Compare commits

..

5 Commits

Author SHA1 Message Date
Lance Release
b67f13f642 Bump version: 0.21.2-beta.2 → 0.21.2 2025-03-26 16:27:05 +00:00
Lance Release
2f12d67469 Bump version: 0.21.2-beta.1 → 0.21.2-beta.2 2025-03-26 16:27:05 +00:00
Lance Release
8d7cc29abb Bump version: 0.18.2-beta.0 → 0.18.2-beta.1 2025-03-26 16:24:17 +00:00
Lance Release
a4404e9e18 Bump version: 0.21.2-beta.0 → 0.21.2-beta.1 2025-03-26 16:23:37 +00:00
Will Jones
077e5bb586 upgrade to 0.25.0 2025-03-26 09:19:48 -07:00
545 changed files with 49359 additions and 45688 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.23.1-beta.1"
current_version = "0.18.2-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -50,6 +50,11 @@ pre_commit_hooks = [
optional_value = "final"
values = ["beta", "final"]
[[tool.bumpversion.files]]
filename = "node/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
replace = "\"version\": \"{new_version}\","
@@ -61,8 +66,39 @@ glob = "nodejs/npm/*/package.json"
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# vectodb node binary packages
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-arm64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-arm64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-darwin-x64\": \"{new_version}\""
search = "\"@lancedb/vectordb-darwin-x64\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-arm64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-linux-x64-gnu\": \"{new_version}\""
search = "\"@lancedb/vectordb-linux-x64-gnu\": \"{current_version}\""
[[tool.bumpversion.files]]
glob = "node/package.json"
replace = "\"@lancedb/vectordb-win32-x64-msvc\": \"{new_version}\""
search = "\"@lancedb/vectordb-win32-x64-msvc\": \"{current_version}\""
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
replace = "\nversion = \"{new_version}\""
@@ -72,9 +108,3 @@ search = "\nversion = \"{current_version}\""
filename = "nodejs/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
# Java documentation
[[tool.bumpversion.files]]
filename = "docs/src/java/java.md"
replace = "<version>{new_version}</version>"
search = "<version>{current_version}</version>"

View File

@@ -19,7 +19,7 @@ rustflags = [
"-Wclippy::string_add_assign",
"-Wclippy::string_add",
"-Wclippy::string_lit_as_bytes",
"-Wclippy::implicit_clone",
"-Wclippy::string_to_string",
"-Wclippy::use_self",
"-Dclippy::cargo",
"-Dclippy::dbg_macro",

View File

@@ -18,6 +18,6 @@ body:
label: Link
description: >
Provide a link to the existing documentation, if applicable.
placeholder: ex. https://lancedb.com/docs/tables/...
placeholder: ex. https://lancedb.github.io/lancedb/guides/tables/...
validations:
required: false

View File

@@ -1,45 +0,0 @@
name: Create Failure Issue
description: Creates a GitHub issue if any jobs in the workflow failed
inputs:
job-results:
description: 'JSON string of job results from needs context'
required: true
workflow-name:
description: 'Name of the workflow'
required: true
runs:
using: composite
steps:
- name: Check for failures and create issue
shell: bash
env:
JOB_RESULTS: ${{ inputs.job-results }}
WORKFLOW_NAME: ${{ inputs.workflow-name }}
RUN_URL: ${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}
GH_TOKEN: ${{ github.token }}
run: |
# Check if any job failed
if echo "$JOB_RESULTS" | jq -e 'to_entries | any(.value.result == "failure")' > /dev/null; then
echo "Detected job failures, creating issue..."
# Extract failed job names
FAILED_JOBS=$(echo "$JOB_RESULTS" | jq -r 'to_entries | map(select(.value.result == "failure")) | map(.key) | join(", ")')
# Create issue with workflow name, failed jobs, and run URL
gh issue create \
--title "$WORKFLOW_NAME Failed ($FAILED_JOBS)" \
--body "The workflow **$WORKFLOW_NAME** failed during execution.
**Failed jobs:** $FAILED_JOBS
**Run URL:** $RUN_URL
Please investigate the failed jobs and address any issues." \
--label "ci"
echo "Issue created successfully"
else
echo "No job failures detected, skipping issue creation"
fi

View File

@@ -31,7 +31,6 @@ runs:
with:
command: build
working-directory: python
docker-options: "-e PIP_EXTRA_INDEX_URL='https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/'"
target: x86_64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}
@@ -46,7 +45,7 @@ runs:
with:
command: build
working-directory: python
docker-options: "-e PIP_EXTRA_INDEX_URL='https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/'"
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
target: aarch64-unknown-linux-gnu
manylinux: ${{ inputs.manylinux }}
args: ${{ inputs.args }}

View File

@@ -22,5 +22,5 @@ runs:
command: build
# TODO: pass through interpreter
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL='https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/'"
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python

View File

@@ -26,7 +26,7 @@ runs:
with:
command: build
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL='https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/'"
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v4
with:

View File

@@ -5,8 +5,8 @@ on:
tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- "v*-beta*"
- "*-v*" # for example, python-vX.Y.Z
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
@@ -19,8 +19,6 @@ env:
jobs:
build:
runs-on: ubuntu-22.04
permissions:
id-token: write
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -33,22 +31,6 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rust-lang/crates-io-auth-action@v1
id: auth
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [build]
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
permissions:
contents: read
issues: write
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -1,127 +0,0 @@
name: Codex Update Lance Dependency
on:
workflow_call:
inputs:
tag:
description: "Tag name from Lance"
required: true
type: string
workflow_dispatch:
inputs:
tag:
description: "Tag name from Lance"
required: true
type: string
permissions:
contents: write
pull-requests: write
actions: read
jobs:
update:
runs-on: ubuntu-latest
steps:
- name: Show inputs
run: |
echo "tag = ${{ inputs.tag }}"
- name: Checkout Repo LanceDB
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: true
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install Codex CLI
run: npm install -g @openai/codex
- name: Install Rust toolchain
uses: dtolnay/rust-toolchain@stable
with:
toolchain: stable
components: clippy, rustfmt
- name: Install system dependencies
run: |
sudo apt-get update
sudo apt-get install -y protobuf-compiler libssl-dev
- name: Install cargo-info
run: cargo install cargo-info
- name: Install Python dependencies
run: python3 -m pip install --upgrade pip packaging
- name: Configure git user
run: |
git config user.name "lancedb automation"
git config user.email "robot@lancedb.com"
- name: Run Codex to update Lance dependency
env:
TAG: ${{ inputs.tag }}
GITHUB_TOKEN: ${{ secrets.ROBOT_TOKEN }}
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
OPENAI_API_KEY: ${{ secrets.CODEX_TOKEN }}
run: |
set -euo pipefail
VERSION="${TAG#refs/tags/}"
VERSION="${VERSION#v}"
BRANCH_NAME="codex/update-lance-${VERSION//[^a-zA-Z0-9]/-}"
cat <<EOF >/tmp/codex-prompt.txt
You are running inside the lancedb repository on a GitHub Actions runner. Update the Lance dependency to version ${VERSION} and prepare a pull request for maintainers to review.
Follow these steps exactly:
1. Use script "ci/set_lance_version.py" to update Lance dependencies. The script already refreshes Cargo metadata, so allow it to finish even if it takes time.
2. Run "cargo clippy --workspace --tests --all-features -- -D warnings". If diagnostics appear, fix them yourself and rerun clippy until it exits cleanly. Do not skip any warnings.
3. After clippy succeeds, run "cargo fmt --all" to format the workspace.
4. Ensure the repository is clean except for intentional changes. Inspect "git status --short" and "git diff" to confirm the dependency update and any required fixes.
5. Create and switch to a new branch named "${BRANCH_NAME}" (replace any duplicated hyphens if necessary).
6. Stage all relevant files with "git add -A". Commit using the message "chore: update lance dependency to v${VERSION}".
7. Push the branch to origin. If the branch already exists, force-push your changes.
8. env "GH_TOKEN" is available, use "gh" tools for github related operations like creating pull request.
9. Create a pull request targeting "main" with title "chore: update lance dependency to v${VERSION}". In the body, summarize the dependency bump, clippy/fmt verification, and link the triggering tag (${TAG}).
10. After creating the PR, display the PR URL, "git status --short", and a concise summary of the commands run and their results.
Constraints:
- Use bash commands; avoid modifying GitHub workflow files other than through the scripted task above.
- Do not merge the PR.
- If any command fails, diagnose and fix the issue instead of aborting.
EOF
printenv OPENAI_API_KEY | codex login --with-api-key
codex --config shell_environment_policy.ignore_default_excludes=true exec --dangerously-bypass-approvals-and-sandbox "$(cat /tmp/codex-prompt.txt)"
- name: Trigger sophon dependency update
env:
TAG: ${{ inputs.tag }}
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
set -euo pipefail
VERSION="${TAG#refs/tags/}"
VERSION="${VERSION#v}"
LANCEDB_BRANCH="codex/update-lance-${VERSION//[^a-zA-Z0-9]/-}"
echo "Triggering sophon workflow with:"
echo " lance_ref: ${TAG#refs/tags/}"
echo " lancedb_ref: ${LANCEDB_BRANCH}"
gh workflow run codex-bump-lancedb-lance.yml \
--repo lancedb/sophon \
-f lance_ref="${TAG#refs/tags/}" \
-f lancedb_ref="${LANCEDB_BRANCH}"
- name: Show latest sophon workflow run
env:
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
set -euo pipefail
echo "Latest sophon workflow run:"
gh run list --repo lancedb/sophon --workflow codex-bump-lancedb-lance.yml --limit 1 --json databaseId,url,displayTitle

View File

@@ -18,25 +18,17 @@ concurrency:
group: "pages"
cancel-in-progress: true
env:
# This reduces the disk space needed for the build
RUSTFLAGS: "-C debuginfo=0"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
PIP_EXTRA_INDEX_URL: "https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/"
jobs:
# Single deploy job since we're just deploying
build:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: ubuntu-24.04
runs-on: buildjet-8vcpu-ubuntu-2204
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependencies needed for ubuntu
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
@@ -46,23 +38,33 @@ jobs:
python-version: "3.10"
cache: "pip"
cache-dependency-path: "docs/requirements.txt"
- uses: Swatinem/rust-cache@v2
- name: Build Python
working-directory: python
run: |
python -m pip install --extra-index-url https://pypi.fury.io/lance-format/ --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lance-format/ --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: docs/package-lock.json
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies
working-directory: nodejs
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build node
working-directory: node
run: |
npm ci
npm run build
npm run tsc
- name: Create markdown files
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
working-directory: docs
run: |

108
.github/workflows/docs_test.yml vendored Normal file
View File

@@ -0,0 +1,108 @@
name: Documentation Code Testing
on:
push:
branches:
- main
paths:
- docs/**
- .github/workflows/docs_test.yml
pull_request:
paths:
- docs/**
- .github/workflows/docs_test.yml
# Allows you to run this workflow manually from the Actions tab
workflow_dispatch:
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
test-python:
name: Test doc python code
runs-on: ubuntu-24.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: 3.11
cache: "pip"
cache-dependency-path: "docs/test/requirements.txt"
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Build Python
working-directory: docs/test
run:
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
- name: Create test files
run: |
cd docs/test
python md_testing.py
- name: Test
run: |
cd docs/test/python
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ubuntu-24.04
timeout-minutes: 60
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release
cd ../docs
npm install
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs
npm t

View File

@@ -1,35 +1,77 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Build and publish Java packages
on:
push:
tags:
- "v*"
release:
types: [released]
pull_request:
paths:
- .github/workflows/java-publish.yml
jobs:
publish:
name: Build and Publish
runs-on: ubuntu-24.04
macos-arm64:
name: Build on MacOS Arm64
runs-on: macos-14
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_darwin_aarch64.zip
path: target/release/liblancedb_jni.dylib
retention-days: 1
if-no-files-found: error
linux-arm64:
name: Build on Linux Arm64
runs-on: warp-ubuntu-2204-arm64-8x
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.79.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
rustflags: "-C debuginfo=1"
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_linux_aarch64.zip
path: target/release/liblancedb_jni.so
retention-days: 1
if-no-files-found: error
linux-x86:
runs-on: warp-ubuntu-2204-x64-8x
timeout-minutes: 30
needs: [macos-arm64, linux-arm64]
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Set up Java 8
uses: actions/setup-java@v4
with:
@@ -41,36 +83,32 @@ jobs:
server-password: SONATYPE_TOKEN
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
- name: Set git config
- name: Install dependencies
run: |
git config --global user.email "dev+gha@lancedb.com"
git config --global user.name "LanceDB Github Runner"
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Download artifact
uses: actions/download-artifact@v4
- name: Copy native libs
run: |
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
- name: Dry run
if: github.event_name == 'pull_request'
run: |
./mvnw --batch-mode -DskipTests package -pl lancedb-core -am
- name: Publish
if: startsWith(github.ref, 'refs/tags/v')
mvn --batch-mode -DskipTests package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
git config --global user.name "dev+gha@lancedb.com"
- name: Publish with Java 8
if: github.event_name == 'release'
run: |
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
./mvnw --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -pl lancedb-core -am -P deploy-to-ossrh
mvn --batch-mode -DskipTests -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [publish]
if: always() && failure() && startsWith(github.ref, 'refs/tags/v')
permissions:
contents: read
issues: write
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}

View File

@@ -1,46 +1,113 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Build Java LanceDB Core
name: Build and Run Java JNI Tests
on:
push:
branches:
- main
paths:
- java/**
- .github/workflows/java.yml
pull_request:
paths:
- java/**
- rust/**
- .github/workflows/java.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
build-java:
runs-on: ubuntu-24.04
name: Build
linux-build-java-11:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Java 17
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 11
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 11
cache: "maven"
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Java Style Check
run: ./mvnw checkstyle:check
- name: Build and install
run: ./mvnw clean install
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
-XX:+IgnoreUnrecognizedVMOptions \
--add-opens=java.base/java.lang=ALL-UNNAMED \
--add-opens=java.base/java.lang.invoke=ALL-UNNAMED \
--add-opens=java.base/java.lang.reflect=ALL-UNNAMED \
--add-opens=java.base/java.io=ALL-UNNAMED \
--add-opens=java.base/java.net=ALL-UNNAMED \
--add-opens=java.base/java.nio=ALL-UNNAMED \
--add-opens=java.base/java.util=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent=ALL-UNNAMED \
--add-opens=java.base/java.util.concurrent.atomic=ALL-UNNAMED \
--add-opens=java.base/jdk.internal.ref=ALL-UNNAMED \
--add-opens=java.base/sun.nio.ch=ALL-UNNAMED \
--add-opens=java.base/sun.nio.cs=ALL-UNNAMED \
--add-opens=java.base/sun.security.action=ALL-UNNAMED \
--add-opens=java.base/sun.util.calendar=ALL-UNNAMED \
--add-opens=java.security.jgss/sun.security.krb5=ALL-UNNAMED \
-Djdk.reflect.useDirectMethodHandle=false \
-Dio.netty.tryReflectionSetAccessible=true"
JAVA_HOME=$JAVA_17 mvn clean test

View File

@@ -1,62 +0,0 @@
name: Lance Release Timer
on:
schedule:
- cron: "*/10 * * * *"
workflow_dispatch:
permissions:
contents: read
actions: write
concurrency:
group: lance-release-timer
cancel-in-progress: false
jobs:
trigger-update:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Check for new Lance tag
id: check
env:
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
python3 ci/check_lance_release.py --github-output "$GITHUB_OUTPUT"
- name: Look for existing PR
if: steps.check.outputs.needs_update == 'true'
id: pr
env:
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
set -euo pipefail
TITLE="chore: update lance dependency to v${{ steps.check.outputs.latest_version }}"
COUNT=$(gh pr list --search "\"$TITLE\" in:title" --state open --limit 1 --json number --jq 'length')
if [ "$COUNT" -gt 0 ]; then
echo "Open PR already exists for $TITLE"
echo "pr_exists=true" >> "$GITHUB_OUTPUT"
else
echo "No existing PR for $TITLE"
echo "pr_exists=false" >> "$GITHUB_OUTPUT"
fi
- name: Trigger codex update workflow
if: steps.check.outputs.needs_update == 'true' && steps.pr.outputs.pr_exists != 'true'
env:
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
set -euo pipefail
TAG=${{ steps.check.outputs.latest_tag }}
gh workflow run codex-update-lance-dependency.yml -f tag=refs/tags/$TAG
- name: Show latest codex workflow run
if: steps.check.outputs.needs_update == 'true' && steps.pr.outputs.pr_exists != 'true'
env:
GH_TOKEN: ${{ secrets.ROBOT_TOKEN }}
run: |
set -euo pipefail
gh run list --workflow codex-update-lance-dependency.yml --limit 1 --json databaseId,url,displayTitle

View File

@@ -84,7 +84,6 @@ jobs:
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
@@ -93,3 +92,11 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
- uses: ./.github/workflows/update_package_lock_nodejs
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

147
.github/workflows/node.yml vendored Normal file
View File

@@ -0,0 +1,147 @@
name: Node
on:
push:
branches:
- main
pull_request:
paths:
- node/**
- rust/ffi/node/**
- .github/workflows/node.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
#
# Use native CPU to accelerate tests if possible, especially for f16
# target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
linux:
name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30
strategy:
matrix:
node-version: [ "18", "20" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-13"
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: brew install protobuf
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test
aws-integtest:
timeout-minutes: 45
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
env:
AWS_ACCESS_KEY_ID: ACCESSKEY
AWS_SECRET_ACCESS_KEY: SECRETKEY
AWS_DEFAULT_REGION: us-west-2
# this one is for s3
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: start local stack
run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb
run: |
aws dynamodb create-table \
--table-name lancedb-integtest \
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
--endpoint-url $DYNAMODB_ENDPOINT
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run integration-test

View File

@@ -6,7 +6,6 @@ on:
- main
pull_request:
paths:
- Cargo.toml
- nodejs/**
- .github/workflows/nodejs.yml
- docker-compose.yml
@@ -16,6 +15,9 @@ concurrency:
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
@@ -40,20 +42,15 @@ jobs:
node-version: 20
cache: 'npm'
cache-dependency-path: nodejs/package-lock.json
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: Swatinem/rust-cache@v2
- name: Format Rust
run: cargo fmt --all -- --check
- name: Lint Rust
run: cargo clippy --profile ci --all --all-features -- -D warnings
- name: Lint Typescript
- name: Lint
run: |
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
- name: Lint examples
@@ -79,7 +76,7 @@ jobs:
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: nodejs/package-lock.json
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
@@ -88,9 +85,8 @@ jobs:
npm install -g @napi-rs/cli
- name: Build
run: |
npm ci --include=optional
npm run build:debug -- --profile ci
npm run tsc
npm ci
npm run build
- name: Setup localstack
working-directory: .
run: docker compose up --detach --wait
@@ -117,7 +113,7 @@ jobs:
set -e
npm ci
npm run docs
if ! git diff --exit-code -- ../ ':(exclude)Cargo.lock'; then
if ! git diff --exit-code; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1
@@ -138,7 +134,7 @@ jobs:
with:
node-version: 20
cache: 'npm'
cache-dependency-path: nodejs/package-lock.json
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
@@ -146,9 +142,8 @@ jobs:
npm install -g @napi-rs/cli
- name: Build
run: |
npm ci --include=optional
npm run build:debug -- --profile ci
npm run tsc
npm ci
npm run build
- name: Test
run: |
npm run test

View File

@@ -18,7 +18,6 @@ on:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/npm-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
@@ -97,6 +96,12 @@ jobs:
fail-fast: false
matrix:
settings:
- target: x86_64-apple-darwin
host: macos-latest
features: ","
pre_build: |-
brew install protobuf
rustup target add x86_64-apple-darwin
- target: aarch64-apple-darwin
host: macos-latest
features: fp16kernels
@@ -125,24 +130,29 @@ jobs:
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config
- target: x86_64-unknown-linux-musl
# This one seems to need some extra memory
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: fp16kernels
pre_build: |-
set -e &&
apk add protobuf-dev curl &&
ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so &&
CC=gcc &&
CXX=g++
# TODO: re-enable x64 musl builds. I could not figure out why, but it
# consistently made GHA runners non-responsive at the end of build. Example:
# https://github.com/lancedb/lancedb/actions/runs/13980431071/job/39144319470?pr=2250
# - target: x86_64-unknown-linux-musl
# # This one seems to need some extra memory
# host: ubuntu-2404-8x-x64
# # https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
# docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
# features: ","
# pre_build: |-
# set -e &&
# apk add protobuf-dev curl &&
# ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
# ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so
- target: aarch64-unknown-linux-gnu
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/debian-aarch64.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian-aarch64
features: "fp16kernels"
# TODO: enable fp16kernels after https://github.com/lancedb/lance/pull/3559
features: ","
pre_build: |-
set -e &&
apt-get update &&
@@ -160,8 +170,8 @@ jobs:
set -e &&
apk add protobuf-dev &&
rustup target add aarch64-unknown-linux-musl &&
export CC_aarch64_unknown_linux_musl=aarch64-linux-musl-gcc &&
export CXX_aarch64_unknown_linux_musl=aarch64-linux-musl-g++
export CC="/aarch64-linux-musl-cross/bin/aarch64-linux-musl-gcc" &&
export CXX="/aarch64-linux-musl-cross/bin/aarch64-linux-musl-g++"
name: build - ${{ matrix.settings.target }}
runs-on: ${{ matrix.settings.host }}
defaults:
@@ -359,17 +369,196 @@ jobs:
ARGS="$ARGS --tag preview"
fi
npm publish $ARGS
report-failure:
name: Report Workflow Failure
# ----------------------------------------------------------------------------
# vectordb release (legacy)
# ----------------------------------------------------------------------------
# TODO: delete this when we drop vectordb
node:
name: vectordb Typescript
runs-on: ubuntu-latest
needs: [build-lancedb, test-lancedb, publish]
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
permissions:
contents: read
issues: write
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
- name: Checkout
uses: actions/checkout@v4
- uses: actions/setup-node@v3
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}
node-version: 20
cache: "npm"
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
name: vectordb ${{ matrix.config.arch }}
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-darwin-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-darwin*.tgz
node-linux-gnu:
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
runs-on: ${{ matrix.config.runner }}
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: warp-ubuntu-latest-arm64-4x
steps:
- name: Checkout
uses: actions/checkout@v4
# To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} ${{ matrix.config.arch }}-unknown-linux-gnu
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}-gnu
path: |
node/dist/lancedb-vectordb-linux*.tgz
node-windows:
name: vectordb ${{ matrix.target }}
runs-on: windows-2022
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
release:
name: vectordb NPM Publish
needs: [node, node-macos, node-linux-gnu, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
pattern: node-*
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz .
for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename
done
- name: Notify Slack Action
uses: ravsamhq/notify-slack-action@2.3.0
if: ${{ always() }}
with:
status: ${{ job.status }}
notify_when: "failure"
notification_title: "{workflow} is failing"
env:
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
update-package-lock:
if: startsWith(github.ref, 'refs/tags/v')
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -8,10 +8,6 @@ on:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
env:
PIP_EXTRA_INDEX_URL: "https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/"
jobs:
linux:
@@ -59,13 +55,15 @@ jobs:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
mac:
timeout-minutes: 90
timeout-minutes: 60
runs-on: ${{ matrix.config.runner }}
strategy:
matrix:
config:
- target: x86_64-apple-darwin
runner: macos-13
- target: aarch64-apple-darwin
runner: warp-macos-14-arm64-6x
runner: macos-14
env:
MACOSX_DEPLOYMENT_TARGET: 10.15
steps:
@@ -174,17 +172,3 @@ jobs:
generate_release_notes: false
name: Python LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.python_release_notes.outputs.changelog }}
report-failure:
name: Report Workflow Failure
runs-on: ubuntu-latest
needs: [linux, mac, windows]
permissions:
contents: read
issues: write
if: always() && (github.event_name == 'release' || github.event_name == 'workflow_dispatch')
steps:
- uses: actions/checkout@v4
- uses: ./.github/actions/create-failure-issue
with:
job-results: ${{ toJSON(needs) }}
workflow-name: ${{ github.workflow }}

View File

@@ -6,7 +6,6 @@ on:
- main
pull_request:
paths:
- Cargo.toml
- python/**
- .github/workflows/python.yml
@@ -18,8 +17,6 @@ env:
# Color output for pytest is off by default.
PYTEST_ADDOPTS: "--color=yes"
FORCE_COLOR: "1"
PIP_EXTRA_INDEX_URL: "https://pypi.fury.io/lance-format/ https://pypi.fury.io/lancedb/"
RUST_BACKTRACE: "1"
jobs:
lint:
@@ -49,8 +46,8 @@ jobs:
type-check:
name: "Type Check"
timeout-minutes: 60
runs-on: ubuntu-2404-8x-x64
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
@@ -78,8 +75,8 @@ jobs:
doctest:
name: "Doctest"
timeout-minutes: 60
runs-on: ubuntu-2404-8x-x64
timeout-minutes: 30
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
@@ -98,9 +95,12 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
- name: Install
run: |
pip install --extra-index-url https://pypi.fury.io/lance-format/ --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests,dev,embeddings]
pip install tantivy
pip install mlx
- name: Doctest
@@ -129,23 +129,31 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: 3.${{ matrix.python-minor-version }}
- uses: ./.github/workflows/build_linux_wheel
- uses: Swatinem/rust-cache@v2
with:
args: --profile ci
workspaces: python
- uses: ./.github/workflows/build_linux_wheel
- uses: ./.github/workflows/run_tests
with:
integration: true
- name: Test without pylance or pandas
- name: Test without pylance
run: |
pip uninstall -y pylance pandas
pip uninstall -y pylance
pytest -vv python/tests/test_table.py
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
platform:
name: "Mac"
name: "Mac: ${{ matrix.config.name }}"
timeout-minutes: 30
runs-on: macos-14
strategy:
matrix:
config:
- name: x86
runner: macos-13
- name: Arm
runner: macos-14
runs-on: "${{ matrix.config.runner }}"
defaults:
run:
shell: bash
@@ -159,9 +167,10 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: "3.12"
- uses: ./.github/workflows/build_mac_wheel
- uses: Swatinem/rust-cache@v2
with:
args: --profile ci
workspaces: python
- uses: ./.github/workflows/build_mac_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
@@ -188,9 +197,10 @@ jobs:
uses: actions/setup-python@v5
with:
python-version: "3.12"
- uses: ./.github/workflows/build_windows_wheel
- uses: Swatinem/rust-cache@v2
with:
args: --profile ci
workspaces: python
- uses: ./.github/workflows/build_windows_wheel
- uses: ./.github/workflows/run_tests
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
@@ -218,8 +228,7 @@ jobs:
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install pyarrow==16
pip install --extra-index-url https://pypi.fury.io/lance-format/ --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy
- name: Run tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/tests

View File

@@ -15,7 +15,7 @@ runs:
- name: Install lancedb
shell: bash
run: |
pip3 install --extra-index-url https://pypi.fury.io/lance-format/ --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
pip3 install --extra-index-url https://pypi.fury.io/lancedb/ $(ls target/wheels/lancedb-*.whl)[tests,dev]
- name: Setup localstack for integration tests
if: ${{ inputs.integration == 'true' }}
shell: bash
@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -vv --durations=30 python/python/tests
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests

View File

@@ -18,7 +18,11 @@ env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
CARGO_INCREMENTAL: 0
jobs:
lint:
@@ -36,10 +40,9 @@ jobs:
with:
fetch-depth: 0
lfs: true
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
@@ -47,7 +50,7 @@ jobs:
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --profile ci --workspace --tests --all-features -- -D warnings
run: cargo clippy --workspace --tests --all-features -- -D warnings
build-no-lock:
runs-on: ubuntu-24.04
@@ -74,7 +77,7 @@ jobs:
sudo apt install -y protobuf-compiler libssl-dev
- name: Build all
run: |
cargo build --profile ci --benches --all-features --tests
cargo build --benches --all-features --tests
linux:
timeout-minutes: 30
@@ -90,15 +93,20 @@ jobs:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
GH_TOKEN: ${{ secrets.SOPHON_READ_TOKEN }}
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: sudo apt install -y protobuf-compiler libssl-dev
run: |
# This shaves 2 minutes off this step in CI. This doesn't seem to be
# necessary in standard runners, but it is in the 4x runners.
sudo rm /var/lib/man-db/auto-update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rui314/setup-mold@v1
- name: Make Swap
run: |
@@ -106,23 +114,21 @@ jobs:
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --profile ci --all-features --tests --locked --examples
- name: Run feature tests
run: CARGO_ARGS="--profile ci" make -C ./lancedb feature-tests
run: cargo build --all-features --tests --locked --examples
- name: Run tests
run: cargo test --all-features --locked
- name: Run examples
run: cargo run --profile ci --example simple --locked
- name: Run remote tests
# Running this requires access to secrets, so skip if this is
# a PR from a fork.
if: github.event_name != 'pull_request' || !github.event.pull_request.head.repo.fork
run: CARGO_ARGS="--profile ci" make -C ./lancedb remote-tests
run: cargo run --example simple --locked
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: ["macos-14", "macos-15"]
mac-runner: ["macos-13", "macos-14"]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
@@ -136,6 +142,8 @@ jobs:
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Run tests
@@ -145,35 +153,36 @@ jobs:
ALL_FEATURES=`cargo metadata --format-version=1 --no-deps \
| jq -r '.packages[] | .features | keys | .[]' \
| grep -v s3-test | sort | uniq | paste -s -d "," -`
cargo test --profile ci --features $ALL_FEATURES --locked
cargo test --features $ALL_FEATURES --locked
windows:
runs-on: windows-2022
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb
steps:
- uses: actions/checkout@v4
- name: Set target
run: rustup target add ${{ matrix.target }}
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
run: choco install --no-progress protoc
- name: Build
run: |
rustup target add ${{ matrix.target }}
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --profile ci --features remote --tests --locked --target ${{ matrix.target }}
cargo build --features remote --tests --locked --target ${{ matrix.target }}
- name: Run tests
# Can only run tests when target matches host
if: ${{ matrix.target == 'x86_64-pc-windows-msvc' }}
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo test --profile ci --features remote --locked
cargo test --features remote --locked
msrv:
# Check the minimum supported Rust version
@@ -198,7 +207,6 @@ jobs:
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.msrv }}
- uses: Swatinem/rust-cache@v2
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
@@ -212,4 +220,4 @@ jobs:
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --profile ci --workspace --tests --benches --all-features
run: cargo check --workspace --tests --benches --all-features

View File

@@ -0,0 +1,26 @@
name: Trigger vectordb-recipers workflow
on:
push:
branches: [ main ]
pull_request:
paths:
- .github/workflows/trigger-vectordb-recipes.yml
workflow_dispatch:
jobs:
build:
runs-on: ubuntu-latest
steps:
- name: Trigger vectordb-recipes workflow
uses: actions/github-script@v6
with:
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
script: |
const result = await github.rest.actions.createWorkflowDispatch({
owner: 'lancedb',
repo: 'vectordb-recipes',
workflow_id: 'examples-test.yml',
ref: 'main'
});
console.log(result);

View File

@@ -0,0 +1,33 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -0,0 +1,33 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

4
.gitignore vendored
View File

@@ -1,5 +1,4 @@
.idea
*.swp
**/*.whl
*.egg-info
**/__pycache__
@@ -32,6 +31,9 @@ python/dist
*.node
**/node_modules
**/.DS_Store
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist

101
AGENTS.md
View File

@@ -1,101 +0,0 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
Common commands:
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
* Run tests: `cargo test --quiet --features remote --tests`
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --quiet --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.
## Coding tips
* When writing Rust doctests for things that require a connection or table reference,
write them as a function instead of a fully executable test. This allows type checking
to run but avoids needing a full test environment. For example:
```rust
/// ```
/// use lance_index::scalar::FullTextSearchQuery;
/// use lancedb::query::{QueryBase, ExecutableQuery};
///
/// # use lancedb::Table;
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
/// let results = table.query()
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
```
## Example plan: adding a new method on Table
Adding a new method involves first adding it to the Rust core, then exposing it
in the Python and TypeScript bindings. There are both local and remote tables.
Remote tables are implemented via a HTTP API and require the `remote` cargo
feature flag to be enabled. Python has both sync and async methods.
Rust core changes:
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
* Test with unit test in `rust/lancedb/src/table.rs`.
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
Python bindings changes:
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
7. Add unit test in `python/tests/test_table.py`.
TypeScript bindings changes:
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
2. Run `npm run build` to generate TypeScript definitions.
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
* Note: despite the name, this class is also used for remote tables.
5. Add test in `nodejs/__test__/table.test.ts`.
6. Run `npm run docs` to generate TypeScript documentation.
## Review Guidelines
Please consider the following when reviewing code contributions.
### Rust API design
* Design public APIs so they can be evolved easily in the future without breaking
changes. Often this means using builder patterns or options structs instead of
long argument lists.
* For public APIs, prefer inputs that use `Into<T>` or `AsRef<T>` traits to allow
more flexible inputs. For example, use `name: Into<String>` instead of `name: String`,
so we don't have to write `func("my_string".to_string())`.
### Testing
* Ensure all new public APIs have documentation and examples.
* Ensure that all bugfixes and features have corresponding tests. **We do not merge
code without tests.**
### Documentation
* New features must include updates to the rust documentation comments. Link to
relevant structs and methods to increase the value of documentation.

View File

@@ -1 +0,0 @@
AGENTS.md

4696
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,11 @@
[workspace]
members = ["rust/lancedb", "nodejs", "python"]
members = [
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
@@ -15,65 +21,57 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=2.0.0-beta.3", default-features = false, "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-core = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-datagen = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-file = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-io = { "version" = "=2.0.0-beta.3", default-features = false, "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-index = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-linalg = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-namespace = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-namespace-impls = { "version" = "=2.0.0-beta.3", default-features = false, "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-table = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-testing = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-datafusion = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-encoding = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
lance-arrow = { "version" = "=2.0.0-beta.3", "tag" = "v2.0.0-beta.3", "git" = "https://github.com/lance-format/lance.git" }
ahash = "0.8"
lance = { "version" = "=0.25.0", "features" = [
"dynamodb",
] }
lance-io = { version = "=0.25.0" }
lance-index = { version = "=0.25.0" }
lance-linalg = { version = "=0.25.0" }
lance-table = { version = "=0.25.0" }
lance-testing = { version = "=0.25.0" }
lance-datafusion = { version = "=0.25.0" }
lance-encoding = { version = "=0.25.0" }
# Note that this one does not include pyarrow
arrow = { version = "56.2", optional = false }
arrow-array = "56.2"
arrow-data = "56.2"
arrow-ipc = "56.2"
arrow-ord = "56.2"
arrow-schema = "56.2"
arrow-select = "56.2"
arrow-cast = "56.2"
arrow = { version = "54.1", optional = false }
arrow-array = "54.1"
arrow-data = "54.1"
arrow-ipc = "54.1"
arrow-ord = "54.1"
arrow-schema = "54.1"
arrow-arith = "54.1"
arrow-cast = "54.1"
async-trait = "0"
datafusion = { version = "50.1", default-features = false }
datafusion-catalog = "50.1"
datafusion-common = { version = "50.1", default-features = false }
datafusion-execution = "50.1"
datafusion-expr = "50.1"
datafusion-physical-plan = "50.1"
datafusion = { version = "45.0", default-features = false }
datafusion-catalog = "45.0"
datafusion-common = { version = "45.0", default-features = false }
datafusion-execution = "45.0"
datafusion-expr = "45.0"
datafusion-physical-plan = "45.0"
env_logger = "0.11"
half = { "version" = "2.6.0", default-features = false, features = [
half = { "version" = "=2.4.1", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
object_store = "0.11.0"
pin-project = "1.0.7"
rand = "0.9"
snafu = "0.8"
url = "2"
num-traits = "0.2"
rand = "0.8"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
chrono = "0.4"
[profile.ci]
debug = "line-tables-only"
inherits = "dev"
incremental = false
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.39"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# This rule applies to every package except workspace members (dependencies
# such as `arrow` and `tokio`). It disables debug info and related features on
# dependencies so their binaries stay smaller, improving cache reuse.
[profile.ci.package."*"]
debug = false
debug-assertions = false
strip = "debuginfo"
incremental = false
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

167
README.md
View File

@@ -1,97 +1,94 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://github.com/user-attachments/assets/ac270358-333e-4bea-a132-acefaa94040e">
<source media="(prefers-color-scheme: light)" srcset="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0">
<img alt="LanceDB Logo" src="https://github.com/user-attachments/assets/b864d814-0d29-4784-8fd9-807297c758c0" width=300>
</picture>
**Search More, Manage Less**
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
[![Gurubase](https://img.shields.io/badge/Gurubase-Ask%20LanceDB%20Guru-006BFF?style=for-the-badge)](https://gurubase.io/g/lancedb)
# **The Multimodal AI Lakehouse**
</p>
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.com/docs) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</div>
<br>
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
## **Star LanceDB to get updates!**
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
## **Key Features**:
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
## **How to Install**:
Follow the [Quickstart](https://lancedb.com/docs/quickstart/) doc to set up LanceDB locally.
**API & SDK:** We also support Python, Typescript and Rust SDKs
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
## **Join Us and Contribute**
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
## **Contributors**
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
## **Stay in Touch With Us**
<div align="center">
</br>
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
</p>
</div>
<hr />
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include:
* Production-scale vector search with no servers to manage.
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
* Support for vector similarity search, full-text search and SQL.
* Native Python and Javascript/Typescript support.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* GPU support in building vector index(*).
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
## Quick Start
**Javascript**
```shell
npm install @lancedb/lancedb
```
```javascript
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
```
**Python**
```shell
pip install lancedb
```
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/vectordb-recipes/tree/main/examples/Youtube-Search-QA-Bot">Build a question and answer bot with LanceDB</a>

22
ci/build_linux_artifacts.sh Executable file
View File

@@ -0,0 +1,22 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build_vectordb.sh $ARCH $TARGET_TRIPLE

View File

@@ -0,0 +1,34 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -0,0 +1,42 @@
# Builds the Windows artifacts (node binaries).
# Usage: .\ci\build_windows_artifacts.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/ffi/node"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "node"
Write-Host "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -0,0 +1,42 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
# - aarch64-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc", "aarch64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,208 +0,0 @@
#!/usr/bin/env python3
"""Determine whether a newer Lance tag exists and expose results for CI."""
from __future__ import annotations
import argparse
import json
import os
import re
import subprocess
import sys
from dataclasses import dataclass
from pathlib import Path
from typing import Iterable, List, Sequence, Tuple, Union
try: # Python >=3.11
import tomllib # type: ignore
except ModuleNotFoundError: # pragma: no cover - fallback for older Python
import tomli as tomllib # type: ignore
LANCE_REPO = "lance-format/lance"
SEMVER_RE = re.compile(
r"^\s*(?P<major>0|[1-9]\d*)\.(?P<minor>0|[1-9]\d*)\.(?P<patch>0|[1-9]\d*)"
r"(?:-(?P<prerelease>[0-9A-Za-z.-]+))?"
r"(?:\+[0-9A-Za-z.-]+)?\s*$"
)
@dataclass(frozen=True)
class SemVer:
major: int
minor: int
patch: int
prerelease: Tuple[Union[int, str], ...]
def __lt__(self, other: "SemVer") -> bool: # pragma: no cover - simple comparison
if (self.major, self.minor, self.patch) != (other.major, other.minor, other.patch):
return (self.major, self.minor, self.patch) < (other.major, other.minor, other.patch)
if self.prerelease == other.prerelease:
return False
if not self.prerelease:
return False # release > anything else
if not other.prerelease:
return True
for left, right in zip(self.prerelease, other.prerelease):
if left == right:
continue
if isinstance(left, int) and isinstance(right, int):
return left < right
if isinstance(left, int):
return True
if isinstance(right, int):
return False
return str(left) < str(right)
return len(self.prerelease) < len(other.prerelease)
def __eq__(self, other: object) -> bool: # pragma: no cover - trivial
if not isinstance(other, SemVer):
return NotImplemented
return (
self.major == other.major
and self.minor == other.minor
and self.patch == other.patch
and self.prerelease == other.prerelease
)
def parse_semver(raw: str) -> SemVer:
match = SEMVER_RE.match(raw)
if not match:
raise ValueError(f"Unsupported version format: {raw}")
prerelease = match.group("prerelease")
parts: Tuple[Union[int, str], ...] = ()
if prerelease:
parsed: List[Union[int, str]] = []
for piece in prerelease.split("."):
if piece.isdigit():
parsed.append(int(piece))
else:
parsed.append(piece)
parts = tuple(parsed)
return SemVer(
major=int(match.group("major")),
minor=int(match.group("minor")),
patch=int(match.group("patch")),
prerelease=parts,
)
@dataclass
class TagInfo:
tag: str # e.g. v1.0.0-beta.2
version: str # e.g. 1.0.0-beta.2
semver: SemVer
def run_command(cmd: Sequence[str]) -> str:
result = subprocess.run(cmd, capture_output=True, text=True, check=False)
if result.returncode != 0:
raise RuntimeError(
f"Command {' '.join(cmd)} failed with {result.returncode}: {result.stderr.strip()}"
)
return result.stdout.strip()
def fetch_remote_tags() -> List[TagInfo]:
output = run_command(
[
"gh",
"api",
"-X",
"GET",
f"repos/{LANCE_REPO}/git/refs/tags",
"--paginate",
"--jq",
".[].ref",
]
)
tags: List[TagInfo] = []
for line in output.splitlines():
ref = line.strip()
if not ref.startswith("refs/tags/v"):
continue
tag = ref.split("refs/tags/")[-1]
version = tag.lstrip("v")
try:
tags.append(TagInfo(tag=tag, version=version, semver=parse_semver(version)))
except ValueError:
continue
if not tags:
raise RuntimeError("No Lance tags could be parsed from GitHub API output")
return tags
def read_current_version(repo_root: Path) -> str:
cargo_path = repo_root / "Cargo.toml"
with cargo_path.open("rb") as fh:
data = tomllib.load(fh)
try:
deps = data["workspace"]["dependencies"]
entry = deps["lance"]
except KeyError as exc: # pragma: no cover - configuration guard
raise RuntimeError("Failed to locate workspace.dependencies.lance in Cargo.toml") from exc
if isinstance(entry, str):
raw_version = entry
elif isinstance(entry, dict):
raw_version = entry.get("version", "")
else: # pragma: no cover - defensive
raise RuntimeError("Unexpected lance dependency format")
raw_version = raw_version.strip()
if not raw_version:
raise RuntimeError("lance dependency does not declare a version")
return raw_version.lstrip("=")
def determine_latest_tag(tags: Iterable[TagInfo]) -> TagInfo:
return max(tags, key=lambda tag: tag.semver)
def write_outputs(args: argparse.Namespace, payload: dict) -> None:
target = getattr(args, "github_output", None)
if not target:
return
with open(target, "a", encoding="utf-8") as handle:
for key, value in payload.items():
handle.write(f"{key}={value}\n")
def main(argv: Sequence[str] | None = None) -> int:
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--repo-root",
default=Path(__file__).resolve().parents[1],
type=Path,
help="Path to the lancedb repository root",
)
parser.add_argument(
"--github-output",
default=os.environ.get("GITHUB_OUTPUT"),
help="Optional file path for writing GitHub Action outputs",
)
args = parser.parse_args(argv)
repo_root = Path(args.repo_root)
current_version = read_current_version(repo_root)
current_semver = parse_semver(current_version)
tags = fetch_remote_tags()
latest = determine_latest_tag(tags)
needs_update = latest.semver > current_semver
payload = {
"current_version": current_version,
"current_tag": f"v{current_version}",
"latest_version": latest.version,
"latest_tag": latest.tag,
"needs_update": "true" if needs_update else "false",
}
print(json.dumps(payload))
write_outputs(args, payload)
return 0
if __name__ == "__main__":
sys.exit(main())

View File

@@ -1,4 +0,0 @@
#!/usr/bin/env bash
export RUST_LOG=info
exec ./lancedb server --port 0 --sql-port 0 --data-dir "${1}"

View File

@@ -0,0 +1,27 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux_2_28_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user, but only if it doesn't exist
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -0,0 +1,13 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}
#Alpine doesn't have .bashrc
FILE=$HOME/.bashrc && test -f $FILE && source $FILE
cd node
npm ci
npm run build-release
npm run pack-build -- -t $TARGET_TRIPLE

View File

@@ -0,0 +1,15 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -0,0 +1,21 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 18
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,18 +0,0 @@
#!/usr/bin/env bash
#
# A script for running the given command together with a docker compose environment.
#
# Bring down the docker setup once the command is done running.
tear_down() {
docker compose -p fixture down
}
trap tear_down EXIT
set +xe
# Clean up any existing docker setup and bring up a new one.
docker compose -p fixture up --detach --wait || exit 1
"${@}"

View File

@@ -1,68 +0,0 @@
#!/usr/bin/env bash
#
# A script for running the given command together with the lancedb cli.
#
die() {
echo $?
exit 1
}
check_command_exists() {
command="${1}"
which ${command} &> /dev/null || \
die "Unable to locate command: ${command}. Did you install it?"
}
if [[ ! -e ./lancedb ]]; then
if [[ -v SOPHON_READ_TOKEN ]]; then
INPUT="lancedb-linux-x64"
gh release \
--repo lancedb/lancedb \
download ci-support-binaries \
--pattern "${INPUT}" \
|| die "failed to fetch cli."
check_command_exists openssl
openssl enc -aes-256-cbc \
-d -pbkdf2 \
-pass "env:SOPHON_READ_TOKEN" \
-in "${INPUT}" \
-out ./lancedb-linux-x64.tar.gz \
|| die "openssl failed"
TARGET="${INPUT}.tar.gz"
else
ARCH="x64"
if [[ $OSTYPE == 'darwin'* ]]; then
UNAME=$(uname -m)
if [[ $UNAME == 'arm64' ]]; then
ARCH='arm64'
fi
OSTYPE="macos"
elif [[ $OSTYPE == 'linux'* ]]; then
if [[ $UNAME == 'aarch64' ]]; then
ARCH='arm64'
fi
OSTYPE="linux"
else
die "unknown OSTYPE: $OSTYPE"
fi
check_command_exists gh
TARGET="lancedb-${OSTYPE}-${ARCH}.tar.gz"
gh release \
--repo lancedb/sophon \
download lancedb-cli-v0.0.3 \
--pattern "${TARGET}" \
|| die "failed to fetch cli."
fi
check_command_exists tar
tar xvf "${TARGET}" || die "tar failed."
[[ -e ./lancedb ]] || die "failed to extract lancedb."
fi
SCRIPT_DIR=$(dirname "$(readlink -f "$0")")
export CREATE_LANCEDB_TEST_CONNECTION_SCRIPT="${SCRIPT_DIR}/create_lancedb_test_connection.sh"
"${@}"

View File

@@ -1,294 +0,0 @@
import argparse
import re
import sys
import json
LANCE_GIT_URL = "https://github.com/lance-format/lance.git"
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
# Example output: "version: 0.35.0 (latest 0.37.0)"
match = re.search(r'\(latest ([0-9.]+)\)', version_line)
if match:
return match.group(1)
# Fallback: use the first version after 'version:'
return version_line.split("version:")[1].split()[0].strip()
def get_latest_preview_version() -> str:
lance_tags = run_command(
f"git ls-remote --tags {LANCE_GIT_URL} | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
if match:
features_str = match.group(1)
return [f.strip().strip('"') for f in features_str.split(",") if f.strip()]
return []
def extract_default_features(line: str) -> bool:
"""
Checks if default-features = false is present in a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"] }'
Returns: True if default-features = false is present, False otherwise
"""
import re
match = re.search(r'default-features\s*=\s*false', line)
return match is not None
def dict_to_toml_line(package_name: str, config: dict) -> str:
"""
Converts a configuration dictionary to a TOML dependency line.
Dictionary insertion order is preserved (Python 3.7+), so the caller
controls the order of fields in the output.
Args:
package_name: The name of the package (e.g., "lance", "lance-io")
config: Dictionary with keys like "version", "path", "git", "tag", "features", "default-features"
The order of keys in this dict determines the order in the output.
Returns:
A properly formatted TOML line with a trailing newline
"""
# If only version is specified, use simple format
if len(config) == 1 and "version" in config:
return f'{package_name} = "{config["version"]}"\n'
# Otherwise, use inline table format
parts = []
for key, value in config.items():
if key == "default-features" and not value:
parts.append("default-features = false")
elif key == "features":
parts.append(f'"features" = {json.dumps(value)}')
elif isinstance(value, str):
parts.append(f'"{key}" = "{value}"')
else:
# This shouldn't happen with our current usage
parts.append(f'"{key}" = {json.dumps(value)}')
return f'{package_name} = {{ {", ".join(parts)} }}\n'
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
lance_line = ""
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Check if this is a single-line or multi-line entry
# Single-line entries either:
# 1. End with } (complete inline table)
# 2. End with " (simple version string)
# Multi-line entries start with { but don't end with }
if line.strip().endswith("}") or line.strip().endswith('"'):
# Single-line entry - process immediately
new_lines.append(line_updater(line))
elif "{" in line and not line.strip().endswith("}"):
# Multi-line entry - start accumulating
lance_line = line
is_parsing_lance_line = True
else:
# Single-line entry without quotes or braces (shouldn't happen but handle it)
new_lines.append(line_updater(line))
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"] }
lance-io = { "version" = "=0.29.0", default-features = false }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: version, default-features, features
config = {"version": f"={version}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
config["features"] = features
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"], "tag" = "v0.29.0-beta.2", "git" = LANCE_GIT_URL }
lance-io = { "version" = "=0.29.0", default-features = false, "tag" = "v0.29.0-beta.2", "git" = LANCE_GIT_URL }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: version, default-features, features, tag, git
config = {"version": f"={version}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
config["features"] = features
config["tag"] = f"v{version}"
config["git"] = LANCE_GIT_URL
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { "path" = "../lance/rust/lance", default-features = false, "features" = ["dynamodb"] }
lance-io = { "path" = "../lance/rust/lance-io", default-features = false }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: path, default-features, features
config = {"path": f"../lance/rust/{package_name}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
config["features"] = features
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
def update_lockfiles(version: str, fallback_to_git: bool = False):
"""
Update Cargo metadata and optionally fall back to using the git tag if the
requested crates.io version is unavailable.
"""
try:
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)
except Exception as e:
if fallback_to_git and "failed to select a version" in str(e):
print(
f" failed for crates.io v{version}, retrying with git tag...",
file=sys.stderr,
)
set_preview_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)
else:
raise
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
update_lockfiles(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
update_lockfiles(latest_preview_version)
elif args.version == "local":
set_local_version()
update_lockfiles("local")
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
update_lockfiles(version)
else:
set_stable_version(version)
update_lockfiles(version, fallback_to_git=True)

View File

@@ -1,27 +0,0 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -1,8 +1,8 @@
# LanceDB Documentation
LanceDB docs are available at [lancedb.com/docs](https://lancedb.com/docs).
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
The SDK docs are built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.

View File

@@ -41,6 +41,7 @@ theme:
icon:
repo: fontawesome/brands/github
annotation: material/arrow-right-circle
custom_dir: overrides
plugins:
- search
@@ -48,9 +49,7 @@ plugins:
- mkdocstrings:
handlers:
python:
# Ensure the handler points to the real package root
# so it reads local sources at python/python/lancedb
paths: [../python/python]
paths: [../python]
options:
docstring_style: numpy
heading_level: 3
@@ -66,26 +65,11 @@ plugins:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- https://docs.pydantic.dev/latest/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations: true
# - redirects:
# redirect_maps:
# # Redirect the home page and other top-level markdown files. This enables maximum SEO benefit
# # other sub-pages are handled by the ingected js in overrides/partials/header.html
# 'index.md': 'https://lancedb.com/docs/'
# 'guides/tables.md': 'https://lancedb.com/docs/tables/'
# 'ann_indexes.md': 'https://lancedb.com/docs/indexing/'
# 'basic.md': 'https://lancedb.com/docs/quickstart/'
# 'faq.md': 'https://lancedb.com/docs/faq/'
# 'embeddings/understanding_embeddings.md': 'https://lancedb.com/docs/embedding/'
# 'integrations.md': 'https://lancedb.com/docs/integrations/'
# 'examples.md': 'https://lancedb.com/docs/tutorials/'
# 'concepts/vector_search.md': 'https://lancedb.com/docs/search/vector-search/'
# 'troubleshooting.md': 'https://lancedb.com/docs/troubleshooting/'
# 'guides/storage.md': 'https://lancedb.com/docs/storage/integrations'
markdown_extensions:
- admonition
@@ -119,11 +103,264 @@ markdown_extensions:
permalink: ""
nav:
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building a vector index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
- Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Document search Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Examples:
- examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference:
- Overview: index.md
- Overview: api_reference.md
- Python: python/python.md
- Javascript/TypeScript: js/globals.md
- Java: java/java.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/globals.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
extra_css:
@@ -131,6 +368,7 @@ extra_css:
- styles/extra.css
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
- "extra_js/reo.js"
extra:

View File

@@ -0,0 +1,176 @@
<!--
Copyright (c) 2016-2023 Martin Donath <martin.donath@squidfunk.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
-->
{% set class = "md-header" %}
{% if "navigation.tabs.sticky" in features %}
{% set class = class ~ " md-header--shadow md-header--lifted" %}
{% elif "navigation.tabs" not in features %}
{% set class = class ~ " md-header--shadow" %}
{% endif %}
<!-- Header -->
<header class="{{ class }}" data-md-component="header">
<nav
class="md-header__inner md-grid"
aria-label="{{ lang.t('header') }}"
>
<!-- Link to home -->
<a
href="{{ config.extra.homepage | d(nav.homepage.url, true) | url }}"
title="{{ config.site_name | e }}"
class="md-header__button md-logo"
aria-label="{{ config.site_name }}"
data-md-component="logo"
>
{% include "partials/logo.html" %}
</a>
<!-- Button to open drawer -->
<label class="md-header__button md-icon" for="__drawer">
{% include ".icons/material/menu" ~ ".svg" %}
</label>
<!-- Header title -->
<div class="md-header__title" style="width: auto !important;" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
{{ config.site_name }}
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
{% if page.meta and page.meta.title %}
{{ page.meta.title }}
{% else %}
{{ page.title }}
{% endif %}
</span>
</div>
</div>
</div>
<!-- Color palette -->
{% if config.theme.palette %}
{% if not config.theme.palette is mapping %}
<form class="md-header__option" data-md-component="palette">
{% for option in config.theme.palette %}
{% set scheme = option.scheme | d("default", true) %}
{% set primary = option.primary | d("indigo", true) %}
{% set accent = option.accent | d("indigo", true) %}
<input
class="md-option"
data-md-color-media="{{ option.media }}"
data-md-color-scheme="{{ scheme | replace(' ', '-') }}"
data-md-color-primary="{{ primary | replace(' ', '-') }}"
data-md-color-accent="{{ accent | replace(' ', '-') }}"
{% if option.toggle %}
aria-label="{{ option.toggle.name }}"
{% else %}
aria-hidden="true"
{% endif %}
type="radio"
name="__palette"
id="__palette_{{ loop.index }}"
/>
{% if option.toggle %}
<label
class="md-header__button md-icon"
title="{{ option.toggle.name }}"
for="__palette_{{ loop.index0 or loop.length }}"
hidden
>
{% include ".icons/" ~ option.toggle.icon ~ ".svg" %}
</label>
{% endif %}
{% endfor %}
</form>
{% endif %}
{% endif %}
<!-- Site language selector -->
{% if config.extra.alternate %}
<div class="md-header__option">
<div class="md-select">
{% set icon = config.theme.icon.alternate or "material/translate" %}
<button
class="md-header__button md-icon"
aria-label="{{ lang.t('select.language') }}"
>
{% include ".icons/" ~ icon ~ ".svg" %}
</button>
<div class="md-select__inner">
<ul class="md-select__list">
{% for alt in config.extra.alternate %}
<li class="md-select__item">
<a
href="{{ alt.link | url }}"
hreflang="{{ alt.lang }}"
class="md-select__link"
>
{{ alt.name }}
</a>
</li>
{% endfor %}
</ul>
</div>
</div>
</div>
{% endif %}
<!-- Button to open search modal -->
{% if "material/search" in config.plugins %}
<label class="md-header__button md-icon" for="__search">
{% include ".icons/material/magnify.svg" %}
</label>
<!-- Search interface -->
{% include "partials/search.html" %}
{% endif %}
<div style="margin-left: 10px; margin-right: 5px;">
<a href="https://discord.com/invite/zMM32dvNtd" target="_blank" rel="noopener noreferrer">
<svg fill="#FFFFFF" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 50 50" width="25px" height="25px"><path d="M 41.625 10.769531 C 37.644531 7.566406 31.347656 7.023438 31.078125 7.003906 C 30.660156 6.96875 30.261719 7.203125 30.089844 7.589844 C 30.074219 7.613281 29.9375 7.929688 29.785156 8.421875 C 32.417969 8.867188 35.652344 9.761719 38.578125 11.578125 C 39.046875 11.867188 39.191406 12.484375 38.902344 12.953125 C 38.710938 13.261719 38.386719 13.429688 38.050781 13.429688 C 37.871094 13.429688 37.6875 13.378906 37.523438 13.277344 C 32.492188 10.15625 26.210938 10 25 10 C 23.789063 10 17.503906 10.15625 12.476563 13.277344 C 12.007813 13.570313 11.390625 13.425781 11.101563 12.957031 C 10.808594 12.484375 10.953125 11.871094 11.421875 11.578125 C 14.347656 9.765625 17.582031 8.867188 20.214844 8.425781 C 20.0625 7.929688 19.925781 7.617188 19.914063 7.589844 C 19.738281 7.203125 19.34375 6.960938 18.921875 7.003906 C 18.652344 7.023438 12.355469 7.566406 8.320313 10.8125 C 6.214844 12.761719 2 24.152344 2 34 C 2 34.175781 2.046875 34.34375 2.132813 34.496094 C 5.039063 39.605469 12.972656 40.941406 14.78125 41 C 14.789063 41 14.800781 41 14.8125 41 C 15.132813 41 15.433594 40.847656 15.621094 40.589844 L 17.449219 38.074219 C 12.515625 36.800781 9.996094 34.636719 9.851563 34.507813 C 9.4375 34.144531 9.398438 33.511719 9.765625 33.097656 C 10.128906 32.683594 10.761719 32.644531 11.175781 33.007813 C 11.234375 33.0625 15.875 37 25 37 C 34.140625 37 38.78125 33.046875 38.828125 33.007813 C 39.242188 32.648438 39.871094 32.683594 40.238281 33.101563 C 40.601563 33.515625 40.5625 34.144531 40.148438 34.507813 C 40.003906 34.636719 37.484375 36.800781 32.550781 38.074219 L 34.378906 40.589844 C 34.566406 40.847656 34.867188 41 35.1875 41 C 35.199219 41 35.210938 41 35.21875 41 C 37.027344 40.941406 44.960938 39.605469 47.867188 34.496094 C 47.953125 34.34375 48 34.175781 48 34 C 48 24.152344 43.785156 12.761719 41.625 10.769531 Z M 18.5 30 C 16.566406 30 15 28.210938 15 26 C 15 23.789063 16.566406 22 18.5 22 C 20.433594 22 22 23.789063 22 26 C 22 28.210938 20.433594 30 18.5 30 Z M 31.5 30 C 29.566406 30 28 28.210938 28 26 C 28 23.789063 29.566406 22 31.5 22 C 33.433594 22 35 23.789063 35 26 C 35 28.210938 33.433594 30 31.5 30 Z"/></svg>
</a>
</div>
<div style="margin-left: 5px; margin-right: 5px;">
<a href="https://twitter.com/lancedb" target="_blank" rel="noopener noreferrer">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" viewBox="0,0,256,256" width="25px" height="25px" fill-rule="nonzero"><g fill-opacity="0" fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><path d="M0,256v-256h256v256z" id="bgRectangle"></path></g><g fill="#ffffff" fill-rule="nonzero" stroke="none" stroke-width="1" stroke-linecap="butt" stroke-linejoin="miter" stroke-miterlimit="10" stroke-dasharray="" stroke-dashoffset="0" font-family="none" font-weight="none" font-size="none" text-anchor="none" style="mix-blend-mode: normal"><g transform="scale(4,4)"><path d="M57,17.114c-1.32,1.973 -2.991,3.707 -4.916,5.097c0.018,0.423 0.028,0.847 0.028,1.274c0,13.013 -9.902,28.018 -28.016,28.018c-5.562,0 -12.81,-1.948 -15.095,-4.423c0.772,0.092 1.556,0.138 2.35,0.138c4.615,0 8.861,-1.575 12.23,-4.216c-4.309,-0.079 -7.946,-2.928 -9.199,-6.84c1.96,0.308 4.447,-0.17 4.447,-0.17c0,0 -7.7,-1.322 -7.899,-9.779c2.226,1.291 4.46,1.231 4.46,1.231c0,0 -4.441,-2.734 -4.379,-8.195c0.037,-3.221 1.331,-4.953 1.331,-4.953c8.414,10.361 20.298,10.29 20.298,10.29c0,0 -0.255,-1.471 -0.255,-2.243c0,-5.437 4.408,-9.847 9.847,-9.847c2.832,0 5.391,1.196 7.187,3.111c2.245,-0.443 4.353,-1.263 6.255,-2.391c-0.859,3.44 -4.329,5.448 -4.329,5.448c0,0 2.969,-0.329 5.655,-1.55z"></path></g></g></svg>
</a>
</div>
<!-- Repository information -->
{% if config.repo_url %}
<div class="md-header__source" style="margin-left: -5px !important;">
{% include "partials/source.html" %}
</div>
{% endif %}
</nav>
<!-- Navigation tabs (sticky) -->
{% if "navigation.tabs.sticky" in features %}
{% if "navigation.tabs" in features %}
{% include "partials/tabs.html" %}
{% endif %}
{% endif %}
</header>

12
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.21.2-beta.0",
"version": "0.12.0",
"cpu": [
"x64",
"arm64"
@@ -65,11 +65,11 @@
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
"@lancedb/vectordb-darwin-arm64": "0.12.0",
"@lancedb/vectordb-darwin-x64": "0.12.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.12.0",
"@lancedb/vectordb-linux-x64-gnu": "0.12.0",
"@lancedb/vectordb-win32-x64-msvc": "0.12.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",

View File

@@ -1,9 +1,7 @@
mkdocs==1.5.3
mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocs-autorefs<=1.0
mkdocstrings[python]==0.25.2
griffe
mkdocs-render-swagger-plugin
pydantic
mkdocs-redirects

307
docs/src/ann_indexes.md Normal file
View File

@@ -0,0 +1,307 @@
# Approximate Nearest Neighbor (ANN) Indexes
An ANN or a vector index is a data structure specifically designed to efficiently organize and
search vector data based on their similarity via the chosen distance metric.
By constructing a vector index, the search space is effectively narrowed down, avoiding the need
for brute-force scanning of the entire vector space.
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
## Disk-based Index
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works.
## Creating an IVF_PQ Index
Lance supports `IVF_PQ` index type by default.
=== "Python"
=== "Sync API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index"
```
=== "Async API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async"
```
=== "TypeScript"
=== "@lancedb/lancedb"
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
```
=== "vectordb (deprecated)"
Creating indexes is done via the [lancedb.Table.createIndex](../javascript/interfaces/Table.md/#createIndex) method.
```typescript
--8<--- "docs/src/ann_indexes.ts:import"
--8<-- "docs/src/ann_indexes.ts:ingest"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:create_index"
```
IVF_PQ index parameters are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/index/vector/struct.IvfPqIndexBuilder.html).
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`l2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
!!! note
In the synchronous python SDK and node's `vectordb` the default is 256. This default has
changed in the asynchronous python SDK and node's `lancedb`.
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
In the synchronous python SDK and node's `vectordb` the default is currently 96. This default has
changed in the asynchronous python SDK and node's `lancedb`.
<figure markdown>
![IVF PQ](./assets/ivf_pq.png)
<figcaption>IVF_PQ index with <code>num_partitions=2, num_sub_vectors=4</code></figcaption>
</figure>
### Use GPU to build vector index
Lance Python SDK has experimental GPU support for creating IVF index.
Using GPU for index creation requires [PyTorch>2.0](https://pytorch.org/) being installed.
You can specify the GPU device to train IVF partitions via
- **accelerator**: Specify to `cuda` or `mps` (on Apple Silicon) to enable GPU training.
=== "Linux"
<!-- skip-test -->
``` { .python .copy }
# Create index using CUDA on Nvidia GPUs.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="cuda"
)
```
=== "MacOS"
<!-- skip-test -->
```python
# Create index using MPS on Apple Silicon.
tbl.create_index(
num_partitions=256,
num_sub_vectors=96,
accelerator="mps"
)
```
!!! note
GPU based indexing is not yet supported with our asynchronous client.
Troubleshooting:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
## Querying an ANN Index
Querying vector indexes is done via the [search](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.search) function.
There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
```
```text
vector item _distance
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search1"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/ivf_pq.rs:search1"
```
Vector search options are more fully defined in the [crate docs](https://docs.rs/lancedb/latest/lancedb/query/struct.Query.html#method.nearest_to).
The search will return the data requested in addition to the distance of each item.
### Filtering (where clause)
You can further filter the elements returned by a search using a where clause.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
```
=== "vectordb (deprecated)"
```javascript
--8<-- "docs/src/ann_indexes.ts:search2"
```
### Projections (select clause)
You can select the columns returned by the query using a select clause.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
```
```text
vector _distance
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
...
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/ann_indexes.ts:search3"
```
## FAQ
### Why do I need to manually create an index?
Currently, LanceDB does _not_ automatically create the ANN index.
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
### When is it necessary to create an ANN vector index?
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity.
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**.
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency,
vector indices are usually not necessary.
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance.
### How big is my index, and how many memory will it take?
In LanceDB, all vector indices are **disk-based**, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
For example, with a 1024-dimension dataset, if we choose `num_sub_vectors=64`, each sub-vector has `1024 / 64 = 16` float32 numbers.
Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
### How to choose `num_partitions` and `num_sub_vectors` for `IVF_PQ` index?
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

54
docs/src/ann_indexes.ts Normal file
View File

@@ -0,0 +1,54 @@
// --8<-- [start:import]
import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
console.log("ann_indexes.ts: start");
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
let data = [];
for (let i = 0; i < 10_000; i++) {
data.push({
vector: Array(1536).fill(i),
id: `${i}`,
content: "",
longId: `${i}`,
});
}
const table = await db.createTable("my_vectors", data);
await table.createIndex({
type: "ivf_pq",
column: "vector",
num_partitions: 16,
num_sub_vectors: 48,
});
// --8<-- [end:ingest]
// --8<-- [start:search1]
const results_1 = await table
.search(Array(1536).fill(1.2))
.limit(2)
.nprobes(20)
.refineFactor(10)
.execute();
// --8<-- [end:search1]
// --8<-- [start:search2]
const results_2 = await table
.search(Array(1536).fill(1.2))
.where("id != '1141'")
.limit(2)
.execute();
// --8<-- [end:search2]
// --8<-- [start:search3]
const results_3 = await table
.search(Array(1536).fill(1.2))
.select(["id"])
.limit(2)
.execute();
// --8<-- [end:search3]
console.log("ann_indexes.ts: done");
})();

View File

@@ -0,0 +1,8 @@
# API Reference
The API reference for the LanceDB client SDKs are available at the following locations:
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.7 MiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 40 KiB

655
docs/src/basic.md Normal file
View File

@@ -0,0 +1,655 @@
# Quick start
!!! info "LanceDB can be run in a number of ways:"
* Embedded within an existing backend (like your Django, Flask, Node.js or FastAPI application)
* Directly from a client application like a Jupyter notebook for analytical workloads
* Deployed as a remote serverless database
![](assets/lancedb_embedded_explanation.png)
## Installation
=== "Python"
```shell
pip install lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb
```
!!! note "Bundling `@lancedb/lancedb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ '@lancedb/lancedb': '@lancedb/lancedb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell
npm install vectordb
```
!!! note "Bundling `vectordb` apps with Webpack"
Since LanceDB contains a prebuilt Node binary, you must configure `next.config.js` to exclude it from webpack. This is required for both using Next.js and deploying a LanceDB app on Vercel.
```javascript
/** @type {import('next').NextConfig} */
module.exports = ({
webpack(config) {
config.externals.push({ vectordb: 'vectordb' })
return config;
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust"
```shell
cargo add lancedb
```
!!! info "To use the lancedb create, you first need to install protobuf."
=== "macOS"
```shell
brew install protobuf
```
=== "Ubuntu/Debian"
```shell
sudo apt install -y protobuf-compiler libssl-dev
```
!!! info "Please also make sure you're using the same version of Arrow as in the [lancedb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
### Preview releases
Stable releases are created about every 2 weeks. For the latest features and bug
fixes, you can install the preview release. These releases receive the same
level of testing as stable releases, but are not guaranteed to be available for
more than 6 months after they are released. Once your application is stable, we
recommend switching to stable releases.
=== "Python"
```shell
pip install --pre --extra-index-url https://pypi.fury.io/lancedb/ lancedb
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```shell
npm install @lancedb/lancedb@preview
```
=== "vectordb (deprecated)"
```shell
npm install vectordb@preview
```
=== "Rust"
We don't push preview releases to crates.io, but you can referent the tag
in GitHub within your Cargo dependencies:
```toml
[dependencies]
lancedb = { git = "https://github.com/lancedb/lancedb.git", tag = "vX.Y.Z-beta.N" }
```
## Connect to a database
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.test.ts:connect"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:open_db"
```
=== "Rust"
```rust
#[tokio::main]
async fn main() -> Result<()> {
--8<-- "rust/lancedb/examples/simple.rs:connect"
}
```
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example."
LanceDB will create the directory if it doesn't exist (including parent directories).
If you need a reminder of the uri, you can call `db.uri()`.
## Create a table
### Create a table from initial data
If you have data to insert into the table at creation time, you can simultaneously create a
table and insert the data into it. The schema of the data will be used as the schema of the
table.
=== "Python"
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_table"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode:"overwrite"`
to the `createTable` function.
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_table"
```
If the table already exists, LanceDB will raise an error by default. See
[the mode option](https://docs.rs/lancedb/latest/lancedb/connection/struct.CreateTableBuilder.html#method.mode)
for details on how to overwrite (or open) existing tables instead.
!!! Providing table records in Rust
The Rust SDK currently expects data to be provided as an Arrow
[RecordBatchReader](https://docs.rs/arrow-array/latest/arrow_array/trait.RecordBatchReader.html)
Support for additional formats (such as serde or polars) is on the roadmap.
!!! info "Under the hood, LanceDB reads in the Apache Arrow data and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
!!! info "Automatic embedding generation with Embedding API"
When working with embedding models, it is recommended to use the LanceDB embedding API to automatically create vector representation of the data and queries in the background. See the [quickstart example](#using-the-embedding-api) or the embedding API [guide](./embeddings/)
### Create an empty table
Sometimes you may not have the data to insert into the table at creation time.
In this case, you can create an empty table and specify the schema, so that you can add
data to the table at a later time (as long as it conforms to the schema). This is
similar to a `CREATE TABLE` statement in SQL.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:create_empty_table"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table"
```
## Open an existing table
Once created, you can open a table as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:open_table"
```
=== "vectordb (deprecated)"
```typescript
const tbl = await db.openTable("myTable");
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:open_existing_tbl"
```
If you forget the name of your table, you can always get a listing of all table names:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:table_names"
```
=== "vectordb (deprecated)"
```typescript
console.log(await db.tableNames());
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:list_names"
```
## Add data to a table
After a table has been created, you can always add more data to it as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:add_data"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:add"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:add"
```
## Search for nearest neighbors
Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:vector_search"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:search"
```
=== "Rust"
```rust
use futures::TryStreamExt;
--8<-- "rust/lancedb/examples/simple.rs:search"
```
!!! Query vectors in Rust
Rust does not yet support automatic execution of embedding functions. You will need to
calculate embeddings yourself. Support for this is on the roadmap and can be tracked at
https://github.com/lancedb/lancedb/issues/994
Query vectors can be provided as Arrow arrays or a Vec/slice of Rust floats.
Support for additional formats (e.g. `polars::series::Series`) is on the roadmap.
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:create_index"
```
=== "vectordb (deprecated)"
```{.typescript .ignore}
--8<-- "docs/src/basic_legacy.ts:create_index"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:create_index"
```
!!! note "Why do I need to create an index manually?"
LanceDB does not automatically create the ANN index for two reasons. The first is that it's optimized
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
to fine-tune index size, query latency and accuracy. See the section on
[ANN indexes](ann_indexes.md) for more details.
## Delete rows from a table
Use the `delete()` method on tables to delete rows from a table. To choose
which rows to delete, provide a filter that matches on the metadata columns.
This can delete any number of rows that match the filter.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:delete"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:delete"
```
The deletion predicate is a SQL expression that supports the same expressions
as the `where()` clause (`only_if()` in Rust) on a search. They can be as
simple or complex as needed. To see what expressions are supported, see the
[SQL filters](sql.md) section.
=== "Python"
=== "Sync API"
Read more: [lancedb.table.Table.delete][]
=== "Async API"
Read more: [lancedb.table.AsyncTable.delete][]
=== "Typescript[^1]"
=== "@lancedb/lancedb"
Read more: [lancedb.Table.delete](javascript/interfaces/Table.md#delete)
=== "vectordb (deprecated)"
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
=== "Rust"
Read more: [lancedb::Table::delete](https://docs.rs/lancedb/latest/lancedb/table/struct.Table.html#method.delete)
## Drop a table
Use the `drop_table()` method on the database to remove a table.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
you can pass in `ignore_missing=True`.
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.test.ts:drop_table"
```
=== "vectordb (deprecated)"
```typescript
--8<-- "docs/src/basic_legacy.ts:drop_table"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
If the table does not exist an exception is raised.
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
```
## Using the Embedding API
You can use the embedding API when working with embedding models. It automatically vectorizes the data at ingestion and query time and comes with built-in integrations with popular embedding models like Openai, Hugging Face, Sentence Transformers, CLIP and more.
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Async API"
Coming soon to the async API.
https://github.com/lancedb/lancedb/issues/1938
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
## What's next
This section covered the very basics of using LanceDB. If you're learning about vector databases for the first time, you may want to read the page on [indexing](concepts/index_ivfpq.md) to get familiar with the concepts.
If you've already worked with other vector databases, you may want to read the [guides](guides/tables.md) to learn how to work with LanceDB in more detail.
[^1]: The `vectordb` package is a legacy package that is deprecated in favor of `@lancedb/lancedb`. The `vectordb` package will continue to receive bug fixes and security updates until September 2024. We recommend all new projects use `@lancedb/lancedb`. See the [migration guide](migration.md) for more information.

126
docs/src/basic_legacy.ts Normal file
View File

@@ -0,0 +1,126 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import {
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
const example = async () => {
fs.rmSync("data/sample-lancedb", { recursive: true, force: true });
// --8<-- [start:open_db]
const lancedb = require("vectordb");
const uri = "data/sample-lancedb";
const db = await lancedb.connect(uri);
// --8<-- [end:open_db]
// --8<-- [start:create_table]
const tbl = await db.createTable(
"myTable",
[
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite },
);
// --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
vector: [i, i + 1],
item: "fizz",
price: i * 0.1,
}));
await tbl.add(newData);
// --8<-- [end:add]
// --8<-- [start:create_index]
await tbl.createIndex({
type: "ivf_pq",
num_partitions: 2,
num_sub_vectors: 2,
});
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
{
// --8<-- [start:create_f16_table]
const dim = 16;
const total = 10;
const schema = new Schema([
new Field("id", new Int32()),
new Field(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random),
})),
{ schema },
);
const table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
}
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
// --8<-- [end:delete]
// --8<-- [start:drop_table]
await db.dropTable("myTable");
// --8<-- [end:drop_table]
};
async function main() {
console.log("basic_legacy.ts: start");
await example();
console.log("basic_legacy.ts: done");
}
main();

View File

@@ -0,0 +1,34 @@
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
### Should I reuse the database connection?
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should I re-use the `Table` object?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
### What should I do if I need to search for rows by `id`?
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
### When I add new rows to a table, do I need to manually update the index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
downtime expected.
### How do I know whether an index has been created?
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
### Why is my query latency higher than expected?
Multiple factors can impact query latency. To reduce query latency, consider the following:
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.

17
docs/src/cloud/index.md Normal file
View File

@@ -0,0 +1,17 @@
# About LanceDB Cloud
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud (Public Beta)](https://cloud.lancedb.com){ .md-button .md-button--primary }
## Architecture
LanceDB Cloud provides the same underlying fast vector store that powers the OSS version, but without the need to maintain your own infrastructure. Because it's serverless, you only pay for the storage you use, and you can scale compute up and down as needed depending on the size of your data and its associated index.
![](../assets/lancedb_cloud.png)
## Transitioning from the OSS to the Cloud version
The OSS version of LanceDB is designed to be embedded in your application, and it runs in-process. This makes it incredibly simple to self-host your own AI retrieval workflows for RAG and more and build and test out your concepts on your own infrastructure. The OSS version is forever free, and you can continue to build and integrate LanceDB into your existing backend applications without any added costs.
Should you decide that you need a managed deployment in production, it's possible to seamlessly transition from the OSS to the cloud version by changing the connection string to point to a remote database instead of a local one. With LanceDB Cloud, you can take your AI application from development to production without major code changes or infrastructure burden.

1
docs/src/cloud/rest.md Normal file
View File

@@ -0,0 +1 @@
!!swagger ../../openapi.yml!!

View File

@@ -0,0 +1,62 @@
# Data management
This section covers concepts related to managing your data over time in LanceDB.
## A primer on Lance
Because LanceDB is built on top of the [Lance](https://lancedb.github.io/lance/) data format, it helps to understand some of its core ideas. Just like Apache Arrow, Lance is a fast columnar data format, but it has the added benefit of being versionable, query and train ML models on. Lance is designed to be used with simple and complex data types, like tabular data, images, videos audio, 3D point clouds (which are deeply nested) and more.
The following concepts are important to keep in mind:
- Data storage is columnar and is interoperable with other columnar formats (such as Parquet) via Arrow
- Data is divided into fragments that represent a subset of the data
- Data is versioned, with each insert operation creating a new version of the dataset and an update to the manifest that tracks versions via metadata
!!! note
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
2. Second, these versions exist to keep LanceDB scalable and consistent. We do not immediately blow away old versions when creating new ones because other clients might be in the middle of querying the old version. It's important to retain older versions for as long as they might be queried.
## What are fragments?
Fragments are chunks of data in a Lance dataset. Each fragment includes multiple files that contain several columns in the chunk of data that it represents.
## Compaction
As you insert more data, your dataset will grow and you'll need to perform *compaction* to maintain query throughput (i.e., keep latencies down to a minimum). Compaction is the process of merging fragments together to reduce the amount of metadata that needs to be managed, and to reduce the number of files that need to be opened while scanning the dataset.
### How does compaction improve performance?
Compaction performs the following tasks in the background:
- Removes deleted rows from fragments
- Removes dropped columns from fragments
- Merges small fragments into larger ones
Depending on the use case and dataset, optimal compaction will have different requirements. As a rule of thumb:
- Its always better to use *batch* inserts rather than adding 1 row at a time (to avoid too small fragments). If single-row inserts are unavoidable, run compaction on a regular basis to merge them into larger fragments.
- Keep the number of fragments under 100, which is suitable for most use cases (for *really* large datasets of >500M rows, more fragments might be needed)
## Deletion
Although Lance allows you to delete rows from a dataset, it does not actually delete the data immediately. It simply marks the row as deleted in the `DataFile` that represents a fragment. For a given version of the dataset, each fragment can have up to one deletion file (if no rows were ever deleted from that fragment, it will not have a deletion file). This is important to keep in mind because it means that the data is still there, and can be recovered if needed, as long as that version still exists based on your backup policy.
## Reindexing
Reindexing is the process of updating the index to account for new data, keeping good performance for queries. This applies to either a full-text search (FTS) index or a vector index. For ANN search, new data will always be included in query results, but queries on tables with unindexed data will fallback to slower search methods for the new parts of the table. This is another important operation to run periodically as your data grows, as it also improves performance. This is especially important if you're appending large amounts of data to an existing dataset.
!!! tip
When adding new data to a dataset that has an existing index (either FTS or vector), LanceDB doesn't immediately update the index until a reindex operation is complete.
Both LanceDB OSS and Cloud support reindexing, but the process (at least for now) is different for each, depending on the type of index.
When a reindex job is triggered in the background, the entire data is reindexed, but in the interim as new queries come in, LanceDB will combine results from the existing index with exhaustive kNN search on the new data. This is done to ensure that you're still searching on all your data, but it does come at a performance cost. The more data that you add without reindexing, the impact on latency (due to exhaustive search) can be noticeable.
### Vector reindex
* LanceDB Cloud supports incremental reindexing, where a background process will trigger a new index build for you automatically when new data is added to a dataset
* LanceDB OSS requires you to manually trigger a reindex operation -- we are working on adding incremental reindexing to LanceDB OSS as well
### FTS reindex
FTS reindexing is supported in both LanceDB OSS and Cloud, but requires that it's manually rebuilt once you have a significant enough amount of new data added that needs to be reindexed. We [updated](https://github.com/lancedb/lancedb/pull/762) Tantivy's default heap size from 128MB to 1GB in LanceDB to make it much faster to reindex, by up to 10x from the default settings.

View File

@@ -0,0 +1,99 @@
# Understanding HNSW index
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, Its beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
[Jump to usage](#usage)
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
* Each vector in the dataset is given an associated vertex.
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
* For some applications (including nearest-neighbor search), the incoming edges are also added.
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
* Repeat until a local optimum is found.
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
In fact, another data structure is not needed: This can be done "incrementally".
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
## HNSW: Hierarchical Navigable Small Worlds
HNSW builds on k-ANN in two main ways:
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
This recursive structure can be thought of as separating into layers:
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
Then the greedy search routine operates as follows:
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index
```python
import lancedb
import numpy as np
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [
{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the HNSW index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(index_type=IVF_HNSW_SQ)
```
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.to_pandas()
```

View File

@@ -0,0 +1,86 @@
# Understanding LanceDB's IVF-PQ index
An ANN (Approximate Nearest Neighbors) index is a data structure that represents data in a way that makes it more efficient to search and retrieve. Using an ANN index is faster, but less accurate than kNN or brute force search because, in essence, the index is a lossy representation of the data.
LanceDB is fundamentally different from other vector databases in that it is built on top of [Lance](https://github.com/lancedb/lance), an open-source columnar data format designed for performant ML workloads and fast random access. Due to the design of Lance, LanceDB's indexing philosophy adopts a primarily *disk-based* indexing philosophy.
## IVF-PQ
IVF-PQ is a composite index that combines inverted file index (IVF) and product quantization (PQ). The implementation in LanceDB provides several parameters to fine-tune the index's size, query throughput, latency and recall, which are described later in this section.
### Product quantization
Quantization is a compression technique used to reduce the dimensionality of an embedding to speed up search.
Product quantization (PQ) works by dividing a large, high-dimensional vector of size into equally sized subvectors. Each subvector is assigned a "reproduction value" that maps to the nearest centroid of points for that subvector. The reproduction values are then assigned to a codebook using unique IDs, which can be used to reconstruct the original vector.
![](../assets/ivfpq_pq_desc.png)
It's important to remember that quantization is a *lossy process*, i.e., the reconstructed vector is not identical to the original vector. This results in a trade-off between the size of the index and the accuracy of the search results.
As an example, consider starting with 128-dimensional vector consisting of 32-bit floats. Quantizing it to an 8-bit integer vector with 4 dimensions as in the image above, we can significantly reduce memory requirements.
!!! example "Effect of quantization"
Original: `128 × 32 = 4096` bits
Quantized: `4 × 8 = 32` bits
Quantization results in a **128x** reduction in memory requirements for each vector in the index, which is substantial.
### Inverted file index
While PQ helps with reducing the size of the index, IVF primarily addresses search performance. The primary purpose of an inverted file index is to facilitate rapid and effective nearest neighbor search by narrowing down the search space.
In IVF, the PQ vector space is divided into *Voronoi cells*, which are essentially partitions that consist of all the points in the space that are within a threshold distance of the given region's seed point. These seed points are initialized by running K-means over the stored vectors. The centroids of K-means turn into the seed points which then each define a region. These regions are then are used to create an inverted index that correlates each centroid with a list of vectors in the space, allowing a search to be restricted to just a subset of vectors in the index.
![](../assets/ivfpq_ivf_desc.webp)
During query time, depending on where the query lands in vector space, it may be close to the border of multiple Voronoi cells, which could make the top-k results ambiguous and span across multiple cells. To address this, the IVF-PQ introduces the `nprobe` parameter, which controls the number of Voronoi cells to search during a query. The higher the `nprobe`, the more accurate the results, but the slower the query.
![](../assets/ivfpq_query_vector.webp)
## Putting it all together
We can combine the above concepts to understand how to build and query an IVF-PQ index in LanceDB.
### Construct index
There are three key parameters to set when constructing an IVF-PQ index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `num_partitions`: The number of partitions in the IVF portion of the index.
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
In Python, the index can be created as follows:
```python
# Create and train the index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="l2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
The above query will perform a search on the table `tbl` using the given query vector, with the following parameters:
* `limit`: The number of results to return
* `nprobes`: The number of probes determines the distribution of vector space. While a higher number enhances search accuracy, it also results in slower performance. Typically, setting `nprobes` to cover 510% of the dataset proves effective in achieving high recall with minimal latency.
* `refine_factor`: Refine the results by reading extra elements and re-ranking them in memory. A higher number makes the search more accurate but also slower (see the [FAQ](../faq.md#do-i-need-to-set-a-refine-factor-when-using-an-index) page for more details on this).
* `to_pandas()`: Convert the results to a pandas DataFrame
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.

View File

@@ -0,0 +1,80 @@
# Storage
LanceDB is among the only vector databases built on top of multiple modular components designed from the ground-up to be efficient on disk. This gives it the unique benefit of being flexible enough to support multiple storage backends, including local NVMe, EBS, EFS and many other third-party APIs that connect to the cloud.
It is important to understand the tradeoffs between cost and latency for your specific application and use case. This section will help you understand the tradeoffs between the different storage backends.
## Storage options
We've prepared a simple diagram to showcase the thought process that goes into choosing a storage backend when using LanceDB OSS, Cloud or Enterprise.
![](../assets/lancedb_storage_tradeoffs.png)
When architecting your system, you'd typically ask yourself the following questions to decide on a storage option:
1. **Latency**: How fast do I need results? What do the p50 and also p95 look like?
2. **Scalability**: Can I scale up the amount of data and QPS easily?
3. **Cost**: To serve my application, whats the all-in cost of *both* storage and serving infra?
4. **Reliability/Availability**: How does replication work? Is disaster recovery addressed?
## Tradeoffs
This section reviews the characteristics of each storage option in four dimensions: latency, scalability, cost and reliability.
**We begin with the lowest cost option, and end with the lowest latency option.**
### 1. S3 / GCS / Azure Blob Storage
!!! tip "Lowest cost, highest latency"
- **Latency** ⇒ Has the highest latency. p95 latency is also substantially worse than p50. In general you get results in the order of several hundred milliseconds
- **Scalability** ⇒ Infinite on storage, however, QPS will be limited by S3 concurrency limits
- **Cost** ⇒ Lowest (order of magnitude cheaper than other options)
- **Reliability/Availability** ⇒ Highly available, as blob storage like S3 are critical infrastructure that form the backbone of the internet.
Another important point to note is that LanceDB is designed to separate storage from compute, and the underlying Lance format stores the data in numerous immutable fragments. Due to these factors, LanceDB is a great storage option that addresses the _N + 1_ query problem. i.e., when a high query throughput is required, query processes can run in a stateless manner and be scaled up and down as needed.
### 2. EFS / GCS Filestore / Azure File Storage
!!! info "Moderately low cost, moderately low latency (<100ms)"
- **Latency** Much better than object/blob storage but not as good as EBS/Local disk; < 100ms p95 achievable
- **Scalability** High, but the bottleneck will be the IOPs limit, but when scaling you can provision multiple EFS volumes
- **Cost** Significantly more expensive than S3 but still very cost effective compared to in-memory dbs. Inactive data in EFS is also automatically tiered to S3-level costs.
- **Reliability/Availability** Highly available, as query nodes can go down without affecting EFS. However, EFS does not provide replication / backup - this must be managed manually.
A recommended best practice is to keep a copy of the data on S3 for disaster recovery scenarios. If any downtime is unacceptable, then you would need another EFS with a copy of the data. This is still much cheaper than EC2 instances holding multiple copies of the data.
### 3. Third-party storage solutions
Solutions like [MinIO](https://blog.min.io/lancedb-trusted-steed-against-data-complexity/), WekaFS, etc. that deliver S3 compatible API with much better performance than S3.
!!! info "Moderately low cost, moderately low latency (<100ms)"
- **Latency** Should be similar latency to EFS, better than S3 (<100ms)
- **Scalability** Up to the solutions architect, who can add as many nodes to their MinIO or other third-party provider's cluster as needed
- **Cost** Definitely higher than S3. The cost can be marginally higher than EFS until you get to maybe >10TB scale with high utilization
- **Reliability/Availability** ⇒ These are all shareable by lots of nodes, quality/cost of replication/backup depends on the vendor
### 4. EBS / GCP Persistent Disk / Azure Managed Disk
!!! info "Very low latency (<30ms), higher cost"
- **Latency** Very good, pretty close to local disk. Youre looking at <30ms latency in most cases
- **Scalability** EBS is not shareable between instances. If deployed via k8s, it can be shared between pods that live on the same instance, but beyond that you would need to shard data or make an additional copy
- **Cost** Higher than EFS. There are some hidden costs to EBS as well if youre paying for IO.
- **Reliability/Availability** Not shareable between instances but can be shared between pods on the same instance. Survives instance termination. No automatic backups.
Just like EFS, an EBS or persistent disk setup requires more manual work to manage data sharding, backups and capacity.
### 5. Local disk (SSD/NVMe)
!!! danger "Lowest latency (<10ms), highest cost"
- **Latency** Lowest latency with modern NVMe drives, <10ms p95
- **Scalability** Difficult to scale on cloud. Also need additional copies / sharding if QPS needs to be higher
- **Cost** Highest cost; the main issue with keeping your application and storage tightly integrated is that its just not really possible to scale this up in cloud environments
- **Reliability/Availability** If the instance goes down, so does your data. You have to be _very_ diligent about backing up your data
As a rule of thumb, local disk should be your storage option if you require absolutely *crazy low* latency and youre willing to do a bunch of data management work to make it happen.

View File

@@ -0,0 +1,36 @@
# Vector search
Vector search is a technique used to search for similar items based on their vector representations, called embeddings. It is also known as similarity search, nearest neighbor search, or approximate nearest neighbor search.
Raw data (e.g. text, images, audio, etc.) is converted into embeddings via an embedding model, which are then stored in a vector database like LanceDB. To perform similarity search at scale, an index is created on the stored embeddings, which can then used to perform fast lookups.
![](../assets/vector-db-basics.png)
## Embeddings
Modern machine learning models can be trained to convert raw data into embeddings, represented as arrays (or vectors) of floating point numbers of fixed dimensionality. What makes embeddings useful in practice is that the position of an embedding in vector space captures some of the semantics of the data, depending on the type of model and how it was trained. Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar.
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model. Projecting the vectors' principal components in 2D space results in groups of vectors that represent similar concepts clustering together, as shown below.
![](../assets/embedding_intro.png)
## Indexes
Embeddings for a given dataset are made searchable via an **index**. The index is constructed by using data structures that store the embeddings such that it's very efficient to perform scans and lookups on them. A key distinguishing feature of LanceDB is it uses a disk-based index: IVF-PQ, which is a variant of the Inverted File Index (IVF) that uses Product Quantization (PQ) to compress the embeddings.
See the [IVF-PQ](./index_ivfpq.md) page for more details on how it works.
## Brute force search
The simplest way to perform vector search is to perform a brute force search, without an index, where the distance between the query vector and all the vectors in the database are computed, with the top-k closest vectors returned. This is equivalent to a k-nearest neighbours (kNN) search in vector space.
![](../assets/knn_search.png)
As you can imagine, the brute force approach is not scalable for datasets larger than a few hundred thousand vectors, as the latency of the search grows linearly with the size of the dataset. This is where approximate nearest neighbour (ANN) algorithms come in.
## Approximate nearest neighbour (ANN) search
Instead of performing an exhaustive search on the entire database for each and every query, approximate nearest neighbour (ANN) algorithms use an index to narrow down the search space, which significantly reduces query latency. The trade-off is that the results are not guaranteed to be the true nearest neighbors of the query, but are usually "good enough" for most use cases.

View File

@@ -0,0 +1,67 @@
# Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -0,0 +1,51 @@
# Jina Embeddings : Multimodal
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -0,0 +1,82 @@
# OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```

View File

@@ -0,0 +1,51 @@
# AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -0,0 +1,63 @@
# Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
- embed-english-v3.0
- embed-multilingual-v3.0
- embed-english-light-v3.0
- embed-multilingual-light-v3.0
- embed-english-v2.0
- embed-english-light-v2.0
- embed-multilingual-v2.0
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,35 @@
# Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -0,0 +1,24 @@
# Huggingface embedding models
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,75 @@
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```

View File

@@ -0,0 +1,50 @@
# Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```

View File

@@ -0,0 +1,39 @@
# Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,37 @@
# Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,35 @@
# OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,174 @@
# Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.

View File

@@ -0,0 +1,51 @@
# VoyageAI Embeddings
Voyage AI provides cutting-edge embedding and rerankers.
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
Supported models are:
- voyage-3
- voyage-3-lite
- voyage-finance-2
- voyage-multilingual-2
- voyage-law-2
- voyage-code-2
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,248 @@
To use your own custom embedding function, you can follow these 2 simple steps:
1. Create your embedding function by implementing the `EmbeddingFunction` interface
2. Register your embedding function in the global `EmbeddingFunctionRegistry`.
Let us see how this looks like in action.
![](../assets/embeddings_api.png)
`EmbeddingFunction` and `EmbeddingFunctionRegistry` handle low-level details for serializing schema and model information as metadata. To build a custom embedding function, you don't have to worry about the finer details - simply focus on setting up the model and leave the rest to LanceDB.
## `TextEmbeddingFunction` interface
There is another optional layer of abstraction available: `TextEmbeddingFunction`. You can use this abstraction if your model isn't multi-modal in nature and only needs to operate on text. In such cases, both the source and vector fields will have the same work for vectorization, so you simply just need to setup the model and rest is handled by `TextEmbeddingFunction`. You can read more about the class and its attributes in the class reference.
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
=== "Python"
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
!!! danger "Use sensitive keys to prevent leaking secrets"
To prevent leaking secrets, such as API keys, you should add any sensitive
parameters of an embedding function to the output of the
[sensitive_keys()][lancedb.embeddings.base.EmbeddingFunction.sensitive_keys] /
[getSensitiveKeys()](../../js/namespaces/embedding/classes/EmbeddingFunction/#getsensitivekeys)
method. This prevents users from accidentally instantiating the embedding
function with hard-coded secrets.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
=== "Python"
```python
from lancedb.pydantic import LanceModel, Vector
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl = db.create_table("table", schema=TextModelSchema)
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
```
!!! note
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
=== "Python"
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
=== "TypeScript"
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!

View File

@@ -0,0 +1,86 @@
# 📚 Available Embedding Models
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. 🚀
Before jumping on the list of available models, let's understand how to get an embedding model initialized and configured to use in our code:
!!! example "Example usage"
```python
model = get_registry()
.get("openai")
.create(name="text-embedding-ada-002")
```
Now let's understand the above syntax:
```python
model = get_registry().get("model_id").create(...params)
```
**This👆 line effectively creates a configured instance of an `embedding function` with `model` of choice that is ready for use.**
- `get_registry()` : This function call returns an instance of a `EmbeddingFunctionRegistry` object. This registry manages the registration and retrieval of embedding functions.
- `.get("model_id")` : This method call on the registry object and retrieves the **embedding models functions** associated with the `"model_id"` (1) .
{ .annotate }
1. Hover over the names in table below to find out the `model_id` of different embedding functions.
- `.create(...params)` : This method call is on the object returned by the `get` method. It instantiates an embedding model function using the **specified parameters**.
??? question "What parameters does the `.create(...params)` method accepts?"
**Checkout the documentation of specific embedding models (links in the table below👇) to know what parameters it takes**.
!!! tip "Moving on"
Now that we know how to get the **desired embedding model** and use it in our code, let's explore the comprehensive **list** of embedding models **supported by LanceDB**, in the tables below.
## Text Embedding Functions 📝
These functions are registered by default to handle text embeddings.
- 🔄 **Embedding functions** have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with **exponential backoff**.
- 🌕 Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
🌟 **Available Text Embeddings**
| **Embedding** :material-information-outline:{ title="Hover over the name to find out the model_id" } | **Description** | **Documentation** |
|-----------|-------------|---------------|
| [**Sentence Transformers**](available_embedding_models/text_embedding_functions/sentence_transformers.md "sentence-transformers") | 🧠 **SentenceTransformers** is a Python framework for state-of-the-art sentence, text, and image embeddings. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/sbert_2.png" alt="Sentence Transformers Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/sentence_transformers.md)|
| [**Huggingface Models**](available_embedding_models/text_embedding_functions/huggingface_embedding.md "huggingface") |🤗 We offer support for all **Huggingface** models. The default model is `colbert-ir/colbertv2.0`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/hugging_face.png" alt="Huggingface Icon" width="130" height="35">](available_embedding_models/text_embedding_functions/huggingface_embedding.md) |
| [**Ollama Embeddings**](available_embedding_models/text_embedding_functions/ollama_embedding.md "ollama") | 🔍 Generate embeddings via the **Ollama** python library. Ollama supports embedding models, making it possible to build RAG apps. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/Ollama.png" alt="Ollama Icon" width="110" height="35">](available_embedding_models/text_embedding_functions/ollama_embedding.md)|
| [**OpenAI Embeddings**](available_embedding_models/text_embedding_functions/openai_embedding.md "openai")| 🔑 **OpenAIs** text embeddings measure the relatedness of text strings. **LanceDB** supports state-of-the-art embeddings from OpenAI. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openai.png" alt="OpenAI Icon" width="100" height="35">](available_embedding_models/text_embedding_functions/openai_embedding.md)|
| [**Instructor Embeddings**](available_embedding_models/text_embedding_functions/instructor_embedding.md "instructor") | 📚 **Instructor**: An instruction-finetuned text embedding model that can generate text embeddings tailored to any task and domains by simply providing the task instruction, without any finetuning. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/instructor_embedding.png" alt="Instructor Embedding Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/instructor_embedding.md) |
| [**Gemini Embeddings**](available_embedding_models/text_embedding_functions/gemini_embedding.md "gemini-text") | 🌌 Googles Gemini API generates state-of-the-art embeddings for words, phrases, and sentences. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/gemini.png" alt="Gemini Icon" width="95" height="35">](available_embedding_models/text_embedding_functions/gemini_embedding.md) |
| [**Cohere Embeddings**](available_embedding_models/text_embedding_functions/cohere_embedding.md "cohere") | 💬 This will help you get started with **Cohere** embedding models using LanceDB. Using cohere API requires cohere package. Install it via `pip`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/cohere.png" alt="Cohere Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/cohere_embedding.md) |
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
[st-key]: "sentence-transformers"
[hf-key]: "huggingface"
[ollama-key]: "ollama"
[openai-key]: "openai"
[instructor-key]: "instructor"
[gemini-key]: "gemini-text"
[cohere-key]: "cohere"
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
## Multi-modal Embedding Functions🖼
Multi-modal embedding functions allow you to query your table using both images and text. 💬🖼️
🌐 **Available Multi-modal Embeddings**
| Embedding :material-information-outline:{ title="Hover over the name to find out the model_id" } | Description | Documentation |
|-----------|-------------|---------------|
| [**OpenClip Embeddings**](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md "open-clip") | 🎨 We support CLIP model embeddings using the open source alternative, **open-clip** which supports various customizations. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openclip_github.png" alt="openclip Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md) |
| [**Imagebind Embeddings**](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md "imageind") | 🌌 We have support for **imagebind model embeddings**. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/imagebind_meta.png" alt="imagebind Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md)|
| [**Jina Multi-modal Embeddings**](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md "jina") | 🔗 **Jina embeddings** can also be used to embed both **text** and **image** data, only some of the models support image data and you can check the detailed documentation. 👉 | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="jina Icon" width="90" height="35">](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md) |
!!! note
If you'd like to request support for additional **embedding functions**, please feel free to open an issue on our LanceDB [GitHub issue page](https://github.com/lancedb/lancedb/issues).

View File

@@ -0,0 +1,206 @@
Representing multi-modal data as vector embeddings is becoming a standard practice. Embedding functions can themselves be thought of as key part of the data processing pipeline that each request has to be passed through. The assumption here is: after initial setup, these components and the underlying methodology are not expected to change for a particular project.
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "Embedding functions on LanceDB cloud"
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
However, if your embedding function changes, you'll have to re-configure your table with the new embedding function
and regenerate the embeddings. In the future, we plan to support the ability to change the embedding function via
table metadata and have LanceDB automatically take care of regenerating the embeddings.
## 1. Define the embedding function
=== "Python"
In the LanceDB python SDK, we define a global embedding function registry with
many different embedding models and even more coming soon.
Here's let's an implementation of CLIP as example.
```python
from lancedb.embeddings import get_registry
registry = get_registry()
clip = registry.get("open-clip").create()
```
You can also define your own embedding function by implementing the `EmbeddingFunction`
abstract base interface. It subclasses Pydantic Model which can be utilized to write complex schemas simply as we'll see next!
=== "TypeScript"
In the TypeScript SDK, the choices are more limited. For now, only the OpenAI
embedding function is available.
```javascript
import * as lancedb from '@lancedb/lancedb'
import { getRegistry } from '@lancedb/lancedb/embeddings'
// You need to provide an OpenAI API key
const apiKey = "sk-..."
// The embedding function will create embeddings for the 'text' column
const func = getRegistry().get("openai").create({apiKey})
```
=== "Rust"
In the Rust SDK, the choices are more limited. For now, only the OpenAI
embedding function is available. But unlike the Python and TypeScript SDKs, you need manually register the OpenAI embedding function.
```toml
// Make sure to include the `openai` feature
[dependencies]
lancedb = {version = "*", features = ["openai"]}
```
```rust
--8<-- "rust/lancedb/examples/openai.rs:imports"
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
## 2. Define the data model or schema
=== "Python"
The embedding function defined above abstracts away all the details about the models and dimensions required to define the schema. You can simply set a field as **source** or **vector** column. Here's how:
```python
class Pets(LanceModel):
vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField()
```
`VectorField` tells LanceDB to use the clip embedding function to generate query embeddings for the `vector` column and `SourceField` ensures that when adding data, we automatically use the specified embedding function to encode `image_uri`.
=== "TypeScript"
For the TypeScript SDK, a schema can be inferred from input data, or an explicit
Arrow schema can be provided.
## 3. Create table and add data
Now that we have chosen/defined our embedding function and the schema,
we can create the table and ingest data without needing to explicitly generate
the embeddings at all:
=== "Python"
```python
db = lancedb.connect("~/lancedb")
table = db.create_table("pets", schema=Pets)
table.add([{"image_uri": u} for u in uris])
```
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
```
=== "vectordb (deprecated)"
```ts
const db = await lancedb.connect("data/sample-lancedb");
const data = [
{ text: "pepperoni"},
{ text: "pineapple"}
]
const table = await db.createTable("vectors", data, embedding)
```
## 4. Querying your table
Not only can you forget about the embeddings during ingestion, you also don't
need to worry about it when you query the table:
=== "Python"
Our OpenCLIP query embedding function supports querying via both text and images:
```python
results = (
table.search("dog")
.limit(10)
.to_pandas()
)
```
Or we can search using an image:
```python
p = Path("path/to/images/samoyed_100.jpg")
query_image = Image.open(p)
results = (
table.search(query_image)
.limit(10)
.to_pandas()
)
```
Both of the above snippet returns a pandas DataFrame with the 10 closest vectors to the query.
=== "TypeScript"
=== "@lancedb/lancedb"
```ts
const results = await table.search("What's the best pizza topping?")
.limit(10)
.toArray()
```
=== "vectordb (deprecated)"
```ts
const results = await table
.search("What's the best pizza topping?")
.limit(10)
.execute()
```
The above snippet returns an array of records with the top 10 nearest neighbors to the query.
---
## Rate limit Handling
`EmbeddingFunction` class wraps the calls for source and query embedding generation inside a rate limit handler that retries the requests with exponential backoff after successive failures. By default, the maximum retires is set to 7. You can tune it by setting it to a different number, or disable it by setting it to 0.
An example of how to do this is shown below:
```python
clip = registry.get("open-clip").create() # Defaults to 7 max retries
clip = registry.get("open-clip").create(max_retries=10) # Increase max retries to 10
clip = registry.get("open-clip").create(max_retries=0) # Retries disabled
```
!!! note
Embedding functions can also fail due to other errors that have nothing to do with rate limits.
This is why the error is also logged.
## Some fun with Pydantic
LanceDB is integrated with Pydantic, which was used in the example above to define the schema in Python. It's also used behind the scenes by the embedding function API to ingest useful information as table metadata.
You can also use the integration for adding utility operations in the schema. For example, in our multi-modal example, you can search images using text or another image. Let's define a utility function to plot the image.
```python
class Pets(LanceModel):
vector: Vector(clip.ndims()) = clip.VectorField()
image_uri: str = clip.SourceField()
@property
def image(self):
return Image.open(self.image_uri)
```
Now, you can covert your search results to a Pydantic model and use this property.
```python
rs = table.search(query_image).limit(3).to_pydantic(Pets)
rs[2].image
```
![](../assets/dog_clip_output.png)
Now that you have the basic idea about LanceDB embedding functions and the embedding function registry,
let's dive deeper into defining your own [custom functions](./custom_embedding_function.md).

View File

@@ -0,0 +1,132 @@
Due to the nature of vector embeddings, they can be used to represent any kind of data, from text to images to audio.
This makes them a very powerful tool for machine learning practitioners.
However, there's no one-size-fits-all solution for generating embeddings - there are many different libraries and APIs
(both commercial and open source) that can be used to generate embeddings from structured/unstructured data.
LanceDB supports 3 methods of working with embeddings.
1. You can manually generate embeddings for the data and queries. This is done outside of LanceDB.
2. You can use the built-in [embedding functions](./embedding_functions.md) to embed the data and queries in the background.
3. You can define your own [custom embedding function](./custom_embedding_function.md)
that extends the default embedding functions.
For python users, there is also a legacy [with_embeddings API](./legacy.md).
It is retained for compatibility and will be removed in a future version.
## Quickstart
To get started with embeddings, you can use the built-in embedding functions.
### OpenAI Embedding function
LanceDB registers the OpenAI embeddings function in the registry as `openai`. You can pass any supported model name to the `create`. By default it uses `"text-embedding-ada-002"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
```rust
--8<--- "rust/lancedb/examples/openai.rs:imports"
--8<--- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
### Sentence Transformers Embedding function
LanceDB registers the Sentence Transformers embeddings function in the registry as `sentence-transformers`. You can pass any supported model name to the `create`. By default it uses `"sentence-transformers/paraphrase-MiniLM-L6-v2"`.
=== "Python"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
=== "TypeScript"
Coming Soon!
=== "Rust"
Coming Soon!
### Embedding function with LanceDB cloud
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
os.environ['OPENAI_API_KEY'] = "..."
db = lancedb.connect(
uri="db://....",
api_key="sk_...",
region="us-east-1"
)
func = get_registry().get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words)
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,99 @@
The legacy `with_embeddings` API is for Python only and is deprecated.
### Hugging Face
The most popular open source option is to use the [sentence-transformers](https://www.sbert.net/)
library, which can be installed via pip.
```bash
pip install sentence-transformers
```
The example below shows how to use the `paraphrase-albert-small-v2` model to generate embeddings
for a given document.
```python
from sentence_transformers import SentenceTransformer
name="paraphrase-albert-small-v2"
model = SentenceTransformer(name)
# used for both training and querying
def embed_func(batch):
return [model.encode(sentence) for sentence in batch]
```
### OpenAI
Another popular alternative is to use an external API like OpenAI's [embeddings API](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings).
```python
import openai
import os
# Configuring the environment variable OPENAI_API_KEY
if "OPENAI_API_KEY" not in os.environ:
# OR set the key here as a variable
openai.api_key = "sk-..."
client = openai.OpenAI()
def embed_func(c):
rs = client.embeddings.create(input=c, model="text-embedding-ada-002")
return [record.embedding for record in rs["data"]]
```
## Applying an embedding function to data
Using an embedding function, you can apply it to raw data
to generate embeddings for each record.
Say you have a pandas DataFrame with a `text` column that you want embedded,
you can use the `with_embeddings` function to generate embeddings and add them to
an existing table.
```python
import pandas as pd
from lancedb.embeddings import with_embeddings
df = pd.DataFrame(
[
{"text": "pepperoni"},
{"text": "pineapple"}
]
)
data = with_embeddings(embed_func, df)
# The output is used to create / append to a table
tbl = db.create_table("my_table", data=data)
```
If your data is in a different column, you can specify the `column` kwarg to `with_embeddings`.
By default, LanceDB calls the function with batches of 1000 rows. This can be configured
using the `batch_size` parameter to `with_embeddings`.
LanceDB automatically wraps the function with retry and rate-limit logic to ensure the OpenAI
API call is reliable.
## Querying using an embedding function
!!! warning
At query time, you **must** use the same embedding function you used to vectorize your data.
If you use a different embedding function, the embeddings will not reside in the same vector
space and the results will be nonsensical.
=== "Python"
```python
query = "What's the best pizza topping?"
query_vector = embed_func([query])[0]
results = (
tbl.search(query_vector)
.limit(10)
.to_pandas()
)
```
The above snippet returns a pandas DataFrame with the 10 closest vectors to the query.

View File

@@ -0,0 +1,133 @@
# Understand Embeddings
The term **dimension** is a synonym for the number of elements in a feature vector. Each feature can be thought of as a different axis in a geometric space.
High-dimensional data means there are many features(or attributes) in the data.
!!! example
1. An image is a data point and it might have thousands of dimensions because each pixel could be considered as a feature.
2. Text data, when represented by each word or character, can also lead to high dimensions, especially when considering all possible words in a language.
Embedding captures **meaning and relationships** within data by mapping high-dimensional data into a lower-dimensional space. It captures it by placing inputs that are more **similar in meaning** closer together in the **embedding space**.
## What are Vector Embeddings?
Vector embeddings is a way to convert complex data, like text, images, or audio into numerical coordinates (called vectors) that can be plotted in an n-dimensional space(embedding space).
The closer these data points are related in the real world, the closer their corresponding numerical coordinates (vectors) will be to each other in the embedding space. This proximity in the embedding space reflects their semantic similarities, allowing machines to intuitively understand and process the data in a way that mirrors human perception of relationships and meaning.
In a way, it captures the most important aspects of the data while ignoring the less important ones. As a result, tasks like searching for related content or identifying patterns become more efficient and accurate, as the embeddings make it possible to quantify how **closely related** different **data points** are and **reduce** the **computational complexity**.
??? question "Are vectors and embeddings the same thing?"
When we say “vectors” we mean - **list of numbers** that **represents the data**.
When we say “embeddings” we mean - **list of numbers** that **capture important details and relationships**.
Although the terms are often used interchangeably, “embeddings” highlight how the data is represented with meaning and structure, while “vector” simply refers to the numerical form of that representation.
## Embedding vs Indexing
We already saw that creating **embeddings** on data is a method of creating **vectors** for a **n-dimensional embedding space** that captures the meaning and relationships inherent in the data.
Once we have these **vectors**, indexing comes into play. Indexing is a method of organizing these vector embeddings, that allows us to quickly and efficiently locate and retrieve them from the entire dataset of vector embeddings.
## What types of data/objects can be embedded?
The following are common types of data that can be embedded:
1. **Text**: Text data includes sentences, paragraphs, documents, or any written content.
2. **Images**: Image data encompasses photographs, illustrations, or any visual content.
3. **Audio**: Audio data includes sounds, music, speech, or any auditory content.
4. **Video**: Video data consists of moving images and sound, which can convey complex information.
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model.
!!! tip "LanceDB vs Other traditional Vector DBs"
While many vector databases primarily focus on the storage and retrieval of vector embeddings, **LanceDB** uses **Lance file format** (operates on a disk-based architecture), which allows for the storage and management of not just embeddings but also **raw file data (bytes)**. This capability means that users can integrate various types of data, including images and text, alongside their vector embeddings in a unified system.
With the ability to store both vectors and associated file data, LanceDB enhances the querying process. Users can perform semantic searches that not only retrieve similar embeddings but also access related files and metadata, thus streamlining the workflow.
## How does embedding works?
As mentioned, after creating embedding, each data point is represented as a vector in a n-dimensional space (embedding space). The dimensionality of this space can vary depending on the complexity of the data and the specific embedding technique used.
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
1. **Euclidean Distance (l2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.
## How do you create and store vector embeddings for your data?
1. **Creating embeddings**: Choose an embedding model, it can be a pre-trained model (open-source or commercial) or you can train a custom embedding model for your scenario. Then feed your preprocessed data into the chosen model to obtain embeddings.
??? question "Popular choices for embedding models"
For text data, popular choices are OpenAIs text-embedding models, Google Gemini text-embedding models, Coheres Embed models, and SentenceTransformers, etc.
For image data, popular choices are CLIP (Contrastive LanguageImage Pretraining), Imagebind embeddings by meta (supports audio, video, and image), and Jina multi-modal embeddings, etc.
2. **Storing vector embeddings**: This effectively requires **specialized databases** that can handle the complexity of vector data, as traditional databases often struggle with this task. Vector databases are designed specifically for storing and querying vector embeddings. They optimize for efficient nearest-neighbor searches and provide built-in indexing mechanisms.
!!! tip "Why LanceDB"
LanceDB **automates** the entire process of creating and storing embeddings for your data. LanceDB allows you to define and use **embedding functions**, which can be **pre-trained models** or **custom models**.
This enables you to **generate** embeddings tailored to the nature of your data (e.g., text, images) and **store** both the **original data** and **embeddings** in a **structured schema** thus providing efficient querying capabilities for similarity searches.
Let's quickly [get started](./index.md) and learn how to manage embeddings in LanceDB.
## Bonus: As a developer, what you can create using embeddings?
As a developer, you can create a variety of innovative applications using vector embeddings. Check out the following -
<div class="grid cards" markdown>
- __Chatbots__
---
Develop chatbots that utilize embeddings to retrieve relevant context and generate coherent, contextually aware responses to user queries.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/chatbot.md)
- __Recommendation Systems__
---
Develop systems that recommend content (such as articles, movies, or products) based on the similarity of keywords and descriptions, enhancing user experience.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/recommendersystem.md)
- __Vector Search__
---
Build powerful applications that harness the full potential of semantic search, enabling them to retrieve relevant data quickly and effectively.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/vector_search.md)
- __RAG Applications__
---
Combine the strengths of large language models (LLMs) with retrieval-based approaches to create more useful applications.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/rag.md)
- __Many more examples__
---
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications.
[:octicons-arrow-right-24: More](../examples/examples_python.md)
</div>

View File

@@ -0,0 +1,53 @@
# Variable and Secrets
Most embedding configuration options are saved in the table's metadata. However,
this isn't always appropriate. For example, API keys should never be stored in the
metadata. Additionally, other configuration options might be best set at runtime,
such as the `device` configuration that controls whether to use GPU or CPU for
inference. If you hardcoded this to GPU, you wouldn't be able to run the code on
a server without one.
To handle these cases, you can set variables on the embedding registry and
reference them in the embedding configuration. These variables will be available
during the runtime of your program, but not saved in the table's metadata. When
the table is loaded from a different process, the variables must be set again.
To set a variable, use the `set_var()` / `setVar()` method on the embedding registry.
To reference a variable, use the syntax `$env:VARIABLE_NAME`. If there is a default
value, you can use the syntax `$env:VARIABLE_NAME:DEFAULT_VALUE`.
## Using variables to set secrets
Sensitive configuration, such as API keys, must either be set as environment
variables or using variables on the embedding registry. If you pass in a hardcoded
value, LanceDB will raise an error. Instead, if you want to set an API key via
configuration, use a variable:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_secret"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:register_secret"
```
## Using variables to set the device parameter
Many embedding functions that run locally have a `device` parameter that controls
whether to use GPU or CPU for inference. Because not all computers have a GPU,
it's helpful to be able to set the `device` parameter at runtime, rather than
have it hard coded in the embedding configuration. To make it work even if the
variable isn't set, you could provide a default value of `cpu` in the embedding
configuration.
Some embedding libraries even have a method to detect which devices are available,
which could be used to dynamically set the device at runtime. For example, in Python
you can check if a CUDA GPU is available using `torch.cuda.is_available()`.
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_device"
```

View File

@@ -0,0 +1,7 @@
# Code documentation Q&A bot with LangChain
## use LanceDB's LangChain integration to build a Q&A bot for your documentation
<img id="splash" width="400" alt="langchain" src="https://user-images.githubusercontent.com/917119/236580868-61a246a9-e587-4c2b-8ae5-6fe5f7b7e81e.png">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/code_qa_bot.ipynb)

View File

@@ -0,0 +1,11 @@
# Examples: JavaScript
To help you get started, we provide some examples, projects and applications that use the LanceDB JavaScript API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
| Example | Scripts |
|-------- | ------ |
| | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/index.js)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/index.js)|
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/index.js)|
| [TransformersJS Embedding example](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/) | [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/js-transformers/index.js) |

View File

@@ -0,0 +1,22 @@
# Overview : Python Examples
To help you get started, we provide some examples, projects, and applications that use the LanceDB Python API. These examples are designed to get you right into the code with minimal introduction, enabling you to move from an idea to a proof of concept in minutes.
You can find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
**Introduction**
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications. You can also checkout our blog posts related to the particular example for deeper understanding.
| Explore | Description |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [**Build from Scratch with LanceDB** 🛠️🚀](python_examples/build_from_scratch.md) | Start building your **GenAI applications** from the **ground up** using **LanceDB's** efficient vector-based document retrieval capabilities! Get started quickly with a solid foundation. |
| [**Multimodal Search with LanceDB** 🤹‍♂️🔍](python_examples/multimodal.md) | Combine **text** and **image queries** to find the most relevant results using **LanceDBs multimodal** capabilities. Leverage the efficient vector-based similarity search. |
| [**RAG (Retrieval-Augmented Generation) with LanceDB** 🔓🧐](python_examples/rag.md) | Build RAG (Retrieval-Augmented Generation) with **LanceDB** for efficient **vector-based information retrieval** and more accurate responses from AI. |
| [**Vector Search: Efficient Retrieval** 🔓👀](python_examples/vector_search.md) | Use **LanceDB's** vector search capabilities to perform efficient and accurate **similarity searches**, enabling rapid discovery and retrieval of relevant documents in Large datasets. |
| [**Chatbot applications with LanceDB** 🤖](python_examples/chatbot.md) | Create **chatbots** that retrieves relevant context for **coherent and context-aware replies**, enhancing user experience through advanced conversational AI. |
| [**Evaluation: Assessing Text Performance with Precision** 📊💡](python_examples/evaluations.md) | Develop **evaluation** applications that allows you to input reference and candidate texts to **measure** their performance across various metrics. |
| [**AI Agents: Intelligent Collaboration** 🤖](python_examples/aiagent.md) | Enable **AI agents** to communicate and collaborate efficiently through dense vector representations, achieving shared goals seamlessly. |
| [**Recommender Systems: Personalized Discovery** 🍿📺](python_examples/recommendersystem.md) | Deliver **personalized experiences** by efficiently storing and querying item embeddings with **LanceDB's** powerful vector database capabilities. |
| **Miscellaneous Examples🌟** | Find other **unique examples** and **creative solutions** using **LanceDB**, showcasing the flexibility and broad applicability of the platform. |

View File

@@ -0,0 +1,3 @@
# Examples: Rust
Our Rust SDK is now stable. Examples are coming soon.

View File

@@ -0,0 +1,165 @@
# How to Load Image Embeddings into LanceDB
With the rise of Large Multimodal Models (LMMs) such as [GPT-4 Vision](https://blog.roboflow.com/gpt-4-vision/), the need for storing image embeddings is growing. The most effective way to store text and image embeddings is in a vector database such as LanceDB. Vector databases are a special kind of data store that enables efficient search over stored embeddings.
[CLIP](https://blog.roboflow.com/openai-clip/), a multimodal model developed by OpenAI, is commonly used to calculate image embeddings. These embeddings can then be used with a vector database to build a semantic search engine that you can query using images or text. For example, you could use LanceDB and CLIP embeddings to build a search engine for a database of folders.
In this guide, we are going to show you how to use Roboflow Inference to load image embeddings into LanceDB. Without further ado, lets get started!
## Step #1: Install Roboflow Inference
[Roboflow Inference](https://inference.roboflow.com) enables you to run state-of-the-art computer vision models with minimal configuration. Inference supports a range of models, from fine-tuned object detection, classification, and segmentation models to foundation models like CLIP. We will use Inference to calculate CLIP image embeddings.
Inference provides a HTTP API through which you can run vision models.
Inference powers the Roboflow hosted API, and is available as an open source utility. In this guide, we are going to run Inference locally, which enables you to calculate CLIP embeddings on your own hardware. We will also show you how to use the hosted Roboflow CLIP API, which is ideal if you need to scale and do not want to manage a system for calculating embeddings.
To get started, first install the Inference CLI:
```
pip install inference-cli
```
Next, install Docker. Refer to the official Docker installation instructions for your operating system to get Docker set up. Once Docker is ready, you can start Inference using the following command:
```
inference server start
```
An Inference server will start running at http://localhost:9001.
## Step #2: Set Up a LanceDB Vector Database
Now that we have Inference running, we can set up a LanceDB vector database. You can run LanceDB in JavaScript and Python. For this guide, we will use the Python API. But, you can take the HTTP requests we make below and change them to JavaScript if required.
For this guide, we are going to search the [COCO 128 dataset](https://universe.roboflow.com/team-roboflow/coco-128), which contains a wide range of objects. The variability in objects present in this dataset makes it a good dataset to demonstrate the capabilities of vector search. If you want to use this dataset, you can download [COCO 128 from Roboflow Universe](https://universe.roboflow.com/team-roboflow/coco-128). With that said, you can search whatever folder of images you want.
Once you have a dataset ready, install LanceDB with the following command:
```
pip install lancedb
```
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
```
pip install tantivy
```
Create a new Python file and add the following code:
```python
import cv2
import supervision as sv
import requests
import lancedb
db = lancedb.connect("./embeddings")
IMAGE_DIR = "images/"
API_KEY = os.environ.get("ROBOFLOW_API_KEY")
SERVER_URL = "http://localhost:9001"
results = []
for i, image in enumerate(os.listdir(IMAGE_DIR)):
infer_clip_payload = {
#Images can be provided as urls or as base64 encoded strings
"image": {
"type": "base64",
"value": base64.b64encode(open(IMAGE_DIR + image, "rb").read()).decode("utf-8"),
},
}
res = requests.post(
f"{SERVER_URL}/clip/embed_image?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
print("Calculated embedding for image: ", image)
image = {"vector": embeddings[0], "name": os.path.join(IMAGE_DIR, image)}
results.append(image)
tbl = db.create_table("images", data=results)
tbl.create_fts_index("name")
```
To use the code above, you will need a Roboflow API key. [Learn how to retrieve a Roboflow API key](https://docs.roboflow.com/api-reference/authentication#retrieve-an-api-key). Run the following command to set up your API key in your environment:
```
export ROBOFLOW_API_KEY=""
```
Replace the `IMAGE_DIR` value with the folder in which you are storing the images for which you want to calculate embeddings. If you want to use the Roboflow CLIP API to calculate embeddings, replace the `SERVER_URL` value with `https://infer.roboflow.com`.
Run the script above to create a new LanceDB database. This database will be stored on your local machine. The database will be called `embeddings` and the table will be called `images`.
The script above calculates all embeddings for a folder then creates a new table. To add additional images, use the following code:
```python
def make_batches():
for i in range(5):
yield [
{"vector": [3.1, 4.1], "name": "image1.png"},
{"vector": [5.9, 26.5], "name": "image2.png"}
]
tbl = db.open_table("images")
tbl.add(make_batches())
```
Replacing the `make_batches()` function with code to load embeddings for images.
## Step #3: Run a Search Query
We are now ready to run a search query. To run a search query, we need a text embedding that represents a text query. We can use this embedding to search our LanceDB database for an entry.
Lets calculate a text embedding for the query “cat”, then run a search query:
```python
infer_clip_payload = {
"text": "cat",
}
res = requests.post(
f"{SERVER_URL}/clip/embed_text?api_key={API_KEY}",
json=infer_clip_payload,
)
embeddings = res.json()['embeddings']
df = tbl.search(embeddings[0]).limit(3).to_list()
print("Results:")
for i in df:
print(i["name"])
```
This code will search for the three images most closely related to the prompt “cat”. The names of the most similar three images will be printed to the console. Here are the three top results:
```
dataset/images/train/000000000650_jpg.rf.1b74ba165c5a3513a3211d4a80b69e1c.jpg
dataset/images/train/000000000138_jpg.rf.af439ef1c55dd8a4e4b142d186b9c957.jpg
dataset/images/train/000000000165_jpg.rf.eae14d5509bf0c9ceccddbb53a5f0c66.jpg
```
Lets open the top image:
![Cat](https://media.roboflow.com/cat_lancedb.jpg)
The top image was a cat. Our search was successful.
## Conclusion
LanceDB is a vector database that you can use to store and efficiently search your image embeddings. You can use Roboflow Inference, a scalable computer vision inference server, to calculate CLIP embeddings that you can store in LanceDB.
You can use Inference and LanceDB together to build a range of applications with image embeddings, from a media search engine to a retrieval-augmented generation pipeline for use with LMMs.
To learn more about Inference and its capabilities, refer to the Inference documentation.

View File

@@ -0,0 +1,12 @@
# Example projects and recipes
## Recipes and example code
LanceDB provides language APIs, allowing you to embed a database in your language of choice.
* 🐍 [Python](examples_python.md) examples
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
!!! tip "Hosted LanceDB"
If you want S3 cost-efficiency and local performance via a simple serverless API, checkout **LanceDB Cloud**. For private deployments, high performance at extreme scale, or if you have strict security requirements, talk to us about **LanceDB Enterprise**. [Learn more](https://docs.lancedb.com/)

View File

@@ -0,0 +1,119 @@
import pickle
import re
import zipfile
from pathlib import Path
import requests
from langchain.chains import RetrievalQA
from langchain.document_loaders import UnstructuredHTMLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import LanceDB
from modal import Image, Secret, Stub, web_endpoint
import lancedb
lancedb_image = Image.debian_slim().pip_install(
"lancedb", "langchain", "openai", "pandas", "tiktoken", "unstructured", "tabulate"
)
stub = Stub(
name="example-langchain-lancedb",
image=lancedb_image,
secrets=[Secret.from_name("my-openai-secret")],
)
docsearch = None
docs_path = Path("docs.pkl")
db_path = Path("lancedb")
def get_document_title(document):
m = str(document.metadata["source"])
title = re.findall("pandas.documentation(.*).html", m)
if title[0] is not None:
return title[0]
return ""
def download_docs():
pandas_docs = requests.get(
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/pandas_docs/pandas.documentation.zip"
)
with open(Path("pandas.documentation.zip"), "wb") as f:
f.write(pandas_docs.content)
file = zipfile.ZipFile(Path("pandas.documentation.zip"))
file.extractall(path=Path("pandas_docs"))
def store_docs():
docs = []
if not docs_path.exists():
for p in Path("pandas_docs/pandas.documentation").rglob("*.html"):
if p.is_dir():
continue
loader = UnstructuredHTMLLoader(p)
raw_document = loader.load()
m = {}
m["title"] = get_document_title(raw_document[0])
m["version"] = "2.0rc0"
raw_document[0].metadata = raw_document[0].metadata | m
raw_document[0].metadata["source"] = str(raw_document[0].metadata["source"])
docs = docs + raw_document
with docs_path.open("wb") as fh:
pickle.dump(docs, fh)
else:
with docs_path.open("rb") as fh:
docs = pickle.load(fh)
return docs
def qanda_langchain(query):
download_docs()
docs = store_docs()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
)
documents = text_splitter.split_documents(docs)
embeddings = OpenAIEmbeddings()
db = lancedb.connect(db_path)
table = db.create_table(
"pandas_docs",
data=[
{
"vector": embeddings.embed_query("Hello World"),
"text": "Hello World",
"id": "1",
}
],
mode="overwrite",
)
docsearch = LanceDB.from_documents(documents, embeddings, connection=table)
qa = RetrievalQA.from_chain_type(
llm=OpenAI(), chain_type="stuff", retriever=docsearch.as_retriever()
)
return qa.run(query)
@stub.function()
@web_endpoint(method="GET")
def web(query: str):
answer = qanda_langchain(query)
return {
"answer": answer,
}
@stub.function()
def cli(query: str):
answer = qanda_langchain(query)
print(answer)

View File

@@ -0,0 +1,7 @@
# Image multimodal search
## Search through an image dataset using natural language, full text and SQL
<img id="splash" width="400" alt="multimodal search" src="https://github.com/lancedb/lancedb/assets/917119/993a7c9f-be01-449d-942e-1ce1d4ed63af">
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/multimodal_search.ipynb)

View File

@@ -0,0 +1,27 @@
# AI Agents: Intelligent Collaboration🤖
Think of a platform where AI Agents can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency💻📈.
## Vector-Based Coordination: The Technical Advantage
Leveraging LanceDB's vector-based capabilities, we can enable **AI agents 🤖** to communicate and collaborate through dense vector representations. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
| **AI Agents** | **Description** | **Links** |
|:--------------|:----------------|:----------|
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 **Reduce AI hallucinations** using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [![Github](../../assets/github.svg)][hullucination_github] <br>[![Open In Collab](../../assets/colab.svg)][hullucination_colab] <br>[![Python](../../assets/python.svg)][hullucination_python] <br>[![Ghost](../../assets/ghost.svg)][hullucination_ghost] |
| **AI Trends Searcher: CrewAI🔍** | 🔍️ Learn about **CrewAI Agents** ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [![Github](../../assets/github.svg)][trend_github] <br>[![Open In Collab](../../assets/colab.svg)][trend_colab] <br>[![Ghost](../../assets/ghost.svg)][trend_ghost] |
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating **Autogen**, **LanceDB**, **LangChain**, **LiteLLM**, and **Ollama** to create AI agent that excels in understanding and processing complex queries.🤖 | [![Github](../../assets/github.svg)][superagent_github] <br>[![Open In Collab](../../assets/colab.svg)][superagent_colab] |
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
[hullucination_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb
[hullucination_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.py
[hullucination_ghost]: https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/
[trend_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI
[trend_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI/CrewAI_AI_Trends.ipynb
[trend_ghost]: https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/
[superagent_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen
[superagent_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen/main.ipynb

View File

@@ -0,0 +1,13 @@
# **Build from Scratch with LanceDB 🛠️🚀**
Start building your GenAI applications from the ground up using **LanceDB's** efficient vector-based document retrieval capabilities! 📑
**Get Started in Minutes ⏱️**
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to **proof of concept** quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

View File

@@ -0,0 +1,41 @@
**Chatbot applications with LanceDB 🤖**
====================================================================
Create innovative chatbot applications that utilizes LanceDB for efficient vector-based response generation! 🌐✨
**Introduction 👋✨**
Users can input their queries, allowing the chatbot to retrieve relevant context seamlessly. 🔍📚 This enables the generation of coherent and context-aware replies that enhance user experience. 🌟🤝 Dive into the world of advanced conversational AI and streamline interactions with powerful data management! 🚀💡
| **Chatbot** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Databricks DBRX Website Bot ⚡️** | Engage with the **Hogwarts chatbot**, that uses Open-source RAG with **DBRX**, **LanceDB** and **LLama-index with Hugging Face Embeddings**, to provide interactive and engaging user experiences. ✨ | [![GitHub](../../assets/github.svg)][databricks_github] <br>[![Python](../../assets/python.svg)][databricks_python] |
| **CLI SDK Manual Chatbot Locally 💻** | CLI chatbot for SDK/hardware documents using **Local RAG** with **LLama3**, **Ollama**, **LanceDB**, and **Openhermes Embeddings**, built with **Phidata** Assistant and Knowledge Base 🤖 | [![GitHub](../../assets/github.svg)][clisdk_github] <br>[![Python](../../assets/python.svg)][clisdk_python] |
| **Youtube Transcript Search QA Bot 📹** | Search through **youtube transcripts** using natural language with a Q&A bot, leveraging **LanceDB** for effortless data storage and management 💬 | [![GitHub](../../assets/github.svg)][youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][youtube_colab] <br>[![Python](../../assets/python.svg)][youtube_python] |
| **Code Documentation Q&A Bot with LangChain 🤖** | Query your own documentation easily using questions in natural language with a Q&A bot, powered by **LangChain** and **LanceDB**, demonstrated with **Numpy 1.26 docs** 📚 | [![GitHub](../../assets/github.svg)][docs_github] <br>[![Open In Collab](../../assets/colab.svg)][docs_colab] <br>[![Python](../../assets/python.svg)][docs_python] |
| **Context-aware Chatbot using Llama 2 & LanceDB 🤖** | Build **conversational AI** with a **context-aware chatbot**, powered by **Llama 2**, **LanceDB**, and **LangChain**, that enables intuitive and meaningful conversations with your data 📚💬 | [![GitHub](../../assets/github.svg)][aware_github] <br>[![Open In Collab](../../assets/colab.svg)][aware_colab] <br>[![Ghost](../../assets/ghost.svg)][aware_ghost] |
| **Chat with csv using Hybrid Search 📊** | **Chat** application that interacts with **CSV** and **Excel files** using **LanceDBs** hybrid search capabilities, performing direct operations on large-scale columnar data efficiently 🚀 | [![GitHub](../../assets/github.svg)][csv_github] <br>[![Open In Collab](../../assets/colab.svg)][csv_colab] <br>[![Ghost](../../assets/ghost.svg)][csv_ghost] |
[databricks_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot
[databricks_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/databricks_DBRX_website_bot/main.py
[clisdk_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally
[clisdk_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/CLI-SDK-Manual-Chatbot-Locally/assistant.py
[youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot
[youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.ipynb
[youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Youtube-Search-QA-Bot/main.py
[docs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot
[docs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb
[docs_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.py
[aware_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB
[aware_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/chatbot_using_Llama2_&_lanceDB/main.ipynb
[aware_ghost]: https://blog.lancedb.com/context-aware-chatbot-using-llama-2-lancedb-as-vector-database-4d771d95c755
[csv_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/Chat_with_csv_file
[csv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/Chat_with_csv_file/main.ipynb
[csv_ghost]: https://blog.lancedb.com/p/d8c71df4-e55f-479a-819e-cde13354a6a3/

View File

@@ -0,0 +1,21 @@
**Evaluation: Assessing Text Performance with Precision 📊💡**
====================================================================
Evaluation is a comprehensive tool designed to measure the performance of text-based inputs, enabling data-driven optimization and improvement 📈.
**Text Evaluation 101 📚**
Using robust framework for assessing reference and candidate texts across various metrics📊, ensure that the text outputs are high-quality and meet specific requirements and standards📝.
| **Evaluation** | **Description** | **Links** |
| -------------- | --------------- | --------- |
| **Evaluating Prompts with Prompttools 🤖** | Compare, visualize & evaluate **embedding functions** (incl. OpenAI) across metrics like latency & custom evaluation 📈📊 | [![Github](../../assets/github.svg)][prompttools_github] <br>[![Open In Collab](../../assets/colab.svg)][prompttools_colab] |
| **Evaluating RAG with RAGAs and GPT-4o 📊** | Evaluate **RAG pipelines** with cutting-edge metrics and tools, integrate with CI/CD for continuous performance checks, and generate responses with GPT-4o 🤖📈 | [![Github](../../assets/github.svg)][RAGAs_github] <br>[![Open In Collab](../../assets/colab.svg)][RAGAs_colab] |
[prompttools_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts
[prompttools_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb
[RAGAs_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs
[RAGAs_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Evaluating_RAG_with_RAGAs/Evaluating_RAG_with_RAGAs.ipynb

View File

@@ -0,0 +1,28 @@
# **Multimodal Search with LanceDB 🤹‍♂️🔍**
Using LanceDB's multimodal capabilities, combine text and image queries to find the most relevant results in your corpus ! 🔓💡
**Explore the Future of Search 🚀**
LanceDB supports multimodal search by indexing and querying vector representations of text and image data 🤖. This enables efficient retrieval of relevant documents and images using vector-based similarity search 📊. The platform facilitates cross-modal search, allowing for text-image and image-text retrieval, and supports scalable indexing of high-dimensional vector spaces 💻.
| **Multimodal** | **Description** | **Links** |
|:----------------|:-----------------|:-----------|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Multi-Modal Search with **CLIP** and **LanceDB** Using **DiffusionDB** Data for Combined Text and Image Understanding ! 🔓 | [![GitHub](../../assets/github.svg)][Clip_diffusionDB_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_diffusionDB_colab] <br>[![Python](../../assets/python.svg)][Clip_diffusionDB_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_diffusionDB_ghost] |
| **Multimodal CLIP: Youtube Videos 📹👀** | Search **Youtube videos** using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [![Github](../../assets/github.svg)][Clip_youtube_github] <br>[![Open In Collab](../../assets/colab.svg)][Clip_youtube_colab] <br> [![Python](../../assets/python.svg)][Clip_youtube_python] <br>[![Ghost](../../assets/ghost.svg)][Clip_youtube_python] |
| **Multimodal Image + Text Search 📸🔍** | Find **relevant documents** and **images** with a single query using **LanceDB's** multimodal search capabilities, to seamlessly integrate text and visuals ! 🌉 | [![GitHub](../../assets/github.svg)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/multimodal_search) <br>[![Open In Collab](../../assets/colab.svg)](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/multimodal_search/main.ipynb) <br> [![Python](../../assets/python.svg)](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Learn how **Cambrian-1** works, using an example of **Vision-Centric** exploration on images found through vector search ! Work on **Flickr-8k** dataset 🔎 | [![Kaggle](https://img.shields.io/badge/Kaggle-035a7d?style=for-the-badge&logo=kaggle&logoColor=white)](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br> [![Ghost](../../assets/ghost.svg)](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/

View File

@@ -0,0 +1,83 @@
**RAG (Retrieval-Augmented Generation) with LanceDB 🔓🧐**
====================================================================
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
**Experience the Future of Search 🔄**
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
| **RAG** | **Description** | **Links** |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [![Github](../../assets/github.svg)][matryoshka_github] <br>[![Open In Collab](../../assets/colab.svg)][matryoshka_colab] |
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [![Github](../../assets/github.svg)][rag_reranking_github] <br>[![Open In Collab](../../assets/colab.svg)][rag_reranking_colab] <br>[![Ghost](../../assets/ghost.svg)][rag_reranking_ghost] |
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [![Github](../../assets/github.svg)][instruct_multitask_github] <br>[![Open In Collab](../../assets/colab.svg)][instruct_multitask_colab] <br>[![Python](../../assets/python.svg)][instruct_multitask_python] <br>[![Ghost](../../assets/ghost.svg)][instruct_multitask_ghost] |
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [![Github](../../assets/github.svg)][hyde_github] <br>[![Open In Collab](../../assets/colab.svg)][hyde_colab]<br>[![Ghost](../../assets/ghost.svg)][hyde_ghost] |
| **Improve RAG with LOTR** 🧙‍♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [![Github](../../assets/github.svg)][lotr_github] <br>[![Open In Collab](../../assets/colab.svg)][lotr_colab] <br>[![Ghost](../../assets/ghost.svg)][lotr_ghost] |
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [![Github](../../assets/github.svg)][parent_doc_retriever_github] <br>[![Open In Collab](../../assets/colab.svg)][parent_doc_retriever_colab] <br>[![Ghost](../../assets/ghost.svg)][parent_doc_retriever_ghost] |
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[![Github](../../assets/github.svg)][corrective_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][corrective_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][corrective_rag_ghost] |
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [![Github](../../assets/github.svg)][compression_rag_github] <br>[![Open In Collab](../../assets/colab.svg)][compression_rag_colab] <br>[![Ghost](../../assets/ghost.svg)][compression_rag_ghost] |
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to **academic papers**, focusing on **ArXiv papers**, with **F**orward-**L**ooking **A**ctive **RE**trieval augmented generation.🚀🌟 | [![Github](../../assets/github.svg)][flare_github] <br>[![Open In Collab](../../assets/colab.svg)][flare_colab] <br>[![Ghost](../../assets/ghost.svg)][flare_ghost] |
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like **Cross Encoders**, **ColBERT v2**, and **FlashRank** for improved document retrieval precision and recall 🔍📈 | [![Github](../../assets/github.svg)][query_github] <br>[![Open In Collab](../../assets/colab.svg)][query_colab] |
| **RAG Fusion** ⚡🌐 | Build RAG Fusion, utilize the **RRF algorithm** to rerank documents based on user queries ! Use **LanceDB** as vector database to store and retrieve documents related to queries via **OPENAI Embeddings**⚡🌐 | [![Github](../../assets/github.svg)][fusion_github] <br>[![Open In Collab](../../assets/colab.svg)][fusion_colab] |
| **Agentic RAG** 🤖📚 | Build autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, that enables proactive and informed decision-making 🤖📚 | [![Github](../../assets/github.svg)][agentic_github] <br>[![Open In Collab](../../assets/colab.svg)][agentic_colab] |
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
[query_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/QueryExpansion%26Reranker
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/QueryExpansion&Reranker/main.ipynb
[fusion_github]: https://github.com/lancedb/vectordb-recipes/tree/main/examples/archived_examples/RAG_Fusion
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/archived_examples/RAG_Fusion/main.ipynb
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb

Some files were not shown because too many files have changed in this diff Show More