mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-24 05:49:57 +00:00
Compare commits
8 Commits
v0.1.19
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b06e214d29 | ||
|
|
c1f8feb6ed | ||
|
|
cada35d5b7 | ||
|
|
2d25c263e9 | ||
|
|
bcd7f66dc7 | ||
|
|
1daecac648 | ||
|
|
b8e656b2a7 | ||
|
|
ff7c1193a7 |
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -30,7 +30,7 @@ jobs:
|
||||
python-version: 3.${{ matrix.python-minor-version }}
|
||||
- name: Install lancedb
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest pytest-mock black isort
|
||||
- name: Black
|
||||
@@ -59,7 +59,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
- name: Install lancedb
|
||||
run: |
|
||||
pip install -e .
|
||||
pip install -e .[tests]
|
||||
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
|
||||
pip install pytest pytest-mock black
|
||||
- name: Black
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
# Pydantic
|
||||
|
||||
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
|
||||
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
|
||||
|
||||
|
||||
## Schema
|
||||
|
||||
|
||||
74
node/package-lock.json
generated
74
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "vectordb",
|
||||
"version": "0.1.18",
|
||||
"version": "0.1.19",
|
||||
"lockfileVersion": 2,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "vectordb",
|
||||
"version": "0.1.18",
|
||||
"version": "0.1.19",
|
||||
"cpu": [
|
||||
"x64",
|
||||
"arm64"
|
||||
@@ -51,11 +51,11 @@
|
||||
"typescript": "*"
|
||||
},
|
||||
"optionalDependencies": {
|
||||
"@lancedb/vectordb-darwin-arm64": "0.1.18",
|
||||
"@lancedb/vectordb-darwin-x64": "0.1.18",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.1.18",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.1.18",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.1.18"
|
||||
"@lancedb/vectordb-darwin-arm64": "0.1.19",
|
||||
"@lancedb/vectordb-darwin-x64": "0.1.19",
|
||||
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19",
|
||||
"@lancedb/vectordb-linux-x64-gnu": "0.1.19",
|
||||
"@lancedb/vectordb-win32-x64-msvc": "0.1.19"
|
||||
}
|
||||
},
|
||||
"node_modules/@apache-arrow/ts": {
|
||||
@@ -315,9 +315,9 @@
|
||||
}
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.18.tgz",
|
||||
"integrity": "sha512-vu8MCFgaAAGmTJF+4RaoApROMpRVVgrCk+V9my4adAfWkkXbSmtxiDgiIwwL1VqdGb8UwzGn3kVbNW7idE1ojA==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
|
||||
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -327,9 +327,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.18.tgz",
|
||||
"integrity": "sha512-ZU30bd6frRyKJ515ow972PlqO2wIiNT4Ohor9+KbUwl/VKDyAwKOKG8cWhRJXTxk0k1oqpiJ6+Q28TcYJ0sSAw==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
|
||||
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -339,9 +339,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.18.tgz",
|
||||
"integrity": "sha512-2UroC026bUYwyciSRonYlXei0SoYbKgfWpozxYOu7GgBAV2CQQtaAPgWJTEl6ZiCNeBmBTx+j0h3+ydUfZA73Q==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
|
||||
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
|
||||
"cpu": [
|
||||
"arm64"
|
||||
],
|
||||
@@ -351,9 +351,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.18.tgz",
|
||||
"integrity": "sha512-DoQBskl22JAJFZh219ZOJ6o+f1niTZp0qRYngHa/kTIpLKzHWQ0OTtMCz32VBAjAsKjSLNxHE8rrT/S6tvS7KQ==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
|
||||
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -363,9 +363,9 @@
|
||||
]
|
||||
},
|
||||
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.18.tgz",
|
||||
"integrity": "sha512-a/kUM3V6rWuXS80pPECYxKfCUAnq56Of/GPCvnAkpk9C9ldyX10iff4aA6DiPHjEk9V2ytqDfJKl9N3QcMLKLA==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
|
||||
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
|
||||
"cpu": [
|
||||
"x64"
|
||||
],
|
||||
@@ -4852,33 +4852,33 @@
|
||||
}
|
||||
},
|
||||
"@lancedb/vectordb-darwin-arm64": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.18.tgz",
|
||||
"integrity": "sha512-vu8MCFgaAAGmTJF+4RaoApROMpRVVgrCk+V9my4adAfWkkXbSmtxiDgiIwwL1VqdGb8UwzGn3kVbNW7idE1ojA==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
|
||||
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-darwin-x64": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.18.tgz",
|
||||
"integrity": "sha512-ZU30bd6frRyKJ515ow972PlqO2wIiNT4Ohor9+KbUwl/VKDyAwKOKG8cWhRJXTxk0k1oqpiJ6+Q28TcYJ0sSAw==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
|
||||
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-arm64-gnu": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.18.tgz",
|
||||
"integrity": "sha512-2UroC026bUYwyciSRonYlXei0SoYbKgfWpozxYOu7GgBAV2CQQtaAPgWJTEl6ZiCNeBmBTx+j0h3+ydUfZA73Q==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
|
||||
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-linux-x64-gnu": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.18.tgz",
|
||||
"integrity": "sha512-DoQBskl22JAJFZh219ZOJ6o+f1niTZp0qRYngHa/kTIpLKzHWQ0OTtMCz32VBAjAsKjSLNxHE8rrT/S6tvS7KQ==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
|
||||
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
|
||||
"optional": true
|
||||
},
|
||||
"@lancedb/vectordb-win32-x64-msvc": {
|
||||
"version": "0.1.18",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.18.tgz",
|
||||
"integrity": "sha512-a/kUM3V6rWuXS80pPECYxKfCUAnq56Of/GPCvnAkpk9C9ldyX10iff4aA6DiPHjEk9V2ytqDfJKl9N3QcMLKLA==",
|
||||
"version": "0.1.19",
|
||||
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
|
||||
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
|
||||
"optional": true
|
||||
},
|
||||
"@neon-rs/cli": {
|
||||
|
||||
@@ -250,6 +250,14 @@ describe('LanceDB client', function () {
|
||||
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
|
||||
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
|
||||
})
|
||||
|
||||
it('it should fail when the column is not a vector', async function () {
|
||||
const uri = await createTestDB(32, 300)
|
||||
const con = await lancedb.connect(uri)
|
||||
const table = await con.openTable('vectors')
|
||||
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
|
||||
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
|
||||
})
|
||||
})
|
||||
|
||||
describe('when using a custom embedding function', function () {
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
[bumpversion]
|
||||
current_version = 0.1.15
|
||||
current_version = 0.1.16
|
||||
commit = True
|
||||
message = [python] Bump version: {current_version} → {new_version}
|
||||
tag = True
|
||||
|
||||
@@ -11,17 +11,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from pathlib import Path
|
||||
from typing import List, Union
|
||||
from typing import Iterable, List, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
|
||||
from .util import safe_import_pandas
|
||||
|
||||
pd = safe_import_pandas()
|
||||
|
||||
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
|
||||
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
|
||||
URI = Union[str, Path]
|
||||
|
||||
# TODO support generator
|
||||
DATA = Union[List[dict], dict, pd.DataFrame]
|
||||
VECTOR_COLUMN_NAME = "vector"
|
||||
|
||||
|
||||
|
||||
@@ -12,12 +12,13 @@
|
||||
# limitations under the License.
|
||||
from __future__ import annotations
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from .exceptions import MissingColumnError, MissingValueError
|
||||
from .util import safe_import_pandas
|
||||
|
||||
pd = safe_import_pandas()
|
||||
|
||||
|
||||
def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
|
||||
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer:
|
||||
"""Create a Contextualizer object for the given DataFrame.
|
||||
|
||||
Used to create context windows. Context windows are rolling subsets of text
|
||||
@@ -175,8 +176,12 @@ class Contextualizer:
|
||||
self._min_window_size = min_window_size
|
||||
return self
|
||||
|
||||
def to_df(self) -> pd.DataFrame:
|
||||
def to_df(self) -> "pd.DataFrame":
|
||||
"""Create the context windows and return a DataFrame."""
|
||||
if pd is None:
|
||||
raise ImportError(
|
||||
"pandas is required to create context windows using lancedb"
|
||||
)
|
||||
|
||||
if self._text_col not in self._raw_df.columns.tolist():
|
||||
raise MissingColumnError(self._text_col)
|
||||
|
||||
@@ -16,9 +16,8 @@ from __future__ import annotations
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
from typing import Dict, Iterable, List, Optional, Tuple, Union
|
||||
from typing import Optional
|
||||
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
from pyarrow import fs
|
||||
|
||||
@@ -39,9 +38,7 @@ class DBConnection(ABC):
|
||||
def create_table(
|
||||
self,
|
||||
name: str,
|
||||
data: Optional[
|
||||
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
|
||||
] = None,
|
||||
data: Optional[DATA] = None,
|
||||
schema: Optional[pa.Schema] = None,
|
||||
mode: str = "create",
|
||||
on_bad_vectors: str = "error",
|
||||
@@ -279,7 +276,7 @@ class LanceDBConnection(DBConnection):
|
||||
def create_table(
|
||||
self,
|
||||
name: str,
|
||||
data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
|
||||
data: Optional[DATA] = None,
|
||||
schema: pa.Schema = None,
|
||||
mode: str = "create",
|
||||
on_bad_vectors: str = "error",
|
||||
@@ -319,14 +316,20 @@ class LanceDBConnection(DBConnection):
|
||||
"""
|
||||
return LanceTable.open(self, name)
|
||||
|
||||
def drop_table(self, name: str):
|
||||
def drop_table(self, name: str, ignore_missing: bool = False):
|
||||
"""Drop a table from the database.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
name: str
|
||||
The name of the table.
|
||||
ignore_missing: bool, default False
|
||||
If True, ignore if the table does not exist.
|
||||
"""
|
||||
filesystem, path = fs_from_uri(self.uri)
|
||||
table_path = os.path.join(path, name + ".lance")
|
||||
filesystem.delete_dir(table_path)
|
||||
try:
|
||||
filesystem, path = fs_from_uri(self.uri)
|
||||
table_path = os.path.join(path, name + ".lance")
|
||||
filesystem.delete_dir(table_path)
|
||||
except FileNotFoundError:
|
||||
if not ignore_missing:
|
||||
raise
|
||||
|
||||
@@ -16,15 +16,19 @@ import sys
|
||||
from typing import Callable, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
from lance.vector import vec_to_table
|
||||
from retry import retry
|
||||
|
||||
from .util import safe_import_pandas
|
||||
|
||||
pd = safe_import_pandas()
|
||||
DATA = Union[pa.Table, "pd.DataFrame"]
|
||||
|
||||
|
||||
def with_embeddings(
|
||||
func: Callable,
|
||||
data: Union[pa.Table, pd.DataFrame],
|
||||
data: DATA,
|
||||
column: str = "text",
|
||||
wrap_api: bool = True,
|
||||
show_progress: bool = False,
|
||||
@@ -60,7 +64,7 @@ def with_embeddings(
|
||||
func = func.batch_size(batch_size)
|
||||
if show_progress:
|
||||
func = func.show_progress()
|
||||
if isinstance(data, pd.DataFrame):
|
||||
if pd is not None and isinstance(data, pd.DataFrame):
|
||||
data = pa.Table.from_pandas(data, preserve_index=False)
|
||||
embeddings = func(data[column].to_numpy())
|
||||
table = vec_to_table(np.array(embeddings))
|
||||
|
||||
@@ -249,3 +249,36 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
|
||||
"""
|
||||
fields = _pydantic_model_to_fields(model)
|
||||
return pa.schema(fields)
|
||||
|
||||
|
||||
class LanceModel(pydantic.BaseModel):
|
||||
"""
|
||||
A Pydantic Model base class that can be converted to a LanceDB Table.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import lancedb
|
||||
>>> from lancedb.pydantic import LanceModel, vector
|
||||
>>>
|
||||
>>> class TestModel(LanceModel):
|
||||
... name: str
|
||||
... vector: vector(2)
|
||||
...
|
||||
>>> db = lancedb.connect("/tmp")
|
||||
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
|
||||
>>> table.add([
|
||||
... TestModel(name="test", vector=[1.0, 2.0])
|
||||
... ])
|
||||
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
|
||||
[TestModel(name='test', vector=FixedSizeList(dim=2))]
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def to_arrow_schema(cls):
|
||||
return pydantic_to_schema(cls)
|
||||
|
||||
@classmethod
|
||||
def field_names(cls) -> List[str]:
|
||||
if PYDANTIC_VERSION.major < 2:
|
||||
return list(cls.__fields__.keys())
|
||||
return list(cls.model_fields.keys())
|
||||
|
||||
@@ -13,17 +13,20 @@
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List, Literal, Optional, Union
|
||||
from typing import List, Literal, Optional, Type, Union
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
from pydantic import BaseModel
|
||||
import pydantic
|
||||
|
||||
from .common import VECTOR_COLUMN_NAME
|
||||
from .pydantic import LanceModel
|
||||
from .util import safe_import_pandas
|
||||
|
||||
pd = safe_import_pandas()
|
||||
|
||||
|
||||
class Query(BaseModel):
|
||||
class Query(pydantic.BaseModel):
|
||||
"""A Query"""
|
||||
|
||||
vector_column: str = VECTOR_COLUMN_NAME
|
||||
@@ -198,7 +201,7 @@ class LanceQueryBuilder:
|
||||
self._refine_factor = refine_factor
|
||||
return self
|
||||
|
||||
def to_df(self) -> pd.DataFrame:
|
||||
def to_df(self) -> "pd.DataFrame":
|
||||
"""
|
||||
Execute the query and return the results as a pandas DataFrame.
|
||||
In addition to the selected columns, LanceDB also returns a vector
|
||||
@@ -230,9 +233,26 @@ class LanceQueryBuilder:
|
||||
)
|
||||
return self._table._execute_query(query)
|
||||
|
||||
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
|
||||
"""Return the table as a list of pydantic models.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
model: Type[LanceModel]
|
||||
The pydantic model to use.
|
||||
|
||||
Returns
|
||||
-------
|
||||
List[LanceModel]
|
||||
"""
|
||||
return [
|
||||
model(**{k: v for k, v in row.items() if k in model.field_names()})
|
||||
for row in self.to_arrow().to_pylist()
|
||||
]
|
||||
|
||||
|
||||
class LanceFtsQueryBuilder(LanceQueryBuilder):
|
||||
def to_arrow(self) -> pd.Table:
|
||||
def to_arrow(self) -> pa.Table:
|
||||
try:
|
||||
import tantivy
|
||||
except ImportError:
|
||||
|
||||
@@ -20,7 +20,6 @@ import pyarrow as pa
|
||||
|
||||
from lancedb.common import DATA
|
||||
from lancedb.db import DBConnection
|
||||
from lancedb.schema import schema_to_json
|
||||
from lancedb.table import Table, _sanitize_data
|
||||
|
||||
from .arrow import to_ipc_binary
|
||||
|
||||
@@ -16,11 +16,11 @@ from functools import cached_property
|
||||
from typing import Union
|
||||
|
||||
import pyarrow as pa
|
||||
from lance import json_to_schema
|
||||
|
||||
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
|
||||
from ..query import LanceQueryBuilder, Query
|
||||
from ..schema import json_to_schema
|
||||
from ..query import LanceQueryBuilder
|
||||
from ..table import Query, Table, _sanitize_data
|
||||
from .arrow import to_ipc_binary
|
||||
from .client import ARROW_STREAM_CONTENT_TYPE
|
||||
|
||||
@@ -12,11 +12,7 @@
|
||||
# limitations under the License.
|
||||
|
||||
"""Schema related utilities."""
|
||||
|
||||
from typing import Any, Dict, Type
|
||||
|
||||
import pyarrow as pa
|
||||
from lance import json_to_schema, schema_to_json
|
||||
|
||||
|
||||
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:
|
||||
|
||||
@@ -20,26 +20,32 @@ from typing import Iterable, List, Union
|
||||
|
||||
import lance
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pyarrow.compute as pc
|
||||
from lance import LanceDataset
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
from .common import DATA, VEC, VECTOR_COLUMN_NAME
|
||||
from .pydantic import LanceModel
|
||||
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
|
||||
from .util import fs_from_uri
|
||||
from .util import fs_from_uri, safe_import_pandas
|
||||
|
||||
pd = safe_import_pandas()
|
||||
|
||||
|
||||
def _sanitize_data(data, schema, on_bad_vectors, fill_value):
|
||||
if isinstance(data, list):
|
||||
# convert to list of dict if data is a bunch of LanceModels
|
||||
if isinstance(data[0], LanceModel):
|
||||
schema = data[0].__class__.to_arrow_schema()
|
||||
data = [dict(d) for d in data]
|
||||
data = pa.Table.from_pylist(data)
|
||||
data = _sanitize_schema(
|
||||
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||
)
|
||||
if isinstance(data, dict):
|
||||
data = vec_to_table(data)
|
||||
if isinstance(data, pd.DataFrame):
|
||||
if pd is not None and isinstance(data, pd.DataFrame):
|
||||
data = pa.Table.from_pandas(data)
|
||||
data = _sanitize_schema(
|
||||
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
|
||||
@@ -94,7 +100,7 @@ class Table(ABC):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def to_pandas(self) -> pd.DataFrame:
|
||||
def to_pandas(self):
|
||||
"""Return the table as a pandas DataFrame.
|
||||
|
||||
Returns
|
||||
@@ -328,7 +334,7 @@ class LanceTable(Table):
|
||||
"""Return the first n rows of the table."""
|
||||
return self._dataset.head(n)
|
||||
|
||||
def to_pandas(self) -> pd.DataFrame:
|
||||
def to_pandas(self) -> "pd.DataFrame":
|
||||
"""Return the table as a pandas DataFrame.
|
||||
|
||||
Returns
|
||||
|
||||
@@ -15,7 +15,6 @@ import os
|
||||
from typing import Tuple
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import pyarrow as pa
|
||||
import pyarrow.fs as pa_fs
|
||||
|
||||
|
||||
@@ -76,3 +75,12 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
|
||||
return fs, path
|
||||
|
||||
return pa_fs.FileSystem.from_uri(uri)
|
||||
|
||||
|
||||
def safe_import_pandas():
|
||||
try:
|
||||
import pandas as pd
|
||||
|
||||
return pd
|
||||
except ImportError:
|
||||
return None
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
[project]
|
||||
name = "lancedb"
|
||||
version = "0.1.15"
|
||||
dependencies = ["pylance~=0.5.8", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"]
|
||||
version = "0.1.16"
|
||||
dependencies = ["pylance==0.5.10", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"]
|
||||
description = "lancedb"
|
||||
authors = [
|
||||
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
|
||||
@@ -37,7 +37,7 @@ repository = "https://github.com/lancedb/lancedb"
|
||||
|
||||
[project.optional-dependencies]
|
||||
tests = [
|
||||
"pytest", "pytest-mock", "pytest-asyncio"
|
||||
"pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio"
|
||||
]
|
||||
dev = [
|
||||
"ruff", "pre-commit", "black"
|
||||
|
||||
@@ -149,6 +149,10 @@ def test_delete_table(tmp_path):
|
||||
db.create_table("test", data=data)
|
||||
assert db.table_names() == ["test"]
|
||||
|
||||
# dropping a table that does not exist should pass
|
||||
# if ignore_missing=True
|
||||
db.drop_table("does_not_exist", ignore_missing=True)
|
||||
|
||||
|
||||
def test_empty_or_nonexistent_table(tmp_path):
|
||||
db = lancedb.connect(tmp_path)
|
||||
|
||||
@@ -20,7 +20,7 @@ import pyarrow as pa
|
||||
import pydantic
|
||||
import pytest
|
||||
|
||||
from lancedb.pydantic import PYDANTIC_VERSION, pydantic_to_schema, vector
|
||||
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector
|
||||
|
||||
|
||||
@pytest.mark.skipif(
|
||||
@@ -163,3 +163,13 @@ def test_fixed_size_list_validation():
|
||||
TestModel(vec=range(7))
|
||||
|
||||
TestModel(vec=range(8))
|
||||
|
||||
|
||||
def test_lance_model():
|
||||
class TestModel(LanceModel):
|
||||
vec: vector(16)
|
||||
li: List[int]
|
||||
|
||||
schema = pydantic_to_schema(TestModel)
|
||||
assert schema == TestModel.to_arrow_schema()
|
||||
assert TestModel.field_names() == ["vec", "li"]
|
||||
|
||||
@@ -20,6 +20,7 @@ import pyarrow as pa
|
||||
import pytest
|
||||
|
||||
from lancedb.db import LanceDBConnection
|
||||
from lancedb.pydantic import LanceModel, vector
|
||||
from lancedb.query import LanceQueryBuilder, Query
|
||||
from lancedb.table import LanceTable
|
||||
|
||||
@@ -64,6 +65,24 @@ def table(tmp_path) -> MockTable:
|
||||
return MockTable(tmp_path)
|
||||
|
||||
|
||||
def test_cast(table):
|
||||
class TestModel(LanceModel):
|
||||
vector: vector(2)
|
||||
id: int
|
||||
str_field: str
|
||||
float_field: float
|
||||
|
||||
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
|
||||
results = q.to_pydantic(TestModel)
|
||||
assert len(results) == 1
|
||||
r0 = results[0]
|
||||
assert isinstance(r0, TestModel)
|
||||
assert r0.id == 1
|
||||
assert r0.vector == [1, 2]
|
||||
assert r0.str_field == "a"
|
||||
assert r0.float_field == 1.0
|
||||
|
||||
|
||||
def test_query_builder(table):
|
||||
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
|
||||
assert df["id"].values[0] == 1
|
||||
|
||||
@@ -13,15 +13,16 @@
|
||||
|
||||
import functools
|
||||
from pathlib import Path
|
||||
from typing import List
|
||||
from unittest.mock import PropertyMock, patch
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pyarrow as pa
|
||||
import pytest
|
||||
from lance.vector import vec_to_table
|
||||
|
||||
from lancedb.db import LanceDBConnection
|
||||
from lancedb.pydantic import LanceModel, vector
|
||||
from lancedb.table import LanceTable
|
||||
|
||||
|
||||
@@ -135,6 +136,17 @@ def test_add(db):
|
||||
_add(table, schema)
|
||||
|
||||
|
||||
def test_add_pydantic_model(db):
|
||||
class TestModel(LanceModel):
|
||||
vector: vector(16)
|
||||
li: List[int]
|
||||
|
||||
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
|
||||
table = LanceTable.create(db, "test", data=[data])
|
||||
assert len(table) == 1
|
||||
assert table.schema == TestModel.to_arrow_schema()
|
||||
|
||||
|
||||
def _add(table, schema):
|
||||
# table = LanceTable(db, "test")
|
||||
assert len(table) == 2
|
||||
|
||||
@@ -13,6 +13,7 @@ crate-type = ["cdylib"]
|
||||
arrow-array = { workspace = true }
|
||||
arrow-ipc = { workspace = true }
|
||||
arrow-schema = { workspace = true }
|
||||
conv = "0.3.3"
|
||||
once_cell = "1"
|
||||
futures = "0.3"
|
||||
half = { workspace = true }
|
||||
|
||||
@@ -22,8 +22,15 @@ use snafu::Snafu;
|
||||
pub enum Error {
|
||||
#[snafu(display("column '{name}' is missing"))]
|
||||
MissingColumn { name: String },
|
||||
#[snafu(display("{name}: {message}"))]
|
||||
RangeError { name: String, message: String },
|
||||
#[snafu(display("{index_type} is not a valid index type"))]
|
||||
InvalidIndexType { index_type: String },
|
||||
|
||||
#[snafu(display("{message}"))]
|
||||
LanceDB { message: String },
|
||||
#[snafu(display("{message}"))]
|
||||
Neon { message: String },
|
||||
}
|
||||
|
||||
pub type Result<T> = std::result::Result<T, Error>;
|
||||
@@ -52,6 +59,14 @@ impl From<ArrowError> for Error {
|
||||
}
|
||||
}
|
||||
|
||||
impl From<neon::result::Throw> for Error {
|
||||
fn from(value: neon::result::Throw) -> Self {
|
||||
Self::Neon {
|
||||
message: value.to_string(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// ResultExt is used to transform a [`Result`] into a [`NeonResult`],
|
||||
/// so it can be returned as a JavaScript error
|
||||
/// Copied from [Neon](https://github.com/neon-bindings/neon/blob/4c2e455a9e6814f1ba0178616d63caec7f4df317/crates/neon/src/result/mod.rs#L88)
|
||||
|
||||
@@ -22,12 +22,15 @@ use neon::prelude::*;
|
||||
|
||||
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
|
||||
|
||||
use crate::error::Error::InvalidIndexType;
|
||||
use crate::error::ResultExt;
|
||||
use crate::neon_ext::js_object_ext::JsObjectExt;
|
||||
use crate::{runtime, JsTable};
|
||||
|
||||
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
|
||||
let index_params = cx.argument::<JsObject>(0)?;
|
||||
let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap();
|
||||
let index_params_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?;
|
||||
|
||||
let rt = runtime(&mut cx)?;
|
||||
let channel = cx.channel();
|
||||
@@ -54,27 +57,21 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
|
||||
fn get_index_params_builder(
|
||||
cx: &mut FunctionContext,
|
||||
obj: Handle<JsObject>,
|
||||
) -> Result<impl VectorIndexBuilder, String> {
|
||||
let idx_type = obj
|
||||
.get::<JsString, _, _>(cx, "type")
|
||||
.map_err(|t| t.to_string())?
|
||||
.value(cx);
|
||||
) -> crate::error::Result<impl VectorIndexBuilder> {
|
||||
let idx_type = obj.get::<JsString, _, _>(cx, "type")?.value(cx);
|
||||
|
||||
match idx_type.as_str() {
|
||||
"ivf_pq" => {
|
||||
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
|
||||
let mut pq_params = PQBuildParams::default();
|
||||
|
||||
obj.get_opt::<JsString, _, _>(cx, "column")
|
||||
.map_err(|t| t.to_string())?
|
||||
obj.get_opt::<JsString, _, _>(cx, "column")?
|
||||
.map(|s| index_builder.column(s.value(cx)));
|
||||
|
||||
obj.get_opt::<JsString, _, _>(cx, "index_name")
|
||||
.map_err(|t| t.to_string())?
|
||||
obj.get_opt::<JsString, _, _>(cx, "index_name")?
|
||||
.map(|s| index_builder.index_name(s.value(cx)));
|
||||
|
||||
obj.get_opt::<JsString, _, _>(cx, "metric_type")
|
||||
.map_err(|t| t.to_string())?
|
||||
obj.get_opt::<JsString, _, _>(cx, "metric_type")?
|
||||
.map(|s| MetricType::try_from(s.value(cx).as_str()))
|
||||
.map(|mt| {
|
||||
let metric_type = mt.unwrap();
|
||||
@@ -82,15 +79,8 @@ fn get_index_params_builder(
|
||||
pq_params.metric_type = metric_type;
|
||||
});
|
||||
|
||||
let num_partitions = obj
|
||||
.get_opt::<JsNumber, _, _>(cx, "num_partitions")
|
||||
.map_err(|t| t.to_string())?
|
||||
.map(|s| s.value(cx) as usize);
|
||||
|
||||
let max_iters = obj
|
||||
.get_opt::<JsNumber, _, _>(cx, "max_iters")
|
||||
.map_err(|t| t.to_string())?
|
||||
.map(|s| s.value(cx) as usize);
|
||||
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?;
|
||||
let max_iters = obj.get_opt_usize(cx, "max_iters")?;
|
||||
|
||||
num_partitions.map(|np| {
|
||||
let max_iters = max_iters.unwrap_or(50);
|
||||
@@ -102,32 +92,28 @@ fn get_index_params_builder(
|
||||
index_builder.ivf_params(ivf_params)
|
||||
});
|
||||
|
||||
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")
|
||||
.map_err(|t| t.to_string())?
|
||||
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")?
|
||||
.map(|s| pq_params.use_opq = s.value(cx));
|
||||
|
||||
obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors")
|
||||
.map_err(|t| t.to_string())?
|
||||
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
|
||||
obj.get_opt_usize(cx, "num_sub_vectors")?
|
||||
.map(|s| pq_params.num_sub_vectors = s);
|
||||
|
||||
obj.get_opt::<JsNumber, _, _>(cx, "num_bits")
|
||||
.map_err(|t| t.to_string())?
|
||||
.map(|s| pq_params.num_bits = s.value(cx) as usize);
|
||||
obj.get_opt_usize(cx, "num_bits")?
|
||||
.map(|s| pq_params.num_bits = s);
|
||||
|
||||
obj.get_opt::<JsNumber, _, _>(cx, "max_iters")
|
||||
.map_err(|t| t.to_string())?
|
||||
.map(|s| pq_params.max_iters = s.value(cx) as usize);
|
||||
obj.get_opt_usize(cx, "max_iters")?
|
||||
.map(|s| pq_params.max_iters = s);
|
||||
|
||||
obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters")
|
||||
.map_err(|t| t.to_string())?
|
||||
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
|
||||
obj.get_opt_usize(cx, "max_opq_iters")?
|
||||
.map(|s| pq_params.max_opq_iters = s);
|
||||
|
||||
obj.get_opt::<JsBoolean, _, _>(cx, "replace")
|
||||
.map_err(|t| t.to_string())?
|
||||
obj.get_opt::<JsBoolean, _, _>(cx, "replace")?
|
||||
.map(|s| index_builder.replace(s.value(cx)));
|
||||
|
||||
Ok(index_builder)
|
||||
}
|
||||
t => Err(format!("{} is not a valid index type", t).to_string()),
|
||||
index_type => Err(InvalidIndexType {
|
||||
index_type: index_type.into(),
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -31,16 +31,17 @@ use once_cell::sync::OnceCell;
|
||||
use tokio::runtime::Runtime;
|
||||
|
||||
use vectordb::database::Database;
|
||||
use vectordb::error::Error;
|
||||
use vectordb::table::{ReadParams, Table};
|
||||
|
||||
use crate::arrow::{arrow_buffer_to_record_batch, record_batch_to_buffer};
|
||||
use crate::error::ResultExt;
|
||||
use crate::neon_ext::js_object_ext::JsObjectExt;
|
||||
|
||||
mod arrow;
|
||||
mod convert;
|
||||
mod error;
|
||||
mod index;
|
||||
mod neon_ext;
|
||||
|
||||
struct JsDatabase {
|
||||
database: Arc<Database>,
|
||||
@@ -245,12 +246,9 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
.get_opt::<JsString, _, _>(&mut cx, "_filter")?
|
||||
.map(|s| s.value(&mut cx));
|
||||
let refine_factor = query_obj
|
||||
.get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
|
||||
.map(|s| s.value(&mut cx))
|
||||
.map(|i| i as u32);
|
||||
let nprobes = query_obj
|
||||
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
|
||||
.value(&mut cx) as usize;
|
||||
.get_opt_u32(&mut cx, "_refineFactor")
|
||||
.or_throw(&mut cx)?;
|
||||
let nprobes = query_obj.get_usize(&mut cx, "_nprobes").or_throw(&mut cx)?;
|
||||
let metric_type = query_obj
|
||||
.get_opt::<JsString, _, _>(&mut cx, "_metricType")?
|
||||
.map(|s| s.value(&mut cx))
|
||||
@@ -277,7 +275,11 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
|
||||
.select(select);
|
||||
let record_batch_stream = builder.execute();
|
||||
let results = record_batch_stream
|
||||
.and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
|
||||
.and_then(|stream| {
|
||||
stream
|
||||
.try_collect::<Vec<_>>()
|
||||
.map_err(vectordb::error::Error::from)
|
||||
})
|
||||
.await;
|
||||
|
||||
deferred.settle_with(&channel, move |mut cx| {
|
||||
|
||||
15
rust/ffi/node/src/neon_ext.rs
Normal file
15
rust/ffi/node/src/neon_ext.rs
Normal file
@@ -0,0 +1,15 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
pub mod js_object_ext;
|
||||
82
rust/ffi/node/src/neon_ext/js_object_ext.rs
Normal file
82
rust/ffi/node/src/neon_ext/js_object_ext.rs
Normal file
@@ -0,0 +1,82 @@
|
||||
// Copyright 2023 Lance Developers.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
use crate::error::{Error, Result};
|
||||
use neon::prelude::*;
|
||||
|
||||
// extends neon's [JsObject] with helper functions to extract properties
|
||||
pub trait JsObjectExt {
|
||||
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>>;
|
||||
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize>;
|
||||
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>>;
|
||||
}
|
||||
|
||||
impl JsObjectExt for JsObject {
|
||||
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>> {
|
||||
let val_opt = self
|
||||
.get_opt::<JsNumber, _, _>(cx, key)?
|
||||
.map(|s| f64_to_u32_safe(s.value(cx), key));
|
||||
val_opt.transpose()
|
||||
}
|
||||
|
||||
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize> {
|
||||
let val = self.get::<JsNumber, _, _>(cx, key)?.value(cx);
|
||||
f64_to_usize_safe(val, key)
|
||||
}
|
||||
|
||||
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>> {
|
||||
let val_opt = self
|
||||
.get_opt::<JsNumber, _, _>(cx, key)?
|
||||
.map(|s| f64_to_usize_safe(s.value(cx), key));
|
||||
val_opt.transpose()
|
||||
}
|
||||
}
|
||||
|
||||
fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
|
||||
use conv::*;
|
||||
|
||||
n.approx_as::<u32>().map_err(|e| match e {
|
||||
FloatError::NegOverflow(_) => Error::RangeError {
|
||||
name: key.into(),
|
||||
message: "must be > 0".to_string(),
|
||||
},
|
||||
FloatError::PosOverflow(_) => Error::RangeError {
|
||||
name: key.into(),
|
||||
message: format!("must be < {}", u32::MAX),
|
||||
},
|
||||
FloatError::NotANumber(_) => Error::RangeError {
|
||||
name: key.into(),
|
||||
message: "not a valid number".to_string(),
|
||||
},
|
||||
})
|
||||
}
|
||||
|
||||
fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
|
||||
use conv::*;
|
||||
|
||||
n.approx_as::<usize>().map_err(|e| match e {
|
||||
FloatError::NegOverflow(_) => Error::RangeError {
|
||||
name: key.into(),
|
||||
message: "must be > 0".to_string(),
|
||||
},
|
||||
FloatError::PosOverflow(_) => Error::RangeError {
|
||||
name: key.into(),
|
||||
message: format!("must be < {}", usize::MAX),
|
||||
},
|
||||
FloatError::NotANumber(_) => Error::RangeError {
|
||||
name: key.into(),
|
||||
message: "not a valid number".to_string(),
|
||||
},
|
||||
})
|
||||
}
|
||||
Reference in New Issue
Block a user