mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 21:39:57 +00:00
Compare commits
33 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b1a5c251ba | ||
|
|
722462c38b | ||
|
|
902a402951 | ||
|
|
2f2cb984d4 | ||
|
|
9921b2a4e5 | ||
|
|
03b8f99dca | ||
|
|
aa91f35a28 | ||
|
|
f227658e08 | ||
|
|
fd65887d87 | ||
|
|
4673958543 | ||
|
|
a54d1e5618 | ||
|
|
8f7264f81d | ||
|
|
44b8271fde | ||
|
|
74ef141b9c | ||
|
|
b69b1e3ec8 | ||
|
|
bbfadfe58d | ||
|
|
cf977866d8 | ||
|
|
3ff3068a1e | ||
|
|
593b5939be | ||
|
|
f0e1290ae6 | ||
|
|
4b45128bd6 | ||
|
|
b06e214d29 | ||
|
|
c1f8feb6ed | ||
|
|
cada35d5b7 | ||
|
|
2d25c263e9 | ||
|
|
bcd7f66dc7 | ||
|
|
1daecac648 | ||
|
|
b8e656b2a7 | ||
|
|
ff7c1193a7 | ||
|
|
6d70e7c29b | ||
|
|
73cc12ecc5 | ||
|
|
6036cf48a7 | ||
|
|
15f4787cc8 |
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.1.18
|
current_version = 0.1.19
|
||||||
commit = True
|
commit = True
|
||||||
message = Bump version: {current_version} → {new_version}
|
message = Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -30,7 +30,7 @@ jobs:
|
|||||||
python-version: 3.${{ matrix.python-minor-version }}
|
python-version: 3.${{ matrix.python-minor-version }}
|
||||||
- name: Install lancedb
|
- name: Install lancedb
|
||||||
run: |
|
run: |
|
||||||
pip install -e .
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black isort
|
pip install pytest pytest-mock black isort
|
||||||
- name: Black
|
- name: Black
|
||||||
@@ -59,7 +59,7 @@ jobs:
|
|||||||
python-version: "3.11"
|
python-version: "3.11"
|
||||||
- name: Install lancedb
|
- name: Install lancedb
|
||||||
run: |
|
run: |
|
||||||
pip install -e .
|
pip install -e .[tests]
|
||||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||||
pip install pytest pytest-mock black
|
pip install pytest pytest-mock black
|
||||||
- name: Black
|
- name: Black
|
||||||
|
|||||||
26
.github/workflows/trigger-vectordb-recipes.yml
vendored
Normal file
26
.github/workflows/trigger-vectordb-recipes.yml
vendored
Normal file
@@ -0,0 +1,26 @@
|
|||||||
|
name: Trigger vectordb-recipers workflow
|
||||||
|
on:
|
||||||
|
push:
|
||||||
|
branches: [ main ]
|
||||||
|
pull_request:
|
||||||
|
paths:
|
||||||
|
- .github/workflows/trigger-vectordb-recipes.yml
|
||||||
|
workflow_dispatch:
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Trigger vectordb-recipes workflow
|
||||||
|
uses: actions/github-script@v6
|
||||||
|
with:
|
||||||
|
github-token: ${{ secrets.VECTORDB_RECIPES_ACTION_TOKEN }}
|
||||||
|
script: |
|
||||||
|
const result = await github.rest.actions.createWorkflowDispatch({
|
||||||
|
owner: 'lancedb',
|
||||||
|
repo: 'vectordb-recipes',
|
||||||
|
workflow_id: 'examples-test.yml',
|
||||||
|
ref: 'main'
|
||||||
|
});
|
||||||
|
console.log(result);
|
||||||
11
Cargo.toml
11
Cargo.toml
@@ -6,11 +6,12 @@ members = [
|
|||||||
resolver = "2"
|
resolver = "2"
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = "=0.5.9"
|
lance = "=0.6.1"
|
||||||
arrow-array = "42.0"
|
arrow-array = "43.0"
|
||||||
arrow-data = "42.0"
|
arrow-data = "43.0"
|
||||||
arrow-schema = "42.0"
|
arrow-schema = "43.0"
|
||||||
arrow-ipc = "42.0"
|
arrow-ipc = "43.0"
|
||||||
half = { "version" = "=2.2.1", default-features = false }
|
half = { "version" = "=2.2.1", default-features = false }
|
||||||
object_store = "0.6.1"
|
object_store = "0.6.1"
|
||||||
|
snafu = "0.7.4"
|
||||||
|
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
site_name: LanceDB Docs
|
site_name: LanceDB Docs
|
||||||
repo_url: https://github.com/lancedb/lancedb
|
repo_url: https://github.com/lancedb/lancedb
|
||||||
|
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
|
||||||
repo_name: lancedb/lancedb
|
repo_name: lancedb/lancedb
|
||||||
docs_dir: src
|
docs_dir: src
|
||||||
|
|
||||||
@@ -10,6 +11,7 @@ theme:
|
|||||||
features:
|
features:
|
||||||
- content.code.copy
|
- content.code.copy
|
||||||
- content.tabs.link
|
- content.tabs.link
|
||||||
|
- content.action.edit
|
||||||
icon:
|
icon:
|
||||||
repo: fontawesome/brands/github
|
repo: fontawesome/brands/github
|
||||||
custom_dir: overrides
|
custom_dir: overrides
|
||||||
@@ -57,12 +59,14 @@ nav:
|
|||||||
- Basics: basic.md
|
- Basics: basic.md
|
||||||
- Embeddings: embedding.md
|
- Embeddings: embedding.md
|
||||||
- Python full-text search: fts.md
|
- Python full-text search: fts.md
|
||||||
- Python integrations:
|
- Integrations:
|
||||||
- Pandas and PyArrow: python/arrow.md
|
- Pandas and PyArrow: python/arrow.md
|
||||||
- DuckDB: python/duckdb.md
|
- DuckDB: python/duckdb.md
|
||||||
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
|
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
|
||||||
|
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
|
||||||
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
|
||||||
- Pydantic: python/pydantic.md
|
- Pydantic: python/pydantic.md
|
||||||
|
- Voxel51: integrations/voxel51.md
|
||||||
- Python examples:
|
- Python examples:
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
@@ -72,7 +76,9 @@ nav:
|
|||||||
- Javascript examples:
|
- Javascript examples:
|
||||||
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
- References:
|
|
||||||
|
- Guides:
|
||||||
|
- Tables: guides/tables.md
|
||||||
- Vector Search: search.md
|
- Vector Search: search.md
|
||||||
- SQL filters: sql.md
|
- SQL filters: sql.md
|
||||||
- Indexing: ann_indexes.md
|
- Indexing: ann_indexes.md
|
||||||
@@ -82,3 +88,8 @@ nav:
|
|||||||
|
|
||||||
extra_css:
|
extra_css:
|
||||||
- styles/global.css
|
- styles/global.css
|
||||||
|
|
||||||
|
extra:
|
||||||
|
analytics:
|
||||||
|
provider: google
|
||||||
|
property: G-B7NFM40W74
|
||||||
|
|||||||
@@ -94,7 +94,7 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
.to_df()
|
.to_df()
|
||||||
```
|
```
|
||||||
```
|
```
|
||||||
vector item score
|
vector item _distance
|
||||||
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
0 [0.44949695, 0.8444449, 0.06281311, 0.23338133... item 1141 103.575333
|
||||||
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
1 [0.48587373, 0.269207, 0.15095535, 0.65531915,... item 3953 108.393867
|
||||||
```
|
```
|
||||||
@@ -109,9 +109,8 @@ There are a couple of parameters that can be used to fine-tune the search:
|
|||||||
.execute()
|
.execute()
|
||||||
```
|
```
|
||||||
|
|
||||||
The search will return the data requested in addition to the score of each item.
|
The search will return the data requested in addition to the distance of each item.
|
||||||
|
|
||||||
**Note:** The score is the distance between the query vector and the element. A lower number means that the result is more relevant.
|
|
||||||
|
|
||||||
### Filtering (where clause)
|
### Filtering (where clause)
|
||||||
|
|
||||||
@@ -139,7 +138,7 @@ You can select the columns returned by the query using a select clause.
|
|||||||
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
|
tbl.search(np.random.random((1536))).select(["vector"]).to_df()
|
||||||
```
|
```
|
||||||
```
|
```
|
||||||
vector score
|
vector _distance
|
||||||
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
0 [0.30928212, 0.022668175, 0.1756372, 0.4911822... 93.971092
|
||||||
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
1 [0.2525465, 0.01723831, 0.261568, 0.002007689,... 95.173485
|
||||||
...
|
...
|
||||||
|
|||||||
BIN
docs/src/assets/voxel.gif
Normal file
BIN
docs/src/assets/voxel.gif
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 953 KiB |
@@ -79,6 +79,18 @@ We'll cover the basics of using LanceDB on your local machine in this section.
|
|||||||
|
|
||||||
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
??? info "Under the hood, LanceDB is converting the input data into an Apache Arrow table and persisting it to disk in [Lance format](https://www.github.com/lancedb/lance)."
|
||||||
|
|
||||||
|
### Creating an empty table
|
||||||
|
|
||||||
|
Sometimes you may not have the data to insert into the table at creation time.
|
||||||
|
In this case, you can create an empty table and specify the schema.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
import pyarrow as pa
|
||||||
|
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||||
|
tbl = db.create_table("empty_table", schema=schema)
|
||||||
|
```
|
||||||
|
|
||||||
## How to open an existing table
|
## How to open an existing table
|
||||||
|
|
||||||
Once created, you can open a table using the following code:
|
Once created, you can open a table using the following code:
|
||||||
@@ -122,6 +134,22 @@ After a table has been created, you can always add more data to it using
|
|||||||
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## How to search for (approximate) nearest neighbors
|
||||||
|
|
||||||
|
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
```python
|
||||||
|
tbl.search([100, 100]).limit(2).to_df()
|
||||||
|
```
|
||||||
|
|
||||||
|
This returns a pandas DataFrame with the results.
|
||||||
|
|
||||||
|
=== "Javascript"
|
||||||
|
```javascript
|
||||||
|
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||||
|
```
|
||||||
|
|
||||||
## How to delete rows from a table
|
## How to delete rows from a table
|
||||||
|
|
||||||
Use the `delete()` method on tables to delete rows from a table. To choose
|
Use the `delete()` method on tables to delete rows from a table. To choose
|
||||||
@@ -151,21 +179,19 @@ To see what expressions are supported, see the [SQL filters](sql.md) section.
|
|||||||
|
|
||||||
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
Read more: [vectordb.Table.delete](javascript/interfaces/Table.md#delete)
|
||||||
|
|
||||||
## How to search for (approximate) nearest neighbors
|
## How to remove a table
|
||||||
|
|
||||||
Once you've embedded the query, you can find its nearest neighbors using the following code:
|
Use the `drop_table()` method on the database to remove a table.
|
||||||
|
|
||||||
=== "Python"
|
=== "Python"
|
||||||
```python
|
```python
|
||||||
tbl.search([100, 100]).limit(2).to_df()
|
db.drop_table("my_table")
|
||||||
```
|
```
|
||||||
|
|
||||||
This returns a pandas DataFrame with the results.
|
This permanently removes the table and is not recoverable, unlike deleting rows.
|
||||||
|
By default, if the table does not exist an exception is raised. To suppress this,
|
||||||
|
you can pass in `ignore_missing=True`.
|
||||||
|
|
||||||
=== "Javascript"
|
|
||||||
```javascript
|
|
||||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
|
||||||
```
|
|
||||||
|
|
||||||
## What's next
|
## What's next
|
||||||
|
|
||||||
|
|||||||
@@ -99,7 +99,7 @@ Output of `results`:
|
|||||||
id: 5,
|
id: 5,
|
||||||
text: 'Banana',
|
text: 'Banana',
|
||||||
type: 'fruit',
|
type: 'fruit',
|
||||||
score: 0.4919965863227844
|
_distance: 0.4919965863227844
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
vector: Float32Array(384) [
|
vector: Float32Array(384) [
|
||||||
@@ -111,7 +111,7 @@ Output of `results`:
|
|||||||
id: 1,
|
id: 1,
|
||||||
text: 'Cherry',
|
text: 'Cherry',
|
||||||
type: 'fruit',
|
type: 'fruit',
|
||||||
score: 0.5540297031402588
|
_distance: 0.5540297031402588
|
||||||
}
|
}
|
||||||
]
|
]
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -4,4 +4,10 @@
|
|||||||
|
|
||||||
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
|
||||||
|
|
||||||
|
|
||||||
|
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
|
||||||
|
|
||||||
|
Scripts - [](./examples/youtube_bot/main.py) [](./examples/youtube_bot/index.js)
|
||||||
|
|
||||||
|
|
||||||
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)
|
||||||
|
|||||||
352
docs/src/guides/tables.md
Normal file
352
docs/src/guides/tables.md
Normal file
@@ -0,0 +1,352 @@
|
|||||||
|
A Table is a collection of Records in a LanceDB Database.
|
||||||
|
|
||||||
|
## Creating a LanceDB Table
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
### LanceDB Connection
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
```
|
||||||
|
|
||||||
|
LanceDB allows ingesting data from various sources - `dict`, `list[dict]`, `pd.DataFrame`, `pa.Table` or a `Iterator[pa.RecordBatch]`. Let's take a look at some of the these.
|
||||||
|
|
||||||
|
### From list of tuples or dictionaries
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
|
||||||
|
data = [{"vector": [1.1, 1.2], "lat": 45.5, "long": -122.7},
|
||||||
|
{"vector": [0.2, 1.8], "lat": 40.1, "long": -74.1}]
|
||||||
|
|
||||||
|
db.create_table("my_table", data)
|
||||||
|
|
||||||
|
db["my_table"].head()
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "Note"
|
||||||
|
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you can pass in mode="overwrite" to the createTable function.
|
||||||
|
|
||||||
|
```python
|
||||||
|
db.create_table("name", data, mode="overwrite")
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### From pandas DataFrame
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
data = pd.DataFrame({
|
||||||
|
"vector": [[1.1, 1.2], [0.2, 1.8]],
|
||||||
|
"lat": [45.5, 40.1],
|
||||||
|
"long": [-122.7, -74.1]
|
||||||
|
})
|
||||||
|
|
||||||
|
db.create_table("table2", data)
|
||||||
|
|
||||||
|
db["table2"].head()
|
||||||
|
```
|
||||||
|
!!! info "Note"
|
||||||
|
Data is converted to Arrow before being written to disk. For maximum control over how data is saved, either provide the PyArrow schema to convert to or else provide a PyArrow Table directly.
|
||||||
|
|
||||||
|
```python
|
||||||
|
custom_schema = pa.schema([
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
pa.field("lat", pa.float32()),
|
||||||
|
pa.field("long", pa.float32())
|
||||||
|
])
|
||||||
|
|
||||||
|
table = db.create_table("table3", data, schema=custom_schema)
|
||||||
|
```
|
||||||
|
|
||||||
|
### From Pydantic Models
|
||||||
|
LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method.
|
||||||
|
|
||||||
|
```python
|
||||||
|
from lancedb.pydantic import vector, LanceModel
|
||||||
|
|
||||||
|
class Content(LanceModel):
|
||||||
|
movie_id: int
|
||||||
|
vector: vector(128)
|
||||||
|
genres: str
|
||||||
|
title: str
|
||||||
|
imdb_id: int
|
||||||
|
|
||||||
|
@property
|
||||||
|
def imdb_url(self) -> str:
|
||||||
|
return f"https://www.imdb.com/title/tt{self.imdb_id}"
|
||||||
|
|
||||||
|
import pyarrow as pa
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
table_name = "movielens_small"
|
||||||
|
table = db.create_table(table_name, schema=Content.to_arrow_schema())
|
||||||
|
```
|
||||||
|
|
||||||
|
### Using RecordBatch Iterator / Writing Large Datasets
|
||||||
|
|
||||||
|
It is recommended to use RecordBatch itertator to add large datasets in batches when creating your table in one go. This does not create multiple versions of your dataset unlike manually adding batches using `table.add()`
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pyarrow as pa
|
||||||
|
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield pa.RecordBatch.from_arrays(
|
||||||
|
[
|
||||||
|
pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||||
|
pa.array(["foo", "bar"]),
|
||||||
|
pa.array([10.0, 20.0]),
|
||||||
|
],
|
||||||
|
["vector", "item", "price"],
|
||||||
|
)
|
||||||
|
|
||||||
|
schema = pa.schema([
|
||||||
|
pa.field("vector", pa.list_(pa.float32())),
|
||||||
|
pa.field("item", pa.utf8()),
|
||||||
|
pa.field("price", pa.float32()),
|
||||||
|
])
|
||||||
|
|
||||||
|
db.create_table("table4", make_batches(), schema=schema)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also use Pandas dataframe directly in the above example by converting it to `RecordBatch` object
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
import pyarrow as pa
|
||||||
|
|
||||||
|
df = pd.DataFrame({'vector': [[0,1], [2,3], [4,5],[6,7]],
|
||||||
|
'month': [3, 5, 7, 9],
|
||||||
|
'day': [1, 5, 9, 13],
|
||||||
|
'n_legs': [2, 4, 5, 100],
|
||||||
|
'animals': ["Flamingo", "Horse", "Brittle stars", "Centipede"]})
|
||||||
|
|
||||||
|
batch = pa.RecordBatch.from_pandas(df)
|
||||||
|
```
|
||||||
|
|
||||||
|
## Creating Empty Table
|
||||||
|
You can also create empty tables in python. Initialize it with schema and later ingest data into it.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pyarrow as pa
|
||||||
|
|
||||||
|
schema = pa.schema(
|
||||||
|
[
|
||||||
|
pa.field("vector", pa.list_(pa.float32(), 2)),
|
||||||
|
pa.field("item", pa.string()),
|
||||||
|
pa.field("price", pa.float32()),
|
||||||
|
])
|
||||||
|
tbl = db.create_table("table5", schema=schema)
|
||||||
|
data = [
|
||||||
|
{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0},
|
||||||
|
]
|
||||||
|
tbl.add(data=data)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also use Pydantic to specify the schema
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, vector
|
||||||
|
|
||||||
|
class Model(LanceModel):
|
||||||
|
vector: vector(2)
|
||||||
|
|
||||||
|
tbl = db.create_table("table5", schema=Model.to_arrow_schema())
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
### VectorDB Connection
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const lancedb = require("vectordb");
|
||||||
|
|
||||||
|
const uri = "data/sample-lancedb";
|
||||||
|
const db = await lancedb.connect(uri);
|
||||||
|
```
|
||||||
|
|
||||||
|
### Creating a Table
|
||||||
|
|
||||||
|
You can create a LanceDB table in javascript using an array of records.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
data
|
||||||
|
const tb = await db.createTable("my_table",
|
||||||
|
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
|
||||||
|
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! info "Note"
|
||||||
|
If the table already exists, LanceDB will raise an error by default. If you want to overwrite the table, you need to specify the `WriteMode` in the createTable function.
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
||||||
|
```
|
||||||
|
|
||||||
|
## Open existing tables
|
||||||
|
|
||||||
|
If you forget the name of your table, you can always get a listing of all table names:
|
||||||
|
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
### Get a list of existing Tables
|
||||||
|
|
||||||
|
```python
|
||||||
|
print(db.table_names())
|
||||||
|
```
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
console.log(await db.tableNames());
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, you can open any existing tables
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl = db.open_table("my_table")
|
||||||
|
```
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const tbl = await db.openTable("my_table");
|
||||||
|
```
|
||||||
|
|
||||||
|
## Adding to a Table
|
||||||
|
After a table has been created, you can always add more data to it using
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
You can add any of the valid data structures accepted by LanceDB table, i.e, `dict`, `list[dict]`, `pd.DataFrame`, or a `Iterator[pa.RecordBatch]`. Here are some examples.
|
||||||
|
|
||||||
|
### Adding Pandas DataFrame
|
||||||
|
|
||||||
|
```python
|
||||||
|
df = pd.DataFrame([{"vector": [1.3, 1.4], "item": "fizz", "price": 100.0},
|
||||||
|
{"vector": [9.5, 56.2], "item": "buzz", "price": 200.0}])
|
||||||
|
tbl.add(df)
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also add a large dataset batch in one go using pyArrow RecordBatch Iterator.
|
||||||
|
|
||||||
|
### Adding RecordBatch Iterator
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pyarrow as pa
|
||||||
|
|
||||||
|
def make_batches():
|
||||||
|
for i in range(5):
|
||||||
|
yield pa.RecordBatch.from_arrays(
|
||||||
|
[
|
||||||
|
pa.array([[3.1, 4.1], [5.9, 26.5]]),
|
||||||
|
pa.array(["foo", "bar"]),
|
||||||
|
pa.array([10.0, 20.0]),
|
||||||
|
],
|
||||||
|
["vector", "item", "price"],
|
||||||
|
)
|
||||||
|
|
||||||
|
tbl.add(make_batches())
|
||||||
|
```
|
||||||
|
|
||||||
|
The other arguments accepted:
|
||||||
|
|
||||||
|
| Name | Type | Description | Default |
|
||||||
|
|---|---|---|---|
|
||||||
|
| data | DATA | The data to insert into the table. | required |
|
||||||
|
| mode | str | The mode to use when writing the data. Valid values are "append" and "overwrite". | append |
|
||||||
|
| on_bad_vectors | str | What to do if any of the vectors are not the same size or contains NaNs. One of "error", "drop", "fill". | drop |
|
||||||
|
| fill value | float | The value to use when filling vectors: Only used if on_bad_vectors="fill". | 0.0 |
|
||||||
|
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
await tbl.add([{vector: [1.3, 1.4], item: "fizz", price: 100.0},
|
||||||
|
{vector: [9.5, 56.2], item: "buzz", price: 200.0}])
|
||||||
|
```
|
||||||
|
|
||||||
|
## Deleting from a Table
|
||||||
|
|
||||||
|
Use the `delete()` method on tables to delete rows from a table. To choose which rows to delete, provide a filter that matches on the metadata columns. This can delete any number of rows that match the filter.
|
||||||
|
|
||||||
|
=== "Python"
|
||||||
|
|
||||||
|
```python
|
||||||
|
tbl.delete('item = "fizz"')
|
||||||
|
```
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### Deleting row with specific column value
|
||||||
|
|
||||||
|
```python
|
||||||
|
import lancedb
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
data = pd.DataFrame({"x": [1, 2, 3], "vector": [[1, 2], [3, 4], [5, 6]]})
|
||||||
|
db = lancedb.connect("./.lancedb")
|
||||||
|
table = db.create_table("my_table", data)
|
||||||
|
table.to_pandas()
|
||||||
|
# x vector
|
||||||
|
# 0 1 [1.0, 2.0]
|
||||||
|
# 1 2 [3.0, 4.0]
|
||||||
|
# 2 3 [5.0, 6.0]
|
||||||
|
|
||||||
|
table.delete("x = 2")
|
||||||
|
table.to_pandas()
|
||||||
|
# x vector
|
||||||
|
# 0 1 [1.0, 2.0]
|
||||||
|
# 1 3 [5.0, 6.0]
|
||||||
|
```
|
||||||
|
|
||||||
|
### Delete from a list of values
|
||||||
|
|
||||||
|
```python
|
||||||
|
to_remove = [1, 5]
|
||||||
|
to_remove = ", ".join(str(v) for v in to_remove)
|
||||||
|
|
||||||
|
table.delete(f"x IN ({to_remove})")
|
||||||
|
table.to_pandas()
|
||||||
|
# x vector
|
||||||
|
# 0 3 [5.0, 6.0]
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Javascript/Typescript"
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
await tbl.delete('item = "fizz"')
|
||||||
|
```
|
||||||
|
|
||||||
|
### Deleting row with specific column value
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const con = await lancedb.connect("./.lancedb")
|
||||||
|
const data = [
|
||||||
|
{id: 1, vector: [1, 2]},
|
||||||
|
{id: 2, vector: [3, 4]},
|
||||||
|
{id: 3, vector: [5, 6]},
|
||||||
|
];
|
||||||
|
const tbl = await con.createTable("my_table", data)
|
||||||
|
await tbl.delete("id = 2")
|
||||||
|
await tbl.countRows() // Returns 2
|
||||||
|
```
|
||||||
|
|
||||||
|
### Delete from a list of values
|
||||||
|
|
||||||
|
```javascript
|
||||||
|
const to_remove = [1, 5];
|
||||||
|
await tbl.delete(`id IN (${to_remove.join(",")})`)
|
||||||
|
await tbl.countRows() // Returns 1
|
||||||
|
```
|
||||||
|
|
||||||
|
## What's Next?
|
||||||
|
|
||||||
|
Learn how to Query your tables and create indices
|
||||||
@@ -69,4 +69,4 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
|||||||
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
|
* [`Full text search`](fts.md) - [EXPERIMENTAL] full-text search API
|
||||||
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
|
* [`Ecosystem Integrations`](python/integration.md) - integrating LanceDB with python data tooling ecosystem.
|
||||||
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
|
* [`Python API Reference`](python/python.md) - detailed documentation for the LanceDB Python SDK.
|
||||||
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Python SDK.
|
* [`Node API Reference`](javascript/modules.md) - detailed documentation for the LanceDB Node SDK.
|
||||||
|
|||||||
71
docs/src/integrations/voxel51.md
Normal file
71
docs/src/integrations/voxel51.md
Normal file
@@ -0,0 +1,71 @@
|
|||||||
|

|
||||||
|
|
||||||
|
Basic recipe
|
||||||
|
____________
|
||||||
|
|
||||||
|
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
|
||||||
|
datasets and use this to query your data is as follows:
|
||||||
|
|
||||||
|
1) Load a dataset into FiftyOne
|
||||||
|
|
||||||
|
2) Compute embedding vectors for samples or patches in your dataset, or select
|
||||||
|
a model to use to generate embeddings
|
||||||
|
|
||||||
|
3) Use the `compute_similarity()`
|
||||||
|
method to generate a LanceDB table for the samples or object
|
||||||
|
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
|
||||||
|
specifying a `brain_key` of your choice
|
||||||
|
|
||||||
|
4) Use this LanceDB table to query your data with
|
||||||
|
`sort_by_similarity()`
|
||||||
|
|
||||||
|
5) If desired, delete the table
|
||||||
|
|
||||||
|
The example below demonstrates this workflow.
|
||||||
|
|
||||||
|
!!! Note
|
||||||
|
|
||||||
|
You must install the LanceDB Python client to run this
|
||||||
|
```
|
||||||
|
pip install lancedb
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
|
||||||
|
import fiftyone as fo
|
||||||
|
import fiftyone.brain as fob
|
||||||
|
import fiftyone.zoo as foz
|
||||||
|
|
||||||
|
# Step 1: Load your data into FiftyOne
|
||||||
|
dataset = foz.load_zoo_dataset("quickstart")
|
||||||
|
|
||||||
|
# Steps 2 and 3: Compute embeddings and create a similarity index
|
||||||
|
lancedb_index = fob.compute_similarity(
|
||||||
|
dataset,
|
||||||
|
model="clip-vit-base32-torch",
|
||||||
|
brain_key="lancedb_index",
|
||||||
|
backend="lancedb",
|
||||||
|
)
|
||||||
|
```
|
||||||
|
Once the similarity index has been generated, we can query our data in FiftyOne
|
||||||
|
by specifying the `brain_key`:
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Step 4: Query your data
|
||||||
|
query = dataset.first().id # query by sample ID
|
||||||
|
view = dataset.sort_by_similarity(
|
||||||
|
query,
|
||||||
|
brain_key="lancedb_index",
|
||||||
|
k=10, # limit to 10 most similar samples
|
||||||
|
)
|
||||||
|
|
||||||
|
# Step 5 (optional): Cleanup
|
||||||
|
|
||||||
|
# Delete the LanceDB table
|
||||||
|
lancedb_index.cleanup()
|
||||||
|
|
||||||
|
# Delete run record from FiftyOne
|
||||||
|
dataset.delete_brain_run("lancedb_index")
|
||||||
|
```
|
||||||
|
|
||||||
|
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)
|
||||||
@@ -10,7 +10,11 @@
|
|||||||
"\n",
|
"\n",
|
||||||
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
|
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
|
||||||
"\n",
|
"\n",
|
||||||
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
|
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
|
||||||
|
"\n",
|
||||||
|
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
|
||||||
|
"\n",
|
||||||
|
"Scripts - [](./examples/Code-Documentation-QA-Bot/main.py) [](./examples/Code-Documentation-QA-Bot/index.js)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -1,5 +1,14 @@
|
|||||||
{
|
{
|
||||||
"cells": [
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [](./examples/multimodal_clip/main.py) |"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 2,
|
||||||
@@ -42,6 +51,19 @@
|
|||||||
"## First run setup: Download data and pre-process"
|
"## First run setup: Download data and pre-process"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"### Get dataset\n",
|
||||||
|
"\n",
|
||||||
|
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
|
||||||
|
"!tar -xvf diffusiondb_lance.tar.gz\n",
|
||||||
|
"!mv diffusiondb_test rawdata.lance\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 30,
|
"execution_count": 30,
|
||||||
@@ -247,7 +269,7 @@
|
|||||||
],
|
],
|
||||||
"metadata": {
|
"metadata": {
|
||||||
"kernelspec": {
|
"kernelspec": {
|
||||||
"display_name": "Python 3 (ipykernel)",
|
"display_name": "Python 3.11.4 64-bit",
|
||||||
"language": "python",
|
"language": "python",
|
||||||
"name": "python3"
|
"name": "python3"
|
||||||
},
|
},
|
||||||
@@ -261,7 +283,12 @@
|
|||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.11.3"
|
"version": "3.11.4"
|
||||||
|
},
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
|
||||||
|
}
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|||||||
@@ -8,7 +8,12 @@
|
|||||||
"source": [
|
"source": [
|
||||||
"# Youtube Transcript Search QA Bot\n",
|
"# Youtube Transcript Search QA Bot\n",
|
||||||
"\n",
|
"\n",
|
||||||
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
|
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
|
||||||
|
"\n",
|
||||||
|
"Scripts - [](./examples/youtube_bot/main.py) [](./examples/youtube_bot/index.js)\n"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
|||||||
@@ -79,7 +79,7 @@ print(df)
|
|||||||
```
|
```
|
||||||
|
|
||||||
```
|
```
|
||||||
vector item price score
|
vector item price _distance
|
||||||
0 [5.9, 26.5] bar 20.0 14257.05957
|
0 [5.9, 26.5] bar 20.0 14257.05957
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,7 @@
|
|||||||
# Pydantic
|
# Pydantic
|
||||||
|
|
||||||
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
|
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
|
||||||
|
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
|
||||||
|
|
||||||
## Schema
|
## Schema
|
||||||
|
|
||||||
|
|||||||
@@ -56,4 +56,4 @@ pip install lancedb
|
|||||||
|
|
||||||
::: lancedb.pydantic.vector
|
::: lancedb.pydantic.vector
|
||||||
|
|
||||||
|
::: lancedb.pydantic.LanceModel
|
||||||
|
|||||||
@@ -5,10 +5,12 @@ const path = require("path");
|
|||||||
const excludedFiles = [
|
const excludedFiles = [
|
||||||
"../src/fts.md",
|
"../src/fts.md",
|
||||||
"../src/embedding.md",
|
"../src/embedding.md",
|
||||||
|
"../src/ann_indexes.md",
|
||||||
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
|
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
|
||||||
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
|
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
|
||||||
"../src/examples/transformerjs_embedding_search_nodejs.md",
|
"../src/examples/transformerjs_embedding_search_nodejs.md",
|
||||||
"../src/examples/youtube_transcript_bot_with_nodejs.md",
|
"../src/examples/youtube_transcript_bot_with_nodejs.md",
|
||||||
|
"../src/guides/tables.md",
|
||||||
];
|
];
|
||||||
const nodePrefix = "javascript";
|
const nodePrefix = "javascript";
|
||||||
const nodeFile = ".js";
|
const nodeFile = ".js";
|
||||||
|
|||||||
@@ -7,7 +7,9 @@ excluded_files = [
|
|||||||
"../src/embedding.md",
|
"../src/embedding.md",
|
||||||
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
|
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
|
||||||
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
|
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
|
||||||
"../src/examples/youtube_transcript_bot_with_nodejs.md"
|
"../src/examples/youtube_transcript_bot_with_nodejs.md",
|
||||||
|
"../src/integrations/voxel51.md",
|
||||||
|
"../src/guides/tables.md"
|
||||||
]
|
]
|
||||||
|
|
||||||
python_prefix = "py"
|
python_prefix = "py"
|
||||||
|
|||||||
@@ -50,7 +50,7 @@ async function example() {
|
|||||||
{ id: 5, text: 'Banana', type: 'fruit' }
|
{ id: 5, text: 'Banana', type: 'fruit' }
|
||||||
]
|
]
|
||||||
|
|
||||||
const table = await db.createTable('food_table', data, "create", embed_fun)
|
const table = await db.createTable('food_table', data, embed_fun)
|
||||||
|
|
||||||
|
|
||||||
// Query the table
|
// Query the table
|
||||||
|
|||||||
@@ -10,7 +10,7 @@
|
|||||||
"license": "Apache-2.0",
|
"license": "Apache-2.0",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@xenova/transformers": "^2.4.1",
|
"@xenova/transformers": "^2.4.1",
|
||||||
"vectordb": "^0.1.12"
|
"vectordb": "file:../.."
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -12,26 +12,25 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
const { currentTarget } = require('@neon-rs/load');
|
const { currentTarget } = require('@neon-rs/load')
|
||||||
|
|
||||||
let nativeLib;
|
let nativeLib
|
||||||
|
|
||||||
try {
|
try {
|
||||||
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`);
|
// When developing locally, give preference to the local built library
|
||||||
} catch (e) {
|
nativeLib = require('./index.node')
|
||||||
try {
|
} catch {
|
||||||
// Might be developing locally, so try that. But don't expose that error
|
try {
|
||||||
// to the user.
|
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`)
|
||||||
nativeLib = require("./index.node");
|
} catch (e) {
|
||||||
} catch {
|
throw new Error(`vectordb: failed to load native library.
|
||||||
throw new Error(`vectordb: failed to load native library.
|
|
||||||
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
|
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`.
|
||||||
|
|
||||||
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
|
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
|
||||||
|
|
||||||
Source error: ${e}`);
|
Source error: ${e}`)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Dynamic require for runtime.
|
// Dynamic require for runtime.
|
||||||
module.exports = nativeLib;
|
module.exports = nativeLib
|
||||||
|
|||||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"lockfileVersion": 2,
|
"lockfileVersion": 2,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -51,11 +51,11 @@
|
|||||||
"typescript": "*"
|
"typescript": "*"
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.1.18",
|
"@lancedb/vectordb-darwin-arm64": "0.1.19",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.1.18",
|
"@lancedb/vectordb-darwin-x64": "0.1.19",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.1.18",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.1.18",
|
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.1.18"
|
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@apache-arrow/ts": {
|
"node_modules/@apache-arrow/ts": {
|
||||||
@@ -315,9 +315,9 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
|
||||||
"integrity": "sha512-vu8MCFgaAAGmTJF+4RaoApROMpRVVgrCk+V9my4adAfWkkXbSmtxiDgiIwwL1VqdGb8UwzGn3kVbNW7idE1ojA==",
|
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"arm64"
|
"arm64"
|
||||||
],
|
],
|
||||||
@@ -327,9 +327,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
|
||||||
"integrity": "sha512-ZU30bd6frRyKJ515ow972PlqO2wIiNT4Ohor9+KbUwl/VKDyAwKOKG8cWhRJXTxk0k1oqpiJ6+Q28TcYJ0sSAw==",
|
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -339,9 +339,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
|
||||||
"integrity": "sha512-2UroC026bUYwyciSRonYlXei0SoYbKgfWpozxYOu7GgBAV2CQQtaAPgWJTEl6ZiCNeBmBTx+j0h3+ydUfZA73Q==",
|
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"arm64"
|
"arm64"
|
||||||
],
|
],
|
||||||
@@ -351,9 +351,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
|
||||||
"integrity": "sha512-DoQBskl22JAJFZh219ZOJ6o+f1niTZp0qRYngHa/kTIpLKzHWQ0OTtMCz32VBAjAsKjSLNxHE8rrT/S6tvS7KQ==",
|
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -363,9 +363,9 @@
|
|||||||
]
|
]
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
|
||||||
"integrity": "sha512-a/kUM3V6rWuXS80pPECYxKfCUAnq56Of/GPCvnAkpk9C9ldyX10iff4aA6DiPHjEk9V2ytqDfJKl9N3QcMLKLA==",
|
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64"
|
"x64"
|
||||||
],
|
],
|
||||||
@@ -4852,33 +4852,33 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-darwin-arm64": {
|
"@lancedb/vectordb-darwin-arm64": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
|
||||||
"integrity": "sha512-vu8MCFgaAAGmTJF+4RaoApROMpRVVgrCk+V9my4adAfWkkXbSmtxiDgiIwwL1VqdGb8UwzGn3kVbNW7idE1ojA==",
|
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-darwin-x64": {
|
"@lancedb/vectordb-darwin-x64": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
|
||||||
"integrity": "sha512-ZU30bd6frRyKJ515ow972PlqO2wIiNT4Ohor9+KbUwl/VKDyAwKOKG8cWhRJXTxk0k1oqpiJ6+Q28TcYJ0sSAw==",
|
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
|
||||||
"integrity": "sha512-2UroC026bUYwyciSRonYlXei0SoYbKgfWpozxYOu7GgBAV2CQQtaAPgWJTEl6ZiCNeBmBTx+j0h3+ydUfZA73Q==",
|
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-linux-x64-gnu": {
|
"@lancedb/vectordb-linux-x64-gnu": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
|
||||||
"integrity": "sha512-DoQBskl22JAJFZh219ZOJ6o+f1niTZp0qRYngHa/kTIpLKzHWQ0OTtMCz32VBAjAsKjSLNxHE8rrT/S6tvS7KQ==",
|
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@lancedb/vectordb-win32-x64-msvc": {
|
"@lancedb/vectordb-win32-x64-msvc": {
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.18.tgz",
|
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
|
||||||
"integrity": "sha512-a/kUM3V6rWuXS80pPECYxKfCUAnq56Of/GPCvnAkpk9C9ldyX10iff4aA6DiPHjEk9V2ytqDfJKl9N3QcMLKLA==",
|
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
|
||||||
"optional": true
|
"optional": true
|
||||||
},
|
},
|
||||||
"@neon-rs/cli": {
|
"@neon-rs/cli": {
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.1.18",
|
"version": "0.1.19",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
@@ -9,7 +9,7 @@
|
|||||||
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
|
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
|
||||||
"build-release": "npm run build -- --release",
|
"build-release": "npm run build -- --release",
|
||||||
"test": "npm run tsc && mocha -recursive dist/test",
|
"test": "npm run tsc && mocha -recursive dist/test",
|
||||||
"lint": "eslint src --ext .js,.ts",
|
"lint": "eslint native.js src --ext .js,.ts",
|
||||||
"clean": "rm -rf node_modules *.node dist/",
|
"clean": "rm -rf node_modules *.node dist/",
|
||||||
"pack-build": "neon pack-build",
|
"pack-build": "neon pack-build",
|
||||||
"check-npm": "printenv && which node && which npm && npm --version"
|
"check-npm": "printenv && which node && which npm && npm --version"
|
||||||
@@ -78,10 +78,10 @@
|
|||||||
}
|
}
|
||||||
},
|
},
|
||||||
"optionalDependencies": {
|
"optionalDependencies": {
|
||||||
"@lancedb/vectordb-darwin-arm64": "0.1.18",
|
"@lancedb/vectordb-darwin-arm64": "0.1.19",
|
||||||
"@lancedb/vectordb-darwin-x64": "0.1.18",
|
"@lancedb/vectordb-darwin-x64": "0.1.19",
|
||||||
"@lancedb/vectordb-linux-arm64-gnu": "0.1.18",
|
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
|
||||||
"@lancedb/vectordb-linux-x64-gnu": "0.1.18",
|
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
|
||||||
"@lancedb/vectordb-win32-x64-msvc": "0.1.18"
|
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -28,7 +28,6 @@ export interface EmbeddingFunction<T> {
|
|||||||
}
|
}
|
||||||
|
|
||||||
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
|
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
|
||||||
return Object.keys(value).length === 2 &&
|
return typeof value.sourceColumn === 'string' &&
|
||||||
typeof value.sourceColumn === 'string' &&
|
|
||||||
typeof value.embed === 'function'
|
typeof value.embed === 'function'
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -310,7 +310,7 @@ export class LocalConnection implements Connection {
|
|||||||
}
|
}
|
||||||
|
|
||||||
export class LocalTable<T = number[]> implements Table<T> {
|
export class LocalTable<T = number[]> implements Table<T> {
|
||||||
private readonly _tbl: any
|
private _tbl: any
|
||||||
private readonly _name: string
|
private readonly _name: string
|
||||||
private readonly _embeddings?: EmbeddingFunction<T>
|
private readonly _embeddings?: EmbeddingFunction<T>
|
||||||
private readonly _options: ConnectionOptions
|
private readonly _options: ConnectionOptions
|
||||||
@@ -357,7 +357,7 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
callArgs.push(this._options.awsCredentials.sessionToken)
|
callArgs.push(this._options.awsCredentials.sessionToken)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return tableAdd.call(...callArgs)
|
return tableAdd.call(...callArgs).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -375,7 +375,7 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
callArgs.push(this._options.awsCredentials.sessionToken)
|
callArgs.push(this._options.awsCredentials.sessionToken)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
return tableAdd.call(this._tbl, await fromRecordsToBuffer(data, this._embeddings), WriteMode.Overwrite.toString())
|
return tableAdd.call(...callArgs).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -384,7 +384,7 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
* @param indexParams The parameters of this Index, @see VectorIndexParams.
|
||||||
*/
|
*/
|
||||||
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
async createIndex (indexParams: VectorIndexParams): Promise<any> {
|
||||||
return tableCreateVectorIndex.call(this._tbl, indexParams)
|
return tableCreateVectorIndex.call(this._tbl, indexParams).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@@ -400,7 +400,7 @@ export class LocalTable<T = number[]> implements Table<T> {
|
|||||||
* @param filter A filter in the same format used by a sql WHERE clause.
|
* @param filter A filter in the same format used by a sql WHERE clause.
|
||||||
*/
|
*/
|
||||||
async delete (filter: string): Promise<void> {
|
async delete (filter: string): Promise<void> {
|
||||||
return tableDelete.call(this._tbl, filter)
|
return tableDelete.call(this._tbl, filter).then((newTable: any) => { this._tbl = newTable })
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -104,4 +104,34 @@ export class HttpLancedbClient {
|
|||||||
}
|
}
|
||||||
return response
|
return response
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sent POST request.
|
||||||
|
*/
|
||||||
|
public async post (path: string, data?: any, params?: Record<string, string | number>): Promise<AxiosResponse> {
|
||||||
|
const response = await axios.post(
|
||||||
|
`${this._url}${path}`,
|
||||||
|
data,
|
||||||
|
{
|
||||||
|
headers: {
|
||||||
|
'Content-Type': 'application/json',
|
||||||
|
'x-api-key': this._apiKey(),
|
||||||
|
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
|
||||||
|
},
|
||||||
|
params,
|
||||||
|
timeout: 30000
|
||||||
|
}
|
||||||
|
).catch((err) => {
|
||||||
|
console.error('error: ', err)
|
||||||
|
return err.response
|
||||||
|
})
|
||||||
|
if (response.status !== 200) {
|
||||||
|
const errorData = new TextDecoder().decode(response.data)
|
||||||
|
throw new Error(
|
||||||
|
`Server Error, status: ${response.status as number}, ` +
|
||||||
|
`message: ${response.statusText as string}: ${errorData}`
|
||||||
|
)
|
||||||
|
}
|
||||||
|
return response
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -77,7 +77,7 @@ export class RemoteConnection implements Connection {
|
|||||||
}
|
}
|
||||||
|
|
||||||
async dropTable (name: string): Promise<void> {
|
async dropTable (name: string): Promise<void> {
|
||||||
throw new Error('Not implemented')
|
await this._client.post(`/v1/table/${name}/drop/`)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|||||||
@@ -16,6 +16,7 @@ import { describe } from 'mocha'
|
|||||||
import { assert } from 'chai'
|
import { assert } from 'chai'
|
||||||
|
|
||||||
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
|
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
|
||||||
|
import { isEmbeddingFunction } from '../../embedding/embedding_function'
|
||||||
|
|
||||||
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
||||||
const { OpenAIApi } = require('openai')
|
const { OpenAIApi } = require('openai')
|
||||||
@@ -47,4 +48,10 @@ describe('OpenAPIEmbeddings', function () {
|
|||||||
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
|
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
|
||||||
})
|
})
|
||||||
})
|
})
|
||||||
|
|
||||||
|
describe('isEmbeddingFunction', function () {
|
||||||
|
it('should match the isEmbeddingFunction guard', function () {
|
||||||
|
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
|
||||||
|
})
|
||||||
|
})
|
||||||
})
|
})
|
||||||
|
|||||||
@@ -107,9 +107,9 @@ describe('LanceDB client', function () {
|
|||||||
const table = await con.openTable('vectors')
|
const table = await con.openTable('vectors')
|
||||||
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
|
const results = await table.search([0.1, 0.1]).select(['is_active']).execute()
|
||||||
assert.equal(results.length, 2)
|
assert.equal(results.length, 2)
|
||||||
// vector and score are always returned
|
// vector and _distance are always returned
|
||||||
assert.isDefined(results[0].vector)
|
assert.isDefined(results[0].vector)
|
||||||
assert.isDefined(results[0].score)
|
assert.isDefined(results[0]._distance)
|
||||||
assert.isDefined(results[0].is_active)
|
assert.isDefined(results[0].is_active)
|
||||||
|
|
||||||
assert.isUndefined(results[0].id)
|
assert.isUndefined(results[0].id)
|
||||||
@@ -134,6 +134,18 @@ describe('LanceDB client', function () {
|
|||||||
assert.equal(await table.countRows(), 2)
|
assert.equal(await table.countRows(), 2)
|
||||||
})
|
})
|
||||||
|
|
||||||
|
it('fails to create a new table when the vector column is missing', async function () {
|
||||||
|
const dir = await track().mkdir('lancejs')
|
||||||
|
const con = await lancedb.connect(dir)
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, price: 10 }
|
||||||
|
]
|
||||||
|
|
||||||
|
const create = con.createTable('missing_vector', data)
|
||||||
|
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
|
||||||
|
})
|
||||||
|
|
||||||
it('use overwrite flag to overwrite existing table', async function () {
|
it('use overwrite flag to overwrite existing table', async function () {
|
||||||
const dir = await track().mkdir('lancejs')
|
const dir = await track().mkdir('lancejs')
|
||||||
const con = await lancedb.connect(dir)
|
const con = await lancedb.connect(dir)
|
||||||
@@ -230,6 +242,22 @@ describe('LanceDB client', function () {
|
|||||||
// Default replace = true
|
// Default replace = true
|
||||||
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
||||||
}).timeout(50_000)
|
}).timeout(50_000)
|
||||||
|
|
||||||
|
it('it should fail when the column is not a vector', async function () {
|
||||||
|
const uri = await createTestDB(32, 300)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
||||||
|
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
|
||||||
|
})
|
||||||
|
|
||||||
|
it('it should fail when the column is not a vector', async function () {
|
||||||
|
const uri = await createTestDB(32, 300)
|
||||||
|
const con = await lancedb.connect(uri)
|
||||||
|
const table = await con.openTable('vectors')
|
||||||
|
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
|
||||||
|
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
|
||||||
|
})
|
||||||
})
|
})
|
||||||
|
|
||||||
describe('when using a custom embedding function', function () {
|
describe('when using a custom embedding function', function () {
|
||||||
|
|||||||
@@ -1,5 +1,5 @@
|
|||||||
[bumpversion]
|
[bumpversion]
|
||||||
current_version = 0.1.15
|
current_version = 0.2.0
|
||||||
commit = True
|
commit = True
|
||||||
message = [python] Bump version: {current_version} → {new_version}
|
message = [python] Bump version: {current_version} → {new_version}
|
||||||
tag = True
|
tag = True
|
||||||
|
|||||||
@@ -11,17 +11,18 @@
|
|||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import List, Union
|
from typing import Iterable, List, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
|
||||||
|
from .util import safe_import_pandas
|
||||||
|
|
||||||
|
pd = safe_import_pandas()
|
||||||
|
|
||||||
|
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
|
||||||
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
|
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
|
||||||
URI = Union[str, Path]
|
URI = Union[str, Path]
|
||||||
|
|
||||||
# TODO support generator
|
|
||||||
DATA = Union[List[dict], dict, pd.DataFrame]
|
|
||||||
VECTOR_COLUMN_NAME = "vector"
|
VECTOR_COLUMN_NAME = "vector"
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -12,12 +12,13 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
from .exceptions import MissingColumnError, MissingValueError
|
from .exceptions import MissingColumnError, MissingValueError
|
||||||
|
from .util import safe_import_pandas
|
||||||
|
|
||||||
|
pd = safe_import_pandas()
|
||||||
|
|
||||||
|
|
||||||
def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
|
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||||
"""Create a Contextualizer object for the given DataFrame.
|
"""Create a Contextualizer object for the given DataFrame.
|
||||||
|
|
||||||
Used to create context windows. Context windows are rolling subsets of text
|
Used to create context windows. Context windows are rolling subsets of text
|
||||||
@@ -175,8 +176,12 @@ class Contextualizer:
|
|||||||
self._min_window_size = min_window_size
|
self._min_window_size = min_window_size
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def to_df(self) -> pd.DataFrame:
|
def to_df(self) -> "pd.DataFrame":
|
||||||
"""Create the context windows and return a DataFrame."""
|
"""Create the context windows and return a DataFrame."""
|
||||||
|
if pd is None:
|
||||||
|
raise ImportError(
|
||||||
|
"pandas is required to create context windows using lancedb"
|
||||||
|
)
|
||||||
|
|
||||||
if self._text_col not in self._raw_df.columns.tolist():
|
if self._text_col not in self._raw_df.columns.tolist():
|
||||||
raise MissingColumnError(self._text_col)
|
raise MissingColumnError(self._text_col)
|
||||||
|
|||||||
@@ -16,13 +16,13 @@ from __future__ import annotations
|
|||||||
import os
|
import os
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
from typing import Optional
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pyarrow import fs
|
from pyarrow import fs
|
||||||
|
|
||||||
from .common import DATA, URI
|
from .common import DATA, URI
|
||||||
|
from .pydantic import LanceModel
|
||||||
from .table import LanceTable, Table
|
from .table import LanceTable, Table
|
||||||
from .util import fs_from_uri, get_uri_location, get_uri_scheme
|
from .util import fs_from_uri, get_uri_location, get_uri_scheme
|
||||||
|
|
||||||
@@ -39,10 +39,8 @@ class DBConnection(ABC):
|
|||||||
def create_table(
|
def create_table(
|
||||||
self,
|
self,
|
||||||
name: str,
|
name: str,
|
||||||
data: Optional[
|
data: Optional[DATA] = None,
|
||||||
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
|
schema: Optional[pa.Schema, LanceModel] = None,
|
||||||
] = None,
|
|
||||||
schema: Optional[pa.Schema] = None,
|
|
||||||
mode: str = "create",
|
mode: str = "create",
|
||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
@@ -55,7 +53,7 @@ class DBConnection(ABC):
|
|||||||
The name of the table.
|
The name of the table.
|
||||||
data: list, tuple, dict, pd.DataFrame; optional
|
data: list, tuple, dict, pd.DataFrame; optional
|
||||||
The data to initialize the table. User must provide at least one of `data` or `schema`.
|
The data to initialize the table. User must provide at least one of `data` or `schema`.
|
||||||
schema: pyarrow.Schema; optional
|
schema: pyarrow.Schema or LanceModel; optional
|
||||||
The schema of the table.
|
The schema of the table.
|
||||||
mode: str; default "create"
|
mode: str; default "create"
|
||||||
The mode to use when creating the table. Can be either "create" or "overwrite".
|
The mode to use when creating the table. Can be either "create" or "overwrite".
|
||||||
@@ -195,6 +193,13 @@ class DBConnection(ABC):
|
|||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def drop_database(self):
|
||||||
|
"""
|
||||||
|
Drop database
|
||||||
|
This is the same thing as dropping all the tables
|
||||||
|
"""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
|
||||||
class LanceDBConnection(DBConnection):
|
class LanceDBConnection(DBConnection):
|
||||||
"""
|
"""
|
||||||
@@ -279,8 +284,8 @@ class LanceDBConnection(DBConnection):
|
|||||||
def create_table(
|
def create_table(
|
||||||
self,
|
self,
|
||||||
name: str,
|
name: str,
|
||||||
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
|
data: Optional[DATA] = None,
|
||||||
schema: pa.Schema = None,
|
schema: Optional[pa.Schema, LanceModel] = None,
|
||||||
mode: str = "create",
|
mode: str = "create",
|
||||||
on_bad_vectors: str = "error",
|
on_bad_vectors: str = "error",
|
||||||
fill_value: float = 0.0,
|
fill_value: float = 0.0,
|
||||||
@@ -319,14 +324,24 @@ class LanceDBConnection(DBConnection):
|
|||||||
"""
|
"""
|
||||||
return LanceTable.open(self, name)
|
return LanceTable.open(self, name)
|
||||||
|
|
||||||
def drop_table(self, name: str):
|
def drop_table(self, name: str, ignore_missing: bool = False):
|
||||||
"""Drop a table from the database.
|
"""Drop a table from the database.
|
||||||
|
|
||||||
Parameters
|
Parameters
|
||||||
----------
|
----------
|
||||||
name: str
|
name: str
|
||||||
The name of the table.
|
The name of the table.
|
||||||
|
ignore_missing: bool, default False
|
||||||
|
If True, ignore if the table does not exist.
|
||||||
"""
|
"""
|
||||||
|
try:
|
||||||
|
filesystem, path = fs_from_uri(self.uri)
|
||||||
|
table_path = os.path.join(path, name + ".lance")
|
||||||
|
filesystem.delete_dir(table_path)
|
||||||
|
except FileNotFoundError:
|
||||||
|
if not ignore_missing:
|
||||||
|
raise
|
||||||
|
|
||||||
|
def drop_database(self):
|
||||||
filesystem, path = fs_from_uri(self.uri)
|
filesystem, path = fs_from_uri(self.uri)
|
||||||
table_path = os.path.join(path, name + ".lance")
|
filesystem.delete_dir(path)
|
||||||
filesystem.delete_dir(table_path)
|
|
||||||
|
|||||||
@@ -16,15 +16,19 @@ import sys
|
|||||||
from typing import Callable, Union
|
from typing import Callable, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from lance.vector import vec_to_table
|
from lance.vector import vec_to_table
|
||||||
from retry import retry
|
from retry import retry
|
||||||
|
|
||||||
|
from .util import safe_import_pandas
|
||||||
|
|
||||||
|
pd = safe_import_pandas()
|
||||||
|
DATA = Union[pa.Table, "pd.DataFrame"]
|
||||||
|
|
||||||
|
|
||||||
def with_embeddings(
|
def with_embeddings(
|
||||||
func: Callable,
|
func: Callable,
|
||||||
data: Union[pa.Table, pd.DataFrame],
|
data: DATA,
|
||||||
column: str = "text",
|
column: str = "text",
|
||||||
wrap_api: bool = True,
|
wrap_api: bool = True,
|
||||||
show_progress: bool = False,
|
show_progress: bool = False,
|
||||||
@@ -60,7 +64,7 @@ def with_embeddings(
|
|||||||
func = func.batch_size(batch_size)
|
func = func.batch_size(batch_size)
|
||||||
if show_progress:
|
if show_progress:
|
||||||
func = func.show_progress()
|
func = func.show_progress()
|
||||||
if isinstance(data, pd.DataFrame):
|
if pd is not None and isinstance(data, pd.DataFrame):
|
||||||
data = pa.Table.from_pandas(data, preserve_index=False)
|
data = pa.Table.from_pandas(data, preserve_index=False)
|
||||||
embeddings = func(data[column].to_numpy())
|
embeddings = func(data[column].to_numpy())
|
||||||
table = vec_to_table(np.array(embeddings))
|
table = vec_to_table(np.array(embeddings))
|
||||||
|
|||||||
@@ -249,3 +249,42 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
|
|||||||
"""
|
"""
|
||||||
fields = _pydantic_model_to_fields(model)
|
fields = _pydantic_model_to_fields(model)
|
||||||
return pa.schema(fields)
|
return pa.schema(fields)
|
||||||
|
|
||||||
|
|
||||||
|
class LanceModel(pydantic.BaseModel):
|
||||||
|
"""
|
||||||
|
A Pydantic Model base class that can be converted to a LanceDB Table.
|
||||||
|
|
||||||
|
Examples
|
||||||
|
--------
|
||||||
|
>>> import lancedb
|
||||||
|
>>> from lancedb.pydantic import LanceModel, vector
|
||||||
|
>>>
|
||||||
|
>>> class TestModel(LanceModel):
|
||||||
|
... name: str
|
||||||
|
... vector: vector(2)
|
||||||
|
...
|
||||||
|
>>> db = lancedb.connect("/tmp")
|
||||||
|
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
|
||||||
|
>>> table.add([
|
||||||
|
... TestModel(name="test", vector=[1.0, 2.0])
|
||||||
|
... ])
|
||||||
|
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
|
||||||
|
[TestModel(name='test', vector=FixedSizeList(dim=2))]
|
||||||
|
"""
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def to_arrow_schema(cls):
|
||||||
|
"""
|
||||||
|
Get the Arrow Schema for this model.
|
||||||
|
"""
|
||||||
|
return pydantic_to_schema(cls)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def field_names(cls) -> List[str]:
|
||||||
|
"""
|
||||||
|
Get the field names of this model.
|
||||||
|
"""
|
||||||
|
if PYDANTIC_VERSION.major < 2:
|
||||||
|
return list(cls.__fields__.keys())
|
||||||
|
return list(cls.model_fields.keys())
|
||||||
|
|||||||
@@ -13,17 +13,20 @@
|
|||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
from typing import List, Literal, Optional, Union
|
from typing import List, Literal, Optional, Type, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from pydantic import BaseModel
|
import pydantic
|
||||||
|
|
||||||
from .common import VECTOR_COLUMN_NAME
|
from .common import VECTOR_COLUMN_NAME
|
||||||
|
from .pydantic import LanceModel
|
||||||
|
from .util import safe_import_pandas
|
||||||
|
|
||||||
|
pd = safe_import_pandas()
|
||||||
|
|
||||||
|
|
||||||
class Query(BaseModel):
|
class Query(pydantic.BaseModel):
|
||||||
"""A Query"""
|
"""A Query"""
|
||||||
|
|
||||||
vector_column: str = VECTOR_COLUMN_NAME
|
vector_column: str = VECTOR_COLUMN_NAME
|
||||||
@@ -70,8 +73,8 @@ class LanceQueryBuilder:
|
|||||||
... .select(["b"])
|
... .select(["b"])
|
||||||
... .limit(2)
|
... .limit(2)
|
||||||
... .to_df())
|
... .to_df())
|
||||||
b vector score
|
b vector _distance
|
||||||
0 6 [0.4, 0.4] 0.0
|
0 6 [0.4, 0.4] 0.0
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
@@ -198,11 +201,11 @@ class LanceQueryBuilder:
|
|||||||
self._refine_factor = refine_factor
|
self._refine_factor = refine_factor
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def to_df(self) -> pd.DataFrame:
|
def to_df(self) -> "pd.DataFrame":
|
||||||
"""
|
"""
|
||||||
Execute the query and return the results as a pandas DataFrame.
|
Execute the query and return the results as a pandas DataFrame.
|
||||||
In addition to the selected columns, LanceDB also returns a vector
|
In addition to the selected columns, LanceDB also returns a vector
|
||||||
and also the "score" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@@ -214,7 +217,7 @@ class LanceQueryBuilder:
|
|||||||
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
|
[Apache Arrow Table](https://arrow.apache.org/docs/python/generated/pyarrow.Table.html#pyarrow.Table).
|
||||||
|
|
||||||
In addition to the selected columns, LanceDB also returns a vector
|
In addition to the selected columns, LanceDB also returns a vector
|
||||||
and also the "score" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vectors.
|
vector and the returned vectors.
|
||||||
"""
|
"""
|
||||||
vector = self._query if isinstance(self._query, list) else self._query.tolist()
|
vector = self._query if isinstance(self._query, list) else self._query.tolist()
|
||||||
@@ -230,9 +233,26 @@ class LanceQueryBuilder:
|
|||||||
)
|
)
|
||||||
return self._table._execute_query(query)
|
return self._table._execute_query(query)
|
||||||
|
|
||||||
|
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
|
||||||
|
"""Return the table as a list of pydantic models.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
model: Type[LanceModel]
|
||||||
|
The pydantic model to use.
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
List[LanceModel]
|
||||||
|
"""
|
||||||
|
return [
|
||||||
|
model(**{k: v for k, v in row.items() if k in model.field_names()})
|
||||||
|
for row in self.to_arrow().to_pylist()
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||||
def to_arrow(self) -> pd.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
try:
|
try:
|
||||||
import tantivy
|
import tantivy
|
||||||
except ImportError:
|
except ImportError:
|
||||||
|
|||||||
@@ -97,7 +97,12 @@ class RestfulLanceDBClient:
|
|||||||
"""Send a GET request and returns the deserialized response payload."""
|
"""Send a GET request and returns the deserialized response payload."""
|
||||||
if isinstance(params, BaseModel):
|
if isinstance(params, BaseModel):
|
||||||
params: Dict[str, Any] = params.dict(exclude_none=True)
|
params: Dict[str, Any] = params.dict(exclude_none=True)
|
||||||
async with self.session.get(uri, params=params, headers=self.headers) as resp:
|
async with self.session.get(
|
||||||
|
uri,
|
||||||
|
params=params,
|
||||||
|
headers=self.headers,
|
||||||
|
timeout=aiohttp.ClientTimeout(total=30),
|
||||||
|
) as resp:
|
||||||
await self._check_status(resp)
|
await self._check_status(resp)
|
||||||
return await resp.json()
|
return await resp.json()
|
||||||
|
|
||||||
@@ -109,6 +114,7 @@ class RestfulLanceDBClient:
|
|||||||
params: Optional[Dict[str, Any]] = None,
|
params: Optional[Dict[str, Any]] = None,
|
||||||
content_type: Optional[str] = None,
|
content_type: Optional[str] = None,
|
||||||
deserialize: Callable = lambda resp: resp.json(),
|
deserialize: Callable = lambda resp: resp.json(),
|
||||||
|
request_id: Optional[str] = None,
|
||||||
) -> Dict[str, Any]:
|
) -> Dict[str, Any]:
|
||||||
"""Send a POST request and returns the deserialized response payload.
|
"""Send a POST request and returns the deserialized response payload.
|
||||||
|
|
||||||
@@ -117,6 +123,8 @@ class RestfulLanceDBClient:
|
|||||||
uri : str
|
uri : str
|
||||||
The uri to send the POST request to.
|
The uri to send the POST request to.
|
||||||
data: Union[Dict[str, Any], BaseModel]
|
data: Union[Dict[str, Any], BaseModel]
|
||||||
|
request_id: Optional[str]
|
||||||
|
Optional client side request id to be sent in the request headers.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
if isinstance(data, BaseModel):
|
if isinstance(data, BaseModel):
|
||||||
@@ -129,10 +137,13 @@ class RestfulLanceDBClient:
|
|||||||
headers = self.headers.copy()
|
headers = self.headers.copy()
|
||||||
if content_type is not None:
|
if content_type is not None:
|
||||||
headers["content-type"] = content_type
|
headers["content-type"] = content_type
|
||||||
|
if request_id is not None:
|
||||||
|
headers["x-request-id"] = request_id
|
||||||
async with self.session.post(
|
async with self.session.post(
|
||||||
uri,
|
uri,
|
||||||
headers=headers,
|
headers=headers,
|
||||||
params=params,
|
params=params,
|
||||||
|
timeout=aiohttp.ClientTimeout(total=30),
|
||||||
**req_kwargs,
|
**req_kwargs,
|
||||||
) as resp:
|
) as resp:
|
||||||
resp: aiohttp.ClientResponse = resp
|
resp: aiohttp.ClientResponse = resp
|
||||||
|
|||||||
@@ -20,7 +20,6 @@ import pyarrow as pa
|
|||||||
|
|
||||||
from lancedb.common import DATA
|
from lancedb.common import DATA
|
||||||
from lancedb.db import DBConnection
|
from lancedb.db import DBConnection
|
||||||
from lancedb.schema import schema_to_json
|
|
||||||
from lancedb.table import Table, _sanitize_data
|
from lancedb.table import Table, _sanitize_data
|
||||||
|
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
@@ -105,8 +104,22 @@ class RemoteDBConnection(DBConnection):
|
|||||||
self._client.post(
|
self._client.post(
|
||||||
f"/v1/table/{name}/create/",
|
f"/v1/table/{name}/create/",
|
||||||
data=data,
|
data=data,
|
||||||
params={"request_id": request_id},
|
request_id=request_id,
|
||||||
content_type=ARROW_STREAM_CONTENT_TYPE,
|
content_type=ARROW_STREAM_CONTENT_TYPE,
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
return RemoteTable(self, name)
|
return RemoteTable(self, name)
|
||||||
|
|
||||||
|
def drop_table(self, name: str):
|
||||||
|
"""Drop a table from the database.
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
name: str
|
||||||
|
The name of the table.
|
||||||
|
"""
|
||||||
|
self._loop.run_until_complete(
|
||||||
|
self._client.post(
|
||||||
|
f"/v1/table/{name}/drop/",
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|||||||
@@ -16,11 +16,11 @@ from functools import cached_property
|
|||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
|
from lance import json_to_schema
|
||||||
|
|
||||||
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
|
|
||||||
from ..query import LanceQueryBuilder, Query
|
from ..query import LanceQueryBuilder
|
||||||
from ..schema import json_to_schema
|
|
||||||
from ..table import Query, Table, _sanitize_data
|
from ..table import Query, Table, _sanitize_data
|
||||||
from .arrow import to_ipc_binary
|
from .arrow import to_ipc_binary
|
||||||
from .client import ARROW_STREAM_CONTENT_TYPE
|
from .client import ARROW_STREAM_CONTENT_TYPE
|
||||||
@@ -45,7 +45,15 @@ class RemoteTable(Table):
|
|||||||
return schema
|
return schema
|
||||||
|
|
||||||
def to_arrow(self) -> pa.Table:
|
def to_arrow(self) -> pa.Table:
|
||||||
raise NotImplementedError
|
"""Return the table as an Arrow table."""
|
||||||
|
raise NotImplementedError("to_arrow() is not supported on the LanceDB cloud")
|
||||||
|
|
||||||
|
def to_pandas(self):
|
||||||
|
"""Return the table as a Pandas DataFrame.
|
||||||
|
|
||||||
|
Intercept `to_arrow()` for better error message.
|
||||||
|
"""
|
||||||
|
return NotImplementedError("to_pandas() is not supported on the LanceDB cloud")
|
||||||
|
|
||||||
def create_index(
|
def create_index(
|
||||||
self,
|
self,
|
||||||
|
|||||||
@@ -12,11 +12,7 @@
|
|||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
|
|
||||||
"""Schema related utilities."""
|
"""Schema related utilities."""
|
||||||
|
|
||||||
from typing import Any, Dict, Type
|
|
||||||
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
from lance import json_to_schema, schema_to_json
|
|
||||||
|
|
||||||
|
|
||||||
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:
|
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:
|
||||||
|
|||||||
@@ -13,6 +13,7 @@
|
|||||||
|
|
||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import inspect
|
||||||
import os
|
import os
|
||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from functools import cached_property
|
from functools import cached_property
|
||||||
@@ -20,30 +21,41 @@ from typing import Iterable, List, Union
|
|||||||
|
|
||||||
import lance
|
import lance
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
import pyarrow.compute as pc
|
import pyarrow.compute as pc
|
||||||
from lance import LanceDataset
|
from lance import LanceDataset
|
||||||
from lance.vector import vec_to_table
|
from lance.vector import vec_to_table
|
||||||
|
|
||||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||||
|
from .pydantic import LanceModel
|
||||||
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
|
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
|
||||||
from .util import fs_from_uri
|
from .util import fs_from_uri, safe_import_pandas
|
||||||
|
|
||||||
|
pd = safe_import_pandas()
|
||||||
|
|
||||||
|
|
||||||
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
|
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
|
||||||
if isinstance(data, list):
|
if isinstance(data, list):
|
||||||
|
# convert to list of dict if data is a bunch of LanceModels
|
||||||
|
if isinstance(data[0], LanceModel):
|
||||||
|
schema = data[0].__class__.to_arrow_schema()
|
||||||
|
data = [dict(d) for d in data]
|
||||||
data = pa.Table.from_pylist(data)
|
data = pa.Table.from_pylist(data)
|
||||||
data = _sanitize_schema(
|
data = _sanitize_schema(
|
||||||
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||||
)
|
)
|
||||||
if isinstance(data, dict):
|
if isinstance(data, dict):
|
||||||
data = vec_to_table(data)
|
data = vec_to_table(data)
|
||||||
if isinstance(data, pd.DataFrame):
|
if pd is not None and isinstance(data, pd.DataFrame):
|
||||||
data = pa.Table.from_pandas(data)
|
data = pa.Table.from_pandas(data, preserve_index=False)
|
||||||
data = _sanitize_schema(
|
data = _sanitize_schema(
|
||||||
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||||
)
|
)
|
||||||
|
# Do not serialize Pandas metadata
|
||||||
|
metadata = data.schema.metadata if data.schema.metadata is not None else {}
|
||||||
|
metadata = {k: v for k, v in metadata.items() if k != b"pandas"}
|
||||||
|
schema = data.schema.with_metadata(metadata)
|
||||||
|
data = pa.Table.from_arrays(data.columns, schema=schema)
|
||||||
if not isinstance(data, (pa.Table, Iterable)):
|
if not isinstance(data, (pa.Table, Iterable)):
|
||||||
raise TypeError(f"Unsupported data type: {type(data)}")
|
raise TypeError(f"Unsupported data type: {type(data)}")
|
||||||
return data
|
return data
|
||||||
@@ -78,23 +90,24 @@ class Table(ABC):
|
|||||||
Can query the table with [Table.search][lancedb.table.Table.search].
|
Can query the table with [Table.search][lancedb.table.Table.search].
|
||||||
|
|
||||||
>>> table.search([0.4, 0.4]).select(["b"]).to_df()
|
>>> table.search([0.4, 0.4]).select(["b"]).to_df()
|
||||||
b vector score
|
b vector _distance
|
||||||
0 4 [0.5, 1.3] 0.82
|
0 4 [0.5, 1.3] 0.82
|
||||||
1 2 [1.1, 1.2] 1.13
|
1 2 [1.1, 1.2] 1.13
|
||||||
|
|
||||||
Search queries are much faster when an index is created. See
|
Search queries are much faster when an index is created. See
|
||||||
[Table.create_index][lancedb.table.Table.create_index].
|
[Table.create_index][lancedb.table.Table.create_index].
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@property
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def schema(self) -> pa.Schema:
|
def schema(self) -> pa.Schema:
|
||||||
"""Return the [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
|
"""The [Arrow Schema](https://arrow.apache.org/docs/python/api/datatypes.html#) of
|
||||||
this [Table](Table)
|
this [Table](Table)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
|
|
||||||
def to_pandas(self) -> pd.DataFrame:
|
def to_pandas(self):
|
||||||
"""Return the table as a pandas DataFrame.
|
"""Return the table as a pandas DataFrame.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
@@ -188,7 +201,7 @@ class Table(ABC):
|
|||||||
LanceQueryBuilder
|
LanceQueryBuilder
|
||||||
A query builder object representing the query.
|
A query builder object representing the query.
|
||||||
Once executed, the query returns selected columns, the vector,
|
Once executed, the query returns selected columns, the vector,
|
||||||
and also the "score" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
"""
|
"""
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
@@ -328,7 +341,7 @@ class LanceTable(Table):
|
|||||||
"""Return the first n rows of the table."""
|
"""Return the first n rows of the table."""
|
||||||
return self._dataset.head(n)
|
return self._dataset.head(n)
|
||||||
|
|
||||||
def to_pandas(self) -> pd.DataFrame:
|
def to_pandas(self) -> "pd.DataFrame":
|
||||||
"""Return the table as a pandas DataFrame.
|
"""Return the table as a pandas DataFrame.
|
||||||
|
|
||||||
Returns
|
Returns
|
||||||
@@ -428,7 +441,7 @@ class LanceTable(Table):
|
|||||||
data = _sanitize_data(
|
data = _sanitize_data(
|
||||||
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
data, self.schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||||
)
|
)
|
||||||
lance.write_dataset(data, self._dataset_uri, mode=mode)
|
lance.write_dataset(data, self._dataset_uri, schema=self.schema, mode=mode)
|
||||||
self._reset_dataset()
|
self._reset_dataset()
|
||||||
|
|
||||||
def search(
|
def search(
|
||||||
@@ -449,7 +462,7 @@ class LanceTable(Table):
|
|||||||
LanceQueryBuilder
|
LanceQueryBuilder
|
||||||
A query builder object representing the query.
|
A query builder object representing the query.
|
||||||
Once executed, the query returns selected columns, the vector,
|
Once executed, the query returns selected columns, the vector,
|
||||||
and also the "score" column which is the distance between the query
|
and also the "_distance" column which is the distance between the query
|
||||||
vector and the returned vector.
|
vector and the returned vector.
|
||||||
"""
|
"""
|
||||||
if isinstance(query, str):
|
if isinstance(query, str):
|
||||||
@@ -500,7 +513,7 @@ class LanceTable(Table):
|
|||||||
data: list-of-dict, dict, pd.DataFrame, default None
|
data: list-of-dict, dict, pd.DataFrame, default None
|
||||||
The data to insert into the table.
|
The data to insert into the table.
|
||||||
At least one of `data` or `schema` must be provided.
|
At least one of `data` or `schema` must be provided.
|
||||||
schema: dict, optional
|
schema: pa.Schema or LanceModel, optional
|
||||||
The schema of the table. If not provided, the schema is inferred from the data.
|
The schema of the table. If not provided, the schema is inferred from the data.
|
||||||
At least one of `data` or `schema` must be provided.
|
At least one of `data` or `schema` must be provided.
|
||||||
mode: str, default "create"
|
mode: str, default "create"
|
||||||
@@ -513,6 +526,8 @@ class LanceTable(Table):
|
|||||||
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
The value to use when filling vectors. Only used if on_bad_vectors="fill".
|
||||||
"""
|
"""
|
||||||
tbl = LanceTable(db, name)
|
tbl = LanceTable(db, name)
|
||||||
|
if inspect.isclass(schema) and issubclass(schema, LanceModel):
|
||||||
|
schema = schema.to_arrow_schema()
|
||||||
if data is not None:
|
if data is not None:
|
||||||
data = _sanitize_data(
|
data = _sanitize_data(
|
||||||
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
data, schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||||
|
|||||||
@@ -15,7 +15,6 @@ import os
|
|||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
from urllib.parse import urlparse
|
from urllib.parse import urlparse
|
||||||
|
|
||||||
import pyarrow as pa
|
|
||||||
import pyarrow.fs as pa_fs
|
import pyarrow.fs as pa_fs
|
||||||
|
|
||||||
|
|
||||||
@@ -76,3 +75,12 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
|
|||||||
return fs, path
|
return fs, path
|
||||||
|
|
||||||
return pa_fs.FileSystem.from_uri(uri)
|
return pa_fs.FileSystem.from_uri(uri)
|
||||||
|
|
||||||
|
|
||||||
|
def safe_import_pandas():
|
||||||
|
try:
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
return pd
|
||||||
|
except ImportError:
|
||||||
|
return None
|
||||||
|
|||||||
@@ -1,11 +1,18 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "lancedb"
|
name = "lancedb"
|
||||||
version = "0.1.15"
|
version = "0.2.0"
|
||||||
dependencies = ["pylance~=0.5.8", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"]
|
dependencies = [
|
||||||
description = "lancedb"
|
"pylance==0.6.1",
|
||||||
authors = [
|
"ratelimiter",
|
||||||
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
|
"retry",
|
||||||
|
"tqdm",
|
||||||
|
"aiohttp",
|
||||||
|
"pydantic",
|
||||||
|
"attr",
|
||||||
|
"semver>=3.0"
|
||||||
]
|
]
|
||||||
|
description = "lancedb"
|
||||||
|
authors = [{ name = "LanceDB Devs", email = "dev@lancedb.com" }]
|
||||||
license = { file = "LICENSE" }
|
license = { file = "LICENSE" }
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.8"
|
requires-python = ">=3.8"
|
||||||
@@ -36,21 +43,12 @@ classifiers = [
|
|||||||
repository = "https://github.com/lancedb/lancedb"
|
repository = "https://github.com/lancedb/lancedb"
|
||||||
|
|
||||||
[project.optional-dependencies]
|
[project.optional-dependencies]
|
||||||
tests = [
|
tests = ["pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"]
|
||||||
"pytest", "pytest-mock", "pytest-asyncio"
|
dev = ["ruff", "pre-commit", "black"]
|
||||||
]
|
docs = ["mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"]
|
||||||
dev = [
|
|
||||||
"ruff", "pre-commit", "black"
|
|
||||||
]
|
|
||||||
docs = [
|
|
||||||
"mkdocs", "mkdocs-jupyter", "mkdocs-material", "mkdocstrings[python]"
|
|
||||||
]
|
|
||||||
|
|
||||||
[build-system]
|
[build-system]
|
||||||
requires = [
|
requires = ["setuptools", "wheel"]
|
||||||
"setuptools",
|
|
||||||
"wheel",
|
|
||||||
]
|
|
||||||
build-backend = "setuptools.build_meta"
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
[tool.isort]
|
[tool.isort]
|
||||||
|
|||||||
@@ -17,6 +17,7 @@ import pyarrow as pa
|
|||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
import lancedb
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel
|
||||||
|
|
||||||
|
|
||||||
def test_basic(tmp_path):
|
def test_basic(tmp_path):
|
||||||
@@ -101,6 +102,11 @@ def test_ingest_record_batch_iterator(tmp_path):
|
|||||||
),
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
tbl_len = len(tbl)
|
||||||
|
tbl.add(batch_reader())
|
||||||
|
assert len(tbl) == tbl_len * 2
|
||||||
|
assert len(tbl.list_versions()) == 2
|
||||||
|
|
||||||
|
|
||||||
def test_create_mode(tmp_path):
|
def test_create_mode(tmp_path):
|
||||||
db = lancedb.connect(tmp_path)
|
db = lancedb.connect(tmp_path)
|
||||||
@@ -149,6 +155,51 @@ def test_delete_table(tmp_path):
|
|||||||
db.create_table("test", data=data)
|
db.create_table("test", data=data)
|
||||||
assert db.table_names() == ["test"]
|
assert db.table_names() == ["test"]
|
||||||
|
|
||||||
|
# dropping a table that does not exist should pass
|
||||||
|
# if ignore_missing=True
|
||||||
|
db.drop_table("does_not_exist", ignore_missing=True)
|
||||||
|
|
||||||
|
|
||||||
|
def test_drop_database(tmp_path):
|
||||||
|
db = lancedb.connect(tmp_path)
|
||||||
|
data = pd.DataFrame(
|
||||||
|
{
|
||||||
|
"vector": [[3.1, 4.1], [5.9, 26.5]],
|
||||||
|
"item": ["foo", "bar"],
|
||||||
|
"price": [10.0, 20.0],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
new_data = pd.DataFrame(
|
||||||
|
{
|
||||||
|
"vector": [[5.1, 4.1], [5.9, 10.5]],
|
||||||
|
"item": ["kiwi", "avocado"],
|
||||||
|
"price": [12.0, 17.0],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
db.create_table("test", data=data)
|
||||||
|
with pytest.raises(Exception):
|
||||||
|
db.create_table("test", data=data)
|
||||||
|
|
||||||
|
assert db.table_names() == ["test"]
|
||||||
|
|
||||||
|
db.create_table("new_test", data=new_data)
|
||||||
|
db.drop_database()
|
||||||
|
assert db.table_names() == []
|
||||||
|
|
||||||
|
# it should pass when no tables are present
|
||||||
|
db.create_table("test", data=new_data)
|
||||||
|
db.drop_table("test")
|
||||||
|
assert db.table_names() == []
|
||||||
|
db.drop_database()
|
||||||
|
assert db.table_names() == []
|
||||||
|
|
||||||
|
# creating an empty database with schema
|
||||||
|
schema = pa.schema([pa.field("vector", pa.list_(pa.float32(), list_size=2))])
|
||||||
|
db.create_table("empty_table", schema=schema)
|
||||||
|
# dropping a empty database should pass
|
||||||
|
db.drop_database()
|
||||||
|
assert db.table_names() == []
|
||||||
|
|
||||||
|
|
||||||
def test_empty_or_nonexistent_table(tmp_path):
|
def test_empty_or_nonexistent_table(tmp_path):
|
||||||
db = lancedb.connect(tmp_path)
|
db = lancedb.connect(tmp_path)
|
||||||
@@ -158,8 +209,14 @@ def test_empty_or_nonexistent_table(tmp_path):
|
|||||||
with pytest.raises(Exception):
|
with pytest.raises(Exception):
|
||||||
db.open_table("does_not_exist")
|
db.open_table("does_not_exist")
|
||||||
|
|
||||||
schema = pa.schema([pa.field("a", pa.int32())])
|
schema = pa.schema([pa.field("a", pa.int64(), nullable=False)])
|
||||||
db.create_table("test", schema=schema)
|
test = db.create_table("test", schema=schema)
|
||||||
|
|
||||||
|
class TestModel(LanceModel):
|
||||||
|
a: int
|
||||||
|
|
||||||
|
test2 = db.create_table("test2", schema=TestModel)
|
||||||
|
assert test.schema == test2.schema
|
||||||
|
|
||||||
|
|
||||||
def test_replace_index(tmp_path):
|
def test_replace_index(tmp_path):
|
||||||
|
|||||||
@@ -66,7 +66,7 @@ def test_search_index(tmp_path, table):
|
|||||||
results = ldb.fts.search_index(index, query="puppy", limit=10)
|
results = ldb.fts.search_index(index, query="puppy", limit=10)
|
||||||
assert len(results) == 2
|
assert len(results) == 2
|
||||||
assert len(results[0]) == 10 # row_ids
|
assert len(results[0]) == 10 # row_ids
|
||||||
assert len(results[1]) == 10 # scores
|
assert len(results[1]) == 10 # _distance
|
||||||
|
|
||||||
|
|
||||||
def test_create_index_from_table(tmp_path, table):
|
def test_create_index_from_table(tmp_path, table):
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ import pyarrow as pa
|
|||||||
import pydantic
|
import pydantic
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from lancedb.pydantic import PYDANTIC_VERSION, pydantic_to_schema, vector
|
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.skipif(
|
@pytest.mark.skipif(
|
||||||
@@ -163,3 +163,13 @@ def test_fixed_size_list_validation():
|
|||||||
TestModel(vec=range(7))
|
TestModel(vec=range(7))
|
||||||
|
|
||||||
TestModel(vec=range(8))
|
TestModel(vec=range(8))
|
||||||
|
|
||||||
|
|
||||||
|
def test_lance_model():
|
||||||
|
class TestModel(LanceModel):
|
||||||
|
vec: vector(16)
|
||||||
|
li: List[int]
|
||||||
|
|
||||||
|
schema = pydantic_to_schema(TestModel)
|
||||||
|
assert schema == TestModel.to_arrow_schema()
|
||||||
|
assert TestModel.field_names() == ["vec", "li"]
|
||||||
|
|||||||
@@ -20,6 +20,7 @@ import pyarrow as pa
|
|||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
from lancedb.db import LanceDBConnection
|
from lancedb.db import LanceDBConnection
|
||||||
|
from lancedb.pydantic import LanceModel, vector
|
||||||
from lancedb.query import LanceQueryBuilder, Query
|
from lancedb.query import LanceQueryBuilder, Query
|
||||||
from lancedb.table import LanceTable
|
from lancedb.table import LanceTable
|
||||||
|
|
||||||
@@ -64,6 +65,24 @@ def table(tmp_path) -> MockTable:
|
|||||||
return MockTable(tmp_path)
|
return MockTable(tmp_path)
|
||||||
|
|
||||||
|
|
||||||
|
def test_cast(table):
|
||||||
|
class TestModel(LanceModel):
|
||||||
|
vector: vector(2)
|
||||||
|
id: int
|
||||||
|
str_field: str
|
||||||
|
float_field: float
|
||||||
|
|
||||||
|
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
|
||||||
|
results = q.to_pydantic(TestModel)
|
||||||
|
assert len(results) == 1
|
||||||
|
r0 = results[0]
|
||||||
|
assert isinstance(r0, TestModel)
|
||||||
|
assert r0.id == 1
|
||||||
|
assert r0.vector == [1, 2]
|
||||||
|
assert r0.str_field == "a"
|
||||||
|
assert r0.float_field == 1.0
|
||||||
|
|
||||||
|
|
||||||
def test_query_builder(table):
|
def test_query_builder(table):
|
||||||
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
|
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
|
||||||
assert df["id"].values[0] == 1
|
assert df["id"].values[0] == 1
|
||||||
@@ -89,11 +108,11 @@ def test_query_builder_with_metric(table):
|
|||||||
.limit(1)
|
.limit(1)
|
||||||
.to_df()
|
.to_df()
|
||||||
)
|
)
|
||||||
assert df_cosine.score[0] == pytest.approx(
|
assert df_cosine._distance[0] == pytest.approx(
|
||||||
cosine_distance(query, df_cosine.vector[0]),
|
cosine_distance(query, df_cosine.vector[0]),
|
||||||
abs=1e-6,
|
abs=1e-6,
|
||||||
)
|
)
|
||||||
assert 0 <= df_cosine.score[0] <= 1
|
assert 0 <= df_cosine._distance[0] <= 1
|
||||||
|
|
||||||
|
|
||||||
def test_query_builder_with_different_vector_column():
|
def test_query_builder_with_different_vector_column():
|
||||||
|
|||||||
@@ -13,15 +13,16 @@
|
|||||||
|
|
||||||
import functools
|
import functools
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
from typing import List
|
||||||
from unittest.mock import PropertyMock, patch
|
from unittest.mock import PropertyMock, patch
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import pyarrow as pa
|
import pyarrow as pa
|
||||||
import pytest
|
import pytest
|
||||||
from lance.vector import vec_to_table
|
|
||||||
|
|
||||||
from lancedb.db import LanceDBConnection
|
from lancedb.db import LanceDBConnection
|
||||||
|
from lancedb.pydantic import LanceModel, vector
|
||||||
from lancedb.table import LanceTable
|
from lancedb.table import LanceTable
|
||||||
|
|
||||||
|
|
||||||
@@ -135,6 +136,17 @@ def test_add(db):
|
|||||||
_add(table, schema)
|
_add(table, schema)
|
||||||
|
|
||||||
|
|
||||||
|
def test_add_pydantic_model(db):
|
||||||
|
class TestModel(LanceModel):
|
||||||
|
vector: vector(16)
|
||||||
|
li: List[int]
|
||||||
|
|
||||||
|
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
|
||||||
|
table = LanceTable.create(db, "test", data=[data])
|
||||||
|
assert len(table) == 1
|
||||||
|
assert table.schema == TestModel.to_arrow_schema()
|
||||||
|
|
||||||
|
|
||||||
def _add(table, schema):
|
def _add(table, schema):
|
||||||
# table = LanceTable(db, "test")
|
# table = LanceTable(db, "test")
|
||||||
assert len(table) == 2
|
assert len(table) == 2
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "vectordb-node"
|
name = "vectordb-node"
|
||||||
version = "0.1.18"
|
version = "0.1.19"
|
||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
license = "Apache-2.0"
|
license = "Apache-2.0"
|
||||||
edition = "2018"
|
edition = "2018"
|
||||||
@@ -13,6 +13,7 @@ crate-type = ["cdylib"]
|
|||||||
arrow-array = { workspace = true }
|
arrow-array = { workspace = true }
|
||||||
arrow-ipc = { workspace = true }
|
arrow-ipc = { workspace = true }
|
||||||
arrow-schema = { workspace = true }
|
arrow-schema = { workspace = true }
|
||||||
|
conv = "0.3.3"
|
||||||
once_cell = "1"
|
once_cell = "1"
|
||||||
futures = "0.3"
|
futures = "0.3"
|
||||||
half = { workspace = true }
|
half = { workspace = true }
|
||||||
@@ -21,5 +22,6 @@ vectordb = { path = "../../vectordb" }
|
|||||||
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
||||||
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
|
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
|
||||||
object_store = { workspace = true, features = ["aws"] }
|
object_store = { workspace = true, features = ["aws"] }
|
||||||
|
snafu = { workspace = true }
|
||||||
async-trait = "0"
|
async-trait = "0"
|
||||||
env_logger = "0"
|
env_logger = "0"
|
||||||
|
|||||||
@@ -13,27 +13,30 @@
|
|||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
use std::io::Cursor;
|
use std::io::Cursor;
|
||||||
|
use std::ops::Deref;
|
||||||
use std::sync::Arc;
|
use std::sync::Arc;
|
||||||
|
|
||||||
use arrow_array::cast::as_list_array;
|
use arrow_array::cast::as_list_array;
|
||||||
use arrow_array::{Array, FixedSizeListArray, RecordBatch};
|
use arrow_array::{Array, ArrayRef, FixedSizeListArray, RecordBatch};
|
||||||
use arrow_ipc::reader::FileReader;
|
use arrow_ipc::reader::FileReader;
|
||||||
|
use arrow_ipc::writer::FileWriter;
|
||||||
use arrow_schema::{DataType, Field, Schema};
|
use arrow_schema::{DataType, Field, Schema};
|
||||||
use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
|
use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
|
||||||
|
use vectordb::table::VECTOR_COLUMN_NAME;
|
||||||
|
|
||||||
|
use crate::error::{MissingColumnSnafu, Result};
|
||||||
|
use snafu::prelude::*;
|
||||||
|
|
||||||
|
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> Result<RecordBatch> {
|
||||||
|
let column = get_column(VECTOR_COLUMN_NAME, &record_batch)?;
|
||||||
|
|
||||||
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
|
|
||||||
let column = record_batch
|
|
||||||
.column_by_name("vector")
|
|
||||||
.cloned()
|
|
||||||
.expect("vector column is missing");
|
|
||||||
// TODO: we should just consume the underlying js buffer in the future instead of this arrow around a bunch of times
|
// TODO: we should just consume the underlying js buffer in the future instead of this arrow around a bunch of times
|
||||||
let arr = as_list_array(column.as_ref());
|
let arr = as_list_array(column.as_ref());
|
||||||
let list_size = arr.values().len() / record_batch.num_rows();
|
let list_size = arr.values().len() / record_batch.num_rows();
|
||||||
let r =
|
let r = FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32)?;
|
||||||
FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32).unwrap();
|
|
||||||
|
|
||||||
let schema = Arc::new(Schema::new(vec![Field::new(
|
let schema = Arc::new(Schema::new(vec![Field::new(
|
||||||
"vector",
|
VECTOR_COLUMN_NAME,
|
||||||
DataType::FixedSizeList(
|
DataType::FixedSizeList(
|
||||||
Arc::new(Field::new("item", DataType::Float32, true)),
|
Arc::new(Field::new("item", DataType::Float32, true)),
|
||||||
list_size as i32,
|
list_size as i32,
|
||||||
@@ -41,22 +44,42 @@ pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
|
|||||||
true,
|
true,
|
||||||
)]));
|
)]));
|
||||||
|
|
||||||
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)]).unwrap();
|
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)])?;
|
||||||
|
|
||||||
if record_batch.num_columns() > 1 {
|
if record_batch.num_columns() > 1 {
|
||||||
let rb = record_batch.drop_column("vector").unwrap();
|
let rb = record_batch.drop_column(VECTOR_COLUMN_NAME)?;
|
||||||
new_batch = new_batch.merge(&rb).unwrap();
|
new_batch = new_batch.merge(&rb)?;
|
||||||
}
|
}
|
||||||
new_batch
|
Ok(new_batch)
|
||||||
}
|
}
|
||||||
|
|
||||||
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Vec<RecordBatch> {
|
fn get_column(column_name: &str, record_batch: &RecordBatch) -> Result<ArrayRef> {
|
||||||
|
record_batch
|
||||||
|
.column_by_name(column_name)
|
||||||
|
.cloned()
|
||||||
|
.context(MissingColumnSnafu { name: column_name })
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<Vec<RecordBatch>> {
|
||||||
let mut batches: Vec<RecordBatch> = Vec::new();
|
let mut batches: Vec<RecordBatch> = Vec::new();
|
||||||
let fr = FileReader::try_new(Cursor::new(slice), None);
|
let file_reader = FileReader::try_new(Cursor::new(slice), None)?;
|
||||||
let file_reader = fr.unwrap();
|
|
||||||
for b in file_reader {
|
for b in file_reader {
|
||||||
let record_batch = convert_record_batch(b.unwrap());
|
let record_batch = convert_record_batch(b?)?;
|
||||||
batches.push(record_batch);
|
batches.push(record_batch);
|
||||||
}
|
}
|
||||||
batches
|
Ok(batches)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
|
||||||
|
if batches.is_empty() {
|
||||||
|
return Ok(Vec::new());
|
||||||
|
}
|
||||||
|
|
||||||
|
let schema = batches.get(0).unwrap().schema();
|
||||||
|
let mut fr = FileWriter::try_new(Vec::new(), schema.deref())?;
|
||||||
|
for batch in batches.iter() {
|
||||||
|
fr.write(batch)?
|
||||||
|
}
|
||||||
|
fr.finish()?;
|
||||||
|
Ok(fr.into_inner()?)
|
||||||
}
|
}
|
||||||
|
|||||||
96
rust/ffi/node/src/error.rs
Normal file
96
rust/ffi/node/src/error.rs
Normal file
@@ -0,0 +1,96 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
use arrow_schema::ArrowError;
|
||||||
|
use neon::context::Context;
|
||||||
|
use neon::prelude::NeonResult;
|
||||||
|
use snafu::Snafu;
|
||||||
|
|
||||||
|
#[derive(Debug, Snafu)]
|
||||||
|
#[snafu(visibility(pub(crate)))]
|
||||||
|
pub enum Error {
|
||||||
|
#[snafu(display("column '{name}' is missing"))]
|
||||||
|
MissingColumn { name: String },
|
||||||
|
#[snafu(display("{name}: {message}"))]
|
||||||
|
RangeError { name: String, message: String },
|
||||||
|
#[snafu(display("{index_type} is not a valid index type"))]
|
||||||
|
InvalidIndexType { index_type: String },
|
||||||
|
|
||||||
|
#[snafu(display("{message}"))]
|
||||||
|
LanceDB { message: String },
|
||||||
|
#[snafu(display("{message}"))]
|
||||||
|
Neon { message: String },
|
||||||
|
}
|
||||||
|
|
||||||
|
pub type Result<T> = std::result::Result<T, Error>;
|
||||||
|
|
||||||
|
impl From<vectordb::error::Error> for Error {
|
||||||
|
fn from(e: vectordb::error::Error) -> Self {
|
||||||
|
Self::LanceDB {
|
||||||
|
message: e.to_string(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<lance::Error> for Error {
|
||||||
|
fn from(e: lance::Error) -> Self {
|
||||||
|
Self::LanceDB {
|
||||||
|
message: e.to_string(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<ArrowError> for Error {
|
||||||
|
fn from(value: ArrowError) -> Self {
|
||||||
|
Self::LanceDB {
|
||||||
|
message: value.to_string(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl From<neon::result::Throw> for Error {
|
||||||
|
fn from(value: neon::result::Throw) -> Self {
|
||||||
|
Self::Neon {
|
||||||
|
message: value.to_string(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl<T> From<std::sync::mpsc::SendError<T>> for Error {
|
||||||
|
fn from(value: std::sync::mpsc::SendError<T>) -> Self {
|
||||||
|
Self::Neon {
|
||||||
|
message: value.to_string(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// ResultExt is used to transform a [`Result`] into a [`NeonResult`],
|
||||||
|
/// so it can be returned as a JavaScript error
|
||||||
|
/// Copied from [Neon](https://github.com/neon-bindings/neon/blob/4c2e455a9e6814f1ba0178616d63caec7f4df317/crates/neon/src/result/mod.rs#L88)
|
||||||
|
pub trait ResultExt<T> {
|
||||||
|
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T>;
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Implement ResultExt for the std Result so it can be used any Result type
|
||||||
|
impl<T, E> ResultExt<T> for std::result::Result<T, E>
|
||||||
|
where
|
||||||
|
E: std::fmt::Display,
|
||||||
|
{
|
||||||
|
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T> {
|
||||||
|
match self {
|
||||||
|
Ok(value) => Ok(value),
|
||||||
|
Err(error) => cx.throw_error(error.to_string()),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -12,40 +12,38 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
use std::convert::TryFrom;
|
|
||||||
|
|
||||||
use lance::index::vector::ivf::IvfBuildParams;
|
use lance::index::vector::ivf::IvfBuildParams;
|
||||||
use lance::index::vector::pq::PQBuildParams;
|
use lance::index::vector::pq::PQBuildParams;
|
||||||
use lance::index::vector::MetricType;
|
use lance::index::vector::MetricType;
|
||||||
use neon::context::FunctionContext;
|
use neon::context::FunctionContext;
|
||||||
use neon::prelude::*;
|
use neon::prelude::*;
|
||||||
|
use std::convert::TryFrom;
|
||||||
|
|
||||||
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
|
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
|
||||||
|
|
||||||
use crate::{runtime, JsTable};
|
use crate::error::Error::InvalidIndexType;
|
||||||
|
use crate::error::ResultExt;
|
||||||
|
use crate::neon_ext::js_object_ext::JsObjectExt;
|
||||||
|
use crate::runtime;
|
||||||
|
use crate::table::JsTable;
|
||||||
|
|
||||||
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
let index_params = cx.argument::<JsObject>(0)?;
|
let index_params = cx.argument::<JsObject>(0)?;
|
||||||
let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap();
|
let index_params_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?;
|
||||||
|
|
||||||
let rt = runtime(&mut cx)?;
|
let rt = runtime(&mut cx)?;
|
||||||
let channel = cx.channel();
|
|
||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
let (deferred, promise) = cx.promise();
|
||||||
let table = js_table.table.clone();
|
let channel = cx.channel();
|
||||||
|
let mut table = js_table.table.clone();
|
||||||
|
|
||||||
rt.block_on(async move {
|
rt.spawn(async move {
|
||||||
let add_result = table
|
let idx_result = table.create_index(&index_params_builder).await;
|
||||||
.lock()
|
|
||||||
.unwrap()
|
|
||||||
.create_index(&index_params_builder)
|
|
||||||
.await;
|
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
add_result
|
idx_result.or_throw(&mut cx)?;
|
||||||
.map(|_| cx.undefined())
|
Ok(cx.boxed(JsTable::from(table)))
|
||||||
.or_else(|err| cx.throw_error(err.to_string()))
|
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
Ok(promise)
|
Ok(promise)
|
||||||
@@ -54,27 +52,21 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
|
|||||||
fn get_index_params_builder(
|
fn get_index_params_builder(
|
||||||
cx: &mut FunctionContext,
|
cx: &mut FunctionContext,
|
||||||
obj: Handle<JsObject>,
|
obj: Handle<JsObject>,
|
||||||
) -> Result<impl VectorIndexBuilder, String> {
|
) -> crate::error::Result<impl VectorIndexBuilder> {
|
||||||
let idx_type = obj
|
let idx_type = obj.get::<JsString, _, _>(cx, "type")?.value(cx);
|
||||||
.get::<JsString, _, _>(cx, "type")
|
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.value(cx);
|
|
||||||
|
|
||||||
match idx_type.as_str() {
|
match idx_type.as_str() {
|
||||||
"ivf_pq" => {
|
"ivf_pq" => {
|
||||||
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
|
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
|
||||||
let mut pq_params = PQBuildParams::default();
|
let mut pq_params = PQBuildParams::default();
|
||||||
|
|
||||||
obj.get_opt::<JsString, _, _>(cx, "column")
|
obj.get_opt::<JsString, _, _>(cx, "column")?
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| index_builder.column(s.value(cx)));
|
.map(|s| index_builder.column(s.value(cx)));
|
||||||
|
|
||||||
obj.get_opt::<JsString, _, _>(cx, "index_name")
|
obj.get_opt::<JsString, _, _>(cx, "index_name")?
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| index_builder.index_name(s.value(cx)));
|
.map(|s| index_builder.index_name(s.value(cx)));
|
||||||
|
|
||||||
obj.get_opt::<JsString, _, _>(cx, "metric_type")
|
obj.get_opt::<JsString, _, _>(cx, "metric_type")?
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| MetricType::try_from(s.value(cx).as_str()))
|
.map(|s| MetricType::try_from(s.value(cx).as_str()))
|
||||||
.map(|mt| {
|
.map(|mt| {
|
||||||
let metric_type = mt.unwrap();
|
let metric_type = mt.unwrap();
|
||||||
@@ -82,15 +74,8 @@ fn get_index_params_builder(
|
|||||||
pq_params.metric_type = metric_type;
|
pq_params.metric_type = metric_type;
|
||||||
});
|
});
|
||||||
|
|
||||||
let num_partitions = obj
|
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
|
||||||
.get_opt::<JsNumber, _, _>(cx, "num_partitions")
|
let max_iters = obj.get_opt_usize(cx, "max_iters")?;
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| s.value(cx) as usize);
|
|
||||||
|
|
||||||
let max_iters = obj
|
|
||||||
.get_opt::<JsNumber, _, _>(cx, "max_iters")
|
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| s.value(cx) as usize);
|
|
||||||
|
|
||||||
num_partitions.map(|np| {
|
num_partitions.map(|np| {
|
||||||
let max_iters = max_iters.unwrap_or(50);
|
let max_iters = max_iters.unwrap_or(50);
|
||||||
@@ -102,32 +87,28 @@ fn get_index_params_builder(
|
|||||||
index_builder.ivf_params(ivf_params)
|
index_builder.ivf_params(ivf_params)
|
||||||
});
|
});
|
||||||
|
|
||||||
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")
|
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| pq_params.use_opq = s.value(cx));
|
.map(|s| pq_params.use_opq = s.value(cx));
|
||||||
|
|
||||||
obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors")
|
obj.get_opt_usize(cx, "num_sub_vectors")?
|
||||||
.map_err(|t| t.to_string())?
|
.map(|s| pq_params.num_sub_vectors = s);
|
||||||
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
|
|
||||||
|
|
||||||
obj.get_opt::<JsNumber, _, _>(cx, "num_bits")
|
obj.get_opt_usize(cx, "num_bits")?
|
||||||
.map_err(|t| t.to_string())?
|
.map(|s| pq_params.num_bits = s);
|
||||||
.map(|s| pq_params.num_bits = s.value(cx) as usize);
|
|
||||||
|
|
||||||
obj.get_opt::<JsNumber, _, _>(cx, "max_iters")
|
obj.get_opt_usize(cx, "max_iters")?
|
||||||
.map_err(|t| t.to_string())?
|
.map(|s| pq_params.max_iters = s);
|
||||||
.map(|s| pq_params.max_iters = s.value(cx) as usize);
|
|
||||||
|
|
||||||
obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters")
|
obj.get_opt_usize(cx, "max_opq_iters")?
|
||||||
.map_err(|t| t.to_string())?
|
.map(|s| pq_params.max_opq_iters = s);
|
||||||
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
|
|
||||||
|
|
||||||
obj.get_opt::<JsBoolean, _, _>(cx, "replace")
|
obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
|
||||||
.map_err(|t| t.to_string())?
|
|
||||||
.map(|s| index_builder.replace(s.value(cx)));
|
.map(|s| index_builder.replace(s.value(cx)));
|
||||||
|
|
||||||
Ok(index_builder)
|
Ok(index_builder)
|
||||||
}
|
}
|
||||||
t => Err(format!("{} is not a valid index type", t).to_string()),
|
index_type => Err(InvalidIndexType {
|
||||||
|
index_type: index_type.into(),
|
||||||
|
}),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -12,34 +12,30 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
use std::collections::HashMap;
|
use std::sync::Arc;
|
||||||
use std::convert::TryFrom;
|
|
||||||
use std::ops::Deref;
|
|
||||||
use std::sync::{Arc, Mutex};
|
|
||||||
|
|
||||||
use arrow_array::{Float32Array, RecordBatchIterator};
|
|
||||||
use arrow_ipc::writer::FileWriter;
|
|
||||||
use async_trait::async_trait;
|
use async_trait::async_trait;
|
||||||
use futures::{TryFutureExt, TryStreamExt};
|
|
||||||
use lance::dataset::{WriteMode, WriteParams};
|
|
||||||
use lance::index::vector::MetricType;
|
|
||||||
use lance::io::object_store::ObjectStoreParams;
|
use lance::io::object_store::ObjectStoreParams;
|
||||||
use neon::prelude::*;
|
use neon::prelude::*;
|
||||||
use neon::types::buffer::TypedArray;
|
|
||||||
use object_store::aws::{AwsCredential, AwsCredentialProvider};
|
use object_store::aws::{AwsCredential, AwsCredentialProvider};
|
||||||
use object_store::CredentialProvider;
|
use object_store::CredentialProvider;
|
||||||
use once_cell::sync::OnceCell;
|
use once_cell::sync::OnceCell;
|
||||||
use tokio::runtime::Runtime;
|
use tokio::runtime::Runtime;
|
||||||
|
|
||||||
use vectordb::database::Database;
|
use vectordb::database::Database;
|
||||||
use vectordb::error::Error;
|
use vectordb::table::ReadParams;
|
||||||
use vectordb::table::{ReadParams, Table};
|
|
||||||
|
|
||||||
use crate::arrow::arrow_buffer_to_record_batch;
|
use crate::error::ResultExt;
|
||||||
|
use crate::query::JsQuery;
|
||||||
|
use crate::table::JsTable;
|
||||||
|
|
||||||
mod arrow;
|
mod arrow;
|
||||||
mod convert;
|
mod convert;
|
||||||
|
mod error;
|
||||||
mod index;
|
mod index;
|
||||||
|
mod neon_ext;
|
||||||
|
mod query;
|
||||||
|
mod table;
|
||||||
|
|
||||||
struct JsDatabase {
|
struct JsDatabase {
|
||||||
database: Arc<Database>,
|
database: Arc<Database>,
|
||||||
@@ -47,12 +43,6 @@ struct JsDatabase {
|
|||||||
|
|
||||||
impl Finalize for JsDatabase {}
|
impl Finalize for JsDatabase {}
|
||||||
|
|
||||||
struct JsTable {
|
|
||||||
table: Arc<Mutex<Table>>,
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Finalize for JsTable {}
|
|
||||||
|
|
||||||
// TODO: object_store didn't export this type so I copied it.
|
// TODO: object_store didn't export this type so I copied it.
|
||||||
// Make a request to object_store to export this type
|
// Make a request to object_store to export this type
|
||||||
#[derive(Debug)]
|
#[derive(Debug)]
|
||||||
@@ -86,7 +76,7 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
|
|||||||
|
|
||||||
LOG.get_or_init(|| env_logger::init());
|
LOG.get_or_init(|| env_logger::init());
|
||||||
|
|
||||||
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
|
RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx))
|
||||||
}
|
}
|
||||||
|
|
||||||
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
@@ -101,7 +91,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
let db = JsDatabase {
|
let db = JsDatabase {
|
||||||
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
|
database: Arc::new(database.or_throw(&mut cx)?),
|
||||||
};
|
};
|
||||||
Ok(cx.boxed(db))
|
Ok(cx.boxed(db))
|
||||||
});
|
});
|
||||||
@@ -123,7 +113,7 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|||||||
let tables_rst = database.table_names().await;
|
let tables_rst = database.table_names().await;
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
|
let tables = tables_rst.or_throw(&mut cx)?;
|
||||||
let table_names = convert::vec_str_to_array(&tables, &mut cx);
|
let table_names = convert::vec_str_to_array(&tables, &mut cx);
|
||||||
table_names
|
table_names
|
||||||
});
|
});
|
||||||
@@ -194,10 +184,8 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|||||||
let table_rst = database.open_table_with_params(&table_name, ¶ms).await;
|
let table_rst = database.open_table_with_params(&table_name, ¶ms).await;
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
let table = Arc::new(Mutex::new(
|
let js_table = JsTable::from(table_rst.or_throw(&mut cx)?);
|
||||||
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
|
Ok(cx.boxed(js_table))
|
||||||
));
|
|
||||||
Ok(cx.boxed(JsTable { table }))
|
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
Ok(promise)
|
Ok(promise)
|
||||||
@@ -217,245 +205,24 @@ fn database_drop_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|||||||
rt.spawn(async move {
|
rt.spawn(async move {
|
||||||
let result = database.drop_table(&table_name).await;
|
let result = database.drop_table(&table_name).await;
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
result.or_else(|err| cx.throw_error(err.to_string()))?;
|
result.or_throw(&mut cx)?;
|
||||||
Ok(cx.null())
|
Ok(cx.null())
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
Ok(promise)
|
Ok(promise)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|
||||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
|
||||||
let query_obj = cx.argument::<JsObject>(0)?;
|
|
||||||
|
|
||||||
let limit = query_obj
|
|
||||||
.get::<JsNumber, _, _>(&mut cx, "_limit")?
|
|
||||||
.value(&mut cx);
|
|
||||||
let select = query_obj
|
|
||||||
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
|
||||||
.map(|arr| {
|
|
||||||
let js_array = arr.deref();
|
|
||||||
let mut projection_vec: Vec<String> = Vec::new();
|
|
||||||
for i in 0..js_array.len(&mut cx) {
|
|
||||||
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
|
|
||||||
projection_vec.push(entry.value(&mut cx));
|
|
||||||
}
|
|
||||||
projection_vec
|
|
||||||
});
|
|
||||||
let filter = query_obj
|
|
||||||
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
|
|
||||||
.map(|s| s.value(&mut cx));
|
|
||||||
let refine_factor = query_obj
|
|
||||||
.get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
|
|
||||||
.map(|s| s.value(&mut cx))
|
|
||||||
.map(|i| i as u32);
|
|
||||||
let nprobes = query_obj
|
|
||||||
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
|
|
||||||
.value(&mut cx) as usize;
|
|
||||||
let metric_type = query_obj
|
|
||||||
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
|
|
||||||
.map(|s| s.value(&mut cx))
|
|
||||||
.map(|s| MetricType::try_from(s.as_str()).unwrap());
|
|
||||||
|
|
||||||
let rt = runtime(&mut cx)?;
|
|
||||||
let channel = cx.channel();
|
|
||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
|
||||||
let table = js_table.table.clone();
|
|
||||||
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
|
|
||||||
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
|
|
||||||
|
|
||||||
rt.spawn(async move {
|
|
||||||
let builder = table
|
|
||||||
.lock()
|
|
||||||
.unwrap()
|
|
||||||
.search(Float32Array::from(query))
|
|
||||||
.limit(limit as usize)
|
|
||||||
.refine_factor(refine_factor)
|
|
||||||
.nprobes(nprobes)
|
|
||||||
.filter(filter)
|
|
||||||
.metric_type(metric_type)
|
|
||||||
.select(select);
|
|
||||||
let record_batch_stream = builder.execute();
|
|
||||||
let results = record_batch_stream
|
|
||||||
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
|
|
||||||
.await;
|
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
|
||||||
let results = results.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
let vector: Vec<u8> = Vec::new();
|
|
||||||
|
|
||||||
if results.is_empty() {
|
|
||||||
return cx.buffer(0);
|
|
||||||
}
|
|
||||||
|
|
||||||
let schema = results.get(0).unwrap().schema();
|
|
||||||
let mut fr = FileWriter::try_new(vector, schema.deref())
|
|
||||||
.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
|
|
||||||
for batch in results.iter() {
|
|
||||||
fr.write(batch)
|
|
||||||
.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
}
|
|
||||||
fr.finish().or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
let buf = fr
|
|
||||||
.into_inner()
|
|
||||||
.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
Ok(JsBuffer::external(&mut cx, buf))
|
|
||||||
});
|
|
||||||
});
|
|
||||||
Ok(promise)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|
||||||
let db = cx
|
|
||||||
.this()
|
|
||||||
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
|
|
||||||
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
|
|
||||||
let buffer = cx.argument::<JsBuffer>(1)?;
|
|
||||||
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
|
|
||||||
let schema = batches[0].schema();
|
|
||||||
|
|
||||||
// Write mode
|
|
||||||
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
|
|
||||||
"overwrite" => WriteMode::Overwrite,
|
|
||||||
"append" => WriteMode::Append,
|
|
||||||
"create" => WriteMode::Create,
|
|
||||||
_ => return cx.throw_error("Table::create only supports 'overwrite' and 'create' modes"),
|
|
||||||
};
|
|
||||||
|
|
||||||
let rt = runtime(&mut cx)?;
|
|
||||||
let channel = cx.channel();
|
|
||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
|
||||||
let database = db.database.clone();
|
|
||||||
|
|
||||||
let aws_creds = match get_aws_creds(&mut cx, 3) {
|
|
||||||
Ok(creds) => creds,
|
|
||||||
Err(err) => return err,
|
|
||||||
};
|
|
||||||
|
|
||||||
let params = WriteParams {
|
|
||||||
store_params: Some(ObjectStoreParams {
|
|
||||||
aws_credentials: aws_creds,
|
|
||||||
..ObjectStoreParams::default()
|
|
||||||
}),
|
|
||||||
mode: mode,
|
|
||||||
..WriteParams::default()
|
|
||||||
};
|
|
||||||
|
|
||||||
rt.block_on(async move {
|
|
||||||
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
|
|
||||||
let table_rst = database
|
|
||||||
.create_table(&table_name, batch_reader, Some(params))
|
|
||||||
.await;
|
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
|
||||||
let table = Arc::new(Mutex::new(
|
|
||||||
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
|
|
||||||
));
|
|
||||||
Ok(cx.boxed(JsTable { table }))
|
|
||||||
});
|
|
||||||
});
|
|
||||||
Ok(promise)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|
||||||
let write_mode_map: HashMap<&str, WriteMode> = HashMap::from([
|
|
||||||
("create", WriteMode::Create),
|
|
||||||
("append", WriteMode::Append),
|
|
||||||
("overwrite", WriteMode::Overwrite),
|
|
||||||
]);
|
|
||||||
|
|
||||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
|
||||||
let buffer = cx.argument::<JsBuffer>(0)?;
|
|
||||||
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
|
|
||||||
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
|
|
||||||
let schema = batches[0].schema();
|
|
||||||
|
|
||||||
let rt = runtime(&mut cx)?;
|
|
||||||
let channel = cx.channel();
|
|
||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
|
||||||
let table = js_table.table.clone();
|
|
||||||
let write_mode = write_mode_map.get(write_mode.as_str()).cloned();
|
|
||||||
|
|
||||||
let aws_creds = match get_aws_creds(&mut cx, 2) {
|
|
||||||
Ok(creds) => creds,
|
|
||||||
Err(err) => return err,
|
|
||||||
};
|
|
||||||
|
|
||||||
let params = WriteParams {
|
|
||||||
store_params: Some(ObjectStoreParams {
|
|
||||||
aws_credentials: aws_creds,
|
|
||||||
..ObjectStoreParams::default()
|
|
||||||
}),
|
|
||||||
mode: write_mode.unwrap_or(WriteMode::Append),
|
|
||||||
..WriteParams::default()
|
|
||||||
};
|
|
||||||
|
|
||||||
rt.block_on(async move {
|
|
||||||
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
|
|
||||||
let add_result = table.lock().unwrap().add(batch_reader, Some(params)).await;
|
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
|
||||||
let _added = add_result.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
Ok(cx.boolean(true))
|
|
||||||
});
|
|
||||||
});
|
|
||||||
Ok(promise)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|
||||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
|
||||||
let rt = runtime(&mut cx)?;
|
|
||||||
let channel = cx.channel();
|
|
||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
|
||||||
let table = js_table.table.clone();
|
|
||||||
|
|
||||||
rt.block_on(async move {
|
|
||||||
let num_rows_result = table.lock().unwrap().count_rows().await;
|
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
|
||||||
let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
Ok(cx.number(num_rows as f64))
|
|
||||||
});
|
|
||||||
});
|
|
||||||
Ok(promise)
|
|
||||||
}
|
|
||||||
|
|
||||||
fn table_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
|
||||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
|
||||||
let rt = runtime(&mut cx)?;
|
|
||||||
let channel = cx.channel();
|
|
||||||
|
|
||||||
let (deferred, promise) = cx.promise();
|
|
||||||
let table = js_table.table.clone();
|
|
||||||
|
|
||||||
let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
|
|
||||||
|
|
||||||
let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await });
|
|
||||||
|
|
||||||
deferred.settle_with(&channel, move |mut cx| {
|
|
||||||
delete_result.or_else(|err| cx.throw_error(err.to_string()))?;
|
|
||||||
Ok(cx.undefined())
|
|
||||||
});
|
|
||||||
|
|
||||||
Ok(promise)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[neon::main]
|
#[neon::main]
|
||||||
fn main(mut cx: ModuleContext) -> NeonResult<()> {
|
fn main(mut cx: ModuleContext) -> NeonResult<()> {
|
||||||
cx.export_function("databaseNew", database_new)?;
|
cx.export_function("databaseNew", database_new)?;
|
||||||
cx.export_function("databaseTableNames", database_table_names)?;
|
cx.export_function("databaseTableNames", database_table_names)?;
|
||||||
cx.export_function("databaseOpenTable", database_open_table)?;
|
cx.export_function("databaseOpenTable", database_open_table)?;
|
||||||
cx.export_function("databaseDropTable", database_drop_table)?;
|
cx.export_function("databaseDropTable", database_drop_table)?;
|
||||||
cx.export_function("tableSearch", table_search)?;
|
cx.export_function("tableSearch", JsQuery::js_search)?;
|
||||||
cx.export_function("tableCreate", table_create)?;
|
cx.export_function("tableCreate", JsTable::js_create)?;
|
||||||
cx.export_function("tableAdd", table_add)?;
|
cx.export_function("tableAdd", JsTable::js_add)?;
|
||||||
cx.export_function("tableCountRows", table_count_rows)?;
|
cx.export_function("tableCountRows", JsTable::js_count_rows)?;
|
||||||
cx.export_function("tableDelete", table_delete)?;
|
cx.export_function("tableDelete", JsTable::js_delete)?;
|
||||||
cx.export_function(
|
cx.export_function(
|
||||||
"tableCreateVectorIndex",
|
"tableCreateVectorIndex",
|
||||||
index::vector::table_create_vector_index,
|
index::vector::table_create_vector_index,
|
||||||
|
|||||||
15
rust/ffi/node/src/neon_ext.rs
Normal file
15
rust/ffi/node/src/neon_ext.rs
Normal file
@@ -0,0 +1,15 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
pub mod js_object_ext;
|
||||||
82
rust/ffi/node/src/neon_ext/js_object_ext.rs
Normal file
82
rust/ffi/node/src/neon_ext/js_object_ext.rs
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
use crate::error::{Error, Result};
|
||||||
|
use neon::prelude::*;
|
||||||
|
|
||||||
|
// extends neon's [JsObject] with helper functions to extract properties
|
||||||
|
pub trait JsObjectExt {
|
||||||
|
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>>;
|
||||||
|
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize>;
|
||||||
|
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>>;
|
||||||
|
}
|
||||||
|
|
||||||
|
impl JsObjectExt for JsObject {
|
||||||
|
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>> {
|
||||||
|
let val_opt = self
|
||||||
|
.get_opt::<JsNumber, _, _>(cx, key)?
|
||||||
|
.map(|s| f64_to_u32_safe(s.value(cx), key));
|
||||||
|
val_opt.transpose()
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize> {
|
||||||
|
let val = self.get::<JsNumber, _, _>(cx, key)?.value(cx);
|
||||||
|
f64_to_usize_safe(val, key)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>> {
|
||||||
|
let val_opt = self
|
||||||
|
.get_opt::<JsNumber, _, _>(cx, key)?
|
||||||
|
.map(|s| f64_to_usize_safe(s.value(cx), key));
|
||||||
|
val_opt.transpose()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
|
||||||
|
use conv::*;
|
||||||
|
|
||||||
|
n.approx_as::<u32>().map_err(|e| match e {
|
||||||
|
FloatError::NegOverflow(_) => Error::RangeError {
|
||||||
|
name: key.into(),
|
||||||
|
message: "must be > 0".to_string(),
|
||||||
|
},
|
||||||
|
FloatError::PosOverflow(_) => Error::RangeError {
|
||||||
|
name: key.into(),
|
||||||
|
message: format!("must be < {}", u32::MAX),
|
||||||
|
},
|
||||||
|
FloatError::NotANumber(_) => Error::RangeError {
|
||||||
|
name: key.into(),
|
||||||
|
message: "not a valid number".to_string(),
|
||||||
|
},
|
||||||
|
})
|
||||||
|
}
|
||||||
|
|
||||||
|
fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
|
||||||
|
use conv::*;
|
||||||
|
|
||||||
|
n.approx_as::<usize>().map_err(|e| match e {
|
||||||
|
FloatError::NegOverflow(_) => Error::RangeError {
|
||||||
|
name: key.into(),
|
||||||
|
message: "must be > 0".to_string(),
|
||||||
|
},
|
||||||
|
FloatError::PosOverflow(_) => Error::RangeError {
|
||||||
|
name: key.into(),
|
||||||
|
message: format!("must be < {}", usize::MAX),
|
||||||
|
},
|
||||||
|
FloatError::NotANumber(_) => Error::RangeError {
|
||||||
|
name: key.into(),
|
||||||
|
message: "not a valid number".to_string(),
|
||||||
|
},
|
||||||
|
})
|
||||||
|
}
|
||||||
84
rust/ffi/node/src/query.rs
Normal file
84
rust/ffi/node/src/query.rs
Normal file
@@ -0,0 +1,84 @@
|
|||||||
|
use std::convert::TryFrom;
|
||||||
|
use std::ops::Deref;
|
||||||
|
|
||||||
|
use arrow_array::Float32Array;
|
||||||
|
use futures::{TryFutureExt, TryStreamExt};
|
||||||
|
use lance::index::vector::MetricType;
|
||||||
|
use neon::context::FunctionContext;
|
||||||
|
use neon::handle::Handle;
|
||||||
|
use neon::prelude::*;
|
||||||
|
|
||||||
|
use crate::arrow::record_batch_to_buffer;
|
||||||
|
use crate::error::ResultExt;
|
||||||
|
use crate::neon_ext::js_object_ext::JsObjectExt;
|
||||||
|
use crate::table::JsTable;
|
||||||
|
use crate::{convert, runtime};
|
||||||
|
|
||||||
|
pub(crate) struct JsQuery {}
|
||||||
|
|
||||||
|
impl JsQuery {
|
||||||
|
pub(crate) fn js_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
|
let query_obj = cx.argument::<JsObject>(0)?;
|
||||||
|
|
||||||
|
let limit = query_obj
|
||||||
|
.get::<JsNumber, _, _>(&mut cx, "_limit")?
|
||||||
|
.value(&mut cx);
|
||||||
|
let select = query_obj
|
||||||
|
.get_opt::<JsArray, _, _>(&mut cx, "_select")?
|
||||||
|
.map(|arr| {
|
||||||
|
let js_array = arr.deref();
|
||||||
|
let mut projection_vec: Vec<String> = Vec::new();
|
||||||
|
for i in 0..js_array.len(&mut cx) {
|
||||||
|
let entry: Handle<JsString> = js_array.get(&mut cx, i).unwrap();
|
||||||
|
projection_vec.push(entry.value(&mut cx));
|
||||||
|
}
|
||||||
|
projection_vec
|
||||||
|
});
|
||||||
|
let filter = query_obj
|
||||||
|
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
|
||||||
|
.map(|s| s.value(&mut cx));
|
||||||
|
let refine_factor = query_obj
|
||||||
|
.get_opt_u32(&mut cx, "_refineFactor")
|
||||||
|
.or_throw(&mut cx)?;
|
||||||
|
let nprobes = query_obj.get_usize(&mut cx, "_nprobes").or_throw(&mut cx)?;
|
||||||
|
let metric_type = query_obj
|
||||||
|
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
|
||||||
|
.map(|s| s.value(&mut cx))
|
||||||
|
.map(|s| MetricType::try_from(s.as_str()).unwrap());
|
||||||
|
|
||||||
|
let rt = runtime(&mut cx)?;
|
||||||
|
|
||||||
|
let (deferred, promise) = cx.promise();
|
||||||
|
let channel = cx.channel();
|
||||||
|
let query_vector = query_obj.get::<JsArray, _, _>(&mut cx, "_queryVector")?;
|
||||||
|
let query = convert::js_array_to_vec(query_vector.deref(), &mut cx);
|
||||||
|
let table = js_table.table.clone();
|
||||||
|
|
||||||
|
rt.spawn(async move {
|
||||||
|
let builder = table
|
||||||
|
.search(Float32Array::from(query))
|
||||||
|
.limit(limit as usize)
|
||||||
|
.refine_factor(refine_factor)
|
||||||
|
.nprobes(nprobes)
|
||||||
|
.filter(filter)
|
||||||
|
.metric_type(metric_type)
|
||||||
|
.select(select);
|
||||||
|
let record_batch_stream = builder.execute();
|
||||||
|
let results = record_batch_stream
|
||||||
|
.and_then(|stream| {
|
||||||
|
stream
|
||||||
|
.try_collect::<Vec<_>>()
|
||||||
|
.map_err(vectordb::error::Error::from)
|
||||||
|
})
|
||||||
|
.await;
|
||||||
|
|
||||||
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
|
let results = results.or_throw(&mut cx)?;
|
||||||
|
let buffer = record_batch_to_buffer(results).or_throw(&mut cx)?;
|
||||||
|
Ok(JsBuffer::external(&mut cx, buffer))
|
||||||
|
});
|
||||||
|
});
|
||||||
|
Ok(promise)
|
||||||
|
}
|
||||||
|
}
|
||||||
174
rust/ffi/node/src/table.rs
Normal file
174
rust/ffi/node/src/table.rs
Normal file
@@ -0,0 +1,174 @@
|
|||||||
|
// Copyright 2023 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
use arrow_array::RecordBatchIterator;
|
||||||
|
use lance::dataset::{WriteMode, WriteParams};
|
||||||
|
use lance::io::object_store::ObjectStoreParams;
|
||||||
|
|
||||||
|
use crate::arrow::arrow_buffer_to_record_batch;
|
||||||
|
use neon::prelude::*;
|
||||||
|
use neon::types::buffer::TypedArray;
|
||||||
|
use vectordb::Table;
|
||||||
|
|
||||||
|
use crate::error::ResultExt;
|
||||||
|
use crate::{get_aws_creds, runtime, JsDatabase};
|
||||||
|
|
||||||
|
pub(crate) struct JsTable {
|
||||||
|
pub table: Table,
|
||||||
|
}
|
||||||
|
|
||||||
|
impl Finalize for JsTable {}
|
||||||
|
|
||||||
|
impl From<Table> for JsTable {
|
||||||
|
fn from(table: Table) -> Self {
|
||||||
|
JsTable { table }
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
impl JsTable {
|
||||||
|
pub(crate) fn js_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
|
let db = cx
|
||||||
|
.this()
|
||||||
|
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
|
||||||
|
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
|
||||||
|
let buffer = cx.argument::<JsBuffer>(1)?;
|
||||||
|
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
|
||||||
|
let schema = batches[0].schema();
|
||||||
|
|
||||||
|
// Write mode
|
||||||
|
let mode = match cx.argument::<JsString>(2)?.value(&mut cx).as_str() {
|
||||||
|
"overwrite" => WriteMode::Overwrite,
|
||||||
|
"append" => WriteMode::Append,
|
||||||
|
"create" => WriteMode::Create,
|
||||||
|
_ => {
|
||||||
|
return cx.throw_error("Table::create only supports 'overwrite' and 'create' modes")
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
let rt = runtime(&mut cx)?;
|
||||||
|
let channel = cx.channel();
|
||||||
|
|
||||||
|
let (deferred, promise) = cx.promise();
|
||||||
|
let database = db.database.clone();
|
||||||
|
|
||||||
|
let aws_creds = match get_aws_creds(&mut cx, 3) {
|
||||||
|
Ok(creds) => creds,
|
||||||
|
Err(err) => return err,
|
||||||
|
};
|
||||||
|
|
||||||
|
let params = WriteParams {
|
||||||
|
store_params: Some(ObjectStoreParams {
|
||||||
|
aws_credentials: aws_creds,
|
||||||
|
..ObjectStoreParams::default()
|
||||||
|
}),
|
||||||
|
mode: mode,
|
||||||
|
..WriteParams::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
rt.spawn(async move {
|
||||||
|
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
|
||||||
|
let table_rst = database
|
||||||
|
.create_table(&table_name, batch_reader, Some(params))
|
||||||
|
.await;
|
||||||
|
|
||||||
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
|
let table = table_rst.or_throw(&mut cx)?;
|
||||||
|
Ok(cx.boxed(JsTable::from(table)))
|
||||||
|
});
|
||||||
|
});
|
||||||
|
Ok(promise)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) fn js_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
|
let buffer = cx.argument::<JsBuffer>(0)?;
|
||||||
|
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
|
||||||
|
|
||||||
|
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
|
||||||
|
let schema = batches[0].schema();
|
||||||
|
|
||||||
|
let rt = runtime(&mut cx)?;
|
||||||
|
let channel = cx.channel();
|
||||||
|
let mut table = js_table.table.clone();
|
||||||
|
|
||||||
|
let (deferred, promise) = cx.promise();
|
||||||
|
let write_mode = match write_mode.as_str() {
|
||||||
|
"create" => WriteMode::Create,
|
||||||
|
"append" => WriteMode::Append,
|
||||||
|
"overwrite" => WriteMode::Overwrite,
|
||||||
|
s => return cx.throw_error(format!("invalid write mode {}", s)),
|
||||||
|
};
|
||||||
|
let aws_creds = match get_aws_creds(&mut cx, 2) {
|
||||||
|
Ok(creds) => creds,
|
||||||
|
Err(err) => return err,
|
||||||
|
};
|
||||||
|
|
||||||
|
let params = WriteParams {
|
||||||
|
store_params: Some(ObjectStoreParams {
|
||||||
|
aws_credentials: aws_creds,
|
||||||
|
..ObjectStoreParams::default()
|
||||||
|
}),
|
||||||
|
mode: write_mode,
|
||||||
|
..WriteParams::default()
|
||||||
|
};
|
||||||
|
|
||||||
|
rt.spawn(async move {
|
||||||
|
let batch_reader = RecordBatchIterator::new(batches.into_iter().map(Ok), schema);
|
||||||
|
let add_result = table.add(batch_reader, Some(params)).await;
|
||||||
|
|
||||||
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
|
let _added = add_result.or_throw(&mut cx)?;
|
||||||
|
Ok(cx.boxed(JsTable::from(table)))
|
||||||
|
});
|
||||||
|
});
|
||||||
|
Ok(promise)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) fn js_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
|
let rt = runtime(&mut cx)?;
|
||||||
|
let (deferred, promise) = cx.promise();
|
||||||
|
let channel = cx.channel();
|
||||||
|
let table = js_table.table.clone();
|
||||||
|
|
||||||
|
rt.spawn(async move {
|
||||||
|
let num_rows_result = table.count_rows().await;
|
||||||
|
|
||||||
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
|
let num_rows = num_rows_result.or_throw(&mut cx)?;
|
||||||
|
Ok(cx.number(num_rows as f64))
|
||||||
|
});
|
||||||
|
});
|
||||||
|
Ok(promise)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub(crate) fn js_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||||
|
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||||
|
let rt = runtime(&mut cx)?;
|
||||||
|
let (deferred, promise) = cx.promise();
|
||||||
|
let predicate = cx.argument::<JsString>(0)?.value(&mut cx);
|
||||||
|
let channel = cx.channel();
|
||||||
|
let mut table = js_table.table.clone();
|
||||||
|
|
||||||
|
rt.spawn(async move {
|
||||||
|
let delete_result = table.delete(&predicate).await;
|
||||||
|
|
||||||
|
deferred.settle_with(&channel, move |mut cx| {
|
||||||
|
delete_result.or_throw(&mut cx)?;
|
||||||
|
Ok(cx.boxed(JsTable::from(table)))
|
||||||
|
})
|
||||||
|
});
|
||||||
|
Ok(promise)
|
||||||
|
}
|
||||||
|
}
|
||||||
@@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "vectordb"
|
name = "vectordb"
|
||||||
version = "0.1.18"
|
version = "0.1.19"
|
||||||
edition = "2021"
|
edition = "2021"
|
||||||
description = "Serverless, low-latency vector database for AI applications"
|
description = "Serverless, low-latency vector database for AI applications"
|
||||||
license = "Apache-2.0"
|
license = "Apache-2.0"
|
||||||
@@ -12,7 +12,7 @@ arrow-array = { workspace = true }
|
|||||||
arrow-data = { workspace = true }
|
arrow-data = { workspace = true }
|
||||||
arrow-schema = { workspace = true }
|
arrow-schema = { workspace = true }
|
||||||
object_store = { workspace = true }
|
object_store = { workspace = true }
|
||||||
snafu = "0.7.4"
|
snafu = { workspace = true }
|
||||||
half = { workspace = true }
|
half = { workspace = true }
|
||||||
lance = { workspace = true }
|
lance = { workspace = true }
|
||||||
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
tokio = { version = "1.23", features = ["rt-multi-thread"] }
|
||||||
|
|||||||
@@ -53,7 +53,7 @@ impl Query {
|
|||||||
nprobes: 20,
|
nprobes: 20,
|
||||||
refine_factor: None,
|
refine_factor: None,
|
||||||
metric_type: None,
|
metric_type: None,
|
||||||
use_index: false,
|
use_index: true,
|
||||||
filter: None,
|
filter: None,
|
||||||
select: None,
|
select: None,
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user