Compare commits

..

4 Commits

Author SHA1 Message Date
Lance Release
e3b7ee47b9 Bump version: 0.9.0 → 0.9.0-final.1 2024-12-13 01:16:24 +00:00
Lu Qiu
97c9c906e4 Fix version test 2024-12-12 17:10:07 -08:00
Lu Qiu
358f86b9c6 fix 2024-12-12 16:44:24 -08:00
Lu Qiu
5489e215a3 Support storage options and folder prefix 2024-12-12 16:17:34 -08:00
28 changed files with 99 additions and 225 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.6.0"
current_version = "0.5.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -20,18 +20,11 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
[workspace.dependencies]
# lance = { "version" = "=0.13.0", "features" = ["dynamodb"] }
# lance-index = { "version" = "=0.13.0" }
# lance-linalg = { "version" = "=0.13.0" }
# lance-testing = { "version" = "=0.13.0" }
# lance-datafusion = { "version" = "=0.13.0" }
lance = { path = "../lance/rust/lance" }
lance-index = { path = "../lance/rust/lance-index" }
lance-linalg= { path = "../lance/rust/lance-linalg" }
lance-testing = { path = "../lance/rust/lance-testing" }
lance-datafusion = { path = "../lance/rust/lance-datafusion" }
lance = { "version" = "=0.13.0", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.13.0" }
lance-linalg = { "version" = "=0.13.0" }
lance-testing = { "version" = "=0.13.0" }
lance-datafusion = { "version" = "=0.13.0" }
# Note that this one does not include pyarrow
arrow = { version = "51.0", optional = false }
arrow-array = "51.0"

View File

@@ -116,21 +116,21 @@ This guide will show how to create tables, insert data into them, and update the
### From a Polars DataFrame
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
LanceDB supports [Polars](https://pola.rs/), a modern, fast DataFrame library
written in Rust. Just like in Pandas, the Polars integration is enabled by PyArrow
under the hood. A deeper integration between LanceDB Tables and Polars DataFrames
is on the way.
```python
import polars as pl
```python
import polars as pl
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
data = pl.DataFrame({
"vector": [[3.1, 4.1], [5.9, 26.5]],
"item": ["foo", "bar"],
"price": [10.0, 20.0]
})
table = db.create_table("pl_table", data=data)
```
### From an Arrow Table
=== "Python"

View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.6.0",
"version": "0.5.2",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.6.0",
"version": "0.5.2",
"cpu": [
"x64",
"arm64"

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.6.0",
"version": "0.5.2",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",

View File

@@ -39,9 +39,7 @@ describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
let tmpDir: tmp.DirResult;
let table: Table;
const schema:
| import("apache-arrow").Schema
| import("apache-arrow-old").Schema = new arrow.Schema([
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Float64(), true),
]);
@@ -317,7 +315,7 @@ describe("When creating an index", () => {
.query()
.limit(2)
.nearestTo(queryVec)
.distanceType("dot")
.distanceType("DoT")
.toArrow();
expect(rst.numRows).toBe(2);

View File

@@ -15,7 +15,6 @@
import {
Table as ArrowTable,
Binary,
BufferType,
DataType,
Field,
FixedSizeBinary,
@@ -38,68 +37,14 @@ import {
type makeTable,
vectorFromArray,
} from "apache-arrow";
import { Buffers } from "apache-arrow/data";
import { type EmbeddingFunction } from "./embedding/embedding_function";
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
import {
sanitizeField,
sanitizeSchema,
sanitizeTable,
sanitizeType,
} from "./sanitize";
import { sanitizeField, sanitizeSchema, sanitizeType } from "./sanitize";
export * from "apache-arrow";
export type SchemaLike =
| Schema
| {
fields: FieldLike[];
metadata: Map<string, string>;
get names(): unknown[];
};
export type FieldLike =
| Field
| {
type: string;
name: string;
nullable?: boolean;
metadata?: Map<string, string>;
};
export type DataLike =
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
| import("apache-arrow").Data<Struct<any>>
| {
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
type: any;
length: number;
offset: number;
stride: number;
nullable: boolean;
children: DataLike[];
get nullCount(): number;
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
values: Buffers<any>[BufferType.DATA];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
typeIds: Buffers<any>[BufferType.TYPE];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
nullBitmap: Buffers<any>[BufferType.VALIDITY];
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
valueOffsets: Buffers<any>[BufferType.OFFSET];
};
export type RecordBatchLike =
| RecordBatch
| {
schema: SchemaLike;
data: DataLike;
};
export type TableLike =
| ArrowTable
| { schema: SchemaLike; batches: RecordBatchLike[] };
export type IntoVector = Float32Array | Float64Array | number[];
export function isArrowTable(value: object): value is TableLike {
export function isArrowTable(value: object): value is ArrowTable {
if (value instanceof ArrowTable) return true;
return "schema" in value && "batches" in value;
}
@@ -190,7 +135,7 @@ export function isFixedSizeList(value: unknown): value is FixedSizeList {
}
/** Data type accepted by NodeJS SDK */
export type Data = Record<string, unknown>[] | TableLike;
export type Data = Record<string, unknown>[] | ArrowTable;
/*
* Options to control how a column should be converted to a vector array
@@ -217,7 +162,7 @@ export class MakeArrowTableOptions {
* The schema must be specified if there are no records (e.g. to make
* an empty table)
*/
schema?: SchemaLike;
schema?: Schema;
/*
* Mapping from vector column name to expected type
@@ -365,7 +310,7 @@ export function makeArrowTable(
if (opt.schema !== undefined && opt.schema !== null) {
opt.schema = sanitizeSchema(opt.schema);
opt.schema = validateSchemaEmbeddings(
opt.schema as Schema,
opt.schema,
data,
options?.embeddingFunction,
);
@@ -449,7 +394,7 @@ export function makeArrowTable(
// `new ArrowTable(schema, batches)` which does not do any schema inference
const firstTable = new ArrowTable(columns);
const batchesFixed = firstTable.batches.map(
(batch) => new RecordBatch(opt.schema as Schema, batch.data),
(batch) => new RecordBatch(opt.schema!, batch.data),
);
let schema: Schema;
if (metadata !== undefined) {
@@ -462,9 +407,9 @@ export function makeArrowTable(
}
}
schema = new Schema(opt.schema.fields as Field[], schemaMetadata);
schema = new Schema(opt.schema.fields, schemaMetadata);
} else {
schema = opt.schema as Schema;
schema = opt.schema;
}
return new ArrowTable(schema, batchesFixed);
}
@@ -480,7 +425,7 @@ export function makeArrowTable(
* Create an empty Arrow table with the provided schema
*/
export function makeEmptyTable(
schema: SchemaLike,
schema: Schema,
metadata?: Map<string, string>,
): ArrowTable {
return makeArrowTable([], { schema }, metadata);
@@ -618,17 +563,18 @@ async function applyEmbeddingsFromMetadata(
async function applyEmbeddings<T>(
table: ArrowTable,
embeddings?: EmbeddingFunctionConfig,
schema?: SchemaLike,
schema?: Schema,
): Promise<ArrowTable> {
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema);
}
if (schema?.metadata.has("embedding_functions")) {
return applyEmbeddingsFromMetadata(table, schema! as Schema);
return applyEmbeddingsFromMetadata(table, schema!);
} else if (embeddings == null || embeddings === undefined) {
return table;
}
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema);
}
// Convert from ArrowTable to Record<String, Vector>
const colEntries = [...Array(table.numCols).keys()].map((_, idx) => {
const name = table.schema.fields[idx].name;
@@ -704,7 +650,7 @@ async function applyEmbeddings<T>(
`When using embedding functions and specifying a schema the schema should include the embedding column but the column ${destColumn} was missing`,
);
}
return alignTable(newTable, schema as Schema);
return alignTable(newTable, schema);
}
return newTable;
}
@@ -798,7 +744,7 @@ export async function fromRecordsToStreamBuffer(
export async function fromTableToBuffer(
table: ArrowTable,
embeddings?: EmbeddingFunctionConfig,
schema?: SchemaLike,
schema?: Schema,
): Promise<Buffer> {
if (schema !== undefined && schema !== null) {
schema = sanitizeSchema(schema);
@@ -825,7 +771,7 @@ export async function fromDataToBuffer(
schema = sanitizeSchema(schema);
}
if (isArrowTable(data)) {
return fromTableToBuffer(sanitizeTable(data), embeddings, schema);
return fromTableToBuffer(data, embeddings, schema);
} else {
const table = await convertToTable(data, embeddings, { schema });
return fromTableToBuffer(table);
@@ -843,7 +789,7 @@ export async function fromDataToBuffer(
export async function fromTableToStreamBuffer(
table: ArrowTable,
embeddings?: EmbeddingFunctionConfig,
schema?: SchemaLike,
schema?: Schema,
): Promise<Buffer> {
const tableWithEmbeddings = await applyEmbeddings(table, embeddings, schema);
const writer = RecordBatchStreamWriter.writeAll(tableWithEmbeddings);
@@ -908,6 +854,7 @@ function validateSchemaEmbeddings(
for (let field of schema.fields) {
if (isFixedSizeList(field.type)) {
field = sanitizeField(field);
if (data.length !== 0 && data?.[0]?.[field.name] === undefined) {
if (schema.metadata.has("embedding_functions")) {
const embeddings = JSON.parse(

View File

@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
import { Data, Schema, SchemaLike, TableLike } from "./arrow";
import { Table as ArrowTable, Data, Schema } from "./arrow";
import { fromTableToBuffer, makeEmptyTable } from "./arrow";
import { EmbeddingFunctionConfig, getRegistry } from "./embedding/registry";
import { Connection as LanceDbConnection } from "./native";
@@ -50,7 +50,7 @@ export interface CreateTableOptions {
* The default is true while the new format is in beta
*/
useLegacyFormat?: boolean;
schema?: SchemaLike;
schema?: Schema;
embeddingFunction?: EmbeddingFunctionConfig;
}
@@ -167,12 +167,12 @@ export abstract class Connection {
/**
* Creates a new Table and initialize it with new data.
* @param {string} name - The name of the table.
* @param {Record<string, unknown>[] | TableLike} data - Non-empty Array of Records
* @param {Record<string, unknown>[] | ArrowTable} data - Non-empty Array of Records
* to be inserted into the table
*/
abstract createTable(
name: string,
data: Record<string, unknown>[] | TableLike,
data: Record<string, unknown>[] | ArrowTable,
options?: Partial<CreateTableOptions>,
): Promise<Table>;
@@ -183,7 +183,7 @@ export abstract class Connection {
*/
abstract createEmptyTable(
name: string,
schema: import("./arrow").SchemaLike,
schema: Schema,
options?: Partial<CreateTableOptions>,
): Promise<Table>;
@@ -235,7 +235,7 @@ export class LocalConnection extends Connection {
nameOrOptions:
| string
| ({ name: string; data: Data } & Partial<CreateTableOptions>),
data?: Record<string, unknown>[] | TableLike,
data?: Record<string, unknown>[] | ArrowTable,
options?: Partial<CreateTableOptions>,
): Promise<Table> {
if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) {
@@ -259,7 +259,7 @@ export class LocalConnection extends Connection {
async createEmptyTable(
name: string,
schema: import("./arrow").SchemaLike,
schema: Schema,
options?: Partial<CreateTableOptions>,
): Promise<Table> {
let mode: string = options?.mode ?? "create";

View File

@@ -300,9 +300,7 @@ export class VectorQuery extends QueryBase<NativeVectorQuery, VectorQuery> {
*
* By default "l2" is used.
*/
distanceType(
distanceType: Required<IvfPqOptions>["distanceType"],
): VectorQuery {
distanceType(distanceType: string): VectorQuery {
this.inner.distanceType(distanceType);
return this;
}

View File

@@ -1,10 +1,5 @@
import { Schema } from "apache-arrow";
import {
Data,
SchemaLike,
fromTableToStreamBuffer,
makeEmptyTable,
} from "../arrow";
import { Data, fromTableToStreamBuffer, makeEmptyTable } from "../arrow";
import {
Connection,
CreateTableOptions,
@@ -161,7 +156,7 @@ export class RemoteConnection extends Connection {
async createEmptyTable(
name: string,
schema: SchemaLike,
schema: Schema,
options?: Partial<CreateTableOptions> | undefined,
): Promise<Table> {
if (options?.mode) {

View File

@@ -20,12 +20,10 @@
// comes from the exact same library instance. This is not always the case
// and so we must sanitize the input to ensure that it is compatible.
import { BufferType, Data } from "apache-arrow";
import type { IntBitWidth, TKeys, TimeBitWidth } from "apache-arrow/type";
import {
Binary,
Bool,
DataLike,
DataType,
DateDay,
DateMillisecond,
@@ -58,14 +56,9 @@ import {
Map_,
Null,
type Precision,
RecordBatch,
RecordBatchLike,
Schema,
SchemaLike,
SparseUnion,
Struct,
Table,
TableLike,
Time,
TimeMicrosecond,
TimeMillisecond,
@@ -495,7 +488,7 @@ export function sanitizeField(fieldLike: unknown): Field {
* instance because they might be using a different instance of apache-arrow
* than lancedb is using.
*/
export function sanitizeSchema(schemaLike: SchemaLike): Schema {
export function sanitizeSchema(schemaLike: unknown): Schema {
if (schemaLike instanceof Schema) {
return schemaLike;
}
@@ -521,68 +514,3 @@ export function sanitizeSchema(schemaLike: SchemaLike): Schema {
);
return new Schema(sanitizedFields, metadata);
}
export function sanitizeTable(tableLike: TableLike): Table {
if (tableLike instanceof Table) {
return tableLike;
}
if (typeof tableLike !== "object" || tableLike === null) {
throw Error("Expected a Table but object was null/undefined");
}
if (!("schema" in tableLike)) {
throw Error(
"The table passed in does not appear to be a table (no 'schema' property)",
);
}
if (!("batches" in tableLike)) {
throw Error(
"The table passed in does not appear to be a table (no 'columns' property)",
);
}
const schema = sanitizeSchema(tableLike.schema);
const batches = tableLike.batches.map(sanitizeRecordBatch);
return new Table(schema, batches);
}
function sanitizeRecordBatch(batchLike: RecordBatchLike): RecordBatch {
if (batchLike instanceof RecordBatch) {
return batchLike;
}
if (typeof batchLike !== "object" || batchLike === null) {
throw Error("Expected a RecordBatch but object was null/undefined");
}
if (!("schema" in batchLike)) {
throw Error(
"The record batch passed in does not appear to be a record batch (no 'schema' property)",
);
}
if (!("data" in batchLike)) {
throw Error(
"The record batch passed in does not appear to be a record batch (no 'data' property)",
);
}
const schema = sanitizeSchema(batchLike.schema);
const data = sanitizeData(batchLike.data);
return new RecordBatch(schema, data);
}
function sanitizeData(
dataLike: DataLike,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
): import("apache-arrow").Data<Struct<any>> {
if (dataLike instanceof Data) {
return dataLike;
}
return new Data(
dataLike.type,
dataLike.offset,
dataLike.length,
dataLike.nullCount,
{
[BufferType.OFFSET]: dataLike.valueOffsets,
[BufferType.DATA]: dataLike.values,
[BufferType.VALIDITY]: dataLike.nullBitmap,
[BufferType.TYPE]: dataLike.typeIds,
},
);
}

View File

@@ -17,7 +17,6 @@ import {
Data,
IntoVector,
Schema,
TableLike,
fromDataToBuffer,
fromTableToBuffer,
fromTableToStreamBuffer,
@@ -39,8 +38,6 @@ import {
Table as _NativeTable,
} from "./native";
import { Query, VectorQuery } from "./query";
import { sanitizeTable } from "./sanitize";
export { IndexConfig } from "./native";
/**
* Options for adding data to a table.
@@ -384,7 +381,8 @@ export abstract class Table {
abstract indexStats(name: string): Promise<IndexStatistics | undefined>;
static async parseTableData(
data: Record<string, unknown>[] | TableLike,
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
data: Record<string, unknown>[] | ArrowTable<any>,
options?: Partial<CreateTableOptions>,
streaming = false,
) {
@@ -397,9 +395,9 @@ export abstract class Table {
let table: ArrowTable;
if (isArrowTable(data)) {
table = sanitizeTable(data);
table = data;
} else {
table = makeArrowTable(data as Record<string, unknown>[], options);
table = makeArrowTable(data, options);
}
if (streaming) {
const buf = await fromTableToStreamBuffer(

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.6.0",
"version": "0.5.2",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.6.0",
"version": "0.5.2",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.6.0",
"version": "0.5.2",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.6.0",
"version": "0.5.2",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.6.0",
"version": "0.5.2",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -10,7 +10,7 @@
"vector database",
"ann"
],
"version": "0.6.0",
"version": "0.5.2",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.9.0"
current_version = "0.9.0-final.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.9.0"
version = "0.9.0-final.1"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true

View File

@@ -35,6 +35,7 @@ def connect(
host_override: Optional[str] = None,
read_consistency_interval: Optional[timedelta] = None,
request_thread_pool: Optional[Union[int, ThreadPoolExecutor]] = None,
storage_options: Optional[Dict[str, str]] = None,
**kwargs,
) -> DBConnection:
"""Connect to a LanceDB database.
@@ -70,6 +71,9 @@ def connect(
executor will be used for making requests. This is for LanceDB Cloud
only and is only used when making batch requests (i.e., passing in
multiple queries to the search method at once).
storage_options: dict, optional
Additional options for the storage backend. See available options at
https://lancedb.github.io/lancedb/guides/storage/
Examples
--------
@@ -105,12 +109,16 @@ def connect(
region,
host_override,
request_thread_pool=request_thread_pool,
storage_options=storage_options,
**kwargs,
)
if kwargs:
raise ValueError(f"Unknown keyword arguments: {kwargs}")
return LanceDBConnection(uri, read_consistency_interval=read_consistency_interval)
return LanceDBConnection(
uri,
read_consistency_interval=read_consistency_interval,
)
async def connect_async(

View File

@@ -55,11 +55,13 @@ class RestfulLanceDBClient:
region: str
api_key: Credential
host_override: Optional[str] = attrs.field(default=None)
db_prefix: Optional[str] = attrs.field(default=None)
closed: bool = attrs.field(default=False, init=False)
connection_timeout: float = attrs.field(default=120.0, kw_only=True)
read_timeout: float = attrs.field(default=300.0, kw_only=True)
storage_options: Optional[Dict[str, str]] = attrs.field(default=None, kw_only=True)
@functools.cached_property
def session(self) -> requests.Session:
@@ -92,6 +94,18 @@ class RestfulLanceDBClient:
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
if self.host_override:
headers["x-lancedb-database"] = self.db_name
if self.storage_options:
if self.storage_options.get("account_name") is not None:
headers["x-azure-storage-account-name"] = self.storage_options[
"account_name"
]
if self.storage_options.get("azure_storage_account_name") is not None:
headers["x-azure-storage-account-name"] = self.storage_options[
"azure_storage_account_name"
]
if self.db_prefix:
headers["x-lancedb-database-prefix"] = self.db_prefix
return headers
@staticmethod

View File

@@ -15,7 +15,7 @@ import inspect
import logging
import uuid
from concurrent.futures import ThreadPoolExecutor
from typing import Iterable, List, Optional, Union
from typing import Dict, Iterable, List, Optional, Union
from urllib.parse import urlparse
from cachetools import TTLCache
@@ -44,20 +44,25 @@ class RemoteDBConnection(DBConnection):
request_thread_pool: Optional[ThreadPoolExecutor] = None,
connection_timeout: float = 120.0,
read_timeout: float = 300.0,
storage_options: Optional[Dict[str, str]] = None,
):
"""Connect to a remote LanceDB database."""
parsed = urlparse(db_url)
if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc
prefix = parsed.path.lstrip("/")
self.db_prefix = None if not prefix else prefix
self.api_key = api_key
self._client = RestfulLanceDBClient(
self.db_name,
region,
api_key,
host_override,
self.db_prefix,
connection_timeout=connection_timeout,
read_timeout=read_timeout,
storage_options=storage_options,
)
self._request_thread_pool = request_thread_pool
self._table_cache = TTLCache(maxsize=10000, ttl=300)

View File

@@ -735,7 +735,7 @@ def test_create_scalar_index(db):
indices = table.to_lance().list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index["type"] == "Scalar"
assert scalar_index["type"] == "BTree"
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-node"
version = "0.6.0"
version = "0.5.2"
description = "Serverless, low-latency vector database for AI applications"
license.workspace = true
edition.workspace = true

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.6.0"
version = "0.5.2"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true

View File

@@ -6,12 +6,3 @@
LanceDB Rust SDK, a serverless vector database.
Read more at: https://lancedb.com/
> [!TIP]
> A transitive dependency of `lancedb` is `lzma-sys`, which uses dynamic linking
> by default. If you want to statically link `lzma-sys`, you should activate it's
> `static` feature by adding the following to your dependencies:
>
> ```toml
> lzma-sys = { version = "*", features = ["static"] }
> ```

View File

@@ -1889,7 +1889,6 @@ impl TableInternal for NativeTable {
}
columns.push(field.name.clone());
}
let index_type = if is_vector {
crate::index::IndexType::IvfPq
} else {