mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
18 Commits
hybrid_que
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
272cbcad7a | ||
|
|
722fe1836c | ||
|
|
d1983602c2 | ||
|
|
9148cd6d47 | ||
|
|
47dbb988bf | ||
|
|
6821536d44 | ||
|
|
d6f0663671 | ||
|
|
ea33b68c6c | ||
|
|
1453bf4e7a | ||
|
|
abaf315baf | ||
|
|
14b9277ac1 | ||
|
|
d621826b79 | ||
|
|
08c0803ae1 | ||
|
|
62632cb90b | ||
|
|
14566df213 | ||
|
|
acfdf1b9cb | ||
|
|
f95402af7c | ||
|
|
d14c9b6d9e |
6
.github/workflows/docs.yml
vendored
6
.github/workflows/docs.yml
vendored
@@ -24,10 +24,14 @@ jobs:
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
runs-on: ubuntu-22.04
|
||||
runs-on: buildjet-8vcpu-ubuntu-2204
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
|
||||
13
.github/workflows/docs_test.yml
vendored
13
.github/workflows/docs_test.yml
vendored
@@ -24,16 +24,22 @@ env:
|
||||
jobs:
|
||||
test-python:
|
||||
name: Test doc python code
|
||||
runs-on: "ubuntu-latest"
|
||||
runs-on: "buildjet-8vcpu-ubuntu-2204"
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: 3.11
|
||||
cache: "pip"
|
||||
cache-dependency-path: "docs/test/requirements.txt"
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
- name: Build Python
|
||||
working-directory: docs/test
|
||||
run:
|
||||
@@ -48,8 +54,8 @@ jobs:
|
||||
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
|
||||
test-node:
|
||||
name: Test doc nodejs code
|
||||
runs-on: "ubuntu-latest"
|
||||
timeout-minutes: 45
|
||||
runs-on: "buildjet-8vcpu-ubuntu-2204"
|
||||
timeout-minutes: 60
|
||||
strategy:
|
||||
fail-fast: false
|
||||
steps:
|
||||
@@ -65,6 +71,7 @@ jobs:
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
- name: Install node dependencies
|
||||
|
||||
21
.github/workflows/node.yml
vendored
21
.github/workflows/node.yml
vendored
@@ -24,27 +24,6 @@ env:
|
||||
RUST_BACKTRACE: "1"
|
||||
|
||||
jobs:
|
||||
lint:
|
||||
name: Lint
|
||||
runs-on: ubuntu-22.04
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
working-directory: node
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
lfs: true
|
||||
- uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 20
|
||||
cache: 'npm'
|
||||
cache-dependency-path: node/package-lock.json
|
||||
- name: Lint
|
||||
run: |
|
||||
npm ci
|
||||
npm run lint
|
||||
linux:
|
||||
name: Linux (Node ${{ matrix.node-version }})
|
||||
timeout-minutes: 30
|
||||
|
||||
2
.github/workflows/nodejs.yml
vendored
2
.github/workflows/nodejs.yml
vendored
@@ -49,6 +49,7 @@ jobs:
|
||||
cargo clippy --all --all-features -- -D warnings
|
||||
npm ci
|
||||
npm run lint
|
||||
npm run chkformat
|
||||
linux:
|
||||
name: Linux (NodeJS ${{ matrix.node-version }})
|
||||
timeout-minutes: 30
|
||||
@@ -111,4 +112,3 @@ jobs:
|
||||
- name: Test
|
||||
run: |
|
||||
npm run test
|
||||
|
||||
|
||||
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -66,7 +66,7 @@ jobs:
|
||||
- name: Install
|
||||
run: |
|
||||
pip install -e .[tests,dev,embeddings]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install tantivy
|
||||
pip install mlx
|
||||
- name: Doctest
|
||||
run: pytest --doctest-modules python/lancedb
|
||||
@@ -188,6 +188,6 @@ jobs:
|
||||
run: |
|
||||
pip install "pydantic<2"
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install tantivy
|
||||
- name: Run tests
|
||||
run: pytest -m "not slow" -x -v --durations=30 python/tests
|
||||
|
||||
@@ -10,3 +10,9 @@ repos:
|
||||
rev: v0.2.2
|
||||
hooks:
|
||||
- id: ruff
|
||||
- repo: https://github.com/pre-commit/mirrors-prettier
|
||||
rev: v3.1.0
|
||||
hooks:
|
||||
- id: prettier
|
||||
files: "nodejs/.*"
|
||||
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*
|
||||
|
||||
@@ -14,10 +14,10 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
||||
categories = ["database-implementations"]
|
||||
|
||||
[workspace.dependencies]
|
||||
lance = { "version" = "=0.10.1", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.10.1" }
|
||||
lance-linalg = { "version" = "=0.10.1" }
|
||||
lance-testing = { "version" = "=0.10.1" }
|
||||
lance = { "version" = "=0.10.2", "features" = ["dynamodb"] }
|
||||
lance-index = { "version" = "=0.10.2" }
|
||||
lance-linalg = { "version" = "=0.10.2" }
|
||||
lance-testing = { "version" = "=0.10.2" }
|
||||
# Note that this one does not include pyarrow
|
||||
arrow = { version = "50.0", optional = false }
|
||||
arrow-array = "50.0"
|
||||
|
||||
@@ -7,20 +7,11 @@ for brute-force scanning of the entire vector space.
|
||||
A vector index is faster but less accurate than exhaustive search (kNN or flat search).
|
||||
LanceDB provides many parameters to fine-tune the index's size, the speed of queries, and the accuracy of results.
|
||||
|
||||
Currently, LanceDB does _not_ automatically create the ANN index.
|
||||
LanceDB has optimized code for kNN as well. For many use-cases, datasets under 100K vectors won't require index creation at all.
|
||||
If you can live with <100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
|
||||
## Disk-based Index
|
||||
|
||||
In the future we will look to automatically create and configure the ANN index as data comes in.
|
||||
|
||||
## Types of Index
|
||||
|
||||
Lance can support multiple index types, the most widely used one is `IVF_PQ`.
|
||||
|
||||
- `IVF_PQ`: use **Inverted File Index (IVF)** to first divide the dataset into `N` partitions,
|
||||
and then use **Product Quantization** to compress vectors in each partition.
|
||||
- `DiskANN` (**Experimental**): organize the vector as a on-disk graph, where the vertices approximately
|
||||
represent the nearest neighbors of each vector.
|
||||
Lance provides an `IVF_PQ` disk-based index. It uses **Inverted File Index (IVF)** to first divide
|
||||
the dataset into `N` partitions, and then applies **Product Quantization** to compress vectors in each partition.
|
||||
See the [indexing](concepts/index_ivfpq.md) concepts guide for more information on how this works.
|
||||
|
||||
## Creating an IVF_PQ Index
|
||||
|
||||
@@ -88,7 +79,7 @@ You can specify the GPU device to train IVF partitions via
|
||||
)
|
||||
```
|
||||
|
||||
=== "Macos"
|
||||
=== "MacOS"
|
||||
|
||||
<!-- skip-test -->
|
||||
```python
|
||||
@@ -100,7 +91,7 @@ You can specify the GPU device to train IVF partitions via
|
||||
)
|
||||
```
|
||||
|
||||
Trouble shootings:
|
||||
Troubleshooting:
|
||||
|
||||
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
|
||||
PyTorch with CUDA support](https://pytorch.org/get-started/locally/).
|
||||
@@ -187,13 +178,21 @@ You can select the columns returned by the query using a select clause.
|
||||
|
||||
## FAQ
|
||||
|
||||
### Why do I need to manually create an index?
|
||||
|
||||
Currently, LanceDB does _not_ automatically create the ANN index.
|
||||
LanceDB is well-optimized for kNN (exhaustive search) via a disk-based index. For many use-cases,
|
||||
datasets of the order of ~100K vectors don't require index creation. If you can live with up to
|
||||
100ms latency, skipping index creation is a simpler workflow while guaranteeing 100% recall.
|
||||
|
||||
### When is it necessary to create an ANN vector index?
|
||||
|
||||
`LanceDB` has manually-tuned SIMD code for computing vector distances.
|
||||
In our benchmarks, computing 100K pairs of 1K dimension vectors takes **less than 20ms**.
|
||||
For small datasets (< 100K rows) or applications that can accept 100ms latency, vector indices are usually not necessary.
|
||||
`LanceDB` comes out-of-the-box with highly optimized SIMD code for computing vector similarity.
|
||||
In our benchmarks, computing distances for 100K pairs of 1K dimension vectors takes **less than 20ms**.
|
||||
We observe that for small datasets (~100K rows) or for applications that can accept 100ms latency,
|
||||
vector indices are usually not necessary.
|
||||
|
||||
For large-scale or higher dimension vectors, it is beneficial to create vector index.
|
||||
For large-scale or higher dimension vectors, it can beneficial to create vector index for performance.
|
||||
|
||||
### How big is my index, and how many memory will it take?
|
||||
|
||||
|
||||
@@ -46,7 +46,7 @@
|
||||
|
||||
!!! info "Please also make sure you're using the same version of Arrow as in the [vectordb crate](https://github.com/lancedb/lancedb/blob/main/Cargo.toml)"
|
||||
|
||||
## How to connect to a database
|
||||
## Connect to a database
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -69,17 +69,22 @@
|
||||
```rust
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
--8<-- "rust/vectordb/examples/simple.rs:connect"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:connect"
|
||||
}
|
||||
```
|
||||
|
||||
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/vectordb/examples/simple.rs) for a full working example."
|
||||
!!! info "See [examples/simple.rs](https://github.com/lancedb/lancedb/tree/main/rust/lancedb/examples/simple.rs) for a full working example."
|
||||
|
||||
LanceDB will create the directory if it doesn't exist (including parent directories).
|
||||
|
||||
If you need a reminder of the uri, you can call `db.uri()`.
|
||||
|
||||
## How to create a table
|
||||
## Create a table
|
||||
|
||||
### Directly insert data to a new table
|
||||
|
||||
If you have data to insert into the table at creation time, you can simultaneously create a
|
||||
table and insert the data to it.
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -118,17 +123,18 @@ If you need a reminder of the uri, you can call `db.uri()`.
|
||||
use arrow_schema::{DataType, Schema, Field};
|
||||
use arrow_array::{RecordBatch, RecordBatchIterator};
|
||||
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_table"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:create_table"
|
||||
```
|
||||
|
||||
If the table already exists, LanceDB will raise an error by default.
|
||||
|
||||
!!! info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||
!!! info "Under the hood, LanceDB converts the input data into an Apache Arrow table and persists it to disk using the [Lance format](https://www.github.com/lancedb/lance)."
|
||||
|
||||
### Creating an empty table
|
||||
### Create an empty table
|
||||
|
||||
Sometimes you may not have the data to insert into the table at creation time.
|
||||
In this case, you can create an empty table and specify the schema.
|
||||
In this case, you can create an empty table and specify the schema, so that you can add
|
||||
data to the table at a later time (such that it conforms to the schema).
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -147,12 +153,12 @@ In this case, you can create an empty table and specify the schema.
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_empty_table"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:create_empty_table"
|
||||
```
|
||||
|
||||
## How to open an existing table
|
||||
## Open an existing table
|
||||
|
||||
Once created, you can open a table using the following code:
|
||||
Once created, you can open a table as follows:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -169,7 +175,7 @@ Once created, you can open a table using the following code:
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:open_with_existing_file"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:open_with_existing_file"
|
||||
```
|
||||
|
||||
If you forget the name of your table, you can always get a listing of all table names:
|
||||
@@ -189,12 +195,12 @@ If you forget the name of your table, you can always get a listing of all table
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:list_names"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:list_names"
|
||||
```
|
||||
|
||||
## How to add data to a table
|
||||
## Add data to a table
|
||||
|
||||
After a table has been created, you can always add more data to it using
|
||||
After a table has been created, you can always add more data to it as follows:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -219,12 +225,12 @@ After a table has been created, you can always add more data to it using
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:add"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:add"
|
||||
```
|
||||
|
||||
## How to search for (approximate) nearest neighbors
|
||||
## Search for nearest neighbors
|
||||
|
||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||
Once you've embedded the query, you can find its nearest neighbors as follows:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -245,11 +251,12 @@ Once you've embedded the query, you can find its nearest neighbors using the fol
|
||||
```rust
|
||||
use futures::TryStreamExt;
|
||||
|
||||
--8<-- "rust/vectordb/examples/simple.rs:search"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:search"
|
||||
```
|
||||
|
||||
By default, LanceDB runs a brute-force scan over dataset to find the K nearest neighbours (KNN).
|
||||
For tables with more than 50K vectors, creating an ANN index is recommended to speed up search performance.
|
||||
LanceDB allows you to create an ANN index on a table as follows:
|
||||
|
||||
=== "Python"
|
||||
|
||||
@@ -266,12 +273,17 @@ For tables with more than 50K vectors, creating an ANN index is recommended to s
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:create_index"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:create_index"
|
||||
```
|
||||
|
||||
Check [Approximate Nearest Neighbor (ANN) Indexes](/ann_indices.md) section for more details.
|
||||
!!! note "Why do I need to create an index manually?"
|
||||
LanceDB does not automatically create the ANN index, for two reasons. The first is that it's optimized
|
||||
for really fast retrievals via a disk-based index, and the second is that data and query workloads can
|
||||
be very diverse, so there's no one-size-fits-all index configuration. LanceDB provides many parameters
|
||||
to fine-tune index size, query latency and accuracy. See the section on
|
||||
[ANN indexes](ann_indexes.md) for more details.
|
||||
|
||||
## How to delete rows from a table
|
||||
## Delete rows from a table
|
||||
|
||||
Use the `delete()` method on tables to delete rows from a table. To choose
|
||||
which rows to delete, provide a filter that matches on the metadata columns.
|
||||
@@ -292,7 +304,7 @@ This can delete any number of rows that match the filter.
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:delete"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:delete"
|
||||
```
|
||||
|
||||
The deletion predicate is a SQL expression that supports the same expressions
|
||||
@@ -307,7 +319,7 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
|
||||
|
||||
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||
|
||||
## How to remove a table
|
||||
## Drop a table
|
||||
|
||||
Use the `drop_table()` method on the database to remove a table.
|
||||
|
||||
@@ -333,7 +345,7 @@ Use the `drop_table()` method on the database to remove a table.
|
||||
=== "Rust"
|
||||
|
||||
```rust
|
||||
--8<-- "rust/vectordb/examples/simple.rs:drop_table"
|
||||
--8<-- "rust/lancedb/examples/simple.rs:drop_table"
|
||||
```
|
||||
|
||||
!!! note "Bundling `vectordb` apps with Webpack"
|
||||
|
||||
@@ -81,24 +81,4 @@ The above query will perform a search on the table `tbl` using the given query v
|
||||
* `to_pandas()`: Convert the results to a pandas DataFrame
|
||||
|
||||
And there you have it! You now understand what an IVF-PQ index is, and how to create and query it in LanceDB.
|
||||
|
||||
|
||||
## FAQ
|
||||
|
||||
### When is it necessary to create a vector index?
|
||||
|
||||
LanceDB has manually-tuned SIMD code for computing vector distances. In our benchmarks, computing 100K pairs of 1K dimension vectors takes **<20ms**. For small datasets (<100K rows) or applications that can accept up to 100ms latency, vector indices are usually not necessary.
|
||||
|
||||
For large-scale or higher dimension vectors, it is beneficial to create vector index.
|
||||
|
||||
### How big is my index, and how much memory will it take?
|
||||
|
||||
In LanceDB, all vector indices are disk-based, meaning that when responding to a vector query, only the relevant pages from the index file are loaded from disk and cached in memory. Additionally, each sub-vector is usually encoded into 1 byte PQ code.
|
||||
|
||||
For example, with 1024-dimension vectors, if we choose `num_sub_vectors = 64`, each sub-vector has `1024 / 64 = 16` float32 numbers. Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` times of space reduction.
|
||||
|
||||
### How to choose `num_partitions` and `num_sub_vectors` for IVF_PQ index?
|
||||
|
||||
`num_partitions` is used to decide how many partitions the first level IVF index uses. Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train. On SIFT-1M dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency/recall.
|
||||
|
||||
`num_sub_vectors` specifies how many PQ short codes to generate on each vector. Because PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
|
||||
To see how to create an IVF-PQ index in LanceDB, take a look at the [ANN indexes](../ann_indexes.md) section.
|
||||
|
||||
@@ -175,7 +175,8 @@ Supported Embedding modelIDs are:
|
||||
* `cohere.embed-english-v3`
|
||||
* `cohere.embed-multilingual-v3`
|
||||
|
||||
Supported paramters (to be passed in `create` method) are:
|
||||
Supported parameters (to be passed in `create` method) are:
|
||||
|
||||
| Parameter | Type | Default Value | Description |
|
||||
|---|---|---|---|
|
||||
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
|
||||
|
||||
@@ -43,7 +43,7 @@ pip install lancedb
|
||||
We also need to install a specific commit of `tantivy`, a dependency of the LanceDB full text search engine we will use later in this guide:
|
||||
|
||||
```
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install tantivy
|
||||
```
|
||||
|
||||
Create a new Python file and add the following code:
|
||||
|
||||
@@ -40,7 +40,7 @@ LanceDB and its underlying data format, Lance, are built to scale to really larg
|
||||
|
||||
No. LanceDB is blazing fast (due to its disk-based index) for even brute force kNN search, within reason. In our benchmarks, computing 100K pairs of 1000-dimension vectors takes less than 20ms. For small datasets of ~100K records or applications that can accept ~100ms latency, an ANN index is usually not necessary.
|
||||
|
||||
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index.
|
||||
For large-scale (>1M) or higher dimension vectors, it is beneficial to create an ANN index. See the [ANN indexes](ann_indexes.md) section for more details.
|
||||
|
||||
### Does LanceDB support full-text search?
|
||||
|
||||
|
||||
@@ -75,21 +75,40 @@ applied on top of the full text search results. This can be invoked via the fami
|
||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||
```
|
||||
|
||||
## Syntax
|
||||
## Phrase queries vs. terms queries
|
||||
|
||||
For full-text search you can perform either a phrase query like "the old man and the sea",
|
||||
or a structured search query like "(Old AND Man) AND Sea".
|
||||
Double quotes are used to disambiguate.
|
||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||
|
||||
For example:
|
||||
!!! tip "Note"
|
||||
The query parser will raise an exception on queries that are ambiguous. For example, in the query `they could have been dogs OR cats`, `OR` is capitalized so it's considered a keyword query operator. But it's ambiguous how the left part should be treated. So if you submit this search query as is, you'll get `Syntax Error: they could have been dogs OR cats`.
|
||||
|
||||
If you intended "they could have been dogs OR cats" as a phrase query, this actually
|
||||
raises a syntax error since `OR` is a recognized operator. If you make `or` lower case,
|
||||
this avoids the syntax error. However, it is cumbersome to have to remember what will
|
||||
conflict with the query syntax. Instead, if you search using
|
||||
`table.search('"they could have been dogs OR cats"')`, then the syntax checker avoids
|
||||
checking inside the quotes.
|
||||
```py
|
||||
# This raises a syntax error
|
||||
table.search("they could have been dogs OR cats")
|
||||
```
|
||||
|
||||
On the other hand, lowercasing `OR` to `or` will work, because there are no capitalized logical operators and
|
||||
the query is treated as a phrase query.
|
||||
|
||||
```py
|
||||
# This works!
|
||||
table.search("they could have been dogs or cats")
|
||||
```
|
||||
|
||||
It can be cumbersome to have to remember what will cause a syntax error depending on the type of
|
||||
query you want to perform. To make this simpler, when you want to perform a phrase query, you can
|
||||
enforce it in one of two ways:
|
||||
|
||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||
a phrase query.
|
||||
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||
is treated as a phrase query.
|
||||
|
||||
In general, a query that's declared as a phrase query will be wrapped in double quotes during parsing, with nested
|
||||
double quotes replaced by single quotes.
|
||||
|
||||
## Configurations
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@ Get started using these examples and quick links.
|
||||
| Integrations | |
|
||||
|---|---:|
|
||||
| <h3> LlamaIndex </h3>LlamaIndex is a simple, flexible data framework for connecting custom data sources to large language models. Llama index integrates with LanceDB as the serverless VectorDB. <h3>[Lean More](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html) </h3> |<img src="../assets/llama-index.jpg" alt="image" width="150" height="auto">|
|
||||
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
|
||||
| <h3>Langchain</h3>Langchain allows building applications with LLMs through composability <h3>[Lean More](https://python.langchain.com/docs/integrations/vectorstores/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
|
||||
| <h3>Langchain TS</h3> Javascript bindings for Langchain. It integrates with LanceDB's serverless vectordb allowing you to build powerful AI applications through composibility using only serverless functions. <h3>[Learn More]( https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb) | <img src="../assets/langchain.png" alt="image" width="150" height="auto">|
|
||||
| <h3>Voxel51</h3> It is an open source toolkit that enables you to build better computer vision workflows by improving the quality of your datasets and delivering insights about your models.<h3>[Learn More](./voxel51.md) | <img src="../assets/voxel.gif" alt="image" width="150" height="auto">|
|
||||
| <h3>PromptTools</h3> Offers a set of free, open-source tools for testing and experimenting with models, prompts, and configurations. The core idea is to enable developers to evaluate prompts using familiar interfaces like code and notebooks. You can use it to experiment with different configurations of LanceDB, and test how LanceDB integrates with the LLM of your choice.<h3>[Learn More](./prompttools.md) | <img src="../assets/prompttools.jpeg" alt="image" width="150" height="auto">|
|
||||
|
||||
@@ -24,6 +24,12 @@ pip install lancedb
|
||||
|
||||
::: lancedb.query.LanceQueryBuilder
|
||||
|
||||
::: lancedb.query.LanceVectorQueryBuilder
|
||||
|
||||
::: lancedb.query.LanceFtsQueryBuilder
|
||||
|
||||
::: lancedb.query.LanceHybridQueryBuilder
|
||||
|
||||
## Embeddings
|
||||
|
||||
::: lancedb.embeddings.registry.EmbeddingFunctionRegistry
|
||||
@@ -62,10 +68,22 @@ pip install lancedb
|
||||
|
||||
## Integrations
|
||||
|
||||
### Pydantic
|
||||
## Pydantic
|
||||
|
||||
::: lancedb.pydantic.pydantic_to_schema
|
||||
|
||||
::: lancedb.pydantic.vector
|
||||
|
||||
::: lancedb.pydantic.LanceModel
|
||||
|
||||
## Reranking
|
||||
|
||||
::: lancedb.rerankers.linear_combination.LinearCombinationReranker
|
||||
|
||||
::: lancedb.rerankers.cohere.CohereReranker
|
||||
|
||||
::: lancedb.rerankers.colbert.ColbertReranker
|
||||
|
||||
::: lancedb.rerankers.cross_encoder.CrossEncoderReranker
|
||||
|
||||
::: lancedb.rerankers.openai.OpenaiReranker
|
||||
@@ -13,5 +13,10 @@ module.exports = {
|
||||
},
|
||||
rules: {
|
||||
"@typescript-eslint/method-signature-style": "off",
|
||||
"@typescript-eslint/quotes": "off",
|
||||
"@typescript-eslint/semi": "off",
|
||||
"@typescript-eslint/explicit-function-return-type": "off",
|
||||
"@typescript-eslint/space-before-function-paren": "off",
|
||||
"@typescript-eslint/indent": "off",
|
||||
}
|
||||
}
|
||||
|
||||
43
node/package-lock.json
generated
43
node/package-lock.json
generated
@@ -18,9 +18,7 @@
|
||||
"win32"
|
||||
],
|
||||
"dependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"@neon-rs/load": "^0.0.74",
|
||||
"apache-arrow": "^14.0.2",
|
||||
"axios": "^1.4.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
@@ -33,6 +31,7 @@
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
@@ -58,6 +57,10 @@
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.4.11",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.11",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.11"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"@apache-arrow/ts": "^14.0.2",
|
||||
"apache-arrow": "^14.0.2"
|
||||
}
|
||||
},
|
||||
"node_modules/@75lb/deep-merge": {
|
||||
@@ -93,6 +96,7 @@
|
||||
"version": "14.0.2",
|
||||
"resolved": "https://registry.npmjs.org/@apache-arrow/ts/-/ts-14.0.2.tgz",
|
||||
"integrity": "sha512-CtwAvLkK0CZv7xsYeCo91ml6PvlfzAmAJZkRYuz2GNBwfYufj5SVi0iuSMwIMkcU/szVwvLdzORSLa5PlF/2ug==",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
@@ -109,7 +113,8 @@
|
||||
"node_modules/@apache-arrow/ts/node_modules/@types/node": {
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
|
||||
"peer": true
|
||||
},
|
||||
"node_modules/@cargo-messages/android-arm-eabi": {
|
||||
"version": "0.0.160",
|
||||
@@ -948,6 +953,7 @@
|
||||
"version": "14.0.2",
|
||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-14.0.2.tgz",
|
||||
"integrity": "sha512-EBO2xJN36/XoY81nhLcwCJgFwkboDZeyNQ+OPsG7bCoQjc2BT0aTyH/MR6SrL+LirSNz+cYqjGRlupMMlP1aEg==",
|
||||
"peer": true,
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
@@ -964,10 +970,39 @@
|
||||
"arrow2csv": "bin/arrow2csv.js"
|
||||
}
|
||||
},
|
||||
"node_modules/apache-arrow-old": {
|
||||
"name": "apache-arrow",
|
||||
"version": "13.0.0",
|
||||
"resolved": "https://registry.npmjs.org/apache-arrow/-/apache-arrow-13.0.0.tgz",
|
||||
"integrity": "sha512-3gvCX0GDawWz6KFNC28p65U+zGh/LZ6ZNKWNu74N6CQlKzxeoWHpi4CgEQsgRSEMuyrIIXi1Ea2syja7dwcHvw==",
|
||||
"dev": true,
|
||||
"dependencies": {
|
||||
"@types/command-line-args": "5.2.0",
|
||||
"@types/command-line-usage": "5.0.2",
|
||||
"@types/node": "20.3.0",
|
||||
"@types/pad-left": "2.1.1",
|
||||
"command-line-args": "5.2.1",
|
||||
"command-line-usage": "7.0.1",
|
||||
"flatbuffers": "23.5.26",
|
||||
"json-bignum": "^0.0.3",
|
||||
"pad-left": "^2.1.0",
|
||||
"tslib": "^2.5.3"
|
||||
},
|
||||
"bin": {
|
||||
"arrow2csv": "bin/arrow2csv.js"
|
||||
}
|
||||
},
|
||||
"node_modules/apache-arrow-old/node_modules/@types/node": {
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/apache-arrow/node_modules/@types/node": {
|
||||
"version": "20.3.0",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.3.0.tgz",
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ=="
|
||||
"integrity": "sha512-cumHmIAf6On83X7yP+LrsEyUOf/YlociZelmpRYaGFydoaPdxdt80MAbu6vWerQT2COCp2nPvHdsbD7tHn/YlQ==",
|
||||
"peer": true
|
||||
},
|
||||
"node_modules/arg": {
|
||||
"version": "4.1.3",
|
||||
|
||||
@@ -41,6 +41,7 @@
|
||||
"@types/temp": "^0.9.1",
|
||||
"@types/uuid": "^9.0.3",
|
||||
"@typescript-eslint/eslint-plugin": "^5.59.1",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"cargo-cp-artifact": "^0.1",
|
||||
"chai": "^4.3.7",
|
||||
"chai-as-promised": "^7.1.1",
|
||||
@@ -93,4 +94,4 @@
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.4.11",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.4.11"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -20,19 +20,20 @@ import {
|
||||
type Vector,
|
||||
FixedSizeList,
|
||||
vectorFromArray,
|
||||
type Schema,
|
||||
Schema,
|
||||
Table as ArrowTable,
|
||||
RecordBatchStreamWriter,
|
||||
List,
|
||||
RecordBatch,
|
||||
makeData,
|
||||
Struct,
|
||||
type Float,
|
||||
Float,
|
||||
DataType,
|
||||
Binary,
|
||||
Float32
|
||||
} from 'apache-arrow'
|
||||
import { type EmbeddingFunction } from './index'
|
||||
import { sanitizeSchema } from './sanitize'
|
||||
|
||||
/*
|
||||
* Options to control how a column should be converted to a vector array
|
||||
@@ -201,10 +202,13 @@ export function makeArrowTable (
|
||||
}
|
||||
|
||||
const opt = new MakeArrowTableOptions(options !== undefined ? options : {})
|
||||
if (opt.schema !== undefined && opt.schema !== null) {
|
||||
opt.schema = sanitizeSchema(opt.schema)
|
||||
}
|
||||
const columns: Record<string, Vector> = {}
|
||||
// TODO: sample dataset to find missing columns
|
||||
// Prefer the field ordering of the schema, if present
|
||||
const columnNames = ((options?.schema) != null) ? (options?.schema?.names as string[]) : Object.keys(data[0])
|
||||
const columnNames = ((opt.schema) != null) ? (opt.schema.names as string[]) : Object.keys(data[0])
|
||||
for (const colName of columnNames) {
|
||||
if (data.length !== 0 && !Object.prototype.hasOwnProperty.call(data[0], colName)) {
|
||||
// The field is present in the schema, but not in the data, skip it
|
||||
@@ -329,6 +333,9 @@ async function applyEmbeddings<T> (table: ArrowTable, embeddings?: EmbeddingFunc
|
||||
if (embeddings == null) {
|
||||
return table
|
||||
}
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema)
|
||||
}
|
||||
|
||||
// Convert from ArrowTable to Record<String, Vector>
|
||||
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
|
||||
@@ -439,6 +446,9 @@ export async function fromRecordsToBuffer<T> (
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema)
|
||||
}
|
||||
const table = await convertToTable(data, embeddings, { schema })
|
||||
const writer = RecordBatchFileWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
@@ -456,6 +466,9 @@ export async function fromRecordsToStreamBuffer<T> (
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
if (schema !== null && schema !== undefined) {
|
||||
schema = sanitizeSchema(schema)
|
||||
}
|
||||
const table = await convertToTable(data, embeddings, { schema })
|
||||
const writer = RecordBatchStreamWriter.writeAll(table)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
@@ -474,6 +487,9 @@ export async function fromTableToBuffer<T> (
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
if (schema !== null && schema !== undefined) {
|
||||
schema = sanitizeSchema(schema)
|
||||
}
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
|
||||
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
@@ -492,6 +508,9 @@ export async function fromTableToStreamBuffer<T> (
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema
|
||||
): Promise<Buffer> {
|
||||
if (schema !== null && schema !== undefined) {
|
||||
schema = sanitizeSchema(schema)
|
||||
}
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema)
|
||||
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings)
|
||||
return Buffer.from(await writer.toUint8Array())
|
||||
@@ -528,5 +547,5 @@ function alignTable (table: ArrowTable, schema: Schema): ArrowTable {
|
||||
|
||||
// Creates an empty Arrow Table
|
||||
export function createEmptyTable (schema: Schema): ArrowTable {
|
||||
return new ArrowTable(schema)
|
||||
return new ArrowTable(sanitizeSchema(schema))
|
||||
}
|
||||
|
||||
501
node/src/sanitize.ts
Normal file
501
node/src/sanitize.ts
Normal file
@@ -0,0 +1,501 @@
|
||||
// Copyright 2023 LanceDB Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// The utilities in this file help sanitize data from the user's arrow
|
||||
// library into the types expected by vectordb's arrow library. Node
|
||||
// generally allows for mulitple versions of the same library (and sometimes
|
||||
// even multiple copies of the same version) to be installed at the same
|
||||
// time. However, arrow-js uses instanceof which expected that the input
|
||||
// comes from the exact same library instance. This is not always the case
|
||||
// and so we must sanitize the input to ensure that it is compatible.
|
||||
|
||||
import {
|
||||
Field,
|
||||
Utf8,
|
||||
FixedSizeBinary,
|
||||
FixedSizeList,
|
||||
Schema,
|
||||
List,
|
||||
Struct,
|
||||
Float,
|
||||
Bool,
|
||||
Date_,
|
||||
Decimal,
|
||||
DataType,
|
||||
Dictionary,
|
||||
Binary,
|
||||
Float32,
|
||||
Interval,
|
||||
Map_,
|
||||
Duration,
|
||||
Union,
|
||||
Time,
|
||||
Timestamp,
|
||||
Type,
|
||||
Null,
|
||||
Int,
|
||||
type Precision,
|
||||
type DateUnit,
|
||||
Int8,
|
||||
Int16,
|
||||
Int32,
|
||||
Int64,
|
||||
Uint8,
|
||||
Uint16,
|
||||
Uint32,
|
||||
Uint64,
|
||||
Float16,
|
||||
Float64,
|
||||
DateDay,
|
||||
DateMillisecond,
|
||||
DenseUnion,
|
||||
SparseUnion,
|
||||
TimeNanosecond,
|
||||
TimeMicrosecond,
|
||||
TimeMillisecond,
|
||||
TimeSecond,
|
||||
TimestampNanosecond,
|
||||
TimestampMicrosecond,
|
||||
TimestampMillisecond,
|
||||
TimestampSecond,
|
||||
IntervalDayTime,
|
||||
IntervalYearMonth,
|
||||
DurationNanosecond,
|
||||
DurationMicrosecond,
|
||||
DurationMillisecond,
|
||||
DurationSecond,
|
||||
} from "apache-arrow";
|
||||
import type { IntBitWidth, TimeBitWidth } from "apache-arrow/type";
|
||||
|
||||
function sanitizeMetadata(
|
||||
metadataLike?: unknown
|
||||
): Map<string, string> | undefined {
|
||||
if (metadataLike === undefined || metadataLike === null) {
|
||||
return undefined;
|
||||
}
|
||||
if (!(metadataLike instanceof Map)) {
|
||||
throw Error("Expected metadata, if present, to be a Map<string, string>");
|
||||
}
|
||||
for (const item of metadataLike) {
|
||||
if (!(typeof item[0] === "string" || !(typeof item[1] === "string"))) {
|
||||
throw Error(
|
||||
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values"
|
||||
);
|
||||
}
|
||||
}
|
||||
return metadataLike as Map<string, string>;
|
||||
}
|
||||
|
||||
function sanitizeInt(typeLike: object) {
|
||||
if (
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number" ||
|
||||
!("isSigned" in typeLike) ||
|
||||
typeof typeLike.isSigned !== "boolean"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected an Int Type to have a `bitWidth` and `isSigned` property"
|
||||
);
|
||||
}
|
||||
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeFloat(typeLike: object) {
|
||||
if (!("precision" in typeLike) || typeof typeLike.precision !== "number") {
|
||||
throw Error("Expected a Float Type to have a `precision` property");
|
||||
}
|
||||
return new Float(typeLike.precision as Precision);
|
||||
}
|
||||
|
||||
function sanitizeDecimal(typeLike: object) {
|
||||
if (
|
||||
!("scale" in typeLike) ||
|
||||
typeof typeLike.scale !== "number" ||
|
||||
!("precision" in typeLike) ||
|
||||
typeof typeLike.precision !== "number" ||
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties"
|
||||
);
|
||||
}
|
||||
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
|
||||
}
|
||||
|
||||
function sanitizeDate(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Date type to have a `unit` property");
|
||||
}
|
||||
return new Date_(typeLike.unit as DateUnit);
|
||||
}
|
||||
|
||||
function sanitizeTime(typeLike: object) {
|
||||
if (
|
||||
!("unit" in typeLike) ||
|
||||
typeof typeLike.unit !== "number" ||
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected a Time type to have `unit` and `bitWidth` properties"
|
||||
);
|
||||
}
|
||||
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeTimestamp(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Timestamp type to have a `unit` property");
|
||||
}
|
||||
let timezone = null;
|
||||
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
|
||||
timezone = typeLike.timezone;
|
||||
}
|
||||
return new Timestamp(typeLike.unit, timezone);
|
||||
}
|
||||
|
||||
function sanitizeTypedTimestamp(
|
||||
typeLike: object,
|
||||
Datatype:
|
||||
| typeof TimestampNanosecond
|
||||
| typeof TimestampMicrosecond
|
||||
| typeof TimestampMillisecond
|
||||
| typeof TimestampSecond
|
||||
) {
|
||||
let timezone = null;
|
||||
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
|
||||
timezone = typeLike.timezone;
|
||||
}
|
||||
return new Datatype(timezone);
|
||||
}
|
||||
|
||||
function sanitizeInterval(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected an Interval type to have a `unit` property");
|
||||
}
|
||||
return new Interval(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeList(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a List type to have an array-like `children` property"
|
||||
);
|
||||
}
|
||||
if (typeLike.children.length !== 1) {
|
||||
throw Error("Expected a List type to have exactly one child");
|
||||
}
|
||||
return new List(sanitizeField(typeLike.children[0]));
|
||||
}
|
||||
|
||||
function sanitizeStruct(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Struct type to have an array-like `children` property"
|
||||
);
|
||||
}
|
||||
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
|
||||
}
|
||||
|
||||
function sanitizeUnion(typeLike: object) {
|
||||
if (
|
||||
!("typeIds" in typeLike) ||
|
||||
!("mode" in typeLike) ||
|
||||
typeof typeLike.mode !== "number"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected a Union type to have `typeIds` and `mode` properties"
|
||||
);
|
||||
}
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Union type to have an array-like `children` property"
|
||||
);
|
||||
}
|
||||
|
||||
return new Union(
|
||||
typeLike.mode,
|
||||
typeLike.typeIds as any,
|
||||
typeLike.children.map((child) => sanitizeField(child))
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeTypedUnion(
|
||||
typeLike: object,
|
||||
UnionType: typeof DenseUnion | typeof SparseUnion
|
||||
) {
|
||||
if (!("typeIds" in typeLike)) {
|
||||
throw Error(
|
||||
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property"
|
||||
);
|
||||
}
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property"
|
||||
);
|
||||
}
|
||||
|
||||
return new UnionType(
|
||||
typeLike.typeIds as any,
|
||||
typeLike.children.map((child) => sanitizeField(child))
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
|
||||
throw Error(
|
||||
"Expected a FixedSizeBinary type to have a `byteWidth` property"
|
||||
);
|
||||
}
|
||||
return new FixedSizeBinary(typeLike.byteWidth);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeList(typeLike: object) {
|
||||
if (!("listSize" in typeLike) || typeof typeLike.listSize !== "number") {
|
||||
throw Error("Expected a FixedSizeList type to have a `listSize` property");
|
||||
}
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a FixedSizeList type to have an array-like `children` property"
|
||||
);
|
||||
}
|
||||
if (typeLike.children.length !== 1) {
|
||||
throw Error("Expected a FixedSizeList type to have exactly one child");
|
||||
}
|
||||
return new FixedSizeList(
|
||||
typeLike.listSize,
|
||||
sanitizeField(typeLike.children[0])
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeMap(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Map type to have an array-like `children` property"
|
||||
);
|
||||
}
|
||||
if (!("keysSorted" in typeLike) || typeof typeLike.keysSorted !== "boolean") {
|
||||
throw Error("Expected a Map type to have a `keysSorted` property");
|
||||
}
|
||||
return new Map_(
|
||||
typeLike.children.map((field) => sanitizeField(field)) as any,
|
||||
typeLike.keysSorted
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeDuration(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Duration type to have a `unit` property");
|
||||
}
|
||||
return new Duration(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeDictionary(typeLike: object) {
|
||||
if (!("id" in typeLike) || typeof typeLike.id !== "number") {
|
||||
throw Error("Expected a Dictionary type to have an `id` property");
|
||||
}
|
||||
if (!("indices" in typeLike) || typeof typeLike.indices !== "object") {
|
||||
throw Error("Expected a Dictionary type to have an `indices` property");
|
||||
}
|
||||
if (!("dictionary" in typeLike) || typeof typeLike.dictionary !== "object") {
|
||||
throw Error("Expected a Dictionary type to have an `dictionary` property");
|
||||
}
|
||||
if (!("isOrdered" in typeLike) || typeof typeLike.isOrdered !== "boolean") {
|
||||
throw Error("Expected a Dictionary type to have an `isOrdered` property");
|
||||
}
|
||||
return new Dictionary(
|
||||
sanitizeType(typeLike.dictionary),
|
||||
sanitizeType(typeLike.indices) as any,
|
||||
typeLike.id,
|
||||
typeLike.isOrdered
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
if (typeof typeLike !== "object" || typeLike === null) {
|
||||
throw Error("Expected a Type but object was null/undefined");
|
||||
}
|
||||
if (!("typeId" in typeLike) || !(typeof typeLike.typeId !== "function")) {
|
||||
throw Error("Expected a Type to have a typeId function");
|
||||
}
|
||||
let typeId: Type;
|
||||
if (typeof typeLike.typeId === "function") {
|
||||
typeId = (typeLike.typeId as () => unknown)() as Type;
|
||||
} else if (typeof typeLike.typeId === "number") {
|
||||
typeId = typeLike.typeId as Type;
|
||||
} else {
|
||||
throw Error("Type's typeId property was not a function or number");
|
||||
}
|
||||
|
||||
switch (typeId) {
|
||||
case Type.NONE:
|
||||
throw Error("Received a Type with a typeId of NONE");
|
||||
case Type.Null:
|
||||
return new Null();
|
||||
case Type.Int:
|
||||
return sanitizeInt(typeLike);
|
||||
case Type.Float:
|
||||
return sanitizeFloat(typeLike);
|
||||
case Type.Binary:
|
||||
return new Binary();
|
||||
case Type.Utf8:
|
||||
return new Utf8();
|
||||
case Type.Bool:
|
||||
return new Bool();
|
||||
case Type.Decimal:
|
||||
return sanitizeDecimal(typeLike);
|
||||
case Type.Date:
|
||||
return sanitizeDate(typeLike);
|
||||
case Type.Time:
|
||||
return sanitizeTime(typeLike);
|
||||
case Type.Timestamp:
|
||||
return sanitizeTimestamp(typeLike);
|
||||
case Type.Interval:
|
||||
return sanitizeInterval(typeLike);
|
||||
case Type.List:
|
||||
return sanitizeList(typeLike);
|
||||
case Type.Struct:
|
||||
return sanitizeStruct(typeLike);
|
||||
case Type.Union:
|
||||
return sanitizeUnion(typeLike);
|
||||
case Type.FixedSizeBinary:
|
||||
return sanitizeFixedSizeBinary(typeLike);
|
||||
case Type.FixedSizeList:
|
||||
return sanitizeFixedSizeList(typeLike);
|
||||
case Type.Map:
|
||||
return sanitizeMap(typeLike);
|
||||
case Type.Duration:
|
||||
return sanitizeDuration(typeLike);
|
||||
case Type.Dictionary:
|
||||
return sanitizeDictionary(typeLike);
|
||||
case Type.Int8:
|
||||
return new Int8();
|
||||
case Type.Int16:
|
||||
return new Int16();
|
||||
case Type.Int32:
|
||||
return new Int32();
|
||||
case Type.Int64:
|
||||
return new Int64();
|
||||
case Type.Uint8:
|
||||
return new Uint8();
|
||||
case Type.Uint16:
|
||||
return new Uint16();
|
||||
case Type.Uint32:
|
||||
return new Uint32();
|
||||
case Type.Uint64:
|
||||
return new Uint64();
|
||||
case Type.Float16:
|
||||
return new Float16();
|
||||
case Type.Float32:
|
||||
return new Float32();
|
||||
case Type.Float64:
|
||||
return new Float64();
|
||||
case Type.DateMillisecond:
|
||||
return new DateMillisecond();
|
||||
case Type.DateDay:
|
||||
return new DateDay();
|
||||
case Type.TimeNanosecond:
|
||||
return new TimeNanosecond();
|
||||
case Type.TimeMicrosecond:
|
||||
return new TimeMicrosecond();
|
||||
case Type.TimeMillisecond:
|
||||
return new TimeMillisecond();
|
||||
case Type.TimeSecond:
|
||||
return new TimeSecond();
|
||||
case Type.TimestampNanosecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampNanosecond);
|
||||
case Type.TimestampMicrosecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampMicrosecond);
|
||||
case Type.TimestampMillisecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampMillisecond);
|
||||
case Type.TimestampSecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampSecond);
|
||||
case Type.DenseUnion:
|
||||
return sanitizeTypedUnion(typeLike, DenseUnion);
|
||||
case Type.SparseUnion:
|
||||
return sanitizeTypedUnion(typeLike, SparseUnion);
|
||||
case Type.IntervalDayTime:
|
||||
return new IntervalDayTime();
|
||||
case Type.IntervalYearMonth:
|
||||
return new IntervalYearMonth();
|
||||
case Type.DurationNanosecond:
|
||||
return new DurationNanosecond();
|
||||
case Type.DurationMicrosecond:
|
||||
return new DurationMicrosecond();
|
||||
case Type.DurationMillisecond:
|
||||
return new DurationMillisecond();
|
||||
case Type.DurationSecond:
|
||||
return new DurationSecond();
|
||||
}
|
||||
}
|
||||
|
||||
function sanitizeField(fieldLike: unknown): Field {
|
||||
if (fieldLike instanceof Field) {
|
||||
return fieldLike;
|
||||
}
|
||||
if (typeof fieldLike !== "object" || fieldLike === null) {
|
||||
throw Error("Expected a Field but object was null/undefined");
|
||||
}
|
||||
if (
|
||||
!("type" in fieldLike) ||
|
||||
!("name" in fieldLike) ||
|
||||
!("nullable" in fieldLike)
|
||||
) {
|
||||
throw Error(
|
||||
"The field passed in is missing a `type`/`name`/`nullable` property"
|
||||
);
|
||||
}
|
||||
const type = sanitizeType(fieldLike.type);
|
||||
const name = fieldLike.name;
|
||||
if (!(typeof name === "string")) {
|
||||
throw Error("The field passed in had a non-string `name` property");
|
||||
}
|
||||
const nullable = fieldLike.nullable;
|
||||
if (!(typeof nullable === "boolean")) {
|
||||
throw Error("The field passed in had a non-boolean `nullable` property");
|
||||
}
|
||||
let metadata;
|
||||
if ("metadata" in fieldLike) {
|
||||
metadata = sanitizeMetadata(fieldLike.metadata);
|
||||
}
|
||||
return new Field(name, type, nullable, metadata);
|
||||
}
|
||||
|
||||
export function sanitizeSchema(schemaLike: unknown): Schema {
|
||||
if (schemaLike instanceof Schema) {
|
||||
return schemaLike;
|
||||
}
|
||||
if (typeof schemaLike !== "object" || schemaLike === null) {
|
||||
throw Error("Expected a Schema but object was null/undefined");
|
||||
}
|
||||
if (!("fields" in schemaLike)) {
|
||||
throw Error(
|
||||
"The schema passed in does not appear to be a schema (no 'fields' property)"
|
||||
);
|
||||
}
|
||||
let metadata;
|
||||
if ("metadata" in schemaLike) {
|
||||
metadata = sanitizeMetadata(schemaLike.metadata);
|
||||
}
|
||||
if (!Array.isArray(schemaLike.fields)) {
|
||||
throw Error(
|
||||
"The schema passed in had a 'fields' property but it was not an array"
|
||||
);
|
||||
}
|
||||
const sanitizedFields = schemaLike.fields.map((field) =>
|
||||
sanitizeField(field)
|
||||
);
|
||||
return new Schema(sanitizedFields, metadata);
|
||||
}
|
||||
@@ -34,8 +34,20 @@ import {
|
||||
List,
|
||||
DataType,
|
||||
Dictionary,
|
||||
Int64
|
||||
Int64,
|
||||
MetadataVersion
|
||||
} from 'apache-arrow'
|
||||
import {
|
||||
Dictionary as OldDictionary,
|
||||
Field as OldField,
|
||||
FixedSizeList as OldFixedSizeList,
|
||||
Float32 as OldFloat32,
|
||||
Int32 as OldInt32,
|
||||
Struct as OldStruct,
|
||||
Schema as OldSchema,
|
||||
TimestampNanosecond as OldTimestampNanosecond,
|
||||
Utf8 as OldUtf8
|
||||
} from 'apache-arrow-old'
|
||||
import { type EmbeddingFunction } from '../embedding/embedding_function'
|
||||
|
||||
chaiUse(chaiAsPromised)
|
||||
@@ -318,3 +330,31 @@ describe('makeEmptyTable', function () {
|
||||
await checkTableCreation(async (_, __, schema) => makeEmptyTable(schema))
|
||||
})
|
||||
})
|
||||
|
||||
describe('when using two versions of arrow', function () {
|
||||
it('can still import data', async function() {
|
||||
const schema = new OldSchema([
|
||||
new OldField('id', new OldInt32()),
|
||||
new OldField('vector', new OldFixedSizeList(1024, new OldField("item", new OldFloat32(), true))),
|
||||
new OldField('struct', new OldStruct([
|
||||
new OldField('nested', new OldDictionary(new OldUtf8(), new OldInt32(), 1, true)),
|
||||
new OldField('ts_with_tz', new OldTimestampNanosecond("some_tz")),
|
||||
new OldField('ts_no_tz', new OldTimestampNanosecond(null))
|
||||
]))
|
||||
]) as any
|
||||
// We use arrow version 13 to emulate a "foreign arrow" and this version doesn't have metadataVersion
|
||||
// In theory, this wouldn't matter. We don't rely on that property. However, it causes deepEqual to
|
||||
// fail so we patch it back in
|
||||
schema.metadataVersion = MetadataVersion.V5
|
||||
const table = makeArrowTable(
|
||||
[],
|
||||
{ schema }
|
||||
)
|
||||
|
||||
const buf = await fromTableToBuffer(table)
|
||||
assert.isAbove(buf.byteLength, 0)
|
||||
const actual = tableFromIPC(buf)
|
||||
const actualSchema = actual.schema
|
||||
assert.deepEqual(actualSchema, schema)
|
||||
})
|
||||
})
|
||||
|
||||
3
nodejs/.eslintignore
Normal file
3
nodejs/.eslintignore
Normal file
@@ -0,0 +1,3 @@
|
||||
**/dist/**/*
|
||||
**/native.js
|
||||
**/native.d.ts
|
||||
@@ -1,22 +0,0 @@
|
||||
module.exports = {
|
||||
env: {
|
||||
browser: true,
|
||||
es2021: true,
|
||||
},
|
||||
extends: [
|
||||
"eslint:recommended",
|
||||
"plugin:@typescript-eslint/recommended-type-checked",
|
||||
"plugin:@typescript-eslint/stylistic-type-checked",
|
||||
],
|
||||
overrides: [],
|
||||
parserOptions: {
|
||||
project: "./tsconfig.json",
|
||||
ecmaVersion: "latest",
|
||||
sourceType: "module",
|
||||
},
|
||||
rules: {
|
||||
"@typescript-eslint/method-signature-style": "off",
|
||||
"@typescript-eslint/no-explicit-any": "off",
|
||||
},
|
||||
ignorePatterns: ["node_modules/", "dist/", "build/", "lancedb/native.*"],
|
||||
};
|
||||
1
nodejs/.prettierignore
Symbolic link
1
nodejs/.prettierignore
Symbolic link
@@ -0,0 +1 @@
|
||||
.eslintignore
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
It will replace the NodeJS SDK when it is ready.
|
||||
|
||||
|
||||
## Development
|
||||
|
||||
```sh
|
||||
@@ -10,9 +9,35 @@ npm run build
|
||||
npm t
|
||||
```
|
||||
|
||||
Generating docs
|
||||
### Running lint / format
|
||||
|
||||
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
|
||||
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
|
||||
set to true. Also, if your vscode root folder is the repo root then you will need to set
|
||||
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
|
||||
|
||||
```sh
|
||||
npm run lint
|
||||
```
|
||||
|
||||
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
|
||||
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
|
||||
for typescript and you should enable format on save. To manually check your code's format you
|
||||
can run:
|
||||
|
||||
```sh
|
||||
npm run chkformat
|
||||
```
|
||||
|
||||
If you need to manually format your code you can run:
|
||||
|
||||
```sh
|
||||
npx prettier --write .
|
||||
```
|
||||
|
||||
### Generating docs
|
||||
|
||||
```sh
|
||||
npm run docs
|
||||
|
||||
cd ../docs
|
||||
|
||||
@@ -12,9 +12,13 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { makeArrowTable, toBuffer } from "../lancedb/arrow";
|
||||
import {
|
||||
Int64,
|
||||
convertToTable,
|
||||
fromTableToBuffer,
|
||||
makeArrowTable,
|
||||
makeEmptyTable,
|
||||
} from "../dist/arrow";
|
||||
import {
|
||||
Field,
|
||||
FixedSizeList,
|
||||
Float16,
|
||||
@@ -23,98 +27,444 @@ import {
|
||||
tableFromIPC,
|
||||
Schema,
|
||||
Float64,
|
||||
type Table,
|
||||
Binary,
|
||||
Bool,
|
||||
Utf8,
|
||||
Struct,
|
||||
List,
|
||||
DataType,
|
||||
Dictionary,
|
||||
Int64,
|
||||
Float,
|
||||
Precision,
|
||||
MetadataVersion,
|
||||
} from "apache-arrow";
|
||||
import {
|
||||
Dictionary as OldDictionary,
|
||||
Field as OldField,
|
||||
FixedSizeList as OldFixedSizeList,
|
||||
Float32 as OldFloat32,
|
||||
Int32 as OldInt32,
|
||||
Struct as OldStruct,
|
||||
Schema as OldSchema,
|
||||
TimestampNanosecond as OldTimestampNanosecond,
|
||||
Utf8 as OldUtf8,
|
||||
} from "apache-arrow-old";
|
||||
import { type EmbeddingFunction } from "../dist/embedding/embedding_function";
|
||||
|
||||
test("customized schema", function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Int32(), true),
|
||||
new Field("b", new Float32(), true),
|
||||
new Field(
|
||||
"c",
|
||||
new FixedSizeList(3, new Field("item", new Float16())),
|
||||
true
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, c: [1, 2, 3] },
|
||||
{ a: 4, b: 5, c: [4, 5, 6] },
|
||||
{ a: 7, b: 8, c: [7, 8, 9] },
|
||||
],
|
||||
{ schema }
|
||||
);
|
||||
|
||||
expect(table.schema.toString()).toEqual(schema.toString());
|
||||
|
||||
const buf = toBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.toString()).toStrictEqual(schema.toString());
|
||||
});
|
||||
|
||||
test("default vector column", function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Float64(), true),
|
||||
new Field("b", new Float64(), true),
|
||||
new Field("vector", new FixedSizeList(3, new Field("item", new Float32()))),
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||
]);
|
||||
|
||||
const buf = toBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.toString()).toEqual(actualSchema.toString());
|
||||
});
|
||||
|
||||
test("2 vector columns", function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Float64()),
|
||||
new Field("b", new Float64()),
|
||||
new Field("vec1", new FixedSizeList(3, new Field("item", new Float16()))),
|
||||
new Field("vec2", new FixedSizeList(3, new Field("item", new Float16()))),
|
||||
]);
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
|
||||
],
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
function sampleRecords(): Array<Record<string, any>> {
|
||||
return [
|
||||
{
|
||||
vectorColumns: {
|
||||
vec1: { type: new Float16() },
|
||||
vec2: { type: new Float16() },
|
||||
},
|
||||
binary: Buffer.alloc(5),
|
||||
boolean: false,
|
||||
number: 7,
|
||||
string: "hello",
|
||||
struct: { x: 0, y: 0 },
|
||||
list: ["anime", "action", "comedy"],
|
||||
},
|
||||
];
|
||||
}
|
||||
|
||||
// Helper method to verify various ways to create a table
|
||||
async function checkTableCreation(
|
||||
tableCreationMethod: (
|
||||
records: Record<string, unknown>[],
|
||||
recordsReversed: Record<string, unknown>[],
|
||||
schema: Schema,
|
||||
) => Promise<Table>,
|
||||
infersTypes: boolean,
|
||||
): Promise<void> {
|
||||
const records = sampleRecords();
|
||||
const recordsReversed = [
|
||||
{
|
||||
list: ["anime", "action", "comedy"],
|
||||
struct: { x: 0, y: 0 },
|
||||
string: "hello",
|
||||
number: 7,
|
||||
boolean: false,
|
||||
binary: Buffer.alloc(5),
|
||||
},
|
||||
];
|
||||
const schema = new Schema([
|
||||
new Field("binary", new Binary(), false),
|
||||
new Field("boolean", new Bool(), false),
|
||||
new Field("number", new Float64(), false),
|
||||
new Field("string", new Utf8(), false),
|
||||
new Field(
|
||||
"struct",
|
||||
new Struct([
|
||||
new Field("x", new Float64(), false),
|
||||
new Field("y", new Float64(), false),
|
||||
]),
|
||||
),
|
||||
new Field("list", new List(new Field("item", new Utf8(), false)), false),
|
||||
]);
|
||||
|
||||
const table = await tableCreationMethod(records, recordsReversed, schema);
|
||||
schema.fields.forEach((field, idx) => {
|
||||
const actualField = table.schema.fields[idx];
|
||||
// Type inference always assumes nullable=true
|
||||
if (infersTypes) {
|
||||
expect(actualField.nullable).toBe(true);
|
||||
} else {
|
||||
expect(actualField.nullable).toBe(false);
|
||||
}
|
||||
);
|
||||
expect(table.getChild(field.name)?.type.toString()).toEqual(
|
||||
field.type.toString(),
|
||||
);
|
||||
expect(table.getChildAt(idx)?.type.toString()).toEqual(
|
||||
field.type.toString(),
|
||||
);
|
||||
});
|
||||
}
|
||||
|
||||
const buf = toBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
describe("The function makeArrowTable", function () {
|
||||
it("will use data types from a provided schema instead of inference", async function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Int32()),
|
||||
new Field("b", new Float32()),
|
||||
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
|
||||
new Field("d", new Int64()),
|
||||
]);
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
|
||||
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
|
||||
{ a: 7, b: 8, c: [7, 8, 9], d: null },
|
||||
],
|
||||
{ schema },
|
||||
);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.toString()).toEqual(schema.toString());
|
||||
const buf = await fromTableToBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema).toEqual(schema);
|
||||
});
|
||||
|
||||
it("will assume the column `vector` is FixedSizeList<Float32> by default", async function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Float(Precision.DOUBLE), true),
|
||||
new Field("b", new Float(Precision.DOUBLE), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(
|
||||
3,
|
||||
new Field("item", new Float(Precision.SINGLE), true),
|
||||
),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||
]);
|
||||
|
||||
const buf = await fromTableToBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema).toEqual(schema);
|
||||
});
|
||||
|
||||
it("can support multiple vector columns", async function () {
|
||||
const schema = new Schema([
|
||||
new Field("a", new Float(Precision.DOUBLE), true),
|
||||
new Field("b", new Float(Precision.DOUBLE), true),
|
||||
new Field(
|
||||
"vec1",
|
||||
new FixedSizeList(3, new Field("item", new Float16(), true)),
|
||||
true,
|
||||
),
|
||||
new Field(
|
||||
"vec2",
|
||||
new FixedSizeList(3, new Field("item", new Float16(), true)),
|
||||
true,
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable(
|
||||
[
|
||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
|
||||
],
|
||||
{
|
||||
vectorColumns: {
|
||||
vec1: { type: new Float16() },
|
||||
vec2: { type: new Float16() },
|
||||
},
|
||||
},
|
||||
);
|
||||
|
||||
const buf = await fromTableToBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
|
||||
const actual = tableFromIPC(buf);
|
||||
expect(actual.numRows).toBe(3);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema).toEqual(schema);
|
||||
});
|
||||
|
||||
it("will allow different vector column types", async function () {
|
||||
const table = makeArrowTable([{ fp16: [1], fp32: [1], fp64: [1] }], {
|
||||
vectorColumns: {
|
||||
fp16: { type: new Float16() },
|
||||
fp32: { type: new Float32() },
|
||||
fp64: { type: new Float64() },
|
||||
},
|
||||
});
|
||||
|
||||
expect(table.getChild("fp16")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
);
|
||||
expect(table.getChild("fp32")?.type.children[0].type.toString()).toEqual(
|
||||
new Float32().toString(),
|
||||
);
|
||||
expect(table.getChild("fp64")?.type.children[0].type.toString()).toEqual(
|
||||
new Float64().toString(),
|
||||
);
|
||||
});
|
||||
|
||||
it("will use dictionary encoded strings if asked", async function () {
|
||||
const table = makeArrowTable([{ str: "hello" }]);
|
||||
expect(DataType.isUtf8(table.getChild("str")?.type)).toBe(true);
|
||||
|
||||
const tableWithDict = makeArrowTable([{ str: "hello" }], {
|
||||
dictionaryEncodeStrings: true,
|
||||
});
|
||||
expect(DataType.isDictionary(tableWithDict.getChild("str")?.type)).toBe(
|
||||
true,
|
||||
);
|
||||
|
||||
const schema = new Schema([
|
||||
new Field("str", new Dictionary(new Utf8(), new Int32())),
|
||||
]);
|
||||
|
||||
const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema });
|
||||
expect(DataType.isDictionary(tableWithDict2.getChild("str")?.type)).toBe(
|
||||
true,
|
||||
);
|
||||
});
|
||||
|
||||
it("will infer data types correctly", async function () {
|
||||
await checkTableCreation(async (records) => makeArrowTable(records), true);
|
||||
});
|
||||
|
||||
it("will allow a schema to be provided", async function () {
|
||||
await checkTableCreation(
|
||||
async (records, _, schema) => makeArrowTable(records, { schema }),
|
||||
false,
|
||||
);
|
||||
});
|
||||
|
||||
it("will use the field order of any provided schema", async function () {
|
||||
await checkTableCreation(
|
||||
async (_, recordsReversed, schema) =>
|
||||
makeArrowTable(recordsReversed, { schema }),
|
||||
false,
|
||||
);
|
||||
});
|
||||
|
||||
it("will make an empty table", async function () {
|
||||
await checkTableCreation(
|
||||
async (_, __, schema) => makeArrowTable([], { schema }),
|
||||
false,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
test("handles int64", function() {
|
||||
// https://github.com/lancedb/lancedb/issues/960
|
||||
const schema = new Schema([
|
||||
new Field("x", new Int64(), true)
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ x: 1 },
|
||||
{ x: 2 },
|
||||
{ x: 3 }
|
||||
], { schema });
|
||||
expect(table.schema).toEqual(schema);
|
||||
})
|
||||
class DummyEmbedding implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
public readonly embeddingDimension = 2;
|
||||
public readonly embeddingDataType = new Float16();
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
}
|
||||
|
||||
class DummyEmbeddingWithNoDimension implements EmbeddingFunction<string> {
|
||||
public readonly sourceColumn = "string";
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
return data.map(() => [0.0, 0.0]);
|
||||
}
|
||||
}
|
||||
|
||||
describe("convertToTable", function () {
|
||||
it("will infer data types correctly", async function () {
|
||||
await checkTableCreation(
|
||||
async (records) => await convertToTable(records),
|
||||
true,
|
||||
);
|
||||
});
|
||||
|
||||
it("will allow a schema to be provided", async function () {
|
||||
await checkTableCreation(
|
||||
async (records, _, schema) =>
|
||||
await convertToTable(records, undefined, { schema }),
|
||||
false,
|
||||
);
|
||||
});
|
||||
|
||||
it("will use the field order of any provided schema", async function () {
|
||||
await checkTableCreation(
|
||||
async (_, recordsReversed, schema) =>
|
||||
await convertToTable(recordsReversed, undefined, { schema }),
|
||||
false,
|
||||
);
|
||||
});
|
||||
|
||||
it("will make an empty table", async function () {
|
||||
await checkTableCreation(
|
||||
async (_, __, schema) => await convertToTable([], undefined, { schema }),
|
||||
false,
|
||||
);
|
||||
});
|
||||
|
||||
it("will apply embeddings", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
);
|
||||
});
|
||||
|
||||
it("will fail if missing the embedding source column", async function () {
|
||||
await expect(
|
||||
convertToTable([{ id: 1 }], new DummyEmbedding()),
|
||||
).rejects.toThrow("'string' was not present");
|
||||
});
|
||||
|
||||
it("use embeddingDimension if embedding missing from table", async function () {
|
||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||
// Simulate getting an empty Arrow table (minus embedding) from some other source
|
||||
// In other words, we aren't starting with records
|
||||
const table = makeEmptyTable(schema);
|
||||
|
||||
// If the embedding specifies the dimension we are fine
|
||||
await fromTableToBuffer(table, new DummyEmbedding());
|
||||
|
||||
// We can also supply a schema and should be ok
|
||||
const schemaWithEmbedding = new Schema([
|
||||
new Field("string", new Utf8(), false),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(2, new Field("item", new Float16(), false)),
|
||||
false,
|
||||
),
|
||||
]);
|
||||
await fromTableToBuffer(
|
||||
table,
|
||||
new DummyEmbeddingWithNoDimension(),
|
||||
schemaWithEmbedding,
|
||||
);
|
||||
|
||||
// Otherwise we will get an error
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbeddingWithNoDimension()),
|
||||
).rejects.toThrow("does not specify `embeddingDimension`");
|
||||
});
|
||||
|
||||
it("will apply embeddings to an empty table", async function () {
|
||||
const schema = new Schema([
|
||||
new Field("string", new Utf8(), false),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(2, new Field("item", new Float16(), false)),
|
||||
false,
|
||||
),
|
||||
]);
|
||||
const table = await convertToTable([], new DummyEmbedding(), { schema });
|
||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
||||
new Float16().toString(),
|
||||
);
|
||||
});
|
||||
|
||||
it("will complain if embeddings present but schema missing embedding column", async function () {
|
||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||
await expect(
|
||||
convertToTable([], new DummyEmbedding(), { schema }),
|
||||
).rejects.toThrow("column vector was missing");
|
||||
});
|
||||
|
||||
it("will provide a nice error if run twice", async function () {
|
||||
const records = sampleRecords();
|
||||
const table = await convertToTable(records, new DummyEmbedding());
|
||||
// fromTableToBuffer will try and apply the embeddings again
|
||||
await expect(
|
||||
fromTableToBuffer(table, new DummyEmbedding()),
|
||||
).rejects.toThrow("already existed");
|
||||
});
|
||||
});
|
||||
|
||||
describe("makeEmptyTable", function () {
|
||||
it("will make an empty table", async function () {
|
||||
await checkTableCreation(
|
||||
async (_, __, schema) => makeEmptyTable(schema),
|
||||
false,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("when using two versions of arrow", function () {
|
||||
it("can still import data", async function () {
|
||||
const schema = new OldSchema([
|
||||
new OldField("id", new OldInt32()),
|
||||
new OldField(
|
||||
"vector",
|
||||
new OldFixedSizeList(
|
||||
1024,
|
||||
new OldField("item", new OldFloat32(), true),
|
||||
),
|
||||
),
|
||||
new OldField(
|
||||
"struct",
|
||||
new OldStruct([
|
||||
new OldField(
|
||||
"nested",
|
||||
new OldDictionary(new OldUtf8(), new OldInt32(), 1, true),
|
||||
),
|
||||
new OldField("ts_with_tz", new OldTimestampNanosecond("some_tz")),
|
||||
new OldField("ts_no_tz", new OldTimestampNanosecond(null)),
|
||||
]),
|
||||
),
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
]) as any;
|
||||
schema.metadataVersion = MetadataVersion.V5;
|
||||
const table = makeArrowTable([], { schema });
|
||||
|
||||
const buf = await fromTableToBuffer(table);
|
||||
expect(buf.byteLength).toBeGreaterThan(0);
|
||||
const actual = tableFromIPC(buf);
|
||||
const actualSchema = actual.schema;
|
||||
expect(actualSchema.fields.length).toBe(3);
|
||||
|
||||
// Deep equality gets hung up on some very minor unimportant differences
|
||||
// between arrow version 13 and 15 which isn't really what we're testing for
|
||||
// and so we do our own comparison that just checks name/type/nullability
|
||||
function compareFields(lhs: Field, rhs: Field) {
|
||||
expect(lhs.name).toEqual(rhs.name);
|
||||
expect(lhs.nullable).toEqual(rhs.nullable);
|
||||
expect(lhs.typeId).toEqual(rhs.typeId);
|
||||
if ("children" in lhs.type && lhs.type.children !== null) {
|
||||
const lhsChildren = lhs.type.children as Field[];
|
||||
lhsChildren.forEach((child: Field, idx) => {
|
||||
compareFields(child, rhs.type.children[idx]);
|
||||
});
|
||||
}
|
||||
}
|
||||
actualSchema.fields.forEach((field, idx) => {
|
||||
compareFields(field, actualSchema.fields[idx]);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -12,23 +12,77 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as os from "os";
|
||||
import * as path from "path";
|
||||
import * as fs from "fs";
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { connect } from "../dist/index.js";
|
||||
import { Connection, connect } from "../dist/index.js";
|
||||
|
||||
describe("when working with a connection", () => {
|
||||
describe("when connecting", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => (tmpDir = tmp.dirSync({ unsafeCleanup: true })));
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
const tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "test-connection"));
|
||||
it("should connect", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
expect(db.display()).toBe(
|
||||
`NativeDatabase(uri=${tmpDir.name}, read_consistency_interval=None)`,
|
||||
);
|
||||
});
|
||||
|
||||
it("should fail if creating table twice, unless overwrite is true", async() => {
|
||||
const db = await connect(tmpDir);
|
||||
it("should allow read consistency interval to be specified", async () => {
|
||||
const db = await connect(tmpDir.name, { readConsistencyInterval: 5 });
|
||||
expect(db.display()).toBe(
|
||||
`NativeDatabase(uri=${tmpDir.name}, read_consistency_interval=5s)`,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe("given a connection", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let db: Connection;
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
db = await connect(tmpDir.name);
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("should raise an error if opening a non-existent table", async () => {
|
||||
await expect(db.openTable("non-existent")).rejects.toThrow("was not found");
|
||||
});
|
||||
|
||||
it("should raise an error if any operation is tried after it is closed", async () => {
|
||||
expect(db.isOpen()).toBe(true);
|
||||
await db.close();
|
||||
expect(db.isOpen()).toBe(false);
|
||||
await expect(db.tableNames()).rejects.toThrow("Connection is closed");
|
||||
});
|
||||
|
||||
it("should fail if creating table twice, unless overwrite is true", async () => {
|
||||
let tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]);
|
||||
await expect(tbl.countRows()).resolves.toBe(2);
|
||||
await expect(db.createTable("test", [{ id: 1 }, { id: 2 }])).rejects.toThrow();
|
||||
await expect(
|
||||
db.createTable("test", [{ id: 1 }, { id: 2 }]),
|
||||
).rejects.toThrow();
|
||||
tbl = await db.createTable("test", [{ id: 3 }], { mode: "overwrite" });
|
||||
await expect(tbl.countRows()).resolves.toBe(1);
|
||||
})
|
||||
});
|
||||
|
||||
it("should respect limit and page token when listing tables", async () => {
|
||||
const db = await connect(tmpDir.name);
|
||||
|
||||
await db.createTable("b", [{ id: 1 }]);
|
||||
await db.createTable("a", [{ id: 1 }]);
|
||||
await db.createTable("c", [{ id: 1 }]);
|
||||
|
||||
let tables = await db.tableNames();
|
||||
expect(tables).toEqual(["a", "b", "c"]);
|
||||
|
||||
tables = await db.tableNames({ limit: 1 });
|
||||
expect(tables).toEqual(["a"]);
|
||||
|
||||
tables = await db.tableNames({ limit: 1, startAfter: "a" });
|
||||
expect(tables).toEqual(["b"]);
|
||||
|
||||
tables = await db.tableNames({ startAfter: "a" });
|
||||
expect(tables).toEqual(["b", "c"]);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -1,34 +0,0 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as os from "os";
|
||||
import * as path from "path";
|
||||
import * as fs from "fs";
|
||||
|
||||
import { Schema, Field, Float64 } from "apache-arrow";
|
||||
import { connect } from "../dist/index.js";
|
||||
|
||||
test("open database", async () => {
|
||||
const tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "test-open"));
|
||||
|
||||
const db = await connect(tmpDir);
|
||||
let tableNames = await db.tableNames();
|
||||
expect(tableNames).toStrictEqual([]);
|
||||
|
||||
const tbl = await db.createTable("test", [{ id: 1 }, { id: 2 }]);
|
||||
expect(await db.tableNames()).toStrictEqual(["test"]);
|
||||
|
||||
const schema = await tbl.schema();
|
||||
expect(schema).toEqual(new Schema([new Field("id", new Float64(), true)]));
|
||||
});
|
||||
@@ -12,27 +12,75 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import * as os from "os";
|
||||
import * as path from "path";
|
||||
import * as fs from "fs";
|
||||
import * as path from "path";
|
||||
import * as tmp from "tmp";
|
||||
|
||||
import { connect } from "../dist";
|
||||
import { Schema, Field, Float32, Int32, FixedSizeList, Int64, Float64 } from "apache-arrow";
|
||||
import { Table, connect } from "../dist";
|
||||
import {
|
||||
Schema,
|
||||
Field,
|
||||
Float32,
|
||||
Int32,
|
||||
FixedSizeList,
|
||||
Int64,
|
||||
Float64,
|
||||
} from "apache-arrow";
|
||||
import { makeArrowTable } from "../dist/arrow";
|
||||
|
||||
describe("Given a table", () => {
|
||||
let tmpDir: tmp.DirResult;
|
||||
let table: Table;
|
||||
const schema = new Schema([new Field("id", new Float64(), true)]);
|
||||
beforeEach(async () => {
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
const conn = await connect(tmpDir.name);
|
||||
table = await conn.createEmptyTable("some_table", schema);
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
it("be displayable", async () => {
|
||||
expect(table.display()).toMatch(
|
||||
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
|
||||
);
|
||||
table.close();
|
||||
expect(table.display()).toBe("ClosedTable(some_table)");
|
||||
});
|
||||
|
||||
it("should let me add data", async () => {
|
||||
await table.add([{ id: 1 }, { id: 2 }]);
|
||||
await table.add([{ id: 1 }]);
|
||||
await expect(table.countRows()).resolves.toBe(3);
|
||||
});
|
||||
|
||||
it("should overwrite data if asked", async () => {
|
||||
await table.add([{ id: 1 }, { id: 2 }]);
|
||||
await table.add([{ id: 1 }], { mode: "overwrite" });
|
||||
await expect(table.countRows()).resolves.toBe(1);
|
||||
});
|
||||
|
||||
it("should let me close the table", async () => {
|
||||
expect(table.isOpen()).toBe(true);
|
||||
table.close();
|
||||
expect(table.isOpen()).toBe(false);
|
||||
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
|
||||
});
|
||||
});
|
||||
|
||||
describe("Test creating index", () => {
|
||||
let tmpDir: string;
|
||||
let tmpDir: tmp.DirResult;
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
]);
|
||||
|
||||
beforeEach(() => {
|
||||
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "index-"));
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
test("create vector index with no column", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
@@ -44,42 +92,42 @@ describe("Test creating index", () => {
|
||||
})),
|
||||
{
|
||||
schema,
|
||||
}
|
||||
},
|
||||
);
|
||||
const tbl = await db.createTable("test", data);
|
||||
await tbl.createIndex().build();
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir, "test.lance", "_indices");
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
|
||||
// Search without specifying the column
|
||||
let query_vector = data.toArray()[5].vec.toJSON();
|
||||
let rst = await tbl.query().nearestTo(query_vector).limit(2).toArrow();
|
||||
const queryVector = data.toArray()[5].vec.toJSON();
|
||||
const rst = await tbl.query().nearestTo(queryVector).limit(2).toArrow();
|
||||
expect(rst.numRows).toBe(2);
|
||||
|
||||
// Search with specifying the column
|
||||
let rst2 = await tbl.search(query_vector, "vec").limit(2).toArrow();
|
||||
const rst2 = await tbl.search(queryVector, "vec").limit(2).toArrow();
|
||||
expect(rst2.numRows).toBe(2);
|
||||
expect(rst.toString()).toEqual(rst2.toString());
|
||||
});
|
||||
|
||||
test("no vector column available", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const db = await connect(tmpDir.name);
|
||||
const tbl = await db.createTable(
|
||||
"no_vec",
|
||||
makeArrowTable([
|
||||
{ id: 1, val: 2 },
|
||||
{ id: 2, val: 3 },
|
||||
])
|
||||
]),
|
||||
);
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
"No vector column found"
|
||||
"No vector column found",
|
||||
);
|
||||
|
||||
await tbl.createIndex("val").build();
|
||||
const indexDir = path.join(tmpDir, "no_vec.lance", "_indices");
|
||||
const indexDir = path.join(tmpDir.name, "no_vec.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
|
||||
for await (const r of tbl.query().filter("id > 1").select(["id"])) {
|
||||
@@ -88,13 +136,13 @@ describe("Test creating index", () => {
|
||||
});
|
||||
|
||||
test("two columns with different dimensions", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const db = await connect(tmpDir.name);
|
||||
const schema = new Schema([
|
||||
new Field("id", new Int32(), true),
|
||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||
new Field(
|
||||
"vec2",
|
||||
new FixedSizeList(64, new Field("item", new Float32()))
|
||||
new FixedSizeList(64, new Field("item", new Float32())),
|
||||
),
|
||||
]);
|
||||
const tbl = await db.createTable(
|
||||
@@ -111,16 +159,17 @@ describe("Test creating index", () => {
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
})),
|
||||
{ schema }
|
||||
)
|
||||
{ schema },
|
||||
),
|
||||
);
|
||||
|
||||
// Only build index over v1
|
||||
await expect(tbl.createIndex().build()).rejects.toThrow(
|
||||
/.*More than one vector columns found.*/
|
||||
/.*More than one vector columns found.*/,
|
||||
);
|
||||
tbl
|
||||
.createIndex("vec")
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
.ivf_pq({ num_partitions: 2, num_sub_vectors: 2 })
|
||||
.build();
|
||||
|
||||
@@ -129,7 +178,7 @@ describe("Test creating index", () => {
|
||||
.nearestTo(
|
||||
Array(32)
|
||||
.fill(1)
|
||||
.map(() => Math.random())
|
||||
.map(() => Math.random()),
|
||||
)
|
||||
.limit(2)
|
||||
.toArrow();
|
||||
@@ -142,23 +191,23 @@ describe("Test creating index", () => {
|
||||
Array(64)
|
||||
.fill(1)
|
||||
.map(() => Math.random()),
|
||||
"vec"
|
||||
"vec",
|
||||
)
|
||||
.limit(2)
|
||||
.toArrow()
|
||||
.toArrow(),
|
||||
).rejects.toThrow(/.*does not match the dimension.*/);
|
||||
|
||||
const query64 = Array(64)
|
||||
.fill(1)
|
||||
.map(() => Math.random());
|
||||
const rst64_1 = await tbl.query().nearestTo(query64).limit(2).toArrow();
|
||||
const rst64_2 = await tbl.search(query64, "vec2").limit(2).toArrow();
|
||||
expect(rst64_1.toString()).toEqual(rst64_2.toString());
|
||||
expect(rst64_1.numRows).toBe(2);
|
||||
const rst64Query = await tbl.query().nearestTo(query64).limit(2).toArrow();
|
||||
const rst64Search = await tbl.search(query64, "vec2").limit(2).toArrow();
|
||||
expect(rst64Query.toString()).toEqual(rst64Search.toString());
|
||||
expect(rst64Query.numRows).toBe(2);
|
||||
});
|
||||
|
||||
test("create scalar index", async () => {
|
||||
const db = await connect(tmpDir);
|
||||
const db = await connect(tmpDir.name);
|
||||
const data = makeArrowTable(
|
||||
Array(300)
|
||||
.fill(1)
|
||||
@@ -170,31 +219,34 @@ describe("Test creating index", () => {
|
||||
})),
|
||||
{
|
||||
schema,
|
||||
}
|
||||
},
|
||||
);
|
||||
const tbl = await db.createTable("test", data);
|
||||
await tbl.createIndex("id").build();
|
||||
|
||||
// check index directory
|
||||
const indexDir = path.join(tmpDir, "test.lance", "_indices");
|
||||
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||
// TODO: check index type.
|
||||
});
|
||||
});
|
||||
|
||||
describe("Read consistency interval", () => {
|
||||
let tmpDir: string;
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "read-consistency-"));
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => tmpDir.removeCallback());
|
||||
|
||||
// const intervals = [undefined, 0, 0.1];
|
||||
const intervals = [0];
|
||||
test.each(intervals)("read consistency interval %p", async (interval) => {
|
||||
const db = await connect({ uri: tmpDir });
|
||||
const db = await connect(tmpDir.name);
|
||||
const table = await db.createTable("my_table", [{ id: 1 }]);
|
||||
|
||||
const db2 = await connect({ uri: tmpDir, readConsistencyInterval: interval });
|
||||
const db2 = await connect(tmpDir.name, {
|
||||
readConsistencyInterval: interval,
|
||||
});
|
||||
const table2 = await db2.openTable("my_table");
|
||||
expect(await table2.countRows()).toEqual(await table.countRows());
|
||||
|
||||
@@ -210,73 +262,89 @@ describe("Read consistency interval", () => {
|
||||
} else {
|
||||
// interval == 0.1
|
||||
expect(await table2.countRows()).toEqual(1);
|
||||
await new Promise(r => setTimeout(r, 100));
|
||||
await new Promise((r) => setTimeout(r, 100));
|
||||
expect(await table2.countRows()).toEqual(2);
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
describe('schema evolution', function () {
|
||||
let tmpDir: string;
|
||||
describe("schema evolution", function () {
|
||||
let tmpDir: tmp.DirResult;
|
||||
beforeEach(() => {
|
||||
tmpDir = fs.mkdtempSync(path.join(os.tmpdir(), "schema-evolution-"));
|
||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||
});
|
||||
afterEach(() => {
|
||||
tmpDir.removeCallback();
|
||||
});
|
||||
|
||||
// Create a new sample table
|
||||
it('can add a new column to the schema', async function () {
|
||||
const con = await connect(tmpDir)
|
||||
const table = await con.createTable('vectors', [
|
||||
{ id: 1n, vector: [0.1, 0.2] }
|
||||
])
|
||||
it("can add a new column to the schema", async function () {
|
||||
const con = await connect(tmpDir.name);
|
||||
const table = await con.createTable("vectors", [
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
|
||||
await table.addColumns([{ name: 'price', valueSql: 'cast(10.0 as float)' }])
|
||||
await table.addColumns([
|
||||
{ name: "price", valueSql: "cast(10.0 as float)" },
|
||||
]);
|
||||
|
||||
const expectedSchema = new Schema([
|
||||
new Field('id', new Int64(), true),
|
||||
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), true),
|
||||
new Field('price', new Float32(), false)
|
||||
])
|
||||
expect(await table.schema()).toEqual(expectedSchema)
|
||||
new Field("id", new Int64(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(2, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
new Field("price", new Float32(), false),
|
||||
]);
|
||||
expect(await table.schema()).toEqual(expectedSchema);
|
||||
});
|
||||
|
||||
it('can alter the columns in the schema', async function () {
|
||||
const con = await connect(tmpDir)
|
||||
it("can alter the columns in the schema", async function () {
|
||||
const con = await connect(tmpDir.name);
|
||||
const schema = new Schema([
|
||||
new Field('id', new Int64(), true),
|
||||
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), true),
|
||||
new Field('price', new Float64(), false)
|
||||
])
|
||||
const table = await con.createTable('vectors', [
|
||||
{ id: 1n, vector: [0.1, 0.2] }
|
||||
])
|
||||
new Field("id", new Int64(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(2, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
new Field("price", new Float64(), false),
|
||||
]);
|
||||
const table = await con.createTable("vectors", [
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
// Can create a non-nullable column only through addColumns at the moment.
|
||||
await table.addColumns([{ name: 'price', valueSql: 'cast(10.0 as double)' }])
|
||||
expect(await table.schema()).toEqual(schema)
|
||||
await table.addColumns([
|
||||
{ name: "price", valueSql: "cast(10.0 as double)" },
|
||||
]);
|
||||
expect(await table.schema()).toEqual(schema);
|
||||
|
||||
await table.alterColumns([
|
||||
{ path: 'id', rename: 'new_id' },
|
||||
{ path: 'price', nullable: true }
|
||||
])
|
||||
{ path: "id", rename: "new_id" },
|
||||
{ path: "price", nullable: true },
|
||||
]);
|
||||
|
||||
const expectedSchema = new Schema([
|
||||
new Field('new_id', new Int64(), true),
|
||||
new Field('vector', new FixedSizeList(2, new Field('item', new Float32(), true)), true),
|
||||
new Field('price', new Float64(), true)
|
||||
])
|
||||
expect(await table.schema()).toEqual(expectedSchema)
|
||||
new Field("new_id", new Int64(), true),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(2, new Field("item", new Float32(), true)),
|
||||
true,
|
||||
),
|
||||
new Field("price", new Float64(), true),
|
||||
]);
|
||||
expect(await table.schema()).toEqual(expectedSchema);
|
||||
});
|
||||
|
||||
it('can drop a column from the schema', async function () {
|
||||
const con = await connect(tmpDir)
|
||||
const table = await con.createTable('vectors', [
|
||||
{ id: 1n, vector: [0.1, 0.2] }
|
||||
])
|
||||
await table.dropColumns(['vector'])
|
||||
it("can drop a column from the schema", async function () {
|
||||
const con = await connect(tmpDir.name);
|
||||
const table = await con.createTable("vectors", [
|
||||
{ id: 1n, vector: [0.1, 0.2] },
|
||||
]);
|
||||
await table.dropColumns(["vector"]);
|
||||
|
||||
const expectedSchema = new Schema([
|
||||
new Field('id', new Int64(), true)
|
||||
])
|
||||
expect(await table.schema()).toEqual(expectedSchema)
|
||||
const expectedSchema = new Schema([new Field("id", new Int64(), true)]);
|
||||
expect(await table.schema()).toEqual(expectedSchema);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -1,15 +1,10 @@
|
||||
{
|
||||
"extends": "../tsconfig.json",
|
||||
"compilerOptions": {
|
||||
"outDir": "./dist/spec",
|
||||
"module": "commonjs",
|
||||
"target": "es2022",
|
||||
"types": [
|
||||
"jest",
|
||||
"node"
|
||||
]
|
||||
},
|
||||
"include": [
|
||||
"**/*",
|
||||
]
|
||||
"extends": "../tsconfig.json",
|
||||
"compilerOptions": {
|
||||
"outDir": "./dist/spec",
|
||||
"module": "commonjs",
|
||||
"target": "es2022",
|
||||
"types": ["jest", "node"]
|
||||
},
|
||||
"include": ["**/*"]
|
||||
}
|
||||
|
||||
17
nodejs/eslint.config.js
Normal file
17
nodejs/eslint.config.js
Normal file
@@ -0,0 +1,17 @@
|
||||
/* eslint-disable @typescript-eslint/naming-convention */
|
||||
// @ts-check
|
||||
|
||||
const eslint = require("@eslint/js");
|
||||
const tseslint = require("typescript-eslint");
|
||||
const eslintConfigPrettier = require("eslint-config-prettier");
|
||||
|
||||
module.exports = tseslint.config(
|
||||
eslint.configs.recommended,
|
||||
eslintConfigPrettier,
|
||||
...tseslint.configs.recommended,
|
||||
{
|
||||
rules: {
|
||||
"@typescript-eslint/naming-convention": "error",
|
||||
},
|
||||
},
|
||||
);
|
||||
@@ -1,7 +1,7 @@
|
||||
/** @type {import('ts-jest').JestConfigWithTsJest} */
|
||||
module.exports = {
|
||||
preset: 'ts-jest',
|
||||
testEnvironment: 'node',
|
||||
preset: "ts-jest",
|
||||
testEnvironment: "node",
|
||||
moduleDirectories: ["node_modules", "./dist"],
|
||||
moduleFileExtensions: ["js", "ts"],
|
||||
};
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// Copyright 2024 Lance Developers.
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
@@ -13,23 +13,34 @@
|
||||
// limitations under the License.
|
||||
|
||||
import {
|
||||
Int64,
|
||||
Field,
|
||||
makeBuilder,
|
||||
RecordBatchFileWriter,
|
||||
Utf8,
|
||||
type Vector,
|
||||
FixedSizeList,
|
||||
Float,
|
||||
Float32,
|
||||
Schema,
|
||||
Table as ArrowTable,
|
||||
Table,
|
||||
Vector,
|
||||
vectorFromArray,
|
||||
tableToIPC,
|
||||
type Schema,
|
||||
Table as ArrowTable,
|
||||
RecordBatchStreamWriter,
|
||||
List,
|
||||
RecordBatch,
|
||||
makeData,
|
||||
Struct,
|
||||
type Float,
|
||||
DataType,
|
||||
Binary,
|
||||
Float32,
|
||||
} from "apache-arrow";
|
||||
import { type EmbeddingFunction } from "./embedding/embedding_function";
|
||||
import { sanitizeSchema } from "./sanitize";
|
||||
|
||||
/** Data type accepted by NodeJS SDK */
|
||||
export type Data = Record<string, unknown>[] | ArrowTable;
|
||||
|
||||
/*
|
||||
* Options to control how a column should be converted to a vector array
|
||||
*/
|
||||
export class VectorColumnOptions {
|
||||
/** Vector column type. */
|
||||
type: Float = new Float32();
|
||||
@@ -41,14 +52,50 @@ export class VectorColumnOptions {
|
||||
|
||||
/** Options to control the makeArrowTable call. */
|
||||
export class MakeArrowTableOptions {
|
||||
/** Provided schema. */
|
||||
/*
|
||||
* Schema of the data.
|
||||
*
|
||||
* If this is not provided then the data type will be inferred from the
|
||||
* JS type. Integer numbers will become int64, floating point numbers
|
||||
* will become float64 and arrays will become variable sized lists with
|
||||
* the data type inferred from the first element in the array.
|
||||
*
|
||||
* The schema must be specified if there are no records (e.g. to make
|
||||
* an empty table)
|
||||
*/
|
||||
schema?: Schema;
|
||||
|
||||
/** Vector columns */
|
||||
/*
|
||||
* Mapping from vector column name to expected type
|
||||
*
|
||||
* Lance expects vector columns to be fixed size list arrays (i.e. tensors)
|
||||
* However, `makeArrowTable` will not infer this by default (it creates
|
||||
* variable size list arrays). This field can be used to indicate that a column
|
||||
* should be treated as a vector column and converted to a fixed size list.
|
||||
*
|
||||
* The keys should be the names of the vector columns. The value specifies the
|
||||
* expected data type of the vector columns.
|
||||
*
|
||||
* If `schema` is provided then this field is ignored.
|
||||
*
|
||||
* By default, the column named "vector" will be assumed to be a float32
|
||||
* vector column.
|
||||
*/
|
||||
vectorColumns: Record<string, VectorColumnOptions> = {
|
||||
vector: new VectorColumnOptions(),
|
||||
};
|
||||
|
||||
/**
|
||||
* If true then string columns will be encoded with dictionary encoding
|
||||
*
|
||||
* Set this to true if your string columns tend to repeat the same values
|
||||
* often. For more precise control use the `schema` property to specify the
|
||||
* data type for individual columns.
|
||||
*
|
||||
* If `schema` is provided then this property is ignored.
|
||||
*/
|
||||
dictionaryEncodeStrings: boolean = false;
|
||||
|
||||
constructor(values?: Partial<MakeArrowTableOptions>) {
|
||||
Object.assign(this, values);
|
||||
}
|
||||
@@ -58,8 +105,30 @@ export class MakeArrowTableOptions {
|
||||
* An enhanced version of the {@link makeTable} function from Apache Arrow
|
||||
* that supports nested fields and embeddings columns.
|
||||
*
|
||||
* This function converts an array of Record<String, any> (row-major JS objects)
|
||||
* to an Arrow Table (a columnar structure)
|
||||
*
|
||||
* Note that it currently does not support nulls.
|
||||
*
|
||||
* If a schema is provided then it will be used to determine the resulting array
|
||||
* types. Fields will also be reordered to fit the order defined by the schema.
|
||||
*
|
||||
* If a schema is not provided then the types will be inferred and the field order
|
||||
* will be controlled by the order of properties in the first record. If a type
|
||||
* is inferred it will always be nullable.
|
||||
*
|
||||
* If the input is empty then a schema must be provided to create an empty table.
|
||||
*
|
||||
* When a schema is not specified then data types will be inferred. The inference
|
||||
* rules are as follows:
|
||||
*
|
||||
* - boolean => Bool
|
||||
* - number => Float64
|
||||
* - String => Utf8
|
||||
* - Buffer => Binary
|
||||
* - Record<String, any> => Struct
|
||||
* - Array<any> => List
|
||||
*
|
||||
* @param data input data
|
||||
* @param options options to control the makeArrowTable call.
|
||||
*
|
||||
@@ -82,25 +151,27 @@ export class MakeArrowTableOptions {
|
||||
* ], { schema });
|
||||
* ```
|
||||
*
|
||||
* It guesses the vector columns if the schema is not provided. For example,
|
||||
* by default it assumes that the column named `vector` is a vector column.
|
||||
* By default it assumes that the column named `vector` is a vector column
|
||||
* and it will be converted into a fixed size list array of type float32.
|
||||
* The `vectorColumns` option can be used to support other vector column
|
||||
* names and data types.
|
||||
*
|
||||
* ```ts
|
||||
*
|
||||
* const schema = new Schema([
|
||||
new Field("a", new Float64()),
|
||||
new Field("b", new Float64()),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32()))
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||
]);
|
||||
assert.deepEqual(table.schema, schema);
|
||||
new Field("a", new Float64()),
|
||||
new Field("b", new Float64()),
|
||||
new Field(
|
||||
"vector",
|
||||
new FixedSizeList(3, new Field("item", new Float32()))
|
||||
),
|
||||
]);
|
||||
const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||
]);
|
||||
assert.deepEqual(table.schema, schema);
|
||||
* ```
|
||||
*
|
||||
* You can specify the vector column types and names using the options as well
|
||||
@@ -108,81 +179,456 @@ export class MakeArrowTableOptions {
|
||||
* ```typescript
|
||||
*
|
||||
* const schema = new Schema([
|
||||
new Field('a', new Float64()),
|
||||
new Field('b', new Float64()),
|
||||
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
|
||||
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
|
||||
]);
|
||||
new Field('a', new Float64()),
|
||||
new Field('b', new Float64()),
|
||||
new Field('vec1', new FixedSizeList(3, new Field('item', new Float16()))),
|
||||
new Field('vec2', new FixedSizeList(3, new Field('item', new Float16())))
|
||||
]);
|
||||
* const table = makeArrowTable([
|
||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
|
||||
], {
|
||||
vectorColumns: {
|
||||
vec1: { type: new Float16() },
|
||||
vec2: { type: new Float16() }
|
||||
}
|
||||
}
|
||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] }
|
||||
], {
|
||||
vectorColumns: {
|
||||
vec1: { type: new Float16() },
|
||||
vec2: { type: new Float16() }
|
||||
}
|
||||
}
|
||||
* assert.deepEqual(table.schema, schema)
|
||||
* ```
|
||||
*/
|
||||
export function makeArrowTable(
|
||||
data: Record<string, any>[],
|
||||
options?: Partial<MakeArrowTableOptions>
|
||||
): Table {
|
||||
if (data.length === 0) {
|
||||
throw new Error("At least one record needs to be provided");
|
||||
data: Array<Record<string, unknown>>,
|
||||
options?: Partial<MakeArrowTableOptions>,
|
||||
): ArrowTable {
|
||||
if (
|
||||
data.length === 0 &&
|
||||
(options?.schema === undefined || options?.schema === null)
|
||||
) {
|
||||
throw new Error("At least one record or a schema needs to be provided");
|
||||
}
|
||||
|
||||
const opt = new MakeArrowTableOptions(options !== undefined ? options : {});
|
||||
if (opt.schema !== undefined && opt.schema !== null) {
|
||||
opt.schema = sanitizeSchema(opt.schema);
|
||||
}
|
||||
const opt = new MakeArrowTableOptions(options ?? {});
|
||||
const columns: Record<string, Vector> = {};
|
||||
// TODO: sample dataset to find missing columns
|
||||
const columnNames = Object.keys(data[0]);
|
||||
// Prefer the field ordering of the schema, if present
|
||||
const columnNames =
|
||||
opt.schema != null ? (opt.schema.names as string[]) : Object.keys(data[0]);
|
||||
for (const colName of columnNames) {
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
if (
|
||||
data.length !== 0 &&
|
||||
!Object.prototype.hasOwnProperty.call(data[0], colName)
|
||||
) {
|
||||
// The field is present in the schema, but not in the data, skip it
|
||||
continue;
|
||||
}
|
||||
// Extract a single column from the records (transpose from row-major to col-major)
|
||||
let values = data.map((datum) => datum[colName]);
|
||||
let vector: Vector;
|
||||
|
||||
// By default (type === undefined) arrow will infer the type from the JS type
|
||||
let type;
|
||||
if (opt.schema !== undefined) {
|
||||
// Explicit schema is provided, highest priority
|
||||
const fieldType: DataType | undefined = opt.schema.fields.filter((f) => f.name === colName)[0]?.type as DataType;
|
||||
if (fieldType instanceof Int64) {
|
||||
// If there is a schema provided, then use that for the type instead
|
||||
type = opt.schema?.fields.filter((f) => f.name === colName)[0]?.type;
|
||||
if (DataType.isInt(type) && type.bitWidth === 64) {
|
||||
// wrap in BigInt to avoid bug: https://github.com/apache/arrow/issues/40051
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-argument
|
||||
values = values.map((v) => BigInt(v));
|
||||
values = values.map((v) => {
|
||||
if (v === null) {
|
||||
return v;
|
||||
}
|
||||
if (typeof v === "bigint") {
|
||||
return v;
|
||||
}
|
||||
if (typeof v === "number") {
|
||||
return BigInt(v);
|
||||
}
|
||||
throw new Error(
|
||||
`Expected BigInt or number for column ${colName}, got ${typeof v}`,
|
||||
);
|
||||
});
|
||||
}
|
||||
vector = vectorFromArray(values, fieldType);
|
||||
} else {
|
||||
// Otherwise, check to see if this column is one of the vector columns
|
||||
// defined by opt.vectorColumns and, if so, use the fixed size list type
|
||||
const vectorColumnOptions = opt.vectorColumns[colName];
|
||||
if (vectorColumnOptions !== undefined) {
|
||||
const fslType = new FixedSizeList(
|
||||
(values[0] as any[]).length,
|
||||
new Field("item", vectorColumnOptions.type, false)
|
||||
);
|
||||
vector = vectorFromArray(values, fslType);
|
||||
} else {
|
||||
// Normal case
|
||||
vector = vectorFromArray(values);
|
||||
const firstNonNullValue = values.find((v) => v !== null);
|
||||
if (Array.isArray(firstNonNullValue)) {
|
||||
type = newVectorType(
|
||||
firstNonNullValue.length,
|
||||
vectorColumnOptions.type,
|
||||
);
|
||||
} else {
|
||||
throw new Error(
|
||||
`Column ${colName} is expected to be a vector column but first non-null value is not an array. Could not determine size of vector column`,
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
columns[colName] = vector;
|
||||
|
||||
try {
|
||||
// Convert an Array of JS values to an arrow vector
|
||||
columns[colName] = makeVector(values, type, opt.dictionaryEncodeStrings);
|
||||
} catch (error: unknown) {
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
throw Error(`Could not convert column "${colName}" to Arrow: ${error}`);
|
||||
}
|
||||
}
|
||||
|
||||
return new Table(columns);
|
||||
if (opt.schema != null) {
|
||||
// `new ArrowTable(columns)` infers a schema which may sometimes have
|
||||
// incorrect nullability (it assumes nullable=true always)
|
||||
//
|
||||
// `new ArrowTable(schema, columns)` will also fail because it will create a
|
||||
// batch with an inferred schema and then complain that the batch schema
|
||||
// does not match the provided schema.
|
||||
//
|
||||
// To work around this we first create a table with the wrong schema and
|
||||
// then patch the schema of the batches so we can use
|
||||
// `new ArrowTable(schema, batches)` which does not do any schema inference
|
||||
const firstTable = new ArrowTable(columns);
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
const batchesFixed = firstTable.batches.map(
|
||||
(batch) => new RecordBatch(opt.schema!, batch.data),
|
||||
);
|
||||
return new ArrowTable(opt.schema, batchesFixed);
|
||||
} else {
|
||||
return new ArrowTable(columns);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert an Arrow Table to a Buffer.
|
||||
*
|
||||
* @param data Arrow Table
|
||||
* @param schema Arrow Schema, optional
|
||||
* @returns Buffer node
|
||||
* Create an empty Arrow table with the provided schema
|
||||
*/
|
||||
export function toBuffer(data: Data, schema?: Schema): Buffer {
|
||||
let tbl: Table;
|
||||
if (data instanceof Table) {
|
||||
tbl = data;
|
||||
} else {
|
||||
tbl = makeArrowTable(data, { schema });
|
||||
}
|
||||
return Buffer.from(tableToIPC(tbl));
|
||||
export function makeEmptyTable(schema: Schema): ArrowTable {
|
||||
return makeArrowTable([], { schema });
|
||||
}
|
||||
|
||||
// Helper function to convert Array<Array<any>> to a variable sized list array
|
||||
// @ts-expect-error (Vector<unknown> is not assignable to Vector<any>)
|
||||
function makeListVector(lists: unknown[][]): Vector<unknown> {
|
||||
if (lists.length === 0 || lists[0].length === 0) {
|
||||
throw Error("Cannot infer list vector from empty array or empty list");
|
||||
}
|
||||
const sampleList = lists[0];
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
let inferredType: any;
|
||||
try {
|
||||
const sampleVector = makeVector(sampleList);
|
||||
inferredType = sampleVector.type;
|
||||
} catch (error: unknown) {
|
||||
// eslint-disable-next-line @typescript-eslint/restrict-template-expressions
|
||||
throw Error(`Cannot infer list vector. Cannot infer inner type: ${error}`);
|
||||
}
|
||||
|
||||
const listBuilder = makeBuilder({
|
||||
type: new List(new Field("item", inferredType, true)),
|
||||
});
|
||||
for (const list of lists) {
|
||||
listBuilder.append(list);
|
||||
}
|
||||
return listBuilder.finish().toVector();
|
||||
}
|
||||
|
||||
// Helper function to convert an Array of JS values to an Arrow Vector
|
||||
function makeVector(
|
||||
values: unknown[],
|
||||
type?: DataType,
|
||||
stringAsDictionary?: boolean,
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
): Vector<any> {
|
||||
if (type !== undefined) {
|
||||
// No need for inference, let Arrow create it
|
||||
return vectorFromArray(values, type);
|
||||
}
|
||||
if (values.length === 0) {
|
||||
throw Error(
|
||||
"makeVector requires at least one value or the type must be specfied",
|
||||
);
|
||||
}
|
||||
const sampleValue = values.find((val) => val !== null && val !== undefined);
|
||||
if (sampleValue === undefined) {
|
||||
throw Error(
|
||||
"makeVector cannot infer the type if all values are null or undefined",
|
||||
);
|
||||
}
|
||||
if (Array.isArray(sampleValue)) {
|
||||
// Default Arrow inference doesn't handle list types
|
||||
return makeListVector(values as unknown[][]);
|
||||
} else if (Buffer.isBuffer(sampleValue)) {
|
||||
// Default Arrow inference doesn't handle Buffer
|
||||
return vectorFromArray(values, new Binary());
|
||||
} else if (
|
||||
!(stringAsDictionary ?? false) &&
|
||||
(typeof sampleValue === "string" || sampleValue instanceof String)
|
||||
) {
|
||||
// If the type is string then don't use Arrow's default inference unless dictionaries are requested
|
||||
// because it will always use dictionary encoding for strings
|
||||
return vectorFromArray(values, new Utf8());
|
||||
} else {
|
||||
// Convert a JS array of values to an arrow vector
|
||||
return vectorFromArray(values);
|
||||
}
|
||||
}
|
||||
|
||||
async function applyEmbeddings<T>(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema,
|
||||
): Promise<ArrowTable> {
|
||||
if (embeddings == null) {
|
||||
return table;
|
||||
}
|
||||
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
|
||||
// Convert from ArrowTable to Record<String, Vector>
|
||||
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
|
||||
const name = table.schema.fields[idx].name;
|
||||
// eslint-disable-next-line @typescript-eslint/no-non-null-assertion
|
||||
const vec = table.getChildAt(idx)!;
|
||||
return [name, vec];
|
||||
});
|
||||
const newColumns = Object.fromEntries(colEntries);
|
||||
|
||||
const sourceColumn = newColumns[embeddings.sourceColumn];
|
||||
const destColumn = embeddings.destColumn ?? "vector";
|
||||
const innerDestType = embeddings.embeddingDataType ?? new Float32();
|
||||
if (sourceColumn === undefined) {
|
||||
throw new Error(
|
||||
`Cannot apply embedding function because the source column '${embeddings.sourceColumn}' was not present in the data`,
|
||||
);
|
||||
}
|
||||
|
||||
if (table.numRows === 0) {
|
||||
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
|
||||
// We have an empty table and it already has the embedding column so no work needs to be done
|
||||
// Note: we don't return an error like we did below because this is a common occurrence. For example,
|
||||
// if we call convertToTable with 0 records and a schema that includes the embedding
|
||||
return table;
|
||||
}
|
||||
if (embeddings.embeddingDimension !== undefined) {
|
||||
const destType = newVectorType(
|
||||
embeddings.embeddingDimension,
|
||||
innerDestType,
|
||||
);
|
||||
newColumns[destColumn] = makeVector([], destType);
|
||||
} else if (schema != null) {
|
||||
const destField = schema.fields.find((f) => f.name === destColumn);
|
||||
if (destField != null) {
|
||||
newColumns[destColumn] = makeVector([], destField.type);
|
||||
} else {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to an empty table failed because schema was missing embedding column '${destColumn}'`,
|
||||
);
|
||||
}
|
||||
} else {
|
||||
throw new Error(
|
||||
"Attempt to apply embeddings to an empty table when the embeddings function does not specify `embeddingDimension`",
|
||||
);
|
||||
}
|
||||
} else {
|
||||
if (Object.prototype.hasOwnProperty.call(newColumns, destColumn)) {
|
||||
throw new Error(
|
||||
`Attempt to apply embeddings to table failed because column ${destColumn} already existed`,
|
||||
);
|
||||
}
|
||||
if (table.batches.length > 1) {
|
||||
throw new Error(
|
||||
"Internal error: `makeArrowTable` unexpectedly created a table with more than one batch",
|
||||
);
|
||||
}
|
||||
const values = sourceColumn.toArray();
|
||||
const vectors = await embeddings.embed(values as T[]);
|
||||
if (vectors.length !== values.length) {
|
||||
throw new Error(
|
||||
"Embedding function did not return an embedding for each input element",
|
||||
);
|
||||
}
|
||||
const destType = newVectorType(vectors[0].length, innerDestType);
|
||||
newColumns[destColumn] = makeVector(vectors, destType);
|
||||
}
|
||||
|
||||
const newTable = new ArrowTable(newColumns);
|
||||
if (schema != null) {
|
||||
if (schema.fields.find((f) => f.name === destColumn) === undefined) {
|
||||
throw new Error(
|
||||
`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`,
|
||||
);
|
||||
}
|
||||
return alignTable(newTable, schema);
|
||||
}
|
||||
return newTable;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert an Array of records into an Arrow Table, optionally applying an
|
||||
* embeddings function to it.
|
||||
*
|
||||
* This function calls `makeArrowTable` first to create the Arrow Table.
|
||||
* Any provided `makeTableOptions` (e.g. a schema) will be passed on to
|
||||
* that call.
|
||||
*
|
||||
* The embedding function will be passed a column of values (based on the
|
||||
* `sourceColumn` of the embedding function) and expects to receive back
|
||||
* number[][] which will be converted into a fixed size list column. By
|
||||
* default this will be a fixed size list of Float32 but that can be
|
||||
* customized by the `embeddingDataType` property of the embedding function.
|
||||
*
|
||||
* If a schema is provided in `makeTableOptions` then it should include the
|
||||
* embedding columns. If no schema is provded then embedding columns will
|
||||
* be placed at the end of the table, after all of the input columns.
|
||||
*/
|
||||
export async function convertToTable<T>(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
makeTableOptions?: Partial<MakeArrowTableOptions>,
|
||||
): Promise<ArrowTable> {
|
||||
const table = makeArrowTable(data, makeTableOptions);
|
||||
return await applyEmbeddings(table, embeddings, makeTableOptions?.schema);
|
||||
}
|
||||
|
||||
// Creates the Arrow Type for a Vector column with dimension `dim`
|
||||
function newVectorType<T extends Float>(
|
||||
dim: number,
|
||||
innerType: T,
|
||||
): FixedSizeList<T> {
|
||||
// in Lance we always default to have the elements nullable, so we need to set it to true
|
||||
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
|
||||
const children = new Field<T>("item", innerType, true);
|
||||
return new FixedSizeList(dim, children);
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize an Array of records into a buffer using the Arrow IPC File serialization
|
||||
*
|
||||
* This function will call `convertToTable` and pass on `embeddings` and `schema`
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToBuffer<T>(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
const table = await convertToTable(data, embeddings, { schema });
|
||||
const writer = RecordBatchFileWriter.writeAll(table);
|
||||
return Buffer.from(await writer.toUint8Array());
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize an Array of records into a buffer using the Arrow IPC Stream serialization
|
||||
*
|
||||
* This function will call `convertToTable` and pass on `embeddings` and `schema`
|
||||
*
|
||||
* `schema` is required if data is empty
|
||||
*/
|
||||
export async function fromRecordsToStreamBuffer<T>(
|
||||
data: Array<Record<string, unknown>>,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
const table = await convertToTable(data, embeddings, { schema });
|
||||
const writer = RecordBatchStreamWriter.writeAll(table);
|
||||
return Buffer.from(await writer.toUint8Array());
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize an Arrow Table into a buffer using the Arrow IPC File serialization
|
||||
*
|
||||
* This function will apply `embeddings` to the table in a manner similar to
|
||||
* `convertToTable`.
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToBuffer<T>(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
|
||||
const writer = RecordBatchFileWriter.writeAll(tableWithEmbeddings);
|
||||
return Buffer.from(await writer.toUint8Array());
|
||||
}
|
||||
|
||||
export async function fromDataToBuffer<T>(
|
||||
data: Data,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
if (schema !== undefined && schema !== null) {
|
||||
schema = sanitizeSchema(schema);
|
||||
}
|
||||
if (data instanceof ArrowTable) {
|
||||
return fromTableToBuffer(data, embeddings, schema);
|
||||
} else {
|
||||
const table = await convertToTable(data);
|
||||
return fromTableToBuffer(table, embeddings, schema);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Serialize an Arrow Table into a buffer using the Arrow IPC Stream serialization
|
||||
*
|
||||
* This function will apply `embeddings` to the table in a manner similar to
|
||||
* `convertToTable`.
|
||||
*
|
||||
* `schema` is required if the table is empty
|
||||
*/
|
||||
export async function fromTableToStreamBuffer<T>(
|
||||
table: ArrowTable,
|
||||
embeddings?: EmbeddingFunction<T>,
|
||||
schema?: Schema,
|
||||
): Promise<Buffer> {
|
||||
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
|
||||
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings);
|
||||
return Buffer.from(await writer.toUint8Array());
|
||||
}
|
||||
|
||||
function alignBatch(batch: RecordBatch, schema: Schema): RecordBatch {
|
||||
const alignedChildren = [];
|
||||
for (const field of schema.fields) {
|
||||
const indexInBatch = batch.schema.fields?.findIndex(
|
||||
(f) => f.name === field.name,
|
||||
);
|
||||
if (indexInBatch < 0) {
|
||||
throw new Error(
|
||||
`The column ${field.name} was not found in the Arrow Table`,
|
||||
);
|
||||
}
|
||||
alignedChildren.push(batch.data.children[indexInBatch]);
|
||||
}
|
||||
const newData = makeData({
|
||||
type: new Struct(schema.fields),
|
||||
length: batch.numRows,
|
||||
nullCount: batch.nullCount,
|
||||
children: alignedChildren,
|
||||
});
|
||||
return new RecordBatch(schema, newData);
|
||||
}
|
||||
|
||||
function alignTable(table: ArrowTable, schema: Schema): ArrowTable {
|
||||
const alignedBatches = table.batches.map((batch) =>
|
||||
alignBatch(batch, schema),
|
||||
);
|
||||
return new ArrowTable(schema, alignedBatches);
|
||||
}
|
||||
|
||||
// Creates an empty Arrow Table
|
||||
export function createEmptyTable(schema: Schema): ArrowTable {
|
||||
return new ArrowTable(sanitizeSchema(schema));
|
||||
}
|
||||
|
||||
@@ -12,10 +12,10 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { toBuffer } from "./arrow";
|
||||
import { Connection as _NativeConnection } from "./native";
|
||||
import { fromTableToBuffer, makeArrowTable, makeEmptyTable } from "./arrow";
|
||||
import { Connection as LanceDbConnection } from "./native";
|
||||
import { Table } from "./table";
|
||||
import { Table as ArrowTable } from "apache-arrow";
|
||||
import { Table as ArrowTable, Schema } from "apache-arrow";
|
||||
|
||||
export interface CreateTableOptions {
|
||||
/**
|
||||
@@ -35,21 +35,72 @@ export interface CreateTableOptions {
|
||||
existOk: boolean;
|
||||
}
|
||||
|
||||
export interface TableNamesOptions {
|
||||
/**
|
||||
* If present, only return names that come lexicographically after the
|
||||
* supplied value.
|
||||
*
|
||||
* This can be combined with limit to implement pagination by setting this to
|
||||
* the last table name from the previous page.
|
||||
*/
|
||||
startAfter?: string;
|
||||
/** An optional limit to the number of results to return. */
|
||||
limit?: number;
|
||||
}
|
||||
|
||||
/**
|
||||
* A LanceDB Connection that allows you to open tables and create new ones.
|
||||
*
|
||||
* Connection could be local against filesystem or remote against a server.
|
||||
*
|
||||
* A Connection is intended to be a long lived object and may hold open
|
||||
* resources such as HTTP connection pools. This is generally fine and
|
||||
* a single connection should be shared if it is going to be used many
|
||||
* times. However, if you are finished with a connection, you may call
|
||||
* close to eagerly free these resources. Any call to a Connection
|
||||
* method after it has been closed will result in an error.
|
||||
*
|
||||
* Closing a connection is optional. Connections will automatically
|
||||
* be closed when they are garbage collected.
|
||||
*
|
||||
* Any created tables are independent and will continue to work even if
|
||||
* the underlying connection has been closed.
|
||||
*/
|
||||
export class Connection {
|
||||
readonly inner: _NativeConnection;
|
||||
readonly inner: LanceDbConnection;
|
||||
|
||||
constructor(inner: _NativeConnection) {
|
||||
constructor(inner: LanceDbConnection) {
|
||||
this.inner = inner;
|
||||
}
|
||||
|
||||
/** List all the table names in this database. */
|
||||
async tableNames(): Promise<string[]> {
|
||||
return this.inner.tableNames();
|
||||
/** Return true if the connection has not been closed */
|
||||
isOpen(): boolean {
|
||||
return this.inner.isOpen();
|
||||
}
|
||||
|
||||
/** Close the connection, releasing any underlying resources.
|
||||
*
|
||||
* It is safe to call this method multiple times.
|
||||
*
|
||||
* Any attempt to use the connection after it is closed will result in an error.
|
||||
*/
|
||||
close(): void {
|
||||
this.inner.close();
|
||||
}
|
||||
|
||||
/** Return a brief description of the connection */
|
||||
display(): string {
|
||||
return this.inner.display();
|
||||
}
|
||||
|
||||
/** List all the table names in this database.
|
||||
*
|
||||
* Tables will be returned in lexicographical order.
|
||||
*
|
||||
* @param options Optional parameters to control the listing.
|
||||
*/
|
||||
async tableNames(options?: Partial<TableNamesOptions>): Promise<string[]> {
|
||||
return this.inner.tableNames(options?.startAfter, options?.limit);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -72,7 +123,7 @@ export class Connection {
|
||||
async createTable(
|
||||
name: string,
|
||||
data: Record<string, unknown>[] | ArrowTable,
|
||||
options?: Partial<CreateTableOptions>
|
||||
options?: Partial<CreateTableOptions>,
|
||||
): Promise<Table> {
|
||||
let mode: string = options?.mode ?? "create";
|
||||
const existOk = options?.existOk ?? false;
|
||||
@@ -81,11 +132,41 @@ export class Connection {
|
||||
mode = "exist_ok";
|
||||
}
|
||||
|
||||
const buf = toBuffer(data);
|
||||
let table: ArrowTable;
|
||||
if (data instanceof ArrowTable) {
|
||||
table = data;
|
||||
} else {
|
||||
table = makeArrowTable(data);
|
||||
}
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const innerTable = await this.inner.createTable(name, buf, mode);
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new empty Table
|
||||
*
|
||||
* @param {string} name - The name of the table.
|
||||
* @param schema - The schema of the table
|
||||
*/
|
||||
async createEmptyTable(
|
||||
name: string,
|
||||
schema: Schema,
|
||||
options?: Partial<CreateTableOptions>,
|
||||
): Promise<Table> {
|
||||
let mode: string = options?.mode ?? "create";
|
||||
const existOk = options?.existOk ?? false;
|
||||
|
||||
if (mode === "create" && existOk) {
|
||||
mode = "exist_ok";
|
||||
}
|
||||
|
||||
const table = makeEmptyTable(schema);
|
||||
const buf = await fromTableToBuffer(table);
|
||||
const innerTable = await this.inner.createEmptyTable(name, buf, mode);
|
||||
return new Table(innerTable);
|
||||
}
|
||||
|
||||
/**
|
||||
* Drop an existing table.
|
||||
* @param name The name of the table to drop.
|
||||
|
||||
77
nodejs/lancedb/embedding/embedding_function.ts
Normal file
77
nodejs/lancedb/embedding/embedding_function.ts
Normal file
@@ -0,0 +1,77 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { type Float } from "apache-arrow";
|
||||
|
||||
/**
|
||||
* An embedding function that automatically creates vector representation for a given column.
|
||||
*/
|
||||
export interface EmbeddingFunction<T> {
|
||||
/**
|
||||
* The name of the column that will be used as input for the Embedding Function.
|
||||
*/
|
||||
sourceColumn: string;
|
||||
|
||||
/**
|
||||
* The data type of the embedding
|
||||
*
|
||||
* The embedding function should return `number`. This will be converted into
|
||||
* an Arrow float array. By default this will be Float32 but this property can
|
||||
* be used to control the conversion.
|
||||
*/
|
||||
embeddingDataType?: Float;
|
||||
|
||||
/**
|
||||
* The dimension of the embedding
|
||||
*
|
||||
* This is optional, normally this can be determined by looking at the results of
|
||||
* `embed`. If this is not specified, and there is an attempt to apply the embedding
|
||||
* to an empty table, then that process will fail.
|
||||
*/
|
||||
embeddingDimension?: number;
|
||||
|
||||
/**
|
||||
* The name of the column that will contain the embedding
|
||||
*
|
||||
* By default this is "vector"
|
||||
*/
|
||||
destColumn?: string;
|
||||
|
||||
/**
|
||||
* Should the source column be excluded from the resulting table
|
||||
*
|
||||
* By default the source column is included. Set this to true and
|
||||
* only the embedding will be stored.
|
||||
*/
|
||||
excludeSource?: boolean;
|
||||
|
||||
/**
|
||||
* Creates a vector representation for the given values.
|
||||
*/
|
||||
embed: (data: T[]) => Promise<number[][]>;
|
||||
}
|
||||
|
||||
export function isEmbeddingFunction<T>(
|
||||
value: unknown,
|
||||
): value is EmbeddingFunction<T> {
|
||||
if (typeof value !== "object" || value === null) {
|
||||
return false;
|
||||
}
|
||||
if (!("sourceColumn" in value) || !("embed" in value)) {
|
||||
return false;
|
||||
}
|
||||
return (
|
||||
typeof value.sourceColumn === "string" && typeof value.embed === "function"
|
||||
);
|
||||
}
|
||||
62
nodejs/lancedb/embedding/openai.ts
Normal file
62
nodejs/lancedb/embedding/openai.ts
Normal file
@@ -0,0 +1,62 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
import { type EmbeddingFunction } from "./embedding_function";
|
||||
import type OpenAI from "openai";
|
||||
|
||||
export class OpenAIEmbeddingFunction implements EmbeddingFunction<string> {
|
||||
private readonly _openai: OpenAI;
|
||||
private readonly _modelName: string;
|
||||
|
||||
constructor(
|
||||
sourceColumn: string,
|
||||
openAIKey: string,
|
||||
modelName: string = "text-embedding-ada-002",
|
||||
) {
|
||||
/**
|
||||
* @type {import("openai").default}
|
||||
*/
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
let Openai;
|
||||
try {
|
||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||
Openai = require("openai");
|
||||
} catch {
|
||||
throw new Error("please install openai@^4.24.1 using npm install openai");
|
||||
}
|
||||
|
||||
this.sourceColumn = sourceColumn;
|
||||
const configuration = {
|
||||
apiKey: openAIKey,
|
||||
};
|
||||
|
||||
this._openai = new Openai(configuration);
|
||||
this._modelName = modelName;
|
||||
}
|
||||
|
||||
async embed(data: string[]): Promise<number[][]> {
|
||||
const response = await this._openai.embeddings.create({
|
||||
model: this._modelName,
|
||||
input: data,
|
||||
});
|
||||
|
||||
const embeddings: number[][] = [];
|
||||
for (let i = 0; i < response.data.length; i++) {
|
||||
embeddings.push(response.data[i].embedding);
|
||||
}
|
||||
return embeddings;
|
||||
}
|
||||
|
||||
sourceColumn: string;
|
||||
}
|
||||
@@ -13,7 +13,10 @@
|
||||
// limitations under the License.
|
||||
|
||||
import { Connection } from "./connection";
|
||||
import { Connection as NativeConnection, ConnectionOptions } from "./native.js";
|
||||
import {
|
||||
Connection as LanceDbConnection,
|
||||
ConnectionOptions,
|
||||
} from "./native.js";
|
||||
|
||||
export {
|
||||
ConnectionOptions,
|
||||
@@ -23,7 +26,6 @@ export {
|
||||
} from "./native.js";
|
||||
export { Connection } from "./connection";
|
||||
export { Table } from "./table";
|
||||
export { Data } from "./arrow";
|
||||
export { IvfPQOptions, IndexBuilder } from "./indexer";
|
||||
|
||||
/**
|
||||
@@ -39,26 +41,11 @@ export { IvfPQOptions, IndexBuilder } from "./indexer";
|
||||
*
|
||||
* @see {@link ConnectionOptions} for more details on the URI format.
|
||||
*/
|
||||
export async function connect(uri: string): Promise<Connection>;
|
||||
export async function connect(
|
||||
opts: Partial<ConnectionOptions>
|
||||
): Promise<Connection>;
|
||||
export async function connect(
|
||||
args: string | Partial<ConnectionOptions>
|
||||
uri: string,
|
||||
opts?: Partial<ConnectionOptions>,
|
||||
): Promise<Connection> {
|
||||
let opts: ConnectionOptions;
|
||||
if (typeof args === "string") {
|
||||
opts = { uri: args };
|
||||
} else {
|
||||
opts = Object.assign(
|
||||
{
|
||||
uri: "",
|
||||
apiKey: undefined,
|
||||
hostOverride: undefined,
|
||||
},
|
||||
args
|
||||
);
|
||||
}
|
||||
const nativeConn = await NativeConnection.new(opts);
|
||||
opts = opts ?? {};
|
||||
const nativeConn = await LanceDbConnection.new(uri, opts);
|
||||
return new Connection(nativeConn);
|
||||
}
|
||||
|
||||
@@ -12,6 +12,9 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// TODO: Re-enable this as part of https://github.com/lancedb/lancedb/pull/1052
|
||||
/* eslint-disable @typescript-eslint/naming-convention */
|
||||
|
||||
import {
|
||||
MetricType,
|
||||
IndexBuilder as NativeBuilder,
|
||||
@@ -66,7 +69,7 @@ export class IndexBuilder {
|
||||
options?.num_sub_vectors,
|
||||
options?.num_bits,
|
||||
options?.max_iterations,
|
||||
options?.sample_rate
|
||||
options?.sample_rate,
|
||||
);
|
||||
return this;
|
||||
}
|
||||
|
||||
16
nodejs/lancedb/native.d.ts
vendored
16
nodejs/lancedb/native.d.ts
vendored
@@ -45,7 +45,6 @@ export interface AddColumnsSql {
|
||||
valueSql: string
|
||||
}
|
||||
export interface ConnectionOptions {
|
||||
uri: string
|
||||
apiKey?: string
|
||||
hostOverride?: string
|
||||
/**
|
||||
@@ -71,12 +70,15 @@ export const enum WriteMode {
|
||||
export interface WriteOptions {
|
||||
mode?: WriteMode
|
||||
}
|
||||
export function connect(options: ConnectionOptions): Promise<Connection>
|
||||
export function connect(uri: string, options: ConnectionOptions): Promise<Connection>
|
||||
export class Connection {
|
||||
/** Create a new Connection instance from the given URI. */
|
||||
static new(options: ConnectionOptions): Promise<Connection>
|
||||
static new(uri: string, options: ConnectionOptions): Promise<Connection>
|
||||
display(): string
|
||||
isOpen(): boolean
|
||||
close(): void
|
||||
/** List all tables in the dataset. */
|
||||
tableNames(): Promise<Array<string>>
|
||||
tableNames(startAfter?: string | undefined | null, limit?: number | undefined | null): Promise<Array<string>>
|
||||
/**
|
||||
* Create table from a Apache Arrow IPC (file) buffer.
|
||||
*
|
||||
@@ -86,6 +88,7 @@ export class Connection {
|
||||
*
|
||||
*/
|
||||
createTable(name: string, buf: Buffer, mode: string): Promise<Table>
|
||||
createEmptyTable(name: string, schemaBuf: Buffer, mode: string): Promise<Table>
|
||||
openTable(name: string): Promise<Table>
|
||||
/** Drop table with the name. Or raise an error if the table does not exist. */
|
||||
dropTable(name: string): Promise<void>
|
||||
@@ -114,9 +117,12 @@ export class Query {
|
||||
executeStream(): Promise<RecordBatchIterator>
|
||||
}
|
||||
export class Table {
|
||||
display(): string
|
||||
isOpen(): boolean
|
||||
close(): void
|
||||
/** Return Schema as empty Arrow IPC file. */
|
||||
schema(): Promise<Buffer>
|
||||
add(buf: Buffer): Promise<void>
|
||||
add(buf: Buffer, mode: string): Promise<void>
|
||||
countRows(filter?: string | undefined | null): Promise<number>
|
||||
delete(predicate: string): Promise<void>
|
||||
createIndex(): IndexBuilder
|
||||
|
||||
@@ -20,21 +20,22 @@ import {
|
||||
} from "./native";
|
||||
|
||||
class RecordBatchIterator implements AsyncIterator<RecordBatch> {
|
||||
private promised_inner?: Promise<NativeBatchIterator>;
|
||||
private promisedInner?: Promise<NativeBatchIterator>;
|
||||
private inner?: NativeBatchIterator;
|
||||
|
||||
constructor(
|
||||
inner?: NativeBatchIterator,
|
||||
promise?: Promise<NativeBatchIterator>
|
||||
promise?: Promise<NativeBatchIterator>,
|
||||
) {
|
||||
// TODO: check promise reliably so we dont need to pass two arguments.
|
||||
this.inner = inner;
|
||||
this.promised_inner = promise;
|
||||
this.promisedInner = promise;
|
||||
}
|
||||
|
||||
async next(): Promise<IteratorResult<RecordBatch<any>, any>> {
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
async next(): Promise<IteratorResult<RecordBatch<any>>> {
|
||||
if (this.inner === undefined) {
|
||||
this.inner = await this.promised_inner;
|
||||
this.inner = await this.promisedInner;
|
||||
}
|
||||
if (this.inner === undefined) {
|
||||
throw new Error("Invalid iterator state state");
|
||||
@@ -114,8 +115,8 @@ export class Query implements AsyncIterable<RecordBatch> {
|
||||
/**
|
||||
* Set the refine factor for the query.
|
||||
*/
|
||||
refineFactor(refine_factor: number): Query {
|
||||
this.inner.refineFactor(refine_factor);
|
||||
refineFactor(refineFactor: number): Query {
|
||||
this.inner.refineFactor(refineFactor);
|
||||
return this;
|
||||
}
|
||||
|
||||
@@ -139,12 +140,13 @@ export class Query implements AsyncIterable<RecordBatch> {
|
||||
/** Returns a JSON Array of All results.
|
||||
*
|
||||
*/
|
||||
async toArray(): Promise<any[]> {
|
||||
async toArray(): Promise<unknown[]> {
|
||||
const tbl = await this.toArrow();
|
||||
// eslint-disable-next-line @typescript-eslint/no-unsafe-return
|
||||
return tbl.toArray();
|
||||
}
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
[Symbol.asyncIterator](): AsyncIterator<RecordBatch<any>> {
|
||||
const promise = this.inner.executeStream();
|
||||
return new RecordBatchIterator(undefined, promise);
|
||||
|
||||
509
nodejs/lancedb/sanitize.ts
Normal file
509
nodejs/lancedb/sanitize.ts
Normal file
@@ -0,0 +1,509 @@
|
||||
// Copyright 2023 LanceDB Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// The utilities in this file help sanitize data from the user's arrow
|
||||
// library into the types expected by vectordb's arrow library. Node
|
||||
// generally allows for mulitple versions of the same library (and sometimes
|
||||
// even multiple copies of the same version) to be installed at the same
|
||||
// time. However, arrow-js uses instanceof which expected that the input
|
||||
// comes from the exact same library instance. This is not always the case
|
||||
// and so we must sanitize the input to ensure that it is compatible.
|
||||
|
||||
import {
|
||||
Field,
|
||||
Utf8,
|
||||
FixedSizeBinary,
|
||||
FixedSizeList,
|
||||
Schema,
|
||||
List,
|
||||
Struct,
|
||||
Float,
|
||||
Bool,
|
||||
Date_,
|
||||
Decimal,
|
||||
DataType,
|
||||
Dictionary,
|
||||
Binary,
|
||||
Float32,
|
||||
Interval,
|
||||
Map_,
|
||||
Duration,
|
||||
Union,
|
||||
Time,
|
||||
Timestamp,
|
||||
Type,
|
||||
Null,
|
||||
Int,
|
||||
type Precision,
|
||||
type DateUnit,
|
||||
Int8,
|
||||
Int16,
|
||||
Int32,
|
||||
Int64,
|
||||
Uint8,
|
||||
Uint16,
|
||||
Uint32,
|
||||
Uint64,
|
||||
Float16,
|
||||
Float64,
|
||||
DateDay,
|
||||
DateMillisecond,
|
||||
DenseUnion,
|
||||
SparseUnion,
|
||||
TimeNanosecond,
|
||||
TimeMicrosecond,
|
||||
TimeMillisecond,
|
||||
TimeSecond,
|
||||
TimestampNanosecond,
|
||||
TimestampMicrosecond,
|
||||
TimestampMillisecond,
|
||||
TimestampSecond,
|
||||
IntervalDayTime,
|
||||
IntervalYearMonth,
|
||||
DurationNanosecond,
|
||||
DurationMicrosecond,
|
||||
DurationMillisecond,
|
||||
DurationSecond,
|
||||
} from "apache-arrow";
|
||||
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
|
||||
|
||||
function sanitizeMetadata(
|
||||
metadataLike?: unknown,
|
||||
): Map<string, string> | undefined {
|
||||
if (metadataLike === undefined || metadataLike === null) {
|
||||
return undefined;
|
||||
}
|
||||
if (!(metadataLike instanceof Map)) {
|
||||
throw Error("Expected metadata, if present, to be a Map<string, string>");
|
||||
}
|
||||
for (const item of metadataLike) {
|
||||
if (!(typeof item[0] === "string" || !(typeof item[1] === "string"))) {
|
||||
throw Error(
|
||||
"Expected metadata, if present, to be a Map<string, string> but it had non-string keys or values",
|
||||
);
|
||||
}
|
||||
}
|
||||
return metadataLike as Map<string, string>;
|
||||
}
|
||||
|
||||
function sanitizeInt(typeLike: object) {
|
||||
if (
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number" ||
|
||||
!("isSigned" in typeLike) ||
|
||||
typeof typeLike.isSigned !== "boolean"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected an Int Type to have a `bitWidth` and `isSigned` property",
|
||||
);
|
||||
}
|
||||
return new Int(typeLike.isSigned, typeLike.bitWidth as IntBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeFloat(typeLike: object) {
|
||||
if (!("precision" in typeLike) || typeof typeLike.precision !== "number") {
|
||||
throw Error("Expected a Float Type to have a `precision` property");
|
||||
}
|
||||
return new Float(typeLike.precision as Precision);
|
||||
}
|
||||
|
||||
function sanitizeDecimal(typeLike: object) {
|
||||
if (
|
||||
!("scale" in typeLike) ||
|
||||
typeof typeLike.scale !== "number" ||
|
||||
!("precision" in typeLike) ||
|
||||
typeof typeLike.precision !== "number" ||
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected a Decimal Type to have `scale`, `precision`, and `bitWidth` properties",
|
||||
);
|
||||
}
|
||||
return new Decimal(typeLike.scale, typeLike.precision, typeLike.bitWidth);
|
||||
}
|
||||
|
||||
function sanitizeDate(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Date type to have a `unit` property");
|
||||
}
|
||||
return new Date_(typeLike.unit as DateUnit);
|
||||
}
|
||||
|
||||
function sanitizeTime(typeLike: object) {
|
||||
if (
|
||||
!("unit" in typeLike) ||
|
||||
typeof typeLike.unit !== "number" ||
|
||||
!("bitWidth" in typeLike) ||
|
||||
typeof typeLike.bitWidth !== "number"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected a Time type to have `unit` and `bitWidth` properties",
|
||||
);
|
||||
}
|
||||
return new Time(typeLike.unit, typeLike.bitWidth as TimeBitWidth);
|
||||
}
|
||||
|
||||
function sanitizeTimestamp(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Timestamp type to have a `unit` property");
|
||||
}
|
||||
let timezone = null;
|
||||
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
|
||||
timezone = typeLike.timezone;
|
||||
}
|
||||
return new Timestamp(typeLike.unit, timezone);
|
||||
}
|
||||
|
||||
function sanitizeTypedTimestamp(
|
||||
typeLike: object,
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
Datatype:
|
||||
| typeof TimestampNanosecond
|
||||
| typeof TimestampMicrosecond
|
||||
| typeof TimestampMillisecond
|
||||
| typeof TimestampSecond,
|
||||
) {
|
||||
let timezone = null;
|
||||
if ("timezone" in typeLike && typeof typeLike.timezone === "string") {
|
||||
timezone = typeLike.timezone;
|
||||
}
|
||||
return new Datatype(timezone);
|
||||
}
|
||||
|
||||
function sanitizeInterval(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected an Interval type to have a `unit` property");
|
||||
}
|
||||
return new Interval(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeList(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a List type to have an array-like `children` property",
|
||||
);
|
||||
}
|
||||
if (typeLike.children.length !== 1) {
|
||||
throw Error("Expected a List type to have exactly one child");
|
||||
}
|
||||
return new List(sanitizeField(typeLike.children[0]));
|
||||
}
|
||||
|
||||
function sanitizeStruct(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Struct type to have an array-like `children` property",
|
||||
);
|
||||
}
|
||||
return new Struct(typeLike.children.map((child) => sanitizeField(child)));
|
||||
}
|
||||
|
||||
function sanitizeUnion(typeLike: object) {
|
||||
if (
|
||||
!("typeIds" in typeLike) ||
|
||||
!("mode" in typeLike) ||
|
||||
typeof typeLike.mode !== "number"
|
||||
) {
|
||||
throw Error(
|
||||
"Expected a Union type to have `typeIds` and `mode` properties",
|
||||
);
|
||||
}
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Union type to have an array-like `children` property",
|
||||
);
|
||||
}
|
||||
|
||||
return new Union(
|
||||
typeLike.mode,
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
typeLike.typeIds as any,
|
||||
typeLike.children.map((child) => sanitizeField(child)),
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeTypedUnion(
|
||||
typeLike: object,
|
||||
// eslint-disable-next-line @typescript-eslint/naming-convention
|
||||
UnionType: typeof DenseUnion | typeof SparseUnion,
|
||||
) {
|
||||
if (!("typeIds" in typeLike)) {
|
||||
throw Error(
|
||||
"Expected a DenseUnion/SparseUnion type to have a `typeIds` property",
|
||||
);
|
||||
}
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a DenseUnion/SparseUnion type to have an array-like `children` property",
|
||||
);
|
||||
}
|
||||
|
||||
return new UnionType(
|
||||
typeLike.typeIds as Int32Array | number[],
|
||||
typeLike.children.map((child) => sanitizeField(child)),
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeBinary(typeLike: object) {
|
||||
if (!("byteWidth" in typeLike) || typeof typeLike.byteWidth !== "number") {
|
||||
throw Error(
|
||||
"Expected a FixedSizeBinary type to have a `byteWidth` property",
|
||||
);
|
||||
}
|
||||
return new FixedSizeBinary(typeLike.byteWidth);
|
||||
}
|
||||
|
||||
function sanitizeFixedSizeList(typeLike: object) {
|
||||
if (!("listSize" in typeLike) || typeof typeLike.listSize !== "number") {
|
||||
throw Error("Expected a FixedSizeList type to have a `listSize` property");
|
||||
}
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a FixedSizeList type to have an array-like `children` property",
|
||||
);
|
||||
}
|
||||
if (typeLike.children.length !== 1) {
|
||||
throw Error("Expected a FixedSizeList type to have exactly one child");
|
||||
}
|
||||
return new FixedSizeList(
|
||||
typeLike.listSize,
|
||||
sanitizeField(typeLike.children[0]),
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeMap(typeLike: object) {
|
||||
if (!("children" in typeLike) || !Array.isArray(typeLike.children)) {
|
||||
throw Error(
|
||||
"Expected a Map type to have an array-like `children` property",
|
||||
);
|
||||
}
|
||||
if (!("keysSorted" in typeLike) || typeof typeLike.keysSorted !== "boolean") {
|
||||
throw Error("Expected a Map type to have a `keysSorted` property");
|
||||
}
|
||||
|
||||
return new Map_(
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
typeLike.children.map((field) => sanitizeField(field)) as any,
|
||||
typeLike.keysSorted,
|
||||
);
|
||||
}
|
||||
|
||||
function sanitizeDuration(typeLike: object) {
|
||||
if (!("unit" in typeLike) || typeof typeLike.unit !== "number") {
|
||||
throw Error("Expected a Duration type to have a `unit` property");
|
||||
}
|
||||
return new Duration(typeLike.unit);
|
||||
}
|
||||
|
||||
function sanitizeDictionary(typeLike: object) {
|
||||
if (!("id" in typeLike) || typeof typeLike.id !== "number") {
|
||||
throw Error("Expected a Dictionary type to have an `id` property");
|
||||
}
|
||||
if (!("indices" in typeLike) || typeof typeLike.indices !== "object") {
|
||||
throw Error("Expected a Dictionary type to have an `indices` property");
|
||||
}
|
||||
if (!("dictionary" in typeLike) || typeof typeLike.dictionary !== "object") {
|
||||
throw Error("Expected a Dictionary type to have an `dictionary` property");
|
||||
}
|
||||
if (!("isOrdered" in typeLike) || typeof typeLike.isOrdered !== "boolean") {
|
||||
throw Error("Expected a Dictionary type to have an `isOrdered` property");
|
||||
}
|
||||
return new Dictionary(
|
||||
sanitizeType(typeLike.dictionary),
|
||||
sanitizeType(typeLike.indices) as TKeys,
|
||||
typeLike.id,
|
||||
typeLike.isOrdered,
|
||||
);
|
||||
}
|
||||
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
function sanitizeType(typeLike: unknown): DataType<any> {
|
||||
if (typeof typeLike !== "object" || typeLike === null) {
|
||||
throw Error("Expected a Type but object was null/undefined");
|
||||
}
|
||||
if (!("typeId" in typeLike) || !(typeof typeLike.typeId !== "function")) {
|
||||
throw Error("Expected a Type to have a typeId function");
|
||||
}
|
||||
let typeId: Type;
|
||||
if (typeof typeLike.typeId === "function") {
|
||||
typeId = (typeLike.typeId as () => unknown)() as Type;
|
||||
} else if (typeof typeLike.typeId === "number") {
|
||||
typeId = typeLike.typeId as Type;
|
||||
} else {
|
||||
throw Error("Type's typeId property was not a function or number");
|
||||
}
|
||||
|
||||
switch (typeId) {
|
||||
case Type.NONE:
|
||||
throw Error("Received a Type with a typeId of NONE");
|
||||
case Type.Null:
|
||||
return new Null();
|
||||
case Type.Int:
|
||||
return sanitizeInt(typeLike);
|
||||
case Type.Float:
|
||||
return sanitizeFloat(typeLike);
|
||||
case Type.Binary:
|
||||
return new Binary();
|
||||
case Type.Utf8:
|
||||
return new Utf8();
|
||||
case Type.Bool:
|
||||
return new Bool();
|
||||
case Type.Decimal:
|
||||
return sanitizeDecimal(typeLike);
|
||||
case Type.Date:
|
||||
return sanitizeDate(typeLike);
|
||||
case Type.Time:
|
||||
return sanitizeTime(typeLike);
|
||||
case Type.Timestamp:
|
||||
return sanitizeTimestamp(typeLike);
|
||||
case Type.Interval:
|
||||
return sanitizeInterval(typeLike);
|
||||
case Type.List:
|
||||
return sanitizeList(typeLike);
|
||||
case Type.Struct:
|
||||
return sanitizeStruct(typeLike);
|
||||
case Type.Union:
|
||||
return sanitizeUnion(typeLike);
|
||||
case Type.FixedSizeBinary:
|
||||
return sanitizeFixedSizeBinary(typeLike);
|
||||
case Type.FixedSizeList:
|
||||
return sanitizeFixedSizeList(typeLike);
|
||||
case Type.Map:
|
||||
return sanitizeMap(typeLike);
|
||||
case Type.Duration:
|
||||
return sanitizeDuration(typeLike);
|
||||
case Type.Dictionary:
|
||||
return sanitizeDictionary(typeLike);
|
||||
case Type.Int8:
|
||||
return new Int8();
|
||||
case Type.Int16:
|
||||
return new Int16();
|
||||
case Type.Int32:
|
||||
return new Int32();
|
||||
case Type.Int64:
|
||||
return new Int64();
|
||||
case Type.Uint8:
|
||||
return new Uint8();
|
||||
case Type.Uint16:
|
||||
return new Uint16();
|
||||
case Type.Uint32:
|
||||
return new Uint32();
|
||||
case Type.Uint64:
|
||||
return new Uint64();
|
||||
case Type.Float16:
|
||||
return new Float16();
|
||||
case Type.Float32:
|
||||
return new Float32();
|
||||
case Type.Float64:
|
||||
return new Float64();
|
||||
case Type.DateMillisecond:
|
||||
return new DateMillisecond();
|
||||
case Type.DateDay:
|
||||
return new DateDay();
|
||||
case Type.TimeNanosecond:
|
||||
return new TimeNanosecond();
|
||||
case Type.TimeMicrosecond:
|
||||
return new TimeMicrosecond();
|
||||
case Type.TimeMillisecond:
|
||||
return new TimeMillisecond();
|
||||
case Type.TimeSecond:
|
||||
return new TimeSecond();
|
||||
case Type.TimestampNanosecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampNanosecond);
|
||||
case Type.TimestampMicrosecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampMicrosecond);
|
||||
case Type.TimestampMillisecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampMillisecond);
|
||||
case Type.TimestampSecond:
|
||||
return sanitizeTypedTimestamp(typeLike, TimestampSecond);
|
||||
case Type.DenseUnion:
|
||||
return sanitizeTypedUnion(typeLike, DenseUnion);
|
||||
case Type.SparseUnion:
|
||||
return sanitizeTypedUnion(typeLike, SparseUnion);
|
||||
case Type.IntervalDayTime:
|
||||
return new IntervalDayTime();
|
||||
case Type.IntervalYearMonth:
|
||||
return new IntervalYearMonth();
|
||||
case Type.DurationNanosecond:
|
||||
return new DurationNanosecond();
|
||||
case Type.DurationMicrosecond:
|
||||
return new DurationMicrosecond();
|
||||
case Type.DurationMillisecond:
|
||||
return new DurationMillisecond();
|
||||
case Type.DurationSecond:
|
||||
return new DurationSecond();
|
||||
default:
|
||||
throw new Error("Unrecoginized type id in schema: " + typeId);
|
||||
}
|
||||
}
|
||||
|
||||
function sanitizeField(fieldLike: unknown): Field {
|
||||
if (fieldLike instanceof Field) {
|
||||
return fieldLike;
|
||||
}
|
||||
if (typeof fieldLike !== "object" || fieldLike === null) {
|
||||
throw Error("Expected a Field but object was null/undefined");
|
||||
}
|
||||
if (
|
||||
!("type" in fieldLike) ||
|
||||
!("name" in fieldLike) ||
|
||||
!("nullable" in fieldLike)
|
||||
) {
|
||||
throw Error(
|
||||
"The field passed in is missing a `type`/`name`/`nullable` property",
|
||||
);
|
||||
}
|
||||
const type = sanitizeType(fieldLike.type);
|
||||
const name = fieldLike.name;
|
||||
if (!(typeof name === "string")) {
|
||||
throw Error("The field passed in had a non-string `name` property");
|
||||
}
|
||||
const nullable = fieldLike.nullable;
|
||||
if (!(typeof nullable === "boolean")) {
|
||||
throw Error("The field passed in had a non-boolean `nullable` property");
|
||||
}
|
||||
let metadata;
|
||||
if ("metadata" in fieldLike) {
|
||||
metadata = sanitizeMetadata(fieldLike.metadata);
|
||||
}
|
||||
return new Field(name, type, nullable, metadata);
|
||||
}
|
||||
|
||||
export function sanitizeSchema(schemaLike: unknown): Schema {
|
||||
if (schemaLike instanceof Schema) {
|
||||
return schemaLike;
|
||||
}
|
||||
if (typeof schemaLike !== "object" || schemaLike === null) {
|
||||
throw Error("Expected a Schema but object was null/undefined");
|
||||
}
|
||||
if (!("fields" in schemaLike)) {
|
||||
throw Error(
|
||||
"The schema passed in does not appear to be a schema (no 'fields' property)",
|
||||
);
|
||||
}
|
||||
let metadata;
|
||||
if ("metadata" in schemaLike) {
|
||||
metadata = sanitizeMetadata(schemaLike.metadata);
|
||||
}
|
||||
if (!Array.isArray(schemaLike.fields)) {
|
||||
throw Error(
|
||||
"The schema passed in had a 'fields' property but it was not an array",
|
||||
);
|
||||
}
|
||||
const sanitizedFields = schemaLike.fields.map((field) =>
|
||||
sanitizeField(field),
|
||||
);
|
||||
return new Schema(sanitizedFields, metadata);
|
||||
}
|
||||
@@ -13,15 +13,37 @@
|
||||
// limitations under the License.
|
||||
|
||||
import { Schema, tableFromIPC } from "apache-arrow";
|
||||
import { AddColumnsSql, ColumnAlteration, Table as _NativeTable } from "./native";
|
||||
import { toBuffer, Data } from "./arrow";
|
||||
import {
|
||||
AddColumnsSql,
|
||||
ColumnAlteration,
|
||||
Table as _NativeTable,
|
||||
} from "./native";
|
||||
import { Query } from "./query";
|
||||
import { IndexBuilder } from "./indexer";
|
||||
import { Data, fromDataToBuffer } from "./arrow";
|
||||
|
||||
/**
|
||||
* A LanceDB Table is the collection of Records.
|
||||
* Options for adding data to a table.
|
||||
*/
|
||||
export interface AddDataOptions {
|
||||
/** If "append" (the default) then the new data will be added to the table
|
||||
*
|
||||
* If "overwrite" then the new data will replace the existing data in the table.
|
||||
*/
|
||||
mode: "append" | "overwrite";
|
||||
}
|
||||
|
||||
/**
|
||||
* A Table is a collection of Records in a LanceDB Database.
|
||||
*
|
||||
* Each Record has one or more vector fields.
|
||||
* A Table object is expected to be long lived and reused for multiple operations.
|
||||
* Table objects will cache a certain amount of index data in memory. This cache
|
||||
* will be freed when the Table is garbage collected. To eagerly free the cache you
|
||||
* can call the `close` method. Once the Table is closed, it cannot be used for any
|
||||
* further operations.
|
||||
*
|
||||
* Closing a table is optional. It not closed, it will be closed when it is garbage
|
||||
* collected.
|
||||
*/
|
||||
export class Table {
|
||||
private readonly inner: _NativeTable;
|
||||
@@ -31,6 +53,26 @@ export class Table {
|
||||
this.inner = inner;
|
||||
}
|
||||
|
||||
/** Return true if the table has not been closed */
|
||||
isOpen(): boolean {
|
||||
return this.inner.isOpen();
|
||||
}
|
||||
|
||||
/** Close the table, releasing any underlying resources.
|
||||
*
|
||||
* It is safe to call this method multiple times.
|
||||
*
|
||||
* Any attempt to use the table after it is closed will result in an error.
|
||||
*/
|
||||
close(): void {
|
||||
this.inner.close();
|
||||
}
|
||||
|
||||
/** Return a brief description of the table */
|
||||
display(): string {
|
||||
return this.inner.display();
|
||||
}
|
||||
|
||||
/** Get the schema of the table. */
|
||||
async schema(): Promise<Schema> {
|
||||
const schemaBuf = await this.inner.schema();
|
||||
@@ -44,9 +86,11 @@ export class Table {
|
||||
* @param {Data} data Records to be inserted into the Table
|
||||
* @return The number of rows added to the table
|
||||
*/
|
||||
async add(data: Data): Promise<void> {
|
||||
const buffer = toBuffer(data);
|
||||
await this.inner.add(buffer);
|
||||
async add(data: Data, options?: Partial<AddDataOptions>): Promise<void> {
|
||||
const mode = options?.mode ?? "append";
|
||||
|
||||
const buffer = await fromDataToBuffer(data);
|
||||
await this.inner.add(buffer, mode);
|
||||
}
|
||||
|
||||
/** Count the total number of rows in the dataset. */
|
||||
|
||||
@@ -15,4 +15,4 @@
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -15,4 +15,4 @@
|
||||
"engines": {
|
||||
"node": ">= 18"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -18,4 +18,4 @@
|
||||
"libc": [
|
||||
"glibc"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
@@ -18,4 +18,4 @@
|
||||
"libc": [
|
||||
"glibc"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
||||
859
nodejs/package-lock.json
generated
859
nodejs/package-lock.json
generated
File diff suppressed because it is too large
Load Diff
@@ -19,14 +19,20 @@
|
||||
"devDependencies": {
|
||||
"@napi-rs/cli": "^2.18.0",
|
||||
"@types/jest": "^29.1.2",
|
||||
"@types/tmp": "^0.2.6",
|
||||
"@typescript-eslint/eslint-plugin": "^6.19.0",
|
||||
"@typescript-eslint/parser": "^6.19.0",
|
||||
"eslint": "^8.56.0",
|
||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
||||
"eslint": "^8.57.0",
|
||||
"eslint-config-prettier": "^9.1.0",
|
||||
"jest": "^29.7.0",
|
||||
"prettier": "^3.1.0",
|
||||
"tmp": "^0.2.3",
|
||||
"ts-jest": "^29.1.2",
|
||||
"typedoc": "^0.25.7",
|
||||
"typedoc-plugin-markdown": "^3.17.1",
|
||||
"typescript": "^5.3.3"
|
||||
"typescript": "^5.3.3",
|
||||
"typescript-eslint": "^7.1.0"
|
||||
},
|
||||
"ava": {
|
||||
"timeout": "3m"
|
||||
@@ -48,8 +54,9 @@
|
||||
"build:native": "napi build --platform --release --js lancedb/native.js --dts lancedb/native.d.ts dist/",
|
||||
"build:debug": "napi build --platform --dts ../lancedb/native.d.ts --js ../lancedb/native.js dist/",
|
||||
"build": "npm run build:debug && tsc -b",
|
||||
"chkformat": "prettier . --check",
|
||||
"docs": "typedoc --plugin typedoc-plugin-markdown lancedb/index.ts",
|
||||
"lint": "eslint lancedb --ext .js,.ts",
|
||||
"lint": "eslint lancedb && eslint __test__",
|
||||
"prepublishOnly": "napi prepublish -t npm",
|
||||
"test": "npm run build && jest --verbose",
|
||||
"universal": "napi universal",
|
||||
@@ -59,7 +66,8 @@
|
||||
"lancedb-darwin-arm64": "0.4.3",
|
||||
"lancedb-darwin-x64": "0.4.3",
|
||||
"lancedb-linux-arm64-gnu": "0.4.3",
|
||||
"lancedb-linux-x64-gnu": "0.4.3"
|
||||
"lancedb-linux-x64-gnu": "0.4.3",
|
||||
"openai": "^4.28.4"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"apache-arrow": "^15.0.0"
|
||||
|
||||
@@ -18,11 +18,23 @@ use napi_derive::*;
|
||||
use crate::table::Table;
|
||||
use crate::ConnectionOptions;
|
||||
use lancedb::connection::{ConnectBuilder, Connection as LanceDBConnection, CreateTableMode};
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::ipc::{ipc_file_to_batches, ipc_file_to_schema};
|
||||
|
||||
#[napi]
|
||||
pub struct Connection {
|
||||
conn: LanceDBConnection,
|
||||
inner: Option<LanceDBConnection>,
|
||||
}
|
||||
|
||||
impl Connection {
|
||||
pub(crate) fn inner_new(inner: LanceDBConnection) -> Self {
|
||||
Self { inner: Some(inner) }
|
||||
}
|
||||
|
||||
fn get_inner(&self) -> napi::Result<&LanceDBConnection> {
|
||||
self.inner
|
||||
.as_ref()
|
||||
.ok_or_else(|| napi::Error::from_reason("Connection is closed"))
|
||||
}
|
||||
}
|
||||
|
||||
impl Connection {
|
||||
@@ -40,8 +52,8 @@ impl Connection {
|
||||
impl Connection {
|
||||
/// Create a new Connection instance from the given URI.
|
||||
#[napi(factory)]
|
||||
pub async fn new(options: ConnectionOptions) -> napi::Result<Self> {
|
||||
let mut builder = ConnectBuilder::new(&options.uri);
|
||||
pub async fn new(uri: String, options: ConnectionOptions) -> napi::Result<Self> {
|
||||
let mut builder = ConnectBuilder::new(&uri);
|
||||
if let Some(api_key) = options.api_key {
|
||||
builder = builder.api_key(&api_key);
|
||||
}
|
||||
@@ -52,19 +64,44 @@ impl Connection {
|
||||
builder =
|
||||
builder.read_consistency_interval(std::time::Duration::from_secs_f64(interval));
|
||||
}
|
||||
Ok(Self {
|
||||
conn: builder
|
||||
Ok(Self::inner_new(
|
||||
builder
|
||||
.execute()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?,
|
||||
})
|
||||
))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn display(&self) -> napi::Result<String> {
|
||||
Ok(self.get_inner()?.to_string())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn is_open(&self) -> bool {
|
||||
self.inner.is_some()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn close(&mut self) {
|
||||
self.inner.take();
|
||||
}
|
||||
|
||||
/// List all tables in the dataset.
|
||||
#[napi]
|
||||
pub async fn table_names(&self) -> napi::Result<Vec<String>> {
|
||||
self.conn
|
||||
.table_names()
|
||||
pub async fn table_names(
|
||||
&self,
|
||||
start_after: Option<String>,
|
||||
limit: Option<u32>,
|
||||
) -> napi::Result<Vec<String>> {
|
||||
let mut op = self.get_inner()?.table_names();
|
||||
if let Some(start_after) = start_after {
|
||||
op = op.start_after(start_after);
|
||||
}
|
||||
if let Some(limit) = limit {
|
||||
op = op.limit(limit);
|
||||
}
|
||||
op.execute()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
|
||||
}
|
||||
@@ -86,7 +123,7 @@ impl Connection {
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
|
||||
let mode = Self::parse_create_mode_str(&mode)?;
|
||||
let tbl = self
|
||||
.conn
|
||||
.get_inner()?
|
||||
.create_table(&name, Box::new(batches))
|
||||
.mode(mode)
|
||||
.execute()
|
||||
@@ -95,10 +132,31 @@ impl Connection {
|
||||
Ok(Table::new(tbl))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn create_empty_table(
|
||||
&self,
|
||||
name: String,
|
||||
schema_buf: Buffer,
|
||||
mode: String,
|
||||
) -> napi::Result<Table> {
|
||||
let schema = ipc_file_to_schema(schema_buf.to_vec()).map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to marshal schema from JS to Rust: {}", e))
|
||||
})?;
|
||||
let mode = Self::parse_create_mode_str(&mode)?;
|
||||
let tbl = self
|
||||
.get_inner()?
|
||||
.create_empty_table(&name, schema)
|
||||
.mode(mode)
|
||||
.execute()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))?;
|
||||
Ok(Table::new(tbl))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn open_table(&self, name: String) -> napi::Result<Table> {
|
||||
let tbl = self
|
||||
.conn
|
||||
.get_inner()?
|
||||
.open_table(&name)
|
||||
.execute()
|
||||
.await
|
||||
@@ -109,7 +167,7 @@ impl Connection {
|
||||
/// Drop table with the name. Or raise an error if the table does not exist.
|
||||
#[napi]
|
||||
pub async fn drop_table(&self, name: String) -> napi::Result<()> {
|
||||
self.conn
|
||||
self.get_inner()?
|
||||
.drop_table(&name)
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("{}", e)))
|
||||
|
||||
@@ -12,7 +12,11 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::sync::Mutex;
|
||||
|
||||
use lance_linalg::distance::MetricType as LanceMetricType;
|
||||
use lancedb::index::IndexBuilder as LanceDbIndexBuilder;
|
||||
use lancedb::Table as LanceDbTable;
|
||||
use napi_derive::napi;
|
||||
|
||||
#[napi]
|
||||
@@ -40,58 +44,93 @@ impl From<MetricType> for LanceMetricType {
|
||||
|
||||
#[napi]
|
||||
pub struct IndexBuilder {
|
||||
inner: lancedb::index::IndexBuilder,
|
||||
inner: Mutex<Option<LanceDbIndexBuilder>>,
|
||||
}
|
||||
|
||||
impl IndexBuilder {
|
||||
fn modify(
|
||||
&self,
|
||||
mod_fn: impl Fn(LanceDbIndexBuilder) -> LanceDbIndexBuilder,
|
||||
) -> napi::Result<()> {
|
||||
let mut inner = self.inner.lock().unwrap();
|
||||
let inner_builder = inner.take().ok_or_else(|| {
|
||||
napi::Error::from_reason("IndexBuilder has already been consumed".to_string())
|
||||
})?;
|
||||
let inner_builder = mod_fn(inner_builder);
|
||||
inner.replace(inner_builder);
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl IndexBuilder {
|
||||
pub fn new(tbl: &dyn lancedb::Table) -> Self {
|
||||
pub fn new(tbl: &LanceDbTable) -> Self {
|
||||
let inner = tbl.create_index(&[]);
|
||||
Self { inner }
|
||||
Self {
|
||||
inner: Mutex::new(Some(inner)),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn replace(&mut self, v: bool) {
|
||||
self.inner.replace(v);
|
||||
pub fn replace(&self, v: bool) -> napi::Result<()> {
|
||||
self.modify(|b| b.replace(v))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn column(&mut self, c: String) {
|
||||
self.inner.columns(&[c.as_str()]);
|
||||
pub fn column(&self, c: String) -> napi::Result<()> {
|
||||
self.modify(|b| b.columns(&[c.as_str()]))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn name(&mut self, name: String) {
|
||||
self.inner.name(name.as_str());
|
||||
pub fn name(&self, name: String) -> napi::Result<()> {
|
||||
self.modify(|b| b.name(name.as_str()))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn ivf_pq(
|
||||
&mut self,
|
||||
pub fn ivf_pq(
|
||||
&self,
|
||||
metric_type: Option<MetricType>,
|
||||
num_partitions: Option<u32>,
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: Option<u32>,
|
||||
max_iterations: Option<u32>,
|
||||
sample_rate: Option<u32>,
|
||||
) {
|
||||
self.inner.ivf_pq();
|
||||
metric_type.map(|m| self.inner.metric_type(m.into()));
|
||||
num_partitions.map(|p| self.inner.num_partitions(p));
|
||||
num_sub_vectors.map(|s| self.inner.num_sub_vectors(s));
|
||||
num_bits.map(|b| self.inner.num_bits(b));
|
||||
max_iterations.map(|i| self.inner.max_iterations(i));
|
||||
sample_rate.map(|s| self.inner.sample_rate(s));
|
||||
) -> napi::Result<()> {
|
||||
self.modify(|b| {
|
||||
let mut b = b.ivf_pq();
|
||||
if let Some(metric_type) = metric_type {
|
||||
b = b.metric_type(metric_type.into());
|
||||
}
|
||||
if let Some(num_partitions) = num_partitions {
|
||||
b = b.num_partitions(num_partitions);
|
||||
}
|
||||
if let Some(num_sub_vectors) = num_sub_vectors {
|
||||
b = b.num_sub_vectors(num_sub_vectors);
|
||||
}
|
||||
if let Some(num_bits) = num_bits {
|
||||
b = b.num_bits(num_bits);
|
||||
}
|
||||
if let Some(max_iterations) = max_iterations {
|
||||
b = b.max_iterations(max_iterations);
|
||||
}
|
||||
if let Some(sample_rate) = sample_rate {
|
||||
b = b.sample_rate(sample_rate);
|
||||
}
|
||||
b
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub unsafe fn scalar(&mut self) {
|
||||
self.inner.scalar();
|
||||
pub fn scalar(&self) -> napi::Result<()> {
|
||||
self.modify(|b| b.scalar())
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn build(&self) -> napi::Result<()> {
|
||||
self.inner
|
||||
let inner = self.inner.lock().unwrap().take().ok_or_else(|| {
|
||||
napi::Error::from_reason("IndexBuilder has already been consumed".to_string())
|
||||
})?;
|
||||
inner
|
||||
.build()
|
||||
.await
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to build index: {}", e)))?;
|
||||
|
||||
@@ -24,7 +24,6 @@ mod table;
|
||||
#[napi(object)]
|
||||
#[derive(Debug)]
|
||||
pub struct ConnectionOptions {
|
||||
pub uri: String,
|
||||
pub api_key: Option<String>,
|
||||
pub host_override: Option<String>,
|
||||
/// (For LanceDB OSS only): The interval, in seconds, at which to check for
|
||||
@@ -54,6 +53,6 @@ pub struct WriteOptions {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn connect(options: ConnectionOptions) -> napi::Result<Connection> {
|
||||
Connection::new(options).await
|
||||
pub async fn connect(uri: String, options: ConnectionOptions) -> napi::Result<Connection> {
|
||||
Connection::new(uri, options).await
|
||||
}
|
||||
|
||||
@@ -16,7 +16,7 @@ use lancedb::query::Query as LanceDBQuery;
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
|
||||
use crate::{iterator::RecordBatchIterator, table::Table};
|
||||
use crate::iterator::RecordBatchIterator;
|
||||
|
||||
#[napi]
|
||||
pub struct Query {
|
||||
@@ -25,10 +25,8 @@ pub struct Query {
|
||||
|
||||
#[napi]
|
||||
impl Query {
|
||||
pub fn new(table: &Table) -> Self {
|
||||
Self {
|
||||
inner: table.table.query(),
|
||||
}
|
||||
pub fn new(query: LanceDBQuery) -> Self {
|
||||
Self { inner: query }
|
||||
}
|
||||
|
||||
#[napi]
|
||||
|
||||
@@ -14,10 +14,8 @@
|
||||
|
||||
use arrow_ipc::writer::FileWriter;
|
||||
use lance::dataset::ColumnAlteration as LanceColumnAlteration;
|
||||
use lancedb::{
|
||||
ipc::ipc_file_to_batches,
|
||||
table::{AddDataOptions, TableRef},
|
||||
};
|
||||
use lancedb::ipc::ipc_file_to_batches;
|
||||
use lancedb::table::{AddDataMode, Table as LanceDbTable};
|
||||
use napi::bindgen_prelude::*;
|
||||
use napi_derive::napi;
|
||||
|
||||
@@ -26,20 +24,52 @@ use crate::query::Query;
|
||||
|
||||
#[napi]
|
||||
pub struct Table {
|
||||
pub(crate) table: TableRef,
|
||||
// We keep a duplicate of the table name so we can use it for error
|
||||
// messages even if the table has been closed
|
||||
name: String,
|
||||
pub(crate) inner: Option<LanceDbTable>,
|
||||
}
|
||||
|
||||
impl Table {
|
||||
fn inner_ref(&self) -> napi::Result<&LanceDbTable> {
|
||||
self.inner
|
||||
.as_ref()
|
||||
.ok_or_else(|| napi::Error::from_reason(format!("Table {} is closed", self.name)))
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
impl Table {
|
||||
pub(crate) fn new(table: TableRef) -> Self {
|
||||
Self { table }
|
||||
pub(crate) fn new(table: LanceDbTable) -> Self {
|
||||
Self {
|
||||
name: table.name().to_string(),
|
||||
inner: Some(table),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn display(&self) -> String {
|
||||
match &self.inner {
|
||||
None => format!("ClosedTable({})", self.name),
|
||||
Some(inner) => inner.to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn is_open(&self) -> bool {
|
||||
self.inner.is_some()
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn close(&mut self) {
|
||||
self.inner.take();
|
||||
}
|
||||
|
||||
/// Return Schema as empty Arrow IPC file.
|
||||
#[napi]
|
||||
pub async fn schema(&self) -> napi::Result<Buffer> {
|
||||
let schema =
|
||||
self.table.schema().await.map_err(|e| {
|
||||
self.inner_ref()?.schema().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!("Failed to create IPC file: {}", e))
|
||||
})?;
|
||||
let mut writer = FileWriter::try_new(vec![], &schema)
|
||||
@@ -53,52 +83,59 @@ impl Table {
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn add(&self, buf: Buffer) -> napi::Result<()> {
|
||||
pub async fn add(&self, buf: Buffer, mode: String) -> napi::Result<()> {
|
||||
let batches = ipc_file_to_batches(buf.to_vec())
|
||||
.map_err(|e| napi::Error::from_reason(format!("Failed to read IPC file: {}", e)))?;
|
||||
self.table
|
||||
.add(Box::new(batches), AddDataOptions::default())
|
||||
.await
|
||||
.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to add batches to table {}: {}",
|
||||
self.table, e
|
||||
))
|
||||
})
|
||||
let mut op = self.inner_ref()?.add(Box::new(batches));
|
||||
|
||||
op = if mode == "append" {
|
||||
op.mode(AddDataMode::Append)
|
||||
} else if mode == "overwrite" {
|
||||
op.mode(AddDataMode::Overwrite)
|
||||
} else {
|
||||
return Err(napi::Error::from_reason(format!("Invalid mode: {}", mode)));
|
||||
};
|
||||
|
||||
op.execute().await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to add batches to table {}: {}",
|
||||
self.name, e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn count_rows(&self, filter: Option<String>) -> napi::Result<i64> {
|
||||
self.table
|
||||
self.inner_ref()?
|
||||
.count_rows(filter)
|
||||
.await
|
||||
.map(|val| val as i64)
|
||||
.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to count rows in table {}: {}",
|
||||
self.table, e
|
||||
self.name, e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub async fn delete(&self, predicate: String) -> napi::Result<()> {
|
||||
self.table.delete(&predicate).await.map_err(|e| {
|
||||
self.inner_ref()?.delete(&predicate).await.map_err(|e| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to delete rows in table {}: predicate={}",
|
||||
self.table, e
|
||||
self.name, e
|
||||
))
|
||||
})
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn create_index(&self) -> IndexBuilder {
|
||||
IndexBuilder::new(self.table.as_ref())
|
||||
pub fn create_index(&self) -> napi::Result<IndexBuilder> {
|
||||
Ok(IndexBuilder::new(self.inner_ref()?))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
pub fn query(&self) -> Query {
|
||||
Query::new(self)
|
||||
pub fn query(&self) -> napi::Result<Query> {
|
||||
Ok(Query::new(self.inner_ref()?.query()))
|
||||
}
|
||||
|
||||
#[napi]
|
||||
@@ -108,13 +145,13 @@ impl Table {
|
||||
.map(|sql| (sql.name, sql.value_sql))
|
||||
.collect::<Vec<_>>();
|
||||
let transforms = lance::dataset::NewColumnTransform::SqlExpressions(transforms);
|
||||
self.table
|
||||
self.inner_ref()?
|
||||
.add_columns(transforms, None)
|
||||
.await
|
||||
.map_err(|err| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to add columns to table {}: {}",
|
||||
self.table, err
|
||||
self.name, err
|
||||
))
|
||||
})?;
|
||||
Ok(())
|
||||
@@ -134,13 +171,13 @@ impl Table {
|
||||
.map(LanceColumnAlteration::from)
|
||||
.collect::<Vec<_>>();
|
||||
|
||||
self.table
|
||||
self.inner_ref()?
|
||||
.alter_columns(&alterations)
|
||||
.await
|
||||
.map_err(|err| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to alter columns in table {}: {}",
|
||||
self.table, err
|
||||
self.name, err
|
||||
))
|
||||
})?;
|
||||
Ok(())
|
||||
@@ -149,12 +186,15 @@ impl Table {
|
||||
#[napi]
|
||||
pub async fn drop_columns(&self, columns: Vec<String>) -> napi::Result<()> {
|
||||
let col_refs = columns.iter().map(String::as_str).collect::<Vec<_>>();
|
||||
self.table.drop_columns(&col_refs).await.map_err(|err| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to drop columns from table {}: {}",
|
||||
self.table, err
|
||||
))
|
||||
})?;
|
||||
self.inner_ref()?
|
||||
.drop_columns(&col_refs)
|
||||
.await
|
||||
.map_err(|err| {
|
||||
napi::Error::from_reason(format!(
|
||||
"Failed to drop columns from table {}: {}",
|
||||
self.name, err
|
||||
))
|
||||
})?;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,9 +1,5 @@
|
||||
{
|
||||
"include": [
|
||||
"lancedb/*.ts",
|
||||
"lancedb/**/*.ts",
|
||||
"lancedb/*.js",
|
||||
],
|
||||
"include": ["lancedb/*.ts", "lancedb/**/*.ts", "lancedb/*.js"],
|
||||
"compilerOptions": {
|
||||
"target": "es2022",
|
||||
"module": "commonjs",
|
||||
@@ -11,21 +7,17 @@
|
||||
"outDir": "./dist",
|
||||
"strict": true,
|
||||
"allowJs": true,
|
||||
"resolveJsonModule": true,
|
||||
"resolveJsonModule": true
|
||||
},
|
||||
"exclude": [
|
||||
"./dist/*",
|
||||
],
|
||||
"exclude": ["./dist/*"],
|
||||
"typedocOptions": {
|
||||
"entryPoints": [
|
||||
"lancedb/index.ts"
|
||||
],
|
||||
"entryPoints": ["lancedb/index.ts"],
|
||||
"out": "../docs/src/javascript/",
|
||||
"visibilityFilters": {
|
||||
"protected": false,
|
||||
"private": false,
|
||||
"inherited": true,
|
||||
"external": false,
|
||||
"external": false
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.6.1
|
||||
current_version = 0.6.2
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -15,10 +15,24 @@ need to use `await` to call these functions.
|
||||
|
||||
## Connection
|
||||
|
||||
No changes yet.
|
||||
* The connection now has a `close` method. You can call this when
|
||||
you are done with the connection to eagerly free resources. Currently
|
||||
this is limited to freeing/closing the HTTP connection for remote
|
||||
connections. In the future we may add caching or other resources to
|
||||
native connections so this is probably a good practice even if you aren't using remote connections.
|
||||
|
||||
In addition, the connection can be used as a context manager which may
|
||||
be a more convenient way to ensure the connection is closed.
|
||||
|
||||
It is not mandatory to call the `close` method. If you don't call it
|
||||
the connection will be closed when the object is garbage collected.
|
||||
|
||||
## Table
|
||||
|
||||
* The table now has a `close` method, similar to the connection. This
|
||||
can be used to eagerly free the cache used by a Table object. Similar
|
||||
to the connection, it can be used as a context manager and it is not
|
||||
mandatory to call the `close` method.
|
||||
* Previously `Table.schema` was a property. Now it is an async method.
|
||||
* The method `Table.__len__` was removed and `len(table)` will no longer
|
||||
work. Use `Table.count_rows` instead.
|
||||
|
||||
@@ -7,7 +7,7 @@ license.workspace = true
|
||||
repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
|
||||
rust-version = "1.75.0"
|
||||
|
||||
[lib]
|
||||
name = "_lancedb"
|
||||
|
||||
@@ -1,9 +1,9 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.6.1"
|
||||
version = "0.6.2"
|
||||
dependencies = [
|
||||
"deprecation",
|
||||
"pylance==0.10.1",
|
||||
"pylance==0.10.2",
|
||||
"ratelimiter~=1.0",
|
||||
"retry>=0.9.2",
|
||||
"tqdm>=4.27.0",
|
||||
|
||||
@@ -21,7 +21,7 @@ __version__ = importlib.metadata.version("lancedb")
|
||||
|
||||
from ._lancedb import connect as lancedb_connect
|
||||
from .common import URI, sanitize_uri
|
||||
from .db import AsyncConnection, AsyncLanceDBConnection, DBConnection, LanceDBConnection
|
||||
from .db import AsyncConnection, DBConnection, LanceDBConnection
|
||||
from .remote.db import RemoteDBConnection
|
||||
from .schema import vector # noqa: F401
|
||||
from .utils import sentry_log # noqa: F401
|
||||
@@ -168,8 +168,17 @@ async def connect_async(
|
||||
conn : DBConnection
|
||||
A connection to a LanceDB database.
|
||||
"""
|
||||
return AsyncLanceDBConnection(
|
||||
if read_consistency_interval is not None:
|
||||
read_consistency_interval_secs = read_consistency_interval.total_seconds()
|
||||
else:
|
||||
read_consistency_interval_secs = None
|
||||
|
||||
return AsyncConnection(
|
||||
await lancedb_connect(
|
||||
sanitize_uri(uri), api_key, region, host_override, read_consistency_interval
|
||||
sanitize_uri(uri),
|
||||
api_key,
|
||||
region,
|
||||
host_override,
|
||||
read_consistency_interval_secs,
|
||||
)
|
||||
)
|
||||
|
||||
@@ -3,7 +3,9 @@ from typing import Optional
|
||||
import pyarrow as pa
|
||||
|
||||
class Connection(object):
|
||||
async def table_names(self) -> list[str]: ...
|
||||
async def table_names(
|
||||
self, start_after: Optional[str], limit: Optional[int]
|
||||
) -> list[str]: ...
|
||||
async def create_table(
|
||||
self, name: str, mode: str, data: pa.RecordBatchReader
|
||||
) -> Table: ...
|
||||
@@ -13,6 +15,7 @@ class Connection(object):
|
||||
|
||||
class Table(object):
|
||||
def name(self) -> str: ...
|
||||
def __repr__(self) -> str: ...
|
||||
async def schema(self) -> pa.Schema: ...
|
||||
|
||||
async def connect(
|
||||
|
||||
@@ -13,11 +13,12 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import inspect
|
||||
import os
|
||||
from abc import abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, Iterable, List, Optional, Union
|
||||
from typing import TYPE_CHECKING, Iterable, List, Literal, Optional, Union
|
||||
|
||||
import pyarrow as pa
|
||||
from overrides import EnforceOverrides, override
|
||||
@@ -27,8 +28,9 @@ from lancedb.common import data_to_reader, validate_schema
|
||||
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
|
||||
from lancedb.utils.events import register_event
|
||||
|
||||
from ._lancedb import connect as lancedb_connect
|
||||
from .pydantic import LanceModel
|
||||
from .table import AsyncLanceTable, LanceTable, Table, _sanitize_data
|
||||
from .table import AsyncTable, LanceTable, Table, _sanitize_data
|
||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme, join_uri
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -317,6 +319,10 @@ class LanceDBConnection(DBConnection):
|
||||
def uri(self) -> str:
|
||||
return self._uri
|
||||
|
||||
async def _async_get_table_names(self, start_after: Optional[str], limit: int):
|
||||
conn = AsyncConnection(await lancedb_connect(self.uri))
|
||||
return await conn.table_names(start_after=start_after, limit=limit)
|
||||
|
||||
@override
|
||||
def table_names(
|
||||
self, page_token: Optional[str] = None, limit: int = 10
|
||||
@@ -329,23 +335,31 @@ class LanceDBConnection(DBConnection):
|
||||
A list of table names.
|
||||
"""
|
||||
try:
|
||||
filesystem = fs_from_uri(self.uri)[0]
|
||||
except pa.ArrowInvalid:
|
||||
raise NotImplementedError("Unsupported scheme: " + self.uri)
|
||||
asyncio.get_running_loop()
|
||||
# User application is async. Soon we will just tell them to use the
|
||||
# async version. Until then fallback to the old sync implementation.
|
||||
try:
|
||||
filesystem = fs_from_uri(self.uri)[0]
|
||||
except pa.ArrowInvalid:
|
||||
raise NotImplementedError("Unsupported scheme: " + self.uri)
|
||||
|
||||
try:
|
||||
loc = get_uri_location(self.uri)
|
||||
paths = filesystem.get_file_info(fs.FileSelector(loc))
|
||||
except FileNotFoundError:
|
||||
# It is ok if the file does not exist since it will be created
|
||||
paths = []
|
||||
tables = [
|
||||
os.path.splitext(file_info.base_name)[0]
|
||||
for file_info in paths
|
||||
if file_info.extension == "lance"
|
||||
]
|
||||
tables.sort()
|
||||
return tables
|
||||
try:
|
||||
loc = get_uri_location(self.uri)
|
||||
paths = filesystem.get_file_info(fs.FileSelector(loc))
|
||||
except FileNotFoundError:
|
||||
# It is ok if the file does not exist since it will be created
|
||||
paths = []
|
||||
tables = [
|
||||
os.path.splitext(file_info.base_name)[0]
|
||||
for file_info in paths
|
||||
if file_info.extension == "lance"
|
||||
]
|
||||
tables.sort()
|
||||
return tables
|
||||
except RuntimeError:
|
||||
# User application is sync. It is safe to use the async implementation
|
||||
# under the hood.
|
||||
return asyncio.run(self._async_get_table_names(page_token, limit))
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.table_names())
|
||||
@@ -427,41 +441,93 @@ class LanceDBConnection(DBConnection):
|
||||
filesystem.delete_dir(path)
|
||||
|
||||
|
||||
class AsyncConnection(EnforceOverrides):
|
||||
"""An active LanceDB connection interface."""
|
||||
class AsyncConnection(object):
|
||||
"""An active LanceDB connection
|
||||
|
||||
To obtain a connection you can use the [connect] function.
|
||||
|
||||
This could be a native connection (using lance) or a remote connection (e.g. for
|
||||
connecting to LanceDb Cloud)
|
||||
|
||||
Local connections do not currently hold any open resources but they may do so in the
|
||||
future (for example, for shared cache or connections to catalog services) Remote
|
||||
connections represent an open connection to the remote server. The [close] method
|
||||
can be used to release any underlying resources eagerly. The connection can also
|
||||
be used as a context manager:
|
||||
|
||||
Connections can be shared on multiple threads and are expected to be long lived.
|
||||
Connections can also be used as a context manager, however, in many cases a single
|
||||
connection can be used for the lifetime of the application and so this is often
|
||||
not needed. Closing a connection is optional. If it is not closed then it will
|
||||
be automatically closed when the connection object is deleted.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> import asyncio
|
||||
>>> import lancedb
|
||||
>>> async def my_connect():
|
||||
... with await lancedb.connect("/tmp/my_dataset") as conn:
|
||||
... # do something with the connection
|
||||
... pass
|
||||
... # conn is closed here
|
||||
"""
|
||||
|
||||
def __init__(self, connection: LanceDbConnection):
|
||||
self._inner = connection
|
||||
|
||||
def __repr__(self):
|
||||
return self._inner.__repr__()
|
||||
|
||||
def __enter__(self):
|
||||
self
|
||||
|
||||
def __exit__(self, *_):
|
||||
self.close()
|
||||
|
||||
def is_open(self):
|
||||
"""Return True if the connection is open."""
|
||||
return self._inner.is_open()
|
||||
|
||||
def close(self):
|
||||
"""Close the connection, releasing any underlying resources.
|
||||
|
||||
It is safe to call this method multiple times.
|
||||
|
||||
Any attempt to use the connection after it is closed will result in an error."""
|
||||
self._inner.close()
|
||||
|
||||
@abstractmethod
|
||||
async def table_names(
|
||||
self, *, page_token: Optional[str] = None, limit: int = 10
|
||||
self, *, start_after: Optional[str] = None, limit: Optional[int] = None
|
||||
) -> Iterable[str]:
|
||||
"""List all tables in this database, in sorted order
|
||||
|
||||
Parameters
|
||||
----------
|
||||
page_token: str, optional
|
||||
The token to use for pagination. If not present, start from the beginning.
|
||||
Typically, this token is last table name from the previous page.
|
||||
Only supported by LanceDb Cloud.
|
||||
start_after: str, optional
|
||||
If present, only return names that come lexicographically after the supplied
|
||||
value.
|
||||
|
||||
This can be combined with limit to implement pagination by setting this to
|
||||
the last table name from the previous page.
|
||||
limit: int, default 10
|
||||
The size of the page to return.
|
||||
Only supported by LanceDb Cloud.
|
||||
The number of results to return.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Iterable of str
|
||||
"""
|
||||
pass
|
||||
return await self._inner.table_names(start_after=start_after, limit=limit)
|
||||
|
||||
@abstractmethod
|
||||
async def create_table(
|
||||
self,
|
||||
name: str,
|
||||
data: Optional[DATA] = None,
|
||||
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
||||
mode: str = "create",
|
||||
exist_ok: bool = False,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
mode: Optional[Literal["create", "overwrite"]] = None,
|
||||
exist_ok: Optional[bool] = None,
|
||||
on_bad_vectors: Optional[str] = None,
|
||||
fill_value: Optional[float] = None,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
) -> Table:
|
||||
"""Create a [Table][lancedb.table.Table] in the database.
|
||||
@@ -485,7 +551,7 @@ class AsyncConnection(EnforceOverrides):
|
||||
- pyarrow.Schema
|
||||
|
||||
- [LanceModel][lancedb.pydantic.LanceModel]
|
||||
mode: str; default "create"
|
||||
mode: Literal["create", "overwrite"]; default "create"
|
||||
The mode to use when creating the table.
|
||||
Can be either "create" or "overwrite".
|
||||
By default, if the table already exists, an exception is raised.
|
||||
@@ -601,72 +667,6 @@ class AsyncConnection(EnforceOverrides):
|
||||
LanceTable(connection=..., name="table4")
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def open_table(self, name: str) -> Table:
|
||||
"""Open a Lance Table in the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str
|
||||
The name of the table.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A LanceTable object representing the table.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def drop_table(self, name: str):
|
||||
"""Drop a table from the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str
|
||||
The name of the table.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def drop_database(self):
|
||||
"""
|
||||
Drop database
|
||||
This is the same thing as dropping all the tables
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class AsyncLanceDBConnection(AsyncConnection):
|
||||
def __init__(self, connection: LanceDbConnection):
|
||||
self._inner = connection
|
||||
|
||||
async def __repr__(self) -> str:
|
||||
pass
|
||||
|
||||
@override
|
||||
async def table_names(
|
||||
self,
|
||||
*,
|
||||
page_token=None,
|
||||
limit=None,
|
||||
) -> Iterable[str]:
|
||||
# TODO: hook in page_token and limit
|
||||
return await self._inner.table_names()
|
||||
|
||||
@override
|
||||
async def create_table(
|
||||
self,
|
||||
name: str,
|
||||
data: Optional[DATA] = None,
|
||||
schema: Optional[Union[pa.Schema, LanceModel]] = None,
|
||||
mode: str = "create",
|
||||
exist_ok: bool = False,
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
|
||||
) -> Table:
|
||||
if mode.lower() not in ["create", "overwrite"]:
|
||||
raise ValueError("mode must be either 'create' or 'overwrite'")
|
||||
|
||||
if inspect.isclass(schema) and issubclass(schema, LanceModel):
|
||||
# convert LanceModel to pyarrow schema
|
||||
# note that it's possible this contains
|
||||
@@ -681,6 +681,14 @@ class AsyncLanceDBConnection(AsyncConnection):
|
||||
registry = EmbeddingFunctionRegistry.get_instance()
|
||||
metadata = registry.get_table_metadata(embedding_functions)
|
||||
|
||||
# Defining defaults here and not in function prototype. In the future
|
||||
# these defaults will move into rust so better to keep them as None.
|
||||
if on_bad_vectors is None:
|
||||
on_bad_vectors = "error"
|
||||
|
||||
if fill_value is None:
|
||||
fill_value = 0.0
|
||||
|
||||
if data is not None:
|
||||
data = _sanitize_data(
|
||||
data,
|
||||
@@ -708,6 +716,10 @@ class AsyncLanceDBConnection(AsyncConnection):
|
||||
schema = schema.with_metadata(metadata)
|
||||
validate_schema(schema)
|
||||
|
||||
if exist_ok is None:
|
||||
exist_ok = False
|
||||
if mode is None:
|
||||
mode = "create"
|
||||
if mode == "create" and exist_ok:
|
||||
mode = "exist_ok"
|
||||
|
||||
@@ -722,16 +734,37 @@ class AsyncLanceDBConnection(AsyncConnection):
|
||||
)
|
||||
|
||||
register_event("create_table")
|
||||
return AsyncLanceTable(new_table)
|
||||
return AsyncTable(new_table)
|
||||
|
||||
@override
|
||||
async def open_table(self, name: str) -> LanceTable:
|
||||
async def open_table(self, name: str) -> Table:
|
||||
"""Open a Lance Table in the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str
|
||||
The name of the table.
|
||||
|
||||
Returns
|
||||
-------
|
||||
A LanceTable object representing the table.
|
||||
"""
|
||||
table = await self._inner.open_table(name)
|
||||
register_event("open_table")
|
||||
return AsyncTable(table)
|
||||
|
||||
async def drop_table(self, name: str):
|
||||
"""Drop a table from the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str
|
||||
The name of the table.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def drop_table(self, name: str, ignore_missing: bool = False):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def drop_database(self):
|
||||
"""
|
||||
Drop database
|
||||
This is the same thing as dropping all the tables
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -10,16 +10,15 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
from functools import cached_property
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from typing import TYPE_CHECKING, List, Optional, Union
|
||||
|
||||
from ..util import attempt_import_or_raise
|
||||
from .base import TextEmbeddingFunction
|
||||
from .registry import register
|
||||
from .utils import api_key_not_found_help
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import numpy as np
|
||||
|
||||
|
||||
@register("openai")
|
||||
@@ -28,14 +27,46 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
An embedding function that uses the OpenAI API
|
||||
|
||||
https://platform.openai.com/docs/guides/embeddings
|
||||
|
||||
This can also be used for open source models that
|
||||
are compatible with the OpenAI API.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If you're running an Ollama server locally,
|
||||
you can just override the `base_url` parameter
|
||||
and provide the Ollama embedding model you want
|
||||
to use (https://ollama.com/library):
|
||||
|
||||
```python
|
||||
from lancedb.embeddings import get_registry
|
||||
openai = get_registry().get("openai")
|
||||
embedding_function = openai.create(
|
||||
name="<ollama-embedding-model-name>",
|
||||
base_url="http://localhost:11434",
|
||||
)
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
name: str = "text-embedding-ada-002"
|
||||
dim: Optional[int] = None
|
||||
base_url: Optional[str] = None
|
||||
default_headers: Optional[dict] = None
|
||||
organization: Optional[str] = None
|
||||
api_key: Optional[str] = None
|
||||
|
||||
def ndims(self):
|
||||
return self._ndims
|
||||
|
||||
@staticmethod
|
||||
def model_names():
|
||||
return [
|
||||
"text-embedding-ada-002",
|
||||
"text-embedding-3-large",
|
||||
"text-embedding-3-small",
|
||||
]
|
||||
|
||||
@cached_property
|
||||
def _ndims(self):
|
||||
if self.name == "text-embedding-ada-002":
|
||||
@@ -48,8 +79,8 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
raise ValueError(f"Unknown model name {self.name}")
|
||||
|
||||
def generate_embeddings(
|
||||
self, texts: Union[List[str], np.ndarray]
|
||||
) -> List[np.array]:
|
||||
self, texts: Union[List[str], "np.ndarray"]
|
||||
) -> List["np.array"]:
|
||||
"""
|
||||
Get the embeddings for the given texts
|
||||
|
||||
@@ -62,15 +93,25 @@ class OpenAIEmbeddings(TextEmbeddingFunction):
|
||||
if self.name == "text-embedding-ada-002":
|
||||
rs = self._openai_client.embeddings.create(input=texts, model=self.name)
|
||||
else:
|
||||
rs = self._openai_client.embeddings.create(
|
||||
input=texts, model=self.name, dimensions=self.ndims()
|
||||
)
|
||||
kwargs = {
|
||||
"input": texts,
|
||||
"model": self.name,
|
||||
}
|
||||
if self.dim:
|
||||
kwargs["dimensions"] = self.dim
|
||||
rs = self._openai_client.embeddings.create(**kwargs)
|
||||
return [v.embedding for v in rs.data]
|
||||
|
||||
@cached_property
|
||||
def _openai_client(self):
|
||||
openai = attempt_import_or_raise("openai")
|
||||
|
||||
if not os.environ.get("OPENAI_API_KEY"):
|
||||
api_key_not_found_help("openai")
|
||||
return openai.OpenAI()
|
||||
kwargs = {}
|
||||
if self.base_url:
|
||||
kwargs["base_url"] = self.base_url
|
||||
if self.default_headers:
|
||||
kwargs["default_headers"] = self.default_headers
|
||||
if self.organization:
|
||||
kwargs["organization"] = self.organization
|
||||
if self.api_key:
|
||||
kwargs["api_key"] = self
|
||||
return openai.OpenAI(**kwargs)
|
||||
|
||||
@@ -22,7 +22,7 @@ try:
|
||||
import tantivy
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature." # noqa: E501
|
||||
"Please install tantivy-py `pip install tantivy` to use the full text search feature." # noqa: E501
|
||||
)
|
||||
|
||||
from .table import LanceTable
|
||||
|
||||
@@ -106,8 +106,8 @@ class Query(pydantic.BaseModel):
|
||||
|
||||
|
||||
class LanceQueryBuilder(ABC):
|
||||
"""Build LanceDB query based on specific query type:
|
||||
vector or full text search.
|
||||
"""An abstract query builder. Subclasses are defined for vector search,
|
||||
full text search, hybrid, and plain SQL filtering.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
@@ -118,6 +118,22 @@ class LanceQueryBuilder(ABC):
|
||||
query_type: str,
|
||||
vector_column_name: str,
|
||||
) -> LanceQueryBuilder:
|
||||
"""
|
||||
Create a query builder based on the given query and query type.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
table: Table
|
||||
The table to query.
|
||||
query: Optional[Union[np.ndarray, str, "PIL.Image.Image", Tuple]]
|
||||
The query to use. If None, an empty query builder is returned
|
||||
which performs simple SQL filtering.
|
||||
query_type: str
|
||||
The type of query to perform. One of "vector", "fts", "hybrid", or "auto".
|
||||
If "auto", the query type is inferred based on the query.
|
||||
vector_column_name: str
|
||||
The name of the vector column to use for vector search.
|
||||
"""
|
||||
if query is None:
|
||||
return LanceEmptyQueryBuilder(table)
|
||||
|
||||
@@ -559,7 +575,7 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
import tantivy
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install tantivy-py `pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985` to use the full text search feature." # noqa: E501
|
||||
"Please install tantivy-py `pip install tantivy` to use the full text search feature." # noqa: E501
|
||||
)
|
||||
|
||||
from .fts import search_index
|
||||
@@ -587,19 +603,26 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
scores = pa.array(scores)
|
||||
output_tbl = self._table.to_lance().take(row_ids, columns=self._columns)
|
||||
output_tbl = output_tbl.append_column("score", scores)
|
||||
# this needs to match vector search results which are uint64
|
||||
row_ids = pa.array(row_ids, type=pa.uint64())
|
||||
|
||||
if self._where is not None:
|
||||
tmp_name = "__lancedb__duckdb__indexer__"
|
||||
output_tbl = output_tbl.append_column(
|
||||
tmp_name, pa.array(range(len(output_tbl)))
|
||||
)
|
||||
try:
|
||||
# TODO would be great to have Substrait generate pyarrow compute
|
||||
# expressions or conversely have pyarrow support SQL expressions
|
||||
# using Substrait
|
||||
import duckdb
|
||||
|
||||
output_tbl = (
|
||||
duckdb.sql("SELECT * FROM output_tbl")
|
||||
.filter(self._where)
|
||||
.to_arrow_table()
|
||||
)
|
||||
indexer = duckdb.sql(
|
||||
f"SELECT {tmp_name} FROM output_tbl WHERE {self._where}"
|
||||
).to_arrow_table()[tmp_name]
|
||||
output_tbl = output_tbl.take(indexer).drop([tmp_name])
|
||||
row_ids = row_ids.take(indexer)
|
||||
|
||||
except ImportError:
|
||||
import tempfile
|
||||
|
||||
@@ -609,10 +632,11 @@ class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
with tempfile.TemporaryDirectory() as tmp:
|
||||
ds = lance.write_dataset(output_tbl, tmp)
|
||||
output_tbl = ds.to_table(filter=self._where)
|
||||
indexer = output_tbl[tmp_name]
|
||||
row_ids = row_ids.take(indexer)
|
||||
output_tbl = output_tbl.drop([tmp_name])
|
||||
|
||||
if self._with_row_id:
|
||||
# Need to set this to uint explicitly as vector results are in uint64
|
||||
row_ids = pa.array(row_ids, type=pa.uint64())
|
||||
output_tbl = output_tbl.append_column("_rowid", row_ids)
|
||||
return output_tbl
|
||||
|
||||
@@ -628,6 +652,16 @@ class LanceEmptyQueryBuilder(LanceQueryBuilder):
|
||||
|
||||
|
||||
class LanceHybridQueryBuilder(LanceQueryBuilder):
|
||||
"""
|
||||
A query builder that performs hybrid vector and full text search.
|
||||
Results are combined and reranked based on the specified reranker.
|
||||
By default, the results are reranked using the LinearCombinationReranker.
|
||||
|
||||
To make the vector and fts results comparable, the scores are normalized.
|
||||
Instead of normalizing scores, the `normalize` parameter can be set to "rank"
|
||||
in the `rerank` method to convert the scores to ranks and then normalize them.
|
||||
"""
|
||||
|
||||
def __init__(self, table: "Table", query: str, vector_column: str):
|
||||
super().__init__(table)
|
||||
self._validate_fts_index()
|
||||
|
||||
@@ -19,7 +19,17 @@ from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from datetime import timedelta
|
||||
from functools import cached_property
|
||||
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Tuple, Union
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
import lance
|
||||
import numpy as np
|
||||
@@ -28,7 +38,6 @@ import pyarrow.compute as pc
|
||||
import pyarrow.fs as pa_fs
|
||||
from lance import LanceDataset
|
||||
from lance.vector import vec_to_table
|
||||
from overrides import override
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
@@ -1784,9 +1793,23 @@ def _sanitize_nans(data, fill_value, on_bad_vectors, vec_arr, vector_column_name
|
||||
return data
|
||||
|
||||
|
||||
class AsyncTable(ABC):
|
||||
class AsyncTable:
|
||||
"""
|
||||
A Table is a collection of Records in a LanceDB Database.
|
||||
An AsyncTable is a collection of Records in a LanceDB Database.
|
||||
|
||||
An AsyncTable can be obtained from the
|
||||
[AsyncConnection.create_table][lancedb.AsyncConnection.create_table] and
|
||||
[AsyncConnection.open_table][lancedb.AsyncConnection.open_table] methods.
|
||||
|
||||
An AsyncTable object is expected to be long lived and reused for multiple
|
||||
operations. AsyncTable objects will cache a certain amount of index data in memory.
|
||||
This cache will be freed when the Table is garbage collected. To eagerly free the
|
||||
cache you can call the [close][AsyncTable.close] method. Once the AsyncTable is
|
||||
closed, it cannot be used for any further operations.
|
||||
|
||||
An AsyncTable can also be used as a context manager, and will automatically close
|
||||
when the context is exited. Closing a table is optional. If you do not close the
|
||||
table, it will be closed when the AsyncTable object is garbage collected.
|
||||
|
||||
Examples
|
||||
--------
|
||||
@@ -1821,21 +1844,49 @@ class AsyncTable(ABC):
|
||||
[Table.create_index][lancedb.table.Table.create_index].
|
||||
"""
|
||||
|
||||
def __init__(self, table: LanceDBTable):
|
||||
"""Create a new Table object.
|
||||
|
||||
You should not create Table objects directly.
|
||||
|
||||
Use [AsyncConnection.create_table][lancedb.AsyncConnection.create_table] and
|
||||
[AsyncConnection.open_table][lancedb.AsyncConnection.open_table] to obtain
|
||||
Table objects."""
|
||||
self._inner = table
|
||||
|
||||
def __repr__(self):
|
||||
return self._inner.__repr__()
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, *_):
|
||||
self.close()
|
||||
|
||||
def is_open(self) -> bool:
|
||||
"""Return True if the table is closed."""
|
||||
return self._inner.is_open()
|
||||
|
||||
def close(self):
|
||||
"""Close the table and free any resources associated with it.
|
||||
|
||||
It is safe to call this method multiple times.
|
||||
|
||||
Any attempt to use the table after it has been closed will raise an error."""
|
||||
return self._inner.close()
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def name(self) -> str:
|
||||
"""The name of the table."""
|
||||
raise NotImplementedError
|
||||
return self._inner.name()
|
||||
|
||||
@abstractmethod
|
||||
async def schema(self) -> pa.Schema:
|
||||
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#)
|
||||
of this Table
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
return await self._inner.schema()
|
||||
|
||||
@abstractmethod
|
||||
async def count_rows(self, filter: Optional[str] = None) -> int:
|
||||
"""
|
||||
Count the number of rows in the table.
|
||||
@@ -1845,7 +1896,7 @@ class AsyncTable(ABC):
|
||||
filter: str, optional
|
||||
A SQL where clause to filter the rows to count.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
return await self._inner.count_rows(filter)
|
||||
|
||||
async def to_pandas(self) -> "pd.DataFrame":
|
||||
"""Return the table as a pandas DataFrame.
|
||||
@@ -1856,7 +1907,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
return self.to_arrow().to_pandas()
|
||||
|
||||
@abstractmethod
|
||||
async def to_arrow(self) -> pa.Table:
|
||||
"""Return the table as a pyarrow Table.
|
||||
|
||||
@@ -1904,7 +1954,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def create_scalar_index(
|
||||
self,
|
||||
column: str,
|
||||
@@ -1975,13 +2024,13 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def add(
|
||||
self,
|
||||
data: DATA,
|
||||
mode: str = "append",
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
*,
|
||||
mode: Optional[Literal["append", "overwrite"]] = "append",
|
||||
on_bad_vectors: Optional[str] = None,
|
||||
fill_value: Optional[float] = None,
|
||||
):
|
||||
"""Add more data to the [Table](Table).
|
||||
|
||||
@@ -2005,7 +2054,20 @@ class AsyncTable(ABC):
|
||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||
|
||||
"""
|
||||
raise NotImplementedError
|
||||
schema = await self.schema()
|
||||
if on_bad_vectors is None:
|
||||
on_bad_vectors = "error"
|
||||
if fill_value is None:
|
||||
fill_value = 0.0
|
||||
data = _sanitize_data(
|
||||
data,
|
||||
schema,
|
||||
metadata=schema.metadata,
|
||||
on_bad_vectors=on_bad_vectors,
|
||||
fill_value=fill_value,
|
||||
)
|
||||
await self._inner.add(data, mode)
|
||||
register_event("add")
|
||||
|
||||
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
||||
"""
|
||||
@@ -2067,7 +2129,6 @@ class AsyncTable(ABC):
|
||||
|
||||
return LanceMergeInsertBuilder(self, on)
|
||||
|
||||
@abstractmethod
|
||||
async def search(
|
||||
self,
|
||||
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
|
||||
@@ -2150,11 +2211,9 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def _execute_query(self, query: Query) -> pa.Table:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def _do_merge(
|
||||
self,
|
||||
merge: LanceMergeInsertBuilder,
|
||||
@@ -2164,7 +2223,6 @@ class AsyncTable(ABC):
|
||||
):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
async def delete(self, where: str):
|
||||
"""Delete rows from the table.
|
||||
|
||||
@@ -2215,7 +2273,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def update(
|
||||
self,
|
||||
where: Optional[str] = None,
|
||||
@@ -2271,7 +2328,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def cleanup_old_versions(
|
||||
self,
|
||||
older_than: Optional[timedelta] = None,
|
||||
@@ -2303,7 +2359,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def compact_files(self, *args, **kwargs):
|
||||
"""
|
||||
Run the compaction process on the table.
|
||||
@@ -2319,7 +2374,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def add_columns(self, transforms: Dict[str, str]):
|
||||
"""
|
||||
Add new columns with defined values.
|
||||
@@ -2335,7 +2389,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def alter_columns(self, alterations: Iterable[Dict[str, str]]):
|
||||
"""
|
||||
Alter column names and nullability.
|
||||
@@ -2358,7 +2411,6 @@ class AsyncTable(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
async def drop_columns(self, columns: Iterable[str]):
|
||||
"""
|
||||
Drop columns from the table.
|
||||
@@ -2371,126 +2423,3 @@ class AsyncTable(ABC):
|
||||
The names of the columns to drop.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class AsyncLanceTable(AsyncTable):
|
||||
def __init__(self, table: LanceDBTable):
|
||||
self._inner = table
|
||||
|
||||
@property
|
||||
@override
|
||||
def name(self) -> str:
|
||||
return self._inner.name()
|
||||
|
||||
@override
|
||||
async def schema(self) -> pa.Schema:
|
||||
return await self._inner.schema()
|
||||
|
||||
@override
|
||||
async def count_rows(self, filter: Optional[str] = None) -> int:
|
||||
raise NotImplementedError
|
||||
|
||||
async def to_pandas(self) -> "pd.DataFrame":
|
||||
return self.to_arrow().to_pandas()
|
||||
|
||||
@override
|
||||
async def to_arrow(self) -> pa.Table:
|
||||
raise NotImplementedError
|
||||
|
||||
async def create_index(
|
||||
self,
|
||||
metric="L2",
|
||||
num_partitions=256,
|
||||
num_sub_vectors=96,
|
||||
vector_column_name: str = VECTOR_COLUMN_NAME,
|
||||
replace: bool = True,
|
||||
accelerator: Optional[str] = None,
|
||||
index_cache_size: Optional[int] = None,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def create_scalar_index(
|
||||
self,
|
||||
column: str,
|
||||
*,
|
||||
replace: bool = True,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def add(
|
||||
self,
|
||||
data: DATA,
|
||||
mode: str = "append",
|
||||
on_bad_vectors: str = "error",
|
||||
fill_value: float = 0.0,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
def merge_insert(self, on: Union[str, Iterable[str]]) -> LanceMergeInsertBuilder:
|
||||
on = [on] if isinstance(on, str) else list(on.iter())
|
||||
|
||||
return LanceMergeInsertBuilder(self, on)
|
||||
|
||||
@override
|
||||
async def search(
|
||||
self,
|
||||
query: Optional[Union[VEC, str, "PIL.Image.Image", Tuple]] = None,
|
||||
vector_column_name: Optional[str] = None,
|
||||
query_type: str = "auto",
|
||||
) -> LanceQueryBuilder:
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def _execute_query(self, query: Query) -> pa.Table:
|
||||
pass
|
||||
|
||||
@override
|
||||
async def _do_merge(
|
||||
self,
|
||||
merge: LanceMergeInsertBuilder,
|
||||
new_data: DATA,
|
||||
on_bad_vectors: str,
|
||||
fill_value: float,
|
||||
):
|
||||
pass
|
||||
|
||||
@override
|
||||
async def delete(self, where: str):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def update(
|
||||
self,
|
||||
where: Optional[str] = None,
|
||||
values: Optional[dict] = None,
|
||||
*,
|
||||
values_sql: Optional[Dict[str, str]] = None,
|
||||
):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def cleanup_old_versions(
|
||||
self,
|
||||
older_than: Optional[timedelta] = None,
|
||||
*,
|
||||
delete_unverified: bool = False,
|
||||
) -> CleanupStats:
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def compact_files(self, *args, **kwargs):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def add_columns(self, transforms: Dict[str, str]):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def alter_columns(self, alterations: Iterable[Dict[str, str]]):
|
||||
raise NotImplementedError
|
||||
|
||||
@override
|
||||
async def drop_columns(self, columns: Iterable[str]):
|
||||
raise NotImplementedError
|
||||
|
||||
@@ -11,6 +11,9 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import re
|
||||
from datetime import timedelta
|
||||
|
||||
import lancedb
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
@@ -182,6 +185,10 @@ async def test_table_names_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
assert await db.table_names() == ["test1", "test2", "test3"]
|
||||
|
||||
assert await db.table_names(limit=1) == ["test1"]
|
||||
assert await db.table_names(start_after="test1", limit=1) == ["test2"]
|
||||
assert await db.table_names(start_after="test1") == ["test2", "test3"]
|
||||
|
||||
|
||||
def test_create_mode(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
@@ -250,6 +257,28 @@ def test_create_exist_ok(tmp_path):
|
||||
db.create_table("test", schema=bad_schema, exist_ok=True)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_connect(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
assert str(db) == f"NativeDatabase(uri={tmp_path}, read_consistency_interval=None)"
|
||||
|
||||
db = await lancedb.connect_async(
|
||||
tmp_path, read_consistency_interval=timedelta(seconds=5)
|
||||
)
|
||||
assert str(db) == f"NativeDatabase(uri={tmp_path}, read_consistency_interval=5s)"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_close(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
assert db.is_open()
|
||||
db.close()
|
||||
assert not db.is_open()
|
||||
|
||||
with pytest.raises(RuntimeError, match="is closed"):
|
||||
await db.table_names()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mode_async(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
@@ -322,6 +351,39 @@ async def test_create_exist_ok_async(tmp_path):
|
||||
# await db.create_table("test", schema=bad_schema, exist_ok=True)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_open_table(tmp_path):
|
||||
db = await lancedb.connect_async(tmp_path)
|
||||
data = pd.DataFrame(
|
||||
{
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
"item": ["foo", "bar"],
|
||||
"price": [10.0, 20.0],
|
||||
}
|
||||
)
|
||||
await db.create_table("test", data=data)
|
||||
|
||||
tbl = await db.open_table("test")
|
||||
assert tbl.name == "test"
|
||||
assert (
|
||||
re.search(
|
||||
r"NativeTable\(test, uri=.*test\.lance, read_consistency_interval=None\)",
|
||||
str(tbl),
|
||||
)
|
||||
is not None
|
||||
)
|
||||
assert await tbl.schema() == pa.schema(
|
||||
{
|
||||
"vector": pa.list_(pa.float32(), list_size=2),
|
||||
"item": pa.utf8(),
|
||||
"price": pa.float64(),
|
||||
}
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="was not found"):
|
||||
await db.open_table("does_not_exist")
|
||||
|
||||
|
||||
def test_delete_table(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
data = pd.DataFrame(
|
||||
|
||||
@@ -137,7 +137,11 @@ def test_search_index_with_filter(table):
|
||||
|
||||
# no duckdb
|
||||
with mock.patch("builtins.__import__", side_effect=import_mock):
|
||||
rs = table.search("puppy").where("id=1").limit(10).to_list()
|
||||
rs = table.search("puppy").where("id=1").limit(10)
|
||||
# test schema
|
||||
assert rs.to_arrow().drop("score").schema.equals(table.schema)
|
||||
|
||||
rs = rs.to_list()
|
||||
for r in rs:
|
||||
assert r["id"] == 1
|
||||
|
||||
@@ -147,6 +151,10 @@ def test_search_index_with_filter(table):
|
||||
assert r["id"] == 1
|
||||
|
||||
assert rs == rs2
|
||||
rs = table.search("puppy").where("id=1").with_row_id(True).limit(10).to_list()
|
||||
for r in rs:
|
||||
assert r["id"] == 1
|
||||
assert r["_rowid"] is not None
|
||||
|
||||
|
||||
def test_null_input(table):
|
||||
@@ -169,10 +177,18 @@ def test_syntax(table):
|
||||
table.create_fts_index("text")
|
||||
with pytest.raises(ValueError, match="Syntax Error"):
|
||||
table.search("they could have been dogs OR cats").limit(10).to_list()
|
||||
|
||||
# these should work
|
||||
|
||||
# terms queries
|
||||
table.search('"they could have been dogs" OR cats').limit(10).to_list()
|
||||
table.search("(they AND could) OR (have AND been AND dogs) OR cats").limit(
|
||||
10
|
||||
).to_list()
|
||||
|
||||
# phrase queries
|
||||
table.search("they could have been dogs OR cats").phrase_query().limit(10).to_list()
|
||||
# this should work
|
||||
table.search('"they could have been dogs OR cats"').limit(10).to_list()
|
||||
# this should work too
|
||||
table.search('''"the cats OR dogs were not really 'pets' at all"''').limit(
|
||||
10
|
||||
).to_list()
|
||||
|
||||
@@ -26,8 +26,9 @@ import pandas as pd
|
||||
import polars as pl
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from lancedb.conftest import MockTextEmbeddingFunction
|
||||
from lancedb.db import LanceDBConnection
|
||||
from lancedb.db import AsyncConnection, LanceDBConnection
|
||||
from lancedb.embeddings import EmbeddingFunctionConfig, EmbeddingFunctionRegistry
|
||||
from lancedb.pydantic import LanceModel, Vector
|
||||
from lancedb.table import LanceTable
|
||||
@@ -49,6 +50,13 @@ def db(tmp_path) -> MockDB:
|
||||
return MockDB(tmp_path)
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
async def db_async(tmp_path) -> AsyncConnection:
|
||||
return await lancedb.connect_async(
|
||||
tmp_path, read_consistency_interval=timedelta(seconds=0)
|
||||
)
|
||||
|
||||
|
||||
def test_basic(db):
|
||||
ds = LanceTable.create(
|
||||
db,
|
||||
@@ -65,6 +73,18 @@ def test_basic(db):
|
||||
assert table.to_lance().to_table() == ds.to_table()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_close(db_async: AsyncConnection):
|
||||
table = await db_async.create_table("some_table", data=[{"id": 0}])
|
||||
assert table.is_open()
|
||||
table.close()
|
||||
assert not table.is_open()
|
||||
|
||||
with pytest.raises(Exception, match="Table some_table is closed"):
|
||||
await table.count_rows()
|
||||
assert str(table) == "ClosedTable(some_table)"
|
||||
|
||||
|
||||
def test_create_table(db):
|
||||
schema = pa.schema(
|
||||
[
|
||||
@@ -186,6 +206,25 @@ def test_add_pydantic_model(db):
|
||||
assert len(really_flattened.columns) == 7
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_add_async(db_async: AsyncConnection):
|
||||
table = await db_async.create_table(
|
||||
"test",
|
||||
data=[
|
||||
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||
],
|
||||
)
|
||||
assert await table.count_rows() == 2
|
||||
await table.add(
|
||||
data=[
|
||||
{"vector": [10.0, 11.0], "item": "baz", "price": 30.0},
|
||||
],
|
||||
)
|
||||
table = await db_async.open_table("test")
|
||||
assert await table.count_rows() == 3
|
||||
|
||||
|
||||
def test_polars(db):
|
||||
data = {
|
||||
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||
@@ -854,8 +893,17 @@ def test_hybrid_search(db, tmp_path):
|
||||
result3 = table.search(
|
||||
"Our father who art in heaven", query_type="hybrid"
|
||||
).to_pydantic(MyTable)
|
||||
|
||||
assert result1 == result3
|
||||
|
||||
# with post filters
|
||||
result = (
|
||||
table.search("Arrrrggghhhhhhh", query_type="hybrid")
|
||||
.where("text='Arrrrggghhhhhhh'")
|
||||
.to_list()
|
||||
)
|
||||
len(result) == 1
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"consistency_interval", [None, timedelta(seconds=0), timedelta(seconds=0.1)]
|
||||
|
||||
@@ -17,7 +17,8 @@ use std::{sync::Arc, time::Duration};
|
||||
use arrow::{datatypes::Schema, ffi_stream::ArrowArrayStreamReader, pyarrow::FromPyArrow};
|
||||
use lancedb::connection::{Connection as LanceConnection, CreateTableMode};
|
||||
use pyo3::{
|
||||
exceptions::PyValueError, pyclass, pyfunction, pymethods, PyAny, PyRef, PyResult, Python,
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
pyclass, pyfunction, pymethods, PyAny, PyRef, PyResult, Python,
|
||||
};
|
||||
use pyo3_asyncio::tokio::future_into_py;
|
||||
|
||||
@@ -25,7 +26,19 @@ use crate::{error::PythonErrorExt, table::Table};
|
||||
|
||||
#[pyclass]
|
||||
pub struct Connection {
|
||||
inner: LanceConnection,
|
||||
inner: Option<LanceConnection>,
|
||||
}
|
||||
|
||||
impl Connection {
|
||||
pub(crate) fn new(inner: LanceConnection) -> Self {
|
||||
Self { inner: Some(inner) }
|
||||
}
|
||||
|
||||
fn get_inner(&self) -> PyResult<&LanceConnection> {
|
||||
self.inner
|
||||
.as_ref()
|
||||
.ok_or_else(|| PyRuntimeError::new_err("Connection is closed"))
|
||||
}
|
||||
}
|
||||
|
||||
impl Connection {
|
||||
@@ -41,11 +54,35 @@ impl Connection {
|
||||
|
||||
#[pymethods]
|
||||
impl Connection {
|
||||
pub fn table_names(self_: PyRef<'_, Self>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
inner.table_names().await.infer_error()
|
||||
})
|
||||
fn __repr__(&self) -> String {
|
||||
match &self.inner {
|
||||
Some(inner) => inner.to_string(),
|
||||
None => "ClosedConnection".to_string(),
|
||||
}
|
||||
}
|
||||
|
||||
fn is_open(&self) -> bool {
|
||||
self.inner.is_some()
|
||||
}
|
||||
|
||||
fn close(&mut self) {
|
||||
self.inner.take();
|
||||
}
|
||||
|
||||
pub fn table_names(
|
||||
self_: PyRef<'_, Self>,
|
||||
start_after: Option<String>,
|
||||
limit: Option<u32>,
|
||||
) -> PyResult<&PyAny> {
|
||||
let inner = self_.get_inner()?.clone();
|
||||
let mut op = inner.table_names();
|
||||
if let Some(start_after) = start_after {
|
||||
op = op.start_after(start_after);
|
||||
}
|
||||
if let Some(limit) = limit {
|
||||
op = op.limit(limit);
|
||||
}
|
||||
future_into_py(self_.py(), async move { op.execute().await.infer_error() })
|
||||
}
|
||||
|
||||
pub fn create_table<'a>(
|
||||
@@ -54,7 +91,7 @@ impl Connection {
|
||||
mode: &str,
|
||||
data: &PyAny,
|
||||
) -> PyResult<&'a PyAny> {
|
||||
let inner = self_.inner.clone();
|
||||
let inner = self_.get_inner()?.clone();
|
||||
|
||||
let mode = Self::parse_create_mode_str(mode)?;
|
||||
|
||||
@@ -76,7 +113,7 @@ impl Connection {
|
||||
mode: &str,
|
||||
schema: &PyAny,
|
||||
) -> PyResult<&'a PyAny> {
|
||||
let inner = self_.inner.clone();
|
||||
let inner = self_.get_inner()?.clone();
|
||||
|
||||
let mode = Self::parse_create_mode_str(mode)?;
|
||||
|
||||
@@ -92,6 +129,14 @@ impl Connection {
|
||||
Ok(Table::new(table))
|
||||
})
|
||||
}
|
||||
|
||||
pub fn open_table(self_: PyRef<'_, Self>, name: String) -> PyResult<&PyAny> {
|
||||
let inner = self_.get_inner()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let table = inner.open_table(&name).execute().await.infer_error()?;
|
||||
Ok(Table::new(table))
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
#[pyfunction]
|
||||
@@ -118,8 +163,6 @@ pub fn connect(
|
||||
let read_consistency_interval = Duration::from_secs_f64(read_consistency_interval);
|
||||
builder = builder.read_consistency_interval(read_consistency_interval);
|
||||
}
|
||||
Ok(Connection {
|
||||
inner: builder.execute().await.infer_error()?,
|
||||
})
|
||||
Ok(Connection::new(builder.execute().await.infer_error()?))
|
||||
})
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@
|
||||
// limitations under the License.
|
||||
|
||||
use pyo3::{
|
||||
exceptions::{PyOSError, PyRuntimeError, PyValueError},
|
||||
exceptions::{PyIOError, PyNotImplementedError, PyOSError, PyRuntimeError, PyValueError},
|
||||
PyResult,
|
||||
};
|
||||
|
||||
@@ -41,11 +41,15 @@ impl<T> PythonErrorExt<T> for std::result::Result<T, LanceError> {
|
||||
LanceError::Schema { .. } => self.value_error(),
|
||||
LanceError::CreateDir { .. } => self.os_error(),
|
||||
LanceError::TableAlreadyExists { .. } => self.runtime_error(),
|
||||
LanceError::Store { .. } => self.runtime_error(),
|
||||
LanceError::ObjectStore { .. } => Err(PyIOError::new_err(err.to_string())),
|
||||
LanceError::Lance { .. } => self.runtime_error(),
|
||||
LanceError::Runtime { .. } => self.runtime_error(),
|
||||
LanceError::Http { .. } => self.runtime_error(),
|
||||
LanceError::Arrow { .. } => self.runtime_error(),
|
||||
LanceError::NotSupported { .. } => {
|
||||
Err(PyNotImplementedError::new_err(err.to_string()))
|
||||
}
|
||||
LanceError::Other { .. } => self.runtime_error(),
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,34 +1,90 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow::pyarrow::ToPyArrow;
|
||||
use lancedb::table::Table as LanceTable;
|
||||
use pyo3::{pyclass, pymethods, PyAny, PyRef, PyResult, Python};
|
||||
use arrow::{
|
||||
ffi_stream::ArrowArrayStreamReader,
|
||||
pyarrow::{FromPyArrow, ToPyArrow},
|
||||
};
|
||||
use lancedb::table::{AddDataMode, Table as LanceDbTable};
|
||||
use pyo3::{
|
||||
exceptions::{PyRuntimeError, PyValueError},
|
||||
pyclass, pymethods, PyAny, PyRef, PyResult, Python,
|
||||
};
|
||||
use pyo3_asyncio::tokio::future_into_py;
|
||||
|
||||
use crate::error::PythonErrorExt;
|
||||
|
||||
#[pyclass]
|
||||
pub struct Table {
|
||||
inner: Arc<dyn LanceTable>,
|
||||
// We keep a copy of the name to use if the inner table is dropped
|
||||
name: String,
|
||||
inner: Option<LanceDbTable>,
|
||||
}
|
||||
|
||||
impl Table {
|
||||
pub(crate) fn new(inner: Arc<dyn LanceTable>) -> Self {
|
||||
Self { inner }
|
||||
pub(crate) fn new(inner: LanceDbTable) -> Self {
|
||||
Self {
|
||||
name: inner.name().to_string(),
|
||||
inner: Some(inner),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Table {
|
||||
fn inner_ref(&self) -> PyResult<&LanceDbTable> {
|
||||
self.inner
|
||||
.as_ref()
|
||||
.ok_or_else(|| PyRuntimeError::new_err(format!("Table {} is closed", self.name)))
|
||||
}
|
||||
}
|
||||
|
||||
#[pymethods]
|
||||
impl Table {
|
||||
pub fn name(&self) -> String {
|
||||
self.inner.name().to_string()
|
||||
self.name.clone()
|
||||
}
|
||||
|
||||
pub fn is_open(&self) -> bool {
|
||||
self.inner.is_some()
|
||||
}
|
||||
|
||||
pub fn close(&mut self) {
|
||||
self.inner.take();
|
||||
}
|
||||
|
||||
pub fn schema(self_: PyRef<'_, Self>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner.clone();
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
let schema = inner.schema().await.infer_error()?;
|
||||
Python::with_gil(|py| schema.to_pyarrow(py))
|
||||
})
|
||||
}
|
||||
|
||||
pub fn add<'a>(self_: PyRef<'a, Self>, data: &PyAny, mode: String) -> PyResult<&'a PyAny> {
|
||||
let batches = Box::new(ArrowArrayStreamReader::from_pyarrow(data)?);
|
||||
let mut op = self_.inner_ref()?.add(batches);
|
||||
if mode == "append" {
|
||||
op = op.mode(AddDataMode::Append);
|
||||
} else if mode == "overwrite" {
|
||||
op = op.mode(AddDataMode::Overwrite);
|
||||
} else {
|
||||
return Err(PyValueError::new_err(format!("Invalid mode: {}", mode)));
|
||||
}
|
||||
|
||||
future_into_py(self_.py(), async move {
|
||||
op.execute().await.infer_error()?;
|
||||
Ok(())
|
||||
})
|
||||
}
|
||||
|
||||
pub fn count_rows(self_: PyRef<'_, Self>, filter: Option<String>) -> PyResult<&PyAny> {
|
||||
let inner = self_.inner_ref()?.clone();
|
||||
future_into_py(self_.py(), async move {
|
||||
inner.count_rows(filter).await.infer_error()
|
||||
})
|
||||
}
|
||||
|
||||
pub fn __repr__(&self) -> String {
|
||||
match &self.inner {
|
||||
None => format!("ClosedTable({})", self.name),
|
||||
Some(inner) => inner.to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -8,6 +8,7 @@ repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
exclude = ["index.node"]
|
||||
rust-version = "1.75"
|
||||
|
||||
[lib]
|
||||
crate-type = ["cdylib"]
|
||||
|
||||
@@ -19,7 +19,6 @@ use neon::{
|
||||
};
|
||||
|
||||
use crate::{error::ResultExt, runtime, table::JsTable};
|
||||
use lancedb::Table;
|
||||
|
||||
pub fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||
@@ -34,8 +33,6 @@ pub fn table_create_scalar_index(mut cx: FunctionContext) -> JsResult<JsPromise>
|
||||
|
||||
rt.spawn(async move {
|
||||
let idx_result = table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.create_index(&[&column])
|
||||
.replace(replace)
|
||||
.build()
|
||||
|
||||
@@ -40,8 +40,9 @@ pub fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise>
|
||||
.unwrap_or("vector".to_string()); // Backward compatibility
|
||||
|
||||
let tbl = table.clone();
|
||||
let mut index_builder = tbl.create_index(&[&column_name]);
|
||||
get_index_params_builder(&mut cx, index_params, &mut index_builder).or_throw(&mut cx)?;
|
||||
let index_builder = tbl.create_index(&[&column_name]);
|
||||
let index_builder =
|
||||
get_index_params_builder(&mut cx, index_params, index_builder).or_throw(&mut cx)?;
|
||||
|
||||
rt.spawn(async move {
|
||||
let idx_result = index_builder.build().await;
|
||||
@@ -56,9 +57,9 @@ pub fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise>
|
||||
fn get_index_params_builder(
|
||||
cx: &mut FunctionContext,
|
||||
obj: Handle<JsObject>,
|
||||
builder: &mut IndexBuilder,
|
||||
) -> crate::error::Result<()> {
|
||||
match obj.get::<JsString, _, _>(cx, "type")?.value(cx).as_str() {
|
||||
builder: IndexBuilder,
|
||||
) -> crate::error::Result<IndexBuilder> {
|
||||
let mut builder = match obj.get::<JsString, _, _>(cx, "type")?.value(cx).as_str() {
|
||||
"ivf_pq" => builder.ivf_pq(),
|
||||
_ => {
|
||||
return Err(InvalidIndexType {
|
||||
@@ -67,28 +68,29 @@ fn get_index_params_builder(
|
||||
}
|
||||
};
|
||||
|
||||
obj.get_opt::<JsString, _, _>(cx, "index_name")?
|
||||
.map(|s| builder.name(s.value(cx).as_str()));
|
||||
if let Some(index_name) = obj.get_opt::<JsString, _, _>(cx, "index_name")? {
|
||||
builder = builder.name(index_name.value(cx).as_str());
|
||||
}
|
||||
|
||||
if let Some(metric_type) = obj.get_opt::<JsString, _, _>(cx, "metric_type")? {
|
||||
let metric_type = MetricType::try_from(metric_type.value(cx).as_str())?;
|
||||
builder.metric_type(metric_type);
|
||||
builder = builder.metric_type(metric_type);
|
||||
}
|
||||
|
||||
if let Some(np) = obj.get_opt_u32(cx, "num_partitions")? {
|
||||
builder.num_partitions(np);
|
||||
builder = builder.num_partitions(np);
|
||||
}
|
||||
if let Some(ns) = obj.get_opt_u32(cx, "num_sub_vectors")? {
|
||||
builder.num_sub_vectors(ns);
|
||||
builder = builder.num_sub_vectors(ns);
|
||||
}
|
||||
if let Some(max_iters) = obj.get_opt_u32(cx, "max_iters")? {
|
||||
builder.max_iterations(max_iters);
|
||||
builder = builder.max_iterations(max_iters);
|
||||
}
|
||||
if let Some(num_bits) = obj.get_opt_u32(cx, "num_bits")? {
|
||||
builder.num_bits(num_bits);
|
||||
builder = builder.num_bits(num_bits);
|
||||
}
|
||||
if let Some(replace) = obj.get_opt::<JsBoolean, _, _>(cx, "replace")? {
|
||||
builder.replace(replace.value(cx));
|
||||
builder = builder.replace(replace.value(cx));
|
||||
}
|
||||
Ok(())
|
||||
Ok(builder)
|
||||
}
|
||||
|
||||
@@ -132,7 +132,7 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
let database = db.database.clone();
|
||||
|
||||
rt.spawn(async move {
|
||||
let tables_rst = database.table_names().await;
|
||||
let tables_rst = database.table_names().execute().await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
let tables = tables_rst.or_throw(&mut cx)?;
|
||||
|
||||
@@ -18,10 +18,10 @@ use arrow_array::{RecordBatch, RecordBatchIterator};
|
||||
use lance::dataset::optimize::CompactionOptions;
|
||||
use lance::dataset::{ColumnAlteration, NewColumnTransform, WriteMode, WriteParams};
|
||||
use lance::io::ObjectStoreParams;
|
||||
use lancedb::table::{AddDataOptions, OptimizeAction, WriteOptions};
|
||||
use lancedb::table::{OptimizeAction, WriteOptions};
|
||||
|
||||
use crate::arrow::{arrow_buffer_to_record_batch, record_batch_to_buffer};
|
||||
use lancedb::TableRef;
|
||||
use lancedb::table::Table as LanceDbTable;
|
||||
use neon::prelude::*;
|
||||
use neon::types::buffer::TypedArray;
|
||||
|
||||
@@ -29,13 +29,13 @@ use crate::error::ResultExt;
|
||||
use crate::{convert, get_aws_credential_provider, get_aws_region, runtime, JsDatabase};
|
||||
|
||||
pub struct JsTable {
|
||||
pub table: TableRef,
|
||||
pub table: LanceDbTable,
|
||||
}
|
||||
|
||||
impl Finalize for JsTable {}
|
||||
|
||||
impl From<TableRef> for JsTable {
|
||||
fn from(table: TableRef) -> Self {
|
||||
impl From<LanceDbTable> for JsTable {
|
||||
fn from(table: LanceDbTable) -> Self {
|
||||
Self { table }
|
||||
}
|
||||
}
|
||||
@@ -125,13 +125,13 @@ impl JsTable {
|
||||
|
||||
rt.spawn(async move {
|
||||
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
|
||||
let opts = AddDataOptions {
|
||||
write_options: WriteOptions {
|
||||
let add_result = table
|
||||
.add(Box::new(batch_reader))
|
||||
.write_options(WriteOptions {
|
||||
lance_write_params: Some(params),
|
||||
},
|
||||
..Default::default()
|
||||
};
|
||||
let add_result = table.add(Box::new(batch_reader), opts).await;
|
||||
})
|
||||
.execute()
|
||||
.await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
add_result.or_throw(&mut cx)?;
|
||||
|
||||
@@ -7,6 +7,7 @@ license.workspace = true
|
||||
repository.workspace = true
|
||||
keywords.workspace = true
|
||||
categories.workspace = true
|
||||
rust-version = "1.75"
|
||||
|
||||
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
|
||||
[dependencies]
|
||||
|
||||
@@ -20,8 +20,7 @@ use arrow_schema::{DataType, Field, Schema};
|
||||
use futures::TryStreamExt;
|
||||
|
||||
use lancedb::connection::Connection;
|
||||
use lancedb::table::AddDataOptions;
|
||||
use lancedb::{connect, Result, Table, TableRef};
|
||||
use lancedb::{connect, Result, Table as LanceDbTable};
|
||||
|
||||
#[tokio::main]
|
||||
async fn main() -> Result<()> {
|
||||
@@ -34,11 +33,11 @@ async fn main() -> Result<()> {
|
||||
// --8<-- [end:connect]
|
||||
|
||||
// --8<-- [start:list_names]
|
||||
println!("{:?}", db.table_names().await?);
|
||||
println!("{:?}", db.table_names().execute().await?);
|
||||
// --8<-- [end:list_names]
|
||||
let tbl = create_table(&db).await?;
|
||||
create_index(tbl.as_ref()).await?;
|
||||
let batches = search(tbl.as_ref()).await?;
|
||||
create_index(&tbl).await?;
|
||||
let batches = search(&tbl).await?;
|
||||
println!("{:?}", batches);
|
||||
|
||||
create_empty_table(&db).await.unwrap();
|
||||
@@ -63,7 +62,7 @@ async fn open_with_existing_tbl() -> Result<()> {
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn create_table(db: &Connection) -> Result<TableRef> {
|
||||
async fn create_table(db: &Connection) -> Result<LanceDbTable> {
|
||||
// --8<-- [start:create_table]
|
||||
const TOTAL: usize = 1000;
|
||||
const DIM: usize = 128;
|
||||
@@ -125,15 +124,13 @@ async fn create_table(db: &Connection) -> Result<TableRef> {
|
||||
schema.clone(),
|
||||
);
|
||||
// --8<-- [start:add]
|
||||
tbl.add(Box::new(new_batches), AddDataOptions::default())
|
||||
.await
|
||||
.unwrap();
|
||||
tbl.add(Box::new(new_batches)).execute().await.unwrap();
|
||||
// --8<-- [end:add]
|
||||
|
||||
Ok(tbl)
|
||||
}
|
||||
|
||||
async fn create_empty_table(db: &Connection) -> Result<TableRef> {
|
||||
async fn create_empty_table(db: &Connection) -> Result<LanceDbTable> {
|
||||
// --8<-- [start:create_empty_table]
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, false),
|
||||
@@ -143,7 +140,7 @@ async fn create_empty_table(db: &Connection) -> Result<TableRef> {
|
||||
// --8<-- [end:create_empty_table]
|
||||
}
|
||||
|
||||
async fn create_index(table: &dyn Table) -> Result<()> {
|
||||
async fn create_index(table: &LanceDbTable) -> Result<()> {
|
||||
// --8<-- [start:create_index]
|
||||
table
|
||||
.create_index(&["vector"])
|
||||
@@ -154,7 +151,7 @@ async fn create_index(table: &dyn Table) -> Result<()> {
|
||||
// --8<-- [end:create_index]
|
||||
}
|
||||
|
||||
async fn search(table: &dyn Table) -> Result<Vec<RecordBatch>> {
|
||||
async fn search(table: &LanceDbTable) -> Result<Vec<RecordBatch>> {
|
||||
// --8<-- [start:search]
|
||||
Ok(table
|
||||
.search(&[1.0; 128])
|
||||
|
||||
@@ -29,7 +29,8 @@ use snafu::prelude::*;
|
||||
|
||||
use crate::error::{CreateDirSnafu, Error, InvalidTableNameSnafu, Result};
|
||||
use crate::io::object_store::MirroringObjectStoreWrapper;
|
||||
use crate::table::{NativeTable, TableRef, WriteOptions};
|
||||
use crate::table::{NativeTable, WriteOptions};
|
||||
use crate::Table;
|
||||
|
||||
pub const LANCE_FILE_EXTENSION: &str = "lance";
|
||||
|
||||
@@ -77,6 +78,44 @@ enum BadVectorHandling {
|
||||
Fill(f32),
|
||||
}
|
||||
|
||||
/// A builder for configuring a [`Connection::table_names`] operation
|
||||
pub struct TableNamesBuilder {
|
||||
parent: Arc<dyn ConnectionInternal>,
|
||||
pub(crate) start_after: Option<String>,
|
||||
pub(crate) limit: Option<u32>,
|
||||
}
|
||||
|
||||
impl TableNamesBuilder {
|
||||
fn new(parent: Arc<dyn ConnectionInternal>) -> Self {
|
||||
Self {
|
||||
parent,
|
||||
start_after: None,
|
||||
limit: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// If present, only return names that come lexicographically after the supplied
|
||||
/// value.
|
||||
///
|
||||
/// This can be combined with limit to implement pagination by setting this to
|
||||
/// the last table name from the previous page.
|
||||
pub fn start_after(mut self, start_after: String) -> Self {
|
||||
self.start_after = Some(start_after);
|
||||
self
|
||||
}
|
||||
|
||||
/// The maximum number of table names to return
|
||||
pub fn limit(mut self, limit: u32) -> Self {
|
||||
self.limit = Some(limit);
|
||||
self
|
||||
}
|
||||
|
||||
/// Execute the table names operation
|
||||
pub async fn execute(self) -> Result<Vec<String>> {
|
||||
self.parent.clone().table_names(self).await
|
||||
}
|
||||
}
|
||||
|
||||
/// A builder for configuring a [`Connection::create_table`] operation
|
||||
pub struct CreateTableBuilder<const HAS_DATA: bool> {
|
||||
parent: Arc<dyn ConnectionInternal>,
|
||||
@@ -111,7 +150,7 @@ impl CreateTableBuilder<true> {
|
||||
}
|
||||
|
||||
/// Execute the create table operation
|
||||
pub async fn execute(self) -> Result<TableRef> {
|
||||
pub async fn execute(self) -> Result<Table> {
|
||||
self.parent.clone().do_create_table(self).await
|
||||
}
|
||||
}
|
||||
@@ -130,7 +169,7 @@ impl CreateTableBuilder<false> {
|
||||
}
|
||||
|
||||
/// Execute the create table operation
|
||||
pub async fn execute(self) -> Result<TableRef> {
|
||||
pub async fn execute(self) -> Result<Table> {
|
||||
self.parent.clone().do_create_empty_table(self).await
|
||||
}
|
||||
}
|
||||
@@ -188,20 +227,22 @@ impl OpenTableBuilder {
|
||||
}
|
||||
|
||||
/// Open the table
|
||||
pub async fn execute(self) -> Result<TableRef> {
|
||||
pub async fn execute(self) -> Result<Table> {
|
||||
self.parent.clone().do_open_table(self).await
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait::async_trait]
|
||||
pub(crate) trait ConnectionInternal: Send + Sync + std::fmt::Debug + 'static {
|
||||
async fn table_names(&self) -> Result<Vec<String>>;
|
||||
async fn do_create_table(&self, options: CreateTableBuilder<true>) -> Result<TableRef>;
|
||||
async fn do_open_table(&self, options: OpenTableBuilder) -> Result<TableRef>;
|
||||
pub(crate) trait ConnectionInternal:
|
||||
Send + Sync + std::fmt::Debug + std::fmt::Display + 'static
|
||||
{
|
||||
async fn table_names(&self, options: TableNamesBuilder) -> Result<Vec<String>>;
|
||||
async fn do_create_table(&self, options: CreateTableBuilder<true>) -> Result<Table>;
|
||||
async fn do_open_table(&self, options: OpenTableBuilder) -> Result<Table>;
|
||||
async fn drop_table(&self, name: &str) -> Result<()>;
|
||||
async fn drop_db(&self) -> Result<()>;
|
||||
|
||||
async fn do_create_empty_table(&self, options: CreateTableBuilder<false>) -> Result<TableRef> {
|
||||
async fn do_create_empty_table(&self, options: CreateTableBuilder<false>) -> Result<Table> {
|
||||
let batches = RecordBatchIterator::new(vec![], options.schema.unwrap());
|
||||
let opts = CreateTableBuilder::<true>::new(options.parent, options.name, Box::new(batches))
|
||||
.mode(options.mode)
|
||||
@@ -217,15 +258,25 @@ pub struct Connection {
|
||||
internal: Arc<dyn ConnectionInternal>,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Connection {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", self.internal)
|
||||
}
|
||||
}
|
||||
|
||||
impl Connection {
|
||||
/// Get the URI of the connection
|
||||
pub fn uri(&self) -> &str {
|
||||
self.uri.as_str()
|
||||
}
|
||||
|
||||
/// Get the names of all tables in the database.
|
||||
pub async fn table_names(&self) -> Result<Vec<String>> {
|
||||
self.internal.table_names().await
|
||||
/// Get the names of all tables in the database
|
||||
///
|
||||
/// The names will be returned in lexicographical order (ascending)
|
||||
///
|
||||
/// The parameters `page_token` and `limit` can be used to paginate the results
|
||||
pub fn table_names(&self) -> TableNamesBuilder {
|
||||
TableNamesBuilder::new(self.internal.clone())
|
||||
}
|
||||
|
||||
/// Create a new table from data
|
||||
@@ -431,6 +482,24 @@ struct Database {
|
||||
read_consistency_interval: Option<std::time::Duration>,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Database {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(
|
||||
f,
|
||||
"NativeDatabase(uri={}, read_consistency_interval={})",
|
||||
self.uri,
|
||||
match self.read_consistency_interval {
|
||||
None => {
|
||||
"None".to_string()
|
||||
}
|
||||
Some(duration) => {
|
||||
format!("{}s", duration.as_secs_f64())
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
const LANCE_EXTENSION: &str = "lance";
|
||||
const ENGINE: &str = "engine";
|
||||
const MIRRORED_STORE: &str = "mirroredStore";
|
||||
@@ -459,7 +528,7 @@ impl Database {
|
||||
engine = Some(value.to_string());
|
||||
} else if key == MIRRORED_STORE {
|
||||
if cfg!(windows) {
|
||||
return Err(Error::Lance {
|
||||
return Err(Error::NotSupported {
|
||||
message: "mirrored store is not supported on windows".into(),
|
||||
});
|
||||
}
|
||||
@@ -586,7 +655,7 @@ impl Database {
|
||||
|
||||
#[async_trait::async_trait]
|
||||
impl ConnectionInternal for Database {
|
||||
async fn table_names(&self) -> Result<Vec<String>> {
|
||||
async fn table_names(&self, options: TableNamesBuilder) -> Result<Vec<String>> {
|
||||
let mut f = self
|
||||
.object_store
|
||||
.read_dir(self.base_path.clone())
|
||||
@@ -603,10 +672,20 @@ impl ConnectionInternal for Database {
|
||||
.filter_map(|p| p.file_stem().and_then(|s| s.to_str().map(String::from)))
|
||||
.collect::<Vec<String>>();
|
||||
f.sort();
|
||||
if let Some(start_after) = options.start_after {
|
||||
let index = f
|
||||
.iter()
|
||||
.position(|name| name.as_str() > start_after.as_str())
|
||||
.unwrap_or(f.len());
|
||||
f.drain(0..index);
|
||||
}
|
||||
if let Some(limit) = options.limit {
|
||||
f.truncate(limit as usize);
|
||||
}
|
||||
Ok(f)
|
||||
}
|
||||
|
||||
async fn do_create_table(&self, options: CreateTableBuilder<true>) -> Result<TableRef> {
|
||||
async fn do_create_table(&self, options: CreateTableBuilder<true>) -> Result<Table> {
|
||||
let table_uri = self.table_uri(&options.name)?;
|
||||
|
||||
let mut write_params = options.write_options.lance_write_params.unwrap_or_default();
|
||||
@@ -624,7 +703,7 @@ impl ConnectionInternal for Database {
|
||||
)
|
||||
.await
|
||||
{
|
||||
Ok(table) => Ok(Arc::new(table)),
|
||||
Ok(table) => Ok(Table::new(Arc::new(table))),
|
||||
Err(Error::TableAlreadyExists { name }) => match options.mode {
|
||||
CreateTableMode::Create => Err(Error::TableAlreadyExists { name }),
|
||||
CreateTableMode::ExistOk(callback) => {
|
||||
@@ -638,9 +717,9 @@ impl ConnectionInternal for Database {
|
||||
}
|
||||
}
|
||||
|
||||
async fn do_open_table(&self, options: OpenTableBuilder) -> Result<TableRef> {
|
||||
async fn do_open_table(&self, options: OpenTableBuilder) -> Result<Table> {
|
||||
let table_uri = self.table_uri(&options.name)?;
|
||||
Ok(Arc::new(
|
||||
let native_table = Arc::new(
|
||||
NativeTable::open_with_params(
|
||||
&table_uri,
|
||||
&options.name,
|
||||
@@ -649,7 +728,8 @@ impl ConnectionInternal for Database {
|
||||
self.read_consistency_interval,
|
||||
)
|
||||
.await?,
|
||||
))
|
||||
);
|
||||
Ok(Table::new(native_table))
|
||||
}
|
||||
|
||||
async fn drop_table(&self, name: &str) -> Result<()> {
|
||||
@@ -714,16 +794,43 @@ mod tests {
|
||||
#[tokio::test]
|
||||
async fn test_table_names() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
create_dir_all(tmp_dir.path().join("table1.lance")).unwrap();
|
||||
create_dir_all(tmp_dir.path().join("table2.lance")).unwrap();
|
||||
create_dir_all(tmp_dir.path().join("invalidlance")).unwrap();
|
||||
let mut names = Vec::with_capacity(100);
|
||||
for _ in 0..100 {
|
||||
let name = uuid::Uuid::new_v4().to_string();
|
||||
names.push(name.clone());
|
||||
let table_name = name + ".lance";
|
||||
create_dir_all(tmp_dir.path().join(&table_name)).unwrap();
|
||||
}
|
||||
names.sort();
|
||||
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let db = connect(uri).execute().await.unwrap();
|
||||
let tables = db.table_names().await.unwrap();
|
||||
assert_eq!(tables.len(), 2);
|
||||
assert!(tables[0].eq(&String::from("table1")));
|
||||
assert!(tables[1].eq(&String::from("table2")));
|
||||
let tables = db.table_names().execute().await.unwrap();
|
||||
|
||||
assert_eq!(tables, names);
|
||||
|
||||
let tables = db
|
||||
.table_names()
|
||||
.start_after(names[30].clone())
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(tables, names[31..]);
|
||||
|
||||
let tables = db
|
||||
.table_names()
|
||||
.start_after(names[30].clone())
|
||||
.limit(7)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(tables, names[31..38]);
|
||||
|
||||
let tables = db.table_names().limit(7).execute().await.unwrap();
|
||||
|
||||
assert_eq!(tables, names[..7]);
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
@@ -738,14 +845,14 @@ mod tests {
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let db = connect(uri).execute().await.unwrap();
|
||||
|
||||
assert_eq!(db.table_names().await.unwrap().len(), 0);
|
||||
assert_eq!(db.table_names().execute().await.unwrap().len(), 0);
|
||||
// open non-exist table
|
||||
assert!(matches!(
|
||||
db.open_table("invalid_table").execute().await,
|
||||
Err(crate::Error::TableNotFound { .. })
|
||||
));
|
||||
|
||||
assert_eq!(db.table_names().await.unwrap().len(), 0);
|
||||
assert_eq!(db.table_names().execute().await.unwrap().len(), 0);
|
||||
|
||||
let schema = Arc::new(Schema::new(vec![Field::new("x", DataType::Int32, false)]));
|
||||
db.create_empty_table("table1", schema)
|
||||
@@ -753,7 +860,7 @@ mod tests {
|
||||
.await
|
||||
.unwrap();
|
||||
db.open_table("table1").execute().await.unwrap();
|
||||
let tables = db.table_names().await.unwrap();
|
||||
let tables = db.table_names().execute().await.unwrap();
|
||||
assert_eq!(tables, vec!["table1".to_owned()]);
|
||||
}
|
||||
|
||||
@@ -773,7 +880,7 @@ mod tests {
|
||||
create_dir_all(tmp_dir.path().join("table1.lance")).unwrap();
|
||||
db.drop_table("table1").await.unwrap();
|
||||
|
||||
let tables = db.table_names().await.unwrap();
|
||||
let tables = db.table_names().execute().await.unwrap();
|
||||
assert_eq!(tables.len(), 0);
|
||||
}
|
||||
|
||||
|
||||
@@ -39,46 +39,50 @@ pub enum Error {
|
||||
Runtime { message: String },
|
||||
|
||||
// 3rd party / external errors
|
||||
#[snafu(display("object_store error: {message}"))]
|
||||
Store { message: String },
|
||||
#[snafu(display("lance error: {message}"))]
|
||||
Lance { message: String },
|
||||
#[snafu(display("object_store error: {source}"))]
|
||||
ObjectStore { source: object_store::Error },
|
||||
#[snafu(display("lance error: {source}"))]
|
||||
Lance { source: lance::Error },
|
||||
#[snafu(display("Http error: {message}"))]
|
||||
Http { message: String },
|
||||
#[snafu(display("Arrow error: {message}"))]
|
||||
Arrow { message: String },
|
||||
#[snafu(display("Arrow error: {source}"))]
|
||||
Arrow { source: ArrowError },
|
||||
#[snafu(display("LanceDBError: not supported: {message}"))]
|
||||
NotSupported { message: String },
|
||||
#[snafu(whatever, display("{message}"))]
|
||||
Other {
|
||||
message: String,
|
||||
#[snafu(source(from(Box<dyn std::error::Error + Send + Sync>, Some)))]
|
||||
source: Option<Box<dyn std::error::Error + Send + Sync>>,
|
||||
},
|
||||
}
|
||||
|
||||
pub type Result<T> = std::result::Result<T, Error>;
|
||||
|
||||
impl From<ArrowError> for Error {
|
||||
fn from(e: ArrowError) -> Self {
|
||||
Self::Arrow {
|
||||
message: e.to_string(),
|
||||
}
|
||||
fn from(source: ArrowError) -> Self {
|
||||
Self::Arrow { source }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<lance::Error> for Error {
|
||||
fn from(e: lance::Error) -> Self {
|
||||
Self::Lance {
|
||||
message: e.to_string(),
|
||||
}
|
||||
fn from(source: lance::Error) -> Self {
|
||||
// TODO: Once Lance is changed to preserve ObjectStore, DataFusion, and Arrow errors, we can
|
||||
// pass those variants through here as well.
|
||||
Self::Lance { source }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<object_store::Error> for Error {
|
||||
fn from(e: object_store::Error) -> Self {
|
||||
Self::Store {
|
||||
message: e.to_string(),
|
||||
}
|
||||
fn from(source: object_store::Error) -> Self {
|
||||
Self::ObjectStore { source }
|
||||
}
|
||||
}
|
||||
|
||||
impl From<object_store::path::Error> for Error {
|
||||
fn from(e: object_store::path::Error) -> Self {
|
||||
Self::Store {
|
||||
message: e.to_string(),
|
||||
fn from(source: object_store::path::Error) -> Self {
|
||||
Self::ObjectStore {
|
||||
source: object_store::Error::InvalidPath { source },
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -14,13 +14,12 @@
|
||||
|
||||
use std::{cmp::max, sync::Arc};
|
||||
|
||||
use lance::index::scalar::ScalarIndexParams;
|
||||
use lance_index::{DatasetIndexExt, IndexType};
|
||||
use lance_index::IndexType;
|
||||
pub use lance_linalg::distance::MetricType;
|
||||
|
||||
pub mod vector;
|
||||
|
||||
use crate::{utils::default_vector_column, Error, Result, Table};
|
||||
use crate::{table::TableInternal, Result};
|
||||
|
||||
/// Index Parameters.
|
||||
pub enum IndexParams {
|
||||
@@ -41,36 +40,36 @@ pub enum IndexParams {
|
||||
/// Builder for Index Parameters.
|
||||
|
||||
pub struct IndexBuilder {
|
||||
table: Arc<dyn Table>,
|
||||
columns: Vec<String>,
|
||||
parent: Arc<dyn TableInternal>,
|
||||
pub(crate) columns: Vec<String>,
|
||||
// General parameters
|
||||
/// Index name.
|
||||
name: Option<String>,
|
||||
pub(crate) name: Option<String>,
|
||||
/// Replace the existing index.
|
||||
replace: bool,
|
||||
pub(crate) replace: bool,
|
||||
|
||||
index_type: IndexType,
|
||||
pub(crate) index_type: IndexType,
|
||||
|
||||
// Scalar index parameters
|
||||
// Nothing to set here.
|
||||
|
||||
// IVF_PQ parameters
|
||||
metric_type: MetricType,
|
||||
num_partitions: Option<u32>,
|
||||
pub(crate) metric_type: MetricType,
|
||||
pub(crate) num_partitions: Option<u32>,
|
||||
// PQ related
|
||||
num_sub_vectors: Option<u32>,
|
||||
num_bits: u32,
|
||||
pub(crate) num_sub_vectors: Option<u32>,
|
||||
pub(crate) num_bits: u32,
|
||||
|
||||
/// The rate to find samples to train kmeans.
|
||||
sample_rate: u32,
|
||||
pub(crate) sample_rate: u32,
|
||||
/// Max iteration to train kmeans.
|
||||
max_iterations: u32,
|
||||
pub(crate) max_iterations: u32,
|
||||
}
|
||||
|
||||
impl IndexBuilder {
|
||||
pub(crate) fn new(table: Arc<dyn Table>, columns: &[&str]) -> Self {
|
||||
pub(crate) fn new(parent: Arc<dyn TableInternal>, columns: &[&str]) -> Self {
|
||||
Self {
|
||||
table,
|
||||
parent,
|
||||
columns: columns.iter().map(|c| c.to_string()).collect(),
|
||||
name: None,
|
||||
replace: true,
|
||||
@@ -89,7 +88,7 @@ impl IndexBuilder {
|
||||
/// Accepted parameters:
|
||||
/// - `replace`: Replace the existing index.
|
||||
/// - `name`: Index name. Default: `None`
|
||||
pub fn scalar(&mut self) -> &mut Self {
|
||||
pub fn scalar(mut self) -> Self {
|
||||
self.index_type = IndexType::Scalar;
|
||||
self
|
||||
}
|
||||
@@ -105,25 +104,25 @@ impl IndexBuilder {
|
||||
/// - `num_bits`: Number of bits used for PQ centroids.
|
||||
/// - `sample_rate`: The rate to find samples to train kmeans.
|
||||
/// - `max_iterations`: Max iteration to train kmeans.
|
||||
pub fn ivf_pq(&mut self) -> &mut Self {
|
||||
pub fn ivf_pq(mut self) -> Self {
|
||||
self.index_type = IndexType::Vector;
|
||||
self
|
||||
}
|
||||
|
||||
/// The columns to build index on.
|
||||
pub fn columns(&mut self, cols: &[&str]) -> &mut Self {
|
||||
pub fn columns(mut self, cols: &[&str]) -> Self {
|
||||
self.columns = cols.iter().map(|s| s.to_string()).collect();
|
||||
self
|
||||
}
|
||||
|
||||
/// Whether to replace the existing index, default is `true`.
|
||||
pub fn replace(&mut self, v: bool) -> &mut Self {
|
||||
pub fn replace(mut self, v: bool) -> Self {
|
||||
self.replace = v;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the index name.
|
||||
pub fn name(&mut self, name: &str) -> &mut Self {
|
||||
pub fn name(mut self, name: &str) -> Self {
|
||||
self.name = Some(name.to_string());
|
||||
self
|
||||
}
|
||||
@@ -131,156 +130,53 @@ impl IndexBuilder {
|
||||
/// [MetricType] to use to build Vector Index.
|
||||
///
|
||||
/// Default value is [MetricType::L2].
|
||||
pub fn metric_type(&mut self, metric_type: MetricType) -> &mut Self {
|
||||
pub fn metric_type(mut self, metric_type: MetricType) -> Self {
|
||||
self.metric_type = metric_type;
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of IVF partitions.
|
||||
pub fn num_partitions(&mut self, num_partitions: u32) -> &mut Self {
|
||||
pub fn num_partitions(mut self, num_partitions: u32) -> Self {
|
||||
self.num_partitions = Some(num_partitions);
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of sub-vectors of PQ.
|
||||
pub fn num_sub_vectors(&mut self, num_sub_vectors: u32) -> &mut Self {
|
||||
pub fn num_sub_vectors(mut self, num_sub_vectors: u32) -> Self {
|
||||
self.num_sub_vectors = Some(num_sub_vectors);
|
||||
self
|
||||
}
|
||||
|
||||
/// Number of bits used for PQ centroids.
|
||||
pub fn num_bits(&mut self, num_bits: u32) -> &mut Self {
|
||||
pub fn num_bits(mut self, num_bits: u32) -> Self {
|
||||
self.num_bits = num_bits;
|
||||
self
|
||||
}
|
||||
|
||||
/// The rate to find samples to train kmeans.
|
||||
pub fn sample_rate(&mut self, sample_rate: u32) -> &mut Self {
|
||||
pub fn sample_rate(mut self, sample_rate: u32) -> Self {
|
||||
self.sample_rate = sample_rate;
|
||||
self
|
||||
}
|
||||
|
||||
/// Max iteration to train kmeans.
|
||||
pub fn max_iterations(&mut self, max_iterations: u32) -> &mut Self {
|
||||
pub fn max_iterations(mut self, max_iterations: u32) -> Self {
|
||||
self.max_iterations = max_iterations;
|
||||
self
|
||||
}
|
||||
|
||||
/// Build the parameters.
|
||||
pub async fn build(&self) -> Result<()> {
|
||||
let schema = self.table.schema().await?;
|
||||
|
||||
// TODO: simplify this after GH lance#1864.
|
||||
let mut index_type = &self.index_type;
|
||||
let columns = if self.columns.is_empty() {
|
||||
// By default we create vector index.
|
||||
index_type = &IndexType::Vector;
|
||||
vec![default_vector_column(&schema, None)?]
|
||||
} else {
|
||||
self.columns.clone()
|
||||
};
|
||||
|
||||
if columns.len() != 1 {
|
||||
return Err(Error::Schema {
|
||||
message: "Only one column is supported for index".to_string(),
|
||||
});
|
||||
}
|
||||
let column = &columns[0];
|
||||
|
||||
let field = schema.field_with_name(column)?;
|
||||
|
||||
let params = match index_type {
|
||||
IndexType::Scalar => IndexParams::Scalar {
|
||||
replace: self.replace,
|
||||
},
|
||||
IndexType::Vector => {
|
||||
let num_partitions = if let Some(n) = self.num_partitions {
|
||||
n
|
||||
} else {
|
||||
suggested_num_partitions(self.table.count_rows(None).await?)
|
||||
};
|
||||
let num_sub_vectors: u32 = if let Some(n) = self.num_sub_vectors {
|
||||
n
|
||||
} else {
|
||||
match field.data_type() {
|
||||
arrow_schema::DataType::FixedSizeList(_, n) => {
|
||||
Ok::<u32, Error>(suggested_num_sub_vectors(*n as u32))
|
||||
}
|
||||
_ => Err(Error::Schema {
|
||||
message: format!(
|
||||
"Column '{}' is not a FixedSizeList",
|
||||
&self.columns[0]
|
||||
),
|
||||
}),
|
||||
}?
|
||||
};
|
||||
IndexParams::IvfPq {
|
||||
replace: self.replace,
|
||||
metric_type: self.metric_type,
|
||||
num_partitions: num_partitions as u64,
|
||||
num_sub_vectors,
|
||||
num_bits: self.num_bits,
|
||||
sample_rate: self.sample_rate,
|
||||
max_iterations: self.max_iterations,
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let tbl = self
|
||||
.table
|
||||
.as_native()
|
||||
.expect("Only native table is supported here");
|
||||
let mut dataset = tbl.dataset.get_mut().await?;
|
||||
match params {
|
||||
IndexParams::Scalar { replace } => {
|
||||
dataset
|
||||
.create_index(
|
||||
&[&column],
|
||||
IndexType::Scalar,
|
||||
None,
|
||||
&ScalarIndexParams::default(),
|
||||
replace,
|
||||
)
|
||||
.await?
|
||||
}
|
||||
IndexParams::IvfPq {
|
||||
replace,
|
||||
metric_type,
|
||||
num_partitions,
|
||||
num_sub_vectors,
|
||||
num_bits,
|
||||
max_iterations,
|
||||
..
|
||||
} => {
|
||||
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_pq(
|
||||
num_partitions as usize,
|
||||
num_bits as u8,
|
||||
num_sub_vectors as usize,
|
||||
false,
|
||||
metric_type,
|
||||
max_iterations as usize,
|
||||
);
|
||||
dataset
|
||||
.create_index(
|
||||
&[column],
|
||||
IndexType::Vector,
|
||||
None,
|
||||
&lance_idx_params,
|
||||
replace,
|
||||
)
|
||||
.await?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
pub async fn build(self) -> Result<()> {
|
||||
self.parent.clone().do_create_index(self).await
|
||||
}
|
||||
}
|
||||
|
||||
fn suggested_num_partitions(rows: usize) -> u32 {
|
||||
pub(crate) fn suggested_num_partitions(rows: usize) -> u32 {
|
||||
let num_partitions = (rows as f64).sqrt() as u32;
|
||||
max(1, num_partitions)
|
||||
}
|
||||
|
||||
fn suggested_num_sub_vectors(dim: u32) -> u32 {
|
||||
pub(crate) fn suggested_num_sub_vectors(dim: u32) -> u32 {
|
||||
if dim % 16 == 0 {
|
||||
// Should be more aggressive than this default.
|
||||
dim / 16
|
||||
|
||||
@@ -14,25 +14,27 @@
|
||||
|
||||
//! IPC support
|
||||
|
||||
use std::io::Cursor;
|
||||
use std::{io::Cursor, sync::Arc};
|
||||
|
||||
use arrow_array::{RecordBatch, RecordBatchReader};
|
||||
use arrow_ipc::{reader::StreamReader, writer::FileWriter};
|
||||
use arrow_ipc::{reader::FileReader, writer::FileWriter};
|
||||
use arrow_schema::Schema;
|
||||
|
||||
use crate::{Error, Result};
|
||||
|
||||
/// Convert a Arrow IPC file to a batch reader
|
||||
pub fn ipc_file_to_batches(buf: Vec<u8>) -> Result<impl RecordBatchReader> {
|
||||
let buf_reader = Cursor::new(buf);
|
||||
let reader = StreamReader::try_new(buf_reader, None)?;
|
||||
let reader = FileReader::try_new(buf_reader, None)?;
|
||||
Ok(reader)
|
||||
}
|
||||
|
||||
/// Convert record batches to Arrow IPC file
|
||||
pub fn batches_to_ipc_file(batches: &[RecordBatch]) -> Result<Vec<u8>> {
|
||||
if batches.is_empty() {
|
||||
return Err(Error::Store {
|
||||
return Err(Error::Other {
|
||||
message: "No batches to write".to_string(),
|
||||
source: None,
|
||||
});
|
||||
}
|
||||
let schema = batches[0].schema();
|
||||
@@ -44,6 +46,20 @@ pub fn batches_to_ipc_file(batches: &[RecordBatch]) -> Result<Vec<u8>> {
|
||||
Ok(writer.into_inner()?)
|
||||
}
|
||||
|
||||
/// Convert a schema to an Arrow IPC file with 0 batches
|
||||
pub fn schema_to_ipc_file(schema: &Schema) -> Result<Vec<u8>> {
|
||||
let mut writer = FileWriter::try_new(vec![], schema)?;
|
||||
writer.finish()?;
|
||||
Ok(writer.into_inner()?)
|
||||
}
|
||||
|
||||
/// Retrieve the schema from an Arrow IPC file
|
||||
pub fn ipc_file_to_schema(buf: Vec<u8>) -> Result<Arc<Schema>> {
|
||||
let buf_reader = Cursor::new(buf);
|
||||
let reader = FileReader::try_new(buf_reader, None)?;
|
||||
Ok(reader.schema())
|
||||
}
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
||||
@@ -71,7 +87,7 @@ mod tests {
|
||||
fn test_ipc_file_to_batches() -> Result<()> {
|
||||
let batch = create_record_batch()?;
|
||||
|
||||
let mut writer = StreamWriter::try_new(vec![], &batch.schema())?;
|
||||
let mut writer = FileWriter::try_new(vec![], &batch.schema())?;
|
||||
writer.write(&batch)?;
|
||||
writer.finish()?;
|
||||
|
||||
|
||||
@@ -194,7 +194,7 @@ pub mod table;
|
||||
pub mod utils;
|
||||
|
||||
pub use error::{Error, Result};
|
||||
pub use table::{Table, TableRef};
|
||||
pub use table::Table;
|
||||
|
||||
/// Connect to a database
|
||||
pub use connection::connect;
|
||||
|
||||
@@ -12,17 +12,16 @@
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow_array::Float32Array;
|
||||
use arrow_schema::Schema;
|
||||
use lance::dataset::scanner::{DatasetRecordBatchStream, Scanner};
|
||||
use lance::dataset::scanner::DatasetRecordBatchStream;
|
||||
use lance_linalg::distance::MetricType;
|
||||
|
||||
use crate::error::Result;
|
||||
use crate::table::dataset::DatasetConsistencyWrapper;
|
||||
use crate::utils::default_vector_column;
|
||||
use crate::Error;
|
||||
use crate::table::TableInternal;
|
||||
|
||||
const DEFAULT_TOP_K: usize = 10;
|
||||
pub(crate) const DEFAULT_TOP_K: usize = 10;
|
||||
|
||||
#[derive(Debug, Clone)]
|
||||
pub enum Select {
|
||||
@@ -34,29 +33,29 @@ pub enum Select {
|
||||
/// A builder for nearest neighbor queries for LanceDB.
|
||||
#[derive(Clone)]
|
||||
pub struct Query {
|
||||
dataset: DatasetConsistencyWrapper,
|
||||
parent: Arc<dyn TableInternal>,
|
||||
|
||||
// The column to run the query on. If not specified, we will attempt to guess
|
||||
// the column based on the dataset's schema.
|
||||
column: Option<String>,
|
||||
pub(crate) column: Option<String>,
|
||||
|
||||
// IVF PQ - ANN search.
|
||||
query_vector: Option<Float32Array>,
|
||||
nprobes: usize,
|
||||
refine_factor: Option<u32>,
|
||||
metric_type: Option<MetricType>,
|
||||
pub(crate) query_vector: Option<Float32Array>,
|
||||
pub(crate) nprobes: usize,
|
||||
pub(crate) refine_factor: Option<u32>,
|
||||
pub(crate) metric_type: Option<MetricType>,
|
||||
|
||||
/// limit the number of rows to return.
|
||||
limit: Option<usize>,
|
||||
pub(crate) limit: Option<usize>,
|
||||
/// Apply filter to the returned rows.
|
||||
filter: Option<String>,
|
||||
pub(crate) filter: Option<String>,
|
||||
/// Select column projection.
|
||||
select: Select,
|
||||
pub(crate) select: Select,
|
||||
|
||||
/// Default is true. Set to false to enforce a brute force search.
|
||||
use_index: bool,
|
||||
pub(crate) use_index: bool,
|
||||
/// Apply filter before ANN search/
|
||||
prefilter: bool,
|
||||
pub(crate) prefilter: bool,
|
||||
}
|
||||
|
||||
impl Query {
|
||||
@@ -64,11 +63,11 @@ impl Query {
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `dataset` - Lance dataset.
|
||||
/// * `parent` - the table to run the query on.
|
||||
///
|
||||
pub(crate) fn new(dataset: DatasetConsistencyWrapper) -> Self {
|
||||
pub(crate) fn new(parent: Arc<dyn TableInternal>) -> Self {
|
||||
Self {
|
||||
dataset,
|
||||
parent,
|
||||
query_vector: None,
|
||||
column: None,
|
||||
limit: None,
|
||||
@@ -88,54 +87,7 @@ impl Query {
|
||||
///
|
||||
/// * A [DatasetRecordBatchStream] with the query's results.
|
||||
pub async fn execute_stream(&self) -> Result<DatasetRecordBatchStream> {
|
||||
let ds_ref = self.dataset.get().await?;
|
||||
let mut scanner: Scanner = ds_ref.scan();
|
||||
|
||||
if let Some(query) = self.query_vector.as_ref() {
|
||||
// If there is a vector query, default to limit=10 if unspecified
|
||||
let column = if let Some(col) = self.column.as_ref() {
|
||||
col.clone()
|
||||
} else {
|
||||
// Infer a vector column with the same dimension of the query vector.
|
||||
let arrow_schema = Schema::from(ds_ref.schema());
|
||||
default_vector_column(&arrow_schema, Some(query.len() as i32))?
|
||||
};
|
||||
let field = ds_ref.schema().field(&column).ok_or(Error::Store {
|
||||
message: format!("Column {} not found in dataset schema", column),
|
||||
})?;
|
||||
if !matches!(field.data_type(), arrow_schema::DataType::FixedSizeList(f, dim) if f.data_type().is_floating() && dim == query.len() as i32)
|
||||
{
|
||||
return Err(Error::Store {
|
||||
message: format!(
|
||||
"Vector column '{}' does not match the dimension of the query vector: dim={}",
|
||||
column,
|
||||
query.len(),
|
||||
),
|
||||
});
|
||||
}
|
||||
scanner.nearest(&column, query, self.limit.unwrap_or(DEFAULT_TOP_K))?;
|
||||
} else {
|
||||
// If there is no vector query, it's ok to not have a limit
|
||||
scanner.limit(self.limit.map(|limit| limit as i64), None)?;
|
||||
}
|
||||
scanner.nprobs(self.nprobes);
|
||||
scanner.use_index(self.use_index);
|
||||
scanner.prefilter(self.prefilter);
|
||||
|
||||
match &self.select {
|
||||
Select::Simple(select) => {
|
||||
scanner.project(select.as_slice())?;
|
||||
}
|
||||
Select::Projection(select_with_transform) => {
|
||||
scanner.project_with_transform(select_with_transform.as_slice())?;
|
||||
}
|
||||
Select::All => { /* Do nothing */ }
|
||||
}
|
||||
|
||||
self.filter.as_ref().map(|f| scanner.filter(f));
|
||||
self.refine_factor.map(|rf| scanner.refine(rf));
|
||||
self.metric_type.map(|mt| scanner.distance_metric(mt));
|
||||
Ok(scanner.try_into_stream().await?)
|
||||
self.parent.clone().do_query(self).await
|
||||
}
|
||||
|
||||
/// Set the column to query
|
||||
@@ -259,22 +211,29 @@ mod tests {
|
||||
};
|
||||
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
|
||||
use futures::{StreamExt, TryStreamExt};
|
||||
use lance::dataset::Dataset;
|
||||
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
|
||||
use tempfile::tempdir;
|
||||
|
||||
use crate::query::Query;
|
||||
use crate::table::{NativeTable, Table};
|
||||
use crate::connect;
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_setters_getters() {
|
||||
let batches = make_test_batches();
|
||||
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
||||
// TODO: Switch back to memory://foo after https://github.com/lancedb/lancedb/issues/1051
|
||||
// is fixed
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
|
||||
let ds = DatasetConsistencyWrapper::new_latest(ds, None);
|
||||
let batches = make_test_batches();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let vector = Some(Float32Array::from_iter_values([0.1, 0.2]));
|
||||
let query = Query::new(ds).nearest_to(&[0.1, 0.2]);
|
||||
let query = table.query().nearest_to(&[0.1, 0.2]);
|
||||
assert_eq!(query.query_vector, vector);
|
||||
|
||||
let new_vector = Float32Array::from_iter_values([9.8, 8.7]);
|
||||
@@ -297,12 +256,21 @@ mod tests {
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_execute() {
|
||||
// TODO: Switch back to memory://foo after https://github.com/lancedb/lancedb/issues/1051
|
||||
// is fixed
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
|
||||
let batches = make_non_empty_batches();
|
||||
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let ds = DatasetConsistencyWrapper::new_latest(ds, None);
|
||||
|
||||
let query = Query::new(ds.clone()).nearest_to(&[0.1; 4]);
|
||||
let query = table.query().nearest_to(&[0.1; 4]);
|
||||
let result = query.limit(10).filter("id % 2 == 0").execute_stream().await;
|
||||
let mut stream = result.expect("should have result");
|
||||
// should only have one batch
|
||||
@@ -311,7 +279,7 @@ mod tests {
|
||||
assert!(batch.expect("should be Ok").num_rows() < 10);
|
||||
}
|
||||
|
||||
let query = Query::new(ds).nearest_to(&[0.1; 4]);
|
||||
let query = table.query().nearest_to(&[0.1; 4]);
|
||||
let result = query
|
||||
.limit(10)
|
||||
.filter(String::from("id % 2 == 0")) // Work with String too
|
||||
@@ -328,12 +296,22 @@ mod tests {
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_select_with_transform() {
|
||||
// TODO: Switch back to memory://foo after https://github.com/lancedb/lancedb/issues/1051
|
||||
// is fixed
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
|
||||
let batches = make_non_empty_batches();
|
||||
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let ds = DatasetConsistencyWrapper::new_latest(ds, None);
|
||||
|
||||
let query = Query::new(ds)
|
||||
let query = table
|
||||
.query()
|
||||
.limit(10)
|
||||
.select_with_projection(&[("id2", "id * 2"), ("id", "id")]);
|
||||
let result = query.execute_stream().await;
|
||||
@@ -360,13 +338,22 @@ mod tests {
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_execute_no_vector() {
|
||||
// TODO: Switch back to memory://foo after https://github.com/lancedb/lancedb/issues/1051
|
||||
// is fixed
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
|
||||
// test that it's ok to not specify a query vector (just filter / limit)
|
||||
let batches = make_non_empty_batches();
|
||||
let ds = Dataset::write(batches, "memory://foo", None).await.unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let ds = DatasetConsistencyWrapper::new_latest(ds, None);
|
||||
|
||||
let query = Query::new(ds);
|
||||
let query = table.query();
|
||||
let result = query.filter("id % 2 == 0").execute_stream().await;
|
||||
let mut stream = result.expect("should have result");
|
||||
// should only have one batch
|
||||
@@ -413,12 +400,13 @@ mod tests {
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
|
||||
let batches = make_test_batches();
|
||||
Dataset::write(batches, dataset_path.to_str().unwrap(), None)
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let table = NativeTable::open(uri).await.unwrap();
|
||||
|
||||
let query = table.search(&[0.1, 0.2]);
|
||||
assert_eq!(&[0.1, 0.2], query.query_vector.unwrap().values());
|
||||
}
|
||||
|
||||
@@ -28,6 +28,10 @@ pub struct RestfulLanceDbClient {
|
||||
}
|
||||
|
||||
impl RestfulLanceDbClient {
|
||||
pub fn host(&self) -> &str {
|
||||
&self.host
|
||||
}
|
||||
|
||||
fn default_headers(
|
||||
api_key: &str,
|
||||
region: &str,
|
||||
|
||||
@@ -19,9 +19,11 @@ use reqwest::header::CONTENT_TYPE;
|
||||
use serde::Deserialize;
|
||||
use tokio::task::spawn_blocking;
|
||||
|
||||
use crate::connection::{ConnectionInternal, CreateTableBuilder, OpenTableBuilder};
|
||||
use crate::connection::{
|
||||
ConnectionInternal, CreateTableBuilder, OpenTableBuilder, TableNamesBuilder,
|
||||
};
|
||||
use crate::error::Result;
|
||||
use crate::TableRef;
|
||||
use crate::Table;
|
||||
|
||||
use super::client::RestfulLanceDbClient;
|
||||
use super::table::RemoteTable;
|
||||
@@ -51,21 +53,28 @@ impl RemoteDatabase {
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for RemoteDatabase {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "RemoteDatabase(host={})", self.client.host())
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl ConnectionInternal for RemoteDatabase {
|
||||
async fn table_names(&self) -> Result<Vec<String>> {
|
||||
let rsp = self
|
||||
.client
|
||||
.get("/v1/table/")
|
||||
.query(&[("limit", 10)])
|
||||
.query(&[("page_token", "")])
|
||||
.send()
|
||||
.await?;
|
||||
async fn table_names(&self, options: TableNamesBuilder) -> Result<Vec<String>> {
|
||||
let mut req = self.client.get("/v1/table/");
|
||||
if let Some(limit) = options.limit {
|
||||
req = req.query(&[("limit", limit)]);
|
||||
}
|
||||
if let Some(start_after) = options.start_after {
|
||||
req = req.query(&[("page_token", start_after)]);
|
||||
}
|
||||
let rsp = req.send().await?;
|
||||
let rsp = self.client.check_response(rsp).await?;
|
||||
Ok(rsp.json::<ListTablesResponse>().await?.tables)
|
||||
}
|
||||
|
||||
async fn do_create_table(&self, options: CreateTableBuilder<true>) -> Result<TableRef> {
|
||||
async fn do_create_table(&self, options: CreateTableBuilder<true>) -> Result<Table> {
|
||||
let data = options.data.unwrap();
|
||||
// TODO: https://github.com/lancedb/lancedb/issues/1026
|
||||
// We should accept data from an async source. In the meantime, spawn this as blocking
|
||||
@@ -78,17 +87,18 @@ impl ConnectionInternal for RemoteDatabase {
|
||||
.post(&format!("/v1/table/{}/create", options.name))
|
||||
.body(data_buffer)
|
||||
.header(CONTENT_TYPE, ARROW_STREAM_CONTENT_TYPE)
|
||||
// This is currently expected by LanceDb cloud but will be removed soon.
|
||||
.header("x-request-id", "na")
|
||||
.send()
|
||||
.await?;
|
||||
|
||||
Ok(Arc::new(RemoteTable::new(
|
||||
Ok(Table::new(Arc::new(RemoteTable::new(
|
||||
self.client.clone(),
|
||||
options.name,
|
||||
)))
|
||||
))))
|
||||
}
|
||||
|
||||
async fn do_open_table(&self, _options: OpenTableBuilder) -> Result<TableRef> {
|
||||
async fn do_open_table(&self, _options: OpenTableBuilder) -> Result<Table> {
|
||||
todo!()
|
||||
}
|
||||
|
||||
|
||||
@@ -1,16 +1,16 @@
|
||||
use arrow_array::RecordBatchReader;
|
||||
use arrow_schema::SchemaRef;
|
||||
use async_trait::async_trait;
|
||||
use lance::dataset::{ColumnAlteration, NewColumnTransform};
|
||||
use lance::dataset::{scanner::DatasetRecordBatchStream, ColumnAlteration, NewColumnTransform};
|
||||
|
||||
use crate::{
|
||||
error::Result,
|
||||
index::IndexBuilder,
|
||||
query::Query,
|
||||
table::{
|
||||
merge::MergeInsertBuilder, AddDataOptions, NativeTable, OptimizeAction, OptimizeStats,
|
||||
merge::MergeInsertBuilder, AddDataBuilder, NativeTable, OptimizeAction, OptimizeStats,
|
||||
TableInternal,
|
||||
},
|
||||
Table,
|
||||
};
|
||||
|
||||
use super::client::RestfulLanceDbClient;
|
||||
@@ -35,7 +35,7 @@ impl std::fmt::Display for RemoteTable {
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl Table for RemoteTable {
|
||||
impl TableInternal for RemoteTable {
|
||||
fn as_any(&self) -> &dyn std::any::Any {
|
||||
self
|
||||
}
|
||||
@@ -51,23 +51,23 @@ impl Table for RemoteTable {
|
||||
async fn count_rows(&self, _filter: Option<String>) -> Result<usize> {
|
||||
todo!()
|
||||
}
|
||||
async fn add(
|
||||
&self,
|
||||
_batches: Box<dyn RecordBatchReader + Send>,
|
||||
_options: AddDataOptions,
|
||||
) -> Result<()> {
|
||||
async fn do_add(&self, _add: AddDataBuilder) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn do_query(&self, _query: &Query) -> Result<DatasetRecordBatchStream> {
|
||||
todo!()
|
||||
}
|
||||
async fn delete(&self, _predicate: &str) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
fn create_index(&self, _column: &[&str]) -> IndexBuilder {
|
||||
async fn do_create_index(&self, _index: IndexBuilder) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
fn merge_insert(&self, _on: &[&str]) -> MergeInsertBuilder {
|
||||
todo!()
|
||||
}
|
||||
fn query(&self) -> Query {
|
||||
async fn do_merge_insert(
|
||||
&self,
|
||||
_params: MergeInsertBuilder,
|
||||
_new_data: Box<dyn RecordBatchReader + Send>,
|
||||
) -> Result<()> {
|
||||
todo!()
|
||||
}
|
||||
async fn optimize(&self, _action: OptimizeAction) -> Result<OptimizeStats> {
|
||||
|
||||
@@ -26,24 +26,30 @@ use lance::dataset::cleanup::RemovalStats;
|
||||
use lance::dataset::optimize::{
|
||||
compact_files, CompactionMetrics, CompactionOptions, IndexRemapperOptions,
|
||||
};
|
||||
use lance::dataset::scanner::{DatasetRecordBatchStream, Scanner};
|
||||
pub use lance::dataset::ReadParams;
|
||||
use lance::dataset::{
|
||||
ColumnAlteration, Dataset, NewColumnTransform, UpdateBuilder, WhenMatched, WriteMode,
|
||||
WriteParams,
|
||||
};
|
||||
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
|
||||
use lance::index::scalar::ScalarIndexParams;
|
||||
use lance::io::WrappingObjectStore;
|
||||
use lance_index::IndexType;
|
||||
use lance_index::{optimize::OptimizeOptions, DatasetIndexExt};
|
||||
use log::info;
|
||||
use snafu::whatever;
|
||||
|
||||
use crate::error::{Error, Result};
|
||||
use crate::index::vector::{VectorIndex, VectorIndexStatistics};
|
||||
use crate::index::IndexBuilder;
|
||||
use crate::query::Query;
|
||||
use crate::utils::{PatchReadParam, PatchWriteParam};
|
||||
use crate::index::{
|
||||
suggested_num_partitions, suggested_num_sub_vectors, IndexBuilder, IndexParams,
|
||||
};
|
||||
use crate::query::{Query, Select, DEFAULT_TOP_K};
|
||||
use crate::utils::{default_vector_column, PatchReadParam, PatchWriteParam};
|
||||
|
||||
use self::dataset::DatasetConsistencyWrapper;
|
||||
use self::merge::{MergeInsert, MergeInsertBuilder};
|
||||
use self::merge::MergeInsertBuilder;
|
||||
|
||||
pub(crate) mod dataset;
|
||||
pub mod merge;
|
||||
@@ -97,7 +103,7 @@ pub struct WriteOptions {
|
||||
// pub on_bad_vectors: BadVectorHandling,
|
||||
/// Advanced parameters that can be used to customize table creation
|
||||
///
|
||||
/// If set, these will take precedence over any overlapping `OpenTableOptions` options
|
||||
/// If set, these will take precedence over any overlapping `OpenTableBuilder` options
|
||||
pub lance_write_params: Option<WriteParams>,
|
||||
}
|
||||
|
||||
@@ -110,36 +116,115 @@ pub enum AddDataMode {
|
||||
Overwrite,
|
||||
}
|
||||
|
||||
#[derive(Debug, Default, Clone)]
|
||||
pub struct AddDataOptions {
|
||||
/// Whether to add new rows (the default) or replace the existing data
|
||||
pub mode: AddDataMode,
|
||||
/// Options to use when writing the data
|
||||
pub write_options: WriteOptions,
|
||||
/// A builder for configuring a [`Connection::create_table`] operation
|
||||
pub struct AddDataBuilder {
|
||||
parent: Arc<dyn TableInternal>,
|
||||
pub(crate) data: Box<dyn RecordBatchReader + Send>,
|
||||
pub(crate) mode: AddDataMode,
|
||||
pub(crate) write_options: WriteOptions,
|
||||
}
|
||||
|
||||
impl std::fmt::Debug for AddDataBuilder {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
f.debug_struct("AddDataBuilder")
|
||||
.field("parent", &self.parent)
|
||||
.field("mode", &self.mode)
|
||||
.field("write_options", &self.write_options)
|
||||
.finish()
|
||||
}
|
||||
}
|
||||
|
||||
impl AddDataBuilder {
|
||||
pub fn mode(mut self, mode: AddDataMode) -> Self {
|
||||
self.mode = mode;
|
||||
self
|
||||
}
|
||||
|
||||
pub fn write_options(mut self, options: WriteOptions) -> Self {
|
||||
self.write_options = options;
|
||||
self
|
||||
}
|
||||
|
||||
pub async fn execute(self) -> Result<()> {
|
||||
self.parent.clone().do_add(self).await
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
pub(crate) trait TableInternal: std::fmt::Display + std::fmt::Debug + Send + Sync {
|
||||
fn as_any(&self) -> &dyn std::any::Any;
|
||||
/// Cast as [`NativeTable`], or return None it if is not a [`NativeTable`].
|
||||
fn as_native(&self) -> Option<&NativeTable>;
|
||||
/// Get the name of the table.
|
||||
fn name(&self) -> &str;
|
||||
/// Get the arrow [Schema] of the table.
|
||||
async fn schema(&self) -> Result<SchemaRef>;
|
||||
/// Count the number of rows in this table.
|
||||
async fn count_rows(&self, filter: Option<String>) -> Result<usize>;
|
||||
async fn do_add(&self, add: AddDataBuilder) -> Result<()>;
|
||||
async fn do_query(&self, query: &Query) -> Result<DatasetRecordBatchStream>;
|
||||
async fn delete(&self, predicate: &str) -> Result<()>;
|
||||
async fn do_create_index(&self, index: IndexBuilder) -> Result<()>;
|
||||
async fn do_merge_insert(
|
||||
&self,
|
||||
params: MergeInsertBuilder,
|
||||
new_data: Box<dyn RecordBatchReader + Send>,
|
||||
) -> Result<()>;
|
||||
async fn optimize(&self, action: OptimizeAction) -> Result<OptimizeStats>;
|
||||
async fn add_columns(
|
||||
&self,
|
||||
transforms: NewColumnTransform,
|
||||
read_columns: Option<Vec<String>>,
|
||||
) -> Result<()>;
|
||||
async fn alter_columns(&self, alterations: &[ColumnAlteration]) -> Result<()>;
|
||||
async fn drop_columns(&self, columns: &[&str]) -> Result<()>;
|
||||
}
|
||||
|
||||
/// A Table is a collection of strong typed Rows.
|
||||
///
|
||||
/// The type of the each row is defined in Apache Arrow [Schema].
|
||||
#[async_trait::async_trait]
|
||||
pub trait Table: std::fmt::Display + Send + Sync {
|
||||
fn as_any(&self) -> &dyn std::any::Any;
|
||||
#[derive(Clone)]
|
||||
pub struct Table {
|
||||
inner: Arc<dyn TableInternal>,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Table {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "{}", self.inner)
|
||||
}
|
||||
}
|
||||
|
||||
impl Table {
|
||||
pub(crate) fn new(inner: Arc<dyn TableInternal>) -> Self {
|
||||
Self { inner }
|
||||
}
|
||||
|
||||
/// Cast as [`NativeTable`], or return None it if is not a [`NativeTable`].
|
||||
fn as_native(&self) -> Option<&NativeTable>;
|
||||
///
|
||||
/// Warning: This function will be removed soon (features exclusive to NativeTable
|
||||
/// will be added to Table)
|
||||
pub fn as_native(&self) -> Option<&NativeTable> {
|
||||
self.inner.as_native()
|
||||
}
|
||||
|
||||
/// Get the name of the table.
|
||||
fn name(&self) -> &str;
|
||||
pub fn name(&self) -> &str {
|
||||
self.inner.name()
|
||||
}
|
||||
|
||||
/// Get the arrow [Schema] of the table.
|
||||
async fn schema(&self) -> Result<SchemaRef>;
|
||||
pub async fn schema(&self) -> Result<SchemaRef> {
|
||||
self.inner.schema().await
|
||||
}
|
||||
|
||||
/// Count the number of rows in this dataset.
|
||||
///
|
||||
/// # Arguments
|
||||
///
|
||||
/// * `filter` if present, only count rows matching the filter
|
||||
async fn count_rows(&self, filter: Option<String>) -> Result<usize>;
|
||||
pub async fn count_rows(&self, filter: Option<String>) -> Result<usize> {
|
||||
self.inner.count_rows(filter).await
|
||||
}
|
||||
|
||||
/// Insert new records into this Table
|
||||
///
|
||||
@@ -147,11 +232,14 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
///
|
||||
/// * `batches` data to be added to the Table
|
||||
/// * `options` options to control how data is added
|
||||
async fn add(
|
||||
&self,
|
||||
batches: Box<dyn RecordBatchReader + Send>,
|
||||
options: AddDataOptions,
|
||||
) -> Result<()>;
|
||||
pub fn add(&self, batches: Box<dyn RecordBatchReader + Send>) -> AddDataBuilder {
|
||||
AddDataBuilder {
|
||||
parent: self.inner.clone(),
|
||||
data: batches,
|
||||
mode: AddDataMode::Append,
|
||||
write_options: WriteOptions::default(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Delete the rows from table that match the predicate.
|
||||
///
|
||||
@@ -202,7 +290,9 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
/// tbl.delete("id > 5").await.unwrap();
|
||||
/// # });
|
||||
/// ```
|
||||
async fn delete(&self, predicate: &str) -> Result<()>;
|
||||
pub async fn delete(&self, predicate: &str) -> Result<()> {
|
||||
self.inner.delete(predicate).await
|
||||
}
|
||||
|
||||
/// Create an index on the column name.
|
||||
///
|
||||
@@ -228,7 +318,9 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
/// .unwrap();
|
||||
/// # });
|
||||
/// ```
|
||||
fn create_index(&self, column: &[&str]) -> IndexBuilder;
|
||||
pub fn create_index(&self, column: &[&str]) -> IndexBuilder {
|
||||
IndexBuilder::new(self.inner.clone(), column)
|
||||
}
|
||||
|
||||
/// Create a builder for a merge insert operation
|
||||
///
|
||||
@@ -305,12 +397,17 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
/// merge_insert.execute(Box::new(new_data)).await.unwrap();
|
||||
/// # });
|
||||
/// ```
|
||||
fn merge_insert(&self, on: &[&str]) -> MergeInsertBuilder;
|
||||
pub fn merge_insert(&self, on: &[&str]) -> MergeInsertBuilder {
|
||||
MergeInsertBuilder::new(
|
||||
self.inner.clone(),
|
||||
on.iter().map(|s| s.to_string()).collect(),
|
||||
)
|
||||
}
|
||||
|
||||
/// Search the table with a given query vector.
|
||||
///
|
||||
/// This is a convenience method for preparing an ANN query.
|
||||
fn search(&self, query: &[f32]) -> Query {
|
||||
pub fn search(&self, query: &[f32]) -> Query {
|
||||
self.query().nearest_to(query)
|
||||
}
|
||||
|
||||
@@ -327,7 +424,8 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
/// # use arrow_array::RecordBatch;
|
||||
/// # use futures::TryStreamExt;
|
||||
/// # tokio::runtime::Runtime::new().unwrap().block_on(async {
|
||||
/// # let tbl = lancedb::table::NativeTable::open("/tmp/tbl").await.unwrap();
|
||||
/// # let conn = lancedb::connect("/tmp").execute().await.unwrap();
|
||||
/// # let tbl = conn.open_table("tbl").execute().await.unwrap();
|
||||
/// use crate::lancedb::Table;
|
||||
/// let stream = tbl
|
||||
/// .query()
|
||||
@@ -346,7 +444,8 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
/// # use arrow_array::RecordBatch;
|
||||
/// # use futures::TryStreamExt;
|
||||
/// # tokio::runtime::Runtime::new().unwrap().block_on(async {
|
||||
/// # let tbl = lancedb::table::NativeTable::open("/tmp/tbl").await.unwrap();
|
||||
/// # let conn = lancedb::connect("/tmp").execute().await.unwrap();
|
||||
/// # let tbl = conn.open_table("tbl").execute().await.unwrap();
|
||||
/// use crate::lancedb::Table;
|
||||
/// let stream = tbl
|
||||
/// .query()
|
||||
@@ -364,13 +463,16 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
/// # use arrow_array::RecordBatch;
|
||||
/// # use futures::TryStreamExt;
|
||||
/// # tokio::runtime::Runtime::new().unwrap().block_on(async {
|
||||
/// # let tbl = lancedb::table::NativeTable::open("/tmp/tbl").await.unwrap();
|
||||
/// # let conn = lancedb::connect("/tmp").execute().await.unwrap();
|
||||
/// # let tbl = conn.open_table("tbl").execute().await.unwrap();
|
||||
/// use crate::lancedb::Table;
|
||||
/// let stream = tbl.query().execute_stream().await.unwrap();
|
||||
/// let batches: Vec<RecordBatch> = stream.try_collect().await.unwrap();
|
||||
/// # });
|
||||
/// ```
|
||||
fn query(&self) -> Query;
|
||||
pub fn query(&self) -> Query {
|
||||
Query::new(self.inner.clone())
|
||||
}
|
||||
|
||||
/// Optimize the on-disk data and indices for better performance.
|
||||
///
|
||||
@@ -378,25 +480,30 @@ pub trait Table: std::fmt::Display + Send + Sync {
|
||||
///
|
||||
/// Modeled after ``VACUUM`` in PostgreSQL.
|
||||
/// Not all implementations support explicit optimization.
|
||||
async fn optimize(&self, action: OptimizeAction) -> Result<OptimizeStats>;
|
||||
pub async fn optimize(&self, action: OptimizeAction) -> Result<OptimizeStats> {
|
||||
self.inner.optimize(action).await
|
||||
}
|
||||
|
||||
/// Add new columns to the table, providing values to fill in.
|
||||
async fn add_columns(
|
||||
pub async fn add_columns(
|
||||
&self,
|
||||
transforms: NewColumnTransform,
|
||||
read_columns: Option<Vec<String>>,
|
||||
) -> Result<()>;
|
||||
) -> Result<()> {
|
||||
self.inner.add_columns(transforms, read_columns).await
|
||||
}
|
||||
|
||||
/// Change a column's name or nullability.
|
||||
async fn alter_columns(&self, alterations: &[ColumnAlteration]) -> Result<()>;
|
||||
pub async fn alter_columns(&self, alterations: &[ColumnAlteration]) -> Result<()> {
|
||||
self.inner.alter_columns(alterations).await
|
||||
}
|
||||
|
||||
/// Remove columns from the table.
|
||||
async fn drop_columns(&self, columns: &[&str]) -> Result<()>;
|
||||
pub async fn drop_columns(&self, columns: &[&str]) -> Result<()> {
|
||||
self.inner.drop_columns(columns).await
|
||||
}
|
||||
}
|
||||
|
||||
/// Reference to a Table pointer.
|
||||
pub type TableRef = Arc<dyn Table>;
|
||||
|
||||
/// A table in a LanceDB database.
|
||||
#[derive(Debug, Clone)]
|
||||
pub struct NativeTable {
|
||||
@@ -414,7 +521,20 @@ pub struct NativeTable {
|
||||
|
||||
impl std::fmt::Display for NativeTable {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
write!(f, "Table({})", self.name)
|
||||
write!(
|
||||
f,
|
||||
"NativeTable({}, uri={}, read_consistency_interval={})",
|
||||
self.name,
|
||||
self.uri,
|
||||
match self.read_consistency_interval {
|
||||
None => {
|
||||
"None".to_string()
|
||||
}
|
||||
Some(duration) => {
|
||||
format!("{}s", duration.as_secs_f64())
|
||||
}
|
||||
}
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
@@ -467,9 +587,7 @@ impl NativeTable {
|
||||
lance::Error::DatasetNotFound { .. } => Error::TableNotFound {
|
||||
name: name.to_string(),
|
||||
},
|
||||
e => Error::Lance {
|
||||
message: e.to_string(),
|
||||
},
|
||||
source => Error::Lance { source },
|
||||
})?;
|
||||
|
||||
let dataset = DatasetConsistencyWrapper::new_latest(dataset, read_consistency_interval);
|
||||
@@ -518,9 +636,14 @@ impl NativeTable {
|
||||
})
|
||||
}
|
||||
|
||||
/// Checkout the latest version of this [NativeTable].
|
||||
///
|
||||
/// This will force the table to be reloaded from disk, regardless of the
|
||||
/// `read_consistency_interval` set.
|
||||
pub async fn checkout_latest(&self) -> Result<Self> {
|
||||
let mut dataset = self.dataset.duplicate().await;
|
||||
dataset.as_latest(self.read_consistency_interval).await?;
|
||||
dataset.reload().await?;
|
||||
Ok(Self {
|
||||
dataset,
|
||||
..self.clone()
|
||||
@@ -574,9 +697,7 @@ impl NativeTable {
|
||||
lance::Error::DatasetAlreadyExists { .. } => Error::TableAlreadyExists {
|
||||
name: name.to_string(),
|
||||
},
|
||||
e => Error::Lance {
|
||||
message: e.to_string(),
|
||||
},
|
||||
source => Error::Lance { source },
|
||||
})?;
|
||||
Ok(Self {
|
||||
name: name.to_string(),
|
||||
@@ -746,20 +867,116 @@ impl NativeTable {
|
||||
}
|
||||
let dataset = self.dataset.get().await?;
|
||||
let index_stats = dataset.index_statistics(&index.unwrap().index_name).await?;
|
||||
let index_stats: VectorIndexStatistics =
|
||||
serde_json::from_str(&index_stats).map_err(|e| Error::Lance {
|
||||
message: format!(
|
||||
"error deserializing index statistics {}: {}",
|
||||
e, index_stats
|
||||
),
|
||||
})?;
|
||||
let index_stats: VectorIndexStatistics = whatever!(
|
||||
serde_json::from_str(&index_stats),
|
||||
"error deserializing index statistics {index_stats}",
|
||||
);
|
||||
|
||||
Ok(Some(index_stats))
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait]
|
||||
impl MergeInsert for NativeTable {
|
||||
#[async_trait::async_trait]
|
||||
impl TableInternal for NativeTable {
|
||||
fn as_any(&self) -> &dyn std::any::Any {
|
||||
self
|
||||
}
|
||||
|
||||
fn as_native(&self) -> Option<&NativeTable> {
|
||||
Some(self)
|
||||
}
|
||||
|
||||
fn name(&self) -> &str {
|
||||
self.name.as_str()
|
||||
}
|
||||
|
||||
async fn schema(&self) -> Result<SchemaRef> {
|
||||
let lance_schema = self.dataset.get().await?.schema().clone();
|
||||
Ok(Arc::new(Schema::from(&lance_schema)))
|
||||
}
|
||||
|
||||
async fn count_rows(&self, filter: Option<String>) -> Result<usize> {
|
||||
let dataset = self.dataset.get().await?;
|
||||
if let Some(filter) = filter {
|
||||
let mut scanner = dataset.scan();
|
||||
scanner.filter(&filter)?;
|
||||
Ok(scanner.count_rows().await? as usize)
|
||||
} else {
|
||||
Ok(dataset.count_rows().await?)
|
||||
}
|
||||
}
|
||||
|
||||
async fn do_add(&self, add: AddDataBuilder) -> Result<()> {
|
||||
let lance_params = add.write_options.lance_write_params.unwrap_or(WriteParams {
|
||||
mode: match add.mode {
|
||||
AddDataMode::Append => WriteMode::Append,
|
||||
AddDataMode::Overwrite => WriteMode::Overwrite,
|
||||
},
|
||||
..Default::default()
|
||||
});
|
||||
|
||||
// patch the params if we have a write store wrapper
|
||||
let lance_params = match self.store_wrapper.clone() {
|
||||
Some(wrapper) => lance_params.patch_with_store_wrapper(wrapper)?,
|
||||
None => lance_params,
|
||||
};
|
||||
|
||||
let dataset = Dataset::write(add.data, &self.uri, Some(lance_params)).await?;
|
||||
self.dataset.set_latest(dataset).await;
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn do_query(&self, query: &Query) -> Result<DatasetRecordBatchStream> {
|
||||
let ds_ref = self.dataset.get().await?;
|
||||
let mut scanner: Scanner = ds_ref.scan();
|
||||
|
||||
if let Some(query_vector) = query.query_vector.as_ref() {
|
||||
// If there is a vector query, default to limit=10 if unspecified
|
||||
let column = if let Some(col) = query.column.as_ref() {
|
||||
col.clone()
|
||||
} else {
|
||||
// Infer a vector column with the same dimension of the query vector.
|
||||
let arrow_schema = Schema::from(ds_ref.schema());
|
||||
default_vector_column(&arrow_schema, Some(query_vector.len() as i32))?
|
||||
};
|
||||
let field = ds_ref.schema().field(&column).ok_or(Error::Schema {
|
||||
message: format!("Column {} not found in dataset schema", column),
|
||||
})?;
|
||||
if !matches!(field.data_type(), arrow_schema::DataType::FixedSizeList(f, dim) if f.data_type().is_floating() && dim == query_vector.len() as i32)
|
||||
{
|
||||
return Err(Error::Schema {
|
||||
message: format!(
|
||||
"Vector column '{}' does not match the dimension of the query vector: dim={}",
|
||||
column,
|
||||
query_vector.len(),
|
||||
),
|
||||
});
|
||||
}
|
||||
scanner.nearest(&column, query_vector, query.limit.unwrap_or(DEFAULT_TOP_K))?;
|
||||
} else {
|
||||
// If there is no vector query, it's ok to not have a limit
|
||||
scanner.limit(query.limit.map(|limit| limit as i64), None)?;
|
||||
}
|
||||
scanner.nprobs(query.nprobes);
|
||||
scanner.use_index(query.use_index);
|
||||
scanner.prefilter(query.prefilter);
|
||||
|
||||
match &query.select {
|
||||
Select::Simple(select) => {
|
||||
scanner.project(select.as_slice())?;
|
||||
}
|
||||
Select::Projection(select_with_transform) => {
|
||||
scanner.project_with_transform(select_with_transform.as_slice())?;
|
||||
}
|
||||
Select::All => { /* Do nothing */ }
|
||||
}
|
||||
|
||||
query.filter.as_ref().map(|f| scanner.filter(f));
|
||||
query.refine_factor.map(|rf| scanner.refine(rf));
|
||||
query.metric_type.map(|mt| scanner.distance_metric(mt));
|
||||
Ok(scanner.try_into_stream().await?)
|
||||
}
|
||||
|
||||
async fn do_merge_insert(
|
||||
&self,
|
||||
params: MergeInsertBuilder,
|
||||
@@ -795,78 +1012,113 @@ impl MergeInsert for NativeTable {
|
||||
self.dataset.set_latest(new_dataset.as_ref().clone()).await;
|
||||
Ok(())
|
||||
}
|
||||
}
|
||||
|
||||
#[async_trait::async_trait]
|
||||
impl Table for NativeTable {
|
||||
fn as_any(&self) -> &dyn std::any::Any {
|
||||
self
|
||||
}
|
||||
async fn do_create_index(&self, index: IndexBuilder) -> Result<()> {
|
||||
let schema = self.schema().await?;
|
||||
|
||||
fn as_native(&self) -> Option<&NativeTable> {
|
||||
Some(self)
|
||||
}
|
||||
|
||||
fn name(&self) -> &str {
|
||||
self.name.as_str()
|
||||
}
|
||||
|
||||
async fn schema(&self) -> Result<SchemaRef> {
|
||||
let lance_schema = self.dataset.get().await?.schema().clone();
|
||||
Ok(Arc::new(Schema::from(&lance_schema)))
|
||||
}
|
||||
|
||||
async fn count_rows(&self, filter: Option<String>) -> Result<usize> {
|
||||
let dataset = self.dataset.get().await?;
|
||||
if let Some(filter) = filter {
|
||||
let mut scanner = dataset.scan();
|
||||
scanner.filter(&filter)?;
|
||||
Ok(scanner.count_rows().await? as usize)
|
||||
// TODO: simplify this after GH lance#1864.
|
||||
let mut index_type = &index.index_type;
|
||||
let columns = if index.columns.is_empty() {
|
||||
// By default we create vector index.
|
||||
index_type = &IndexType::Vector;
|
||||
vec![default_vector_column(&schema, None)?]
|
||||
} else {
|
||||
Ok(dataset.count_rows().await?)
|
||||
}
|
||||
}
|
||||
|
||||
async fn add(
|
||||
&self,
|
||||
batches: Box<dyn RecordBatchReader + Send>,
|
||||
params: AddDataOptions,
|
||||
) -> Result<()> {
|
||||
let lance_params = params
|
||||
.write_options
|
||||
.lance_write_params
|
||||
.unwrap_or(WriteParams {
|
||||
mode: match params.mode {
|
||||
AddDataMode::Append => WriteMode::Append,
|
||||
AddDataMode::Overwrite => WriteMode::Overwrite,
|
||||
},
|
||||
..Default::default()
|
||||
});
|
||||
|
||||
// patch the params if we have a write store wrapper
|
||||
let lance_params = match self.store_wrapper.clone() {
|
||||
Some(wrapper) => lance_params.patch_with_store_wrapper(wrapper)?,
|
||||
None => lance_params,
|
||||
index.columns.clone()
|
||||
};
|
||||
|
||||
let dataset = Dataset::write(batches, &self.uri, Some(lance_params)).await?;
|
||||
self.dataset.set_latest(dataset).await;
|
||||
if columns.len() != 1 {
|
||||
return Err(Error::Schema {
|
||||
message: "Only one column is supported for index".to_string(),
|
||||
});
|
||||
}
|
||||
let column = &columns[0];
|
||||
|
||||
let field = schema.field_with_name(column)?;
|
||||
|
||||
let params = match index_type {
|
||||
IndexType::Scalar => IndexParams::Scalar {
|
||||
replace: index.replace,
|
||||
},
|
||||
IndexType::Vector => {
|
||||
let num_partitions = if let Some(n) = index.num_partitions {
|
||||
n
|
||||
} else {
|
||||
suggested_num_partitions(self.count_rows(None).await?)
|
||||
};
|
||||
let num_sub_vectors: u32 = if let Some(n) = index.num_sub_vectors {
|
||||
n
|
||||
} else {
|
||||
match field.data_type() {
|
||||
arrow_schema::DataType::FixedSizeList(_, n) => {
|
||||
Ok::<u32, Error>(suggested_num_sub_vectors(*n as u32))
|
||||
}
|
||||
_ => Err(Error::Schema {
|
||||
message: format!(
|
||||
"Column '{}' is not a FixedSizeList",
|
||||
&index.columns[0]
|
||||
),
|
||||
}),
|
||||
}?
|
||||
};
|
||||
IndexParams::IvfPq {
|
||||
replace: index.replace,
|
||||
metric_type: index.metric_type,
|
||||
num_partitions: num_partitions as u64,
|
||||
num_sub_vectors,
|
||||
num_bits: index.num_bits,
|
||||
sample_rate: index.sample_rate,
|
||||
max_iterations: index.max_iterations,
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
let tbl = self
|
||||
.as_native()
|
||||
.expect("Only native table is supported here");
|
||||
let mut dataset = tbl.dataset.get_mut().await?;
|
||||
match params {
|
||||
IndexParams::Scalar { replace } => {
|
||||
dataset
|
||||
.create_index(
|
||||
&[&column],
|
||||
IndexType::Scalar,
|
||||
None,
|
||||
&ScalarIndexParams::default(),
|
||||
replace,
|
||||
)
|
||||
.await?
|
||||
}
|
||||
IndexParams::IvfPq {
|
||||
replace,
|
||||
metric_type,
|
||||
num_partitions,
|
||||
num_sub_vectors,
|
||||
num_bits,
|
||||
max_iterations,
|
||||
..
|
||||
} => {
|
||||
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_pq(
|
||||
num_partitions as usize,
|
||||
num_bits as u8,
|
||||
num_sub_vectors as usize,
|
||||
false,
|
||||
metric_type,
|
||||
max_iterations as usize,
|
||||
);
|
||||
dataset
|
||||
.create_index(
|
||||
&[column],
|
||||
IndexType::Vector,
|
||||
None,
|
||||
&lance_idx_params,
|
||||
replace,
|
||||
)
|
||||
.await?;
|
||||
}
|
||||
}
|
||||
Ok(())
|
||||
}
|
||||
|
||||
fn merge_insert(&self, on: &[&str]) -> MergeInsertBuilder {
|
||||
let on = Vec::from_iter(on.iter().map(|key| key.to_string()));
|
||||
MergeInsertBuilder::new(Arc::new(self.clone()), on)
|
||||
}
|
||||
|
||||
fn create_index(&self, columns: &[&str]) -> IndexBuilder {
|
||||
IndexBuilder::new(Arc::new(self.clone()), columns)
|
||||
}
|
||||
|
||||
fn query(&self) -> Query {
|
||||
Query::new(self.dataset.clone())
|
||||
}
|
||||
|
||||
/// Delete rows from the table
|
||||
async fn delete(&self, predicate: &str) -> Result<()> {
|
||||
self.dataset.get_mut().await?.delete(predicate).await?;
|
||||
@@ -968,6 +1220,7 @@ mod tests {
|
||||
use rand::Rng;
|
||||
use tempfile::tempdir;
|
||||
|
||||
use crate::connect;
|
||||
use crate::connection::ConnectBuilder;
|
||||
|
||||
use super::*;
|
||||
@@ -1027,10 +1280,13 @@ mod tests {
|
||||
async fn test_add() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
|
||||
let batches = make_test_batches();
|
||||
let schema = batches.schema().clone();
|
||||
let table = NativeTable::create(uri, "test", batches, None, None, None)
|
||||
let table = conn
|
||||
.create_table("test", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 10);
|
||||
@@ -1046,22 +1302,22 @@ mod tests {
|
||||
schema.clone(),
|
||||
);
|
||||
|
||||
table
|
||||
.add(Box::new(new_batches), AddDataOptions::default())
|
||||
.await
|
||||
.unwrap();
|
||||
table.add(Box::new(new_batches)).execute().await.unwrap();
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 20);
|
||||
assert_eq!(table.name, "test");
|
||||
assert_eq!(table.name(), "test");
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
async fn test_merge_insert() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
|
||||
// Create a dataset with i=0..10
|
||||
let batches = merge_insert_test_batches(0, 0);
|
||||
let table = NativeTable::create(uri, "test", batches, None, None, None)
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 10);
|
||||
@@ -1104,10 +1360,13 @@ mod tests {
|
||||
async fn test_add_overwrite() {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
|
||||
let batches = make_test_batches();
|
||||
let schema = batches.schema().clone();
|
||||
let table = NativeTable::create(uri, "test", batches, None, None, None)
|
||||
let table = conn
|
||||
.create_table("test", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 10);
|
||||
@@ -1124,17 +1383,13 @@ mod tests {
|
||||
|
||||
// Can overwrite using AddDataOptions::mode
|
||||
table
|
||||
.add(
|
||||
Box::new(new_batches),
|
||||
AddDataOptions {
|
||||
mode: AddDataMode::Overwrite,
|
||||
..Default::default()
|
||||
},
|
||||
)
|
||||
.add(Box::new(new_batches))
|
||||
.mode(AddDataMode::Overwrite)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 10);
|
||||
assert_eq!(table.name, "test");
|
||||
assert_eq!(table.name(), "test");
|
||||
|
||||
// Can overwrite using underlying WriteParams (which
|
||||
// take precedence over AddDataOptions::mode)
|
||||
@@ -1144,17 +1399,18 @@ mod tests {
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
let opts = AddDataOptions {
|
||||
write_options: WriteOptions {
|
||||
lance_write_params: Some(param),
|
||||
},
|
||||
mode: AddDataMode::Append,
|
||||
};
|
||||
|
||||
let new_batches = RecordBatchIterator::new(batches.clone(), schema.clone());
|
||||
table.add(Box::new(new_batches), opts).await.unwrap();
|
||||
table
|
||||
.add(Box::new(new_batches))
|
||||
.write_options(WriteOptions {
|
||||
lance_write_params: Some(param),
|
||||
})
|
||||
.mode(AddDataMode::Append)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 10);
|
||||
assert_eq!(table.name, "test");
|
||||
assert_eq!(table.name(), "test");
|
||||
}
|
||||
|
||||
#[tokio::test]
|
||||
@@ -1162,6 +1418,11 @@ mod tests {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
let conn = connect(uri)
|
||||
.read_consistency_interval(Duration::from_secs(0))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("id", DataType::Int32, false),
|
||||
@@ -1184,20 +1445,23 @@ mod tests {
|
||||
schema.clone(),
|
||||
);
|
||||
|
||||
Dataset::write(record_batch_iter, uri, None).await.unwrap();
|
||||
let table = NativeTable::open(uri).await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(record_batch_iter))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.update(Some("id > 5"), vec![("name", "'foo'")])
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let ds_after = Dataset::open(uri).await.unwrap();
|
||||
let mut batches = ds_after
|
||||
.scan()
|
||||
.project(&["id", "name"])
|
||||
.unwrap()
|
||||
.try_into_stream()
|
||||
let mut batches = table
|
||||
.query()
|
||||
.select(&["id", "name"])
|
||||
.execute_stream()
|
||||
.await
|
||||
.unwrap()
|
||||
.try_collect::<Vec<_>>()
|
||||
@@ -1236,6 +1500,11 @@ mod tests {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
let conn = connect(uri)
|
||||
.read_consistency_interval(Duration::from_secs(0))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let schema = Arc::new(Schema::new(vec![
|
||||
Field::new("int32", DataType::Int32, false),
|
||||
@@ -1312,8 +1581,11 @@ mod tests {
|
||||
schema.clone(),
|
||||
);
|
||||
|
||||
Dataset::write(record_batch_iter, uri, None).await.unwrap();
|
||||
let table = NativeTable::open(uri).await.unwrap();
|
||||
let table = conn
|
||||
.create_table("my_table", Box::new(record_batch_iter))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
// check it can do update for each type
|
||||
let updates: Vec<(&str, &str)> = vec![
|
||||
@@ -1333,12 +1605,16 @@ mod tests {
|
||||
];
|
||||
|
||||
// for (column, value) in test_cases {
|
||||
table.update(None, updates).await.unwrap();
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.update(None, updates)
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
let ds_after = Dataset::open(uri).await.unwrap();
|
||||
let mut batches = ds_after
|
||||
.scan()
|
||||
.project(&[
|
||||
let mut batches = table
|
||||
.query()
|
||||
.select(&[
|
||||
"string",
|
||||
"large_string",
|
||||
"int32",
|
||||
@@ -1353,8 +1629,7 @@ mod tests {
|
||||
"vec_f32",
|
||||
"vec_f64",
|
||||
])
|
||||
.unwrap()
|
||||
.try_into_stream()
|
||||
.execute_stream()
|
||||
.await
|
||||
.unwrap()
|
||||
.try_collect::<Vec<_>>()
|
||||
@@ -1445,9 +1720,12 @@ mod tests {
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let dataset_path = tmp_dir.path().join("test.lance");
|
||||
let uri = dataset_path.to_str().unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
|
||||
let batches = make_test_batches();
|
||||
Dataset::write(batches, dataset_path.to_str().unwrap(), None)
|
||||
|
||||
conn.create_table("my_table", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
@@ -1462,7 +1740,9 @@ mod tests {
|
||||
..Default::default()
|
||||
};
|
||||
assert!(!wrapper.called());
|
||||
let _ = NativeTable::open_with_params(uri, "test", None, Some(param), None)
|
||||
conn.open_table("my_table")
|
||||
.lance_read_params(param)
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert!(wrapper.called());
|
||||
@@ -1510,6 +1790,7 @@ mod tests {
|
||||
|
||||
let tmp_dir = tempdir().unwrap();
|
||||
let uri = tmp_dir.path().to_str().unwrap();
|
||||
let conn = connect(uri).execute().await.unwrap();
|
||||
|
||||
let dimension = 16;
|
||||
let schema = Arc::new(ArrowSchema::new(vec![Field::new(
|
||||
@@ -1536,12 +1817,30 @@ mod tests {
|
||||
schema,
|
||||
);
|
||||
|
||||
let table = NativeTable::create(uri, "test", batches, None, None, None)
|
||||
let table = conn
|
||||
.create_table("test", Box::new(batches))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(table.count_indexed_rows("my_index").await.unwrap(), None);
|
||||
assert_eq!(table.count_unindexed_rows("my_index").await.unwrap(), None);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_indexed_rows("my_index")
|
||||
.await
|
||||
.unwrap(),
|
||||
None
|
||||
);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_unindexed_rows("my_index")
|
||||
.await
|
||||
.unwrap(),
|
||||
None
|
||||
);
|
||||
|
||||
table
|
||||
.create_index(&["embeddings"])
|
||||
@@ -1552,18 +1851,37 @@ mod tests {
|
||||
.await
|
||||
.unwrap();
|
||||
|
||||
assert_eq!(table.load_indices().await.unwrap().len(), 1);
|
||||
assert_eq!(
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.load_indices()
|
||||
.await
|
||||
.unwrap()
|
||||
.len(),
|
||||
1
|
||||
);
|
||||
assert_eq!(table.count_rows(None).await.unwrap(), 512);
|
||||
assert_eq!(table.name, "test");
|
||||
assert_eq!(table.name(), "test");
|
||||
|
||||
let indices = table.load_indices().await.unwrap();
|
||||
let indices = table.as_native().unwrap().load_indices().await.unwrap();
|
||||
let index_uuid = &indices[0].index_uuid;
|
||||
assert_eq!(
|
||||
table.count_indexed_rows(index_uuid).await.unwrap(),
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_indexed_rows(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(512)
|
||||
);
|
||||
assert_eq!(
|
||||
table.count_unindexed_rows(index_uuid).await.unwrap(),
|
||||
table
|
||||
.as_native()
|
||||
.unwrap()
|
||||
.count_unindexed_rows(index_uuid)
|
||||
.await
|
||||
.unwrap(),
|
||||
Some(0)
|
||||
);
|
||||
}
|
||||
@@ -1618,13 +1936,11 @@ mod tests {
|
||||
assert_eq!(table2.count_rows(None).await.unwrap(), 0);
|
||||
|
||||
table1
|
||||
.add(
|
||||
Box::new(RecordBatchIterator::new(
|
||||
vec![Ok(batch.clone())],
|
||||
batch.schema(),
|
||||
)),
|
||||
AddDataOptions::default(),
|
||||
)
|
||||
.add(Box::new(RecordBatchIterator::new(
|
||||
vec![Ok(batch.clone())],
|
||||
batch.schema(),
|
||||
)))
|
||||
.execute()
|
||||
.await
|
||||
.unwrap();
|
||||
assert_eq!(table1.count_rows(None).await.unwrap(), 1);
|
||||
@@ -1632,6 +1948,9 @@ mod tests {
|
||||
match interval {
|
||||
None => {
|
||||
assert_eq!(table2.count_rows(None).await.unwrap(), 0);
|
||||
let table2_native =
|
||||
table2.as_native().unwrap().checkout_latest().await.unwrap();
|
||||
assert_eq!(table2_native.count_rows(None).await.unwrap(), 1);
|
||||
}
|
||||
Some(0) => {
|
||||
assert_eq!(table2.count_rows(None).await.unwrap(), 1);
|
||||
|
||||
@@ -156,7 +156,7 @@ impl DatasetConsistencyWrapper {
|
||||
self.0.write().await.set_latest(dataset);
|
||||
}
|
||||
|
||||
async fn reload(&self) -> Result<()> {
|
||||
pub async fn reload(&self) -> Result<()> {
|
||||
self.0.write().await.reload().await
|
||||
}
|
||||
|
||||
|
||||
@@ -15,24 +15,16 @@
|
||||
use std::sync::Arc;
|
||||
|
||||
use arrow_array::RecordBatchReader;
|
||||
use async_trait::async_trait;
|
||||
|
||||
use crate::Result;
|
||||
|
||||
#[async_trait]
|
||||
pub(super) trait MergeInsert: Send + Sync {
|
||||
async fn do_merge_insert(
|
||||
&self,
|
||||
params: MergeInsertBuilder,
|
||||
new_data: Box<dyn RecordBatchReader + Send>,
|
||||
) -> Result<()>;
|
||||
}
|
||||
use super::TableInternal;
|
||||
|
||||
/// A builder used to create and run a merge insert operation
|
||||
///
|
||||
/// See [`super::Table::merge_insert`] for more context
|
||||
pub struct MergeInsertBuilder {
|
||||
table: Arc<dyn MergeInsert>,
|
||||
table: Arc<dyn TableInternal>,
|
||||
pub(super) on: Vec<String>,
|
||||
pub(super) when_matched_update_all: bool,
|
||||
pub(super) when_matched_update_all_filt: Option<String>,
|
||||
@@ -42,7 +34,7 @@ pub struct MergeInsertBuilder {
|
||||
}
|
||||
|
||||
impl MergeInsertBuilder {
|
||||
pub(super) fn new(table: Arc<dyn MergeInsert>, on: Vec<String>) -> Self {
|
||||
pub(super) fn new(table: Arc<dyn TableInternal>, on: Vec<String>) -> Self {
|
||||
Self {
|
||||
table,
|
||||
on,
|
||||
|
||||
@@ -21,8 +21,9 @@ impl PatchStoreParam for Option<ObjectStoreParams> {
|
||||
) -> Result<Option<ObjectStoreParams>> {
|
||||
let mut params = self.unwrap_or_default();
|
||||
if params.object_store_wrapper.is_some() {
|
||||
return Err(Error::Lance {
|
||||
return Err(Error::Other {
|
||||
message: "can not patch param because object store is already set".into(),
|
||||
source: None,
|
||||
});
|
||||
}
|
||||
params.object_store_wrapper = Some(wrapper);
|
||||
@@ -80,11 +81,11 @@ pub(crate) fn default_vector_column(schema: &Schema, dim: Option<i32>) -> Result
|
||||
})
|
||||
.collect::<Vec<_>>();
|
||||
if candidates.is_empty() {
|
||||
Err(Error::Store {
|
||||
Err(Error::Schema {
|
||||
message: "No vector column found to create index".to_string(),
|
||||
})
|
||||
} else if candidates.len() != 1 {
|
||||
Err(Error::Store {
|
||||
Err(Error::Schema {
|
||||
message: format!(
|
||||
"More than one vector columns found, \
|
||||
please specify which column to create index: {:?}",
|
||||
|
||||
@@ -62,6 +62,6 @@ async fn cloud_integration_test() {
|
||||
|
||||
assert_eq!(tbl.name(), name);
|
||||
|
||||
let table_names = db.table_names().await.unwrap();
|
||||
let table_names = db.table_names().execute().await.unwrap();
|
||||
assert!(table_names.contains(&name));
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user