Compare commits

..

38 Commits

Author SHA1 Message Date
Lance Release
f744b785f8 Bump version: 0.25.0-beta.2 → 0.25.0 2025-09-04 08:32:44 +00:00
Lance Release
2e3f745820 Bump version: 0.25.0-beta.1 → 0.25.0-beta.2 2025-09-04 08:32:43 +00:00
Jack Ye
683aaed716 chore: upgrade lance to 0.35.0 (#2625) 2025-09-04 01:31:13 -07:00
Lance Release
48f7b20daa Bump version: 0.22.0-beta.0 → 0.22.0-beta.1 2025-09-03 17:51:36 +00:00
Lance Release
4dd399ca29 Bump version: 0.25.0-beta.0 → 0.25.0-beta.1 2025-09-03 17:50:41 +00:00
Jack Ye
e6f1da31dc chore: upgrade lance to 0.34.0-beta.4 (#2621) 2025-09-02 21:33:55 -07:00
Wyatt Alt
a9ea785b15 fix: remote python sdk namespace typing (#2620)
This changes the default values for some namespace parameters in the
remote python SDK from None to [], to match the underlying code it
calls.

Prior to this commit, failing to supply "namespace" with the remote SDK
would cause an error because the underlying code it dispatches to does
not consider None to be valid input.
2025-09-02 16:32:32 -07:00
Colin Patrick McCabe
cc38453391 fix!: fix doctest in query.py (#2622)
Fix doctest in query.py to include cumulative_cpu, now that lance
includes that.
2025-09-02 15:47:32 -07:00
Lance Release
47747287b6 Bump version: 0.21.4-beta.1 → 0.22.0-beta.0 2025-08-29 21:20:57 +00:00
Lance Release
0847e666a0 Bump version: 0.24.4-beta.1 → 0.25.0-beta.0 2025-08-29 21:19:51 +00:00
Wyatt Alt
981f8427e6 chore: update lance (#2610)
Adds storage_options to object_store wrap() to adhere to upstream lance
change.
2025-08-29 13:41:02 -07:00
Will Jones
f6846004ca feat: add name parameter to remaining Python create index calls (#2617)
## Summary
This PR adds the missing `name` parameter to `create_scalar_index` and
`create_fts_index` methods in the Python SDK, which was inadvertently
omitted when it was added to `create_index` in PR #2586.

## Changes
- Add `name: Optional[str] = None` parameter to abstract
`Table.create_scalar_index` and `Table.create_fts_index` methods
- Update `LanceTable` implementation to accept and pass the `name`
parameter to the underlying Rust layer
- Update `RemoteTable` implementation to accept and pass the `name`
parameter
- Enhanced tests to verify custom index names work correctly for both
scalar and FTS indices
- When `name` is not provided, default names are generated (e.g.,
`{column}_idx`)

## Test plan
- [x] Added test cases for custom names in scalar index creation
- [x] Added test cases for custom names in FTS index creation  
- [x] Verified existing tests continue to pass
- [x] Code formatting and linting checks pass

This ensures API consistency across all index creation methods in the
LanceDB Python SDK.

Fixes #2616

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-27 14:02:48 -07:00
Jack Ye
faf8973624 feat!: support multi-level namespace (#2603)
This PR adds support of multi-level namespace in a LanceDB database,
according to the Lance Namespace spec.

This allows users to create namespace inside a database connection,
perform create, drop, list, list_tables in a namespace. (other
operations like update, describe will be in a follow-up PR)

The 3 types of database connections behave like the following:
1 Local database connections will continue to have just a flat list of
tables for backwards compatibility.
2. Remote database connections will make REST API calls according to the
APIs in the Lance Namespace spec.
3. Lance Namespace connections will invoke the corresponding operations
against the specific namespace implementation which could have different
behaviors regarding these APIs.

All the table APIs now take identifier instead of name, for example
`/v1/table/{name}/create` is now `/v1/table/{id}/create`. If a table is
directly in the root namespace, the API call is identical. If the table
is in a namespace, then the full table ID should be used, with `$` as
the default delimiter (`.` is a special character and creates issues
with URL parsing so `$` is used), for example
`/v1/table/ns1$table1/create`. If a different parameter needs to be
passed in, user can configure the `id_delimiter` in client config and
that becomes a query parameter, for example
`/v1/table/ns1__table1/create?delimiter=__`

The Python and Typescript APIs are kept backwards compatible, but the
following Rust APIs are not:
1. `Connection::drop_table(&self, name: impl AsRef<str>) -> Result<()>`
is now `Connection::drop_table(&self, name: impl AsRef<str>, namespace:
&[String]) -> Result<()>`
2. `Connection::drop_all_tables(&self) -> Result<()>` is now
`Connection::drop_all_tables(&self, name: impl AsRef<str>) ->
Result<()>`
2025-08-27 12:07:55 -07:00
Weston Pace
fabe37274f feat: add __getitems__ method impl for torch integration (#2596)
This allows a lancedb Table to act as a torch dataset.
2025-08-25 13:23:22 -07:00
Lance Release
6839ac3509 Bump version: 0.21.4-beta.0 → 0.21.4-beta.1 2025-08-22 03:55:22 +00:00
Lance Release
b88422e515 Bump version: 0.24.4-beta.0 → 0.24.4-beta.1 2025-08-22 03:54:34 +00:00
BubbleCal
8d60685ede chore: upgrade lance to 0.33.0-beta.4 (#2604)
detials:
https://github.com/lancedb/lance/releases/tag/untagged-5191abd48c1fbe76f746

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-08-21 21:18:48 +08:00
Jack Ye
04285a4a4e feat(python): integrate with lance namespace (#2599)
This PR integrates `lancedb` with `lance-namespace` so that users can
use LanceDB client to access Lance tables in any catalog services. In
general, we expect most of the logic to be delegated to the existing
`LanceDBConnection` and `LanceTable`, but the namespace implemenation
will control how table is created, dropped, and describe where the table
is stored with any related storage options like access credentials.

The implementation currently only supports a 1 level namespace that
directly contains tables. We will introduce nested namespace support in
a separated PR.

Users are expected to use it in the following way:

```python
>>> import lancedb
>>> import pyarrow as pa
>>> # Connect using GlueNamespace
>>> db = lancedb.connect_namespace("glue", {"catalog_id": "123456789012"})
>>> # Create a table with schema
>>> schema = pa.schema([
...     pa.field("id", pa.int64()),
...     pa.field("vector", pa.list_(pa.float32(), 2))
... ])
>>> table = db.create_table("my_table", schema=schema)
>>> # List tables
>>> db.table_names()
['my_table']
```
2025-08-20 15:46:16 -07:00
Lance Release
d4a41b5663 Bump version: 0.21.3 → 0.21.4-beta.0 2025-08-19 22:56:52 +00:00
Lance Release
adc3daa462 Bump version: 0.24.3 → 0.24.4-beta.0 2025-08-19 22:56:05 +00:00
Will Jones
acbfa6c012 feat: upgrade lance to 0.33.0-beta.3 (#2598)
Change logs:
*
[v0.33.0-beta.3](https://github.com/lancedb/lance/releases/tag/v0.33.0-beta.3)
*
[v0.33.0-beta.2](https://github.com/lancedb/lance/releases/tag/v0.33.0-beta.2)
*
[v0.33.0-beta.1](https://github.com/lancedb/lance/releases/tag/v0.33.0-beta.1)

Important changes:

* Row-level conflict resolution for delete operations
* Fixes #2593
* Fix for keeping tombstones fields around, preventing cleanup of
dropped columns.
2025-08-19 13:45:15 -07:00
Vitali Lovich
d602e9f98c fix: make cloud features optional (#2567) (#2568)
This shrinks the size of a local embedded build that can disable all the
default features. When combined with
https://github.com/lancedb/lance/pull/4362 and the dependencies are
updated to point to the fix, this resolves #2567 fully.

Verified by patching the workspace to redirect to my clone of lance with
the PR applied.
```
cargo tree -p lancedb -e no-build -e no-dev --no-default-features -i aws-config | less
```

The reason that lance itself needs to change too is that many
dependencies within that project depend on lance-io/default and lancedb
depends on them which transitively ends up enabling the cloud
regardless. The PR in lance removes the dependency on lance-io/default
from all sibling crates.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-08-15 16:46:52 -07:00
Will Jones
ad09234d59 feat: allow setting train=False and name on indices (#2586)
Enables two new parameters when building indices:

* `name`: Allows explicitly setting a name on the index. Default is
`{col_name}_idx`.
* `train` (default `True`): When set to `False`, an empty index will be
immediately created.

The upgrade of Lance means there are also additional behaviors from
cd76a993b8:

* When a scalar index is created on a Table, it will be kept around even
if all rows are deleted or updated.
* Scalar indices can be created on empty tables. They will default to
`train=False` if the table is empty.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-08-15 14:00:26 -07:00
Lance Release
0c34ffb252 Bump version: 0.21.3-beta.0 → 0.21.3 2025-08-15 18:03:26 +00:00
Lance Release
d9f333d828 Bump version: 0.21.2 → 0.21.3-beta.0 2025-08-15 18:02:43 +00:00
Lance Release
bb809abd4b Bump version: 0.24.3-beta.0 → 0.24.3 2025-08-15 18:02:04 +00:00
Lance Release
c87530f7a3 Bump version: 0.24.2 → 0.24.3-beta.0 2025-08-15 18:02:04 +00:00
Will Jones
1eb1beecd6 ci: remove more mentions of node (#2595)
I promise this time I tested it locally :)
2025-08-15 11:01:02 -07:00
Yuval Lifshitz
ce550e6c45 feat: add missing rust examples (#2583)
all 3 example are running now with:
```
cargo run --example simple
cargo run --example full_text_search
cargo run --example ivf_pq
```

Signed-off-by: Yuval Lifshitz <ylifshit@ibm.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-08-15 10:38:58 -07:00
Will Jones
d3bae1f3a3 ci: drop old node mention (#2594)
This broke release here:
https://github.com/lancedb/lancedb/actions/runs/16993824504/job/48179542912
2025-08-15 09:51:19 -07:00
Will Jones
dcf53c4506 fix: limit and offset support paginating through FTS and vector search results (#2592)
Adds tests to ensure that users can paginate through simple scan, FTS,
and vector search results using `limit` and `offset`.

Tests upstream work: https://github.com/lancedb/lance/pull/4318

Closes #2459
2025-08-15 08:55:12 -07:00
Ryan Green
941eada703 docs: update indexing and compaction docs (#2362)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Clarified and expanded explanations of data management concepts in
LanceDB.
- Added notes on automatic background fragment compaction and
incremental reindexing support in LanceDB Cloud/Enterprise.
- Updated details on disabling interim exhaustive kNN search during
background reindexing.
  - Improved formatting and removed outdated FTS reindexing subsection.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-08-15 12:41:47 -02:30
Weston Pace
ed640a76d9 feat: add take_offsets and take_row_ids (#2584)
These operations have existed in lance for a long while and many users
need to drop down to lance for this capability. This PR adds the API and
implements it using filters (e.g. `_rowid IN (...)`) so that in doesn't
currently add any load to `BaseTable`. I'm not sure that is sustainable
as base table implementations may want to specialize how they handle
this method. However, I figure it is a good starting point.

In addition, unlike Lance, this API does not currently guarantee
anything about the order of the take results. This is necessary for the
fallback filter approach to work (SQL filters cannot guarantee result
order)
2025-08-15 06:48:24 -07:00
Will Jones
296205ef96 feat: upgrade lance to v0.33.0 (#2591)
https://github.com/lancedb/lance/releases/tag/v0.33.0
2025-08-14 12:11:19 -07:00
Weston Pace
16beaaa656 ci: fix broken CI checks (#2585) 2025-08-13 10:05:57 -07:00
Tomoko Uchida
4ff87b1f4a feat: add hybrid search example in Rust (#2579)
Hello!

I'm new to lancedb and interested in the Rust SDK.
I couldn't find a good hybrid search example in Rust, so I created one.

## Usage

```bash
$ cargo run --quiet --example hybrid_search --features=sentence-transformers
Result: Python is a popular programming language.
Result: Mount Everest is the highest mountain in the world.
Result: The first computer programmer was Ada Lovelace.
Result: Coffee is one of the most popular beverages in the world.
Result: Basketball is a sport played with a ball and a hoop.
```
2025-08-12 08:22:19 -07:00
Shawn
0532ef2358 chore(deps): update crunchy to 0.2.4 (#2581)
Hi,

I'm try to build goose (rely on lancedb) for android/termux.
Found out some depsendencies need to update. 

https://github.com/block/goose/pull/3890

0.2.4 update
- nmathewson Fix cross-compilation between windows and non-windows.

https://github.com/shawn111/lancedb/actions/runs/16871317860
windows and linux build passed

https://github.com/shawn111/lancedb/actions/runs/16871859398

Signed-off-by: Shawn Wang <shawn111@gmail.com>
2025-08-11 18:00:00 -07:00
BubbleCal
dcf7334c1f chore: upgrade lance to v0.32.2-beta.1 (#2580)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-08-08 17:00:54 +08:00
87 changed files with 6860 additions and 1606 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.21.2"
current_version = "0.22.0-beta.1"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -56,22 +56,11 @@ jobs:
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install node dependencies
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build node
working-directory: node
run: |
npm ci
npm run build
npm run tsc
- name: Create markdown files
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
working-directory: docs
run: |

View File

@@ -58,51 +58,3 @@ jobs:
run: |
cd docs/test/python
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: ubuntu-24.04
timeout-minutes: 60
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release
cd ../docs
npm install
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs
npm t

View File

@@ -79,7 +79,7 @@ jobs:
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
@@ -137,7 +137,7 @@ jobs:
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |

3
.gitignore vendored
View File

@@ -31,9 +31,6 @@ python/dist
*.node
**/node_modules
**/.DS_Store
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist

View File

@@ -11,14 +11,70 @@ Project layout:
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
(`rust/ffi` and `node/` are for a deprecated package. You can ignore them.)
Common commands:
* Check for compiler errors: `cargo check --features remote --tests --examples`
* Run tests: `cargo test --features remote --tests`
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --features remote --tests --examples`
* Check for compiler errors: `cargo check --quiet --features remote --tests --examples`
* Run tests: `cargo test --quiet --features remote --tests`
* Run specific test: `cargo test --quiet --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --quiet --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.
## Coding tips
* When writing Rust doctests for things that require a connection or table reference,
write them as a function instead of a fully executable test. This allows type checking
to run but avoids needing a full test environment. For example:
```rust
/// ```
/// use lance_index::scalar::FullTextSearchQuery;
/// use lancedb::query::{QueryBase, ExecutableQuery};
///
/// # use lancedb::Table;
/// # async fn query(table: &Table) -> Result<(), Box<dyn std::error::Error>> {
/// let results = table.query()
/// .full_text_search(FullTextSearchQuery::new("hello world".into()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
```
## Example plan: adding a new method on Table
Adding a new method involves first adding it to the Rust core, then exposing it
in the Python and TypeScript bindings. There are both local and remote tables.
Remote tables are implemented via a HTTP API and require the `remote` cargo
feature flag to be enabled. Python has both sync and async methods.
Rust core changes:
1. Add method on `Table` struct in `rust/lancedb/src/table.rs` (calls `BaseTable` trait).
2. Add method to `BaseTable` trait in `rust/lancedb/src/table.rs`.
3. Implement new trait method on `NativeTable` in `rust/lancedb/src/table.rs`.
* Test with unit test in `rust/lancedb/src/table.rs`.
4. Implement new trait method on `RemoteTable` in `rust/lancedb/src/remote/table.rs`.
* Test with unit test in `rust/lancedb/src/remote/table.rs` against mocked endpoint.
Python bindings changes:
1. Add PyO3 method binding in `python/src/table.rs`. Run `make develop` to compile bindings.
2. Add types for PyO3 method in `python/python/lancedb/_lancedb.pyi`.
3. Add method to `AsyncTable` class in `python/python/lancedb/table.py`.
4. Add abstract method to `Table` abstract base class in `python/python/lancedb/table.py`.
5. Add concrete sync method to `LanceTable` class in `python/python/lancedb/table.py`.
* Should use `LOOP.run()` to call the corresponding `AsyncTable` method.
6. Add concrete sync method to `RemoteTable` class in `python/python/lancedb/remote/table.py`.
7. Add unit test in `python/tests/test_table.py`.
TypeScript bindings changes:
1. Add napi-rs method binding on `Table` in `nodejs/src/table.rs`.
2. Run `npm run build` to generate TypeScript definitions.
3. Add typescript method on abstract class `Table` in `nodejs/src/table.ts`.
4. Add concrete method on `LocalTable` class in `nodejs/src/native_table.ts`.
* Note: despite the name, this class is also used for remote tables.
5. Add test in `nodejs/__test__/table.test.ts`.
6. Run `npm run docs` to generate TypeScript documentation.

1654
Cargo.lock generated

File diff suppressed because it is too large Load Diff

View File

@@ -1,10 +1,5 @@
[workspace]
members = [
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
members = ["rust/lancedb", "nodejs", "python", "java/core/lancedb-jni"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
@@ -20,16 +15,14 @@ categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.32.1", "features" = [
"dynamodb",
], "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-index = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-linalg = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-table = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-testing = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-datafusion = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-encoding = { "version" = "=0.32.1", "tag" = "v0.32.1-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance = { "version" = "=0.35.0", default-features = false, "features" = ["dynamodb"] }
lance-io = { "version" = "=0.35.0", default-features = false }
lance-index = { "version" = "=0.35.0" }
lance-linalg = { "version" = "=0.35.0" }
lance-table = { "version" = "=0.35.0" }
lance-testing = { "version" = "=0.35.0" }
lance-datafusion = { "version" = "=0.35.0" }
lance-encoding = { "version" = "=0.35.0" }
# Note that this one does not include pyarrow
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
@@ -62,12 +55,11 @@ rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
crunchy = "0.2.4"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/eira-fransham/crunchy/issues/13
crunchy = "=0.2.2"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

View File

@@ -54,6 +54,52 @@ def extract_features(line: str) -> list:
return []
def extract_default_features(line: str) -> bool:
"""
Checks if default-features = false is present in a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"] }'
Returns: True if default-features = false is present, False otherwise
"""
import re
match = re.search(r'default-features\s*=\s*false', line)
return match is not None
def dict_to_toml_line(package_name: str, config: dict) -> str:
"""
Converts a configuration dictionary to a TOML dependency line.
Dictionary insertion order is preserved (Python 3.7+), so the caller
controls the order of fields in the output.
Args:
package_name: The name of the package (e.g., "lance", "lance-io")
config: Dictionary with keys like "version", "path", "git", "tag", "features", "default-features"
The order of keys in this dict determines the order in the output.
Returns:
A properly formatted TOML line with a trailing newline
"""
# If only version is specified, use simple format
if len(config) == 1 and "version" in config:
return f'{package_name} = "{config["version"]}"\n'
# Otherwise, use inline table format
parts = []
for key, value in config.items():
if key == "default-features" and not value:
parts.append("default-features = false")
elif key == "features":
parts.append(f'"features" = {json.dumps(value)}')
elif isinstance(value, str):
parts.append(f'"{key}" = "{value}"')
else:
# This shouldn't happen with our current usage
parts.append(f'"{key}" = {json.dumps(value)}')
return f'{package_name} = {{ {", ".join(parts)} }}\n'
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
@@ -67,20 +113,27 @@ def update_cargo_toml(line_updater):
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
# Check if this is a single-line or multi-line entry
# Single-line entries either:
# 1. End with } (complete inline table)
# 2. End with " (simple version string)
# Multi-line entries start with { but don't end with }
if line.strip().endswith("}") or line.strip().endswith('"'):
# Single-line entry - process immediately
new_lines.append(line_updater(line))
else:
elif "{" in line and not line.strip().endswith("}"):
# Multi-line entry - start accumulating
lance_line = line
is_parsing_lance_line = True
else:
# Single-line entry without quotes or braces (shouldn't happen but handle it)
new_lines.append(line_updater(line))
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
@@ -92,18 +145,25 @@ def update_cargo_toml(line_updater):
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"] }
lance-io = { "version" = "=0.29.0", default-features = false }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: version, default-features, features
config = {"version": f"={version}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
config["features"] = features
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
@@ -111,19 +171,29 @@ def set_stable_version(version: str):
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance = { "version" = "=0.29.0", default-features = false, "features" = ["dynamodb"], "tag" = "v0.29.0-beta.2", "git" = "https://github.com/lancedb/lance.git" }
lance-io = { "version" = "=0.29.0", default-features = false, "tag" = "v0.29.0-beta.2", "git" = "https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
# Build config in desired order: version, default-features, features, tag, git
config = {"version": f"={base_version}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
config["features"] = features
config["tag"] = f"v{version}"
config["git"] = "https://github.com/lancedb/lance.git"
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)
@@ -131,18 +201,25 @@ def set_preview_version(version: str):
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
lance = { "path" = "../lance/rust/lance", default-features = false, "features" = ["dynamodb"] }
lance-io = { "path" = "../lance/rust/lance-io", default-features = false }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
# Build config in desired order: path, default-features, features
config = {"path": f"../lance/rust/{package_name}"}
if extract_default_features(line):
config["default-features"] = False
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
config["features"] = features
return dict_to_toml_line(package_name, config)
update_cargo_toml(line_updater)

View File

@@ -15,16 +15,13 @@ cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
pushd node || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git add Cargo.lock nodejs/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json node/package-lock.json
git add Cargo.lock nodejs/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -103,6 +103,264 @@ markdown_extensions:
permalink: ""
nav:
- Home:
- LanceDB: index.md
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building a vector index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
- Tools and data formats: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Document search Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
- Choosing right query type: guides/tuning_retrievers/1_query_types.md
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
- Overview: integrations/index.md
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference:
- Overview: api_reference.md
- Python: python/python.md

View File

@@ -13,7 +13,7 @@ The following concepts are important to keep in mind:
- Data is versioned, with each insert operation creating a new version of the dataset and an update to the manifest that tracks versions via metadata
!!! note
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
2. Second, these versions exist to keep LanceDB scalable and consistent. We do not immediately blow away old versions when creating new ones because other clients might be in the middle of querying the old version. It's important to retain older versions for as long as they might be queried.
## What are fragments?
@@ -37,6 +37,10 @@ Depending on the use case and dataset, optimal compaction will have different re
- Its always better to use *batch* inserts rather than adding 1 row at a time (to avoid too small fragments). If single-row inserts are unavoidable, run compaction on a regular basis to merge them into larger fragments.
- Keep the number of fragments under 100, which is suitable for most use cases (for *really* large datasets of >500M rows, more fragments might be needed)
!!! note
LanceDB Cloud/Enterprise supports [auto-compaction](https://docs.lancedb.com/enterprise/architecture/architecture#write-path) which automatically optimizes fragments in the background as data changes.
## Deletion
Although Lance allows you to delete rows from a dataset, it does not actually delete the data immediately. It simply marks the row as deleted in the `DataFile` that represents a fragment. For a given version of the dataset, each fragment can have up to one deletion file (if no rows were ever deleted from that fragment, it will not have a deletion file). This is important to keep in mind because it means that the data is still there, and can be recovered if needed, as long as that version still exists based on your backup policy.
@@ -50,13 +54,9 @@ Reindexing is the process of updating the index to account for new data, keeping
Both LanceDB OSS and Cloud support reindexing, but the process (at least for now) is different for each, depending on the type of index.
When a reindex job is triggered in the background, the entire data is reindexed, but in the interim as new queries come in, LanceDB will combine results from the existing index with exhaustive kNN search on the new data. This is done to ensure that you're still searching on all your data, but it does come at a performance cost. The more data that you add without reindexing, the impact on latency (due to exhaustive search) can be noticeable.
In LanceDB OSS, re-indexing happens synchronously when you call either `create_index` or `optimize` on a table. In LanceDB Cloud, re-indexing happens asynchronously as you add and update data in your table.
### Vector reindex
By default, queries will search new data even if it has yet to be indexed. This is done using brute-force methods, such as kNN for vector search, and combined with the fast index search results. This is done to ensure that you're always searching over all your data, but it does come at a performance cost. Without reindexing, adding more data to a table will make queries slower and more expensive. This behavior can be disabled by setting the [fast_search](https://lancedb.github.io/lancedb/python/python/#lancedb.query.AsyncQuery.fast_search) parameter which will instruct the query to ignore un-indexed data.
* LanceDB Cloud supports incremental reindexing, where a background process will trigger a new index build for you automatically when new data is added to a dataset
* LanceDB Cloud/Enterprise supports [automatic incremental reindexing](https://docs.lancedb.com/core#vector-index) for vector, scalar, and FTS indices, where a background process will trigger a new index build for you automatically when new data is added or modified in a dataset
* LanceDB OSS requires you to manually trigger a reindex operation -- we are working on adding incremental reindexing to LanceDB OSS as well
### FTS reindex
FTS reindexing is supported in both LanceDB OSS and Cloud, but requires that it's manually rebuilt once you have a significant enough amount of new data added that needs to be reindexed. We [updated](https://github.com/lancedb/lancedb/pull/762) Tantivy's default heap size from 128MB to 1GB in LanceDB to make it much faster to reindex, by up to 10x from the default settings.

View File

@@ -14,7 +14,7 @@ A builder for LanceDB queries.
## Extends
- [`QueryBase`](QueryBase.md)&lt;`NativeQuery`&gt;
- `StandardQueryBase`&lt;`NativeQuery`&gt;
## Properties
@@ -26,7 +26,7 @@ protected inner: Query | Promise<Query>;
#### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
`StandardQueryBase.inner`
## Methods
@@ -73,7 +73,7 @@ AnalyzeExec verbose=true, metrics=[]
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
`StandardQueryBase.analyzePlan`
***
@@ -107,7 +107,7 @@ single query)
#### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
`StandardQueryBase.execute`
***
@@ -143,7 +143,7 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
`StandardQueryBase.explainPlan`
***
@@ -164,7 +164,7 @@ Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
`StandardQueryBase.fastSearch`
***
@@ -194,7 +194,7 @@ Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
`StandardQueryBase.filter`
***
@@ -216,7 +216,7 @@ fullTextSearch(query, options?): this
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
`StandardQueryBase.fullTextSearch`
***
@@ -241,7 +241,7 @@ called then every valid row from the table will be returned.
#### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
`StandardQueryBase.limit`
***
@@ -325,6 +325,10 @@ nearestToText(query, columns?): Query
offset(offset): this
```
Set the number of rows to skip before returning results.
This is useful for pagination.
#### Parameters
* **offset**: `number`
@@ -335,7 +339,7 @@ offset(offset): this
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
`StandardQueryBase.offset`
***
@@ -388,7 +392,7 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
`StandardQueryBase.select`
***
@@ -410,7 +414,7 @@ Collect the results as an array of objects.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
`StandardQueryBase.toArray`
***
@@ -436,7 +440,7 @@ ArrowTable.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
`StandardQueryBase.toArrow`
***
@@ -471,7 +475,7 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
`StandardQueryBase.where`
***
@@ -493,4 +497,4 @@ order to perform hybrid search.
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)
`StandardQueryBase.withRowId`

View File

@@ -15,12 +15,11 @@ Common methods supported by all query types
## Extended by
- [`Query`](Query.md)
- [`VectorQuery`](VectorQuery.md)
- [`TakeQuery`](TakeQuery.md)
## Type Parameters
**NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery`
**NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery` \| `NativeTakeQuery`
## Implements
@@ -141,104 +140,6 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
***
### fastSearch()
```ts
fastSearch(): this
```
Skip searching un-indexed data. This can make search faster, but will miss
any data that is not yet indexed.
Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
#### Returns
`this`
***
### ~~filter()~~
```ts
filter(predicate): this
```
A filter statement to be applied to this query.
#### Parameters
* **predicate**: `string`
#### Returns
`this`
#### See
where
#### Deprecated
Use `where` instead
***
### fullTextSearch()
```ts
fullTextSearch(query, options?): this
```
#### Parameters
* **query**: `string` \| [`FullTextQuery`](../interfaces/FullTextQuery.md)
* **options?**: `Partial`&lt;[`FullTextSearchOptions`](../interfaces/FullTextSearchOptions.md)&gt;
#### Returns
`this`
***
### limit()
```ts
limit(limit): this
```
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
#### Parameters
* **limit**: `number`
#### Returns
`this`
***
### offset()
```ts
offset(offset): this
```
#### Parameters
* **offset**: `number`
#### Returns
`this`
***
### select()
```ts
@@ -328,37 +229,6 @@ ArrowTable.
***
### where()
```ts
where(predicate): this
```
A filter statement to be applied to this query.
The filter should be supplied as an SQL query string. For example:
#### Parameters
* **predicate**: `string`
#### Returns
`this`
#### Example
```ts
x > 10
y > 0 AND y < 100
x > 5 OR y = 'test'
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
```
***
### withRowId()
```ts

View File

@@ -9,7 +9,8 @@
A session for managing caches and object stores across LanceDB operations.
Sessions allow you to configure cache sizes for index and metadata caches,
which can significantly impact performance for large datasets.
which can significantly impact memory use and performance. They can
also be re-used across multiple connections to share the same cache state.
## Constructors
@@ -24,8 +25,11 @@ Create a new session with custom cache sizes.
# Parameters
- `index_cache_size_bytes`: The size of the index cache in bytes.
Index data is stored in memory in this cache to speed up queries.
Defaults to 6GB if not specified.
- `metadata_cache_size_bytes`: The size of the metadata cache in bytes.
The metadata cache stores file metadata and schema information in memory.
This cache improves scan and write performance.
Defaults to 1GB if not specified.
#### Parameters

View File

@@ -674,6 +674,48 @@ console.log(tags); // { "v1": { version: 1, manifestSize: ... } }
***
### takeOffsets()
```ts
abstract takeOffsets(offsets): TakeQuery
```
Create a query that returns a subset of the rows in the table.
#### Parameters
* **offsets**: `number`[]
The offsets of the rows to return.
#### Returns
[`TakeQuery`](TakeQuery.md)
A builder that can be used to parameterize the query.
***
### takeRowIds()
```ts
abstract takeRowIds(rowIds): TakeQuery
```
Create a query that returns a subset of the rows in the table.
#### Parameters
* **rowIds**: `number`[]
The row ids of the rows to return.
#### Returns
[`TakeQuery`](TakeQuery.md)
A builder that can be used to parameterize the query.
***
### toArrow()
```ts

View File

@@ -0,0 +1,265 @@
[**@lancedb/lancedb**](../README.md) • **Docs**
***
[@lancedb/lancedb](../globals.md) / TakeQuery
# Class: TakeQuery
A query that returns a subset of the rows in the table.
## Extends
- [`QueryBase`](QueryBase.md)&lt;`NativeTakeQuery`&gt;
## Properties
### inner
```ts
protected inner: TakeQuery | Promise<TakeQuery>;
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
## Methods
### analyzePlan()
```ts
analyzePlan(): Promise<string>
```
Executes the query and returns the physical query plan annotated with runtime metrics.
This is useful for debugging and performance analysis, as it shows how the query was executed
and includes metrics such as elapsed time, rows processed, and I/O statistics.
#### Returns
`Promise`&lt;`string`&gt;
A query execution plan with runtime metrics for each step.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).analyzePlan();
Example output (with runtime metrics inlined):
AnalyzeExec verbose=true, metrics=[]
ProjectionExec: expr=[id@3 as id, vector@0 as vector, _distance@2 as _distance], metrics=[output_rows=1, elapsed_compute=3.292µs]
Take: columns="vector, _rowid, _distance, (id)", metrics=[output_rows=1, elapsed_compute=66.001µs, batches_processed=1, bytes_read=8, iops=1, requests=1]
CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=1, elapsed_compute=3.333µs]
GlobalLimitExec: skip=0, fetch=10, metrics=[output_rows=1, elapsed_compute=167ns]
FilterExec: _distance@2 IS NOT NULL, metrics=[output_rows=1, elapsed_compute=8.542µs]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], metrics=[output_rows=1, elapsed_compute=63.25µs, row_replacements=1]
KNNVectorDistance: metric=l2, metrics=[output_rows=1, elapsed_compute=114.333µs, output_batches=1]
LanceScan: uri=/path/to/data, projection=[vector], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1, elapsed_compute=103.626µs, bytes_read=549, iops=2, requests=2]
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
***
### execute()
```ts
protected execute(options?): RecordBatchIterator
```
Execute the query and return the results as an
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
[`RecordBatchIterator`](RecordBatchIterator.md)
#### See
- AsyncIterator
of
- RecordBatch.
By default, LanceDb will use many threads to calculate results and, when
the result set is large, multiple batches will be processed at one time.
This readahead is limited however and backpressure will be applied if this
stream is consumed slowly (this constrains the maximum memory used by a
single query)
#### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
***
### explainPlan()
```ts
explainPlan(verbose): Promise<string>
```
Generates an explanation of the query execution plan.
#### Parameters
* **verbose**: `boolean` = `false`
If true, provides a more detailed explanation. Defaults to false.
#### Returns
`Promise`&lt;`string`&gt;
A Promise that resolves to a string containing the query execution plan explanation.
#### Example
```ts
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect("./.lancedb");
const table = await db.createTable("my_table", [
{ vector: [1.1, 0.9], id: "1" },
]);
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
***
### select()
```ts
select(columns): this
```
Return only the specified columns.
By default a query will return all columns from the table. However, this can have
a very significant impact on latency. LanceDb stores data in a columnar fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need. If you
pass in an array of column names then only those columns will be returned.
You can also use this method to create new "dynamic" columns based on your existing columns.
For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a Map<string, string>. A column will be returned
for each entry in the map. The key provides the name of the column. The value is
an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
input to this method would be:
#### Parameters
* **columns**: `string` \| `string`[] \| `Record`&lt;`string`, `string`&gt; \| `Map`&lt;`string`, `string`&gt;
#### Returns
`this`
#### Example
```ts
new Map([["combined", "a + b"], ["c", "c"]])
Columns will always be returned in the order given, even if that order is different than
the order used when adding the data.
Note that you can pass in a `Record<string, string>` (e.g. an object literal). This method
uses `Object.entries` which should preserve the insertion order of the object. However,
object insertion order is easy to get wrong and `Map` is more foolproof.
```
#### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
***
### toArray()
```ts
toArray(options?): Promise<any[]>
```
Collect the results as an array of objects.
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
`Promise`&lt;`any`[]&gt;
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
***
### toArrow()
```ts
toArrow(options?): Promise<Table<any>>
```
Collect the results as an Arrow
#### Parameters
* **options?**: `Partial`&lt;[`QueryExecutionOptions`](../interfaces/QueryExecutionOptions.md)&gt;
#### Returns
`Promise`&lt;`Table`&lt;`any`&gt;&gt;
#### See
ArrowTable.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
***
### withRowId()
```ts
withRowId(): this
```
Whether to return the row id in the results.
This column can be used to match results between different queries. For
example, to match results from a full text search and a vector search in
order to perform hybrid search.
#### Returns
`this`
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)

View File

@@ -16,7 +16,7 @@ This builder can be reused to execute the query many times.
## Extends
- [`QueryBase`](QueryBase.md)&lt;`NativeVectorQuery`&gt;
- `StandardQueryBase`&lt;`NativeVectorQuery`&gt;
## Properties
@@ -28,7 +28,7 @@ protected inner: VectorQuery | Promise<VectorQuery>;
#### Inherited from
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
`StandardQueryBase.inner`
## Methods
@@ -91,7 +91,7 @@ AnalyzeExec verbose=true, metrics=[]
#### Inherited from
[`QueryBase`](QueryBase.md).[`analyzePlan`](QueryBase.md#analyzeplan)
`StandardQueryBase.analyzePlan`
***
@@ -248,7 +248,7 @@ single query)
#### Inherited from
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
`StandardQueryBase.execute`
***
@@ -284,7 +284,7 @@ const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
#### Inherited from
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
`StandardQueryBase.explainPlan`
***
@@ -305,7 +305,7 @@ Use [Table#optimize](Table.md#optimize) to index all un-indexed data.
#### Inherited from
[`QueryBase`](QueryBase.md).[`fastSearch`](QueryBase.md#fastsearch)
`StandardQueryBase.fastSearch`
***
@@ -335,7 +335,7 @@ Use `where` instead
#### Inherited from
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
`StandardQueryBase.filter`
***
@@ -357,7 +357,7 @@ fullTextSearch(query, options?): this
#### Inherited from
[`QueryBase`](QueryBase.md).[`fullTextSearch`](QueryBase.md#fulltextsearch)
`StandardQueryBase.fullTextSearch`
***
@@ -382,7 +382,7 @@ called then every valid row from the table will be returned.
#### Inherited from
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
`StandardQueryBase.limit`
***
@@ -480,6 +480,10 @@ the minimum and maximum to the same value.
offset(offset): this
```
Set the number of rows to skip before returning results.
This is useful for pagination.
#### Parameters
* **offset**: `number`
@@ -490,7 +494,7 @@ offset(offset): this
#### Inherited from
[`QueryBase`](QueryBase.md).[`offset`](QueryBase.md#offset)
`StandardQueryBase.offset`
***
@@ -637,7 +641,7 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
#### Inherited from
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
`StandardQueryBase.select`
***
@@ -659,7 +663,7 @@ Collect the results as an array of objects.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
`StandardQueryBase.toArray`
***
@@ -685,7 +689,7 @@ ArrowTable.
#### Inherited from
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
`StandardQueryBase.toArrow`
***
@@ -720,7 +724,7 @@ on the filter column(s).
#### Inherited from
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
`StandardQueryBase.where`
***
@@ -742,4 +746,4 @@ order to perform hybrid search.
#### Inherited from
[`QueryBase`](QueryBase.md).[`withRowId`](QueryBase.md#withrowid)
`StandardQueryBase.withRowId`

View File

@@ -33,6 +33,7 @@
- [Table](classes/Table.md)
- [TagContents](classes/TagContents.md)
- [Tags](classes/Tags.md)
- [TakeQuery](classes/TakeQuery.md)
- [VectorColumnOptions](classes/VectorColumnOptions.md)
- [VectorQuery](classes/VectorQuery.md)

View File

@@ -26,6 +26,18 @@ will be used to determine the most useful kind of index to create.
***
### name?
```ts
optional name: string;
```
Optional custom name for the index.
If not provided, a default name will be generated based on the column name.
***
### replace?
```ts
@@ -42,8 +54,27 @@ The default is true
***
### train?
```ts
optional train: boolean;
```
Whether to train the index with existing data.
If true (default), the index will be trained with existing data in the table.
If false, the index will be created empty and populated as new data is added.
Note: This option is only supported for scalar indices. Vector indices always train.
***
### waitTimeoutSeconds?
```ts
optional waitTimeoutSeconds: number;
```
Timeout in seconds to wait for index creation to complete.
If not specified, the method will return immediately after starting the index creation.

View File

@@ -44,3 +44,17 @@ optional readTimeout: number;
The timeout for reading data from the server in seconds. Default is 300
seconds (5 minutes). This can also be set via the environment variable
`LANCE_CLIENT_READ_TIMEOUT`, as an integer number of seconds.
***
### timeout?
```ts
optional timeout: number;
```
The overall timeout for the entire request in seconds. This includes
connection, send, and read time. If the entire request doesn't complete
within this time, it will fail. Default is None (no overall timeout).
This can also be set via the environment variable `LANCE_CLIENT_TIMEOUT`,
as an integer number of seconds.

View File

@@ -15,7 +15,7 @@ publish = false
crate-type = ["cdylib"]
[dependencies]
lancedb = { path = "../../../rust/lancedb" }
lancedb = { path = "../../../rust/lancedb", default-features = false }
lance = { workspace = true }
arrow = { workspace = true, features = ["ffi"] }
arrow-schema.workspace = true
@@ -25,3 +25,6 @@ snafu.workspace = true
lazy_static.workspace = true
serde = { version = "^1" }
serde_json = { version = "1" }
[features]
default = ["lancedb/default"]

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-final.0</version>
<version>0.22.0-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -8,7 +8,7 @@
<parent>
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-final.0</version>
<version>0.22.0-beta.1</version>
<relativePath>../pom.xml</relativePath>
</parent>

View File

@@ -6,7 +6,7 @@
<groupId>com.lancedb</groupId>
<artifactId>lancedb-parent</artifactId>
<version>0.21.2-final.0</version>
<version>0.22.0-beta.1</version>
<packaging>pom</packaging>
<name>${project.artifactId}</name>
<description>LanceDB Java SDK Parent POM</description>

View File

@@ -1,7 +1,7 @@
[package]
name = "lancedb-nodejs"
edition.workspace = true
version = "0.21.2"
version = "0.22.0-beta.1"
license.workspace = true
description.workspace = true
repository.workspace = true
@@ -18,7 +18,7 @@ arrow-array.workspace = true
arrow-schema.workspace = true
env_logger.workspace = true
futures.workspace = true
lancedb = { path = "../rust/lancedb" }
lancedb = { path = "../rust/lancedb", default-features = false }
napi = { version = "2.16.8", default-features = false, features = [
"napi9",
"async"
@@ -36,6 +36,6 @@ aws-lc-rs = "=1.13.0"
napi-build = "2.1"
[features]
default = ["remote"]
default = ["remote", "lancedb/default"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]

View File

@@ -287,6 +287,12 @@ describe.each([arrow15, arrow16, arrow17, arrow18])(
expect(res2[1].id).toEqual(data2.id);
});
it("should support take queries", async () => {
await table.add([{ id: 1 }, { id: 2 }, { id: 3 }]);
const res = await table.takeOffsets([1, 2]).toArrow();
expect(res.getChild("id")?.toJSON()).toEqual([2, 3]);
});
it("should return the table as an instance of an arrow table", async () => {
const arrowTbl = await table.toArrow();
expect(arrowTbl).toBeInstanceOf(ArrowTable);
@@ -557,7 +563,7 @@ describe("When creating an index", () => {
// test offset
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
expect(rst.numRows).toBe(2);
// test nprobes
rst = await tbl.query().nearestTo(queryVec).limit(2).nprobes(50).toArrow();
@@ -696,7 +702,7 @@ describe("When creating an index", () => {
// test offset
rst = await tbl.query().limit(2).offset(1).nearestTo(queryVec).toArrow();
expect(rst.numRows).toBe(1);
expect(rst.numRows).toBe(2);
// test ef
rst = await tbl.query().limit(2).nearestTo(queryVec).ef(100).toArrow();
@@ -851,6 +857,40 @@ describe("When creating an index", () => {
expect(stats).toBeUndefined();
});
test("should support name and train parameters", async () => {
// Test with custom name
await tbl.createIndex("vec", {
config: Index.ivfPq({ numPartitions: 4 }),
name: "my_custom_vector_index",
});
const indices = await tbl.listIndices();
expect(indices).toHaveLength(1);
expect(indices[0].name).toBe("my_custom_vector_index");
// Test scalar index with train=false
await tbl.createIndex("id", {
config: Index.btree(),
name: "btree_empty",
train: false,
});
const allIndices = await tbl.listIndices();
expect(allIndices).toHaveLength(2);
expect(allIndices.some((idx) => idx.name === "btree_empty")).toBe(true);
// Test with both name and train=true (use tags column)
await tbl.createIndex("tags", {
config: Index.labelList(),
name: "tags_trained",
train: true,
});
const finalIndices = await tbl.listIndices();
expect(finalIndices).toHaveLength(3);
expect(finalIndices.some((idx) => idx.name === "tags_trained")).toBe(true);
});
test("create ivf_flat with binary vectors", async () => {
const db = await connect(tmpDir.name);
const binarySchema = new Schema([

View File

@@ -12,7 +12,7 @@ test("ann index examples", async () => {
// --8<-- [start:ingest]
const db = await lancedb.connect(databaseDir);
const data = Array.from({ length: 5_000 }, (_, i) => ({
const data = Array.from({ length: 1_000 }, (_, i) => ({
vector: Array(128).fill(i),
id: `${i}`,
content: "",
@@ -24,8 +24,8 @@ test("ann index examples", async () => {
});
await table.createIndex("vector", {
config: lancedb.Index.ivfPq({
numPartitions: 10,
numSubVectors: 16,
numPartitions: 30,
numSubVectors: 8,
}),
});
// --8<-- [end:ingest]

View File

@@ -159,17 +159,33 @@ export abstract class Connection {
*
* Tables will be returned in lexicographical order.
* @param {Partial<TableNamesOptions>} options - options to control the
* paging / start point
* paging / start point (backwards compatibility)
*
*/
abstract tableNames(options?: Partial<TableNamesOptions>): Promise<string[]>;
/**
* List all the table names in this database.
*
* Tables will be returned in lexicographical order.
* @param {string[]} namespace - The namespace to list tables from (defaults to root namespace)
* @param {Partial<TableNamesOptions>} options - options to control the
* paging / start point
*
*/
abstract tableNames(
namespace?: string[],
options?: Partial<TableNamesOptions>,
): Promise<string[]>;
/**
* Open a table in the database.
* @param {string} name - The name of the table
* @param {string[]} namespace - The namespace of the table (defaults to root namespace)
* @param {Partial<OpenTableOptions>} options - Additional options
*/
abstract openTable(
name: string,
namespace?: string[],
options?: Partial<OpenTableOptions>,
): Promise<Table>;
@@ -178,6 +194,7 @@ export abstract class Connection {
* @param {object} options - The options object.
* @param {string} options.name - The name of the table.
* @param {Data} options.data - Non-empty Array of Records to be inserted into the table
* @param {string[]} namespace - The namespace to create the table in (defaults to root namespace)
*
*/
abstract createTable(
@@ -185,40 +202,72 @@ export abstract class Connection {
name: string;
data: Data;
} & Partial<CreateTableOptions>,
namespace?: string[],
): Promise<Table>;
/**
* Creates a new Table and initialize it with new data.
* @param {string} name - The name of the table.
* @param {Record<string, unknown>[] | TableLike} data - Non-empty Array of Records
* to be inserted into the table
* @param {Partial<CreateTableOptions>} options - Additional options (backwards compatibility)
*/
abstract createTable(
name: string,
data: Record<string, unknown>[] | TableLike,
options?: Partial<CreateTableOptions>,
): Promise<Table>;
/**
* Creates a new Table and initialize it with new data.
* @param {string} name - The name of the table.
* @param {Record<string, unknown>[] | TableLike} data - Non-empty Array of Records
* to be inserted into the table
* @param {string[]} namespace - The namespace to create the table in (defaults to root namespace)
* @param {Partial<CreateTableOptions>} options - Additional options
*/
abstract createTable(
name: string,
data: Record<string, unknown>[] | TableLike,
namespace?: string[],
options?: Partial<CreateTableOptions>,
): Promise<Table>;
/**
* Creates a new empty Table
* @param {string} name - The name of the table.
* @param {Schema} schema - The schema of the table
* @param {Partial<CreateTableOptions>} options - Additional options (backwards compatibility)
*/
abstract createEmptyTable(
name: string,
schema: import("./arrow").SchemaLike,
options?: Partial<CreateTableOptions>,
): Promise<Table>;
/**
* Creates a new empty Table
* @param {string} name - The name of the table.
* @param {Schema} schema - The schema of the table
* @param {string[]} namespace - The namespace to create the table in (defaults to root namespace)
* @param {Partial<CreateTableOptions>} options - Additional options
*/
abstract createEmptyTable(
name: string,
schema: import("./arrow").SchemaLike,
namespace?: string[],
options?: Partial<CreateTableOptions>,
): Promise<Table>;
/**
* Drop an existing table.
* @param {string} name The name of the table to drop.
* @param {string[]} namespace The namespace of the table (defaults to root namespace).
*/
abstract dropTable(name: string): Promise<void>;
abstract dropTable(name: string, namespace?: string[]): Promise<void>;
/**
* Drop all tables in the database.
* @param {string[]} namespace The namespace to drop tables from (defaults to root namespace).
*/
abstract dropAllTables(): Promise<void>;
abstract dropAllTables(namespace?: string[]): Promise<void>;
}
/** @hideconstructor */
@@ -243,16 +292,39 @@ export class LocalConnection extends Connection {
return this.inner.display();
}
async tableNames(options?: Partial<TableNamesOptions>): Promise<string[]> {
return this.inner.tableNames(options?.startAfter, options?.limit);
async tableNames(
namespaceOrOptions?: string[] | Partial<TableNamesOptions>,
options?: Partial<TableNamesOptions>,
): Promise<string[]> {
// Detect if first argument is namespace array or options object
let namespace: string[] | undefined;
let tableNamesOptions: Partial<TableNamesOptions> | undefined;
if (Array.isArray(namespaceOrOptions)) {
// First argument is namespace array
namespace = namespaceOrOptions;
tableNamesOptions = options;
} else {
// First argument is options object (backwards compatibility)
namespace = undefined;
tableNamesOptions = namespaceOrOptions;
}
return this.inner.tableNames(
namespace ?? [],
tableNamesOptions?.startAfter,
tableNamesOptions?.limit,
);
}
async openTable(
name: string,
namespace?: string[],
options?: Partial<OpenTableOptions>,
): Promise<Table> {
const innerTable = await this.inner.openTable(
name,
namespace ?? [],
cleanseStorageOptions(options?.storageOptions),
options?.indexCacheSize,
);
@@ -286,14 +358,44 @@ export class LocalConnection extends Connection {
nameOrOptions:
| string
| ({ name: string; data: Data } & Partial<CreateTableOptions>),
data?: Record<string, unknown>[] | TableLike,
dataOrNamespace?: Record<string, unknown>[] | TableLike | string[],
namespaceOrOptions?: string[] | Partial<CreateTableOptions>,
options?: Partial<CreateTableOptions>,
): Promise<Table> {
if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) {
const { name, data, ...options } = nameOrOptions;
return this.createTable(name, data, options);
// First overload: createTable(options, namespace?)
const { name, data, ...createOptions } = nameOrOptions;
const namespace = dataOrNamespace as string[] | undefined;
return this._createTableImpl(name, data, namespace, createOptions);
}
// Second overload: createTable(name, data, namespace?, options?)
const name = nameOrOptions;
const data = dataOrNamespace as Record<string, unknown>[] | TableLike;
// Detect if third argument is namespace array or options object
let namespace: string[] | undefined;
let createOptions: Partial<CreateTableOptions> | undefined;
if (Array.isArray(namespaceOrOptions)) {
// Third argument is namespace array
namespace = namespaceOrOptions;
createOptions = options;
} else {
// Third argument is options object (backwards compatibility)
namespace = undefined;
createOptions = namespaceOrOptions;
}
return this._createTableImpl(name, data, namespace, createOptions);
}
private async _createTableImpl(
name: string,
data: Data,
namespace?: string[],
options?: Partial<CreateTableOptions>,
): Promise<Table> {
if (data === undefined) {
throw new Error("data is required");
}
@@ -302,9 +404,10 @@ export class LocalConnection extends Connection {
const storageOptions = this.getStorageOptions(options);
const innerTable = await this.inner.createTable(
nameOrOptions,
name,
buf,
mode,
namespace ?? [],
storageOptions,
);
@@ -314,39 +417,55 @@ export class LocalConnection extends Connection {
async createEmptyTable(
name: string,
schema: import("./arrow").SchemaLike,
namespaceOrOptions?: string[] | Partial<CreateTableOptions>,
options?: Partial<CreateTableOptions>,
): Promise<Table> {
let mode: string = options?.mode ?? "create";
const existOk = options?.existOk ?? false;
// Detect if third argument is namespace array or options object
let namespace: string[] | undefined;
let createOptions: Partial<CreateTableOptions> | undefined;
if (Array.isArray(namespaceOrOptions)) {
// Third argument is namespace array
namespace = namespaceOrOptions;
createOptions = options;
} else {
// Third argument is options object (backwards compatibility)
namespace = undefined;
createOptions = namespaceOrOptions;
}
let mode: string = createOptions?.mode ?? "create";
const existOk = createOptions?.existOk ?? false;
if (mode === "create" && existOk) {
mode = "exist_ok";
}
let metadata: Map<string, string> | undefined = undefined;
if (options?.embeddingFunction !== undefined) {
const embeddingFunction = options.embeddingFunction;
if (createOptions?.embeddingFunction !== undefined) {
const embeddingFunction = createOptions.embeddingFunction;
const registry = getRegistry();
metadata = registry.getTableMetadata([embeddingFunction]);
}
const storageOptions = this.getStorageOptions(options);
const storageOptions = this.getStorageOptions(createOptions);
const table = makeEmptyTable(schema, metadata);
const buf = await fromTableToBuffer(table);
const innerTable = await this.inner.createEmptyTable(
name,
buf,
mode,
namespace ?? [],
storageOptions,
);
return new LocalTable(innerTable);
}
async dropTable(name: string): Promise<void> {
return this.inner.dropTable(name);
async dropTable(name: string, namespace?: string[]): Promise<void> {
return this.inner.dropTable(name, namespace ?? []);
}
async dropAllTables(): Promise<void> {
return this.inner.dropAllTables();
async dropAllTables(namespace?: string[]): Promise<void> {
return this.inner.dropAllTables(namespace ?? []);
}
}

View File

@@ -59,6 +59,7 @@ export {
Query,
QueryBase,
VectorQuery,
TakeQuery,
QueryExecutionOptions,
FullTextSearchOptions,
RecordBatchIterator,

View File

@@ -700,5 +700,27 @@ export interface IndexOptions {
*/
replace?: boolean;
/**
* Timeout in seconds to wait for index creation to complete.
*
* If not specified, the method will return immediately after starting the index creation.
*/
waitTimeoutSeconds?: number;
/**
* Optional custom name for the index.
*
* If not provided, a default name will be generated based on the column name.
*/
name?: string;
/**
* Whether to train the index with existing data.
*
* If true (default), the index will be trained with existing data in the table.
* If false, the index will be created empty and populated as new data is added.
*
* Note: This option is only supported for scalar indices. Vector indices always train.
*/
train?: boolean;
}

View File

@@ -15,6 +15,7 @@ import {
RecordBatchIterator as NativeBatchIterator,
Query as NativeQuery,
Table as NativeTable,
TakeQuery as NativeTakeQuery,
VectorQuery as NativeVectorQuery,
} from "./native";
import { Reranker } from "./rerankers";
@@ -50,7 +51,7 @@ export class RecordBatchIterator implements AsyncIterator<RecordBatch> {
/* eslint-enable */
class RecordBatchIterable<
NativeQueryType extends NativeQuery | NativeVectorQuery,
NativeQueryType extends NativeQuery | NativeVectorQuery | NativeTakeQuery,
> implements AsyncIterable<RecordBatch>
{
private inner: NativeQueryType;
@@ -107,8 +108,9 @@ export interface FullTextSearchOptions {
*
* @hideconstructor
*/
export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
implements AsyncIterable<RecordBatch>
export class QueryBase<
NativeQueryType extends NativeQuery | NativeVectorQuery | NativeTakeQuery,
> implements AsyncIterable<RecordBatch>
{
/**
* @hidden
@@ -133,56 +135,6 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
fn(this.inner);
}
}
/**
* A filter statement to be applied to this query.
*
* The filter should be supplied as an SQL query string. For example:
* @example
* x > 10
* y > 0 AND y < 100
* x > 5 OR y = 'test'
*
* Filtering performance can often be improved by creating a scalar index
* on the filter column(s).
*/
where(predicate: string): this {
this.doCall((inner: NativeQueryType) => inner.onlyIf(predicate));
return this;
}
/**
* A filter statement to be applied to this query.
* @see where
* @deprecated Use `where` instead
*/
filter(predicate: string): this {
return this.where(predicate);
}
fullTextSearch(
query: string | FullTextQuery,
options?: Partial<FullTextSearchOptions>,
): this {
let columns: string[] | null = null;
if (options) {
if (typeof options.columns === "string") {
columns = [options.columns];
} else if (Array.isArray(options.columns)) {
columns = options.columns;
}
}
this.doCall((inner: NativeQueryType) => {
if (typeof query === "string") {
inner.fullTextSearch({
query: query,
columns: columns,
});
} else {
inner.fullTextSearch({ query: query.inner });
}
});
return this;
}
/**
* Return only the specified columns.
@@ -241,33 +193,6 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
return this;
}
/**
* Set the maximum number of results to return.
*
* By default, a plain search has no limit. If this method is not
* called then every valid row from the table will be returned.
*/
limit(limit: number): this {
this.doCall((inner: NativeQueryType) => inner.limit(limit));
return this;
}
offset(offset: number): this {
this.doCall((inner: NativeQueryType) => inner.offset(offset));
return this;
}
/**
* Skip searching un-indexed data. This can make search faster, but will miss
* any data that is not yet indexed.
*
* Use {@link Table#optimize} to index all un-indexed data.
*/
fastSearch(): this {
this.doCall((inner: NativeQueryType) => inner.fastSearch());
return this;
}
/**
* Whether to return the row id in the results.
*
@@ -403,6 +328,100 @@ export class QueryBase<NativeQueryType extends NativeQuery | NativeVectorQuery>
}
}
export class StandardQueryBase<
NativeQueryType extends NativeQuery | NativeVectorQuery,
>
extends QueryBase<NativeQueryType>
implements ExecutableQuery
{
constructor(inner: NativeQueryType | Promise<NativeQueryType>) {
super(inner);
}
/**
* A filter statement to be applied to this query.
*
* The filter should be supplied as an SQL query string. For example:
* @example
* x > 10
* y > 0 AND y < 100
* x > 5 OR y = 'test'
*
* Filtering performance can often be improved by creating a scalar index
* on the filter column(s).
*/
where(predicate: string): this {
this.doCall((inner: NativeQueryType) => inner.onlyIf(predicate));
return this;
}
/**
* A filter statement to be applied to this query.
* @see where
* @deprecated Use `where` instead
*/
filter(predicate: string): this {
return this.where(predicate);
}
fullTextSearch(
query: string | FullTextQuery,
options?: Partial<FullTextSearchOptions>,
): this {
let columns: string[] | null = null;
if (options) {
if (typeof options.columns === "string") {
columns = [options.columns];
} else if (Array.isArray(options.columns)) {
columns = options.columns;
}
}
this.doCall((inner: NativeQueryType) => {
if (typeof query === "string") {
inner.fullTextSearch({
query: query,
columns: columns,
});
} else {
inner.fullTextSearch({ query: query.inner });
}
});
return this;
}
/**
* Set the maximum number of results to return.
*
* By default, a plain search has no limit. If this method is not
* called then every valid row from the table will be returned.
*/
limit(limit: number): this {
this.doCall((inner: NativeQueryType) => inner.limit(limit));
return this;
}
/**
* Set the number of rows to skip before returning results.
*
* This is useful for pagination.
*/
offset(offset: number): this {
this.doCall((inner: NativeQueryType) => inner.offset(offset));
return this;
}
/**
* Skip searching un-indexed data. This can make search faster, but will miss
* any data that is not yet indexed.
*
* Use {@link Table#optimize} to index all un-indexed data.
*/
fastSearch(): this {
this.doCall((inner: NativeQueryType) => inner.fastSearch());
return this;
}
}
/**
* An interface for a query that can be executed
*
@@ -419,7 +438,7 @@ export interface ExecutableQuery {}
*
* @hideconstructor
*/
export class VectorQuery extends QueryBase<NativeVectorQuery> {
export class VectorQuery extends StandardQueryBase<NativeVectorQuery> {
/**
* @hidden
*/
@@ -679,13 +698,24 @@ export class VectorQuery extends QueryBase<NativeVectorQuery> {
}
}
/**
* A query that returns a subset of the rows in the table.
*
* @hideconstructor
*/
export class TakeQuery extends QueryBase<NativeTakeQuery> {
constructor(inner: NativeTakeQuery) {
super(inner);
}
}
/** A builder for LanceDB queries.
*
* @see {@link Table#query}, {@link Table#search}
*
* @hideconstructor
*/
export class Query extends QueryBase<NativeQuery> {
export class Query extends StandardQueryBase<NativeQuery> {
/**
* @hidden
*/

View File

@@ -35,6 +35,7 @@ import {
import {
FullTextQuery,
Query,
TakeQuery,
VectorQuery,
instanceOfFullTextQuery,
} from "./query";
@@ -336,6 +337,20 @@ export abstract class Table {
*/
abstract query(): Query;
/**
* Create a query that returns a subset of the rows in the table.
* @param offsets The offsets of the rows to return.
* @returns A builder that can be used to parameterize the query.
*/
abstract takeOffsets(offsets: number[]): TakeQuery;
/**
* Create a query that returns a subset of the rows in the table.
* @param rowIds The row ids of the rows to return.
* @returns A builder that can be used to parameterize the query.
*/
abstract takeRowIds(rowIds: number[]): TakeQuery;
/**
* Create a search query to find the nearest neighbors
* of the given query
@@ -647,6 +662,8 @@ export class LocalTable extends Table {
column,
options?.replace,
options?.waitTimeoutSeconds,
options?.name,
options?.train,
);
}
@@ -665,6 +682,14 @@ export class LocalTable extends Table {
await this.inner.waitForIndex(indexNames, timeoutSeconds);
}
takeOffsets(offsets: number[]): TakeQuery {
return new TakeQuery(this.inner.takeOffsets(offsets));
}
takeRowIds(rowIds: number[]): TakeQuery {
return new TakeQuery(this.inner.takeRowIds(rowIds));
}
query(): Query {
return new Query(this.inner);
}

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-arm64",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["darwin"],
"cpu": ["arm64"],
"main": "lancedb.darwin-arm64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-darwin-x64",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["darwin"],
"cpu": ["x64"],
"main": "lancedb.darwin-x64.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-gnu",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-arm64-musl",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["linux"],
"cpu": ["arm64"],
"main": "lancedb.linux-arm64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-gnu",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-gnu.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-linux-x64-musl",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["linux"],
"cpu": ["x64"],
"main": "lancedb.linux-x64-musl.node",

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-arm64-msvc",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": [
"win32"
],

View File

@@ -1,6 +1,6 @@
{
"name": "@lancedb/lancedb-win32-x64-msvc",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"os": ["win32"],
"cpu": ["x64"],
"main": "lancedb.win32-x64-msvc.node",

View File

@@ -1,12 +1,12 @@
{
"name": "@lancedb/lancedb",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"lockfileVersion": 3,
"requires": true,
"packages": {
"": {
"name": "@lancedb/lancedb",
"version": "0.21.2",
"version": "0.22.0-beta.1",
"cpu": [
"x64",
"arm64"

View File

@@ -11,7 +11,7 @@
"ann"
],
"private": false,
"version": "0.21.2",
"version": "0.22.0-beta.1",
"main": "dist/index.js",
"exports": {
".": "./dist/index.js",

View File

@@ -100,10 +100,12 @@ impl Connection {
#[napi(catch_unwind)]
pub async fn table_names(
&self,
namespace: Vec<String>,
start_after: Option<String>,
limit: Option<u32>,
) -> napi::Result<Vec<String>> {
let mut op = self.get_inner()?.table_names();
op = op.namespace(namespace);
if let Some(start_after) = start_after {
op = op.start_after(start_after);
}
@@ -125,6 +127,7 @@ impl Connection {
name: String,
buf: Buffer,
mode: String,
namespace: Vec<String>,
storage_options: Option<HashMap<String, String>>,
) -> napi::Result<Table> {
let batches = ipc_file_to_batches(buf.to_vec())
@@ -132,6 +135,8 @@ impl Connection {
let mode = Self::parse_create_mode_str(&mode)?;
let mut builder = self.get_inner()?.create_table(&name, batches).mode(mode);
builder = builder.namespace(namespace);
if let Some(storage_options) = storage_options {
for (key, value) in storage_options {
builder = builder.storage_option(key, value);
@@ -147,6 +152,7 @@ impl Connection {
name: String,
schema_buf: Buffer,
mode: String,
namespace: Vec<String>,
storage_options: Option<HashMap<String, String>>,
) -> napi::Result<Table> {
let schema = ipc_file_to_schema(schema_buf.to_vec()).map_err(|e| {
@@ -157,6 +163,9 @@ impl Connection {
.get_inner()?
.create_empty_table(&name, schema)
.mode(mode);
builder = builder.namespace(namespace);
if let Some(storage_options) = storage_options {
for (key, value) in storage_options {
builder = builder.storage_option(key, value);
@@ -170,10 +179,14 @@ impl Connection {
pub async fn open_table(
&self,
name: String,
namespace: Vec<String>,
storage_options: Option<HashMap<String, String>>,
index_cache_size: Option<u32>,
) -> napi::Result<Table> {
let mut builder = self.get_inner()?.open_table(&name);
builder = builder.namespace(namespace);
if let Some(storage_options) = storage_options {
for (key, value) in storage_options {
builder = builder.storage_option(key, value);
@@ -188,12 +201,18 @@ impl Connection {
/// Drop table with the name. Or raise an error if the table does not exist.
#[napi(catch_unwind)]
pub async fn drop_table(&self, name: String) -> napi::Result<()> {
self.get_inner()?.drop_table(&name).await.default_error()
pub async fn drop_table(&self, name: String, namespace: Vec<String>) -> napi::Result<()> {
self.get_inner()?
.drop_table(&name, &namespace)
.await
.default_error()
}
#[napi(catch_unwind)]
pub async fn drop_all_tables(&self) -> napi::Result<()> {
self.get_inner()?.drop_all_tables().await.default_error()
pub async fn drop_all_tables(&self, namespace: Vec<String>) -> napi::Result<()> {
self.get_inner()?
.drop_all_tables(&namespace)
.await
.default_error()
}
}

View File

@@ -12,6 +12,7 @@ use lancedb::query::Query as LanceDbQuery;
use lancedb::query::QueryBase;
use lancedb::query::QueryExecutionOptions;
use lancedb::query::Select;
use lancedb::query::TakeQuery as LanceDbTakeQuery;
use lancedb::query::VectorQuery as LanceDbVectorQuery;
use napi::bindgen_prelude::*;
use napi_derive::napi;
@@ -319,6 +320,79 @@ impl VectorQuery {
}
}
#[napi]
pub struct TakeQuery {
inner: LanceDbTakeQuery,
}
#[napi]
impl TakeQuery {
pub fn new(query: LanceDbTakeQuery) -> Self {
Self { inner: query }
}
#[napi]
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));
}
#[napi]
pub fn select_columns(&mut self, columns: Vec<String>) {
self.inner = self.inner.clone().select(Select::columns(&columns));
}
#[napi]
pub fn with_row_id(&mut self) {
self.inner = self.inner.clone().with_row_id();
}
#[napi(catch_unwind)]
pub async fn execute(
&self,
max_batch_length: Option<u32>,
timeout_ms: Option<u32>,
) -> napi::Result<RecordBatchIterator> {
let mut execution_opts = QueryExecutionOptions::default();
if let Some(max_batch_length) = max_batch_length {
execution_opts.max_batch_length = max_batch_length;
}
if let Some(timeout_ms) = timeout_ms {
execution_opts.timeout = Some(std::time::Duration::from_millis(timeout_ms as u64))
}
let inner_stream = self
.inner
.execute_with_options(execution_opts)
.await
.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to execute query stream: {}",
convert_error(&e)
))
})?;
Ok(RecordBatchIterator::new(inner_stream))
}
#[napi]
pub async fn explain_plan(&self, verbose: bool) -> napi::Result<String> {
self.inner.explain_plan(verbose).await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to retrieve the query plan: {}",
convert_error(&e)
))
})
}
#[napi(catch_unwind)]
pub async fn analyze_plan(&self) -> napi::Result<String> {
self.inner.analyze_plan().await.map_err(|e| {
napi::Error::from_reason(format!(
"Failed to execute analyze plan: {}",
convert_error(&e)
))
})
}
}
#[napi]
#[derive(Debug, Clone)]
pub struct JsFullTextQuery {
@@ -406,6 +480,7 @@ impl JsFullTextQuery {
}
#[napi(factory)]
#[allow(clippy::use_self)] // NAPI doesn't allow Self here but clippy reports it
pub fn boolean_query(queries: Vec<(String, &JsFullTextQuery)>) -> napi::Result<Self> {
let mut sub_queries = Vec::with_capacity(queries.len());
for (occur, q) in queries {

View File

@@ -76,6 +76,7 @@ pub struct ClientConfig {
pub retry_config: Option<RetryConfig>,
pub timeout_config: Option<TimeoutConfig>,
pub extra_headers: Option<HashMap<String, String>>,
pub id_delimiter: Option<String>,
}
impl From<TimeoutConfig> for lancedb::remote::TimeoutConfig {
@@ -115,6 +116,7 @@ impl From<ClientConfig> for lancedb::remote::ClientConfig {
retry_config: config.retry_config.map(Into::into).unwrap_or_default(),
timeout_config: config.timeout_config.map(Into::into).unwrap_or_default(),
extra_headers: config.extra_headers.unwrap_or_default(),
id_delimiter: config.id_delimiter,
}
}
}

View File

@@ -94,7 +94,7 @@ impl napi::bindgen_prelude::FromNapiValue for Session {
env: napi::sys::napi_env,
napi_val: napi::sys::napi_value,
) -> napi::Result<Self> {
let object: napi::bindgen_prelude::ClassInstance<Session> =
let object: napi::bindgen_prelude::ClassInstance<Self> =
napi::bindgen_prelude::ClassInstance::from_napi_value(env, napi_val)?;
let copy = object.clone();
Ok(copy)

View File

@@ -15,7 +15,7 @@ use napi_derive::napi;
use crate::error::NapiErrorExt;
use crate::index::Index;
use crate::merge::NativeMergeInsertBuilder;
use crate::query::{Query, VectorQuery};
use crate::query::{Query, TakeQuery, VectorQuery};
#[napi]
pub struct Table {
@@ -114,6 +114,8 @@ impl Table {
column: String,
replace: Option<bool>,
wait_timeout_s: Option<i64>,
name: Option<String>,
train: Option<bool>,
) -> napi::Result<()> {
let lancedb_index = if let Some(index) = index {
index.consume()?
@@ -128,6 +130,12 @@ impl Table {
builder =
builder.wait_timeout(std::time::Duration::from_secs(timeout.try_into().unwrap()));
}
if let Some(name) = name {
builder = builder.name(name);
}
if let Some(train) = train {
builder = builder.train(train);
}
builder.execute().await.default_error()
}
@@ -187,6 +195,44 @@ impl Table {
Ok(Query::new(self.inner_ref()?.query()))
}
#[napi(catch_unwind)]
pub fn take_offsets(&self, offsets: Vec<i64>) -> napi::Result<TakeQuery> {
Ok(TakeQuery::new(
self.inner_ref()?.take_offsets(
offsets
.into_iter()
.map(|o| {
u64::try_from(o).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to convert offset to u64: {}",
e
))
})
})
.collect::<Result<Vec<_>>>()?,
),
))
}
#[napi(catch_unwind)]
pub fn take_row_ids(&self, row_ids: Vec<i64>) -> napi::Result<TakeQuery> {
Ok(TakeQuery::new(
self.inner_ref()?.take_row_ids(
row_ids
.into_iter()
.map(|o| {
u64::try_from(o).map_err(|e| {
napi::Error::from_reason(format!(
"Failed to convert row id to u64: {}",
e
))
})
})
.collect::<Result<Vec<_>>>()?,
),
))
}
#[napi(catch_unwind)]
pub fn vector_search(&self, vector: Float32Array) -> napi::Result<VectorQuery> {
self.query()?.nearest_to(vector)

View File

@@ -2,6 +2,7 @@
"intentionallyNotExported": [
"lancedb/native.d.ts:Query",
"lancedb/native.d.ts:VectorQuery",
"lancedb/native.d.ts:TakeQuery",
"lancedb/native.d.ts:RecordBatchIterator",
"lancedb/native.d.ts:NativeMergeInsertBuilder"
],

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.24.2"
current_version = "0.25.0"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb-python"
version = "0.24.2"
version = "0.25.0"
edition.workspace = true
description = "Python bindings for LanceDB"
license.workspace = true
@@ -33,6 +33,6 @@ pyo3-build-config = { version = "0.24", features = [
] }
[features]
default = ["remote"]
default = ["remote", "lancedb/default"]
fp16kernels = ["lancedb/fp16kernels"]
remote = ["lancedb/remote"]

View File

@@ -10,6 +10,7 @@ dependencies = [
"pyarrow>=16",
"pydantic>=1.10",
"tqdm>=4.27.0",
"lance-namespace==0.0.6"
]
description = "lancedb"
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]

View File

@@ -19,6 +19,7 @@ from .remote.db import RemoteDBConnection
from .schema import vector
from .table import AsyncTable
from ._lancedb import Session
from .namespace import connect_namespace, LanceNamespaceDBConnection
def connect(
@@ -221,6 +222,7 @@ async def connect_async(
__all__ = [
"connect",
"connect_async",
"connect_namespace",
"AsyncConnection",
"AsyncTable",
"URI",
@@ -228,6 +230,7 @@ __all__ = [
"vector",
"DBConnection",
"LanceDBConnection",
"LanceNamespaceDBConnection",
"RemoteDBConnection",
"Session",
"__version__",

View File

@@ -21,14 +21,28 @@ class Session:
class Connection(object):
uri: str
async def is_open(self): ...
async def close(self): ...
async def list_namespaces(
self,
namespace: List[str],
page_token: Optional[str],
limit: Optional[int],
) -> List[str]: ...
async def create_namespace(self, namespace: List[str]) -> None: ...
async def drop_namespace(self, namespace: List[str]) -> None: ...
async def table_names(
self, start_after: Optional[str], limit: Optional[int]
self,
namespace: List[str],
start_after: Optional[str],
limit: Optional[int],
) -> list[str]: ...
async def create_table(
self,
name: str,
mode: str,
data: pa.RecordBatchReader,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
) -> Table: ...
async def create_empty_table(
@@ -36,10 +50,25 @@ class Connection(object):
name: str,
mode: str,
schema: pa.Schema,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
) -> Table: ...
async def rename_table(self, old_name: str, new_name: str) -> None: ...
async def drop_table(self, name: str) -> None: ...
async def open_table(
self,
name: str,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table: ...
async def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
) -> None: ...
async def drop_table(self, name: str, namespace: List[str] = []) -> None: ...
async def drop_all_tables(self, namespace: List[str] = []) -> None: ...
class Table:
def name(self) -> str: ...
@@ -59,6 +88,10 @@ class Table:
column: str,
index: Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS],
replace: Optional[bool],
wait_timeout: Optional[object],
*,
name: Optional[str],
train: Optional[bool],
): ...
async def list_versions(self) -> List[Dict[str, Any]]: ...
async def version(self) -> int: ...

View File

@@ -43,14 +43,70 @@ if TYPE_CHECKING:
class DBConnection(EnforceOverrides):
"""An active LanceDB connection interface."""
def list_namespaces(
self,
namespace: List[str] = [],
page_token: Optional[str] = None,
limit: int = 10,
) -> Iterable[str]:
"""List immediate child namespace names in the given namespace.
Parameters
----------
namespace: List[str], default []
The parent namespace to list namespaces in.
Empty list represents root namespace.
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
Returns
-------
Iterable of str
List of immediate child namespace names
"""
return []
def create_namespace(self, namespace: List[str]) -> None:
"""Create a new namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to create.
"""
raise NotImplementedError(
"Namespace operations are not supported for this connection type"
)
def drop_namespace(self, namespace: List[str]) -> None:
"""Drop a namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to drop.
"""
raise NotImplementedError(
"Namespace operations are not supported for this connection type"
)
@abstractmethod
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
self,
page_token: Optional[str] = None,
limit: int = 10,
*,
namespace: List[str] = [],
) -> Iterable[str]:
"""List all tables in this database, in sorted order
Parameters
----------
namespace: List[str], default []
The namespace to list tables in.
Empty list represents root namespace.
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
Typically, this token is last table name from the previous page.
@@ -77,6 +133,7 @@ class DBConnection(EnforceOverrides):
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
@@ -87,6 +144,9 @@ class DBConnection(EnforceOverrides):
----------
name: str
The name of the table.
namespace: List[str], default []
The namespace to create the table in.
Empty list represents root namespace.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
@@ -238,6 +298,7 @@ class DBConnection(EnforceOverrides):
self,
name: str,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
@@ -247,6 +308,9 @@ class DBConnection(EnforceOverrides):
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to open the table from.
None or empty list represents root namespace.
index_cache_size: int, default 256
**Deprecated**: Use session-level cache configuration instead.
Create a Session with custom cache sizes and pass it to lancedb.connect().
@@ -272,17 +336,26 @@ class DBConnection(EnforceOverrides):
"""
raise NotImplementedError
def drop_table(self, name: str):
def drop_table(self, name: str, namespace: List[str] = []):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
namespace: List[str], default []
The namespace to drop the table from.
Empty list represents root namespace.
"""
raise NotImplementedError
def rename_table(self, cur_name: str, new_name: str):
def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
):
"""Rename a table in the database.
Parameters
@@ -291,6 +364,12 @@ class DBConnection(EnforceOverrides):
The current name of the table.
new_name: str
The new name of the table.
cur_namespace: List[str], optional
The namespace of the current table.
None or empty list represents root namespace.
new_namespace: List[str], optional
The namespace to move the table to.
If not specified, defaults to the same as cur_namespace.
"""
raise NotImplementedError
@@ -301,9 +380,15 @@ class DBConnection(EnforceOverrides):
"""
raise NotImplementedError
def drop_all_tables(self):
def drop_all_tables(self, namespace: List[str] = []):
"""
Drop all tables from the database
Parameters
----------
namespace: List[str], optional
The namespace to drop all tables from.
None or empty list represents root namespace.
"""
raise NotImplementedError
@@ -404,18 +489,87 @@ class LanceDBConnection(DBConnection):
conn = AsyncConnection(await lancedb_connect(self.uri))
return await conn.table_names(start_after=start_after, limit=limit)
@override
def list_namespaces(
self,
namespace: List[str] = [],
page_token: Optional[str] = None,
limit: int = 10,
) -> Iterable[str]:
"""List immediate child namespace names in the given namespace.
Parameters
----------
namespace: List[str], optional
The parent namespace to list namespaces in.
None or empty list represents root namespace.
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
Returns
-------
Iterable of str
List of immediate child namespace names
"""
return LOOP.run(
self._conn.list_namespaces(
namespace=namespace, page_token=page_token, limit=limit
)
)
@override
def create_namespace(self, namespace: List[str]) -> None:
"""Create a new namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to create.
"""
LOOP.run(self._conn.create_namespace(namespace=namespace))
@override
def drop_namespace(self, namespace: List[str]) -> None:
"""Drop a namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to drop.
"""
return LOOP.run(self._conn.drop_namespace(namespace=namespace))
@override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
self,
page_token: Optional[str] = None,
limit: int = 10,
*,
namespace: List[str] = [],
) -> Iterable[str]:
"""Get the names of all tables in the database. The names are sorted.
Parameters
----------
namespace: List[str], optional
The namespace to list tables in.
page_token: str, optional
The token to use for pagination.
limit: int, default 10
The maximum number of tables to return.
Returns
-------
Iterator of str.
A list of table names.
"""
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
return LOOP.run(
self._conn.table_names(
namespace=namespace, start_after=page_token, limit=limit
)
)
def __len__(self) -> int:
return len(self.table_names())
@@ -435,12 +589,18 @@ class LanceDBConnection(DBConnection):
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> LanceTable:
"""Create a table in the database.
Parameters
----------
namespace: List[str], optional
The namespace to create the table in.
See
---
DBConnection.create_table
@@ -459,6 +619,7 @@ class LanceDBConnection(DBConnection):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
embedding_functions=embedding_functions,
namespace=namespace,
storage_options=storage_options,
)
return tbl
@@ -468,6 +629,7 @@ class LanceDBConnection(DBConnection):
self,
name: str,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> LanceTable:
@@ -477,6 +639,8 @@ class LanceDBConnection(DBConnection):
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to open the table from.
Returns
-------
@@ -496,26 +660,68 @@ class LanceDBConnection(DBConnection):
return LanceTable.open(
self,
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
@override
def drop_table(self, name: str, ignore_missing: bool = False):
def drop_table(
self,
name: str,
namespace: List[str] = [],
ignore_missing: bool = False,
):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to drop the table from.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
LOOP.run(self._conn.drop_table(name, ignore_missing=ignore_missing))
LOOP.run(
self._conn.drop_table(
name, namespace=namespace, ignore_missing=ignore_missing
)
)
@override
def drop_all_tables(self):
LOOP.run(self._conn.drop_all_tables())
def drop_all_tables(self, namespace: List[str] = []):
LOOP.run(self._conn.drop_all_tables(namespace=namespace))
@override
def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
):
"""Rename a table in the database.
Parameters
----------
cur_name: str
The current name of the table.
new_name: str
The new name of the table.
cur_namespace: List[str], optional
The namespace of the current table.
new_namespace: List[str], optional
The namespace to move the table to.
"""
LOOP.run(
self._conn.rename_table(
cur_name,
new_name,
cur_namespace=cur_namespace,
new_namespace=new_namespace,
)
)
@deprecation.deprecated(
deprecated_in="0.15.1",
@@ -588,13 +794,67 @@ class AsyncConnection(object):
def uri(self) -> str:
return self._inner.uri
async def list_namespaces(
self,
namespace: List[str] = [],
page_token: Optional[str] = None,
limit: int = 10,
) -> Iterable[str]:
"""List immediate child namespace names in the given namespace.
Parameters
----------
namespace: List[str], optional
The parent namespace to list namespaces in.
None or empty list represents root namespace.
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
Returns
-------
Iterable of str
List of immediate child namespace names (not full paths)
"""
return await self._inner.list_namespaces(
namespace=namespace, page_token=page_token, limit=limit
)
async def create_namespace(self, namespace: List[str]) -> None:
"""Create a new namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to create.
"""
await self._inner.create_namespace(namespace)
async def drop_namespace(self, namespace: List[str]) -> None:
"""Drop a namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to drop.
"""
await self._inner.drop_namespace(namespace)
async def table_names(
self, *, start_after: Optional[str] = None, limit: Optional[int] = None
self,
*,
namespace: List[str] = [],
start_after: Optional[str] = None,
limit: Optional[int] = None,
) -> Iterable[str]:
"""List all tables in this database, in sorted order
Parameters
----------
namespace: List[str], optional
The namespace to list tables in.
None or empty list represents root namespace.
start_after: str, optional
If present, only return names that come lexicographically after the supplied
value.
@@ -608,7 +868,9 @@ class AsyncConnection(object):
-------
Iterable of str
"""
return await self._inner.table_names(start_after=start_after, limit=limit)
return await self._inner.table_names(
namespace=namespace, start_after=start_after, limit=limit
)
async def create_table(
self,
@@ -621,6 +883,7 @@ class AsyncConnection(object):
fill_value: Optional[float] = None,
storage_options: Optional[Dict[str, str]] = None,
*,
namespace: List[str] = [],
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
) -> AsyncTable:
"""Create an [AsyncTable][lancedb.table.AsyncTable] in the database.
@@ -629,6 +892,9 @@ class AsyncConnection(object):
----------
name: str
The name of the table.
namespace: List[str], default []
The namespace to create the table in.
Empty list represents root namespace.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
@@ -807,6 +1073,7 @@ class AsyncConnection(object):
name,
mode,
schema,
namespace=namespace,
storage_options=storage_options,
)
else:
@@ -815,6 +1082,7 @@ class AsyncConnection(object):
name,
mode,
data,
namespace=namespace,
storage_options=storage_options,
)
@@ -823,6 +1091,8 @@ class AsyncConnection(object):
async def open_table(
self,
name: str,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> AsyncTable:
@@ -832,6 +1102,9 @@ class AsyncConnection(object):
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to open the table from.
None or empty list represents root namespace.
storage_options: dict, optional
Additional options for the storage backend. Options already set on the
connection will be inherited by the table, but can be overridden here.
@@ -855,42 +1128,77 @@ class AsyncConnection(object):
-------
A LanceTable object representing the table.
"""
table = await self._inner.open_table(name, storage_options, index_cache_size)
table = await self._inner.open_table(
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
return AsyncTable(table)
async def rename_table(self, old_name: str, new_name: str):
async def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
):
"""Rename a table in the database.
Parameters
----------
old_name: str
cur_name: str
The current name of the table.
new_name: str
The new name of the table.
cur_namespace: List[str], optional
The namespace of the current table.
None or empty list represents root namespace.
new_namespace: List[str], optional
The namespace to move the table to.
If not specified, defaults to the same as cur_namespace.
"""
await self._inner.rename_table(old_name, new_name)
await self._inner.rename_table(
cur_name, new_name, cur_namespace=cur_namespace, new_namespace=new_namespace
)
async def drop_table(self, name: str, *, ignore_missing: bool = False):
async def drop_table(
self,
name: str,
*,
namespace: List[str] = [],
ignore_missing: bool = False,
):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
namespace: List[str], default []
The namespace to drop the table from.
Empty list represents root namespace.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
try:
await self._inner.drop_table(name)
await self._inner.drop_table(name, namespace=namespace)
except ValueError as e:
if not ignore_missing:
raise e
if f"Table '{name}' was not found" not in str(e):
raise e
async def drop_all_tables(self):
"""Drop all tables from the database."""
await self._inner.drop_all_tables()
async def drop_all_tables(self, namespace: List[str] = []):
"""Drop all tables from the database.
Parameters
----------
namespace: List[str], optional
The namespace to drop all tables from.
None or empty list represents root namespace.
"""
await self._inner.drop_all_tables(namespace=namespace)
@deprecation.deprecated(
deprecated_in="0.15.1",

View File

@@ -0,0 +1,401 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""
LanceDB Namespace integration module.
This module provides integration with lance_namespace for managing tables
through a namespace abstraction.
"""
from __future__ import annotations
from typing import Dict, Iterable, List, Optional, Union
import os
from lancedb.db import DBConnection
from lancedb.table import LanceTable, Table
from lancedb.util import validate_table_name
from lancedb.common import validate_schema
from lancedb.table import sanitize_create_table
from overrides import override
from lance_namespace import LanceNamespace, connect as namespace_connect
from lance_namespace_urllib3_client.models import (
ListTablesRequest,
DescribeTableRequest,
CreateTableRequest,
DropTableRequest,
ListNamespacesRequest,
CreateNamespaceRequest,
DropNamespaceRequest,
JsonArrowSchema,
JsonArrowField,
JsonArrowDataType,
)
import pyarrow as pa
from datetime import timedelta
from lancedb.pydantic import LanceModel
from lancedb.common import DATA
from lancedb.embeddings import EmbeddingFunctionConfig
from ._lancedb import Session
def _convert_pyarrow_type_to_json(arrow_type: pa.DataType) -> JsonArrowDataType:
"""Convert PyArrow DataType to JsonArrowDataType."""
if pa.types.is_null(arrow_type):
type_name = "null"
elif pa.types.is_boolean(arrow_type):
type_name = "bool"
elif pa.types.is_int8(arrow_type):
type_name = "int8"
elif pa.types.is_uint8(arrow_type):
type_name = "uint8"
elif pa.types.is_int16(arrow_type):
type_name = "int16"
elif pa.types.is_uint16(arrow_type):
type_name = "uint16"
elif pa.types.is_int32(arrow_type):
type_name = "int32"
elif pa.types.is_uint32(arrow_type):
type_name = "uint32"
elif pa.types.is_int64(arrow_type):
type_name = "int64"
elif pa.types.is_uint64(arrow_type):
type_name = "uint64"
elif pa.types.is_float32(arrow_type):
type_name = "float32"
elif pa.types.is_float64(arrow_type):
type_name = "float64"
elif pa.types.is_string(arrow_type):
type_name = "utf8"
elif pa.types.is_binary(arrow_type):
type_name = "binary"
elif pa.types.is_list(arrow_type):
# For list types, we need more complex handling
type_name = "list"
elif pa.types.is_fixed_size_list(arrow_type):
type_name = "fixed_size_list"
else:
# Default to string representation for unsupported types
type_name = str(arrow_type)
return JsonArrowDataType(type=type_name)
def _convert_pyarrow_schema_to_json(schema: pa.Schema) -> JsonArrowSchema:
"""Convert PyArrow Schema to JsonArrowSchema."""
fields = []
for field in schema:
json_field = JsonArrowField(
name=field.name,
type=_convert_pyarrow_type_to_json(field.type),
nullable=field.nullable,
metadata=field.metadata,
)
fields.append(json_field)
return JsonArrowSchema(fields=fields, metadata=schema.metadata)
class LanceNamespaceDBConnection(DBConnection):
"""
A LanceDB connection that uses a namespace for table management.
This connection delegates table URI resolution to a lance_namespace instance,
while using the standard LanceTable for actual table operations.
"""
def __init__(
self,
namespace: LanceNamespace,
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
):
"""
Initialize a namespace-based LanceDB connection.
Parameters
----------
namespace : LanceNamespace
The namespace instance to use for table management
read_consistency_interval : Optional[timedelta]
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked.
storage_options : Optional[Dict[str, str]]
Additional options for the storage backend
session : Optional[Session]
A session to use for this connection
"""
self._ns = namespace
self.read_consistency_interval = read_consistency_interval
self.storage_options = storage_options or {}
self.session = session
@override
def table_names(
self,
page_token: Optional[str] = None,
limit: int = 10,
*,
namespace: List[str] = [],
) -> Iterable[str]:
request = ListTablesRequest(id=namespace, page_token=page_token, limit=limit)
response = self._ns.list_tables(request)
return response.tables if response.tables else []
@override
def create_table(
self,
name: str,
data: Optional[DATA] = None,
schema: Optional[Union[pa.Schema, LanceModel]] = None,
mode: str = "create",
exist_ok: bool = False,
on_bad_vectors: str = "error",
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
) -> Table:
if mode.lower() not in ["create", "overwrite"]:
raise ValueError("mode must be either 'create' or 'overwrite'")
validate_table_name(name)
# TODO: support passing data
if data is not None:
raise ValueError(
"create_table currently only supports creating empty tables (data=None)"
)
# Prepare schema
metadata = None
if embedding_functions is not None:
from lancedb.embeddings.registry import EmbeddingFunctionRegistry
registry = EmbeddingFunctionRegistry.get_instance()
metadata = registry.get_table_metadata(embedding_functions)
data, schema = sanitize_create_table(
data, schema, metadata, on_bad_vectors, fill_value
)
validate_schema(schema)
# Convert PyArrow schema to JsonArrowSchema
json_schema = _convert_pyarrow_schema_to_json(schema)
# Create table request with namespace
table_id = namespace + [name]
request = CreateTableRequest(id=table_id, var_schema=json_schema)
# Create empty Arrow IPC stream bytes
import pyarrow.ipc as ipc
import io
empty_table = pa.Table.from_arrays(
[pa.array([], type=field.type) for field in schema], schema=schema
)
buffer = io.BytesIO()
with ipc.new_stream(buffer, schema) as writer:
writer.write_table(empty_table)
request_data = buffer.getvalue()
self._ns.create_table(request, request_data)
return self.open_table(
name, namespace=namespace, storage_options=storage_options
)
@override
def open_table(
self,
name: str,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
table_id = namespace + [name]
request = DescribeTableRequest(id=table_id)
response = self._ns.describe_table(request)
merged_storage_options = dict()
if storage_options:
merged_storage_options.update(storage_options)
if response.storage_options:
merged_storage_options.update(response.storage_options)
return self._lance_table_from_uri(
response.location,
storage_options=merged_storage_options,
index_cache_size=index_cache_size,
)
@override
def drop_table(self, name: str, namespace: List[str] = []):
# Use namespace drop_table directly
table_id = namespace + [name]
request = DropTableRequest(id=table_id)
self._ns.drop_table(request)
@override
def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
):
raise NotImplementedError(
"rename_table is not supported for namespace connections"
)
@override
def drop_database(self):
raise NotImplementedError(
"drop_database is deprecated, use drop_all_tables instead"
)
@override
def drop_all_tables(self, namespace: List[str] = []):
for table_name in self.table_names(namespace=namespace):
self.drop_table(table_name, namespace=namespace)
@override
def list_namespaces(
self,
namespace: List[str] = [],
page_token: Optional[str] = None,
limit: int = 10,
) -> Iterable[str]:
"""
List child namespaces under the given namespace.
Parameters
----------
namespace : Optional[List[str]]
The parent namespace to list children from.
If None, lists root-level namespaces.
page_token : Optional[str]
Pagination token for listing results.
limit : int
Maximum number of namespaces to return.
Returns
-------
Iterable[str]
Names of child namespaces.
"""
request = ListNamespacesRequest(
id=namespace, page_token=page_token, limit=limit
)
response = self._ns.list_namespaces(request)
return response.namespaces if response.namespaces else []
@override
def create_namespace(self, namespace: List[str]) -> None:
"""
Create a new namespace.
Parameters
----------
namespace : List[str]
The namespace path to create.
"""
request = CreateNamespaceRequest(id=namespace)
self._ns.create_namespace(request)
@override
def drop_namespace(self, namespace: List[str]) -> None:
"""
Drop a namespace.
Parameters
----------
namespace : List[str]
The namespace path to drop.
"""
request = DropNamespaceRequest(id=namespace)
self._ns.drop_namespace(request)
def _lance_table_from_uri(
self,
table_uri: str,
*,
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> LanceTable:
# Extract the base path and table name from the URI
if table_uri.endswith(".lance"):
base_path = os.path.dirname(table_uri)
table_name = os.path.basename(table_uri)[:-6] # Remove .lance
else:
raise ValueError(f"Invalid table URI: {table_uri}")
from lancedb.db import LanceDBConnection
temp_conn = LanceDBConnection(
base_path,
read_consistency_interval=self.read_consistency_interval,
storage_options={**self.storage_options, **(storage_options or {})},
session=self.session,
)
# Open the table using the temporary connection
return LanceTable.open(
temp_conn,
table_name,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
def connect_namespace(
impl: str,
properties: Dict[str, str],
*,
read_consistency_interval: Optional[timedelta] = None,
storage_options: Optional[Dict[str, str]] = None,
session: Optional[Session] = None,
) -> LanceNamespaceDBConnection:
"""
Connect to a LanceDB database through a namespace.
Parameters
----------
impl : str
The namespace implementation to use. For examples:
- "dir" for DirectoryNamespace
- "rest" for REST-based namespace
- Full module path for custom implementations
properties : Dict[str, str]
Configuration properties for the namespace implementation.
Different namespace implemenation has different config properties.
For example, use DirectoryNamespace with {"root": "/path/to/directory"}
read_consistency_interval : Optional[timedelta]
The interval at which to check for updates to the table from other
processes. If None, then consistency is not checked.
storage_options : Optional[Dict[str, str]]
Additional options for the storage backend
session : Optional[Session]
A session to use for this connection
Returns
-------
LanceNamespaceDBConnection
A namespace-based connection to LanceDB
"""
namespace = namespace_connect(impl, properties)
# Return the namespace-based connection
return LanceNamespaceDBConnection(
namespace,
read_consistency_interval=read_consistency_interval,
storage_options=storage_options,
session=session,
)

View File

@@ -28,6 +28,7 @@ import pyarrow.fs as pa_fs
import pydantic
from lancedb.pydantic import PYDANTIC_VERSION
from lancedb.background_loop import LOOP
from . import __version__
from .arrow import AsyncRecordBatchReader
@@ -48,6 +49,7 @@ if TYPE_CHECKING:
from ._lancedb import FTSQuery as LanceFTSQuery
from ._lancedb import HybridQuery as LanceHybridQuery
from ._lancedb import VectorQuery as LanceVectorQuery
from ._lancedb import TakeQuery as LanceTakeQuery
from ._lancedb import PyQueryRequest
from .common import VEC
from .pydantic import LanceModel
@@ -910,7 +912,7 @@ class LanceQueryBuilder(ABC):
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST, _rowid@1 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceRead: uri=..., projection=[vector], ...
@@ -941,20 +943,22 @@ class LanceQueryBuilder(ABC):
>>> query = [100, 100]
>>> plan = table.search(query).analyze_plan()
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
AnalyzeExec verbose=true, metrics=[]
TracedExec, metrics=[]
ProjectionExec: expr=[...], metrics=[...]
GlobalLimitExec: skip=0, fetch=10, metrics=[...]
AnalyzeExec verbose=true, metrics=[], cumulative_cpu=...
TracedExec, metrics=[], cumulative_cpu=...
ProjectionExec: expr=[...], metrics=[...], cumulative_cpu=...
GlobalLimitExec: skip=0, fetch=10, metrics=[...], cumulative_cpu=...
FilterExec: _distance@2 IS NOT NULL,
metrics=[output_rows=..., elapsed_compute=...]
metrics=[output_rows=..., elapsed_compute=...], cumulative_cpu=...
SortExec: TopK(fetch=10), expr=[...],
preserve_partitioning=[...],
metrics=[output_rows=..., elapsed_compute=..., row_replacements=...]
metrics=[output_rows=..., elapsed_compute=..., row_replacements=...],
cumulative_cpu=...
KNNVectorDistance: metric=l2,
metrics=[output_rows=..., elapsed_compute=..., output_batches=...]
metrics=[output_rows=..., elapsed_compute=..., output_batches=...],
cumulative_cpu=...
LanceRead: uri=..., projection=[vector], ...
metrics=[output_rows=..., elapsed_compute=...,
bytes_read=..., iops=..., requests=...]
bytes_read=..., iops=..., requests=...], cumulative_cpu=...
Returns
-------
@@ -2041,11 +2045,11 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
>>> plan = table.search(query).explain_plan(True)
>>> print(plan) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceRead: uri=..., projection=[vector], ...
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST, _rowid@1 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceRead: uri=..., projection=[vector], ...
Parameters
----------
@@ -2139,7 +2143,11 @@ class LanceHybridQueryBuilder(LanceQueryBuilder):
class AsyncQueryBase(object):
def __init__(self, inner: Union[LanceQuery, LanceVectorQuery]):
"""
Base class for all async queries (take, scan, vector, fts, hybrid)
"""
def __init__(self, inner: Union[LanceQuery, LanceVectorQuery, LanceTakeQuery]):
"""
Construct an AsyncQueryBase
@@ -2149,27 +2157,14 @@ class AsyncQueryBase(object):
self._inner = inner
def to_query_object(self) -> Query:
"""
Convert the query into a query object
This is currently experimental but can be useful as the query object is pure
python and more easily serializable.
"""
return Query.from_inner(self._inner.to_query_request())
def where(self, predicate: str) -> Self:
"""
Only return rows matching the given predicate
The predicate should be supplied as an SQL query string.
Examples
--------
>>> predicate = "x > 10"
>>> predicate = "y > 0 AND y < 100"
>>> predicate = "x > 5 OR y = 'test'"
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
"""
self._inner.where(predicate)
return self
def select(self, columns: Union[List[str], dict[str, str]]) -> Self:
"""
Return only the specified columns.
@@ -2208,42 +2203,6 @@ class AsyncQueryBase(object):
raise TypeError("columns must be a list of column names or a dict")
return self
def limit(self, limit: int) -> Self:
"""
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
"""
self._inner.limit(limit)
return self
def offset(self, offset: int) -> Self:
"""
Set the offset for the results.
Parameters
----------
offset: int
The offset to start fetching results from.
"""
self._inner.offset(offset)
return self
def fast_search(self) -> Self:
"""
Skip searching un-indexed data.
This can make queries faster, but will miss any data that has not been
indexed.
!!! tip
You can add new data into an existing index by calling
[AsyncTable.optimize][lancedb.table.AsyncTable.optimize].
"""
self._inner.fast_search()
return self
def with_row_id(self) -> Self:
"""
Include the _rowid column in the results.
@@ -2251,27 +2210,6 @@ class AsyncQueryBase(object):
self._inner.with_row_id()
return self
def postfilter(self) -> Self:
"""
If this is called then filtering will happen after the search instead of
before.
By default filtering will be performed before the search. This is how
filtering is typically understood to work. This prefilter step does add some
additional latency. Creating a scalar index on the filter column(s) can
often improve this latency. However, sometimes a filter is too complex or
scalar indices cannot be applied to the column. In these cases postfiltering
can be used instead of prefiltering to improve latency.
Post filtering applies the filter to the results of the search. This
means we only run the filter on a much smaller set of data. However, it can
cause the query to return fewer than `limit` results (or even no results) if
none of the nearest results match the filter.
Post filtering happens during the "refine stage" (described in more detail in
@see {@link VectorQuery#refineFactor}). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
"""
self._inner.postfilter()
return self
async def to_batches(
self,
*,
@@ -2295,7 +2233,9 @@ class AsyncQueryBase(object):
complete within the specified time, an error will be raised.
"""
return AsyncRecordBatchReader(
await self._inner.execute(max_batch_length, timeout)
await self._inner.execute(
max_batch_length=max_batch_length, timeout=timeout
)
)
async def to_arrow(self, timeout: Optional[timedelta] = None) -> pa.Table:
@@ -2429,7 +2369,7 @@ class AsyncQueryBase(object):
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST, _rowid@1 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceRead: uri=..., projection=[vector], ...
@@ -2454,7 +2394,98 @@ class AsyncQueryBase(object):
return await self._inner.analyze_plan()
class AsyncQuery(AsyncQueryBase):
class AsyncStandardQuery(AsyncQueryBase):
"""
Base class for "standard" async queries (all but take currently)
"""
def __init__(self, inner: Union[LanceQuery, LanceVectorQuery]):
"""
Construct an AsyncStandardQuery
This method is not intended to be called directly. Instead, use the
[AsyncTable.query][lancedb.table.AsyncTable.query] method to create a query.
"""
super().__init__(inner)
def where(self, predicate: str) -> Self:
"""
Only return rows matching the given predicate
The predicate should be supplied as an SQL query string.
Examples
--------
>>> predicate = "x > 10"
>>> predicate = "y > 0 AND y < 100"
>>> predicate = "x > 5 OR y = 'test'"
Filtering performance can often be improved by creating a scalar index
on the filter column(s).
"""
self._inner.where(predicate)
return self
def limit(self, limit: int) -> Self:
"""
Set the maximum number of results to return.
By default, a plain search has no limit. If this method is not
called then every valid row from the table will be returned.
"""
self._inner.limit(limit)
return self
def offset(self, offset: int) -> Self:
"""
Set the offset for the results.
Parameters
----------
offset: int
The offset to start fetching results from.
"""
self._inner.offset(offset)
return self
def fast_search(self) -> Self:
"""
Skip searching un-indexed data.
This can make queries faster, but will miss any data that has not been
indexed.
!!! tip
You can add new data into an existing index by calling
[AsyncTable.optimize][lancedb.table.AsyncTable.optimize].
"""
self._inner.fast_search()
return self
def postfilter(self) -> Self:
"""
If this is called then filtering will happen after the search instead of
before.
By default filtering will be performed before the search. This is how
filtering is typically understood to work. This prefilter step does add some
additional latency. Creating a scalar index on the filter column(s) can
often improve this latency. However, sometimes a filter is too complex or
scalar indices cannot be applied to the column. In these cases postfiltering
can be used instead of prefiltering to improve latency.
Post filtering applies the filter to the results of the search. This
means we only run the filter on a much smaller set of data. However, it can
cause the query to return fewer than `limit` results (or even no results) if
none of the nearest results match the filter.
Post filtering happens during the "refine stage" (described in more detail in
@see {@link VectorQuery#refineFactor}). This means that setting a higher refine
factor can often help restore some of the results lost by post filtering.
"""
self._inner.postfilter()
return self
class AsyncQuery(AsyncStandardQuery):
def __init__(self, inner: LanceQuery):
"""
Construct an AsyncQuery
@@ -2588,7 +2619,7 @@ class AsyncQuery(AsyncQueryBase):
return AsyncFTSQuery(self._inner.nearest_to_text({"query": query}))
class AsyncFTSQuery(AsyncQueryBase):
class AsyncFTSQuery(AsyncStandardQuery):
"""A query for full text search for LanceDB."""
def __init__(self, inner: LanceFTSQuery):
@@ -2867,7 +2898,7 @@ class AsyncVectorQueryBase:
return self
class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
class AsyncVectorQuery(AsyncStandardQuery, AsyncVectorQueryBase):
def __init__(self, inner: LanceVectorQuery):
"""
Construct an AsyncVectorQuery
@@ -2950,7 +2981,7 @@ class AsyncVectorQuery(AsyncQueryBase, AsyncVectorQueryBase):
return AsyncRecordBatchReader(results, max_batch_length=max_batch_length)
class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
class AsyncHybridQuery(AsyncStandardQuery, AsyncVectorQueryBase):
"""
A query builder that performs hybrid vector and full text search.
Results are combined and reranked based on the specified reranker.
@@ -3054,7 +3085,7 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
CoalesceBatchesExec: target_batch_size=1024
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST], preserve_partitioning=[false]
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST, _rowid@1 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceRead: uri=..., projection=[vector], ...
<BLANKLINE>
@@ -3102,3 +3133,252 @@ class AsyncHybridQuery(AsyncQueryBase, AsyncVectorQueryBase):
results.append(await self._inner.to_fts_query().analyze_plan())
return "\n".join(results)
class AsyncTakeQuery(AsyncQueryBase):
"""
Builder for parameterizing and executing take queries.
"""
def __init__(self, inner: LanceTakeQuery):
super().__init__(inner)
class BaseQueryBuilder(object):
"""
Wraps AsyncQueryBase and provides a synchronous interface
"""
def __init__(self, inner: AsyncQueryBase):
self._inner = inner
def to_query_object(self) -> Query:
return self._inner.to_query_object()
def select(self, columns: Union[List[str], dict[str, str]]) -> Self:
"""
Return only the specified columns.
By default a query will return all columns from the table. However, this can
have a very significant impact on latency. LanceDb stores data in a columnar
fashion. This
means we can finely tune our I/O to select exactly the columns we need.
As a best practice you should always limit queries to the columns that you need.
If you pass in a list of column names then only those columns will be
returned.
You can also use this method to create new "dynamic" columns based on your
existing columns. For example, you may not care about "a" or "b" but instead
simply want "a + b". This is often seen in the SELECT clause of an SQL query
(e.g. `SELECT a+b FROM my_table`).
To create dynamic columns you can pass in a dict[str, str]. A column will be
returned for each entry in the map. The key provides the name of the column.
The value is an SQL string used to specify how the column is calculated.
For example, an SQL query might state `SELECT a + b AS combined, c`. The
equivalent input to this method would be `{"combined": "a + b", "c": "c"}`.
Columns will always be returned in the order given, even if that order is
different than the order used when adding the data.
"""
self._inner.select(columns)
return self
def with_row_id(self) -> Self:
"""
Include the _rowid column in the results.
"""
self._inner.with_row_id()
return self
def to_batches(
self,
*,
max_batch_length: Optional[int] = None,
timeout: Optional[timedelta] = None,
) -> pa.RecordBatchReader:
"""
Execute the query and return the results as an Apache Arrow RecordBatchReader.
Parameters
----------
max_batch_length: Optional[int]
The maximum number of selected records in a single RecordBatch object.
If not specified, a default batch length is used.
It is possible for batches to be smaller than the provided length if the
underlying data is stored in smaller chunks.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
async_iter = LOOP.run(self._inner.execute(max_batch_length, timeout))
def iter_sync():
try:
while True:
yield LOOP.run(async_iter.__anext__())
except StopAsyncIteration:
return
return pa.RecordBatchReader.from_batches(async_iter.schema, iter_sync())
def to_arrow(self, timeout: Optional[timedelta] = None) -> pa.Table:
"""
Execute the query and collect the results into an Apache Arrow Table.
This method will collect all results into memory before returning. If
you expect a large number of results, you may want to use
[to_batches][lancedb.query.AsyncQueryBase.to_batches]
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return LOOP.run(self._inner.to_arrow(timeout))
def to_list(self, timeout: Optional[timedelta] = None) -> List[dict]:
"""
Execute the query and return the results as a list of dictionaries.
Each list entry is a dictionary with the selected column names as keys,
or all table columns if `select` is not called. The vector and the "_distance"
fields are returned whether or not they're explicitly selected.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return LOOP.run(self._inner.to_list(timeout))
def to_pandas(
self,
flatten: Optional[Union[int, bool]] = None,
timeout: Optional[timedelta] = None,
) -> "pd.DataFrame":
"""
Execute the query and collect the results into a pandas DataFrame.
This method will collect all results into memory before returning. If you
expect a large number of results, you may want to use
[to_batches][lancedb.query.AsyncQueryBase.to_batches] and convert each batch to
pandas separately.
Examples
--------
>>> import asyncio
>>> from lancedb import connect_async
>>> async def doctest_example():
... conn = await connect_async("./.lancedb")
... table = await conn.create_table("my_table", data=[{"a": 1, "b": 2}])
... async for batch in await table.query().to_batches():
... batch_df = batch.to_pandas()
>>> asyncio.run(doctest_example())
Parameters
----------
flatten: Optional[Union[int, bool]]
If flatten is True, flatten all nested columns.
If flatten is an integer, flatten the nested columns up to the
specified depth.
If unspecified, do not flatten the nested columns.
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
"""
return LOOP.run(self._inner.to_pandas(flatten, timeout))
def to_polars(
self,
timeout: Optional[timedelta] = None,
) -> "pl.DataFrame":
"""
Execute the query and collect the results into a Polars DataFrame.
This method will collect all results into memory before returning. If you
expect a large number of results, you may want to use
[to_batches][lancedb.query.AsyncQueryBase.to_batches] and convert each batch to
polars separately.
Parameters
----------
timeout: Optional[timedelta]
The maximum time to wait for the query to complete.
If not specified, no timeout is applied. If the query does not
complete within the specified time, an error will be raised.
Examples
--------
>>> import asyncio
>>> import polars as pl
>>> from lancedb import connect_async
>>> async def doctest_example():
... conn = await connect_async("./.lancedb")
... table = await conn.create_table("my_table", data=[{"a": 1, "b": 2}])
... async for batch in await table.query().to_batches():
... batch_df = pl.from_arrow(batch)
>>> asyncio.run(doctest_example())
"""
return LOOP.run(self._inner.to_polars(timeout))
def explain_plan(self, verbose: Optional[bool] = False):
"""Return the execution plan for this query.
Examples
--------
>>> import asyncio
>>> from lancedb import connect_async
>>> async def doctest_example():
... conn = await connect_async("./.lancedb")
... table = await conn.create_table("my_table", [{"vector": [99, 99]}])
... query = [100, 100]
... plan = await table.query().nearest_to([1, 2]).explain_plan(True)
... print(plan)
>>> asyncio.run(doctest_example()) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
ProjectionExec: expr=[vector@0 as vector, _distance@2 as _distance]
GlobalLimitExec: skip=0, fetch=10
FilterExec: _distance@2 IS NOT NULL
SortExec: TopK(fetch=10), expr=[_distance@2 ASC NULLS LAST, _rowid@1 ASC NULLS LAST], preserve_partitioning=[false]
KNNVectorDistance: metric=l2
LanceRead: uri=..., projection=[vector], ...
Parameters
----------
verbose : bool, default False
Use a verbose output format.
Returns
-------
plan : str
""" # noqa: E501
return LOOP.run(self._inner.explain_plan(verbose))
def analyze_plan(self):
"""Execute the query and display with runtime metrics.
Returns
-------
plan : str
"""
return LOOP.run(self._inner.analyze_plan())
class LanceTakeQueryBuilder(BaseQueryBuilder):
"""
Builder for parameterizing and executing take queries.
"""
def __init__(self, inner: AsyncTakeQuery):
super().__init__(inner)

View File

@@ -118,6 +118,7 @@ class ClientConfig:
retry_config: RetryConfig = field(default_factory=RetryConfig)
timeout_config: Optional[TimeoutConfig] = field(default_factory=TimeoutConfig)
extra_headers: Optional[dict] = None
id_delimiter: Optional[str] = None
def __post_init__(self):
if isinstance(self.retry_config, dict):

View File

@@ -96,14 +96,73 @@ class RemoteDBConnection(DBConnection):
def __repr__(self) -> str:
return f"RemoteConnect(name={self.db_name})"
@override
def list_namespaces(
self,
namespace: List[str] = [],
page_token: Optional[str] = None,
limit: int = 10,
) -> Iterable[str]:
"""List immediate child namespace names in the given namespace.
Parameters
----------
namespace: List[str], optional
The parent namespace to list namespaces in.
None or empty list represents root namespace.
page_token: str, optional
The token to use for pagination. If not present, start from the beginning.
limit: int, default 10
The size of the page to return.
Returns
-------
Iterable of str
List of immediate child namespace names
"""
return LOOP.run(
self._conn.list_namespaces(
namespace=namespace, page_token=page_token, limit=limit
)
)
@override
def create_namespace(self, namespace: List[str]) -> None:
"""Create a new namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to create.
"""
LOOP.run(self._conn.create_namespace(namespace=namespace))
@override
def drop_namespace(self, namespace: List[str]) -> None:
"""Drop a namespace.
Parameters
----------
namespace: List[str]
The namespace identifier to drop.
"""
return LOOP.run(self._conn.drop_namespace(namespace=namespace))
@override
def table_names(
self, page_token: Optional[str] = None, limit: int = 10
self,
page_token: Optional[str] = None,
limit: int = 10,
*,
namespace: List[str] = [],
) -> Iterable[str]:
"""List the names of all tables in the database.
Parameters
----------
namespace: List[str], default []
The namespace to list tables in.
Empty list represents root namespace.
page_token: str
The last token to start the new page.
limit: int, default 10
@@ -113,13 +172,18 @@ class RemoteDBConnection(DBConnection):
-------
An iterator of table names.
"""
return LOOP.run(self._conn.table_names(start_after=page_token, limit=limit))
return LOOP.run(
self._conn.table_names(
namespace=namespace, start_after=page_token, limit=limit
)
)
@override
def open_table(
self,
name: str,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
) -> Table:
@@ -129,6 +193,9 @@ class RemoteDBConnection(DBConnection):
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to open the table from.
None or empty list represents root namespace.
Returns
-------
@@ -142,7 +209,7 @@ class RemoteDBConnection(DBConnection):
" (there is no local cache to configure)"
)
table = LOOP.run(self._conn.open_table(name))
table = LOOP.run(self._conn.open_table(name, namespace=namespace))
return RemoteTable(table, self.db_name)
@override
@@ -155,6 +222,8 @@ class RemoteDBConnection(DBConnection):
fill_value: float = 0.0,
mode: Optional[str] = None,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
namespace: List[str] = [],
) -> Table:
"""Create a [Table][lancedb.table.Table] in the database.
@@ -162,6 +231,9 @@ class RemoteDBConnection(DBConnection):
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to create the table in.
None or empty list represents root namespace.
data: The data to initialize the table, *optional*
User must provide at least one of `data` or `schema`.
Acceptable types are:
@@ -262,6 +334,7 @@ class RemoteDBConnection(DBConnection):
self._conn.create_table(
name,
data,
namespace=namespace,
mode=mode,
schema=schema,
on_bad_vectors=on_bad_vectors,
@@ -271,18 +344,27 @@ class RemoteDBConnection(DBConnection):
return RemoteTable(table, self.db_name)
@override
def drop_table(self, name: str):
def drop_table(self, name: str, namespace: List[str] = []):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
namespace: List[str], optional
The namespace to drop the table from.
None or empty list represents root namespace.
"""
LOOP.run(self._conn.drop_table(name))
LOOP.run(self._conn.drop_table(name, namespace=namespace))
@override
def rename_table(self, cur_name: str, new_name: str):
def rename_table(
self,
cur_name: str,
new_name: str,
cur_namespace: List[str] = [],
new_namespace: List[str] = [],
):
"""Rename a table in the database.
Parameters
@@ -292,7 +374,14 @@ class RemoteDBConnection(DBConnection):
new_name: str
The new name of the table.
"""
LOOP.run(self._conn.rename_table(cur_name, new_name))
LOOP.run(
self._conn.rename_table(
cur_name,
new_name,
cur_namespace=cur_namespace,
new_namespace=new_namespace,
)
)
async def close(self):
"""Close the connection to the database."""

View File

@@ -26,7 +26,7 @@ from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from lancedb.merge import LanceMergeInsertBuilder
from lancedb.embeddings import EmbeddingFunctionRegistry
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder
from ..query import LanceVectorQueryBuilder, LanceQueryBuilder, LanceTakeQueryBuilder
from ..table import AsyncTable, IndexStatistics, Query, Table, Tags
@@ -115,6 +115,7 @@ class RemoteTable(Table):
*,
replace: bool = False,
wait_timeout: timedelta = None,
name: Optional[str] = None,
):
"""Creates a scalar index
Parameters
@@ -139,7 +140,11 @@ class RemoteTable(Table):
LOOP.run(
self._table.create_index(
column, config=config, replace=replace, wait_timeout=wait_timeout
column,
config=config,
replace=replace,
wait_timeout=wait_timeout,
name=name,
)
)
@@ -161,6 +166,7 @@ class RemoteTable(Table):
ngram_min_length: int = 3,
ngram_max_length: int = 3,
prefix_only: bool = False,
name: Optional[str] = None,
):
config = FTS(
with_position=with_position,
@@ -177,7 +183,11 @@ class RemoteTable(Table):
)
LOOP.run(
self._table.create_index(
column, config=config, replace=replace, wait_timeout=wait_timeout
column,
config=config,
replace=replace,
wait_timeout=wait_timeout,
name=name,
)
)
@@ -194,6 +204,8 @@ class RemoteTable(Table):
wait_timeout: Optional[timedelta] = None,
*,
num_bits: int = 8,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index on the table.
Currently, the only parameters that matter are
@@ -270,7 +282,11 @@ class RemoteTable(Table):
LOOP.run(
self._table.create_index(
vector_column_name, config=config, wait_timeout=wait_timeout
vector_column_name,
config=config,
wait_timeout=wait_timeout,
name=name,
train=train,
)
)
@@ -617,6 +633,12 @@ class RemoteTable(Table):
def stats(self):
return LOOP.run(self._table.stats())
def take_offsets(self, offsets: list[int]) -> LanceTakeQueryBuilder:
return LanceTakeQueryBuilder(self._table.take_offsets(offsets))
def take_row_ids(self, row_ids: list[int]) -> LanceTakeQueryBuilder:
return LanceTakeQueryBuilder(self._table.take_row_ids(row_ids))
def uses_v2_manifest_paths(self) -> bool:
raise NotImplementedError(
"uses_v2_manifest_paths() is not supported on the LanceDB Cloud"

View File

@@ -51,6 +51,7 @@ from .query import (
AsyncFTSQuery,
AsyncHybridQuery,
AsyncQuery,
AsyncTakeQuery,
AsyncVectorQuery,
FullTextQuery,
LanceEmptyQueryBuilder,
@@ -58,6 +59,7 @@ from .query import (
LanceHybridQueryBuilder,
LanceQueryBuilder,
LanceVectorQueryBuilder,
LanceTakeQueryBuilder,
Query,
)
from .util import (
@@ -687,6 +689,8 @@ class Table(ABC):
sample_rate: int = 256,
m: int = 20,
ef_construction: int = 300,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index on the table.
@@ -719,6 +723,11 @@ class Table(ABC):
Only 4 and 8 are supported.
wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous.
name: str, optional
The name of the index. If not provided, a default name will be generated.
train: bool, default True
Whether to train the index with existing data. Vector indices always train
with existing data.
"""
raise NotImplementedError
@@ -774,6 +783,7 @@ class Table(ABC):
replace: bool = True,
index_type: ScalarIndexType = "BTREE",
wait_timeout: Optional[timedelta] = None,
name: Optional[str] = None,
):
"""Create a scalar index on a column.
@@ -788,6 +798,8 @@ class Table(ABC):
The type of index to create.
wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous.
name: str, optional
The name of the index. If not provided, a default name will be generated.
Examples
--------
@@ -850,6 +862,7 @@ class Table(ABC):
ngram_max_length: int = 3,
prefix_only: bool = False,
wait_timeout: Optional[timedelta] = None,
name: Optional[str] = None,
):
"""Create a full-text search index on the table.
@@ -914,6 +927,8 @@ class Table(ABC):
Whether to only index the prefix of the token for ngram tokenizer.
wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous.
name: str, optional
The name of the index. If not provided, a default name will be generated.
"""
raise NotImplementedError
@@ -1103,6 +1118,120 @@ class Table(ABC):
"""
raise NotImplementedError
@abstractmethod
def take_offsets(
self, offsets: list[int], *, with_row_id: bool = False
) -> LanceTakeQueryBuilder:
"""
Take a list of offsets from the table.
Offsets are 0-indexed and relative to the current version of the table. Offsets
are not stable. A row with an offset of N may have a different offset in a
different version of the table (e.g. if an earlier row is deleted).
Offsets are mostly useful for sampling as the set of all valid offsets is easily
known in advance to be [0, len(table)).
No guarantees are made regarding the order in which results are returned. If
you desire an output order that matches the order of the given offsets, you will
need to add the row offset column to the output and align it yourself.
Parameters
----------
offsets: list[int]
The offsets to take.
Returns
-------
pa.RecordBatch
A record batch containing the rows at the given offsets.
"""
def __getitems__(self, offsets: list[int]) -> pa.RecordBatch:
"""
Take a list of offsets from the table and return as a record batch.
This method uses the `take_offsets` method to take the rows. However, it
aligns the offsets to the passed in offsets. This means the return type
is a record batch (and so users should take care not to pass in too many
offsets)
Note: this method is primarily intended to fulfill the Dataset contract
for pytorch.
Parameters
----------
offsets: list[int]
The offsets to take.
Returns
-------
pa.RecordBatch
A record batch containing the rows at the given offsets.
"""
# We don't know the order of the results at all. So we calculate a permutation
# for ordering the given offsets. Then we load the data with the _rowoffset
# column. Then we sort by _rowoffset and apply the inverse of the permutation
# that we calculated.
#
# Note: this is potentially a lot of memory copy if we're operating on large
# batches :(
num_offsets = len(offsets)
indices = list(range(num_offsets))
permutation = sorted(indices, key=lambda idx: offsets[idx])
permutation_inv = [0] * num_offsets
for i in range(num_offsets):
permutation_inv[permutation[i]] = i
columns = self.schema.names
columns.append("_rowoffset")
tbl = (
self.take_offsets(offsets)
.select(columns)
.to_arrow()
.sort_by("_rowoffset")
.take(permutation_inv)
.combine_chunks()
.drop_columns(["_rowoffset"])
)
return tbl
@abstractmethod
def take_row_ids(
self, row_ids: list[int], *, with_row_id: bool = False
) -> LanceTakeQueryBuilder:
"""
Take a list of row ids from the table.
Row ids are not stable and are relative to the current version of the table.
They can change due to compaction and updates.
No guarantees are made regarding the order in which results are returned. If
you desire an output order that matches the order of the given ids, you will
need to add the row id column to the output and align it yourself.
Unlike offsets, row ids are not 0-indexed and no assumptions should be made
about the possible range of row ids. In order to use this method you must
first obtain the row ids by scanning or searching the table.
Even so, row ids are more stable than offsets and can be useful in some
situations.
There is an ongoing effort to make row ids stable which is tracked at
https://github.com/lancedb/lancedb/issues/1120
Parameters
----------
row_ids: list[int]
The row ids to take.
Returns
-------
AsyncTakeQuery
A query object that can be executed to get the rows.
"""
@abstractmethod
def _execute_query(
self,
@@ -1577,13 +1706,16 @@ class LanceTable(Table):
connection: "LanceDBConnection",
name: str,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str]] = None,
index_cache_size: Optional[int] = None,
):
self._conn = connection
self._namespace = namespace
self._table = LOOP.run(
connection._conn.open_table(
name,
namespace=namespace,
storage_options=storage_options,
index_cache_size=index_cache_size,
)
@@ -1594,8 +1726,8 @@ class LanceTable(Table):
return self._table.name
@classmethod
def open(cls, db, name, **kwargs):
tbl = cls(db, name, **kwargs)
def open(cls, db, name, *, namespace: List[str] = [], **kwargs):
tbl = cls(db, name, namespace=namespace, **kwargs)
# check the dataset exists
try:
@@ -1648,6 +1780,12 @@ class LanceTable(Table):
"""Get the current version of the table"""
return LOOP.run(self._table.version())
def take_offsets(self, offsets: list[int]) -> LanceTakeQueryBuilder:
return LanceTakeQueryBuilder(self._table.take_offsets(offsets))
def take_row_ids(self, row_ids: list[int]) -> LanceTakeQueryBuilder:
return LanceTakeQueryBuilder(self._table.take_row_ids(row_ids))
@property
def tags(self) -> Tags:
"""Tag management for the table.
@@ -1861,6 +1999,9 @@ class LanceTable(Table):
sample_rate: int = 256,
m: int = 20,
ef_construction: int = 300,
*,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index on the table."""
if accelerator is not None:
@@ -1924,6 +2065,8 @@ class LanceTable(Table):
vector_column_name,
replace=replace,
config=config,
name=name,
train=train,
)
)
@@ -1968,6 +2111,7 @@ class LanceTable(Table):
*,
replace: bool = True,
index_type: ScalarIndexType = "BTREE",
name: Optional[str] = None,
):
if index_type == "BTREE":
config = BTree()
@@ -1978,7 +2122,7 @@ class LanceTable(Table):
else:
raise ValueError(f"Unknown index type {index_type}")
return LOOP.run(
self._table.create_index(column, replace=replace, config=config)
self._table.create_index(column, replace=replace, config=config, name=name)
)
def create_fts_index(
@@ -2002,6 +2146,7 @@ class LanceTable(Table):
ngram_min_length: int = 3,
ngram_max_length: int = 3,
prefix_only: bool = False,
name: Optional[str] = None,
):
if not use_tantivy:
if not isinstance(field_names, str):
@@ -2039,6 +2184,7 @@ class LanceTable(Table):
field_names,
replace=replace,
config=config,
name=name,
)
)
return
@@ -2405,6 +2551,7 @@ class LanceTable(Table):
fill_value: float = 0.0,
embedding_functions: Optional[List[EmbeddingFunctionConfig]] = None,
*,
namespace: List[str] = [],
storage_options: Optional[Dict[str, str | bool]] = None,
data_storage_version: Optional[str] = None,
enable_v2_manifest_paths: Optional[bool] = None,
@@ -2464,6 +2611,7 @@ class LanceTable(Table):
"""
self = cls.__new__(cls)
self._conn = db
self._namespace = namespace
if data_storage_version is not None:
warnings.warn(
@@ -2496,6 +2644,7 @@ class LanceTable(Table):
on_bad_vectors=on_bad_vectors,
fill_value=fill_value,
embedding_functions=embedding_functions,
namespace=namespace,
storage_options=storage_options,
)
)
@@ -3183,6 +3332,8 @@ class AsyncTable:
Union[IvfFlat, IvfPq, HnswPq, HnswSq, BTree, Bitmap, LabelList, FTS]
] = None,
wait_timeout: Optional[timedelta] = None,
name: Optional[str] = None,
train: bool = True,
):
"""Create an index to speed up queries
@@ -3209,6 +3360,11 @@ class AsyncTable:
creating an index object.
wait_timeout: timedelta, optional
The timeout to wait if indexing is asynchronous.
name: str, optional
The name of the index. If not provided, a default name will be generated.
train: bool, default True
Whether to train the index with existing data. Vector indices always train
with existing data.
"""
if config is not None:
if not isinstance(
@@ -3220,7 +3376,12 @@ class AsyncTable:
)
try:
await self._inner.create_index(
column, index=config, replace=replace, wait_timeout=wait_timeout
column,
index=config,
replace=replace,
wait_timeout=wait_timeout,
name=name,
train=train,
)
except ValueError as e:
if "not support the requested language" in str(e):
@@ -4030,6 +4191,58 @@ class AsyncTable:
"""
await self._inner.restore(version)
def take_offsets(self, offsets: list[int]) -> AsyncTakeQuery:
"""
Take a list of offsets from the table.
Offsets are 0-indexed and relative to the current version of the table. Offsets
are not stable. A row with an offset of N may have a different offset in a
different version of the table (e.g. if an earlier row is deleted).
Offsets are mostly useful for sampling as the set of all valid offsets is easily
known in advance to be [0, len(table)).
Parameters
----------
offsets: list[int]
The offsets to take.
Returns
-------
pa.RecordBatch
A record batch containing the rows at the given offsets.
"""
return AsyncTakeQuery(self._inner.take_offsets(offsets))
def take_row_ids(self, row_ids: list[int]) -> AsyncTakeQuery:
"""
Take a list of row ids from the table.
Row ids are not stable and are relative to the current version of the table.
They can change due to compaction and updates.
Unlike offsets, row ids are not 0-indexed and no assumptions should be made
about the possible range of row ids. In order to use this method you must
first obtain the row ids by scanning or searching the table.
Even so, row ids are more stable than offsets and can be useful in some
situations.
There is an ongoing effort to make row ids stable which is tracked at
https://github.com/lancedb/lancedb/issues/1120
Parameters
----------
row_ids: list[int]
The row ids to take.
Returns
-------
AsyncTakeQuery
A query object that can be executed to get the rows.
"""
return AsyncTakeQuery(self._inner.take_row_ids(row_ids))
@property
def tags(self) -> AsyncTags:
"""Tag management for the dataset.

View File

@@ -175,6 +175,18 @@ def test_table_names(tmp_db: lancedb.DBConnection):
tmp_db.create_table("test3", data=data)
assert tmp_db.table_names() == ["test1", "test2", "test3"]
# Test that positional arguments for page_token and limit
result = list(tmp_db.table_names("test1", 1)) # page_token="test1", limit=1
assert result == ["test2"], f"Expected ['test2'], got {result}"
# Test mixed positional and keyword arguments
result = list(tmp_db.table_names("test2", limit=2))
assert result == ["test3"], f"Expected ['test3'], got {result}"
# Test that namespace parameter can be passed as keyword
result = list(tmp_db.table_names(namespace=[]))
assert len(result) == 3
@pytest.mark.asyncio
async def test_table_names_async(tmp_path):
@@ -728,3 +740,93 @@ def test_bypass_vector_index_sync(tmp_db: lancedb.DBConnection):
table.search(sample_key).bypass_vector_index().explain_plan(verbose=True)
)
assert "KNN" in plan_without_index
def test_local_namespace_operations(tmp_path):
"""Test that local mode namespace operations behave as expected."""
# Create a local database connection
db = lancedb.connect(tmp_path)
# Test list_namespaces returns empty list
namespaces = list(db.list_namespaces())
assert namespaces == []
# Test list_namespaces with parameters still returns empty list
namespaces_with_params = list(
db.list_namespaces(namespace=["test"], page_token="token", limit=5)
)
assert namespaces_with_params == []
def test_local_create_namespace_not_supported(tmp_path):
"""Test that create_namespace is not supported in local mode."""
db = lancedb.connect(tmp_path)
with pytest.raises(
NotImplementedError,
match="Namespace operations are not supported for listing database",
):
db.create_namespace(["test_namespace"])
def test_local_drop_namespace_not_supported(tmp_path):
"""Test that drop_namespace is not supported in local mode."""
db = lancedb.connect(tmp_path)
with pytest.raises(
NotImplementedError,
match="Namespace operations are not supported for listing database",
):
db.drop_namespace(["test_namespace"])
def test_local_table_operations_with_namespace_raise_error(tmp_path):
"""
Test that table operations with namespace parameter
raise ValueError in local mode.
"""
db = lancedb.connect(tmp_path)
# Create some test data
data = [{"vector": [1.0, 2.0], "item": "test"}]
schema = pa.schema(
[pa.field("vector", pa.list_(pa.float32(), 2)), pa.field("item", pa.string())]
)
# Test create_table with namespace - should raise ValueError
with pytest.raises(
NotImplementedError,
match="Namespace parameter is not supported for listing database",
):
db.create_table(
"test_table_with_ns", data=data, schema=schema, namespace=["test_ns"]
)
# Create table normally for other tests
db.create_table("test_table", data=data, schema=schema)
assert "test_table" in db.table_names()
# Test open_table with namespace - should raise ValueError
with pytest.raises(
NotImplementedError,
match="Namespace parameter is not supported for listing database",
):
db.open_table("test_table", namespace=["test_ns"])
# Test table_names with namespace - should raise ValueError
with pytest.raises(
NotImplementedError,
match="Namespace parameter is not supported for listing database",
):
list(db.table_names(namespace=["test_ns"]))
# Test drop_table with namespace - should raise ValueError
with pytest.raises(
NotImplementedError,
match="Namespace parameter is not supported for listing database",
):
db.drop_table("test_table", namespace=["test_ns"])
# Test table_names without namespace - should work normally
tables_root = list(db.table_names())
assert "test_table" in tables_root

View File

@@ -157,7 +157,16 @@ def test_create_index_with_stemming(tmp_path, table):
def test_create_inverted_index(table, use_tantivy, with_position):
if use_tantivy and not with_position:
pytest.skip("we don't support building a tantivy index without position")
table.create_fts_index("text", use_tantivy=use_tantivy, with_position=with_position)
table.create_fts_index(
"text",
use_tantivy=use_tantivy,
with_position=with_position,
name="custom_fts_index",
)
if not use_tantivy:
indices = table.list_indices()
fts_indices = [i for i in indices if i.index_type == "FTS"]
assert any(i.name == "custom_fts_index" for i in fts_indices)
def test_populate_index(tmp_path, table):

View File

@@ -0,0 +1,707 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""Tests for LanceDB namespace integration."""
import tempfile
import shutil
from typing import Dict, Optional
import pytest
import pyarrow as pa
import lancedb
from lance_namespace.namespace import NATIVE_IMPLS, LanceNamespace
from lance_namespace_urllib3_client.models import (
ListTablesRequest,
ListTablesResponse,
DescribeTableRequest,
DescribeTableResponse,
RegisterTableRequest,
RegisterTableResponse,
DeregisterTableRequest,
DeregisterTableResponse,
CreateTableRequest,
CreateTableResponse,
DropTableRequest,
DropTableResponse,
ListNamespacesRequest,
ListNamespacesResponse,
CreateNamespaceRequest,
CreateNamespaceResponse,
DropNamespaceRequest,
DropNamespaceResponse,
)
class TempNamespace(LanceNamespace):
"""A simple dictionary-backed namespace for testing."""
# Class-level storage to persist table registry across instances
_global_registry: Dict[str, Dict[str, str]] = {}
# Class-level storage for namespaces (supporting 1-level namespace)
_global_namespaces: Dict[str, set] = {}
def __init__(self, **properties):
"""Initialize the test namespace.
Args:
root: The root directory for tables (optional)
**properties: Additional configuration properties
"""
self.config = TempNamespaceConfig(properties)
# Use the root as a key to maintain separate registries per root
root = self.config.root
if root not in self._global_registry:
self._global_registry[root] = {}
if root not in self._global_namespaces:
self._global_namespaces[root] = set()
self.tables = self._global_registry[root] # Reference to shared registry
self.namespaces = self._global_namespaces[
root
] # Reference to shared namespaces
def list_tables(self, request: ListTablesRequest) -> ListTablesResponse:
"""List all tables in the namespace."""
if not request.id:
# List all tables in root namespace
tables = [name for name in self.tables.keys() if "." not in name]
else:
# List tables in specific namespace (1-level only)
if len(request.id) == 1:
namespace_name = request.id[0]
prefix = f"{namespace_name}."
tables = [
name[len(prefix) :]
for name in self.tables.keys()
if name.startswith(prefix)
]
else:
# Multi-level namespaces not supported
raise ValueError("Only 1-level namespaces are supported")
return ListTablesResponse(tables=tables)
def describe_table(self, request: DescribeTableRequest) -> DescribeTableResponse:
"""Describe a table by returning its location."""
if not request.id:
raise ValueError("Invalid table ID")
if len(request.id) == 1:
# Root namespace table
table_name = request.id[0]
elif len(request.id) == 2:
# Namespaced table (1-level namespace)
namespace_name, table_name = request.id
table_name = f"{namespace_name}.{table_name}"
else:
raise ValueError("Only 1-level namespaces are supported")
if table_name not in self.tables:
raise RuntimeError(f"Table does not exist: {table_name}")
table_uri = self.tables[table_name]
return DescribeTableResponse(location=table_uri)
def create_table(
self, request: CreateTableRequest, request_data: bytes
) -> CreateTableResponse:
"""Create a table in the namespace."""
if not request.id:
raise ValueError("Invalid table ID")
if len(request.id) == 1:
# Root namespace table
table_name = request.id[0]
table_uri = f"{self.config.root}/{table_name}.lance"
elif len(request.id) == 2:
# Namespaced table (1-level namespace)
namespace_name, base_table_name = request.id
# Add namespace to our namespace set
self.namespaces.add(namespace_name)
table_name = f"{namespace_name}.{base_table_name}"
table_uri = f"{self.config.root}/{namespace_name}/{base_table_name}.lance"
else:
raise ValueError("Only 1-level namespaces are supported")
# Check if table already exists
if table_name in self.tables:
if request.mode == "overwrite":
# Drop existing table for overwrite mode
del self.tables[table_name]
else:
raise RuntimeError(f"Table already exists: {table_name}")
# Parse the Arrow IPC stream to get the schema and create the actual table
import pyarrow.ipc as ipc
import io
import lance
import os
# Create directory if needed for namespaced tables
os.makedirs(os.path.dirname(table_uri), exist_ok=True)
# Read the IPC stream
reader = ipc.open_stream(io.BytesIO(request_data))
table = reader.read_all()
# Create the actual Lance table
lance.write_dataset(table, table_uri)
# Store the table mapping
self.tables[table_name] = table_uri
return CreateTableResponse(location=table_uri)
def drop_table(self, request: DropTableRequest) -> DropTableResponse:
"""Drop a table from the namespace."""
if not request.id:
raise ValueError("Invalid table ID")
if len(request.id) == 1:
# Root namespace table
table_name = request.id[0]
elif len(request.id) == 2:
# Namespaced table (1-level namespace)
namespace_name, base_table_name = request.id
table_name = f"{namespace_name}.{base_table_name}"
else:
raise ValueError("Only 1-level namespaces are supported")
if table_name not in self.tables:
raise RuntimeError(f"Table does not exist: {table_name}")
# Get the table URI
table_uri = self.tables[table_name]
# Delete the actual table files
import shutil
import os
if os.path.exists(table_uri):
shutil.rmtree(table_uri, ignore_errors=True)
# Remove from registry
del self.tables[table_name]
return DropTableResponse()
def register_table(self, request: RegisterTableRequest) -> RegisterTableResponse:
"""Register a table with the namespace."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
if not request.location:
raise ValueError("Table location is required")
table_name = request.id[0]
self.tables[table_name] = request.location
return RegisterTableResponse()
def deregister_table(
self, request: DeregisterTableRequest
) -> DeregisterTableResponse:
"""Deregister a table from the namespace."""
if not request.id or len(request.id) != 1:
raise ValueError("Invalid table ID")
table_name = request.id[0]
if table_name not in self.tables:
raise RuntimeError(f"Table does not exist: {table_name}")
del self.tables[table_name]
return DeregisterTableResponse()
def list_namespaces(self, request: ListNamespacesRequest) -> ListNamespacesResponse:
"""List child namespaces."""
if not request.id:
# List root-level namespaces
namespaces = list(self.namespaces)
elif len(request.id) == 1:
# For 1-level namespace, there are no child namespaces
namespaces = []
else:
raise ValueError("Only 1-level namespaces are supported")
return ListNamespacesResponse(namespaces=namespaces)
def create_namespace(
self, request: CreateNamespaceRequest
) -> CreateNamespaceResponse:
"""Create a namespace."""
if not request.id:
raise ValueError("Invalid namespace ID")
if len(request.id) == 1:
# Create 1-level namespace
namespace_name = request.id[0]
self.namespaces.add(namespace_name)
# Create directory for the namespace
import os
namespace_dir = f"{self.config.root}/{namespace_name}"
os.makedirs(namespace_dir, exist_ok=True)
else:
raise ValueError("Only 1-level namespaces are supported")
return CreateNamespaceResponse()
def drop_namespace(self, request: DropNamespaceRequest) -> DropNamespaceResponse:
"""Drop a namespace."""
if not request.id:
raise ValueError("Invalid namespace ID")
if len(request.id) == 1:
# Drop 1-level namespace
namespace_name = request.id[0]
if namespace_name not in self.namespaces:
raise RuntimeError(f"Namespace does not exist: {namespace_name}")
# Check if namespace has any tables
prefix = f"{namespace_name}."
tables_in_namespace = [
name for name in self.tables.keys() if name.startswith(prefix)
]
if tables_in_namespace:
raise RuntimeError(
f"Cannot drop namespace '{namespace_name}': contains tables"
)
# Remove namespace
self.namespaces.remove(namespace_name)
# Remove directory
import shutil
import os
namespace_dir = f"{self.config.root}/{namespace_name}"
if os.path.exists(namespace_dir):
shutil.rmtree(namespace_dir, ignore_errors=True)
else:
raise ValueError("Only 1-level namespaces are supported")
return DropNamespaceResponse()
class TempNamespaceConfig:
"""Configuration for TestNamespace."""
ROOT = "root"
def __init__(self, properties: Optional[Dict[str, str]] = None):
"""Initialize configuration from properties.
Args:
properties: Dictionary of configuration properties
"""
if properties is None:
properties = {}
self._root = properties.get(self.ROOT, "/tmp")
@property
def root(self) -> str:
"""Get the namespace root directory."""
return self._root
NATIVE_IMPLS["temp"] = f"{TempNamespace.__module__}.TempNamespace"
class TestNamespaceConnection:
"""Test namespace-based LanceDB connection."""
def setup_method(self):
"""Set up test fixtures."""
self.temp_dir = tempfile.mkdtemp()
# Clear the TestNamespace registry for this test
if self.temp_dir in TempNamespace._global_registry:
TempNamespace._global_registry[self.temp_dir].clear()
if self.temp_dir in TempNamespace._global_namespaces:
TempNamespace._global_namespaces[self.temp_dir].clear()
def teardown_method(self):
"""Clean up test fixtures."""
# Clear the TestNamespace registry
if self.temp_dir in TempNamespace._global_registry:
del TempNamespace._global_registry[self.temp_dir]
if self.temp_dir in TempNamespace._global_namespaces:
del TempNamespace._global_namespaces[self.temp_dir]
shutil.rmtree(self.temp_dir, ignore_errors=True)
def test_connect_namespace_test(self):
"""Test connecting to LanceDB through TestNamespace."""
# Connect using TestNamespace
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Should be a LanceNamespaceDBConnection
assert isinstance(db, lancedb.LanceNamespaceDBConnection)
# Initially no tables
assert len(list(db.table_names())) == 0
def test_create_table_through_namespace(self):
"""Test creating a table through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Define schema for empty table
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("text", pa.string()),
]
)
# Create empty table
table = db.create_table("test_table", schema=schema)
assert table is not None
assert table.name == "test_table"
# Table should appear in namespace
table_names = list(db.table_names())
assert "test_table" in table_names
assert len(table_names) == 1
# Verify empty table
result = table.to_pandas()
assert len(result) == 0
assert list(result.columns) == ["id", "vector", "text"]
def test_open_table_through_namespace(self):
"""Test opening an existing table through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create a table with schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("test_table", schema=schema)
# Open the table
table = db.open_table("test_table")
assert table is not None
assert table.name == "test_table"
# Verify empty table with correct schema
result = table.to_pandas()
assert len(result) == 0
assert list(result.columns) == ["id", "vector"]
def test_drop_table_through_namespace(self):
"""Test dropping a table through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create tables
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("table1", schema=schema)
db.create_table("table2", schema=schema)
# Verify both tables exist
table_names = list(db.table_names())
assert "table1" in table_names
assert "table2" in table_names
assert len(table_names) == 2
# Drop one table
db.drop_table("table1")
# Verify only table2 remains
table_names = list(db.table_names())
assert "table1" not in table_names
assert "table2" in table_names
assert len(table_names) == 1
# Test that drop_table works without explicit namespace parameter
db.drop_table("table2")
assert len(list(db.table_names())) == 0
# Should not be able to open dropped table
with pytest.raises(RuntimeError):
db.open_table("table1")
def test_create_table_with_schema(self):
"""Test creating a table with explicit schema through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Define schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 3)),
pa.field("text", pa.string()),
]
)
# Create table with schema
table = db.create_table("test_table", schema=schema)
assert table is not None
# Verify schema
table_schema = table.schema
assert len(table_schema) == 3
assert table_schema.field("id").type == pa.int64()
assert table_schema.field("text").type == pa.string()
def test_rename_table_not_supported(self):
"""Test that rename_table raises NotImplementedError."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create a table
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("old_name", schema=schema)
# Rename should raise NotImplementedError
with pytest.raises(NotImplementedError, match="rename_table is not supported"):
db.rename_table("old_name", "new_name")
def test_drop_all_tables(self):
"""Test dropping all tables through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create multiple tables
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
for i in range(3):
db.create_table(f"table{i}", schema=schema)
# Verify tables exist
assert len(list(db.table_names())) == 3
# Drop all tables
db.drop_all_tables()
# Verify all tables are gone
assert len(list(db.table_names())) == 0
# Test that table_names works with keyword-only namespace parameter
db.create_table("test_table", schema=schema)
result = list(db.table_names(namespace=[]))
assert "test_table" in result
def test_table_operations(self):
"""Test various table operations through namespace."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create a table with schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("text", pa.string()),
]
)
table = db.create_table("test_table", schema=schema)
# Verify empty table was created
result = table.to_pandas()
assert len(result) == 0
assert list(result.columns) == ["id", "vector", "text"]
# Test add data to the table
new_data = [
{"id": 1, "vector": [1.0, 2.0], "text": "item_1"},
{"id": 2, "vector": [2.0, 3.0], "text": "item_2"},
]
table.add(new_data)
result = table.to_pandas()
assert len(result) == 2
# Test delete
table.delete("id = 1")
result = table.to_pandas()
assert len(result) == 1
assert result["id"].values[0] == 2
# Test update
table.update(where="id = 2", values={"text": "updated"})
result = table.to_pandas()
assert result["text"].values[0] == "updated"
def test_storage_options(self):
"""Test passing storage options through namespace connection."""
# Connect with storage options
storage_opts = {"test_option": "test_value"}
db = lancedb.connect_namespace(
"temp", {"root": self.temp_dir}, storage_options=storage_opts
)
# Storage options should be preserved
assert db.storage_options == storage_opts
# Create table with additional storage options
table_opts = {"table_option": "table_value"}
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("test_table", schema=schema, storage_options=table_opts)
def test_namespace_operations(self):
"""Test namespace management operations."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Initially no namespaces
assert len(list(db.list_namespaces())) == 0
# Create a namespace
db.create_namespace(["test_namespace"])
# Verify namespace exists
namespaces = list(db.list_namespaces())
assert "test_namespace" in namespaces
assert len(namespaces) == 1
# Create table in namespace
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
table = db.create_table(
"test_table", schema=schema, namespace=["test_namespace"]
)
assert table is not None
# Verify table exists in namespace
tables_in_namespace = list(db.table_names(namespace=["test_namespace"]))
assert "test_table" in tables_in_namespace
assert len(tables_in_namespace) == 1
# Open table from namespace
table = db.open_table("test_table", namespace=["test_namespace"])
assert table is not None
assert table.name == "test_table"
# Drop table from namespace
db.drop_table("test_table", namespace=["test_namespace"])
# Verify table no longer exists in namespace
tables_in_namespace = list(db.table_names(namespace=["test_namespace"]))
assert len(tables_in_namespace) == 0
# Drop namespace
db.drop_namespace(["test_namespace"])
# Verify namespace no longer exists
namespaces = list(db.list_namespaces())
assert len(namespaces) == 0
def test_namespace_with_tables_cannot_be_dropped(self):
"""Test that namespaces containing tables cannot be dropped."""
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create namespace and table
db.create_namespace(["test_namespace"])
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
]
)
db.create_table("test_table", schema=schema, namespace=["test_namespace"])
# Try to drop namespace with tables - should fail
with pytest.raises(RuntimeError, match="contains tables"):
db.drop_namespace(["test_namespace"])
# Drop table first
db.drop_table("test_table", namespace=["test_namespace"])
# Now dropping namespace should work
db.drop_namespace(["test_namespace"])
def test_same_table_name_different_namespaces(self):
db = lancedb.connect_namespace("temp", {"root": self.temp_dir})
# Create two namespaces
db.create_namespace(["namespace_a"])
db.create_namespace(["namespace_b"])
# Define schema
schema = pa.schema(
[
pa.field("id", pa.int64()),
pa.field("vector", pa.list_(pa.float32(), 2)),
pa.field("text", pa.string()),
]
)
# Create table with same name in both namespaces
table_a = db.create_table(
"same_name_table", schema=schema, namespace=["namespace_a"]
)
table_b = db.create_table(
"same_name_table", schema=schema, namespace=["namespace_b"]
)
# Add different data to each table
data_a = [
{"id": 1, "vector": [1.0, 2.0], "text": "data_from_namespace_a"},
{"id": 2, "vector": [3.0, 4.0], "text": "also_from_namespace_a"},
]
table_a.add(data_a)
data_b = [
{"id": 10, "vector": [10.0, 20.0], "text": "data_from_namespace_b"},
{"id": 20, "vector": [30.0, 40.0], "text": "also_from_namespace_b"},
{"id": 30, "vector": [50.0, 60.0], "text": "more_from_namespace_b"},
]
table_b.add(data_b)
# Verify data in namespace_a table
opened_table_a = db.open_table("same_name_table", namespace=["namespace_a"])
result_a = opened_table_a.to_pandas().sort_values("id").reset_index(drop=True)
assert len(result_a) == 2
assert result_a["id"].tolist() == [1, 2]
assert result_a["text"].tolist() == [
"data_from_namespace_a",
"also_from_namespace_a",
]
assert [v.tolist() for v in result_a["vector"]] == [[1.0, 2.0], [3.0, 4.0]]
# Verify data in namespace_b table
opened_table_b = db.open_table("same_name_table", namespace=["namespace_b"])
result_b = opened_table_b.to_pandas().sort_values("id").reset_index(drop=True)
assert len(result_b) == 3
assert result_b["id"].tolist() == [10, 20, 30]
assert result_b["text"].tolist() == [
"data_from_namespace_b",
"also_from_namespace_b",
"more_from_namespace_b",
]
assert [v.tolist() for v in result_b["vector"]] == [
[10.0, 20.0],
[30.0, 40.0],
[50.0, 60.0],
]
# Verify root namespace doesn't have this table
root_tables = list(db.table_names())
assert "same_name_table" not in root_tables
# Clean up
db.drop_table("same_name_table", namespace=["namespace_a"])
db.drop_table("same_name_table", namespace=["namespace_b"])
db.drop_namespace(["namespace_a"])
db.drop_namespace(["namespace_b"])

View File

@@ -5,6 +5,7 @@ from typing import List, Union
import unittest.mock as mock
from datetime import timedelta
from pathlib import Path
import random
import lancedb
from lancedb.db import AsyncConnection
@@ -1327,6 +1328,55 @@ def test_query_timeout(tmp_path):
)
def test_take_queries(tmp_path):
db = lancedb.connect(tmp_path)
data = pa.table(
{
"idx": range(100),
}
)
table = db.create_table("test", data)
# Take by offset
assert list(
sorted(table.take_offsets([5, 2, 17]).to_pandas()["idx"].to_list())
) == [
2,
5,
17,
]
# Take by row id
assert list(
sorted(table.take_row_ids([5, 2, 17]).to_pandas()["idx"].to_list())
) == [
2,
5,
17,
]
def test_getitems(tmp_path):
db = lancedb.connect(tmp_path)
data = pa.table(
{
"idx": range(100),
}
)
# Make two fragments
table = db.create_table("test", data)
table.add(pa.table({"idx": range(100, 200)}))
assert table.__getitems__([5, 2, 117]) == pa.table(
{
"idx": [5, 2, 117],
}
)
offsets = random.sample(range(200), 10)
assert table.__getitems__(offsets) == pa.table({"idx": offsets})
@pytest.mark.asyncio
async def test_query_timeout_async(tmp_path):
db = await lancedb.connect_async(tmp_path)

View File

@@ -271,12 +271,21 @@ def test_table_add_in_threadpool():
def test_table_create_indices():
# Track received index creation requests to validate name parameter
received_requests = []
def handler(request):
index_stats = dict(
index_type="IVF_PQ", num_indexed_rows=1000, num_unindexed_rows=0
)
if request.path == "/v1/table/test/create_index/":
# Capture the request body to validate name parameter
content_len = int(request.headers.get("Content-Length", 0))
if content_len > 0:
body = request.rfile.read(content_len)
body_data = json.loads(body)
received_requests.append(body_data)
request.send_response(200)
request.end_headers()
elif request.path == "/v1/table/test/create/?mode=create":
@@ -307,34 +316,34 @@ def test_table_create_indices():
dict(
indexes=[
{
"index_name": "id_idx",
"index_name": "custom_scalar_idx",
"columns": ["id"],
},
{
"index_name": "text_idx",
"index_name": "custom_fts_idx",
"columns": ["text"],
},
{
"index_name": "vector_idx",
"index_name": "custom_vector_idx",
"columns": ["vector"],
},
]
)
)
request.wfile.write(payload.encode())
elif request.path == "/v1/table/test/index/id_idx/stats/":
elif request.path == "/v1/table/test/index/custom_scalar_idx/stats/":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
payload = json.dumps(index_stats)
request.wfile.write(payload.encode())
elif request.path == "/v1/table/test/index/text_idx/stats/":
elif request.path == "/v1/table/test/index/custom_fts_idx/stats/":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
payload = json.dumps(index_stats)
request.wfile.write(payload.encode())
elif request.path == "/v1/table/test/index/vector_idx/stats/":
elif request.path == "/v1/table/test/index/custom_vector_idx/stats/":
request.send_response(200)
request.send_header("Content-Type", "application/json")
request.end_headers()
@@ -351,16 +360,49 @@ def test_table_create_indices():
# Parameters are well-tested through local and async tests.
# This is a smoke-test.
table = db.create_table("test", [{"id": 1}])
table.create_scalar_index("id", wait_timeout=timedelta(seconds=2))
table.create_fts_index("text", wait_timeout=timedelta(seconds=2))
table.create_index(
vector_column_name="vector", wait_timeout=timedelta(seconds=10)
# Test create_scalar_index with custom name
table.create_scalar_index(
"id", wait_timeout=timedelta(seconds=2), name="custom_scalar_idx"
)
table.wait_for_index(["id_idx"], timedelta(seconds=2))
table.wait_for_index(["text_idx", "vector_idx"], timedelta(seconds=2))
table.drop_index("vector_idx")
table.drop_index("id_idx")
table.drop_index("text_idx")
# Test create_fts_index with custom name
table.create_fts_index(
"text", wait_timeout=timedelta(seconds=2), name="custom_fts_idx"
)
# Test create_index with custom name
table.create_index(
vector_column_name="vector",
wait_timeout=timedelta(seconds=10),
name="custom_vector_idx",
)
# Validate that the name parameter was passed correctly in requests
assert len(received_requests) == 3
# Check scalar index request has custom name
scalar_req = received_requests[0]
assert "name" in scalar_req
assert scalar_req["name"] == "custom_scalar_idx"
# Check FTS index request has custom name
fts_req = received_requests[1]
assert "name" in fts_req
assert fts_req["name"] == "custom_fts_idx"
# Check vector index request has custom name
vector_req = received_requests[2]
assert "name" in vector_req
assert vector_req["name"] == "custom_vector_idx"
table.wait_for_index(["custom_scalar_idx"], timedelta(seconds=2))
table.wait_for_index(
["custom_fts_idx", "custom_vector_idx"], timedelta(seconds=2)
)
table.drop_index("custom_vector_idx")
table.drop_index("custom_scalar_idx")
table.drop_index("custom_fts_idx")
def test_table_wait_for_index_timeout():

View File

@@ -290,7 +290,7 @@ def test_add_struct(mem_db: DBConnection):
}
)
data = [{"s_list": [{"b": 1, "a": 2}, {"b": 4}]}]
table = mem_db.create_table("test", schema=schema)
table = mem_db.create_table("test2", schema=schema)
table.add(data)
@@ -670,7 +670,9 @@ def test_create_index_method(mock_create_index, mem_db: DBConnection):
num_sub_vectors=96,
num_bits=4,
)
mock_create_index.assert_called_with("vector", replace=True, config=expected_config)
mock_create_index.assert_called_with(
"vector", replace=True, config=expected_config, name=None, train=True
)
table.create_index(
vector_column_name="my_vector",
@@ -680,7 +682,7 @@ def test_create_index_method(mock_create_index, mem_db: DBConnection):
)
expected_config = HnswPq(distance_type="dot")
mock_create_index.assert_called_with(
"my_vector", replace=False, config=expected_config
"my_vector", replace=False, config=expected_config, name=None, train=True
)
table.create_index(
@@ -695,7 +697,44 @@ def test_create_index_method(mock_create_index, mem_db: DBConnection):
distance_type="cosine", sample_rate=0.1, m=29, ef_construction=10
)
mock_create_index.assert_called_with(
"my_vector", replace=True, config=expected_config
"my_vector", replace=True, config=expected_config, name=None, train=True
)
@patch("lancedb.table.AsyncTable.create_index")
def test_create_index_name_and_train_parameters(
mock_create_index, mem_db: DBConnection
):
"""Test that name and train parameters are passed correctly to AsyncTable"""
table = mem_db.create_table(
"test",
data=[
{"vector": [3.1, 4.1], "id": 1},
{"vector": [5.9, 26.5], "id": 2},
],
)
# Test with custom name
table.create_index(vector_column_name="vector", name="my_custom_index")
expected_config = IvfPq() # Default config
mock_create_index.assert_called_with(
"vector",
replace=True,
config=expected_config,
name="my_custom_index",
train=True,
)
# Test with train=False
table.create_index(vector_column_name="vector", train=False)
mock_create_index.assert_called_with(
"vector", replace=True, config=expected_config, name=None, train=False
)
# Test with both name and train
table.create_index(vector_column_name="vector", name="my_index_name", train=True)
mock_create_index.assert_called_with(
"vector", replace=True, config=expected_config, name="my_index_name", train=True
)
@@ -1235,11 +1274,13 @@ def test_create_scalar_index(mem_db: DBConnection):
"my_table",
data=test_data,
)
# Test with default name
table.create_scalar_index("x")
indices = table.list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index.index_type == "BTree"
assert scalar_index.name == "x_idx" # Default name
# Confirm that prefiltering still works with the scalar index column
results = table.search().where("x = 'c'").to_arrow()
@@ -1253,6 +1294,14 @@ def test_create_scalar_index(mem_db: DBConnection):
indices = table.list_indices()
assert len(indices) == 0
# Test with custom name
table.create_scalar_index("y", name="custom_y_index")
indices = table.list_indices()
assert len(indices) == 1
scalar_index = indices[0]
assert scalar_index.index_type == "BTree"
assert scalar_index.name == "custom_y_index"
def test_empty_query(mem_db: DBConnection):
table = mem_db.create_table(

View File

@@ -0,0 +1,26 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
import pyarrow as pa
import pytest
torch = pytest.importorskip("torch")
def tbl_to_tensor(tbl):
def to_tensor(col: pa.ChunkedArray):
if col.num_chunks > 1:
raise Exception("Single batch was too large to fit into a one-chunk table")
return torch.from_dlpack(col.chunk(0))
return torch.stack([to_tensor(tbl.column(i)) for i in range(tbl.num_columns)])
def test_table_dataloader(mem_db):
table = mem_db.create_table("test_table", pa.table({"a": range(1000)}))
dataloader = torch.utils.data.DataLoader(
table, collate_fn=tbl_to_tensor, batch_size=10, shuffle=True
)
for batch in dataloader:
assert batch.size(0) == 1
assert batch.size(1) == 10

View File

@@ -63,14 +63,16 @@ impl Connection {
self.get_inner().map(|inner| inner.uri().to_string())
}
#[pyo3(signature = (start_after=None, limit=None))]
#[pyo3(signature = (namespace=vec![], start_after=None, limit=None))]
pub fn table_names(
self_: PyRef<'_, Self>,
namespace: Vec<String>,
start_after: Option<String>,
limit: Option<u32>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
let mut op = inner.table_names();
op = op.namespace(namespace);
if let Some(start_after) = start_after {
op = op.start_after(start_after);
}
@@ -80,12 +82,13 @@ impl Connection {
future_into_py(self_.py(), async move { op.execute().await.infer_error() })
}
#[pyo3(signature = (name, mode, data, storage_options=None))]
#[pyo3(signature = (name, mode, data, namespace=vec![], storage_options=None))]
pub fn create_table<'a>(
self_: PyRef<'a, Self>,
name: String,
mode: &str,
data: Bound<'_, PyAny>,
namespace: Vec<String>,
storage_options: Option<HashMap<String, String>>,
) -> PyResult<Bound<'a, PyAny>> {
let inner = self_.get_inner()?.clone();
@@ -93,8 +96,10 @@ impl Connection {
let mode = Self::parse_create_mode_str(mode)?;
let batches = ArrowArrayStreamReader::from_pyarrow_bound(&data)?;
let mut builder = inner.create_table(name, batches).mode(mode);
builder = builder.namespace(namespace);
if let Some(storage_options) = storage_options {
builder = builder.storage_options(storage_options);
}
@@ -105,12 +110,13 @@ impl Connection {
})
}
#[pyo3(signature = (name, mode, schema, storage_options=None))]
#[pyo3(signature = (name, mode, schema, namespace=vec![], storage_options=None))]
pub fn create_empty_table<'a>(
self_: PyRef<'a, Self>,
name: String,
mode: &str,
schema: Bound<'_, PyAny>,
namespace: Vec<String>,
storage_options: Option<HashMap<String, String>>,
) -> PyResult<Bound<'a, PyAny>> {
let inner = self_.get_inner()?.clone();
@@ -121,6 +127,7 @@ impl Connection {
let mut builder = inner.create_empty_table(name, Arc::new(schema)).mode(mode);
builder = builder.namespace(namespace);
if let Some(storage_options) = storage_options {
builder = builder.storage_options(storage_options);
}
@@ -131,49 +138,115 @@ impl Connection {
})
}
#[pyo3(signature = (name, storage_options = None, index_cache_size = None))]
#[pyo3(signature = (name, namespace=vec![], storage_options = None, index_cache_size = None))]
pub fn open_table(
self_: PyRef<'_, Self>,
name: String,
namespace: Vec<String>,
storage_options: Option<HashMap<String, String>>,
index_cache_size: Option<u32>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
let mut builder = inner.open_table(name);
builder = builder.namespace(namespace);
if let Some(storage_options) = storage_options {
builder = builder.storage_options(storage_options);
}
if let Some(index_cache_size) = index_cache_size {
builder = builder.index_cache_size(index_cache_size);
}
future_into_py(self_.py(), async move {
let table = builder.execute().await.infer_error()?;
Ok(Table::new(table))
})
}
#[pyo3(signature = (cur_name, new_name, cur_namespace=vec![], new_namespace=vec![]))]
pub fn rename_table(
self_: PyRef<'_, Self>,
old_name: String,
cur_name: String,
new_name: String,
cur_namespace: Vec<String>,
new_namespace: Vec<String>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
inner.rename_table(old_name, new_name).await.infer_error()
inner
.rename_table(cur_name, new_name, &cur_namespace, &new_namespace)
.await
.infer_error()
})
}
pub fn drop_table(self_: PyRef<'_, Self>, name: String) -> PyResult<Bound<'_, PyAny>> {
#[pyo3(signature = (name, namespace=vec![]))]
pub fn drop_table(
self_: PyRef<'_, Self>,
name: String,
namespace: Vec<String>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
inner.drop_table(name).await.infer_error()
inner.drop_table(name, &namespace).await.infer_error()
})
}
pub fn drop_all_tables(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
#[pyo3(signature = (namespace=vec![],))]
pub fn drop_all_tables(
self_: PyRef<'_, Self>,
namespace: Vec<String>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
inner.drop_all_tables().await.infer_error()
inner.drop_all_tables(&namespace).await.infer_error()
})
}
// Namespace management methods
#[pyo3(signature = (namespace=vec![], page_token=None, limit=None))]
pub fn list_namespaces(
self_: PyRef<'_, Self>,
namespace: Vec<String>,
page_token: Option<String>,
limit: Option<u32>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
use lancedb::database::ListNamespacesRequest;
let request = ListNamespacesRequest {
namespace,
page_token,
limit,
};
inner.list_namespaces(request).await.infer_error()
})
}
#[pyo3(signature = (namespace,))]
pub fn create_namespace(
self_: PyRef<'_, Self>,
namespace: Vec<String>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
use lancedb::database::CreateNamespaceRequest;
let request = CreateNamespaceRequest { namespace };
inner.create_namespace(request).await.infer_error()
})
}
#[pyo3(signature = (namespace,))]
pub fn drop_namespace(
self_: PyRef<'_, Self>,
namespace: Vec<String>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.get_inner()?.clone();
future_into_py(self_.py(), async move {
use lancedb::database::DropNamespaceRequest;
let request = DropNamespaceRequest { namespace };
inner.drop_namespace(request).await.infer_error()
})
}
}
@@ -227,6 +300,7 @@ pub struct PyClientConfig {
retry_config: Option<PyClientRetryConfig>,
timeout_config: Option<PyClientTimeoutConfig>,
extra_headers: Option<HashMap<String, String>>,
id_delimiter: Option<String>,
}
#[derive(FromPyObject)]
@@ -281,6 +355,7 @@ impl From<PyClientConfig> for lancedb::remote::ClientConfig {
retry_config: value.retry_config.map(Into::into).unwrap_or_default(),
timeout_config: value.timeout_config.map(Into::into).unwrap_or_default(),
extra_headers: value.extra_headers.unwrap_or_default(),
id_delimiter: value.id_delimiter,
}
}
}

View File

@@ -13,10 +13,12 @@ use lancedb::index::scalar::{
BooleanQuery, BoostQuery, FtsQuery, FullTextSearchQuery, MatchQuery, MultiMatchQuery, Occur,
Operator, PhraseQuery,
};
use lancedb::query::QueryBase;
use lancedb::query::QueryExecutionOptions;
use lancedb::query::QueryFilter;
use lancedb::query::{
ExecutableQuery, Query as LanceDbQuery, QueryBase, Select, VectorQuery as LanceDbVectorQuery,
ExecutableQuery, Query as LanceDbQuery, Select, TakeQuery as LanceDbTakeQuery,
VectorQuery as LanceDbVectorQuery,
};
use lancedb::table::AnyQuery;
use pyo3::prelude::{PyAnyMethods, PyDictMethods};
@@ -488,6 +490,76 @@ impl Query {
}
}
#[pyclass]
pub struct TakeQuery {
inner: LanceDbTakeQuery,
}
impl TakeQuery {
pub fn new(query: LanceDbTakeQuery) -> Self {
Self { inner: query }
}
}
#[pymethods]
impl TakeQuery {
pub fn select(&mut self, columns: Vec<(String, String)>) {
self.inner = self.inner.clone().select(Select::dynamic(&columns));
}
pub fn select_columns(&mut self, columns: Vec<String>) {
self.inner = self.inner.clone().select(Select::columns(&columns));
}
pub fn with_row_id(&mut self) {
self.inner = self.inner.clone().with_row_id();
}
#[pyo3(signature = (max_batch_length=None, timeout=None))]
pub fn execute(
self_: PyRef<'_, Self>,
max_batch_length: Option<u32>,
timeout: Option<Duration>,
) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
let mut opts = QueryExecutionOptions::default();
if let Some(max_batch_length) = max_batch_length {
opts.max_batch_length = max_batch_length;
}
if let Some(timeout) = timeout {
opts.timeout = Some(timeout);
}
let inner_stream = inner.execute_with_options(opts).await.infer_error()?;
Ok(RecordBatchStream::new(inner_stream))
})
}
pub fn explain_plan(self_: PyRef<'_, Self>, verbose: bool) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.explain_plan(verbose)
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
pub fn analyze_plan(self_: PyRef<'_, Self>) -> PyResult<Bound<'_, PyAny>> {
let inner = self_.inner.clone();
future_into_py(self_.py(), async move {
inner
.analyze_plan()
.await
.map_err(|e| PyRuntimeError::new_err(e.to_string()))
})
}
pub fn to_query_request(&self) -> PyQueryRequest {
PyQueryRequest::from(AnyQuery::Query(self.inner.clone().into_request()))
}
}
#[pyclass]
#[derive(Clone)]
pub struct FTSQuery {

View File

@@ -5,7 +5,7 @@ use std::{collections::HashMap, sync::Arc};
use crate::{
error::PythonErrorExt,
index::{extract_index_params, IndexConfig},
query::Query,
query::{Query, TakeQuery},
};
use arrow::{
datatypes::{DataType, Schema},
@@ -341,13 +341,15 @@ impl Table {
})
}
#[pyo3(signature = (column, index=None, replace=None, wait_timeout=None))]
#[pyo3(signature = (column, index=None, replace=None, wait_timeout=None, *, name=None, train=None))]
pub fn create_index<'a>(
self_: PyRef<'a, Self>,
column: String,
index: Option<Bound<'_, PyAny>>,
replace: Option<bool>,
wait_timeout: Option<Bound<'_, PyAny>>,
name: Option<String>,
train: Option<bool>,
) -> PyResult<Bound<'a, PyAny>> {
let index = extract_index_params(&index)?;
let timeout = wait_timeout.map(|t| t.extract::<std::time::Duration>().unwrap());
@@ -357,6 +359,12 @@ impl Table {
if let Some(replace) = replace {
op = op.replace(replace);
}
if let Some(name) = name {
op = op.name(name);
}
if let Some(train) = train {
op = op.train(train);
}
future_into_py(self_.py(), async move {
op.execute().await.infer_error()?;
@@ -568,6 +576,20 @@ impl Table {
Ok(Tags::new(self.inner_ref()?.clone()))
}
#[pyo3(signature = (offsets))]
pub fn take_offsets(self_: PyRef<'_, Self>, offsets: Vec<u64>) -> PyResult<TakeQuery> {
Ok(TakeQuery::new(
self_.inner_ref()?.clone().take_offsets(offsets),
))
}
#[pyo3(signature = (row_ids))]
pub fn take_row_ids(self_: PyRef<'_, Self>, row_ids: Vec<u64>) -> PyResult<TakeQuery> {
Ok(TakeQuery::new(
self_.inner_ref()?.clone().take_row_ids(row_ids),
))
}
/// Optimize the on-disk data by compacting and pruning old data, for better performance.
#[pyo3(signature = (cleanup_since_ms=None, delete_unverified=None, retrain=None))]
pub fn optimize(

View File

@@ -1,6 +1,6 @@
[package]
name = "lancedb"
version = "0.21.2"
version = "0.22.0-beta.1"
edition.workspace = true
description = "LanceDB: A serverless, low-latency vector database for AI applications"
license.workspace = true
@@ -65,7 +65,11 @@ http = { version = "1", optional = true } # Matching what is in reqwest
uuid = { version = "1.7.0", features = ["v4"], optional = true }
polars-arrow = { version = ">=0.37,<0.40.0", optional = true }
polars = { version = ">=0.37,<0.40.0", optional = true }
hf-hub = { version = "0.4.1", optional = true, default-features = false, features = ["rustls-tls", "tokio", "ureq"]}
hf-hub = { version = "0.4.1", optional = true, default-features = false, features = [
"rustls-tls",
"tokio",
"ureq",
] }
candle-core = { version = "0.9.1", optional = true }
candle-transformers = { version = "0.9.1", optional = true }
candle-nn = { version = "0.9.1", optional = true }
@@ -93,7 +97,12 @@ rstest = "0.23.0"
[features]
default = []
default = ["aws", "gcs", "azure", "dynamodb", "oss"]
aws = ["lance/aws", "lance-io/aws"]
oss = ["lance/oss", "lance-io/oss"]
gcs = ["lance/gcp", "lance-io/gcp"]
azure = ["lance/azure", "lance-io/azure"]
dynamodb = ["lance/dynamodb", "aws"]
remote = ["dep:reqwest", "dep:http", "dep:rand", "dep:uuid"]
fp16kernels = ["lance-linalg/fp16kernels"]
s3-test = []
@@ -119,3 +128,16 @@ required-features = ["sentence-transformers"]
[[example]]
name = "bedrock"
required-features = ["bedrock"]
[[example]]
name = "simple"
[[example]]
name = "full_text_search"
[[example]]
name = "ivf_pq"
[[example]]
name = "hybrid_search"
required-features = ["sentence-transformers"]

View File

@@ -0,0 +1,114 @@
// SPDX-License-Identifier: Apache-2.0
// SPDX-FileCopyrightText: Copyright The LanceDB Authors
use arrow_array::{RecordBatch, RecordBatchIterator, StringArray};
use arrow_schema::{DataType, Field, Schema};
use futures::TryStreamExt;
use lance_index::scalar::FullTextSearchQuery;
use lancedb::index::scalar::FtsIndexBuilder;
use lancedb::index::Index;
use lancedb::{
arrow::IntoArrow,
connect,
embeddings::{
sentence_transformers::SentenceTransformersEmbeddings, EmbeddingDefinition,
EmbeddingFunction,
},
query::{QueryBase, QueryExecutionOptions},
Result, Table,
};
use std::{iter::once, sync::Arc};
#[tokio::main]
async fn main() -> Result<()> {
let tempdir = tempfile::tempdir().unwrap();
let tempdir = tempdir.path().to_str().unwrap();
let embedding = SentenceTransformersEmbeddings::builder().build()?;
let embedding = Arc::new(embedding);
let db = connect(tempdir).execute().await?;
db.embedding_registry()
.register("sentence-transformers", embedding.clone())?;
// Create the table with embeddings
let table = db
.create_table("vectors", make_data())
.add_embedding(EmbeddingDefinition::new(
"facts",
"sentence-transformers",
Some("embeddings"),
))?
.execute()
.await?;
// Create the FTS index
create_index(&table).await?;
// Perform a hybrid search using the FTS index and embeddings
let query_str = "world records";
let query = Arc::new(StringArray::from_iter_values(once(query_str)));
let query_vector = embedding.compute_query_embeddings(query)?;
let mut results = table
.query()
.full_text_search(FullTextSearchQuery::new(query_str.to_owned()))
.nearest_to(query_vector)?
.limit(5)
.execute_hybrid(QueryExecutionOptions::default())
.await?;
while let Some(batch) = results.try_next().await? {
let out = batch
.column_by_name("facts")
.unwrap()
.as_any()
.downcast_ref::<StringArray>()
.unwrap();
for text in out.iter().flatten() {
println!("Result: {}", text);
}
}
Ok(())
}
fn make_data() -> impl IntoArrow {
let schema = Schema::new(vec![Field::new("facts", DataType::Utf8, false)]);
let facts = StringArray::from_iter_values(vec![
"Albert Einstein was a theoretical physicist.",
"The capital of France is Paris.",
"The Great Wall of China is one of the Seven Wonders of the World.",
"Python is a popular programming language.",
"Mount Everest is the highest mountain in the world.",
"Leonardo da Vinci painted the Mona Lisa.",
"Shakespeare wrote Hamlet.",
"The human body has 206 bones.",
"The speed of light is approximately 299,792 kilometers per second.",
"Water boils at 100 degrees Celsius.",
"The Earth orbits the Sun.",
"The Pyramids of Giza are located in Egypt.",
"Coffee is one of the most popular beverages in the world.",
"Tokyo is the capital city of Japan.",
"Photosynthesis is the process by which plants make their food.",
"The Pacific Ocean is the largest ocean on Earth.",
"Mozart was a prolific composer of classical music.",
"The Internet is a global network of computers.",
"Basketball is a sport played with a ball and a hoop.",
"The first computer virus was created in 1983.",
"Artificial neural networks are inspired by the human brain.",
"Deep learning is a subset of machine learning.",
"IBM's Watson won Jeopardy! in 2011.",
"The first computer programmer was Ada Lovelace.",
"The first chatbot was ELIZA, created in the 1960s.",
]);
let schema = Arc::new(schema);
let rb = RecordBatch::try_new(schema.clone(), vec![Arc::new(facts)]).unwrap();
Box::new(RecordBatchIterator::new(vec![Ok(rb)], schema))
}
async fn create_index(table: &Table) -> Result<()> {
table
.create_index(&["facts"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
Ok(())
}

View File

@@ -43,7 +43,7 @@ async fn main() -> Result<()> {
// --8<-- [end:delete]
// --8<-- [start:drop_table]
db.drop_table("my_table").await.unwrap();
db.drop_table("my_table", &[]).await.unwrap();
// --8<-- [end:drop_table]
Ok(())
}

View File

@@ -379,6 +379,7 @@ mod tests {
data: CreateTableData::Empty(TableDefinition::new_from_schema(dummy_schema)),
mode: Default::default(),
write_options: Default::default(),
namespace: vec![],
})
.await
.unwrap();
@@ -414,6 +415,7 @@ mod tests {
data: CreateTableData::Empty(TableDefinition::new_from_schema(dummy_schema)),
mode: Default::default(),
write_options: Default::default(),
namespace: vec![],
})
.await
.unwrap();

View File

@@ -9,6 +9,7 @@ use std::sync::Arc;
use arrow_array::RecordBatchReader;
use arrow_schema::{Field, SchemaRef};
use lance::dataset::ReadParams;
#[cfg(feature = "aws")]
use object_store::aws::AwsCredential;
use crate::arrow::{IntoArrow, IntoArrowStream, SendableRecordBatchStream};
@@ -18,8 +19,9 @@ use crate::database::listing::{
ListingDatabase, OPT_NEW_TABLE_STORAGE_VERSION, OPT_NEW_TABLE_V2_MANIFEST_PATHS,
};
use crate::database::{
CreateTableData, CreateTableMode, CreateTableRequest, Database, DatabaseOptions,
OpenTableRequest, TableNamesRequest,
CreateNamespaceRequest, CreateTableData, CreateTableMode, CreateTableRequest, Database,
DatabaseOptions, DropNamespaceRequest, ListNamespacesRequest, OpenTableRequest,
TableNamesRequest,
};
use crate::embeddings::{
EmbeddingDefinition, EmbeddingFunction, EmbeddingRegistry, MemoryRegistry, WithEmbeddings,
@@ -66,6 +68,12 @@ impl TableNamesBuilder {
self
}
/// Set the namespace to list tables from
pub fn namespace(mut self, namespace: Vec<String>) -> Self {
self.request.namespace = namespace;
self
}
/// Execute the table names operation
pub async fn execute(self) -> Result<Vec<String>> {
self.parent.clone().table_names(self.request).await
@@ -347,6 +355,12 @@ impl<const HAS_DATA: bool> CreateTableBuilder<HAS_DATA> {
);
self
}
/// Set the namespace for the table
pub fn namespace(mut self, namespace: Vec<String>) -> Self {
self.request.namespace = namespace;
self
}
}
#[derive(Clone, Debug)]
@@ -366,6 +380,7 @@ impl OpenTableBuilder {
parent,
request: OpenTableRequest {
name,
namespace: vec![],
index_cache_size: None,
lance_read_params: None,
},
@@ -441,6 +456,12 @@ impl OpenTableBuilder {
self
}
/// Set the namespace for the table
pub fn namespace(mut self, namespace: Vec<String>) -> Self {
self.request.namespace = namespace;
self
}
/// Open the table
pub async fn execute(self) -> Result<Table> {
Ok(Table::new_with_embedding_registry(
@@ -563,9 +584,16 @@ impl Connection {
&self,
old_name: impl AsRef<str>,
new_name: impl AsRef<str>,
cur_namespace: &[String],
new_namespace: &[String],
) -> Result<()> {
self.internal
.rename_table(old_name.as_ref(), new_name.as_ref())
.rename_table(
old_name.as_ref(),
new_name.as_ref(),
cur_namespace,
new_namespace,
)
.await
}
@@ -573,8 +601,9 @@ impl Connection {
///
/// # Arguments
/// * `name` - The name of the table to drop
pub async fn drop_table(&self, name: impl AsRef<str>) -> Result<()> {
self.internal.drop_table(name.as_ref()).await
/// * `namespace` - The namespace to drop the table from
pub async fn drop_table(&self, name: impl AsRef<str>, namespace: &[String]) -> Result<()> {
self.internal.drop_table(name.as_ref(), namespace).await
}
/// Drop the database
@@ -582,12 +611,30 @@ impl Connection {
/// This is the same as dropping all of the tables
#[deprecated(since = "0.15.1", note = "Use `drop_all_tables` instead")]
pub async fn drop_db(&self) -> Result<()> {
self.internal.drop_all_tables().await
self.internal.drop_all_tables(&[]).await
}
/// Drops all tables in the database
pub async fn drop_all_tables(&self) -> Result<()> {
self.internal.drop_all_tables().await
///
/// # Arguments
/// * `namespace` - The namespace to drop all tables from. Empty slice represents root namespace.
pub async fn drop_all_tables(&self, namespace: &[String]) -> Result<()> {
self.internal.drop_all_tables(namespace).await
}
/// List immediate child namespace names in the given namespace
pub async fn list_namespaces(&self, request: ListNamespacesRequest) -> Result<Vec<String>> {
self.internal.list_namespaces(request).await
}
/// Create a new namespace
pub async fn create_namespace(&self, request: CreateNamespaceRequest) -> Result<()> {
self.internal.create_namespace(request).await
}
/// Drop a namespace
pub async fn drop_namespace(&self, request: DropNamespaceRequest) -> Result<()> {
self.internal.drop_namespace(request).await
}
/// Get the in-memory embedding registry.
@@ -749,6 +796,7 @@ impl ConnectBuilder {
}
/// [`AwsCredential`] to use when connecting to S3.
#[cfg(feature = "aws")]
#[deprecated(note = "Pass through storage_options instead")]
pub fn aws_creds(mut self, aws_creds: AwsCredential) -> Self {
self.request
@@ -1218,12 +1266,12 @@ mod tests {
// drop non-exist table
assert!(matches!(
db.drop_table("invalid_table").await,
db.drop_table("invalid_table", &[]).await,
Err(crate::Error::TableNotFound { .. }),
));
create_dir_all(tmp_dir.path().join("table1.lance")).unwrap();
db.drop_table("table1").await.unwrap();
db.drop_table("table1", &[]).await.unwrap();
let tables = db.table_names().execute().await.unwrap();
assert_eq!(tables.len(), 0);

View File

@@ -34,9 +34,36 @@ pub trait DatabaseOptions {
fn serialize_into_map(&self, map: &mut HashMap<String, String>);
}
/// A request to list namespaces in the database
#[derive(Clone, Debug, Default)]
pub struct ListNamespacesRequest {
/// The parent namespace to list namespaces in. Empty list represents root namespace.
pub namespace: Vec<String>,
/// If present, only return names that come lexicographically after the supplied value.
pub page_token: Option<String>,
/// The maximum number of namespace names to return
pub limit: Option<u32>,
}
/// A request to create a namespace
#[derive(Clone, Debug)]
pub struct CreateNamespaceRequest {
/// The namespace identifier to create
pub namespace: Vec<String>,
}
/// A request to drop a namespace
#[derive(Clone, Debug)]
pub struct DropNamespaceRequest {
/// The namespace identifier to drop
pub namespace: Vec<String>,
}
/// A request to list names of tables in the database
#[derive(Clone, Debug, Default)]
pub struct TableNamesRequest {
/// The namespace to list tables in. Empty list represents root namespace.
pub namespace: Vec<String>,
/// If present, only return names that come lexicographically after the supplied
/// value.
///
@@ -51,6 +78,8 @@ pub struct TableNamesRequest {
#[derive(Clone, Debug)]
pub struct OpenTableRequest {
pub name: String,
/// The namespace to open the table from. Empty list represents root namespace.
pub namespace: Vec<String>,
pub index_cache_size: Option<u32>,
pub lance_read_params: Option<ReadParams>,
}
@@ -125,6 +154,8 @@ impl StreamingWriteSource for CreateTableData {
pub struct CreateTableRequest {
/// The name of the new table
pub name: String,
/// The namespace to create the table in. Empty list represents root namespace.
pub namespace: Vec<String>,
/// Initial data to write to the table, can be None to create an empty table
pub data: CreateTableData,
/// The mode to use when creating the table
@@ -137,6 +168,7 @@ impl CreateTableRequest {
pub fn new(name: String, data: CreateTableData) -> Self {
Self {
name,
namespace: vec![],
data,
mode: CreateTableMode::default(),
write_options: WriteOptions::default(),
@@ -151,6 +183,12 @@ impl CreateTableRequest {
pub trait Database:
Send + Sync + std::any::Any + std::fmt::Debug + std::fmt::Display + 'static
{
/// List immediate child namespace names in the given namespace
async fn list_namespaces(&self, request: ListNamespacesRequest) -> Result<Vec<String>>;
/// Create a new namespace
async fn create_namespace(&self, request: CreateNamespaceRequest) -> Result<()>;
/// Drop a namespace
async fn drop_namespace(&self, request: DropNamespaceRequest) -> Result<()>;
/// List the names of tables in the database
async fn table_names(&self, request: TableNamesRequest) -> Result<Vec<String>>;
/// Create a table in the database
@@ -158,10 +196,16 @@ pub trait Database:
/// Open a table in the database
async fn open_table(&self, request: OpenTableRequest) -> Result<Arc<dyn BaseTable>>;
/// Rename a table in the database
async fn rename_table(&self, old_name: &str, new_name: &str) -> Result<()>;
async fn rename_table(
&self,
cur_name: &str,
new_name: &str,
cur_namespace: &[String],
new_namespace: &[String],
) -> Result<()>;
/// Drop a table in the database
async fn drop_table(&self, name: &str) -> Result<()>;
async fn drop_table(&self, name: &str, namespace: &[String]) -> Result<()>;
/// Drop all tables in the database
async fn drop_all_tables(&self) -> Result<()>;
async fn drop_all_tables(&self, namespace: &[String]) -> Result<()>;
fn as_any(&self) -> &dyn std::any::Any;
}

View File

@@ -22,7 +22,8 @@ use crate::table::NativeTable;
use crate::utils::validate_table_name;
use super::{
BaseTable, CreateTableMode, CreateTableRequest, Database, DatabaseOptions, OpenTableRequest,
BaseTable, CreateNamespaceRequest, CreateTableMode, CreateTableRequest, Database,
DatabaseOptions, DropNamespaceRequest, ListNamespacesRequest, OpenTableRequest,
TableNamesRequest,
};
@@ -551,6 +552,7 @@ impl ListingDatabase {
async fn handle_table_exists(
&self,
table_name: &str,
namespace: Vec<String>,
mode: CreateTableMode,
data_schema: &arrow_schema::Schema,
) -> Result<Arc<dyn BaseTable>> {
@@ -561,6 +563,7 @@ impl ListingDatabase {
CreateTableMode::ExistOk(callback) => {
let req = OpenTableRequest {
name: table_name.to_string(),
namespace: namespace.clone(),
index_cache_size: None,
lance_read_params: None,
};
@@ -584,7 +587,28 @@ impl ListingDatabase {
#[async_trait::async_trait]
impl Database for ListingDatabase {
async fn list_namespaces(&self, _request: ListNamespacesRequest) -> Result<Vec<String>> {
Ok(Vec::new())
}
async fn create_namespace(&self, _request: CreateNamespaceRequest) -> Result<()> {
Err(Error::NotSupported {
message: "Namespace operations are not supported for listing database".into(),
})
}
async fn drop_namespace(&self, _request: DropNamespaceRequest) -> Result<()> {
Err(Error::NotSupported {
message: "Namespace operations are not supported for listing database".into(),
})
}
async fn table_names(&self, request: TableNamesRequest) -> Result<Vec<String>> {
if !request.namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database. Only root namespace is supported.".into(),
});
}
let mut f = self
.object_store
.read_dir(self.base_path.clone())
@@ -615,6 +639,11 @@ impl Database for ListingDatabase {
}
async fn create_table(&self, request: CreateTableRequest) -> Result<Arc<dyn BaseTable>> {
if !request.namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database. Only root namespace is supported.".into(),
});
}
let table_uri = self.table_uri(&request.name)?;
let (storage_version_override, v2_manifest_override) =
@@ -637,14 +666,24 @@ impl Database for ListingDatabase {
{
Ok(table) => Ok(Arc::new(table)),
Err(Error::TableAlreadyExists { .. }) => {
self.handle_table_exists(&request.name, request.mode, &data_schema)
.await
self.handle_table_exists(
&request.name,
request.namespace.clone(),
request.mode,
&data_schema,
)
.await
}
Err(err) => Err(err),
}
}
async fn open_table(&self, mut request: OpenTableRequest) -> Result<Arc<dyn BaseTable>> {
if !request.namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database. Only root namespace is supported.".into(),
});
}
let table_uri = self.table_uri(&request.name)?;
// Only modify the storage options if we actually have something to
@@ -694,17 +733,44 @@ impl Database for ListingDatabase {
Ok(native_table)
}
async fn rename_table(&self, _old_name: &str, _new_name: &str) -> Result<()> {
async fn rename_table(
&self,
_cur_name: &str,
_new_name: &str,
cur_namespace: &[String],
new_namespace: &[String],
) -> Result<()> {
if !cur_namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database.".into(),
});
}
if !new_namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database.".into(),
});
}
Err(Error::NotSupported {
message: "rename_table is not supported in LanceDB OSS".to_string(),
message: "rename_table is not supported in LanceDB OSS".into(),
})
}
async fn drop_table(&self, name: &str) -> Result<()> {
async fn drop_table(&self, name: &str, namespace: &[String]) -> Result<()> {
if !namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database.".into(),
});
}
self.drop_tables(vec![name.to_string()]).await
}
async fn drop_all_tables(&self) -> Result<()> {
async fn drop_all_tables(&self, namespace: &[String]) -> Result<()> {
// Check if namespace parameter is provided
if !namespace.is_empty() {
return Err(Error::NotSupported {
message: "Namespace parameter is not supported for listing database.".into(),
});
}
let tables = self.table_names(TableNamesRequest::default()).await?;
self.drop_tables(tables).await
}

View File

@@ -65,12 +65,94 @@ pub enum Index {
/// Builder for the create_index operation
///
/// The methods on this builder are used to specify options common to all indices.
///
/// # Examples
///
/// Creating a basic vector index:
///
/// ```
/// use lancedb::{connect, index::{Index, vector::IvfPqIndexBuilder}};
///
/// # async fn create_basic_vector_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a vector index with default settings
/// table
/// .create_index(&["vector"], Index::IvfPq(IvfPqIndexBuilder::default()))
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating an index with a custom name:
///
/// ```
/// use lancedb::{connect, index::{Index, vector::IvfPqIndexBuilder}};
///
/// # async fn create_named_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a vector index with a custom name
/// table
/// .create_index(&["embeddings"], Index::IvfPq(IvfPqIndexBuilder::default()))
/// .name("my_embeddings_index".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating an untrained index (for scalar indices only):
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BTreeIndexBuilder}};
///
/// # async fn create_untrained_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a BTree index without training (creates empty index)
/// table
/// .create_index(&["category"], Index::BTree(BTreeIndexBuilder::default()))
/// .train(false)
/// .name("category_index".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating a scalar index with all options:
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BitmapIndexBuilder}};
///
/// # async fn create_full_options_index() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a bitmap index with full configuration
/// table
/// .create_index(&["status"], Index::Bitmap(BitmapIndexBuilder::default()))
/// .name("status_bitmap_index".to_string())
/// .train(true) // Train the index with existing data
/// .replace(false) // Don't replace if index already exists
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
pub struct IndexBuilder {
parent: Arc<dyn BaseTable>,
pub(crate) index: Index,
pub(crate) columns: Vec<String>,
pub(crate) replace: bool,
pub(crate) wait_timeout: Option<Duration>,
pub(crate) train: bool,
pub(crate) name: Option<String>,
}
impl IndexBuilder {
@@ -80,7 +162,9 @@ impl IndexBuilder {
index,
columns,
replace: true,
train: true,
wait_timeout: None,
name: None,
}
}
@@ -94,6 +178,82 @@ impl IndexBuilder {
self
}
/// The name of the index. If not set, a default name will be generated.
///
/// # Examples
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BTreeIndexBuilder}};
///
/// # async fn name_example() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create an index with a custom name
/// table
/// .create_index(&["user_id"], Index::BTree(BTreeIndexBuilder::default()))
/// .name("user_id_btree_index".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
pub fn name(mut self, v: String) -> Self {
self.name = Some(v);
self
}
/// Whether to train the index, the default is `true`.
///
/// If this is false, the index will not be trained and just created empty.
///
/// This is not supported for vector indices yet.
///
/// # Examples
///
/// Creating an empty index that will be populated later:
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BitmapIndexBuilder}};
///
/// # async fn train_false_example() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create an empty bitmap index (not trained with existing data)
/// table
/// .create_index(&["category"], Index::Bitmap(BitmapIndexBuilder::default()))
/// .train(false) // Create empty index
/// .name("category_bitmap".to_string())
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
///
/// Creating a trained index (default behavior):
///
/// ```
/// use lancedb::{connect, index::{Index, scalar::BTreeIndexBuilder}};
///
/// # async fn train_true_example() -> lancedb::Result<()> {
/// let db = connect("data/sample-lancedb").execute().await?;
/// let table = db.open_table("my_table").execute().await?;
///
/// // Create a trained BTree index (includes existing data)
/// table
/// .create_index(&["timestamp"], Index::BTree(BTreeIndexBuilder::default()))
/// .train(true) // Train with existing data (this is the default)
/// .execute()
/// .await?;
/// # Ok(())
/// # }
/// ```
pub fn train(mut self, v: bool) -> Self {
self.train = v;
self
}
/// Duration of time to wait for asynchronous indexing to complete. If not set,
/// `create_index()` will not wait.
///

View File

@@ -9,7 +9,7 @@ use futures::{stream::BoxStream, TryFutureExt};
use lance::io::WrappingObjectStore;
use object_store::{
path::Path, Error, GetOptions, GetResult, ListResult, MultipartUpload, ObjectMeta, ObjectStore,
PutMultipartOpts, PutOptions, PutPayload, PutResult, Result, UploadPart,
PutMultipartOptions, PutOptions, PutPayload, PutResult, Result, UploadPart,
};
use async_trait::async_trait;
@@ -73,7 +73,7 @@ impl ObjectStore for MirroringObjectStore {
async fn put_multipart_opts(
&self,
location: &Path,
opts: PutMultipartOpts,
opts: PutMultipartOptions,
) -> Result<Box<dyn MultipartUpload>> {
if location.primary_only() {
return self.primary.put_multipart_opts(location, opts).await;
@@ -170,7 +170,11 @@ impl MirroringObjectStoreWrapper {
}
impl WrappingObjectStore for MirroringObjectStoreWrapper {
fn wrap(&self, primary: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
fn wrap(
&self,
primary: Arc<dyn ObjectStore>,
_storage_options: Option<&std::collections::HashMap<String, String>>,
) -> Arc<dyn ObjectStore> {
Arc::new(MirroringObjectStore {
primary,
secondary: self.secondary.clone(),

View File

@@ -11,7 +11,7 @@ use futures::stream::BoxStream;
use lance::io::WrappingObjectStore;
use object_store::{
path::Path, GetOptions, GetResult, ListResult, MultipartUpload, ObjectMeta, ObjectStore,
PutMultipartOpts, PutOptions, PutPayload, PutResult, Result as OSResult, UploadPart,
PutMultipartOptions, PutOptions, PutPayload, PutResult, Result as OSResult, UploadPart,
};
#[derive(Debug, Default)]
@@ -50,7 +50,11 @@ impl IoStatsHolder {
}
impl WrappingObjectStore for IoStatsHolder {
fn wrap(&self, target: Arc<dyn ObjectStore>) -> Arc<dyn ObjectStore> {
fn wrap(
&self,
target: Arc<dyn ObjectStore>,
_storage_options: Option<&std::collections::HashMap<String, String>>,
) -> Arc<dyn ObjectStore> {
Arc::new(IoTrackingStore {
target,
stats: self.0.clone(),
@@ -106,7 +110,7 @@ impl ObjectStore for IoTrackingStore {
async fn put_multipart_opts(
&self,
location: &Path,
opts: PutMultipartOpts,
opts: PutMultipartOptions,
) -> OSResult<Box<dyn MultipartUpload>> {
let target = self.target.put_multipart_opts(location, opts).await?;
Ok(Box::new(IoTrackingMultipartUpload {

View File

@@ -1206,6 +1206,144 @@ impl HasQuery for VectorQuery {
}
}
/// A builder for LanceDB take queries.
///
/// See [`crate::Table::query`] for more details on queries
///
/// A `TakeQuery` is a query that is used to select a subset of rows
/// from a table using dataset offsets or row ids.
///
/// See [`ExecutableQuery`] for methods that can be used to execute
/// the query and retrieve results.
///
/// This query object can be reused to issue the same query multiple
/// times.
#[derive(Debug, Clone)]
pub struct TakeQuery {
parent: Arc<dyn BaseTable>,
request: QueryRequest,
}
impl TakeQuery {
/// Create a new `TakeQuery` that will return rows at the given offsets.
///
/// See [`crate::Table::take_offsets`] for more details.
pub fn from_offsets(parent: Arc<dyn BaseTable>, offsets: Vec<u64>) -> Self {
let filter = format!(
"_rowoffset in ({})",
offsets
.iter()
.map(|o| o.to_string())
.collect::<Vec<_>>()
.join(",")
);
Self {
parent,
request: QueryRequest {
filter: Some(QueryFilter::Sql(filter)),
..Default::default()
},
}
}
/// Create a new `TakeQuery` that will return rows with the given row ids.
///
/// See [`crate::Table::take_row_ids`] for more details.
pub fn from_row_ids(parent: Arc<dyn BaseTable>, row_ids: Vec<u64>) -> Self {
let filter = format!(
"_rowid in ({})",
row_ids
.iter()
.map(|o| o.to_string())
.collect::<Vec<_>>()
.join(",")
);
Self {
parent,
request: QueryRequest {
filter: Some(QueryFilter::Sql(filter)),
..Default::default()
},
}
}
/// Convert the `TakeQuery` into a `QueryRequest`.
pub fn into_request(self) -> QueryRequest {
self.request
}
/// Return the current `QueryRequest` for the `TakeQuery`.
pub fn current_request(&self) -> &QueryRequest {
&self.request
}
/// Return only the specified columns.
///
/// By default a query will return all columns from the table. However, this can have
/// a very significant impact on latency. LanceDb stores data in a columnar fashion. This
/// means we can finely tune our I/O to select exactly the columns we need.
///
/// As a best practice you should always limit queries to the columns that you need.
///
/// You can also use this method to create new "dynamic" columns based on your existing columns.
/// For example, you may not care about "a" or "b" but instead simply want "a + b". This is often
/// seen in the SELECT clause of an SQL query (e.g. `SELECT a+b FROM my_table`).
///
/// To create dynamic columns use [`Select::Dynamic`] (it might be easier to create this with the
/// helper method [`Select::dynamic`]). A column will be returned for each tuple provided. The
/// first value in that tuple provides the name of the column. The second value in the tuple is
/// an SQL string used to specify how the column is calculated.
///
/// For example, an SQL query might state `SELECT a + b AS combined, c`. The equivalent
/// input to [`Select::dynamic`] would be `&[("combined", "a + b"), ("c", "c")]`.
///
/// Columns will always be returned in the order given, even if that order is different than
/// the order used when adding the data.
pub fn select(mut self, selection: Select) -> Self {
self.request.select = selection;
self
}
/// Return the `_rowid` meta column from the Table.
pub fn with_row_id(mut self) -> Self {
self.request.with_row_id = true;
self
}
}
impl HasQuery for TakeQuery {
fn mut_query(&mut self) -> &mut QueryRequest {
&mut self.request
}
}
impl ExecutableQuery for TakeQuery {
async fn create_plan(&self, options: QueryExecutionOptions) -> Result<Arc<dyn ExecutionPlan>> {
let req = AnyQuery::Query(self.request.clone());
self.parent.clone().create_plan(&req, options).await
}
async fn execute_with_options(
&self,
options: QueryExecutionOptions,
) -> Result<SendableRecordBatchStream> {
let query = AnyQuery::Query(self.request.clone());
Ok(SendableRecordBatchStream::from(
self.parent.clone().query(&query, options).await?,
))
}
async fn explain_plan(&self, verbose: bool) -> Result<String> {
let query = AnyQuery::Query(self.request.clone());
self.parent.explain_plan(&query, verbose).await
}
async fn analyze_plan_with_options(&self, options: QueryExecutionOptions) -> Result<String> {
let query = AnyQuery::Query(self.request.clone());
self.parent.analyze_plan(&query, options).await
}
}
#[cfg(test)]
mod tests {
use std::{collections::HashSet, sync::Arc};
@@ -1219,9 +1357,10 @@ mod tests {
use arrow_schema::{DataType, Field as ArrowField, Schema as ArrowSchema};
use futures::{StreamExt, TryStreamExt};
use lance_testing::datagen::{BatchGenerator, IncrementingInt32, RandomVector};
use rand::seq::IndexedRandom;
use tempfile::tempdir;
use crate::{connect, database::CreateTableMode, Table};
use crate::{connect, database::CreateTableMode, index::Index, Table};
#[tokio::test]
async fn test_setters_getters() {
@@ -1327,7 +1466,7 @@ mod tests {
while let Some(batch) = stream.next().await {
// pre filter should return 10 rows
assert!(batch.expect("should be Ok").num_rows() == 10);
assert_eq!(batch.expect("should be Ok").num_rows(), 10);
}
let query = table
@@ -1342,7 +1481,7 @@ mod tests {
// should only have one batch
while let Some(batch) = stream.next().await {
// pre filter should return 10 rows
assert!(batch.expect("should be Ok").num_rows() == 9);
assert_eq!(batch.expect("should be Ok").num_rows(), 10);
}
}
@@ -1802,4 +1941,197 @@ mod tests {
assert_eq!(0, batch.num_rows());
assert_eq!(2, batch.num_columns());
}
// TODO: Implement a good FTS test data generator in lance_datagen.
fn fts_test_data(nrows: usize) -> RecordBatch {
let schema = Arc::new(ArrowSchema::new(vec![
ArrowField::new("text", DataType::Utf8, false),
ArrowField::new("id", DataType::Int32, false),
]));
let ids: Int32Array = (1..=nrows as i32).collect();
// Sample 1 - 3 tokens for each string value
let tokens = ["a", "b", "c", "d", "e"];
use rand::{rng, Rng};
let mut rng = rng();
let text: StringArray = (0..nrows)
.map(|_| {
let num_tokens = rng.random_range(1..=3); // 1 to 3 tokens
let selected_tokens: Vec<&str> = tokens
.choose_multiple(&mut rng, num_tokens)
.cloned()
.collect();
Some(selected_tokens.join(" "))
})
.collect();
RecordBatch::try_new(schema, vec![Arc::new(text), Arc::new(ids)]).unwrap()
}
async fn run_query_request(table: &dyn BaseTable, query: AnyQuery) -> RecordBatch {
use lance::io::RecordBatchStream;
let stream = table.query(&query, Default::default()).await.unwrap();
let schema = stream.schema();
let batches = stream.try_collect::<Vec<_>>().await.unwrap();
arrow::compute::concat_batches(&schema, &batches).unwrap()
}
async fn test_pagination(table: &dyn BaseTable, full_query: AnyQuery, page_size: usize) {
// Get full results
let full_results = run_query_request(table, full_query.clone()).await;
// Then use limit & offset to do paginated queries, assert each
// is the same as a slice of the full results
let mut offset = 0;
while offset < full_results.num_rows() {
let mut paginated_query = full_query.clone();
let limit = page_size.min(full_results.num_rows() - offset);
match &mut paginated_query {
AnyQuery::Query(query)
| AnyQuery::VectorQuery(VectorQueryRequest { base: query, .. }) => {
query.limit = Some(limit);
query.offset = Some(offset);
}
}
let paginated_results = run_query_request(table, paginated_query).await;
let expected_slice = full_results.slice(offset, limit);
assert_eq!(
paginated_results, expected_slice,
"Paginated results do not match expected slice at offset {}, for page size {}",
offset, page_size
);
offset += page_size;
}
}
#[tokio::test]
async fn test_pagination_with_scan() {
let db = connect("memory://test").execute().await.unwrap();
let table = db
.create_table("test_table", make_non_empty_batches())
.execute()
.await
.unwrap();
let query = AnyQuery::Query(table.query().into_request());
test_pagination(table.base_table().as_ref(), query.clone(), 3).await;
test_pagination(table.base_table().as_ref(), query, 10).await;
}
#[tokio::test]
async fn test_pagination_with_fts() {
let db = connect("memory://test").execute().await.unwrap();
let data = fts_test_data(400);
let schema = data.schema();
let data = RecordBatchIterator::new(vec![Ok(data)], schema);
let table = db.create_table("test_table", data).execute().await.unwrap();
table
.create_index(&["text"], Index::FTS(Default::default()))
.execute()
.await
.unwrap();
let query = table
.query()
.full_text_search(FullTextSearchQuery::new("test".into()))
.into_request();
let query = AnyQuery::Query(query);
test_pagination(table.base_table().as_ref(), query.clone(), 3).await;
test_pagination(table.base_table().as_ref(), query, 10).await;
}
#[tokio::test]
async fn test_pagination_with_vector_query() {
let db = connect("memory://test").execute().await.unwrap();
let table = db
.create_table("test_table", make_non_empty_batches())
.execute()
.await
.unwrap();
let query_vector = vec![0.1_f32, 0.2, 0.3, 0.4];
let query = table
.query()
.nearest_to(query_vector.as_slice())
.unwrap()
.limit(50)
.into_request();
let query = AnyQuery::VectorQuery(query);
test_pagination(table.base_table().as_ref(), query.clone(), 3).await;
test_pagination(table.base_table().as_ref(), query, 10).await;
}
#[tokio::test]
async fn test_take_offsets() {
let tmp_dir = tempdir().unwrap();
let table = make_test_table(&tmp_dir).await;
let results = table
.take_offsets(vec![5, 1, 17])
.execute()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
assert_eq!(results.len(), 1);
assert_eq!(results[0].num_rows(), 3);
assert_eq!(results[0].num_columns(), 2);
let mut ids = results[0]
.column_by_name("id")
.unwrap()
.as_primitive::<Int32Type>()
.values()
.to_vec();
ids.sort();
assert_eq!(ids, vec![1, 5, 17]);
// Select specific columns
let results = table
.take_offsets(vec![5, 1, 17])
.select(Select::Columns(vec!["vector".to_string()]))
.execute()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
assert_eq!(results.len(), 1);
assert_eq!(results[0].num_rows(), 3);
assert_eq!(results[0].num_columns(), 1);
}
#[tokio::test]
async fn test_take_row_ids() {
let tmp_dir = tempdir().unwrap();
let table = make_test_table(&tmp_dir).await;
let results = table
.take_row_ids(vec![5, 1, 17])
.execute()
.await
.unwrap()
.try_collect::<Vec<_>>()
.await
.unwrap();
assert_eq!(results.len(), 1);
assert_eq!(results[0].num_rows(), 3);
assert_eq!(results[0].num_columns(), 2);
let mut ids = results[0]
.column_by_name("id")
.unwrap()
.as_primitive::<Int32Type>()
.values()
.to_vec();
ids.sort();
assert_eq!(ids, vec![1, 5, 17]);
}
}

View File

@@ -25,6 +25,9 @@ pub struct ClientConfig {
pub user_agent: String,
// TODO: how to configure request ids?
pub extra_headers: HashMap<String, String>,
/// The delimiter to use when constructing object identifiers.
/// If not default, passes as query parameter.
pub id_delimiter: Option<String>,
}
impl Default for ClientConfig {
@@ -34,6 +37,7 @@ impl Default for ClientConfig {
retry_config: RetryConfig::default(),
user_agent: concat!("LanceDB-Rust-Client/", env!("CARGO_PKG_VERSION")).into(),
extra_headers: HashMap::new(),
id_delimiter: None,
}
}
}
@@ -145,6 +149,7 @@ pub struct RestfulLanceDbClient<S: HttpSend = Sender> {
host: String,
pub(crate) retry_config: ResolvedRetryConfig,
pub(crate) sender: S,
pub(crate) id_delimiter: String,
}
pub trait HttpSend: Clone + Send + Sync + std::fmt::Debug + 'static {
@@ -268,6 +273,7 @@ impl RestfulLanceDbClient<Sender> {
host,
retry_config,
sender: Sender,
id_delimiter: client_config.id_delimiter.unwrap_or("$".to_string()),
})
}
}
@@ -356,12 +362,22 @@ impl<S: HttpSend> RestfulLanceDbClient<S> {
pub fn get(&self, uri: &str) -> RequestBuilder {
let full_uri = format!("{}{}", self.host, uri);
self.client.get(full_uri)
let builder = self.client.get(full_uri);
self.add_id_delimiter_query_param(builder)
}
pub fn post(&self, uri: &str) -> RequestBuilder {
let full_uri = format!("{}{}", self.host, uri);
self.client.post(full_uri)
let builder = self.client.post(full_uri);
self.add_id_delimiter_query_param(builder)
}
fn add_id_delimiter_query_param(&self, req: RequestBuilder) -> RequestBuilder {
if self.id_delimiter != "$" {
req.query(&[("delimiter", self.id_delimiter.clone())])
} else {
req
}
}
pub async fn send(&self, req: RequestBuilder) -> Result<(String, Response)> {
@@ -594,6 +610,7 @@ pub mod test_utils {
sender: MockSender {
f: Arc::new(wrapper),
},
id_delimiter: "$".to_string(),
}
}
}

View File

@@ -14,8 +14,9 @@ use serde::Deserialize;
use tokio::task::spawn_blocking;
use crate::database::{
CreateTableData, CreateTableMode, CreateTableRequest, Database, DatabaseOptions,
OpenTableRequest, TableNamesRequest,
CreateNamespaceRequest, CreateTableData, CreateTableMode, CreateTableRequest, Database,
DatabaseOptions, DropNamespaceRequest, ListNamespacesRequest, OpenTableRequest,
TableNamesRequest,
};
use crate::error::Result;
use crate::table::BaseTable;
@@ -245,10 +246,61 @@ impl From<&CreateTableMode> for &'static str {
}
}
fn build_table_identifier(name: &str, namespace: &[String], delimiter: &str) -> String {
if !namespace.is_empty() {
let mut parts = namespace.to_vec();
parts.push(name.to_string());
parts.join(delimiter)
} else {
name.to_string()
}
}
fn build_namespace_identifier(namespace: &[String], delimiter: &str) -> String {
if namespace.is_empty() {
// According to the namespace spec, use delimiter to represent root namespace
delimiter.to_string()
} else {
namespace.join(delimiter)
}
}
/// Build a secure cache key using length prefixes.
/// This format is completely unambiguous regardless of delimiter or content.
/// Format: [u32_len][namespace1][u32_len][namespace2]...[u32_len][table_name]
/// Returns a hex-encoded string for use as a cache key.
fn build_cache_key(name: &str, namespace: &[String]) -> String {
let mut key = Vec::new();
// Add each namespace component with length prefix
for ns in namespace {
let bytes = ns.as_bytes();
key.extend_from_slice(&(bytes.len() as u32).to_le_bytes());
key.extend_from_slice(bytes);
}
// Add table name with length prefix
let name_bytes = name.as_bytes();
key.extend_from_slice(&(name_bytes.len() as u32).to_le_bytes());
key.extend_from_slice(name_bytes);
// Convert to hex string for use as a cache key
key.iter().map(|b| format!("{:02x}", b)).collect()
}
#[async_trait]
impl<S: HttpSend> Database for RemoteDatabase<S> {
async fn table_names(&self, request: TableNamesRequest) -> Result<Vec<String>> {
let mut req = self.client.get("/v1/table/");
let mut req = if !request.namespace.is_empty() {
let namespace_id =
build_namespace_identifier(&request.namespace, &self.client.id_delimiter);
self.client
.get(&format!("/v1/namespace/{}/table/list", namespace_id))
} else {
// TODO: use new API for all listing operations once stable
self.client.get("/v1/table/")
};
if let Some(limit) = request.limit {
req = req.query(&[("limit", limit)]);
}
@@ -264,12 +316,17 @@ impl<S: HttpSend> Database for RemoteDatabase<S> {
.err_to_http(request_id)?
.tables;
for table in &tables {
let table_identifier =
build_table_identifier(table, &request.namespace, &self.client.id_delimiter);
let cache_key = build_cache_key(table, &request.namespace);
let remote_table = Arc::new(RemoteTable::new(
self.client.clone(),
table.clone(),
request.namespace.clone(),
table_identifier.clone(),
version.clone(),
));
self.table_cache.insert(table.clone(), remote_table).await;
self.table_cache.insert(cache_key, remote_table).await;
}
Ok(tables)
}
@@ -295,9 +352,11 @@ impl<S: HttpSend> Database for RemoteDatabase<S> {
.await
.unwrap()?;
let identifier =
build_table_identifier(&request.name, &request.namespace, &self.client.id_delimiter);
let req = self
.client
.post(&format!("/v1/table/{}/create/", request.name))
.post(&format!("/v1/table/{}/create/", identifier))
.query(&[("mode", Into::<&str>::into(&request.mode))])
.body(data_buffer)
.header(CONTENT_TYPE, ARROW_STREAM_CONTENT_TYPE);
@@ -314,6 +373,7 @@ impl<S: HttpSend> Database for RemoteDatabase<S> {
CreateTableMode::ExistOk(callback) => {
let req = OpenTableRequest {
name: request.name.clone(),
namespace: request.namespace.clone(),
index_cache_size: None,
lance_read_params: None,
};
@@ -342,70 +402,160 @@ impl<S: HttpSend> Database for RemoteDatabase<S> {
}
let rsp = self.client.check_response(&request_id, rsp).await?;
let version = parse_server_version(&request_id, &rsp)?;
let table_identifier =
build_table_identifier(&request.name, &request.namespace, &self.client.id_delimiter);
let cache_key = build_cache_key(&request.name, &request.namespace);
let table = Arc::new(RemoteTable::new(
self.client.clone(),
request.name.clone(),
request.namespace.clone(),
table_identifier,
version,
));
self.table_cache
.insert(request.name.clone(), table.clone())
.await;
self.table_cache.insert(cache_key, table.clone()).await;
Ok(table)
}
async fn open_table(&self, request: OpenTableRequest) -> Result<Arc<dyn BaseTable>> {
let identifier =
build_table_identifier(&request.name, &request.namespace, &self.client.id_delimiter);
let cache_key = build_cache_key(&request.name, &request.namespace);
// We describe the table to confirm it exists before moving on.
if let Some(table) = self.table_cache.get(&request.name).await {
if let Some(table) = self.table_cache.get(&cache_key).await {
Ok(table.clone())
} else {
let req = self
.client
.post(&format!("/v1/table/{}/describe/", request.name));
.post(&format!("/v1/table/{}/describe/", identifier));
let (request_id, rsp) = self.client.send_with_retry(req, None, true).await?;
if rsp.status() == StatusCode::NOT_FOUND {
return Err(crate::Error::TableNotFound { name: request.name });
return Err(crate::Error::TableNotFound {
name: identifier.clone(),
});
}
let rsp = self.client.check_response(&request_id, rsp).await?;
let version = parse_server_version(&request_id, &rsp)?;
let table_identifier = build_table_identifier(
&request.name,
&request.namespace,
&self.client.id_delimiter,
);
let table = Arc::new(RemoteTable::new(
self.client.clone(),
request.name.clone(),
request.namespace.clone(),
table_identifier,
version,
));
self.table_cache.insert(request.name, table.clone()).await;
let cache_key = build_cache_key(&request.name, &request.namespace);
self.table_cache.insert(cache_key, table.clone()).await;
Ok(table)
}
}
async fn rename_table(&self, current_name: &str, new_name: &str) -> Result<()> {
async fn rename_table(
&self,
current_name: &str,
new_name: &str,
cur_namespace: &[String],
new_namespace: &[String],
) -> Result<()> {
let current_identifier =
build_table_identifier(current_name, cur_namespace, &self.client.id_delimiter);
let current_cache_key = build_cache_key(current_name, cur_namespace);
let new_cache_key = build_cache_key(new_name, new_namespace);
let mut body = serde_json::json!({ "new_table_name": new_name });
if !new_namespace.is_empty() {
body["new_namespace"] = serde_json::Value::Array(
new_namespace
.iter()
.map(|s| serde_json::Value::String(s.clone()))
.collect(),
);
}
let req = self
.client
.post(&format!("/v1/table/{}/rename/", current_name));
let req = req.json(&serde_json::json!({ "new_table_name": new_name }));
.post(&format!("/v1/table/{}/rename/", current_identifier))
.json(&body);
let (request_id, resp) = self.client.send(req).await?;
self.client.check_response(&request_id, resp).await?;
let table = self.table_cache.remove(current_name).await;
let table = self.table_cache.remove(&current_cache_key).await;
if let Some(table) = table {
self.table_cache.insert(new_name.into(), table).await;
self.table_cache.insert(new_cache_key, table).await;
}
Ok(())
}
async fn drop_table(&self, name: &str) -> Result<()> {
let req = self.client.post(&format!("/v1/table/{}/drop/", name));
async fn drop_table(&self, name: &str, namespace: &[String]) -> Result<()> {
let identifier = build_table_identifier(name, namespace, &self.client.id_delimiter);
let cache_key = build_cache_key(name, namespace);
let req = self.client.post(&format!("/v1/table/{}/drop/", identifier));
let (request_id, resp) = self.client.send(req).await?;
self.client.check_response(&request_id, resp).await?;
self.table_cache.remove(name).await;
self.table_cache.remove(&cache_key).await;
Ok(())
}
async fn drop_all_tables(&self) -> Result<()> {
async fn drop_all_tables(&self, namespace: &[String]) -> Result<()> {
// TODO: Implement namespace-aware drop_all_tables
let _namespace = namespace; // Suppress unused warning for now
Err(crate::Error::NotSupported {
message: "Dropping databases is not supported in the remote API".to_string(),
message: "Dropping all tables is not currently supported in the remote API".to_string(),
})
}
async fn list_namespaces(&self, request: ListNamespacesRequest) -> Result<Vec<String>> {
let namespace_id =
build_namespace_identifier(request.namespace.as_slice(), &self.client.id_delimiter);
let mut req = self
.client
.get(&format!("/v1/namespace/{}/list", namespace_id));
if let Some(limit) = request.limit {
req = req.query(&[("limit", limit)]);
}
if let Some(page_token) = request.page_token {
req = req.query(&[("page_token", page_token)]);
}
let (request_id, resp) = self.client.send(req).await?;
let resp = self.client.check_response(&request_id, resp).await?;
#[derive(Deserialize)]
struct ListNamespacesResponse {
namespaces: Vec<String>,
}
let parsed: ListNamespacesResponse = resp.json().await.map_err(|e| Error::Runtime {
message: format!("Failed to parse namespace response: {}", e),
})?;
Ok(parsed.namespaces)
}
async fn create_namespace(&self, request: CreateNamespaceRequest) -> Result<()> {
let namespace_id =
build_namespace_identifier(request.namespace.as_slice(), &self.client.id_delimiter);
let req = self
.client
.post(&format!("/v1/namespace/{}/create", namespace_id));
let (request_id, resp) = self.client.send(req).await?;
self.client.check_response(&request_id, resp).await?;
Ok(())
}
async fn drop_namespace(&self, request: DropNamespaceRequest) -> Result<()> {
let namespace_id =
build_namespace_identifier(request.namespace.as_slice(), &self.client.id_delimiter);
let req = self
.client
.post(&format!("/v1/namespace/{}/drop", namespace_id));
let (request_id, resp) = self.client.send(req).await?;
self.client.check_response(&request_id, resp).await?;
Ok(())
}
fn as_any(&self) -> &dyn std::any::Any {
self
}
@@ -436,6 +586,7 @@ impl From<StorageOptions> for RemoteOptions {
#[cfg(test)]
mod tests {
use super::build_cache_key;
use std::sync::{Arc, OnceLock};
use arrow_array::{Int32Array, RecordBatch, RecordBatchIterator};
@@ -448,6 +599,38 @@ mod tests {
Connection, Error,
};
#[test]
fn test_cache_key_security() {
// Test that cache keys are unique regardless of delimiter manipulation
// Case 1: Different delimiters should not affect cache key
let key1 = build_cache_key("table1", &["ns1".to_string(), "ns2".to_string()]);
let key2 = build_cache_key("table1", &["ns1$ns2".to_string()]);
assert_ne!(
key1, key2,
"Cache keys should differ for different namespace structures"
);
// Case 2: Table name containing delimiter should not cause collision
let key3 = build_cache_key("ns2$table1", &["ns1".to_string()]);
assert_ne!(
key1, key3,
"Cache key should be different when table name contains delimiter"
);
// Case 3: Empty namespace vs namespace with empty string
let key4 = build_cache_key("table1", &[]);
let key5 = build_cache_key("table1", &["".to_string()]);
assert_ne!(
key4, key5,
"Empty namespace should differ from namespace with empty string"
);
// Case 4: Verify same inputs produce same key (consistency)
let key6 = build_cache_key("table1", &["ns1".to_string(), "ns2".to_string()]);
assert_eq!(key1, key6, "Same inputs should produce same cache key");
}
#[tokio::test]
async fn test_retries() {
// We'll record the request_id here, to check it matches the one in the error.
@@ -711,7 +894,7 @@ mod tests {
http::Response::builder().status(200).body("").unwrap()
});
conn.drop_table("table1").await.unwrap();
conn.drop_table("table1", &[]).await.unwrap();
// NOTE: the API will return 200 even if the table does not exist. So we shouldn't expect 404.
}
@@ -731,7 +914,9 @@ mod tests {
http::Response::builder().status(200).body("").unwrap()
});
conn.rename_table("table1", "table2").await.unwrap();
conn.rename_table("table1", "table2", &[], &[])
.await
.unwrap();
}
#[tokio::test]
@@ -745,4 +930,186 @@ mod tests {
.await
.unwrap();
}
#[tokio::test]
async fn test_table_names_with_root_namespace() {
// When namespace is empty (root namespace), should use /v1/table/ for backwards compatibility
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::GET);
assert_eq!(request.url().path(), "/v1/table/");
assert_eq!(request.url().query(), None);
http::Response::builder()
.status(200)
.body(r#"{"tables": ["table1", "table2"]}"#)
.unwrap()
});
let names = conn
.table_names()
.namespace(vec![])
.execute()
.await
.unwrap();
assert_eq!(names, vec!["table1", "table2"]);
}
#[tokio::test]
async fn test_table_names_with_namespace() {
// When namespace is non-empty, should use /v1/namespace/{id}/table/list
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::GET);
assert_eq!(request.url().path(), "/v1/namespace/test/table/list");
assert_eq!(request.url().query(), None);
http::Response::builder()
.status(200)
.body(r#"{"tables": ["table1", "table2"]}"#)
.unwrap()
});
let names = conn
.table_names()
.namespace(vec!["test".to_string()])
.execute()
.await
.unwrap();
assert_eq!(names, vec!["table1", "table2"]);
}
#[tokio::test]
async fn test_table_names_with_nested_namespace() {
// When namespace is vec!["ns1", "ns2"], should use /v1/namespace/ns1$ns2/table/list
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::GET);
assert_eq!(request.url().path(), "/v1/namespace/ns1$ns2/table/list");
assert_eq!(request.url().query(), None);
http::Response::builder()
.status(200)
.body(r#"{"tables": ["ns1$ns2$table1", "ns1$ns2$table2"]}"#)
.unwrap()
});
let names = conn
.table_names()
.namespace(vec!["ns1".to_string(), "ns2".to_string()])
.execute()
.await
.unwrap();
assert_eq!(names, vec!["ns1$ns2$table1", "ns1$ns2$table2"]);
}
#[tokio::test]
async fn test_open_table_with_namespace() {
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::POST);
assert_eq!(request.url().path(), "/v1/table/ns1$ns2$table1/describe/");
assert_eq!(request.url().query(), None);
http::Response::builder()
.status(200)
.body(r#"{"table": "table1"}"#)
.unwrap()
});
let table = conn
.open_table("table1")
.namespace(vec!["ns1".to_string(), "ns2".to_string()])
.execute()
.await
.unwrap();
assert_eq!(table.name(), "table1");
}
#[tokio::test]
async fn test_create_table_with_namespace() {
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::POST);
assert_eq!(request.url().path(), "/v1/table/ns1$table1/create/");
assert_eq!(
request
.headers()
.get(reqwest::header::CONTENT_TYPE)
.unwrap(),
ARROW_STREAM_CONTENT_TYPE.as_bytes()
);
http::Response::builder().status(200).body("").unwrap()
});
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let reader = RecordBatchIterator::new([Ok(data.clone())], data.schema());
let table = conn
.create_table("table1", reader)
.namespace(vec!["ns1".to_string()])
.execute()
.await
.unwrap();
assert_eq!(table.name(), "table1");
}
#[tokio::test]
async fn test_drop_table_with_namespace() {
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::POST);
assert_eq!(request.url().path(), "/v1/table/ns1$ns2$table1/drop/");
assert_eq!(request.url().query(), None);
assert!(request.body().is_none());
http::Response::builder().status(200).body("").unwrap()
});
conn.drop_table("table1", &["ns1".to_string(), "ns2".to_string()])
.await
.unwrap();
}
#[tokio::test]
async fn test_rename_table_with_namespace() {
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::POST);
assert_eq!(request.url().path(), "/v1/table/ns1$table1/rename/");
assert_eq!(
request.headers().get("Content-Type").unwrap(),
JSON_CONTENT_TYPE
);
let body = request.body().unwrap().as_bytes().unwrap();
let body: serde_json::Value = serde_json::from_slice(body).unwrap();
assert_eq!(body["new_table_name"], "table2");
assert_eq!(body["new_namespace"], serde_json::json!(["ns2"]));
http::Response::builder().status(200).body("").unwrap()
});
conn.rename_table(
"table1",
"table2",
&["ns1".to_string()],
&["ns2".to_string()],
)
.await
.unwrap();
}
#[tokio::test]
async fn test_create_empty_table_with_namespace() {
let conn = Connection::new_with_handler(|request| {
assert_eq!(request.method(), &reqwest::Method::POST);
assert_eq!(request.url().path(), "/v1/table/prod$data$metrics/create/");
assert_eq!(
request
.headers()
.get(reqwest::header::CONTENT_TYPE)
.unwrap(),
ARROW_STREAM_CONTENT_TYPE.as_bytes()
);
http::Response::builder().status(200).body("").unwrap()
});
let schema = Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)]));
conn.create_empty_table("metrics", schema)
.namespace(vec!["prod".to_string(), "data".to_string()])
.execute()
.await
.unwrap();
}
}

View File

@@ -70,7 +70,7 @@ impl<S: HttpSend + 'static> Tags for RemoteTags<'_, S> {
let request = self
.inner
.client
.post(&format!("/v1/table/{}/tags/list/", self.inner.name));
.post(&format!("/v1/table/{}/tags/list/", self.inner.identifier));
let (request_id, response) = self.inner.send(request, true).await?;
let response = self
.inner
@@ -104,7 +104,10 @@ impl<S: HttpSend + 'static> Tags for RemoteTags<'_, S> {
let request = self
.inner
.client
.post(&format!("/v1/table/{}/tags/version/", self.inner.name))
.post(&format!(
"/v1/table/{}/tags/version/",
self.inner.identifier
))
.json(&serde_json::json!({ "tag": tag }));
let (request_id, response) = self.inner.send(request, true).await?;
@@ -146,7 +149,7 @@ impl<S: HttpSend + 'static> Tags for RemoteTags<'_, S> {
let request = self
.inner
.client
.post(&format!("/v1/table/{}/tags/create/", self.inner.name))
.post(&format!("/v1/table/{}/tags/create/", self.inner.identifier))
.json(&serde_json::json!({
"tag": tag,
"version": version
@@ -163,7 +166,7 @@ impl<S: HttpSend + 'static> Tags for RemoteTags<'_, S> {
let request = self
.inner
.client
.post(&format!("/v1/table/{}/tags/delete/", self.inner.name))
.post(&format!("/v1/table/{}/tags/delete/", self.inner.identifier))
.json(&serde_json::json!({ "tag": tag }));
let (request_id, response) = self.inner.send(request, true).await?;
@@ -177,7 +180,7 @@ impl<S: HttpSend + 'static> Tags for RemoteTags<'_, S> {
let request = self
.inner
.client
.post(&format!("/v1/table/{}/tags/update/", self.inner.name))
.post(&format!("/v1/table/{}/tags/update/", self.inner.identifier))
.json(&serde_json::json!({
"tag": tag,
"version": version
@@ -196,6 +199,8 @@ pub struct RemoteTable<S: HttpSend = Sender> {
#[allow(dead_code)]
client: RestfulLanceDbClient<S>,
name: String,
namespace: Vec<String>,
identifier: String,
server_version: ServerVersion,
version: RwLock<Option<u64>>,
@@ -205,11 +210,15 @@ impl<S: HttpSend> RemoteTable<S> {
pub fn new(
client: RestfulLanceDbClient<S>,
name: String,
namespace: Vec<String>,
identifier: String,
server_version: ServerVersion,
) -> Self {
Self {
client,
name,
namespace,
identifier,
server_version,
version: RwLock::new(None),
}
@@ -223,7 +232,7 @@ impl<S: HttpSend> RemoteTable<S> {
async fn describe_version(&self, version: Option<u64>) -> Result<TableDescription> {
let mut request = self
.client
.post(&format!("/v1/table/{}/describe/", self.name));
.post(&format!("/v1/table/{}/describe/", self.identifier));
let body = serde_json::json!({ "version": version });
request = request.json(&body);
@@ -334,7 +343,7 @@ impl<S: HttpSend> RemoteTable<S> {
) -> Result<reqwest::Response> {
if response.status() == StatusCode::NOT_FOUND {
return Err(Error::TableNotFound {
name: self.name.clone(),
name: self.identifier.clone(),
});
}
@@ -548,7 +557,9 @@ impl<S: HttpSend> RemoteTable<S> {
query: &AnyQuery,
options: &QueryExecutionOptions,
) -> Result<Vec<Pin<Box<dyn RecordBatchStream + Send>>>> {
let mut request = self.client.post(&format!("/v1/table/{}/query/", self.name));
let mut request = self
.client
.post(&format!("/v1/table/{}/query/", self.identifier));
if let Some(timeout) = options.timeout {
// Also send to server, so it can abort the query if it takes too long.
@@ -615,7 +626,7 @@ struct TableDescription {
impl<S: HttpSend> std::fmt::Display for RemoteTable<S> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "RemoteTable({})", self.name)
write!(f, "RemoteTable({})", self.identifier)
}
}
@@ -634,7 +645,9 @@ mod test_utils {
let client = client_with_handler(handler);
Self {
client,
name,
name: name.clone(),
namespace: vec![],
identifier: name,
server_version: version.map(ServerVersion).unwrap_or_default(),
version: RwLock::new(None),
}
@@ -650,6 +663,14 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
fn name(&self) -> &str {
&self.name
}
fn namespace(&self) -> &[String] {
&self.namespace
}
fn id(&self) -> &str {
&self.identifier
}
async fn version(&self) -> Result<u64> {
self.describe().await.map(|desc| desc.version)
}
@@ -678,7 +699,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn restore(&self) -> Result<()> {
let mut request = self
.client
.post(&format!("/v1/table/{}/restore/", self.name));
.post(&format!("/v1/table/{}/restore/", self.identifier));
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
request = request.json(&body);
@@ -692,7 +713,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn list_versions(&self) -> Result<Vec<Version>> {
let request = self
.client
.post(&format!("/v1/table/{}/version/list/", self.name));
.post(&format!("/v1/table/{}/version/list/", self.identifier));
let (request_id, response) = self.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -723,7 +744,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn count_rows(&self, filter: Option<Filter>) -> Result<usize> {
let mut request = self
.client
.post(&format!("/v1/table/{}/count_rows/", self.name));
.post(&format!("/v1/table/{}/count_rows/", self.identifier));
let version = self.current_version().await;
@@ -759,7 +780,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
self.check_mutable().await?;
let mut request = self
.client
.post(&format!("/v1/table/{}/insert/", self.name))
.post(&format!("/v1/table/{}/insert/", self.identifier))
.header(CONTENT_TYPE, ARROW_STREAM_CONTENT_TYPE);
match add.mode {
@@ -831,7 +852,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn explain_plan(&self, query: &AnyQuery, verbose: bool) -> Result<String> {
let base_request = self
.client
.post(&format!("/v1/table/{}/explain_plan/", self.name));
.post(&format!("/v1/table/{}/explain_plan/", self.identifier));
let query_bodies = self.prepare_query_bodies(query).await?;
let requests: Vec<reqwest::RequestBuilder> = query_bodies
@@ -880,7 +901,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
) -> Result<String> {
let request = self
.client
.post(&format!("/v1/table/{}/analyze_plan/", self.name));
.post(&format!("/v1/table/{}/analyze_plan/", self.identifier));
let query_bodies = self.prepare_query_bodies(query).await?;
let requests: Vec<reqwest::RequestBuilder> = query_bodies
@@ -919,7 +940,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
self.check_mutable().await?;
let request = self
.client
.post(&format!("/v1/table/{}/update/", self.name));
.post(&format!("/v1/table/{}/update/", self.identifier));
let mut updates = Vec::new();
for (column, expression) in update.columns {
@@ -958,7 +979,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
let body = serde_json::json!({ "predicate": predicate });
let request = self
.client
.post(&format!("/v1/table/{}/delete/", self.name))
.post(&format!("/v1/table/{}/delete/", self.identifier))
.json(&body);
let (request_id, response) = self.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -980,7 +1001,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
self.check_mutable().await?;
let request = self
.client
.post(&format!("/v1/table/{}/create_index/", self.name));
.post(&format!("/v1/table/{}/create_index/", self.identifier));
let column = match index.columns.len() {
0 => {
@@ -999,6 +1020,18 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
"column": column
});
// Add name parameter if provided (for backwards compatibility, only include if Some)
if let Some(ref name) = index.name {
body["name"] = serde_json::Value::String(name.clone());
}
// Warn if train=false is specified since it's not meaningful
if !index.train {
log::warn!(
"train=false has no effect remote tables. The index will be created empty and automatically populated in the background."
);
}
match index.index {
// TODO: Should we pass the actual index parameters? SaaS does not
// yet support them.
@@ -1084,8 +1117,8 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
self.check_table_response(&request_id, response).await?;
if let Some(wait_timeout) = index.wait_timeout {
let name = format!("{}_idx", column);
self.wait_for_index(&[&name], wait_timeout).await?;
let index_name = index.name.unwrap_or_else(|| format!("{}_idx", column));
self.wait_for_index(&[&index_name], wait_timeout).await?;
}
Ok(())
@@ -1109,7 +1142,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
let query = MergeInsertRequest::try_from(params)?;
let mut request = self
.client
.post(&format!("/v1/table/{}/merge_insert/", self.name))
.post(&format!("/v1/table/{}/merge_insert/", self.identifier))
.query(&query)
.header(CONTENT_TYPE, ARROW_STREAM_CONTENT_TYPE);
@@ -1181,7 +1214,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
let body = serde_json::json!({ "new_columns": body });
let request = self
.client
.post(&format!("/v1/table/{}/add_columns/", self.name))
.post(&format!("/v1/table/{}/add_columns/", self.identifier))
.json(&body);
let (request_id, response) = self.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -1234,7 +1267,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
let body = serde_json::json!({ "alterations": body });
let request = self
.client
.post(&format!("/v1/table/{}/alter_columns/", self.name))
.post(&format!("/v1/table/{}/alter_columns/", self.identifier))
.json(&body);
let (request_id, response) = self.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -1259,7 +1292,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
let body = serde_json::json!({ "columns": columns });
let request = self
.client
.post(&format!("/v1/table/{}/drop_columns/", self.name))
.post(&format!("/v1/table/{}/drop_columns/", self.identifier))
.json(&body);
let (request_id, response) = self.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
@@ -1283,7 +1316,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
// Make request to list the indices
let mut request = self
.client
.post(&format!("/v1/table/{}/index/list/", self.name));
.post(&format!("/v1/table/{}/index/list/", self.identifier));
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
request = request.json(&body);
@@ -1339,7 +1372,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn index_stats(&self, index_name: &str) -> Result<Option<IndexStatistics>> {
let mut request = self.client.post(&format!(
"/v1/table/{}/index/{}/stats/",
self.name, index_name
self.identifier, index_name
));
let version = self.current_version().await;
let body = serde_json::json!({ "version": version });
@@ -1367,7 +1400,7 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
async fn drop_index(&self, index_name: &str) -> Result<()> {
let request = self.client.post(&format!(
"/v1/table/{}/index/{}/drop/",
self.name, index_name
self.identifier, index_name
));
let (request_id, response) = self.send(request, true).await?;
if response.status() == StatusCode::NOT_FOUND {
@@ -1395,7 +1428,9 @@ impl<S: HttpSend> BaseTable for RemoteTable<S> {
}
async fn stats(&self) -> Result<TableStatistics> {
let request = self.client.post(&format!("/v1/table/{}/stats/", self.name));
let request = self
.client
.post(&format!("/v1/table/{}/stats/", self.identifier));
let (request_id, response) = self.send(request, true).await?;
let response = self.check_table_response(&request_id, response).await?;
let body = response.text().await.err_to_http(request_id.clone())?;
@@ -3070,4 +3105,174 @@ mod tests {
});
table
}
#[tokio::test]
async fn test_table_with_namespace_identifier() {
// Test that a table created with namespace uses the correct identifier in API calls
let table = Table::new_with_handler("ns1$ns2$table1", |request| {
assert_eq!(request.method(), "POST");
// All API calls should use the full identifier in the path
assert_eq!(request.url().path(), "/v1/table/ns1$ns2$table1/describe/");
http::Response::builder()
.status(200)
.body(r#"{"version": 1, "schema": { "fields": [] }}"#)
.unwrap()
});
// The name() method should return just the base name, not the full identifier
assert_eq!(table.name(), "ns1$ns2$table1");
// API operations should work correctly
let version = table.version().await.unwrap();
assert_eq!(version, 1);
}
#[tokio::test]
async fn test_query_with_namespace() {
let table = Table::new_with_handler("analytics$events", |request| {
match request.url().path() {
"/v1/table/analytics$events/query/" => {
assert_eq!(request.method(), "POST");
// Return empty arrow stream
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("id", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let body = write_ipc_file(&data);
http::Response::builder()
.status(200)
.header("Content-Type", ARROW_FILE_CONTENT_TYPE)
.body(body)
.unwrap()
}
_ => {
panic!("Unexpected path: {}", request.url().path());
}
}
});
let results = table.query().execute().await.unwrap();
let batches = results.try_collect::<Vec<_>>().await.unwrap();
assert_eq!(batches.len(), 1);
assert_eq!(batches[0].num_rows(), 3);
}
#[tokio::test]
async fn test_add_data_with_namespace() {
let data = RecordBatch::try_new(
Arc::new(Schema::new(vec![Field::new("a", DataType::Int32, false)])),
vec![Arc::new(Int32Array::from(vec![1, 2, 3]))],
)
.unwrap();
let (sender, receiver) = std::sync::mpsc::channel();
let table = Table::new_with_handler("prod$metrics", move |mut request| {
if request.url().path() == "/v1/table/prod$metrics/insert/" {
assert_eq!(request.method(), "POST");
assert_eq!(
request.headers().get("Content-Type").unwrap(),
ARROW_STREAM_CONTENT_TYPE
);
let mut body_out = reqwest::Body::from(Vec::new());
std::mem::swap(request.body_mut().as_mut().unwrap(), &mut body_out);
sender.send(body_out).unwrap();
http::Response::builder()
.status(200)
.body(r#"{"version": 2}"#)
.unwrap()
} else {
panic!("Unexpected request path: {}", request.url().path());
}
});
let result = table
.add(RecordBatchIterator::new([Ok(data.clone())], data.schema()))
.execute()
.await
.unwrap();
assert_eq!(result.version, 2);
let body = receiver.recv().unwrap();
let body = collect_body(body).await;
let expected_body = write_ipc_stream(&data);
assert_eq!(&body, &expected_body);
}
#[tokio::test]
async fn test_create_index_with_namespace() {
let table = Table::new_with_handler("dev$users", |request| {
match request.url().path() {
"/v1/table/dev$users/create_index/" => {
assert_eq!(request.method(), "POST");
assert_eq!(
request.headers().get("Content-Type").unwrap(),
JSON_CONTENT_TYPE
);
// Verify the request body contains the column name
if let Some(body) = request.body().unwrap().as_bytes() {
let body = std::str::from_utf8(body).unwrap();
let value: serde_json::Value = serde_json::from_str(body).unwrap();
assert_eq!(value["column"], "embedding");
assert_eq!(value["index_type"], "IVF_PQ");
}
http::Response::builder().status(200).body("").unwrap()
}
"/v1/table/dev$users/describe/" => {
// Needed for schema check in Auto index type
http::Response::builder()
.status(200)
.body(r#"{"version": 1, "schema": {"fields": [{"name": "embedding", "type": {"type": "list", "item": {"type": "float32"}}, "nullable": false}]}}"#)
.unwrap()
}
_ => {
panic!("Unexpected path: {}", request.url().path());
}
}
});
table
.create_index(&["embedding"], Index::IvfPq(IvfPqIndexBuilder::default()))
.execute()
.await
.unwrap();
}
#[tokio::test]
async fn test_drop_columns_with_namespace() {
let table = Table::new_with_handler("test$schema_ops", |request| {
assert_eq!(request.method(), "POST");
assert_eq!(
request.url().path(),
"/v1/table/test$schema_ops/drop_columns/"
);
assert_eq!(
request.headers().get("Content-Type").unwrap(),
JSON_CONTENT_TYPE
);
if let Some(body) = request.body().unwrap().as_bytes() {
let body = std::str::from_utf8(body).unwrap();
let value: serde_json::Value = serde_json::from_str(body).unwrap();
let columns = value["columns"].as_array().unwrap();
assert_eq!(columns.len(), 2);
assert_eq!(columns[0], "old_col1");
assert_eq!(columns[1], "old_col2");
}
http::Response::builder()
.status(200)
.body(r#"{"version": 5}"#)
.unwrap()
});
let result = table.drop_columns(&["old_col1", "old_col2"]).await.unwrap();
assert_eq!(result.version, 5);
}
}

View File

@@ -28,9 +28,11 @@ use lance::dataset::{
};
use lance::dataset::{MergeInsertBuilder as LanceMergeInsertBuilder, WhenNotMatchedBySource};
use lance::index::vector::utils::infer_vector_dim;
use lance::index::vector::VectorIndexParams;
use lance::io::WrappingObjectStore;
use lance_datafusion::exec::{analyze_plan as lance_analyze_plan, execute_plan};
use lance_datafusion::utils::StreamingWriteSource;
use lance_index::scalar::{BuiltinIndexType, ScalarIndexParams};
use lance_index::vector::hnsw::builder::HnswBuildParams;
use lance_index::vector::ivf::IvfBuildParams;
use lance_index::vector::pq::PQBuildParams;
@@ -50,11 +52,7 @@ use crate::arrow::IntoArrow;
use crate::connection::NoData;
use crate::embeddings::{EmbeddingDefinition, EmbeddingRegistry, MaybeEmbedded, MemoryRegistry};
use crate::error::{Error, Result};
use crate::index::scalar::FtsIndexBuilder;
use crate::index::vector::{
suggested_num_partitions_for_hnsw, IvfFlatIndexBuilder, IvfHnswPqIndexBuilder,
IvfHnswSqIndexBuilder, IvfPqIndexBuilder, VectorIndex,
};
use crate::index::vector::{suggested_num_partitions_for_hnsw, VectorIndex};
use crate::index::IndexStatistics;
use crate::index::{
vector::{suggested_num_partitions, suggested_num_sub_vectors},
@@ -62,8 +60,8 @@ use crate::index::{
};
use crate::index::{IndexConfig, IndexStatisticsImpl};
use crate::query::{
IntoQueryVector, Query, QueryExecutionOptions, QueryFilter, QueryRequest, Select, VectorQuery,
VectorQueryRequest, DEFAULT_TOP_K,
IntoQueryVector, Query, QueryExecutionOptions, QueryFilter, QueryRequest, Select, TakeQuery,
VectorQuery, VectorQueryRequest, DEFAULT_TOP_K,
};
use crate::utils::{
default_vector_column, supported_bitmap_data_type, supported_btree_data_type,
@@ -401,6 +399,7 @@ pub enum Filter {
}
/// A query that can be used to search a LanceDB table
#[derive(Debug, Clone)]
pub enum AnyQuery {
Query(QueryRequest),
VectorQuery(VectorQueryRequest),
@@ -510,6 +509,10 @@ pub trait BaseTable: std::fmt::Display + std::fmt::Debug + Send + Sync {
fn as_any(&self) -> &dyn std::any::Any;
/// Get the name of the table.
fn name(&self) -> &str;
/// Get the namespace of the table.
fn namespace(&self) -> &[String];
/// Get the id of the table
fn id(&self) -> &str;
/// Get the arrow [Schema] of the table.
async fn schema(&self) -> Result<SchemaRef>;
/// Count the number of rows in this table.
@@ -1078,6 +1081,54 @@ impl Table {
Query::new(self.inner.clone())
}
/// Extract rows from the dataset using dataset offsets.
///
/// Dataset offsets are 0-indexed and relative to the current version of the table.
/// They are not stable. A row with an offset of N may have a different offset in a
/// different version of the table (e.g. if an earlier row is deleted).
///
/// Offsets are useful for sampling as the set of all valid offsets is easily
/// known in advance to be [0, len(table)).
///
/// No guarantees are made regarding the order in which results are returned. If you
/// desire an output order that matches the order of the given offsets, you will need
/// to add the row offset column to the output and align it yourself.
///
/// Parameters
/// ----------
/// offsets: list[int]
/// The offsets to take.
///
/// Returns
/// -------
/// pa.RecordBatch
/// A record batch containing the rows at the given offsets.
pub fn take_offsets(&self, offsets: Vec<u64>) -> TakeQuery {
TakeQuery::from_offsets(self.inner.clone(), offsets)
}
/// Extract rows from the dataset using row ids.
///
/// Row ids are not stable and are relative to the current version of the table.
/// They can change due to compaction and updates.
///
/// Even so, row ids are more stable than offsets and can be useful in some situations.
///
/// There is an ongoing effort to make row ids stable which is tracked at
/// https://github.com/lancedb/lancedb/issues/1120
///
/// No guarantees are made regarding the order in which results are returned. If you
/// desire an output order that matches the order of the given ids, you will need
/// to add the row id column to the output and align it yourself.
/// Parameters
/// ----------
/// row_ids: list[int]
/// The row ids to take.
///
pub fn take_row_ids(&self, row_ids: Vec<u64>) -> TakeQuery {
TakeQuery::from_row_ids(self.inner.clone(), row_ids)
}
/// Search the table with a given query vector.
///
/// This is a convenience method for preparing a vector query and
@@ -1649,345 +1700,219 @@ impl NativeTable {
.collect())
}
async fn create_ivf_flat_index(
&self,
index: IvfFlatIndexBuilder,
// Helper to validate index type compatibility with field data type
fn validate_index_type(
field: &Field,
replace: bool,
index_name: &str,
supported_fn: impl Fn(&DataType) -> bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
if !supported_fn(field.data_type()) {
return Err(Error::Schema {
message: format!(
"An IVF Flat index cannot be created on the column `{}` which has data type {}",
"A {} index cannot be created on the field `{}` which has data type {}",
index_name,
field.name(),
field.data_type()
),
});
}
let num_partitions = if let Some(n) = index.num_partitions {
n
} else {
suggested_num_partitions(self.count_rows(None).await?)
};
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_flat(
num_partitions as usize,
index.distance_type.into(),
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_pq_index(
// Helper to get num_partitions with default calculation
async fn get_num_partitions(
&self,
index: IvfPqIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF PQ index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
provided: Option<u32>,
for_hnsw: bool,
dim: Option<u32>,
) -> Result<u32> {
if let Some(n) = provided {
Ok(n)
} else {
let row_count = self.count_rows(None).await?;
if for_hnsw {
Ok(suggested_num_partitions_for_hnsw(
row_count,
dim.ok_or_else(|| Error::InvalidInput {
message: "Vector dimension required for HNSW partitioning".to_string(),
})?,
))
} else {
Ok(suggested_num_partitions(row_count))
}
}
let num_partitions = if let Some(n) = index.num_partitions {
n
} else {
suggested_num_partitions(self.count_rows(None).await?)
};
let num_sub_vectors: u32 = if let Some(n) = index.num_sub_vectors {
n
} else {
let dim = infer_vector_dim(field.data_type())?;
suggested_num_sub_vectors(dim as u32)
};
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_pq(
num_partitions as usize,
/*num_bits=*/ 8,
num_sub_vectors as usize,
index.distance_type.into(),
index.max_iterations as usize,
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_hnsw_pq_index(
&self,
index: IvfHnswPqIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF HNSW PQ index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
// Helper to get num_sub_vectors with default calculation
fn get_num_sub_vectors(provided: Option<u32>, dim: u32) -> u32 {
provided.unwrap_or_else(|| suggested_num_sub_vectors(dim))
}
// Helper to extract vector dimension from field
fn get_vector_dimension(field: &Field) -> Result<u32> {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => Ok(*n as u32),
_ => Ok(infer_vector_dim(field.data_type())? as u32),
}
}
let num_partitions: u32 = if let Some(n) = index.num_partitions {
n
} else {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => Ok::<u32, Error>(
suggested_num_partitions_for_hnsw(self.count_rows(None).await?, *n as u32),
),
_ => Err(Error::Schema {
message: format!("Column '{}' is not a FixedSizeList", field.name()),
}),
}?
};
let num_sub_vectors: u32 = if let Some(n) = index.num_sub_vectors {
n
} else {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => {
Ok::<u32, Error>(suggested_num_sub_vectors(*n as u32))
// Convert LanceDB Index to Lance IndexParams
async fn make_index_params(
&self,
field: &Field,
index_opts: Index,
) -> Result<Box<dyn lance::index::IndexParams>> {
match index_opts {
Index::Auto => {
if supported_vector_data_type(field.data_type()) {
// Use IvfPq as the default for auto vector indices
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self.get_num_partitions(None, false, None).await?;
let num_sub_vectors = Self::get_num_sub_vectors(None, dim);
let lance_idx_params = lance::index::vector::VectorIndexParams::ivf_pq(
num_partitions as usize,
/*num_bits=*/ 8,
num_sub_vectors as usize,
lance_linalg::distance::MetricType::L2,
/*max_iterations=*/ 50,
);
Ok(Box::new(lance_idx_params))
} else if supported_btree_data_type(field.data_type()) {
Ok(Box::new(ScalarIndexParams::for_builtin(
BuiltinIndexType::BTree,
)))
} else {
return Err(Error::InvalidInput {
message: format!(
"there are no indices supported for the field `{}` with the data type {}",
field.name(),
field.data_type()
),
});
}
_ => Err(Error::Schema {
message: format!("Column '{}' is not a FixedSizeList", field.name()),
}),
}?
};
let mut dataset = self.dataset.get_mut().await?;
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let pq_params = PQBuildParams {
num_sub_vectors: num_sub_vectors as usize,
..Default::default()
};
let lance_idx_params = lance::index::vector::VectorIndexParams::with_ivf_hnsw_pq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
pq_params,
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_ivf_hnsw_sq_index(
&self,
index: IvfHnswSqIndexBuilder,
field: &Field,
replace: bool,
) -> Result<()> {
if !supported_vector_data_type(field.data_type()) {
return Err(Error::InvalidInput {
message: format!(
"An IVF HNSW SQ index cannot be created on the column `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let num_partitions: u32 = if let Some(n) = index.num_partitions {
n
} else {
match field.data_type() {
arrow_schema::DataType::FixedSizeList(_, n) => Ok::<u32, Error>(
suggested_num_partitions_for_hnsw(self.count_rows(None).await?, *n as u32),
),
_ => Err(Error::Schema {
message: format!("Column '{}' is not a FixedSizeList", field.name()),
}),
}?
};
let mut dataset = self.dataset.get_mut().await?;
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let sq_params = SQBuildParams {
sample_rate: index.sample_rate as usize,
..Default::default()
};
let lance_idx_params = lance::index::vector::VectorIndexParams::with_ivf_hnsw_sq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
sq_params,
);
dataset
.create_index(
&[field.name()],
IndexType::Vector,
None,
&lance_idx_params,
replace,
)
.await?;
Ok(())
}
async fn create_auto_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if supported_vector_data_type(field.data_type()) {
self.create_ivf_pq_index(IvfPqIndexBuilder::default(), field, opts.replace)
.await
} else if supported_btree_data_type(field.data_type()) {
self.create_btree_index(field, opts).await
} else {
Err(Error::InvalidInput {
message: format!(
"there are no indices supported for the field `{}` with the data type {}",
field.name(),
field.data_type()
),
})
}
Index::BTree(_) => {
Self::validate_index_type(field, "BTree", supported_btree_data_type)?;
Ok(Box::new(ScalarIndexParams::for_builtin(
BuiltinIndexType::BTree,
)))
}
Index::Bitmap(_) => {
Self::validate_index_type(field, "Bitmap", supported_bitmap_data_type)?;
Ok(Box::new(ScalarIndexParams::for_builtin(
BuiltinIndexType::Bitmap,
)))
}
Index::LabelList(_) => {
Self::validate_index_type(field, "LabelList", supported_label_list_data_type)?;
Ok(Box::new(ScalarIndexParams::for_builtin(
BuiltinIndexType::LabelList,
)))
}
Index::FTS(fts_opts) => {
Self::validate_index_type(field, "FTS", supported_fts_data_type)?;
Ok(Box::new(fts_opts))
}
Index::IvfFlat(index) => {
Self::validate_index_type(field, "IVF Flat", supported_vector_data_type)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, false, None)
.await?;
let lance_idx_params = VectorIndexParams::ivf_flat(
num_partitions as usize,
index.distance_type.into(),
);
Ok(Box::new(lance_idx_params))
}
Index::IvfPq(index) => {
Self::validate_index_type(field, "IVF PQ", supported_vector_data_type)?;
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, false, None)
.await?;
let num_sub_vectors = Self::get_num_sub_vectors(index.num_sub_vectors, dim);
let lance_idx_params = VectorIndexParams::ivf_pq(
num_partitions as usize,
/*num_bits=*/ 8,
num_sub_vectors as usize,
index.distance_type.into(),
index.max_iterations as usize,
);
Ok(Box::new(lance_idx_params))
}
Index::IvfHnswPq(index) => {
Self::validate_index_type(field, "IVF HNSW PQ", supported_vector_data_type)?;
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, true, Some(dim))
.await?;
let num_sub_vectors = Self::get_num_sub_vectors(index.num_sub_vectors, dim);
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let pq_params = PQBuildParams {
num_sub_vectors: num_sub_vectors as usize,
..Default::default()
};
let lance_idx_params = VectorIndexParams::with_ivf_hnsw_pq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
pq_params,
);
Ok(Box::new(lance_idx_params))
}
Index::IvfHnswSq(index) => {
Self::validate_index_type(field, "IVF HNSW SQ", supported_vector_data_type)?;
let dim = Self::get_vector_dimension(field)?;
let num_partitions = self
.get_num_partitions(index.num_partitions, true, Some(dim))
.await?;
let mut ivf_params = IvfBuildParams::new(num_partitions as usize);
ivf_params.sample_rate = index.sample_rate as usize;
ivf_params.max_iters = index.max_iterations as usize;
let hnsw_params = HnswBuildParams::default()
.num_edges(index.m as usize)
.ef_construction(index.ef_construction as usize);
let sq_params = SQBuildParams {
sample_rate: index.sample_rate as usize,
..Default::default()
};
let lance_idx_params = VectorIndexParams::with_ivf_hnsw_sq_params(
index.distance_type.into(),
ivf_params,
hnsw_params,
sq_params,
);
Ok(Box::new(lance_idx_params))
}
}
}
async fn create_btree_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !supported_btree_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A BTree index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
// Helper method to get the correct IndexType based on the Index variant and field data type
fn get_index_type_for_field(&self, field: &Field, index: &Index) -> IndexType {
match index {
Index::Auto => {
if supported_vector_data_type(field.data_type()) {
IndexType::Vector
} else if supported_btree_data_type(field.data_type()) {
IndexType::BTree
} else {
// This should not happen since make_index_params would have failed
IndexType::BTree
}
}
Index::BTree(_) => IndexType::BTree,
Index::Bitmap(_) => IndexType::Bitmap,
Index::LabelList(_) => IndexType::LabelList,
Index::FTS(_) => IndexType::Inverted,
Index::IvfFlat(_) | Index::IvfPq(_) | Index::IvfHnswPq(_) | Index::IvfHnswSq(_) => {
IndexType::Vector
}
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::BTree),
};
dataset
.create_index(
&[field.name()],
IndexType::BTree,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_bitmap_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !supported_bitmap_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A Bitmap index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::Bitmap),
};
dataset
.create_index(
&[field.name()],
IndexType::Bitmap,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_label_list_index(&self, field: &Field, opts: IndexBuilder) -> Result<()> {
if !supported_label_list_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A LabelList index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
let lance_idx_params = lance_index::scalar::ScalarIndexParams {
force_index_type: Some(lance_index::scalar::ScalarIndexType::LabelList),
};
dataset
.create_index(
&[field.name()],
IndexType::LabelList,
None,
&lance_idx_params,
opts.replace,
)
.await?;
Ok(())
}
async fn create_fts_index(
&self,
field: &Field,
fts_opts: FtsIndexBuilder,
replace: bool,
) -> Result<()> {
if !supported_fts_data_type(field.data_type()) {
return Err(Error::Schema {
message: format!(
"A FTS index cannot be created on the field `{}` which has data type {}",
field.name(),
field.data_type()
),
});
}
let mut dataset = self.dataset.get_mut().await?;
dataset
.create_index(
&[field.name()],
IndexType::Inverted,
None,
&fts_opts,
replace,
)
.await?;
Ok(())
}
async fn generic_query(
@@ -2094,6 +2019,16 @@ impl BaseTable for NativeTable {
self.name.as_str()
}
fn namespace(&self) -> &[String] {
// Native tables don't support namespaces yet, return empty slice for root namespace
&[]
}
fn id(&self) -> &str {
// For native tables, id is same as name since no namespace support
self.name.as_str()
}
async fn version(&self) -> Result<u64> {
Ok(self.dataset.get().await?.version().version)
}
@@ -2202,26 +2137,20 @@ impl BaseTable for NativeTable {
let field = schema.field_with_name(&opts.columns[0])?;
match opts.index {
Index::Auto => self.create_auto_index(field, opts).await,
Index::BTree(_) => self.create_btree_index(field, opts).await,
Index::Bitmap(_) => self.create_bitmap_index(field, opts).await,
Index::LabelList(_) => self.create_label_list_index(field, opts).await,
Index::FTS(fts_opts) => self.create_fts_index(field, fts_opts, opts.replace).await,
Index::IvfFlat(ivf_flat) => {
self.create_ivf_flat_index(ivf_flat, field, opts.replace)
.await
}
Index::IvfPq(ivf_pq) => self.create_ivf_pq_index(ivf_pq, field, opts.replace).await,
Index::IvfHnswPq(ivf_hnsw_pq) => {
self.create_ivf_hnsw_pq_index(ivf_hnsw_pq, field, opts.replace)
.await
}
Index::IvfHnswSq(ivf_hnsw_sq) => {
self.create_ivf_hnsw_sq_index(ivf_hnsw_sq, field, opts.replace)
.await
}
let lance_idx_params = self.make_index_params(field, opts.index.clone()).await?;
let index_type = self.get_index_type_for_field(field, &opts.index);
let columns = [field.name().as_str()];
let mut dataset = self.dataset.get_mut().await?;
let mut builder = dataset
.create_index_builder(&columns, index_type, lance_idx_params.as_ref())
.train(opts.train)
.replace(opts.replace);
if let Some(name) = opts.name {
builder = builder.name(name);
}
builder.await?;
Ok(())
}
async fn drop_index(&self, index_name: &str) -> Result<()> {
@@ -2339,20 +2268,13 @@ impl BaseTable for NativeTable {
let (_, element_type) = lance::index::vector::utils::get_vector_type(schema, &column)?;
let is_binary = matches!(element_type, DataType::UInt8);
let top_k = query.base.limit.unwrap_or(DEFAULT_TOP_K) + query.base.offset.unwrap_or(0);
if is_binary {
let query_vector = arrow::compute::cast(&query_vector, &DataType::UInt8)?;
let query_vector = query_vector.as_primitive::<UInt8Type>();
scanner.nearest(
&column,
query_vector,
query.base.limit.unwrap_or(DEFAULT_TOP_K),
)?;
scanner.nearest(&column, query_vector, top_k)?;
} else {
scanner.nearest(
&column,
query_vector.as_ref(),
query.base.limit.unwrap_or(DEFAULT_TOP_K),
)?;
scanner.nearest(&column, query_vector.as_ref(), top_k)?;
}
scanner.minimum_nprobes(query.minimum_nprobes);
if let Some(maximum_nprobes) = query.maximum_nprobes {
@@ -2848,6 +2770,7 @@ mod tests {
use crate::connect;
use crate::connection::ConnectBuilder;
use crate::index::scalar::{BTreeIndexBuilder, BitmapIndexBuilder};
use crate::index::vector::{IvfHnswPqIndexBuilder, IvfHnswSqIndexBuilder};
use crate::query::{ExecutableQuery, QueryBase};
#[tokio::test]
@@ -3349,6 +3272,7 @@ mod tests {
fn wrap(
&self,
original: Arc<dyn object_store::ObjectStore>,
_storage_options: Option<&std::collections::HashMap<String, String>>,
) -> Arc<dyn object_store::ObjectStore> {
self.called.store(true, Ordering::Relaxed);
original

View File

@@ -130,7 +130,7 @@ async fn test_minio_lifecycle() -> Result<()> {
let data = RecordBatchIterator::new(vec![Ok(data.clone())], data.schema());
table.add(data).execute().await?;
db.drop_table("test_table").await?;
db.drop_table("test_table", &[]).await?;
Ok(())
}