id": 10}, where="id == 5")
update_res = await table.update({"id": 10}, where="id == 5")
assert update_res.rows_updated == 1
assert update_res.version == 5
assert await table.count_rows("id == 10") == 1
@@ -437,7 +444,8 @@ def test_add_pydantic_model(mem_db: DBConnection):
content="foo", meta=Metadata(source="bar", timestamp=datetime.now())
),
)
tbl.add([expected])
add_res = tbl.add([expected])
assert add_res.version == 2
result = tbl.search([0.0, 0.0]).limit(1).to_pydantic(LanceSchema)[0]
assert result == expected
@@ -459,11 +467,12 @@ async def test_add_async(mem_db_async: AsyncConnection):
],
)
assert await table.count_rows() == 2
await table.add(
add_res = await table.add(
data=[
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
],
)
assert add_res.version == 2
assert await table.count_rows() == 3
@@ -760,6 +769,29 @@ def test_restore(mem_db: DBConnection):
table.restore(0)
def test_restore_with_tags(mem_db: DBConnection):
table = mem_db.create_table(
"my_table",
data=[{"vector": [1.1, 0.9], "type": "vector"}],
)
tag = "tag1"
table.tags.create(tag, 1)
table.add([{"vector": [0.5, 0.2], "type": "vector"}])
table.restore(tag)
assert len(table.list_versions()) == 3
assert len(table) == 1
expected = table.to_arrow()
table.add([{"vector": [0.3, 0.3], "type": "vector"}])
table.checkout("tag1")
table.restore()
assert len(table.list_versions()) == 5
assert table.to_arrow() == expected
with pytest.raises(ValueError):
table.restore("tag_unknown")
def test_merge(tmp_db: DBConnection, tmp_path):
pytest.importorskip("lance")
import lance
@@ -795,7 +827,8 @@ def test_delete(mem_db: DBConnection):
)
assert len(table) == 2
assert len(table.list_versions()) == 1
table.delete("id=0")
delete_res = table.delete("id=0")
assert delete_res.version == 2
assert len(table.list_versions()) == 2
assert table.version == 2
assert len(table) == 1
@@ -809,7 +842,9 @@ def test_update(mem_db: DBConnection):
)
assert len(table) == 2
assert len(table.list_versions()) == 1
table.update(where="id=0", values={"vector": [1.1, 1.1]})
update_res = table.update(where="id=0", values={"vector": [1.1, 1.1]})
assert update_res.version == 2
assert update_res.rows_updated == 1
assert len(table.list_versions()) == 2
assert table.version == 2
assert len(table) == 2
@@ -898,9 +933,16 @@ def test_merge_insert(mem_db: DBConnection):
new_data = pa.table({"a": [2, 3, 4], "b": ["x", "y", "z"]})
# upsert
table.merge_insert(
"a"
).when_matched_update_all().when_not_matched_insert_all().execute(new_data)
merge_insert_res = (
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.execute(new_data, timeout=timedelta(seconds=10))
)
assert merge_insert_res.version == 2
assert merge_insert_res.num_inserted_rows == 1
assert merge_insert_res.num_updated_rows == 2
assert merge_insert_res.num_deleted_rows == 0
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "x", "y", "z"]})
assert table.to_arrow().sort_by("a") == expected
@@ -908,17 +950,28 @@ def test_merge_insert(mem_db: DBConnection):
table.restore(version)
# conditional update
table.merge_insert("a").when_matched_update_all(where="target.b = 'b'").execute(
new_data
merge_insert_res = (
table.merge_insert("a")
.when_matched_update_all(where="target.b = 'b'")
.execute(new_data)
)
assert merge_insert_res.version == 4
assert merge_insert_res.num_inserted_rows == 0
assert merge_insert_res.num_updated_rows == 1
assert merge_insert_res.num_deleted_rows == 0
expected = pa.table({"a": [1, 2, 3], "b": ["a", "x", "c"]})
assert table.to_arrow().sort_by("a") == expected
table.restore(version)
# insert-if-not-exists
table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
merge_insert_res = (
table.merge_insert("a").when_not_matched_insert_all().execute(new_data)
)
assert merge_insert_res.version == 6
assert merge_insert_res.num_inserted_rows == 1
assert merge_insert_res.num_updated_rows == 0
assert merge_insert_res.num_deleted_rows == 0
expected = pa.table({"a": [1, 2, 3, 4], "b": ["a", "b", "c", "z"]})
assert table.to_arrow().sort_by("a") == expected
@@ -927,13 +980,17 @@ def test_merge_insert(mem_db: DBConnection):
new_data = pa.table({"a": [2, 4], "b": ["x", "z"]})
# replace-range
(
merge_insert_res = (
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.when_not_matched_by_source_delete("a > 2")
.execute(new_data)
)
assert merge_insert_res.version == 8
assert merge_insert_res.num_inserted_rows == 1
assert merge_insert_res.num_updated_rows == 1
assert merge_insert_res.num_deleted_rows == 1
expected = pa.table({"a": [1, 2, 4], "b": ["a", "x", "z"]})
assert table.to_arrow().sort_by("a") == expected
@@ -941,15 +998,27 @@ def test_merge_insert(mem_db: DBConnection):
table.restore(version)
# replace-range no condition
table.merge_insert(
"a"
).when_matched_update_all().when_not_matched_insert_all().when_not_matched_by_source_delete().execute(
new_data
merge_insert_res = (
table.merge_insert("a")
.when_matched_update_all()
.when_not_matched_insert_all()
.when_not_matched_by_source_delete()
.execute(new_data)
)
assert merge_insert_res.version == 10
assert merge_insert_res.num_inserted_rows == 1
assert merge_insert_res.num_updated_rows == 1
assert merge_insert_res.num_deleted_rows == 2
expected = pa.table({"a": [2, 4], "b": ["x", "z"]})
assert table.to_arrow().sort_by("a") == expected
# timeout
with pytest.raises(Exception, match="merge insert timed out"):
table.merge_insert("a").when_matched_update_all().execute(
new_data, timeout=timedelta(0)
)
# We vary the data format because there are slight differences in how
# subschemas are handled in different formats
@@ -1478,11 +1547,13 @@ def test_restore_consistency(tmp_path):
def test_add_columns(mem_db: DBConnection):
data = pa.table({"id": [0, 1]})
table = LanceTable.create(mem_db, "my_table", data=data)
table.add_columns({"new_col": "id + 2"})
add_columns_res = table.add_columns({"new_col": "id + 2"})
assert add_columns_res.version == 2
assert table.to_arrow().column_names == ["id", "new_col"]
assert table.to_arrow()["new_col"].to_pylist() == [2, 3]
table.add_columns({"null_int": "cast(null as bigint)"})
add_columns_res = table.add_columns({"null_int": "cast(null as bigint)"})
assert add_columns_res.version == 3
assert table.schema.field("null_int").type == pa.int64()
@@ -1490,7 +1561,8 @@ def test_add_columns(mem_db: DBConnection):
async def test_add_columns_async(mem_db_async: AsyncConnection):
data = pa.table({"id": [0, 1]})
table = await mem_db_async.create_table("my_table", data=data)
await table.add_columns({"new_col": "id + 2"})
add_columns_res = await table.add_columns({"new_col": "id + 2"})
assert add_columns_res.version == 2
data = await table.to_arrow()
assert data.column_names == ["id", "new_col"]
assert data["new_col"].to_pylist() == [2, 3]
@@ -1500,9 +1572,10 @@ async def test_add_columns_async(mem_db_async: AsyncConnection):
async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
data = pa.table({"id": [0, 1]})
table = await mem_db_async.create_table("my_table", data=data)
await table.add_columns(
add_columns_res = await table.add_columns(
[pa.field("x", pa.int64()), pa.field("vector", pa.list_(pa.float32(), 8))]
)
assert add_columns_res.version == 2
assert await table.schema() == pa.schema(
[
@@ -1513,11 +1586,12 @@ async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
)
table = await mem_db_async.create_table("table2", data=data)
await table.add_columns(
add_columns_res = await table.add_columns(
pa.schema(
[pa.field("y", pa.int64()), pa.field("emb", pa.list_(pa.float32(), 8))]
)
)
assert add_columns_res.version == 2
assert await table.schema() == pa.schema(
[
pa.field("id", pa.int64()),
@@ -1530,7 +1604,8 @@ async def test_add_columns_with_schema(mem_db_async: AsyncConnection):
def test_alter_columns(mem_db: DBConnection):
data = pa.table({"id": [0, 1]})
table = mem_db.create_table("my_table", data=data)
table.alter_columns({"path": "id", "rename": "new_id"})
alter_columns_res = table.alter_columns({"path": "id", "rename": "new_id"})
assert alter_columns_res.version == 2
assert table.to_arrow().column_names == ["new_id"]
@@ -1538,9 +1613,13 @@ def test_alter_columns(mem_db: DBConnection):
async def test_alter_columns_async(mem_db_async: AsyncConnection):
data = pa.table({"id": [0, 1]})
table = await mem_db_async.create_table("my_table", data=data)
await table.alter_columns({"path": "id", "rename": "new_id"})
alter_columns_res = await table.alter_columns({"path": "id", "rename": "new_id"})
assert alter_columns_res.version == 2
assert (await table.to_arrow()).column_names == ["new_id"]
await table.alter_columns(dict(path="new_id", data_type=pa.int16(), nullable=True))
alter_columns_res = await table.alter_columns(
dict(path="new_id", data_type=pa.int16(), nullable=True)
)
assert alter_columns_res.version == 3
data = await table.to_arrow()
assert data.column(0).type == pa.int16()
assert data.schema.field(0).nullable
@@ -1549,7 +1628,8 @@ async def test_alter_columns_async(mem_db_async: AsyncConnection):
def test_drop_columns(mem_db: DBConnection):
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
table = mem_db.create_table("my_table", data=data)
table.drop_columns(["category"])
drop_columns_res = table.drop_columns(["category"])
assert drop_columns_res.version == 2
assert table.to_arrow().column_names == ["id"]
@@ -1557,7 +1637,8 @@ def test_drop_columns(mem_db: DBConnection):
async def test_drop_columns_async(mem_db_async: AsyncConnection):
data = pa.table({"id": [0, 1], "category": ["a", "b"]})
table = await mem_db_async.create_table("my_table", data=data)
await table.drop_columns(["category"])
drop_columns_res = await table.drop_columns(["category"])
assert drop_columns_res.version == 2
assert (await table.to_arrow()).column_names == ["id"]

View File

@@ -3,7 +3,7 @@
use lancedb::index::vector::IvfFlatIndexBuilder;
use lancedb::index::{
scalar::{BTreeIndexBuilder, FtsIndexBuilder, TokenizerConfig},
scalar::{BTreeIndexBuilder, FtsIndexBuilder},
vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder, IvfPqIndexBuilder},
Index as LanceDbIndex,
};
@@ -38,19 +38,17 @@ pub fn extract_index_params(source: &Option<Bound<'_, PyAny>>) -> PyResult<Lance
"LabelList" => Ok(LanceDbIndex::LabelList(Default::default())),
"FTS" => {
let params = source.extract::<FtsParams>()?;
let inner_opts = TokenizerConfig::default()
let inner_opts = FtsIndexBuilder::default()
.base_tokenizer(params.base_tokenizer)
.language(&params.language)
.map_err(|_| PyValueError::new_err(format!("LanceDB does not support the requested language: '{}'", params.language)))?
.with_position(params.with_position)
.lower_case(params.lower_case)
.max_token_length(params.max_token_length)
.remove_stop_words(params.remove_stop_words)
.stem(params.stem)
.ascii_folding(params.ascii_folding);
let mut opts = FtsIndexBuilder::default()
.with_position(params.with_position);
opts.tokenizer_configs = inner_opts;
Ok(LanceDbIndex::FTS(opts))
Ok(LanceDbIndex::FTS(inner_opts))
},
"IvfFlat" => {
let params = source.extract::<IvfFlatParams>()?;

View File

@@ -11,7 +11,10 @@ use pyo3::{
wrap_pyfunction, Bound, PyResult, Python,
};
use query::{FTSQuery, HybridQuery, Query, VectorQuery};
use table::Table;
use table::{
AddColumnsResult, AddResult, AlterColumnsResult, DeleteResult, DropColumnsResult, MergeResult,
Table, UpdateResult,
};
pub mod arrow;
pub mod connection;
@@ -35,6 +38,13 @@ pub fn _lancedb(_py: Python, m: &Bound<'_, PyModule>) -> PyResult<()> {
m.add_class::<HybridQuery>()?;
m.add_class::<VectorQuery>()?;
m.add_class::<RecordBatchStream>()?;
m.add_class::<AddColumnsResult>()?;
m.add_class::<AlterColumnsResult>()?;
m.add_class::<AddResult>()?;
m.add_class::<MergeResult>()?;
m.add_class::<DeleteResult>()?;
m.add_class::<DropColumnsResult>()?;
m.add_class::<UpdateResult>()?;
m.add_function(wrap_pyfunction!(connect, m)?)?;
m.add_function(wrap_pyfunction!(util::validate_table_name, m)?)?;
m.add("__version__", env!("CARGO_PKG_VERSION"))?;

View File

@@ -9,15 +9,16 @@ use arrow::array::Array;
use arrow::array::ArrayData;
use arrow::pyarrow::FromPyArrow;
use arrow::pyarrow::IntoPyArrow;
use lancedb::index::scalar::{FtsQuery, FullTextSearchQuery, MatchQuery, PhraseQuery};
use lancedb::index::scalar::{
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
};
use lancedb::query::QueryExecutionOptions;
use lancedb::query::QueryFilter;
use lancedb::query::{
ExecutableQuery, Query as LanceDbQuery, QueryBase, Select, VectorQuery as LanceDbVectorQuery,
};
use lancedb::table::AnyQuery;
use pyo3::exceptions::PyRuntimeError;
use pyo3::exceptions::{PyNotImplementedError, PyValueError};
use pyo3::prelude::{PyAnyMethods, PyDictMethods};
use pyo3::pymethods;
use pyo3::types::PyList;
@@ -27,30 +28,172 @@ use pyo3::IntoPyObject;
use pyo3::PyAny;
use pyo3::PyRef;
use pyo3::PyResult;
use pyo3::{exceptions::PyRuntimeError, FromPyObject};
use pyo3::{
exceptions::{PyNotImplementedError, PyValueError},
intern,
};
use pyo3::{pyclass, PyErr};
use pyo3_async_runtimes::tokio::future_into_py;
use crate::arrow::RecordBatchStream;
use crate::error::PythonErrorExt;
use crate::util::{parse_distance_type, parse_fts_query};
use crate::util::parse_distance_type;
use crate::{arrow::RecordBatchStream, util::PyLanceDB};
use crate::{error::PythonErrorExt, index::class_name};
// Python representation of full text search parameters
#[derive(Clone)]
#[pyclass(get_all)]
pub struct PyFullTextSearchQuery {
pub columns: Vec<String>,
pub query: String,
pub limit: Option<i64>,
pub wand_factor: Option<f32>,
impl FromPyObject<'_> for PyLanceDB<FtsQuery> {
fn extract_bound(ob: &Bound<'_, PyAny>) -> PyResult<Self> {
match class_name(ob)?.as_str() {
"MatchQuery" => {
let query = ob.getattr("query")?.extract()?;
let column = ob.getattr("column")?.extract()?;
let boost = ob.getattr("boost")?.extract()?;
let fuzziness = ob.getattr("fuzziness")?.extract()?;
let max_expansions = ob.getattr("max_expansions")?.extract()?;
let operator = ob.getattr("operator")?.extract::<String>()?;
let prefix_length = ob.getattr("prefix_length")?.extract()?;
Ok(Self(
MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions)
.with_operator(Operator::try_from(operator.as_str()).map_err(|e| {
PyValueError::new_err(format!("Invalid operator: {}", e))
})?)
.with_prefix_length(prefix_length)
.into(),
))
}
"PhraseQuery" => {
let query = ob.getattr("query")?.extract()?;
let column = ob.getattr("column")?.extract()?;
let slop = ob.getattr("slop")?.extract()?;
Ok(Self(
PhraseQuery::new(query)
.with_column(Some(column))
.with_slop(slop)
.into(),
))
}
"BoostQuery" => {
let positive: Self = ob.getattr("positive")?.extract()?;
let negative: Self = ob.getattr("negative")?.extract()?;
let negative_boost = ob.getattr("negative_boost")?.extract()?;
Ok(Self(
BoostQuery::new(positive.0, negative.0, negative_boost).into(),
))
}
"MultiMatchQuery" => {
let query = ob.getattr("query")?.extract()?;
let columns = ob.getattr("columns")?.extract()?;
let boosts: Option<Vec<f32>> = ob.getattr("boosts")?.extract()?;
let operator: String = ob.getattr("operator")?.extract()?;
let q = MultiMatchQuery::try_new(query, columns)
.map_err(|e| PyValueError::new_err(format!("Invalid query: {}", e)))?;
let q = if let Some(boosts) = boosts {
q.try_with_boosts(boosts)
.map_err(|e| PyValueError::new_err(format!("Invalid boosts: {}", e)))?
} else {
q
};
let op = Operator::try_from(operator.as_str())
.map_err(|e| PyValueError::new_err(format!("Invalid operator: {}", e)))?;
Ok(Self(q.with_operator(op).into()))
}
"BooleanQuery" => {
let queries: Vec<(String, Self)> = ob.getattr("queries")?.extract()?;
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {
let occur = Occur::try_from(occur.as_str())
.map_err(|e| PyValueError::new_err(e.to_string()))?;
sub_queries.push((occur, q.0));
}
Ok(Self(BooleanQuery::new(sub_queries).into()))
}
name => Err(PyValueError::new_err(format!(
"Unsupported FTS query type: {}",
name
))),
}
}
}
impl From<FullTextSearchQuery> for PyFullTextSearchQuery {
fn from(query: FullTextSearchQuery) -> Self {
Self {
columns: query.columns().into_iter().collect(),
query: query.query.query().to_owned(),
limit: query.limit,
wand_factor: query.wand_factor,
impl<'py> IntoPyObject<'py> for PyLanceDB<FtsQuery> {
type Target = PyAny;
type Output = Bound<'py, Self::Target>;
type Error = PyErr;
fn into_pyobject(self, py: pyo3::Python<'py>) -> PyResult<Self::Output> {
let namespace = py
.import(intern!(py, "lancedb"))
.and_then(|m| m.getattr(intern!(py, "query")))
.expect("Failed to import namespace");
match self.0 {
FtsQuery::Match(query) => {
let kwargs = PyDict::new(py);
kwargs.set_item("boost", query.boost)?;
kwargs.set_item("fuzziness", query.fuzziness)?;
kwargs.set_item("max_expansions", query.max_expansions)?;
kwargs.set_item::<_, &str>("operator", query.operator.into())?;
kwargs.set_item("prefix_length", query.prefix_length)?;
namespace
.getattr(intern!(py, "MatchQuery"))?
.call((query.terms, query.column.unwrap()), Some(&kwargs))
}
FtsQuery::Phrase(query) => {
let kwargs = PyDict::new(py);
kwargs.set_item("slop", query.slop)?;
namespace
.getattr(intern!(py, "PhraseQuery"))?
.call((query.terms, query.column.unwrap()), Some(&kwargs))
}
FtsQuery::Boost(query) => {
let positive = Self(query.positive.as_ref().clone()).into_pyobject(py)?;
let negative = Self(query.negative.as_ref().clone()).into_pyobject(py)?;
let kwargs = PyDict::new(py);
kwargs.set_item("negative_boost", query.negative_boost)?;
namespace
.getattr(intern!(py, "BoostQuery"))?
.call((positive, negative), Some(&kwargs))
}
FtsQuery::MultiMatch(query) => {
let first = &query.match_queries[0];
let (columns, boosts): (Vec<_>, Vec<_>) = query
.match_queries
.iter()
.map(|q| (q.column.as_ref().unwrap().clone(), q.boost))
.unzip();
let kwargs = PyDict::new(py);
kwargs.set_item("boosts", boosts)?;
kwargs.set_item::<_, &str>("operator", first.operator.into())?;
namespace
.getattr(intern!(py, "MultiMatchQuery"))?
.call((first.terms.clone(), columns), Some(&kwargs))
}
FtsQuery::Boolean(query) => {
let mut queries: Vec<(&str, Bound<'py, PyAny>)> = Vec::with_capacity(
query.should.len() + query.must.len() + query.must_not.len(),
);
for q in query.should {
queries.push((Occur::Should.into(), Self(q).into_pyobject(py)?));
}
for q in query.must {
queries.push((Occur::Must.into(), Self(q).into_pyobject(py)?));
}
for q in query.must_not {
queries.push((Occur::MustNot.into(), Self(q).into_pyobject(py)?));
}
namespace
.getattr(intern!(py, "BooleanQuery"))?
.call1((queries,))
}
}
}
}
@@ -80,13 +223,16 @@ pub struct PyQueryRequest {
pub limit: Option<usize>,
pub offset: Option<usize>,
pub filter: Option<PyQueryFilter>,
pub full_text_search: Option<PyFullTextSearchQuery>,
pub full_text_search: Option<PyLanceDB<FtsQuery>>,
pub select: PySelect,
pub fast_search: Option<bool>,
pub with_row_id: Option<bool>,
pub column: Option<String>,
pub query_vector: Option<PyQueryVectors>,
pub nprobes: Option<usize>,
pub minimum_nprobes: Option<usize>,
// None means user did not set it and default shoud be used (currenty 20)
// Some(0) means user set it to None and there is no limit
pub maximum_nprobes: Option<usize>,
pub lower_bound: Option<f32>,
pub upper_bound: Option<f32>,
pub ef: Option<usize>,
@@ -106,13 +252,14 @@ impl From<AnyQuery> for PyQueryRequest {
filter: query_request.filter.map(PyQueryFilter),
full_text_search: query_request
.full_text_search
.map(PyFullTextSearchQuery::from),
.map(|fts| PyLanceDB(fts.query)),
select: PySelect(query_request.select),
fast_search: Some(query_request.fast_search),
with_row_id: Some(query_request.with_row_id),
column: None,
query_vector: None,
nprobes: None,
minimum_nprobes: None,
maximum_nprobes: None,
lower_bound: None,
upper_bound: None,
ef: None,
@@ -132,7 +279,11 @@ impl From<AnyQuery> for PyQueryRequest {
with_row_id: Some(vector_query.base.with_row_id),
column: vector_query.column,
query_vector: Some(PyQueryVectors(vector_query.query_vector)),
nprobes: Some(vector_query.nprobes),
minimum_nprobes: Some(vector_query.minimum_nprobes),
maximum_nprobes: match vector_query.maximum_nprobes {
None => Some(0),
Some(value) => Some(value),
},
lower_bound: vector_query.lower_bound,
upper_bound: vector_query.upper_bound,
ef: vector_query.ef,
@@ -269,8 +420,8 @@ impl Query {
}
};
let mut query = FullTextSearchQuery::new_query(query);
if let Some(cols) = columns {
if !cols.is_empty() {
match columns {
Some(cols) if !cols.is_empty() => {
query = query.with_columns(&cols).map_err(|e| {
PyValueError::new_err(format!(
"Failed to set full text search columns: {}",
@@ -278,15 +429,12 @@ impl Query {
))
})?;
}
_ => {}
}
query
} else if let Ok(query) = fts_query.downcast::<PyDict>() {
let query = parse_fts_query(query)?;
FullTextSearchQuery::new_query(query)
} else {
return Err(PyValueError::new_err(
"query must be a string or a Query object",
));
let query = fts_query.extract::<PyLanceDB<FtsQuery>>()?;
FullTextSearchQuery::new_query(query.0)
};
Ok(FTSQuery {
@@ -414,7 +562,10 @@ impl FTSQuery {
}
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
future_into_py(self_.py(), async move {
inner
.explain_plan(verbose)
@@ -424,7 +575,10 @@ impl FTSQuery {
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
let inner = self_
.inner
.clone()
.full_text_search(self_.fts_query.clone());
future_into_py(self_.py(), async move {
inner
.analyze_plan()
@@ -509,6 +663,29 @@ impl VectorQuery {
self.inner = self.inner.clone().nprobes(nprobe as usize);
}
pub fn minimum_nprobes(&mut self, minimum_nprobes: u32) -> PyResult<()> {
self.inner = self
.inner
.clone()
.minimum_nprobes(minimum_nprobes as usize)
.infer_error()?;
Ok(())
}
pub fn maximum_nprobes(&mut self, maximum_nprobes: u32) -> PyResult<()> {
let maximum_nprobes = if maximum_nprobes == 0 {
None
} else {
Some(maximum_nprobes as usize)
};
self.inner = self
.inner
.clone()
.maximum_nprobes(maximum_nprobes)
.infer_error()?;
Ok(())
}
#[pyo3(signature = (lower_bound=None, upper_bound=None))]
pub fn distance_range(&mut self, lower_bound: Option<f32>, upper_bound: Option<f32>) {
self.inner = self.inner.clone().distance_range(lower_bound, upper_bound);

View File

@@ -17,10 +17,10 @@ use lancedb::table::{
Table as LanceDbTable,
};
use pyo3::{
exceptions::{PyIOError, PyKeyError, PyRuntimeError, PyValueError},
exceptions::{PyKeyError, PyRuntimeError, PyValueError},
pyclass, pymethods,
types::{IntoPyDict, PyAnyMethods, PyDict, PyDictMethods, PyInt, PyString},
Bound, FromPyObject, PyAny, PyObject, PyRef, PyResult, Python,
types::{IntoPyDict, PyAnyMethods, PyDict, PyDictMethods},
Bound, FromPyObject, PyAny, PyRef, PyResult, Python,
};
use pyo3_async_runtimes::tokio::future_into_py;
@@ -58,6 +58,170 @@ pub struct OptimizeStats {
pub prune: RemovalStats,
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct UpdateResult {
pub rows_updated: u64,
pub version: u64,
}
#[pymethods]
impl UpdateResult {
pub fn __repr__(&self) -> String {
format!(
"UpdateResult(rows_updated={}, version={})",
self.rows_updated, self.version
)
}
}
impl From<lancedb::table::UpdateResult> for UpdateResult {
fn from(result: lancedb::table::UpdateResult) -> Self {
Self {
rows_updated: result.rows_updated,
version: result.version,
}
}
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct AddResult {
pub version: u64,
}
#[pymethods]
impl AddResult {
pub fn __repr__(&self) -> String {
format!("AddResult(version={})", self.version)
}
}
impl From<lancedb::table::AddResult> for AddResult {
fn from(result: lancedb::table::AddResult) -> Self {
Self {
version: result.version,
}
}
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct DeleteResult {
pub version: u64,
}
#[pymethods]
impl DeleteResult {
pub fn __repr__(&self) -> String {
format!("DeleteResult(version={})", self.version)
}
}
impl From<lancedb::table::DeleteResult> for DeleteResult {
fn from(result: lancedb::table::DeleteResult) -> Self {
Self {
version: result.version,
}
}
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct MergeResult {
pub version: u64,
pub num_updated_rows: u64,
pub num_inserted_rows: u64,
pub num_deleted_rows: u64,
}
#[pymethods]
impl MergeResult {
pub fn __repr__(&self) -> String {
format!(
"MergeResult(version={}, num_updated_rows={}, num_inserted_rows={}, num_deleted_rows={})",
self.version,
self.num_updated_rows,
self.num_inserted_rows,
self.num_deleted_rows
)
}
}
impl From<lancedb::table::MergeResult> for MergeResult {
fn from(result: lancedb::table::MergeResult) -> Self {
Self {
version: result.version,
num_updated_rows: result.num_updated_rows,
num_inserted_rows: result.num_inserted_rows,
num_deleted_rows: result.num_deleted_rows,
}
}
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct AddColumnsResult {
pub version: u64,
}
#[pymethods]
impl AddColumnsResult {
pub fn __repr__(&self) -> String {
format!("AddColumnsResult(version={})", self.version)
}
}
impl From<lancedb::table::AddColumnsResult> for AddColumnsResult {
fn from(result: lancedb::table::AddColumnsResult) -> Self {
Self {
version: result.version,
}
}
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct AlterColumnsResult {
pub version: u64,
}
#[pymethods]
impl AlterColumnsResult {
pub fn __repr__(&self) -> String {
format!("AlterColumnsResult(version={})", self.version)
}
}
impl From<lancedb::table::AlterColumnsResult> for AlterColumnsResult {
fn from(result: lancedb::table::AlterColumnsResult) -> Self {
Self {
version: result.version,
}
}
}
#[pyclass(get_all)]
#[derive(Clone, Debug)]
pub struct DropColumnsResult {
pub version: u64,
}
#[pymethods]
impl DropColumnsResult {
pub fn __repr__(&self) -> String {
format!("DropColumnsResult(version={})", self.version)
}
}
impl From<lancedb::table::DropColumnsResult> for DropColumnsResult {
fn from(result: lancedb::table::DropColumnsResult) -> Self {
Self {
version: result.version,
}
}
}
#[pyclass]
pub struct Table {
// We keep a copy of the name to use if the inner table is dropped
@@ -132,15 +296,16 @@ impl Table {
}
future_into_py(self_.py(), async move {
op.execute().await.infer_error()?;
Ok(())
let result = op.execute().await.infer_error()?;
Ok(AddResult::from(result))
})
}
pub fn delete(self_: PyRef<'_, Self>, condition: String) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
inner.delete(&condition).await.infer_error()
let result = inner.delete(&condition).await.infer_error()?;
Ok(DeleteResult::from(result))
})
}
@@ -160,8 +325,8 @@ impl Table {
op = op.column(column_name, value);
}
future_into_py(self_.py(), async move {
op.execute().await.infer_error()?;
Ok(())
let result = op.execute().await.infer_error()?;
Ok(UpdateResult::from(result))
})
}
@@ -355,25 +520,15 @@ impl Table {
})
}
pub fn checkout(self_: PyRef<'_, Self>, version: PyObject) -> PyResult<Bound<'_, PyAny>> {
pub fn checkout(self_: PyRef<'_, Self>, version: LanceVersion) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
let py = self_.py();
let (is_int, int_value, string_value) = if let Ok(i) = version.downcast_bound::<PyInt>(py) {
let num: u64 = i.extract()?;
(true, num, String::new())
} else if let Ok(s) = version.downcast_bound::<PyString>(py) {
let str_value = s.to_string();
(false, 0, str_value)
} else {
return Err(PyIOError::new_err(
"version must be an integer or a string.",
));
};
future_into_py(py, async move {
if is_int {
inner.checkout(int_value).await.infer_error()
} else {
inner.checkout_tag(&string_value).await.infer_error()
match version {
LanceVersion::Version(version_num) => {
inner.checkout(version_num).await.infer_error()
}
LanceVersion::Tag(tag) => inner.checkout_tag(&tag).await.infer_error(),
}
})
}
@@ -386,12 +541,19 @@ impl Table {
}
#[pyo3(signature = (version=None))]
pub fn restore(self_: PyRef<'_, Self>, version: Option<u64>) -> PyResult<Bound<'_, PyAny>> {
pub fn restore(
self_: PyRef<'_, Self>,
version: Option<LanceVersion>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner_ref()?.clone();
let py = self_.py();
future_into_py(self_.py(), async move {
future_into_py(py, async move {
if let Some(version) = version {
inner.checkout(version).await.infer_error()?;
match version {
LanceVersion::Version(num) => inner.checkout(num).await.infer_error()?,
LanceVersion::Tag(tag) => inner.checkout_tag(&tag).await.infer_error()?,
}
}
inner.restore().await.infer_error()
})
@@ -487,16 +649,13 @@ impl Table {
builder
.when_not_matched_by_source_delete(parameters.when_not_matched_by_source_condition);
}
if let Some(timeout) = parameters.timeout {
builder.timeout(timeout);
}
future_into_py(self_.py(), async move {
let stats = builder.execute(Box::new(batches)).await.infer_error()?;
Python::with_gil(|py| {
let dict = PyDict::new(py);
dict.set_item("num_inserted_rows", stats.num_inserted_rows)?;
dict.set_item("num_updated_rows", stats.num_updated_rows)?;
dict.set_item("num_deleted_rows", stats.num_deleted_rows)?;
Ok(dict.unbind())
})
let res = builder.execute(Box::new(batches)).await.infer_error()?;
Ok(MergeResult::from(res))
})
}
@@ -532,8 +691,8 @@ impl Table {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
inner.add_columns(definitions, None).await.infer_error()?;
Ok(())
let result = inner.add_columns(definitions, None).await.infer_error()?;
Ok(AddColumnsResult::from(result))
})
}
@@ -546,8 +705,8 @@ impl Table {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
inner.add_columns(transform, None).await.infer_error()?;
Ok(())
let result = inner.add_columns(transform, None).await.infer_error()?;
Ok(AddColumnsResult::from(result))
})
}
@@ -590,8 +749,8 @@ impl Table {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
inner.alter_columns(&alterations).await.infer_error()?;
Ok(())
let result = inner.alter_columns(&alterations).await.infer_error()?;
Ok(AlterColumnsResult::from(result))
})
}
@@ -599,8 +758,8 @@ impl Table {
let inner = self_.inner_ref()?.clone();
future_into_py(self_.py(), async move {
let column_refs = columns.iter().map(String::as_str).collect::<Vec<&str>>();
inner.drop_columns(&column_refs).await.infer_error()?;
Ok(())
let result = inner.drop_columns(&column_refs).await.infer_error()?;
Ok(DropColumnsResult::from(result))
})
}
@@ -636,6 +795,12 @@ impl Table {
}
}
#[derive(FromPyObject)]
pub enum LanceVersion {
Version(u64),
Tag(String),
}
#[derive(FromPyObject)]
#[pyo3(from_item_all)]
pub struct MergeInsertParams {
@@ -645,6 +810,7 @@ pub struct MergeInsertParams {
when_not_matched_insert_all: bool,
when_not_matched_by_source_delete: bool,
when_not_matched_by_source_condition: Option<String>,
timeout: Option<std::time::Duration>,
}
#[pyclass]

View File

@@ -3,15 +3,11 @@
use std::sync::Mutex;
use lancedb::index::scalar::{BoostQuery, FtsQuery, MatchQuery, MultiMatchQuery, PhraseQuery};
use lancedb::DistanceType;
use pyo3::prelude::{PyAnyMethods, PyDictMethods, PyListMethods};
use pyo3::types::PyDict;
use pyo3::{
exceptions::{PyRuntimeError, PyValueError},
pyfunction, PyResult,
};
use pyo3::{Bound, PyAny};
/// A wrapper around a rust builder
///
@@ -64,116 +60,6 @@ pub fn validate_table_name(table_name: &str) -> PyResult<()> {
.map_err(|e| PyValueError::new_err(e.to_string()))
}
pub fn parse_fts_query(query: &Bound<'_, PyDict>) -> PyResult<FtsQuery> {
let query_type = query.keys().get_item(0)?.extract::<String>()?;
let query_value = query
.get_item(&query_type)?
.ok_or(PyValueError::new_err(format!(
"Query type {} not found",
query_type
)))?;
let query_value = query_value.downcast::<PyDict>()?;
match query_type.as_str() {
"match" => {
let column = query_value.keys().get_item(0)?.extract::<String>()?;
let params = query_value
.get_item(&column)?
.ok_or(PyValueError::new_err(format!(
"column {} not found",
column
)))?;
let params = params.downcast::<PyDict>()?;
let query = params
.get_item("query")?
.ok_or(PyValueError::new_err("query not found"))?
.extract::<String>()?;
let boost = params
.get_item("boost")?
.ok_or(PyValueError::new_err("boost not found"))?
.extract::<f32>()?;
let fuzziness = params
.get_item("fuzziness")?
.ok_or(PyValueError::new_err("fuzziness not found"))?
.extract::<Option<u32>>()?;
let max_expansions = params
.get_item("max_expansions")?
.ok_or(PyValueError::new_err("max_expansions not found"))?
.extract::<usize>()?;
let query = MatchQuery::new(query)
.with_column(Some(column))
.with_boost(boost)
.with_fuzziness(fuzziness)
.with_max_expansions(max_expansions);
Ok(query.into())
}
"match_phrase" => {
let column = query_value.keys().get_item(0)?.extract::<String>()?;
let query = query_value
.get_item(&column)?
.ok_or(PyValueError::new_err(format!(
"column {} not found",
column
)))?
.extract::<String>()?;
let query = PhraseQuery::new(query).with_column(Some(column));
Ok(query.into())
}
"boost" => {
let positive: Bound<'_, PyAny> = query_value
.get_item("positive")?
.ok_or(PyValueError::new_err("positive not found"))?;
let positive = positive.downcast::<PyDict>()?;
let negative = query_value
.get_item("negative")?
.ok_or(PyValueError::new_err("negative not found"))?;
let negative = negative.downcast::<PyDict>()?;
let negative_boost = query_value
.get_item("negative_boost")?
.ok_or(PyValueError::new_err("negative_boost not found"))?
.extract::<f32>()?;
let positive_query = parse_fts_query(positive)?;
let negative_query = parse_fts_query(negative)?;
let query = BoostQuery::new(positive_query, negative_query, Some(negative_boost));
Ok(query.into())
}
"multi_match" => {
let query = query_value
.get_item("query")?
.ok_or(PyValueError::new_err("query not found"))?
.extract::<String>()?;
let columns = query_value
.get_item("columns")?
.ok_or(PyValueError::new_err("columns not found"))?
.extract::<Vec<String>>()?;
let boost = query_value
.get_item("boost")?
.ok_or(PyValueError::new_err("boost not found"))?
.extract::<Vec<f32>>()?;
let query = MultiMatchQuery::try_new(query, columns)
.and_then(|q| q.try_with_boosts(boost))
.map_err(|e| {
PyValueError::new_err(format!("Error creating MultiMatchQuery: {}", e))
})?;
Ok(query.into())
}
_ => Err(PyValueError::new_err(format!(
"Unsupported query type: {}",
query_type
))),
}
}
/// A wrapper around a LanceDB type to allow it to be used in Python
#[derive(Debug, Clone)]
pub struct PyLanceDB<T>(pub T);

View File

@@ -1,2 +1,2 @@
[toolchain]
channel = "1.83.0"
channel = "1.86.0"

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.19.1-beta.1"
version = "0.21.1-beta.1"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.19.1-beta.1"
version = "0.21.1-beta.1"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -60,15 +60,15 @@ reqwest = { version = "0.12.0", default-features = false, features = [
"macos-system-configuration",
"stream",
], optional = true }
rand = { version = "0.8.3", features = ["small_rng"], optional = true }
rand = { version = "0.9", features = ["small_rng"], optional = true }
http = { version = "1", optional = true } # Matching what is in reqwest
uuid = { version = "1.7.0", features = ["v4"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
hf-hub = { version = "0.4.1", optional = true, default-features = false, features = ["rustls-tls", "tokio", "ureq"]}
candle-core = { version = "0.6.0", optional = true }
candle-transformers = { version = "0.6.0", optional = true }
candle-nn = { version = "0.6.0", optional = true }
candle-core = { version = "0.9.1", optional = true }
candle-transformers = { version = "0.9.1", optional = true }
candle-nn = { version = "0.9.1", optional = true }
tokenizers = { version = "0.19.1", optional = true }
semver = { workspace = true }
@@ -78,7 +78,7 @@ bytemuck_derive.workspace = true
[dev-dependencies]
tempfile = "3.5.0"
rand = { version = "0.8.3", features = ["small_rng"] }
rand = { version = "0.9", features = ["small_rng"] }
random_word = { version = "0.4.3", features = ["en"] }
uuid = { version = "1.7.0", features = ["v4"] }
walkdir = "2"

Some files were not shown because too many files have changed in this diff Show More