Compare commits

...

12 Commits

Author SHA1 Message Date
Lance Release
b06e214d29 [python] Bump version: 0.1.15 → 0.1.16 2023-07-31 18:32:40 +00:00
Chang She
c1f8feb6ed make pandas an optional dependency in lancedb as well (#385) 2023-07-31 14:08:58 -04:00
Chang She
cada35d5b7 Improve pydantic integration (#384) 2023-07-31 12:16:44 -04:00
Chang She
2d25c263e9 Implement drop table if exists (#383) 2023-07-31 10:25:09 +02:00
gsilvestrin
bcd7f66dc7 fix(node): Handle overflows in the node bridge (#372)
- Fixes many numeric conversions that results in hard to reproduce issues
- JsObjectExt extends JsObject with safe methods to extract numericvalues
2023-07-28 13:15:21 -07:00
gsilvestrin
1daecac648 fix(python): Pin pylance and add pandas as test dependency (#373) 2023-07-27 15:21:45 -07:00
Lance Release
b8e656b2a7 Updating package-lock.json 2023-07-27 21:53:30 +00:00
Lance Release
ff7c1193a7 Updating package-lock.json 2023-07-27 21:06:32 +00:00
Lance Release
6d70e7c29b Bump version: 0.1.18 → 0.1.19 2023-07-27 21:06:17 +00:00
gsilvestrin
73cc12ecc5 fix(node): Relax EmbeddingFunction type guard (#370) 2023-07-27 12:51:59 -07:00
gsilvestrin
6036cf48a7 fix(node) Replace panic errors with friendlier ones (#366)
- Implement Result/Error in the node FFI
- Implement a trait (ResultExt) to make error handling less verbose
- Refactor some parts of the code that touch arrow into arrow.rs
2023-07-26 13:44:58 -07:00
Ayush Chaurasia
15f4787cc8 [Docs]: Add badges, CTA and updates examples (#358)
<img width="1054" alt="Screenshot 2023-07-24 at 6 13 00 PM"
src="https://github.com/lancedb/lancedb/assets/15766192/a263a17e-66d0-4591-adc7-b520aa5b23f6">
Is this a problem? Are we using metadata to track usage or something?
2023-07-26 16:35:46 +05:30
42 changed files with 658 additions and 205 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.1.18
current_version = 0.1.19
commit = True
message = Bump version: {current_version} → {new_version}
tag = True

View File

@@ -30,7 +30,7 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb
run: |
pip install -e .
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort
- name: Black
@@ -59,7 +59,7 @@ jobs:
python-version: "3.11"
- name: Install lancedb
run: |
pip install -e .
pip install -e .[tests]
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black
- name: Black

View File

@@ -13,4 +13,5 @@ arrow-schema = "42.0"
arrow-ipc = "42.0"
half = { "version" = "=2.2.1", default-features = false }
object_store = "0.6.1"
snafu = "0.7.4"

View File

@@ -57,12 +57,14 @@ nav:
- Basics: basic.md
- Embeddings: embedding.md
- Python full-text search: fts.md
- Python integrations:
- Integrations:
- Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
@@ -72,6 +74,7 @@ nav:
- Javascript examples:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- References:
- Vector Search: search.md
- SQL filters: sql.md

BIN
docs/src/assets/voxel.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 953 KiB

View File

@@ -4,4 +4,10 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -0,0 +1,71 @@
![example](/assets/voxel.gif)
Basic recipe
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne
2) Compute embedding vectors for samples or patches in your dataset, or select
a model to use to generate embeddings
3) Use the `compute_similarity()`
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with
`sort_by_similarity()`
5) If desired, delete the table
The example below demonstrates this workflow.
!!! Note
You must install the LanceDB Python client to run this
```
pip install lancedb
```
```python
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
model="clip-vit-base32-torch",
brain_key="lancedb_index",
backend="lancedb",
)
```
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
query = dataset.first().id # query by sample ID
view = dataset.sort_by_similarity(
query,
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
# Step 5 (optional): Cleanup
# Delete the LanceDB table
lancedb_index.cleanup()
# Delete run record from FiftyOne
dataset.delete_brain_run("lancedb_index")
```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)

View File

@@ -10,7 +10,11 @@
"\n",
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
"\n",
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)"
]
},
{

View File

@@ -1,5 +1,14 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![example](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227)\n",
"\n",
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py) |"
]
},
{
"cell_type": "code",
"execution_count": 2,
@@ -42,6 +51,19 @@
"## First run setup: Download data and pre-process"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Get dataset\n",
"\n",
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
"!tar -xvf diffusiondb_lance.tar.gz\n",
"!mv diffusiondb_test rawdata.lance\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
@@ -247,7 +269,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"display_name": "Python 3.11.4 64-bit",
"language": "python",
"name": "python3"
},
@@ -261,7 +283,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.11.4"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
}
},
"nbformat": 4,

View File

@@ -8,7 +8,12 @@
"source": [
"# Youtube Transcript Search QA Bot\n",
"\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n",
"\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)\n"
]
},
{

View File

@@ -1,6 +1,8 @@
# Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
## Schema

View File

@@ -7,7 +7,8 @@ excluded_files = [
"../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md"
"../src/examples/youtube_transcript_bot_with_nodejs.md",
"../src/integrations/voxel51.md",
]
python_prefix = "py"

74
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{
"name": "vectordb",
"version": "0.1.18",
"version": "0.1.19",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "vectordb",
"version": "0.1.18",
"version": "0.1.19",
"cpu": [
"x64",
"arm64"
@@ -51,11 +51,11 @@
"typescript": "*"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.18",
"@lancedb/vectordb-darwin-x64": "0.1.18",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.18",
"@lancedb/vectordb-linux-x64-gnu": "0.1.18",
"@lancedb/vectordb-win32-x64-msvc": "0.1.18"
"@lancedb/vectordb-darwin-arm64": "0.1.19",
"@lancedb/vectordb-darwin-x64": "0.1.19",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
}
},
"node_modules/@apache-arrow/ts": {
@@ -315,9 +315,9 @@
}
},
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.18.tgz",
"integrity": "sha512-vu8MCFgaAAGmTJF+4RaoApROMpRVVgrCk+V9my4adAfWkkXbSmtxiDgiIwwL1VqdGb8UwzGn3kVbNW7idE1ojA==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
"cpu": [
"arm64"
],
@@ -327,9 +327,9 @@
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.18.tgz",
"integrity": "sha512-ZU30bd6frRyKJ515ow972PlqO2wIiNT4Ohor9+KbUwl/VKDyAwKOKG8cWhRJXTxk0k1oqpiJ6+Q28TcYJ0sSAw==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
"cpu": [
"x64"
],
@@ -339,9 +339,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.18.tgz",
"integrity": "sha512-2UroC026bUYwyciSRonYlXei0SoYbKgfWpozxYOu7GgBAV2CQQtaAPgWJTEl6ZiCNeBmBTx+j0h3+ydUfZA73Q==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
"cpu": [
"arm64"
],
@@ -351,9 +351,9 @@
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.18.tgz",
"integrity": "sha512-DoQBskl22JAJFZh219ZOJ6o+f1niTZp0qRYngHa/kTIpLKzHWQ0OTtMCz32VBAjAsKjSLNxHE8rrT/S6tvS7KQ==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
"cpu": [
"x64"
],
@@ -363,9 +363,9 @@
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.18.tgz",
"integrity": "sha512-a/kUM3V6rWuXS80pPECYxKfCUAnq56Of/GPCvnAkpk9C9ldyX10iff4aA6DiPHjEk9V2ytqDfJKl9N3QcMLKLA==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
"cpu": [
"x64"
],
@@ -4852,33 +4852,33 @@
}
},
"@lancedb/vectordb-darwin-arm64": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.18.tgz",
"integrity": "sha512-vu8MCFgaAAGmTJF+4RaoApROMpRVVgrCk+V9my4adAfWkkXbSmtxiDgiIwwL1VqdGb8UwzGn3kVbNW7idE1ojA==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.18.tgz",
"integrity": "sha512-ZU30bd6frRyKJ515ow972PlqO2wIiNT4Ohor9+KbUwl/VKDyAwKOKG8cWhRJXTxk0k1oqpiJ6+Q28TcYJ0sSAw==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.18.tgz",
"integrity": "sha512-2UroC026bUYwyciSRonYlXei0SoYbKgfWpozxYOu7GgBAV2CQQtaAPgWJTEl6ZiCNeBmBTx+j0h3+ydUfZA73Q==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.18.tgz",
"integrity": "sha512-DoQBskl22JAJFZh219ZOJ6o+f1niTZp0qRYngHa/kTIpLKzHWQ0OTtMCz32VBAjAsKjSLNxHE8rrT/S6tvS7KQ==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.1.18",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.18.tgz",
"integrity": "sha512-a/kUM3V6rWuXS80pPECYxKfCUAnq56Of/GPCvnAkpk9C9ldyX10iff4aA6DiPHjEk9V2ytqDfJKl9N3QcMLKLA==",
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
"optional": true
},
"@neon-rs/cli": {

View File

@@ -1,6 +1,6 @@
{
"name": "vectordb",
"version": "0.1.18",
"version": "0.1.19",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
@@ -78,10 +78,10 @@
}
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.18",
"@lancedb/vectordb-darwin-x64": "0.1.18",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.18",
"@lancedb/vectordb-linux-x64-gnu": "0.1.18",
"@lancedb/vectordb-win32-x64-msvc": "0.1.18"
"@lancedb/vectordb-darwin-arm64": "0.1.19",
"@lancedb/vectordb-darwin-x64": "0.1.19",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
}
}

View File

@@ -28,7 +28,6 @@ export interface EmbeddingFunction<T> {
}
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
return Object.keys(value).length === 2 &&
typeof value.sourceColumn === 'string' &&
return typeof value.sourceColumn === 'string' &&
typeof value.embed === 'function'
}

View File

@@ -16,6 +16,7 @@ import { describe } from 'mocha'
import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai'
import { isEmbeddingFunction } from '../../embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai')
@@ -47,4 +48,10 @@ describe('OpenAPIEmbeddings', function () {
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
})
})
describe('isEmbeddingFunction', function () {
it('should match the isEmbeddingFunction guard', function () {
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
})
})
})

View File

@@ -134,6 +134,18 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2)
})
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, price: 10 }
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
})
it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
@@ -230,6 +242,22 @@ describe('LanceDB client', function () {
// Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000)
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
})
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
})
describe('when using a custom embedding function', function () {

View File

@@ -1,5 +1,5 @@
[bumpversion]
current_version = 0.1.15
current_version = 0.1.16
commit = True
message = [python] Bump version: {current_version} → {new_version}
tag = True

View File

@@ -11,17 +11,18 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import List, Union
from typing import Iterable, List, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
URI = Union[str, Path]
# TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector"

View File

@@ -12,12 +12,13 @@
# limitations under the License.
from __future__ import annotations
import pandas as pd
from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
pd = safe_import_pandas()
def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame.
Used to create context windows. Context windows are rolling subsets of text
@@ -175,8 +176,12 @@ class Contextualizer:
self._min_window_size = min_window_size
return self
def to_df(self) -> pd.DataFrame:
def to_df(self) -> "pd.DataFrame":
"""Create the context windows and return a DataFrame."""
if pd is None:
raise ImportError(
"pandas is required to create context windows using lancedb"
)
if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col)

View File

@@ -16,9 +16,8 @@ from __future__ import annotations
import os
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Tuple, Union
from typing import Optional
import pandas as pd
import pyarrow as pa
from pyarrow import fs
@@ -39,9 +38,7 @@ class DBConnection(ABC):
def create_table(
self,
name: str,
data: Optional[
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
] = None,
data: Optional[DATA] = None,
schema: Optional[pa.Schema] = None,
mode: str = "create",
on_bad_vectors: str = "error",
@@ -279,7 +276,7 @@ class LanceDBConnection(DBConnection):
def create_table(
self,
name: str,
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
data: Optional[DATA] = None,
schema: pa.Schema = None,
mode: str = "create",
on_bad_vectors: str = "error",
@@ -319,14 +316,20 @@ class LanceDBConnection(DBConnection):
"""
return LanceTable.open(self, name)
def drop_table(self, name: str):
def drop_table(self, name: str, ignore_missing: bool = False):
"""Drop a table from the database.
Parameters
----------
name: str
The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
"""
filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)
try:
filesystem, path = fs_from_uri(self.uri)
table_path = os.path.join(path, name + ".lance")
filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:
raise

View File

@@ -16,15 +16,19 @@ import sys
from typing import Callable, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from lance.vector import vec_to_table
from retry import retry
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"]
def with_embeddings(
func: Callable,
data: Union[pa.Table, pd.DataFrame],
data: DATA,
column: str = "text",
wrap_api: bool = True,
show_progress: bool = False,
@@ -60,7 +64,7 @@ def with_embeddings(
func = func.batch_size(batch_size)
if show_progress:
func = func.show_progress()
if isinstance(data, pd.DataFrame):
if pd is not None and isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False)
embeddings = func(data[column].to_numpy())
table = vec_to_table(np.array(embeddings))

View File

@@ -249,3 +249,36 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
"""
fields = _pydantic_model_to_fields(model)
return pa.schema(fields)
class LanceModel(pydantic.BaseModel):
"""
A Pydantic Model base class that can be converted to a LanceDB Table.
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""
@classmethod
def to_arrow_schema(cls):
return pydantic_to_schema(cls)
@classmethod
def field_names(cls) -> List[str]:
if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys())
return list(cls.model_fields.keys())

View File

@@ -13,17 +13,20 @@
from __future__ import annotations
from typing import List, Literal, Optional, Union
from typing import List, Literal, Optional, Type, Union
import numpy as np
import pandas as pd
import pyarrow as pa
from pydantic import BaseModel
import pydantic
from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas
pd = safe_import_pandas()
class Query(BaseModel):
class Query(pydantic.BaseModel):
"""A Query"""
vector_column: str = VECTOR_COLUMN_NAME
@@ -198,7 +201,7 @@ class LanceQueryBuilder:
self._refine_factor = refine_factor
return self
def to_df(self) -> pd.DataFrame:
def to_df(self) -> "pd.DataFrame":
"""
Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector
@@ -230,9 +233,26 @@ class LanceQueryBuilder:
)
return self._table._execute_query(query)
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
Returns
-------
List[LanceModel]
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pd.Table:
def to_arrow(self) -> pa.Table:
try:
import tantivy
except ImportError:

View File

@@ -20,7 +20,6 @@ import pyarrow as pa
from lancedb.common import DATA
from lancedb.db import DBConnection
from lancedb.schema import schema_to_json
from lancedb.table import Table, _sanitize_data
from .arrow import to_ipc_binary

View File

@@ -16,11 +16,11 @@ from functools import cached_property
from typing import Union
import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceQueryBuilder, Query
from ..schema import json_to_schema
from ..query import LanceQueryBuilder
from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE

View File

@@ -12,11 +12,7 @@
# limitations under the License.
"""Schema related utilities."""
from typing import Any, Dict, Type
import pyarrow as pa
from lance import json_to_schema, schema_to_json
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:

View File

@@ -20,26 +20,32 @@ from typing import Iterable, List, Union
import lance
import numpy as np
import pandas as pd
import pyarrow as pa
import pyarrow.compute as pc
from lance import LanceDataset
from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
from .util import fs_from_uri
from .util import fs_from_uri, safe_import_pandas
pd = safe_import_pandas()
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
if isinstance(data, list):
# convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data]
data = pa.Table.from_pylist(data)
data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
)
if isinstance(data, dict):
data = vec_to_table(data)
if isinstance(data, pd.DataFrame):
if pd is not None and isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data)
data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
@@ -94,7 +100,7 @@ class Table(ABC):
"""
raise NotImplementedError
def to_pandas(self) -> pd.DataFrame:
def to_pandas(self):
"""Return the table as a pandas DataFrame.
Returns
@@ -328,7 +334,7 @@ class LanceTable(Table):
"""Return the first n rows of the table."""
return self._dataset.head(n)
def to_pandas(self) -> pd.DataFrame:
def to_pandas(self) -> "pd.DataFrame":
"""Return the table as a pandas DataFrame.
Returns

View File

@@ -15,7 +15,6 @@ import os
from typing import Tuple
from urllib.parse import urlparse
import pyarrow as pa
import pyarrow.fs as pa_fs
@@ -76,3 +75,12 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
return fs, path
return pa_fs.FileSystem.from_uri(uri)
def safe_import_pandas():
try:
import pandas as pd
return pd
except ImportError:
return None

View File

@@ -1,7 +1,7 @@
[project]
name = "lancedb"
version = "0.1.15"
dependencies = ["pylance~=0.5.8", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"]
version = "0.1.16"
dependencies = ["pylance==0.5.10", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"]
description = "lancedb"
authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -37,7 +37,7 @@ repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = [
"pytest", "pytest-mock", "pytest-asyncio"
"pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"
]
dev = [
"ruff", "pre-commit", "black"

View File

@@ -149,6 +149,10 @@ def test_delete_table(tmp_path):
db.create_table("test", data=data)
assert db.table_names() == ["test"]
# dropping a table that does not exist should pass
# if ignore_missing=True
db.drop_table("does_not_exist", ignore_missing=True)
def test_empty_or_nonexistent_table(tmp_path):
db = lancedb.connect(tmp_path)

View File

@@ -20,7 +20,7 @@ import pyarrow as pa
import pydantic
import pytest
from lancedb.pydantic import PYDANTIC_VERSION, pydantic_to_schema, vector
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector
@pytest.mark.skipif(
@@ -163,3 +163,13 @@ def test_fixed_size_list_validation():
TestModel(vec=range(7))
TestModel(vec=range(8))
def test_lance_model():
class TestModel(LanceModel):
vec: vector(16)
li: List[int]
schema = pydantic_to_schema(TestModel)
assert schema == TestModel.to_arrow_schema()
assert TestModel.field_names() == ["vec", "li"]

View File

@@ -20,6 +20,7 @@ import pyarrow as pa
import pytest
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.query import LanceQueryBuilder, Query
from lancedb.table import LanceTable
@@ -64,6 +65,24 @@ def table(tmp_path) -> MockTable:
return MockTable(tmp_path)
def test_cast(table):
class TestModel(LanceModel):
vector: vector(2)
id: int
str_field: str
float_field: float
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
results = q.to_pydantic(TestModel)
assert len(results) == 1
r0 = results[0]
assert isinstance(r0, TestModel)
assert r0.id == 1
assert r0.vector == [1, 2]
assert r0.str_field == "a"
assert r0.float_field == 1.0
def test_query_builder(table):
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
assert df["id"].values[0] == 1

View File

@@ -13,15 +13,16 @@
import functools
from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from lance.vector import vec_to_table
from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.table import LanceTable
@@ -135,6 +136,17 @@ def test_add(db):
_add(table, schema)
def test_add_pydantic_model(db):
class TestModel(LanceModel):
vector: vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
table = LanceTable.create(db, "test", data=[data])
assert len(table) == 1
assert table.schema == TestModel.to_arrow_schema()
def _add(table, schema):
# table = LanceTable(db, "test")
assert len(table) == 2

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.1.18"
version = "0.1.19"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"
@@ -13,6 +13,7 @@ crate-type = ["cdylib"]
arrow-array = { workspace = true }
arrow-ipc = { workspace = true }
arrow-schema = { workspace = true }
conv = "0.3.3"
once_cell = "1"
futures = "0.3"
half = { workspace = true }
@@ -21,5 +22,6 @@ vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
object_store = { workspace = true, features = ["aws"] }
snafu = { workspace = true }
async-trait = "0"
env_logger = "0"

View File

@@ -13,27 +13,30 @@
// limitations under the License.
use std::io::Cursor;
use std::ops::Deref;
use std::sync::Arc;
use arrow_array::cast::as_list_array;
use arrow_array::{Array, FixedSizeListArray, RecordBatch};
use arrow_array::{Array, ArrayRef, FixedSizeListArray, RecordBatch};
use arrow_ipc::reader::FileReader;
use arrow_ipc::writer::FileWriter;
use arrow_schema::{DataType, Field, Schema};
use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
use vectordb::table::VECTOR_COLUMN_NAME;
use crate::error::{MissingColumnSnafu, Result};
use snafu::prelude::*;
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> Result<RecordBatch> {
let column = get_column(VECTOR_COLUMN_NAME, &record_batch)?;
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
let column = record_batch
.column_by_name("vector")
.cloned()
.expect("vector column is missing");
// TODO: we should just consume the underlying js buffer in the future instead of this arrow around a bunch of times
let arr = as_list_array(column.as_ref());
let list_size = arr.values().len() / record_batch.num_rows();
let r =
FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32).unwrap();
let r = FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32)?;
let schema = Arc::new(Schema::new(vec![Field::new(
"vector",
VECTOR_COLUMN_NAME,
DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)),
list_size as i32,
@@ -41,22 +44,42 @@ pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
true,
)]));
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)]).unwrap();
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)])?;
if record_batch.num_columns() > 1 {
let rb = record_batch.drop_column("vector").unwrap();
new_batch = new_batch.merge(&rb).unwrap();
let rb = record_batch.drop_column(VECTOR_COLUMN_NAME)?;
new_batch = new_batch.merge(&rb)?;
}
new_batch
Ok(new_batch)
}
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Vec<RecordBatch> {
fn get_column(column_name: &str, record_batch: &RecordBatch) -> Result<ArrayRef> {
record_batch
.column_by_name(column_name)
.cloned()
.context(MissingColumnSnafu { name: column_name })
}
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<Vec<RecordBatch>> {
let mut batches: Vec<RecordBatch> = Vec::new();
let fr = FileReader::try_new(Cursor::new(slice), None);
let file_reader = fr.unwrap();
let file_reader = FileReader::try_new(Cursor::new(slice), None)?;
for b in file_reader {
let record_batch = convert_record_batch(b.unwrap());
let record_batch = convert_record_batch(b?)?;
batches.push(record_batch);
}
batches
Ok(batches)
}
pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
if batches.is_empty() {
return Ok(Vec::new());
}
let schema = batches.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(Vec::new(), schema.deref())?;
for batch in batches.iter() {
fr.write(batch)?
}
fr.finish()?;
Ok(fr.into_inner()?)
}

View File

@@ -0,0 +1,88 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_schema::ArrowError;
use neon::context::Context;
use neon::prelude::NeonResult;
use snafu::Snafu;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String },
#[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String },
#[snafu(display("{message}"))]
LanceDB { message: String },
#[snafu(display("{message}"))]
Neon { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<vectordb::error::Error> for Error {
fn from(e: vectordb::error::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<ArrowError> for Error {
fn from(value: ArrowError) -> Self {
Self::LanceDB {
message: value.to_string(),
}
}
}
impl From<neon::result::Throw> for Error {
fn from(value: neon::result::Throw) -> Self {
Self::Neon {
message: value.to_string(),
}
}
}
/// ResultExt is used to transform a [`Result`] into a [`NeonResult`],
/// so it can be returned as a JavaScript error
/// Copied from [Neon](https://github.com/neon-bindings/neon/blob/4c2e455a9e6814f1ba0178616d63caec7f4df317/crates/neon/src/result/mod.rs#L88)
pub trait ResultExt<T> {
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T>;
}
/// Implement ResultExt for the std Result so it can be used any Result type
impl<T, E> ResultExt<T> for std::result::Result<T, E>
where
E: std::fmt::Display,
{
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T> {
match self {
Ok(value) => Ok(value),
Err(error) => cx.throw_error(error.to_string()),
}
}
}

View File

@@ -22,12 +22,15 @@ use neon::prelude::*;
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
use crate::error::Error::InvalidIndexType;
use crate::error::ResultExt;
use crate::neon_ext::js_object_ext::JsObjectExt;
use crate::{runtime, JsTable};
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let index_params = cx.argument::<JsObject>(0)?;
let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap();
let index_params_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
@@ -54,27 +57,21 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
fn get_index_params_builder(
cx: &mut FunctionContext,
obj: Handle<JsObject>,
) -> Result<impl VectorIndexBuilder, String> {
let idx_type = obj
.get::<JsString, _, _>(cx, "type")
.map_err(|t| t.to_string())?
.value(cx);
) -> crate::error::Result<impl VectorIndexBuilder> {
let idx_type = obj.get::<JsString, _, _>(cx, "type")?.value(cx);
match idx_type.as_str() {
"ivf_pq" => {
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
let mut pq_params = PQBuildParams::default();
obj.get_opt::<JsString, _, _>(cx, "column")
.map_err(|t| t.to_string())?
obj.get_opt::<JsString, _, _>(cx, "column")?
.map(|s| index_builder.column(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "index_name")
.map_err(|t| t.to_string())?
obj.get_opt::<JsString, _, _>(cx, "index_name")?
.map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")
.map_err(|t| t.to_string())?
obj.get_opt::<JsString, _, _>(cx, "metric_type")?
.map(|s| MetricType::try_from(s.value(cx).as_str()))
.map(|mt| {
let metric_type = mt.unwrap();
@@ -82,15 +79,8 @@ fn get_index_params_builder(
pq_params.metric_type = metric_type;
});
let num_partitions = obj
.get_opt::<JsNumber, _, _>(cx, "num_partitions")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
let max_iters = obj
.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
let max_iters = obj.get_opt_usize(cx, "max_iters")?;
num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50);
@@ -102,32 +92,28 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params)
});
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")
.map_err(|t| t.to_string())?
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
.map(|s| pq_params.use_opq = s.value(cx));
obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors")
.map_err(|t| t.to_string())?
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
obj.get_opt_usize(cx, "num_sub_vectors")?
.map(|s| pq_params.num_sub_vectors = s);
obj.get_opt::<JsNumber, _, _>(cx, "num_bits")
.map_err(|t| t.to_string())?
.map(|s| pq_params.num_bits = s.value(cx) as usize);
obj.get_opt_usize(cx, "num_bits")?
.map(|s| pq_params.num_bits = s);
obj.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| pq_params.max_iters = s.value(cx) as usize);
obj.get_opt_usize(cx, "max_iters")?
.map(|s| pq_params.max_iters = s);
obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters")
.map_err(|t| t.to_string())?
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
obj.get_opt_usize(cx, "max_opq_iters")?
.map(|s| pq_params.max_opq_iters = s);
obj.get_opt::<JsBoolean, _, _>(cx, "replace")
.map_err(|t| t.to_string())?
obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
.map(|s| index_builder.replace(s.value(cx)));
Ok(index_builder)
}
t => Err(format!("{} is not a valid index type", t).to_string()),
index_type => Err(InvalidIndexType {
index_type: index_type.into(),
}),
}
}

View File

@@ -18,7 +18,6 @@ use std::ops::Deref;
use std::sync::{Arc, Mutex};
use arrow_array::{Float32Array, RecordBatchIterator};
use arrow_ipc::writer::FileWriter;
use async_trait::async_trait;
use futures::{TryFutureExt, TryStreamExt};
use lance::dataset::{WriteMode, WriteParams};
@@ -32,14 +31,17 @@ use once_cell::sync::OnceCell;
use tokio::runtime::Runtime;
use vectordb::database::Database;
use vectordb::error::Error;
use vectordb::table::{ReadParams, Table};
use crate::arrow::arrow_buffer_to_record_batch;
use crate::arrow::{arrow_buffer_to_record_batch, record_batch_to_buffer};
use crate::error::ResultExt;
use crate::neon_ext::js_object_ext::JsObjectExt;
mod arrow;
mod convert;
mod error;
mod index;
mod neon_ext;
struct JsDatabase {
database: Arc<Database>,
@@ -86,7 +88,7 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
LOG.get_or_init(|| env_logger::init());
RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx))
}
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -101,7 +103,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase {
database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
database: Arc::new(database.or_throw(&mut cx)?),
};
Ok(cx.boxed(db))
});
@@ -123,7 +125,7 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
let tables = tables_rst.or_throw(&mut cx)?;
let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names
});
@@ -194,9 +196,7 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let table_rst = database.open_table_with_params(&table_name, &params).await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
let table = Arc::new(Mutex::new(table_rst.or_throw(&mut cx)?));
Ok(cx.boxed(JsTable { table }))
});
});
@@ -217,7 +217,7 @@ fn database_drop_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.spawn(async move {
let result = database.drop_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| {
result.or_else(|err| cx.throw_error(err.to_string()))?;
result.or_throw(&mut cx)?;
Ok(cx.null())
});
});
@@ -246,12 +246,9 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx));
let refine_factor = query_obj
.get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
.map(|s| s.value(&mut cx))
.map(|i| i as u32);
let nprobes = query_obj
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
.value(&mut cx) as usize;
.get_opt_u32(&mut cx, "_refineFactor")
.or_throw(&mut cx)?;
let nprobes = query_obj.get_usize(&mut cx, "_nprobes").or_throw(&mut cx)?;
let metric_type = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
.map(|s| s.value(&mut cx))
@@ -278,30 +275,17 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.select(select);
let record_batch_stream = builder.execute();
let results = record_batch_stream
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
.and_then(|stream| {
stream
.try_collect::<Vec<_>>()
.map_err(vectordb::error::Error::from)
})
.await;
deferred.settle_with(&channel, move |mut cx| {
let results = results.or_else(|err| cx.throw_error(err.to_string()))?;
let vector: Vec<u8> = Vec::new();
if results.is_empty() {
return cx.buffer(0);
}
let schema = results.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(vector, schema.deref())
.or_else(|err| cx.throw_error(err.to_string()))?;
for batch in results.iter() {
fr.write(batch)
.or_else(|err| cx.throw_error(err.to_string()))?;
}
fr.finish().or_else(|err| cx.throw_error(err.to_string()))?;
let buf = fr
.into_inner()
.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(JsBuffer::external(&mut cx, buf))
let results = results.or_throw(&mut cx)?;
let buffer = record_batch_to_buffer(results).or_throw(&mut cx)?;
Ok(JsBuffer::external(&mut cx, buffer))
});
});
Ok(promise)
@@ -313,7 +297,7 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?;
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
let schema = batches[0].schema();
// Write mode
@@ -351,9 +335,7 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
.await;
deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
let table = Arc::new(Mutex::new(table_rst.or_throw(&mut cx)?));
Ok(cx.boxed(JsTable { table }))
});
});
@@ -370,7 +352,8 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
let schema = batches[0].schema();
let rt = runtime(&mut cx)?;
@@ -399,7 +382,7 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let add_result = table.lock().unwrap().add(batch_reader, Some(params)).await;
deferred.settle_with(&channel, move |mut cx| {
let _added = add_result.or_else(|err| cx.throw_error(err.to_string()))?;
let _added = add_result.or_throw(&mut cx)?;
Ok(cx.boolean(true))
});
});
@@ -418,7 +401,7 @@ fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let num_rows_result = table.lock().unwrap().count_rows().await;
deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
let num_rows = num_rows_result.or_throw(&mut cx)?;
Ok(cx.number(num_rows as f64))
});
});
@@ -438,7 +421,7 @@ fn table_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await });
deferred.settle_with(&channel, move |mut cx| {
delete_result.or_else(|err| cx.throw_error(err.to_string()))?;
delete_result.or_throw(&mut cx)?;
Ok(cx.undefined())
});

View File

@@ -0,0 +1,15 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod js_object_ext;

View File

@@ -0,0 +1,82 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::error::{Error, Result};
use neon::prelude::*;
// extends neon's [JsObject] with helper functions to extract properties
pub trait JsObjectExt {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>>;
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize>;
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>>;
}
impl JsObjectExt for JsObject {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_u32_safe(s.value(cx), key));
val_opt.transpose()
}
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize> {
let val = self.get::<JsNumber, _, _>(cx, key)?.value(cx);
f64_to_usize_safe(val, key)
}
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_usize_safe(s.value(cx), key));
val_opt.transpose()
}
}
fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*;
n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", u32::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}
fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*;
n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", usize::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.1.18"
version = "0.1.19"
edition = "2021"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
@@ -12,7 +12,7 @@ arrow-array = { workspace = true }
arrow-data = { workspace = true }
arrow-schema = { workspace = true }
object_store = { workspace = true }
snafu = "0.7.4"
snafu = { workspace = true }
half = { workspace = true }
lance = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] }