Compare commits

..

1 Commits

Author SHA1 Message Date
Lance Release
4b49243567 Bump version: 0.1.14 → 0.1.15 2023-07-19 02:54:02 +00:00
59 changed files with 468 additions and 1291 deletions

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.1.19 current_version = 0.1.15
commit = True commit = True
message = Bump version: {current_version} → {new_version} message = Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -25,35 +25,38 @@ jobs:
bump-version: bump-version:
runs-on: ubuntu-latest runs-on: ubuntu-latest
steps: steps:
- name: Check out main - name: Check out main
uses: actions/checkout@v3 uses: actions/checkout@v3
with: with:
ref: main ref: main
persist-credentials: false persist-credentials: false
fetch-depth: 0 fetch-depth: 0
lfs: true lfs: true
- name: Set git configs for bumpversion - name: Set git configs for bumpversion
shell: bash shell: bash
run: | run: |
git config user.name 'Lance Release' git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com' git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10 - name: Set up Python 3.10
uses: actions/setup-python@v4 uses: actions/setup-python@v4
with: with:
python-version: "3.10" python-version: "3.10"
- name: Bump version, create tag and commit - name: Bump version, create tag and commit
run: | run: |
pip install bump2version pip install bump2version
bumpversion --verbose ${{ inputs.part }} bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag - name: Update package-lock.json file
if: ${{ inputs.dry_run }} == "false" run: |
uses: ad-m/github-push-action@master npm install
with: git add package-lock.json
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} # Add this change to the commit created by bumpversion
branch: main git commit --amend --no-edit
tags: true working-directory: node
- uses: ./.github/workflows/update_package_lock - name: Push new version and tag
if: ${{ inputs.dry_run }} == "false" if: ${{ inputs.dry_run }} == "false"
with: uses: ad-m/github-push-action@master
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }} with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -70,7 +70,7 @@ jobs:
npm run tsc npm run tsc
npm run build npm run build
npm run pack-build npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed # Remove index.node to test with dependency installed
rm index.node rm index.node
- name: Test - name: Test
@@ -101,7 +101,7 @@ jobs:
npm run tsc npm run tsc
npm run build npm run build
npm run pack-build npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed # Remove index.node to test with dependency installed
rm index.node rm index.node
- name: Test - name: Test

View File

@@ -46,51 +46,75 @@ jobs:
matrix: matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin] target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v3
- name: Install system dependencies - name: Install system dependencies
run: brew install protobuf run: brew install protobuf
- name: Install npm dependencies - name: Install npm dependencies
run: | run: |
cd node cd node
npm ci npm ci
- name: Install rustup target - name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }} if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules - name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }} run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts - name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
name: native-darwin name: darwin-native
path: | path: |
node/dist/lancedb-vectordb-darwin*.tgz node/dist/vectordb-darwin*.tgz
node-linux: node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ${{ matrix.config.runner }} runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
strategy: strategy:
fail-fast: false fail-fast: false
matrix: matrix:
config: libc:
- arch: x86_64 - gnu
runner: ubuntu-latest # TODO: re-enable musl once we have refactored to pre-built containers
- arch: aarch64 # Right now we have to build node from source which is too expensive.
runner: buildjet-4vcpu-ubuntu-2204-arm # - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps: steps:
- name: Checkout - name: Checkout
uses: actions/checkout@v3 uses: actions/checkout@v3
- name: Build Linux Artifacts - name: Change owner to root (for npm)
run: | # The docker container is run as root, so we need the files to be owned by root
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }} # Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
- name: Upload Linux Artifacts run: sudo chown -R root:root .
uses: actions/upload-artifact@v3 - name: Set up QEMU
with: if: ${{ matrix.arch == 'aarch64' }}
name: native-linux uses: docker/setup-qemu-action@v2
path: | with:
node/dist/lancedb-vectordb-linux*.tgz platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
rust:1.70-bookworm \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: linux-native
path: |
node/dist/vectordb-linux*.tgz
node-windows: node-windows:
runs-on: windows-2022 runs-on: windows-2022
@@ -121,12 +145,12 @@ jobs:
- name: Upload Windows Artifacts - name: Upload Windows Artifacts
uses: actions/upload-artifact@v3 uses: actions/upload-artifact@v3
with: with:
name: native-windows name: windows-native
path: | path: |
node/dist/lancedb-vectordb-win32*.tgz node/dist/vectordb-win32*.tgz
release: release:
needs: [node, node-macos, node-linux, node-windows] needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action # Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v') if: startsWith(github.ref, 'refs/tags/v')
@@ -146,18 +170,3 @@ jobs:
for filename in *.tgz; do for filename in *.tgz; do
npm publish $filename npm publish $filename
done done
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -30,7 +30,7 @@ jobs:
python-version: 3.${{ matrix.python-minor-version }} python-version: 3.${{ matrix.python-minor-version }}
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install -e .[tests] pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black isort pip install pytest pytest-mock black isort
- name: Black - name: Black
@@ -59,7 +59,7 @@ jobs:
python-version: "3.11" python-version: "3.11"
- name: Install lancedb - name: Install lancedb
run: | run: |
pip install -e .[tests] pip install -e .
pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985 pip install tantivy@git+https://github.com/quickwit-oss/tantivy-py#164adc87e1a033117001cf70e38c82a53014d985
pip install pytest pytest-mock black pip install pytest pytest-mock black
- name: Black - name: Black

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,19 +0,0 @@
name: Update package-lock.json
on:
workflow_dispatch:
jobs:
publish:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}

View File

@@ -6,12 +6,11 @@ members = [
resolver = "2" resolver = "2"
[workspace.dependencies] [workspace.dependencies]
lance = "=0.5.9" lance = "=0.5.8"
arrow-array = "42.0" arrow-array = "42.0"
arrow-data = "42.0" arrow-data = "42.0"
arrow-schema = "42.0" arrow-schema = "42.0"
arrow-ipc = "42.0" arrow-ipc = "42.0"
half = { "version" = "=2.2.1", default-features = false } half = { "version" = "=2.2.1", default-features = false }
object_store = "0.6.1" object_store = "0.6.1"
snafu = "0.7.4"

83
ci/build_linux_artifacts.sh Executable file → Normal file
View File

@@ -1,19 +1,72 @@
#!/bin/bash #!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files setup_dependencies() {
# into the container, the files are accessible by the current user. echo "Installing system dependencies..."
pushd ci/manylinux_node if [[ $1 == *musl ]]; then
docker build \ # musllinux
-t lancedb-node-manylinux \ apk add openssl-dev
--build-arg="ARCH=$ARCH" \ else
--build-arg="DOCKER_USER=$(id -u)" \ # rust / debian
--progress=plain \ apt update
. apt install -y libssl-dev protobuf-compiler
popd fi
}
docker run \ install_node() {
-v $(pwd):/io -w /io \ echo "Installing node..."
lancedb-node-manylinux \ curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
bash ci/manylinux_node/build.sh $ARCH source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, especially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# We need to pass OPENSSL_LIB_DIR and OPENSSL_INCLUDE_DIR for static build to work https://github.com/sfackler/rust-openssl/issues/877
OPENSSL_STATIC=1 OPENSSL_LIB_DIR=/usr/lib/x86_64-linux-gnu OPENSSL_INCLUDE_DIR=/usr/include/openssl/ npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
build_node_binary $TARGET

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,19 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -57,14 +57,12 @@ nav:
- Basics: basic.md - Basics: basic.md
- Embeddings: embedding.md - Embeddings: embedding.md
- Python full-text search: fts.md - Python full-text search: fts.md
- Integrations: - Python integrations:
- Pandas and PyArrow: python/arrow.md - Pandas and PyArrow: python/arrow.md
- DuckDB: python/duckdb.md - DuckDB: python/duckdb.md
- LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html - LangChain 🦜️🔗: https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html
- LangChain JS/TS 🦜️🔗: https://js.langchain.com/docs/modules/data_connection/vectorstores/integrations/lancedb
- LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html - LlamaIndex 🦙: https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html
- Pydantic: python/pydantic.md - Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- Python examples: - Python examples:
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb - YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb - Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
@@ -74,7 +72,6 @@ nav:
- Javascript examples: - Javascript examples:
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md - YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md - TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- References: - References:
- Vector Search: search.md - Vector Search: search.md
- SQL filters: sql.md - SQL filters: sql.md

Binary file not shown.

Before

Width:  |  Height:  |  Size: 953 KiB

View File

@@ -1,6 +1,6 @@
# Vector embedding search using TransformersJS # Vector embedding search using TransformersJS
## Embed and query data from LanceDB using TransformersJS ## Embed and query data from LacneDB using TransformersJS
<img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f"> <img id="splash" width="400" alt="transformersjs" src="https://github.com/lancedb/lancedb/assets/43097991/88a31e30-3d6f-4eef-9216-4b7c688f1b4f">

View File

@@ -4,10 +4,4 @@
<img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png"> <img id="splash" width="400" alt="youtube transcript search" src="https://user-images.githubusercontent.com/917119/236965568-def7394d-171c-45f2-939d-8edfeaadd88c.png">
<a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab">
Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)
This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb) This example is in a [notebook](https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb)

View File

@@ -1,71 +0,0 @@
![example](/assets/voxel.gif)
Basic recipe
____________
The basic workflow to use LanceDB to create a similarity index on your FiftyOne
datasets and use this to query your data is as follows:
1) Load a dataset into FiftyOne
2) Compute embedding vectors for samples or patches in your dataset, or select
a model to use to generate embeddings
3) Use the `compute_similarity()`
method to generate a LanceDB table for the samples or object
patches embeddings in a dataset by setting the parameter `backend="lancedb"` and
specifying a `brain_key` of your choice
4) Use this LanceDB table to query your data with
`sort_by_similarity()`
5) If desired, delete the table
The example below demonstrates this workflow.
!!! Note
You must install the LanceDB Python client to run this
```
pip install lancedb
```
```python
import fiftyone as fo
import fiftyone.brain as fob
import fiftyone.zoo as foz
# Step 1: Load your data into FiftyOne
dataset = foz.load_zoo_dataset("quickstart")
# Steps 2 and 3: Compute embeddings and create a similarity index
lancedb_index = fob.compute_similarity(
dataset,
model="clip-vit-base32-torch",
brain_key="lancedb_index",
backend="lancedb",
)
```
Once the similarity index has been generated, we can query our data in FiftyOne
by specifying the `brain_key`:
```python
# Step 4: Query your data
query = dataset.first().id # query by sample ID
view = dataset.sort_by_similarity(
query,
brain_key="lancedb_index",
k=10, # limit to 10 most similar samples
)
# Step 5 (optional): Cleanup
# Delete the LanceDB table
lancedb_index.cleanup()
# Delete run record from FiftyOne
dataset.delete_brain_run("lancedb_index")
```
More in depth walkthrough of the integration, visit the LanceDB guide on Voxel51 - [LaceDB x Voxel51](https://docs.voxel51.com/integrations/lancedb.html)

View File

@@ -10,11 +10,7 @@
"\n", "\n",
"This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n", "This Q&A bot will allow you to query your own documentation easily using questions. We'll also demonstrate the use of LangChain and LanceDB using the OpenAI API. \n",
"\n", "\n",
"In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well\n", "In this example we'll use Pandas 2.0 documentation, but, this could be replaced for your own docs as well"
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/Code-Documentation-QA-Bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/Code-Documentation-QA-Bot/index.js)"
] ]
}, },
{ {
@@ -185,7 +181,7 @@
"id": "c3852dd3", "id": "c3852dd3",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# Generating embeddings from our docs\n", "# Generating emebeddings from our docs\n",
"\n", "\n",
"Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:" "Now that we have our raw documents loaded, we need to pre-process them to generate embeddings:"
] ]

View File

@@ -1,14 +1,5 @@
{ {
"cells": [ "cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![example](https://github.com/lancedb/vectordb-recipes/assets/15766192/799f94a1-a01d-4a5b-a627-2a733bbb4227)\n",
"\n",
" <a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/multimodal_clip/main.py) |"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 2, "execution_count": 2,
@@ -51,19 +42,6 @@
"## First run setup: Download data and pre-process" "## First run setup: Download data and pre-process"
] ]
}, },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### Get dataset\n",
"\n",
"!wget https://eto-public.s3.us-west-2.amazonaws.com/datasets/diffusiondb_lance.tar.gz\n",
"!tar -xvf diffusiondb_lance.tar.gz\n",
"!mv diffusiondb_test rawdata.lance\n"
]
},
{ {
"cell_type": "code", "cell_type": "code",
"execution_count": 30, "execution_count": 30,
@@ -269,7 +247,7 @@
], ],
"metadata": { "metadata": {
"kernelspec": { "kernelspec": {
"display_name": "Python 3.11.4 64-bit", "display_name": "Python 3 (ipykernel)",
"language": "python", "language": "python",
"name": "python3" "name": "python3"
}, },
@@ -283,12 +261,7 @@
"name": "python", "name": "python",
"nbconvert_exporter": "python", "nbconvert_exporter": "python",
"pygments_lexer": "ipython3", "pygments_lexer": "ipython3",
"version": "3.11.4" "version": "3.11.3"
},
"vscode": {
"interpreter": {
"hash": "b0fa6594d8f4cbf19f97940f81e996739fb7646882a419484c72d19e05852a7e"
}
} }
}, },
"nbformat": 4, "nbformat": 4,

View File

@@ -8,12 +8,7 @@
"source": [ "source": [
"# Youtube Transcript Search QA Bot\n", "# Youtube Transcript Search QA Bot\n",
"\n", "\n",
"This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily.\n", "This Q&A bot will allow you to search through youtube transcripts using natural language! By going through this notebook, we'll introduce how you can use LanceDB to store and manage your data easily."
"\n",
"\n",
"<a href=\"https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\">\n",
"\n",
"Scripts - [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](./examples/youtube_bot/main.py) [![JavaScript](https://img.shields.io/badge/javascript-%23323330.svg?style=for-the-badge&logo=javascript&logoColor=%23F7DF1E)](./examples/youtube_bot/index.js)\n"
] ]
}, },
{ {

View File

@@ -1,8 +1,6 @@
# Pydantic # Pydantic
[Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python. [Pydantic](https://docs.pydantic.dev/latest/) is a data validation library in Python.
LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting.
## Schema ## Schema

View File

@@ -7,8 +7,7 @@ excluded_files = [
"../src/embedding.md", "../src/embedding.md",
"../src/examples/serverless_lancedb_with_s3_and_lambda.md", "../src/examples/serverless_lancedb_with_s3_and_lambda.md",
"../src/examples/serverless_qa_bot_with_modal_and_langchain.md", "../src/examples/serverless_qa_bot_with_modal_and_langchain.md",
"../src/examples/youtube_transcript_bot_with_nodejs.md", "../src/examples/youtube_transcript_bot_with_nodejs.md"
"../src/integrations/voxel51.md",
] ]
python_prefix = "py" python_prefix = "py"

View File

@@ -17,7 +17,7 @@ const { currentTarget } = require('@neon-rs/load');
let nativeLib; let nativeLib;
try { try {
nativeLib = require(`@lancedb/vectordb-${currentTarget()}`); nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) { } catch (e) {
try { try {
// Might be developing locally, so try that. But don't expose that error // Might be developing locally, so try that. But don't expose that error
@@ -25,12 +25,12 @@ try {
nativeLib = require("./index.node"); nativeLib = require("./index.node");
} catch { } catch {
throw new Error(`vectordb: failed to load native library. throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install @lancedb/vectordb-${currentTarget()}\`. You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`); Source error: ${e}`);
} }
} }
// Dynamic require for runtime. // Dynamic require for runtime.

332
node/package-lock.json generated
View File

@@ -1,12 +1,12 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.19", "version": "0.1.14",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "vectordb", "name": "vectordb",
"version": "0.1.19", "version": "0.1.14",
"cpu": [ "cpu": [
"x64", "x64",
"arm64" "arm64"
@@ -24,7 +24,7 @@
"axios": "^1.4.0" "axios": "^1.4.0"
}, },
"devDependencies": { "devDependencies": {
"@neon-rs/cli": "^0.0.160", "@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4", "@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5", "@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1", "@types/mocha": "^10.0.1",
@@ -51,11 +51,11 @@
"typescript": "*" "typescript": "*"
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.19", "vectordb-darwin-arm64": "0.1.14",
"@lancedb/vectordb-darwin-x64": "0.1.19", "vectordb-darwin-x64": "0.1.14",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19", "vectordb-linux-arm64-gnu": "0.1.14",
"@lancedb/vectordb-linux-x64-gnu": "0.1.19", "vectordb-linux-x64-gnu": "0.1.14",
"@lancedb/vectordb-win32-x64-msvc": "0.1.19" "vectordb-win32-x64-msvc": "0.1.14"
} }
}, },
"node_modules/@apache-arrow/ts": { "node_modules/@apache-arrow/ts": {
@@ -85,97 +85,6 @@
"resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz", "resolved": "https://registry.npmjs.org/tslib/-/tslib-2.5.0.tgz",
"integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg==" "integrity": "sha512-336iVw3rtn2BUK7ORdIAHTyxHGRIHVReokCR3XjbckJMK7ms8FysBfhLR8IXnAgy7T0PTPNBWKiH514FOW/WSg=="
}, },
"node_modules/@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"android"
]
},
"node_modules/@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"cpu": [
"arm"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"linux"
]
},
"node_modules/@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"cpu": [
"arm64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"cpu": [
"x64"
],
"dev": true,
"optional": true,
"os": [
"win32"
]
},
"node_modules/@cspotcode/source-map-support": { "node_modules/@cspotcode/source-map-support": {
"version": "0.8.1", "version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz", "resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -314,82 +223,13 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"node_modules/@lancedb/vectordb-darwin-arm64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-darwin-x64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-linux-x64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/@lancedb/vectordb-win32-x64-msvc": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"win32"
]
},
"node_modules/@neon-rs/cli": { "node_modules/@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==", "integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true, "dev": true,
"bin": { "bin": {
"neon": "index.js" "neon": "index.js"
},
"optionalDependencies": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
} }
}, },
"node_modules/@neon-rs/load": { "node_modules/@neon-rs/load": {
@@ -4457,6 +4297,42 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==", "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true "dev": true
}, },
"node_modules/vectordb-darwin-arm64": {
"version": "0.1.14",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.14.tgz",
"integrity": "sha512-5doSFMUR4scxseo73thCxScmO3Wpb+cqPsIa7+2uneTEtBSViMbkw/1mGTC+rV4NTCnxhoiqHk9pJzZVeDMkPg==",
"cpu": [
"arm64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-darwin-x64": {
"version": "0.1.14",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.14.tgz",
"integrity": "sha512-x+qVaKNhAG65HdENL6GRJjxl1hZ7erRm3a2rhplyYoQyzuRPPBILeWzxkE01G1fb0+47dehe7Q4f/8BDaghcCQ==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"darwin"
]
},
"node_modules/vectordb-linux-x64-gnu": {
"version": "0.1.14",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.14.tgz",
"integrity": "sha512-hvA2YYwTZK92k6nPH99Jn5N0CwagDOdnwMmjtCpzFOEYK7dY/2kcTOoQNlBwwNP9MYvgN6jdFD/Cwkih1X/qjA==",
"cpu": [
"x64"
],
"optional": true,
"os": [
"linux"
]
},
"node_modules/vscode-oniguruma": { "node_modules/vscode-oniguruma": {
"version": "1.7.0", "version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz", "resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",
@@ -4702,55 +4578,6 @@
} }
} }
}, },
"@cargo-messages/android-arm-eabi": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/android-arm-eabi/-/android-arm-eabi-0.0.160.tgz",
"integrity": "sha512-PTgCEmBHEPKJbxwlHVXB3aGES+NqpeBvn6hJNYWIkET3ZQCSJnScMlIDQXEkWndK7J+hW3Or3H32a93B/MbbfQ==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-arm64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-arm64/-/darwin-arm64-0.0.160.tgz",
"integrity": "sha512-YSVUuc8TUTi/XmZVg9KrH0bDywKLqC1zeTyZYAYDDmqVDZW9KeTnbBUECKRs56iyHeO+kuEkVW7MKf7j2zb/FA==",
"dev": true,
"optional": true
},
"@cargo-messages/darwin-x64": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/darwin-x64/-/darwin-x64-0.0.160.tgz",
"integrity": "sha512-U+YlAR+9tKpBljnNPWMop5YhvtwfIPQSAaUYN2llteC7ZNU5/cv8CGT1vm7uFNxr2LeGuAtRbzIh2gUmTV8mng==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-arm-gnueabihf": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-arm-gnueabihf/-/linux-arm-gnueabihf-0.0.160.tgz",
"integrity": "sha512-wqAelTzVv1E7Ls4aviqUbem5xjzCaJQxQtVnLhv6pf1k0UyEHCS2WdufFFmWcojGe7QglI4uve3KTe01MKYj0A==",
"dev": true,
"optional": true
},
"@cargo-messages/linux-x64-gnu": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/linux-x64-gnu/-/linux-x64-gnu-0.0.160.tgz",
"integrity": "sha512-LQ6e7O7YYkWfDNIi/53q2QG/+lZok72LOG+NKDVCrrY4TYUcrTqWAybOV6IlkVntKPnpx8YB95umSQGeVuvhpQ==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-arm64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-arm64-msvc/-/win32-arm64-msvc-0.0.160.tgz",
"integrity": "sha512-VDMBhyun02gIDwmEhkYP1W9Z0tYqn4drgY5Iua1qV2tYOU58RVkWhzUYxM9rzYbnwKZlltgM46J/j5QZ3VaFrA==",
"dev": true,
"optional": true
},
"@cargo-messages/win32-x64-msvc": {
"version": "0.0.160",
"resolved": "https://registry.npmjs.org/@cargo-messages/win32-x64-msvc/-/win32-x64-msvc-0.0.160.tgz",
"integrity": "sha512-vnoglDxF6zj0W/Co9D0H/bgnrhUuO5EumIf9v3ujLtBH94rAX11JsXh/FgC/8wQnQSsLyWSq70YxNS2wdETxjA==",
"dev": true,
"optional": true
},
"@cspotcode/source-map-support": { "@cspotcode/source-map-support": {
"version": "0.8.1", "version": "0.8.1",
"resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz", "resolved": "https://registry.npmjs.org/@cspotcode/source-map-support/-/source-map-support-0.8.1.tgz",
@@ -4851,50 +4678,11 @@
"@jridgewell/sourcemap-codec": "^1.4.10" "@jridgewell/sourcemap-codec": "^1.4.10"
} }
}, },
"@lancedb/vectordb-darwin-arm64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.19.tgz",
"integrity": "sha512-efQhJkBKvMNhjFq3Sw3/qHo9D9gb9UqiIr98n3STsbNxBQjMnWemXn91Ckl40siRG1O8qXcINW7Qs/EGmus+kg==",
"optional": true
},
"@lancedb/vectordb-darwin-x64": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.19.tgz",
"integrity": "sha512-r6OZNVyemAssABz2w7CRhe7dyREwBEfTytn+ux1zzTnzsgMgDovCQ0rQ3WZcxWvcy7SFCxiemA9IP1b/lsb4tQ==",
"optional": true
},
"@lancedb/vectordb-linux-arm64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-arm64-gnu/-/vectordb-linux-arm64-gnu-0.1.19.tgz",
"integrity": "sha512-mL/hRmZp6Kw7hmGJBdOZfp/tTYiCdlOcs8DA/+nr2eiXERv0gIhyiKvr2P5DwbBmut3qXEkDalMHTo95BSdL2A==",
"optional": true
},
"@lancedb/vectordb-linux-x64-gnu": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.19.tgz",
"integrity": "sha512-AG0FHksbbr+cHVKPi4B8cmBtqb6T9E0uaK4kyZkXrX52/xtv9RYVZcykaB/tSSm0XNFPWWRnx9R8UqNZV/hxMA==",
"optional": true
},
"@lancedb/vectordb-win32-x64-msvc": {
"version": "0.1.19",
"resolved": "https://registry.npmjs.org/@lancedb/vectordb-win32-x64-msvc/-/vectordb-win32-x64-msvc-0.1.19.tgz",
"integrity": "sha512-PDWZ2hvLVXH4Z4WIO1rsWY8ev3NpNm7aXlaey32P+l1Iz9Hia9+F2GBpp2UiEQKfvbk82ucAvBLRmpSsHY8Tlw==",
"optional": true
},
"@neon-rs/cli": { "@neon-rs/cli": {
"version": "0.0.160", "version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.160.tgz", "resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-GQjzHPJVTOARbX3nP/fAWqBq7JlQ8XgfYlCa+iwzIXf0LC1EyfJTX+vqGD/36b9lKoyY01Z/aDUB9o/qF6ztHA==", "integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true, "dev": true
"requires": {
"@cargo-messages/android-arm-eabi": "0.0.160",
"@cargo-messages/darwin-arm64": "0.0.160",
"@cargo-messages/darwin-x64": "0.0.160",
"@cargo-messages/linux-arm-gnueabihf": "0.0.160",
"@cargo-messages/linux-x64-gnu": "0.0.160",
"@cargo-messages/win32-arm64-msvc": "0.0.160",
"@cargo-messages/win32-x64-msvc": "0.0.160"
}
}, },
"@neon-rs/load": { "@neon-rs/load": {
"version": "0.0.74", "version": "0.0.74",
@@ -7850,6 +7638,24 @@
"integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==", "integrity": "sha512-wa7YjyUGfNZngI/vtK0UHAN+lgDCxBPCylVXGp0zu59Fz5aiGtNXaq3DhIov063MorB+VfufLh3JlF2KdTK3xg==",
"dev": true "dev": true
}, },
"vectordb-darwin-arm64": {
"version": "0.1.14",
"resolved": "https://registry.npmjs.org/vectordb-darwin-arm64/-/vectordb-darwin-arm64-0.1.14.tgz",
"integrity": "sha512-5doSFMUR4scxseo73thCxScmO3Wpb+cqPsIa7+2uneTEtBSViMbkw/1mGTC+rV4NTCnxhoiqHk9pJzZVeDMkPg==",
"optional": true
},
"vectordb-darwin-x64": {
"version": "0.1.14",
"resolved": "https://registry.npmjs.org/vectordb-darwin-x64/-/vectordb-darwin-x64-0.1.14.tgz",
"integrity": "sha512-x+qVaKNhAG65HdENL6GRJjxl1hZ7erRm3a2rhplyYoQyzuRPPBILeWzxkE01G1fb0+47dehe7Q4f/8BDaghcCQ==",
"optional": true
},
"vectordb-linux-x64-gnu": {
"version": "0.1.14",
"resolved": "https://registry.npmjs.org/vectordb-linux-x64-gnu/-/vectordb-linux-x64-gnu-0.1.14.tgz",
"integrity": "sha512-hvA2YYwTZK92k6nPH99Jn5N0CwagDOdnwMmjtCpzFOEYK7dY/2kcTOoQNlBwwNP9MYvgN6jdFD/Cwkih1X/qjA==",
"optional": true
},
"vscode-oniguruma": { "vscode-oniguruma": {
"version": "1.7.0", "version": "1.7.0",
"resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz", "resolved": "https://registry.npmjs.org/vscode-oniguruma/-/vscode-oniguruma-1.7.0.tgz",

View File

@@ -1,6 +1,6 @@
{ {
"name": "vectordb", "name": "vectordb",
"version": "0.1.19", "version": "0.1.15",
"description": " Serverless, low-latency vector database for AI applications", "description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js", "main": "dist/index.js",
"types": "dist/index.d.ts", "types": "dist/index.d.ts",
@@ -27,7 +27,7 @@
"author": "Lance Devs", "author": "Lance Devs",
"license": "Apache-2.0", "license": "Apache-2.0",
"devDependencies": { "devDependencies": {
"@neon-rs/cli": "^0.0.160", "@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4", "@types/chai": "^4.3.4",
"@types/chai-as-promised": "^7.1.5", "@types/chai-as-promised": "^7.1.5",
"@types/mocha": "^10.0.1", "@types/mocha": "^10.0.1",
@@ -70,18 +70,18 @@
], ],
"neon": { "neon": {
"targets": { "targets": {
"x86_64-apple-darwin": "@lancedb/vectordb-darwin-x64", "x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "@lancedb/vectordb-darwin-arm64", "aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "@lancedb/vectordb-linux-x64-gnu", "x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "@lancedb/vectordb-linux-arm64-gnu", "aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu",
"x86_64-pc-windows-msvc": "@lancedb/vectordb-win32-x64-msvc" "x86_64-pc-windows-msvc": "vectordb-win32-x64-msvc"
} }
}, },
"optionalDependencies": { "optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.1.19", "vectordb-darwin-arm64": "0.1.15",
"@lancedb/vectordb-darwin-x64": "0.1.19", "vectordb-darwin-x64": "0.1.15",
"@lancedb/vectordb-linux-arm64-gnu": "0.1.19", "vectordb-linux-arm64-gnu": "0.1.15",
"@lancedb/vectordb-linux-x64-gnu": "0.1.19", "vectordb-linux-x64-gnu": "0.1.15",
"@lancedb/vectordb-win32-x64-msvc": "0.1.19" "vectordb-win32-x64-msvc": "0.1.15"
} }
} }

View File

@@ -26,8 +26,3 @@ export interface EmbeddingFunction<T> {
*/ */
embed: (data: T[]) => Promise<number[][]> embed: (data: T[]) => Promise<number[][]>
} }
export function isEmbeddingFunction<T> (value: any): value is EmbeddingFunction<T> {
return typeof value.sourceColumn === 'string' &&
typeof value.embed === 'function'
}

View File

@@ -20,12 +20,10 @@ import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function' import type { EmbeddingFunction } from './embedding/embedding_function'
import { RemoteConnection } from './remote' import { RemoteConnection } from './remote'
import { Query } from './query' import { Query } from './query'
import { isEmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js') const { databaseNew, databaseTableNames, databaseOpenTable, databaseDropTable, tableCreate, tableAdd, tableCreateVectorIndex, tableCountRows, tableDelete } = require('../native.js')
export { Query }
export type { EmbeddingFunction } export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai' export { OpenAIEmbeddingFunction } from './embedding/openai'
@@ -102,35 +100,10 @@ export interface Connection {
* *
* @param {string} name - The name of the table. * @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table * @param data - Non-empty Array of Records to be inserted into the table
*/ * @param {WriteMode} mode - The write mode to use when creating the table.
createTable (name: string, data: Array<Record<string, unknown>>): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable (name: string, data: Array<Record<string, unknown>>, options: WriteOptions): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table * @param {EmbeddingFunction} embeddings - An embedding function to use on this table
*/ */
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>): Promise<Table<T>> createTable<T>(name: string, data: Array<Record<string, unknown>>, mode?: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
/**
* Creates a new Table and initialize it with new data.
*
* @param {string} name - The name of the table.
* @param data - Non-empty Array of Records to be inserted into the table
* @param {EmbeddingFunction} embeddings - An embedding function to use on this table
* @param {WriteOptions} options - The write options to use when creating the table.
*/
createTable<T> (name: string, data: Array<Record<string, unknown>>, embeddings: EmbeddingFunction<T>, options: WriteOptions): Promise<Table<T>>
createTableArrow(name: string, table: ArrowTable): Promise<Table> createTableArrow(name: string, table: ArrowTable): Promise<Table>
@@ -264,19 +237,32 @@ export class LocalConnection implements Connection {
} }
} }
async createTable<T> (name: string, data: Array<Record<string, unknown>>, optsOrEmbedding?: WriteOptions | EmbeddingFunction<T>, opt?: WriteOptions): Promise<Table<T>> { /**
let writeOptions: WriteOptions = new DefaultWriteOptions() * Creates a new Table and initialize it with new data.
if (opt !== undefined && isWriteOptions(opt)) { *
writeOptions = opt * @param name The name of the table.
} else if (optsOrEmbedding !== undefined && isWriteOptions(optsOrEmbedding)) { * @param data Non-empty Array of Records to be inserted into the Table
writeOptions = optsOrEmbedding * @param mode The write mode to use when creating the table.
*/
async createTable (name: string, data: Array<Record<string, unknown>>, mode?: WriteMode): Promise<Table>
async createTable (name: string, data: Array<Record<string, unknown>>, mode: WriteMode): Promise<Table>
/**
* Creates a new Table and initialize it with new data.
*
* @param name The name of the table.
* @param data Non-empty Array of Records to be inserted into the Table
* @param mode The write mode to use when creating the table.
* @param embeddings An embedding function to use on this Table
*/
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>>
async createTable<T> (name: string, data: Array<Record<string, unknown>>, mode: WriteMode, embeddings?: EmbeddingFunction<T>): Promise<Table<T>> {
if (mode === undefined) {
mode = WriteMode.Create
} }
let embeddings: undefined | EmbeddingFunction<T> const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), mode.toLowerCase()]
if (optsOrEmbedding !== undefined && isEmbeddingFunction(optsOrEmbedding)) {
embeddings = optsOrEmbedding
}
const createArgs = [this._db, name, await fromRecordsToBuffer(data, embeddings), writeOptions.writeMode?.toString()]
if (this._options.awsCredentials !== undefined) { if (this._options.awsCredentials !== undefined) {
createArgs.push(this._options.awsCredentials.accessKeyId) createArgs.push(this._options.awsCredentials.accessKeyId)
createArgs.push(this._options.awsCredentials.secretKey) createArgs.push(this._options.awsCredentials.secretKey)
@@ -473,23 +459,6 @@ export enum WriteMode {
Append = 'append' Append = 'append'
} }
/**
* Write options when creating a Table.
*/
export interface WriteOptions {
/** A {@link WriteMode} to use on this operation */
writeMode?: WriteMode
}
export class DefaultWriteOptions implements WriteOptions {
writeMode = WriteMode.Create
}
export function isWriteOptions (value: any): value is WriteOptions {
return Object.keys(value).length === 1 &&
(value.writeMode === undefined || typeof value.writeMode === 'string')
}
/** /**
* Distance metrics type. * Distance metrics type.
*/ */

View File

@@ -18,15 +18,13 @@ import { tableFromIPC, type Table as ArrowTable } from 'apache-arrow'
export class HttpLancedbClient { export class HttpLancedbClient {
private readonly _url: string private readonly _url: string
private readonly _apiKey: () => string
public constructor ( public constructor (
url: string, url: string,
apiKey: string, private readonly _apiKey: string,
private readonly _dbName?: string private readonly _dbName?: string
) { ) {
this._url = url this._url = url
this._apiKey = () => apiKey
} }
get uri (): string { get uri (): string {
@@ -43,7 +41,7 @@ export class HttpLancedbClient {
filter?: string filter?: string
): Promise<ArrowTable<any>> { ): Promise<ArrowTable<any>> {
const response = await axios.post( const response = await axios.post(
`${this._url}/v1/table/${tableName}/query/`, `${this._url}/v1/table/${tableName}`,
{ {
vector, vector,
k, k,
@@ -55,7 +53,7 @@ export class HttpLancedbClient {
{ {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
'x-api-key': this._apiKey(), 'x-api-key': this._apiKey,
...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {}) ...(this._dbName !== undefined ? { 'x-lancedb-database': this._dbName } : {})
}, },
responseType: 'arraybuffer', responseType: 'arraybuffer',
@@ -86,7 +84,7 @@ export class HttpLancedbClient {
{ {
headers: { headers: {
'Content-Type': 'application/json', 'Content-Type': 'application/json',
'x-api-key': this._apiKey() 'x-api-key': this._apiKey
}, },
params, params,
timeout: 10000 timeout: 10000

View File

@@ -16,7 +16,6 @@ import { describe } from 'mocha'
import { assert } from 'chai' import { assert } from 'chai'
import { OpenAIEmbeddingFunction } from '../../embedding/openai' import { OpenAIEmbeddingFunction } from '../../embedding/openai'
import { isEmbeddingFunction } from '../../embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires // eslint-disable-next-line @typescript-eslint/no-var-requires
const { OpenAIApi } = require('openai') const { OpenAIApi } = require('openai')
@@ -48,10 +47,4 @@ describe('OpenAPIEmbeddings', function () {
assert.deepEqual(vectors[1], stubValue.data.data[1].embedding) assert.deepEqual(vectors[1], stubValue.data.data[1].embedding)
}) })
}) })
describe('isEmbeddingFunction', function () {
it('should match the isEmbeddingFunction guard', function () {
assert.isTrue(isEmbeddingFunction(new OpenAIEmbeddingFunction('text', 'sk-key')))
})
})
}) })

View File

@@ -18,7 +18,8 @@ import * as chai from 'chai'
import * as chaiAsPromised from 'chai-as-promised' import * as chaiAsPromised from 'chai-as-promised'
import * as lancedb from '../index' import * as lancedb from '../index'
import { type AwsCredentials, type EmbeddingFunction, MetricType, Query, WriteMode, DefaultWriteOptions, isWriteOptions } from '../index' import { type AwsCredentials, type EmbeddingFunction, MetricType, WriteMode } from '../index'
import { Query } from '../query'
const expect = chai.expect const expect = chai.expect
const assert = chai.assert const assert = chai.assert
@@ -134,18 +135,6 @@ describe('LanceDB client', function () {
assert.equal(await table.countRows(), 2) assert.equal(await table.countRows(), 2)
}) })
it('fails to create a new table when the vector column is missing', async function () {
const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir)
const data = [
{ id: 1, price: 10 }
]
const create = con.createTable('missing_vector', data)
await expect(create).to.be.rejectedWith(Error, 'column \'vector\' is missing')
})
it('use overwrite flag to overwrite existing table', async function () { it('use overwrite flag to overwrite existing table', async function () {
const dir = await track().mkdir('lancejs') const dir = await track().mkdir('lancejs')
const con = await lancedb.connect(dir) const con = await lancedb.connect(dir)
@@ -156,7 +145,7 @@ describe('LanceDB client', function () {
] ]
const tableName = 'overwrite' const tableName = 'overwrite'
await con.createTable(tableName, data, { writeMode: WriteMode.Create }) await con.createTable(tableName, data, WriteMode.Create)
const newData = [ const newData = [
{ id: 1, vector: [0.1, 0.2], price: 10 }, { id: 1, vector: [0.1, 0.2], price: 10 },
@@ -166,7 +155,7 @@ describe('LanceDB client', function () {
await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists') await expect(con.createTable(tableName, newData)).to.be.rejectedWith(Error, 'already exists')
const table = await con.createTable(tableName, newData, { writeMode: WriteMode.Overwrite }) const table = await con.createTable(tableName, newData, WriteMode.Overwrite)
assert.equal(table.name, tableName) assert.equal(table.name, tableName)
assert.equal(await table.countRows(), 3) assert.equal(await table.countRows(), 3)
}) })
@@ -242,22 +231,6 @@ describe('LanceDB client', function () {
// Default replace = true // Default replace = true
await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 }) await table.createIndex({ type: 'ivf_pq', column: 'vector', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
}).timeout(50_000) }).timeout(50_000)
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: 2, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith(/VectorIndex requires the column data type to be fixed size list of float32s/)
})
it('it should fail when the column is not a vector', async function () {
const uri = await createTestDB(32, 300)
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const createIndex = table.createIndex({ type: 'ivf_pq', column: 'name', num_partitions: -1, max_iters: 2, num_sub_vectors: 2 })
await expect(createIndex).to.be.rejectedWith('num_partitions: must be > 0')
})
}) })
describe('when using a custom embedding function', function () { describe('when using a custom embedding function', function () {
@@ -287,7 +260,7 @@ describe('LanceDB client', function () {
{ price: 10, name: 'foo' }, { price: 10, name: 'foo' },
{ price: 50, name: 'bar' } { price: 50, name: 'bar' }
] ]
const table = await con.createTable('vectors', data, embeddings, { writeMode: WriteMode.Create }) const table = await con.createTable('vectors', data, WriteMode.Create, embeddings)
const results = await table.search('foo').execute() const results = await table.search('foo').execute()
assert.equal(results.length, 2) assert.equal(results.length, 2)
}) })
@@ -345,20 +318,3 @@ describe('Drop table', function () {
assert.deepEqual(await con.tableNames(), ['t2']) assert.deepEqual(await con.tableNames(), ['t2'])
}) })
}) })
describe('WriteOptions', function () {
context('#isWriteOptions', function () {
it('should not match empty object', function () {
assert.equal(isWriteOptions({}), false)
})
it('should match write options', function () {
assert.equal(isWriteOptions({ writeMode: WriteMode.Create }), true)
})
it('should match undefined write mode', function () {
assert.equal(isWriteOptions({ writeMode: undefined }), true)
})
it('should match default write options', function () {
assert.equal(isWriteOptions(new DefaultWriteOptions()), true)
})
})
})

View File

@@ -1,5 +1,5 @@
[bumpversion] [bumpversion]
current_version = 0.1.16 current_version = 0.1.12
commit = True commit = True
message = [python] Bump version: {current_version} → {new_version} message = [python] Bump version: {current_version} → {new_version}
tag = True tag = True

View File

@@ -19,11 +19,7 @@ from .schema import vector
def connect( def connect(
uri: URI, uri: URI, *, api_key: Optional[str] = None, region: str = "us-west-2"
*,
api_key: Optional[str] = None,
region: str = "us-west-2",
host_override: Optional[str] = None,
) -> DBConnection: ) -> DBConnection:
"""Connect to a LanceDB database. """Connect to a LanceDB database.
@@ -59,5 +55,5 @@ def connect(
if isinstance(uri, str) and uri.startswith("db://"): if isinstance(uri, str) and uri.startswith("db://"):
if api_key is None: if api_key is None:
raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}") raise ValueError(f"api_key is required to connected LanceDB cloud: {uri}")
return RemoteDBConnection(uri, api_key, region, host_override) return RemoteDBConnection(uri, api_key, region)
return LanceDBConnection(uri) return LanceDBConnection(uri)

View File

@@ -11,18 +11,17 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from pathlib import Path from pathlib import Path
from typing import Iterable, List, Union from typing import List, Union
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[List[dict], dict, "pd.DataFrame", pa.Table, Iterable[pa.RecordBatch]]
VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray] VEC = Union[list, np.ndarray, pa.Array, pa.ChunkedArray]
URI = Union[str, Path] URI = Union[str, Path]
# TODO support generator
DATA = Union[List[dict], dict, pd.DataFrame]
VECTOR_COLUMN_NAME = "vector" VECTOR_COLUMN_NAME = "vector"

View File

@@ -12,13 +12,12 @@
# limitations under the License. # limitations under the License.
from __future__ import annotations from __future__ import annotations
import pandas as pd
from .exceptions import MissingColumnError, MissingValueError from .exceptions import MissingColumnError, MissingValueError
from .util import safe_import_pandas
pd = safe_import_pandas()
def contextualize(raw_df: "pd.DataFrame") -> Contextualizer: def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
"""Create a Contextualizer object for the given DataFrame. """Create a Contextualizer object for the given DataFrame.
Used to create context windows. Context windows are rolling subsets of text Used to create context windows. Context windows are rolling subsets of text
@@ -176,12 +175,8 @@ class Contextualizer:
self._min_window_size = min_window_size self._min_window_size = min_window_size
return self return self
def to_df(self) -> "pd.DataFrame": def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame.""" """Create the context windows and return a DataFrame."""
if pd is None:
raise ImportError(
"pandas is required to create context windows using lancedb"
)
if self._text_col not in self._raw_df.columns.tolist(): if self._text_col not in self._raw_df.columns.tolist():
raise MissingColumnError(self._text_col) raise MissingColumnError(self._text_col)

View File

@@ -16,8 +16,9 @@ from __future__ import annotations
import os import os
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
from pathlib import Path from pathlib import Path
from typing import Optional from typing import Dict, Iterable, List, Optional, Tuple, Union
import pandas as pd
import pyarrow as pa import pyarrow as pa
from pyarrow import fs from pyarrow import fs
@@ -38,7 +39,9 @@ class DBConnection(ABC):
def create_table( def create_table(
self, self,
name: str, name: str,
data: Optional[DATA] = None, data: Optional[
Union[List[dict], dict, pd.DataFrame, pa.Table, Iterable[pa.RecordBatch]],
] = None,
schema: Optional[pa.Schema] = None, schema: Optional[pa.Schema] = None,
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
@@ -276,7 +279,7 @@ class LanceDBConnection(DBConnection):
def create_table( def create_table(
self, self,
name: str, name: str,
data: Optional[DATA] = None, data: Optional[Union[List[dict], dict, pd.DataFrame]] = None,
schema: pa.Schema = None, schema: pa.Schema = None,
mode: str = "create", mode: str = "create",
on_bad_vectors: str = "error", on_bad_vectors: str = "error",
@@ -316,20 +319,14 @@ class LanceDBConnection(DBConnection):
""" """
return LanceTable.open(self, name) return LanceTable.open(self, name)
def drop_table(self, name: str, ignore_missing: bool = False): def drop_table(self, name: str):
"""Drop a table from the database. """Drop a table from the database.
Parameters Parameters
---------- ----------
name: str name: str
The name of the table. The name of the table.
ignore_missing: bool, default False
If True, ignore if the table does not exist.
""" """
try: filesystem, path = pa.fs.FileSystem.from_uri(self.uri)
filesystem, path = fs_from_uri(self.uri) table_path = os.path.join(path, name + ".lance")
table_path = os.path.join(path, name + ".lance") filesystem.delete_dir(table_path)
filesystem.delete_dir(table_path)
except FileNotFoundError:
if not ignore_missing:
raise

View File

@@ -16,19 +16,15 @@ import sys
from typing import Callable, Union from typing import Callable, Union
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
from lance.vector import vec_to_table from lance.vector import vec_to_table
from retry import retry from retry import retry
from .util import safe_import_pandas
pd = safe_import_pandas()
DATA = Union[pa.Table, "pd.DataFrame"]
def with_embeddings( def with_embeddings(
func: Callable, func: Callable,
data: DATA, data: Union[pa.Table, pd.DataFrame],
column: str = "text", column: str = "text",
wrap_api: bool = True, wrap_api: bool = True,
show_progress: bool = False, show_progress: bool = False,
@@ -64,7 +60,7 @@ def with_embeddings(
func = func.batch_size(batch_size) func = func.batch_size(batch_size)
if show_progress: if show_progress:
func = func.show_progress() func = func.show_progress()
if pd is not None and isinstance(data, pd.DataFrame): if isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data, preserve_index=False) data = pa.Table.from_pandas(data, preserve_index=False)
embeddings = func(data[column].to_numpy()) embeddings = func(data[column].to_numpy())
table = vec_to_table(np.array(embeddings)) table = vec_to_table(np.array(embeddings))

View File

@@ -249,36 +249,3 @@ def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema:
""" """
fields = _pydantic_model_to_fields(model) fields = _pydantic_model_to_fields(model)
return pa.schema(fields) return pa.schema(fields)
class LanceModel(pydantic.BaseModel):
"""
A Pydantic Model base class that can be converted to a LanceDB Table.
Examples
--------
>>> import lancedb
>>> from lancedb.pydantic import LanceModel, vector
>>>
>>> class TestModel(LanceModel):
... name: str
... vector: vector(2)
...
>>> db = lancedb.connect("/tmp")
>>> table = db.create_table("test", schema=TestModel.to_arrow_schema())
>>> table.add([
... TestModel(name="test", vector=[1.0, 2.0])
... ])
>>> table.search([0., 0.]).limit(1).to_pydantic(TestModel)
[TestModel(name='test', vector=FixedSizeList(dim=2))]
"""
@classmethod
def to_arrow_schema(cls):
return pydantic_to_schema(cls)
@classmethod
def field_names(cls) -> List[str]:
if PYDANTIC_VERSION.major < 2:
return list(cls.__fields__.keys())
return list(cls.model_fields.keys())

View File

@@ -13,20 +13,17 @@
from __future__ import annotations from __future__ import annotations
from typing import List, Literal, Optional, Type, Union from typing import List, Literal, Optional, Union
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
import pydantic from pydantic import BaseModel
from .common import VECTOR_COLUMN_NAME from .common import VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .util import safe_import_pandas
pd = safe_import_pandas()
class Query(pydantic.BaseModel): class Query(BaseModel):
"""A Query""" """A Query"""
vector_column: str = VECTOR_COLUMN_NAME vector_column: str = VECTOR_COLUMN_NAME
@@ -201,7 +198,7 @@ class LanceQueryBuilder:
self._refine_factor = refine_factor self._refine_factor = refine_factor
return self return self
def to_df(self) -> "pd.DataFrame": def to_df(self) -> pd.DataFrame:
""" """
Execute the query and return the results as a pandas DataFrame. Execute the query and return the results as a pandas DataFrame.
In addition to the selected columns, LanceDB also returns a vector In addition to the selected columns, LanceDB also returns a vector
@@ -233,26 +230,9 @@ class LanceQueryBuilder:
) )
return self._table._execute_query(query) return self._table._execute_query(query)
def to_pydantic(self, model: Type[LanceModel]) -> List[LanceModel]:
"""Return the table as a list of pydantic models.
Parameters
----------
model: Type[LanceModel]
The pydantic model to use.
Returns
-------
List[LanceModel]
"""
return [
model(**{k: v for k, v in row.items() if k in model.field_names()})
for row in self.to_arrow().to_pylist()
]
class LanceFtsQueryBuilder(LanceQueryBuilder): class LanceFtsQueryBuilder(LanceQueryBuilder):
def to_arrow(self) -> pa.Table: def to_arrow(self) -> pd.Table:
try: try:
import tantivy import tantivy
except ImportError: except ImportError:

View File

@@ -48,16 +48,11 @@ class RestfulLanceDBClient:
db_name: str db_name: str
region: str region: str
api_key: Credential api_key: Credential
host_override: Optional[str] = attr.field(default=None)
closed: bool = attr.field(default=False, init=False) closed: bool = attr.field(default=False, init=False)
@functools.cached_property @functools.cached_property
def session(self) -> aiohttp.ClientSession: def session(self) -> aiohttp.ClientSession:
url = ( url = f"https://{self.db_name}.{self.region}.api.lancedb.com"
self.host_override
or f"https://{self.db_name}.{self.region}.api.lancedb.com"
)
return aiohttp.ClientSession(url) return aiohttp.ClientSession(url)
async def close(self): async def close(self):
@@ -71,8 +66,6 @@ class RestfulLanceDBClient:
} }
if self.region == "local": # Local test mode if self.region == "local": # Local test mode
headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com" headers["Host"] = f"{self.db_name}.{self.region}.api.lancedb.com"
if self.host_override:
headers["x-lancedb-database"] = self.db_name
return headers return headers
@staticmethod @staticmethod
@@ -105,7 +98,7 @@ class RestfulLanceDBClient:
async def post( async def post(
self, self,
uri: str, uri: str,
data: Optional[Union[Dict[str, Any], BaseModel, bytes]] = None, data: Union[Dict[str, Any], BaseModel, bytes],
params: Optional[Dict[str, Any]] = None, params: Optional[Dict[str, Any]] = None,
content_type: Optional[str] = None, content_type: Optional[str] = None,
deserialize: Callable = lambda resp: resp.json(), deserialize: Callable = lambda resp: resp.json(),
@@ -148,7 +141,5 @@ class RestfulLanceDBClient:
@_check_not_closed @_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult: async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query a table.""" """Query a table."""
tbl = await self.post( tbl = await self.post(f"/v1/table/{table_name}/", query, deserialize=_read_ipc)
f"/v1/table/{table_name}/query/", query, deserialize=_read_ipc
)
return VectorQueryResult(tbl) return VectorQueryResult(tbl)

View File

@@ -13,13 +13,14 @@
import asyncio import asyncio
import uuid import uuid
from typing import List, Optional from typing import List
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow as pa import pyarrow as pa
from lancedb.common import DATA from lancedb.common import DATA
from lancedb.db import DBConnection from lancedb.db import DBConnection
from lancedb.schema import schema_to_json
from lancedb.table import Table, _sanitize_data from lancedb.table import Table, _sanitize_data
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
@@ -29,22 +30,14 @@ from .client import ARROW_STREAM_CONTENT_TYPE, RestfulLanceDBClient
class RemoteDBConnection(DBConnection): class RemoteDBConnection(DBConnection):
"""A connection to a remote LanceDB database.""" """A connection to a remote LanceDB database."""
def __init__( def __init__(self, db_url: str, api_key: str, region: str):
self,
db_url: str,
api_key: str,
region: str,
host_override: Optional[str] = None,
):
"""Connect to a remote LanceDB database.""" """Connect to a remote LanceDB database."""
parsed = urlparse(db_url) parsed = urlparse(db_url)
if parsed.scheme != "db": if parsed.scheme != "db":
raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://") raise ValueError(f"Invalid scheme: {parsed.scheme}, only accepts db://")
self.db_name = parsed.netloc self.db_name = parsed.netloc
self.api_key = api_key self.api_key = api_key
self._client = RestfulLanceDBClient( self._client = RestfulLanceDBClient(self.db_name, region, api_key)
self.db_name, region, api_key, host_override
)
try: try:
self._loop = asyncio.get_running_loop() self._loop = asyncio.get_running_loop()
except RuntimeError: except RuntimeError:
@@ -102,7 +95,7 @@ class RemoteDBConnection(DBConnection):
self._loop.run_until_complete( self._loop.run_until_complete(
self._client.post( self._client.post(
f"/v1/table/{name}/create/", f"/v1/table/{name}/create",
data=data, data=data,
params={"request_id": request_id}, params={"request_id": request_id},
content_type=ARROW_STREAM_CONTENT_TYPE, content_type=ARROW_STREAM_CONTENT_TYPE,

View File

@@ -16,11 +16,11 @@ from functools import cached_property
from typing import Union from typing import Union
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema
from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME from lancedb.common import DATA, VEC, VECTOR_COLUMN_NAME
from ..query import LanceQueryBuilder from ..query import LanceQueryBuilder, Query
from ..schema import json_to_schema
from ..table import Query, Table, _sanitize_data from ..table import Query, Table, _sanitize_data
from .arrow import to_ipc_binary from .arrow import to_ipc_binary
from .client import ARROW_STREAM_CONTENT_TYPE from .client import ARROW_STREAM_CONTENT_TYPE
@@ -33,13 +33,13 @@ class RemoteTable(Table):
self._name = name self._name = name
def __repr__(self) -> str: def __repr__(self) -> str:
return f"RemoteTable({self._conn.db_name}.{self._name})" return f"RemoteTable({self._conn.db_name}.{self.name})"
@cached_property @cached_property
def schema(self) -> pa.Schema: def schema(self) -> pa.Schema:
"""Return the schema of the table.""" """Return the schema of the table."""
resp = self._conn._loop.run_until_complete( resp = self._conn._loop.run_until_complete(
self._conn._client.post(f"/v1/table/{self._name}/describe/") self._conn._client.get(f"/v1/table/{self._name}/describe")
) )
schema = json_to_schema(resp["schema"]) schema = json_to_schema(resp["schema"])
return schema return schema
@@ -73,7 +73,7 @@ class RemoteTable(Table):
self._conn._loop.run_until_complete( self._conn._loop.run_until_complete(
self._conn._client.post( self._conn._client.post(
f"/v1/table/{self._name}/insert/", f"/v1/table/{self._name}/insert",
data=payload, data=payload,
params={"request_id": request_id, "mode": mode}, params={"request_id": request_id, "mode": mode},
content_type=ARROW_STREAM_CONTENT_TYPE, content_type=ARROW_STREAM_CONTENT_TYPE,

View File

@@ -12,7 +12,11 @@
# limitations under the License. # limitations under the License.
"""Schema related utilities.""" """Schema related utilities."""
from typing import Any, Dict, Type
import pyarrow as pa import pyarrow as pa
from lance import json_to_schema, schema_to_json
def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType: def vector(dimension: int, value_type: pa.DataType = pa.float32()) -> pa.DataType:

View File

@@ -20,32 +20,26 @@ from typing import Iterable, List, Union
import lance import lance
import numpy as np import numpy as np
import pandas as pd
import pyarrow as pa import pyarrow as pa
import pyarrow.compute as pc import pyarrow.compute as pc
import pyarrow.fs
from lance import LanceDataset from lance import LanceDataset
from lance.vector import vec_to_table from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .pydantic import LanceModel
from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query from .query import LanceFtsQueryBuilder, LanceQueryBuilder, Query
from .util import fs_from_uri, safe_import_pandas
pd = safe_import_pandas()
def _sanitize_data(data, schema, on_bad_vectors, fill_value): def _sanitize_data(data, schema, on_bad_vectors, fill_value):
if isinstance(data, list): if isinstance(data, list):
# convert to list of dict if data is a bunch of LanceModels
if isinstance(data[0], LanceModel):
schema = data[0].__class__.to_arrow_schema()
data = [dict(d) for d in data]
data = pa.Table.from_pylist(data) data = pa.Table.from_pylist(data)
data = _sanitize_schema( data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
) )
if isinstance(data, dict): if isinstance(data, dict):
data = vec_to_table(data) data = vec_to_table(data)
if pd is not None and isinstance(data, pd.DataFrame): if isinstance(data, pd.DataFrame):
data = pa.Table.from_pandas(data) data = pa.Table.from_pandas(data)
data = _sanitize_schema( data = _sanitize_schema(
data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value data, schema=schema, on_bad_vectors=on_bad_vectors, fill_value=fill_value
@@ -100,7 +94,7 @@ class Table(ABC):
""" """
raise NotImplementedError raise NotImplementedError
def to_pandas(self): def to_pandas(self) -> pd.DataFrame:
"""Return the table as a pandas DataFrame. """Return the table as a pandas DataFrame.
Returns Returns
@@ -334,7 +328,7 @@ class LanceTable(Table):
"""Return the first n rows of the table.""" """Return the first n rows of the table."""
return self._dataset.head(n) return self._dataset.head(n)
def to_pandas(self) -> "pd.DataFrame": def to_pandas(self) -> pd.DataFrame:
"""Return the table as a pandas DataFrame. """Return the table as a pandas DataFrame.
Returns Returns
@@ -533,7 +527,7 @@ class LanceTable(Table):
@classmethod @classmethod
def open(cls, db, name): def open(cls, db, name):
tbl = cls(db, name) tbl = cls(db, name)
fs, path = fs_from_uri(tbl._dataset_uri) fs, path = pa.fs.FileSystem.from_uri(tbl._dataset_uri)
file_info = fs.get_file_info(path) file_info = fs.get_file_info(path)
if file_info.type != pa.fs.FileType.Directory: if file_info.type != pa.fs.FileType.Directory:
raise FileNotFoundError( raise FileNotFoundError(

View File

@@ -15,6 +15,7 @@ import os
from typing import Tuple from typing import Tuple
from urllib.parse import urlparse from urllib.parse import urlparse
import pyarrow as pa
import pyarrow.fs as pa_fs import pyarrow.fs as pa_fs
@@ -70,17 +71,7 @@ def fs_from_uri(uri: str) -> Tuple[pa_fs.FileSystem, str]:
Get a PyArrow FileSystem from a URI, handling extra environment variables. Get a PyArrow FileSystem from a URI, handling extra environment variables.
""" """
if get_uri_scheme(uri) == "s3": if get_uri_scheme(uri) == "s3":
fs = pa_fs.S3FileSystem(endpoint_override=os.environ.get("AWS_ENDPOINT")) if os.environ["AWS_ENDPOINT"]:
path = get_uri_location(uri) uri += "?endpoint_override=" + os.environ["AWS_ENDPOINT"]
return fs, path
return pa_fs.FileSystem.from_uri(uri) return pa_fs.FileSystem.from_uri(uri)
def safe_import_pandas():
try:
import pandas as pd
return pd
except ImportError:
return None

View File

@@ -1,7 +1,7 @@
[project] [project]
name = "lancedb" name = "lancedb"
version = "0.1.16" version = "0.1.12"
dependencies = ["pylance==0.5.10", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"] dependencies = ["pylance~=0.5.8", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr", "semver"]
description = "lancedb" description = "lancedb"
authors = [ authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" }, { name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -37,7 +37,7 @@ repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies] [project.optional-dependencies]
tests = [ tests = [
"pandas>=1.4", "pytest", "pytest-mock", "pytest-asyncio" "pytest", "pytest-mock", "pytest-asyncio"
] ]
dev = [ dev = [
"ruff", "pre-commit", "black" "ruff", "pre-commit", "black"

View File

@@ -149,10 +149,6 @@ def test_delete_table(tmp_path):
db.create_table("test", data=data) db.create_table("test", data=data)
assert db.table_names() == ["test"] assert db.table_names() == ["test"]
# dropping a table that does not exist should pass
# if ignore_missing=True
db.drop_table("does_not_exist", ignore_missing=True)
def test_empty_or_nonexistent_table(tmp_path): def test_empty_or_nonexistent_table(tmp_path):
db = lancedb.connect(tmp_path) db = lancedb.connect(tmp_path)

View File

@@ -20,7 +20,7 @@ import pyarrow as pa
import pydantic import pydantic
import pytest import pytest
from lancedb.pydantic import PYDANTIC_VERSION, LanceModel, pydantic_to_schema, vector from lancedb.pydantic import PYDANTIC_VERSION, pydantic_to_schema, vector
@pytest.mark.skipif( @pytest.mark.skipif(
@@ -163,13 +163,3 @@ def test_fixed_size_list_validation():
TestModel(vec=range(7)) TestModel(vec=range(7))
TestModel(vec=range(8)) TestModel(vec=range(8))
def test_lance_model():
class TestModel(LanceModel):
vec: vector(16)
li: List[int]
schema = pydantic_to_schema(TestModel)
assert schema == TestModel.to_arrow_schema()
assert TestModel.field_names() == ["vec", "li"]

View File

@@ -20,7 +20,6 @@ import pyarrow as pa
import pytest import pytest
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.query import LanceQueryBuilder, Query from lancedb.query import LanceQueryBuilder, Query
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -65,24 +64,6 @@ def table(tmp_path) -> MockTable:
return MockTable(tmp_path) return MockTable(tmp_path)
def test_cast(table):
class TestModel(LanceModel):
vector: vector(2)
id: int
str_field: str
float_field: float
q = LanceQueryBuilder(table, [0, 0], "vector").limit(1)
results = q.to_pydantic(TestModel)
assert len(results) == 1
r0 = results[0]
assert isinstance(r0, TestModel)
assert r0.id == 1
assert r0.vector == [1, 2]
assert r0.str_field == "a"
assert r0.float_field == 1.0
def test_query_builder(table): def test_query_builder(table):
df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df() df = LanceQueryBuilder(table, [0, 0], "vector").limit(1).select(["id"]).to_df()
assert df["id"].values[0] == 1 assert df["id"].values[0] == 1

View File

@@ -13,16 +13,15 @@
import functools import functools
from pathlib import Path from pathlib import Path
from typing import List
from unittest.mock import PropertyMock, patch from unittest.mock import PropertyMock, patch
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pyarrow as pa import pyarrow as pa
import pytest import pytest
from lance.vector import vec_to_table
from lancedb.db import LanceDBConnection from lancedb.db import LanceDBConnection
from lancedb.pydantic import LanceModel, vector
from lancedb.table import LanceTable from lancedb.table import LanceTable
@@ -136,17 +135,6 @@ def test_add(db):
_add(table, schema) _add(table, schema)
def test_add_pydantic_model(db):
class TestModel(LanceModel):
vector: vector(16)
li: List[int]
data = TestModel(vector=list(range(16)), li=[1, 2, 3])
table = LanceTable.create(db, "test", data=[data])
assert len(table) == 1
assert table.schema == TestModel.to_arrow_schema()
def _add(table, schema): def _add(table, schema):
# table = LanceTable(db, "test") # table = LanceTable(db, "test")
assert len(table) == 2 assert len(table) == 2

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb-node" name = "vectordb-node"
version = "0.1.19" version = "0.1.15"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
edition = "2018" edition = "2018"
@@ -13,7 +13,6 @@ crate-type = ["cdylib"]
arrow-array = { workspace = true } arrow-array = { workspace = true }
arrow-ipc = { workspace = true } arrow-ipc = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
conv = "0.3.3"
once_cell = "1" once_cell = "1"
futures = "0.3" futures = "0.3"
half = { workspace = true } half = { workspace = true }
@@ -22,6 +21,5 @@ vectordb = { path = "../../vectordb" }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }
neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] } neon = {version = "0.10.1", default-features = false, features = ["channel-api", "napi-6", "promise-api", "task-api"] }
object_store = { workspace = true, features = ["aws"] } object_store = { workspace = true, features = ["aws"] }
snafu = { workspace = true }
async-trait = "0" async-trait = "0"
env_logger = "0" env_logger = "0"

View File

@@ -13,30 +13,27 @@
// limitations under the License. // limitations under the License.
use std::io::Cursor; use std::io::Cursor;
use std::ops::Deref;
use std::sync::Arc; use std::sync::Arc;
use arrow_array::cast::as_list_array; use arrow_array::cast::as_list_array;
use arrow_array::{Array, ArrayRef, FixedSizeListArray, RecordBatch}; use arrow_array::{Array, FixedSizeListArray, RecordBatch};
use arrow_ipc::reader::FileReader; use arrow_ipc::reader::FileReader;
use arrow_ipc::writer::FileWriter;
use arrow_schema::{DataType, Field, Schema}; use arrow_schema::{DataType, Field, Schema};
use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt}; use lance::arrow::{FixedSizeListArrayExt, RecordBatchExt};
use vectordb::table::VECTOR_COLUMN_NAME;
use crate::error::{MissingColumnSnafu, Result}; pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> RecordBatch {
use snafu::prelude::*; let column = record_batch
.column_by_name("vector")
pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> Result<RecordBatch> { .cloned()
let column = get_column(VECTOR_COLUMN_NAME, &record_batch)?; .expect("vector column is missing");
// TODO: we should just consume the underlaying js buffer in the future instead of this arrow around a bunch of times
// TODO: we should just consume the underlying js buffer in the future instead of this arrow around a bunch of times
let arr = as_list_array(column.as_ref()); let arr = as_list_array(column.as_ref());
let list_size = arr.values().len() / record_batch.num_rows(); let list_size = arr.values().len() / record_batch.num_rows();
let r = FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32)?; let r =
FixedSizeListArray::try_new_from_values(arr.values().to_owned(), list_size as i32).unwrap();
let schema = Arc::new(Schema::new(vec![Field::new( let schema = Arc::new(Schema::new(vec![Field::new(
VECTOR_COLUMN_NAME, "vector",
DataType::FixedSizeList( DataType::FixedSizeList(
Arc::new(Field::new("item", DataType::Float32, true)), Arc::new(Field::new("item", DataType::Float32, true)),
list_size as i32, list_size as i32,
@@ -44,42 +41,22 @@ pub(crate) fn convert_record_batch(record_batch: RecordBatch) -> Result<RecordBa
true, true,
)])); )]));
let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)])?; let mut new_batch = RecordBatch::try_new(schema.clone(), vec![Arc::new(r)]).unwrap();
if record_batch.num_columns() > 1 { if record_batch.num_columns() > 1 {
let rb = record_batch.drop_column(VECTOR_COLUMN_NAME)?; let rb = record_batch.drop_column("vector").unwrap();
new_batch = new_batch.merge(&rb)?; new_batch = new_batch.merge(&rb).unwrap();
} }
Ok(new_batch) new_batch
} }
fn get_column(column_name: &str, record_batch: &RecordBatch) -> Result<ArrayRef> { pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Vec<RecordBatch> {
record_batch
.column_by_name(column_name)
.cloned()
.context(MissingColumnSnafu { name: column_name })
}
pub(crate) fn arrow_buffer_to_record_batch(slice: &[u8]) -> Result<Vec<RecordBatch>> {
let mut batches: Vec<RecordBatch> = Vec::new(); let mut batches: Vec<RecordBatch> = Vec::new();
let file_reader = FileReader::try_new(Cursor::new(slice), None)?; let fr = FileReader::try_new(Cursor::new(slice), None);
let file_reader = fr.unwrap();
for b in file_reader { for b in file_reader {
let record_batch = convert_record_batch(b?)?; let record_batch = convert_record_batch(b.unwrap());
batches.push(record_batch); batches.push(record_batch);
} }
Ok(batches) batches
}
pub(crate) fn record_batch_to_buffer(batches: Vec<RecordBatch>) -> Result<Vec<u8>> {
if batches.is_empty() {
return Ok(Vec::new());
}
let schema = batches.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(Vec::new(), schema.deref())?;
for batch in batches.iter() {
fr.write(batch)?
}
fr.finish()?;
Ok(fr.into_inner()?)
} }

View File

@@ -1,88 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use arrow_schema::ArrowError;
use neon::context::Context;
use neon::prelude::NeonResult;
use snafu::Snafu;
#[derive(Debug, Snafu)]
#[snafu(visibility(pub(crate)))]
pub enum Error {
#[snafu(display("column '{name}' is missing"))]
MissingColumn { name: String },
#[snafu(display("{name}: {message}"))]
RangeError { name: String, message: String },
#[snafu(display("{index_type} is not a valid index type"))]
InvalidIndexType { index_type: String },
#[snafu(display("{message}"))]
LanceDB { message: String },
#[snafu(display("{message}"))]
Neon { message: String },
}
pub type Result<T> = std::result::Result<T, Error>;
impl From<vectordb::error::Error> for Error {
fn from(e: vectordb::error::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<lance::Error> for Error {
fn from(e: lance::Error) -> Self {
Self::LanceDB {
message: e.to_string(),
}
}
}
impl From<ArrowError> for Error {
fn from(value: ArrowError) -> Self {
Self::LanceDB {
message: value.to_string(),
}
}
}
impl From<neon::result::Throw> for Error {
fn from(value: neon::result::Throw) -> Self {
Self::Neon {
message: value.to_string(),
}
}
}
/// ResultExt is used to transform a [`Result`] into a [`NeonResult`],
/// so it can be returned as a JavaScript error
/// Copied from [Neon](https://github.com/neon-bindings/neon/blob/4c2e455a9e6814f1ba0178616d63caec7f4df317/crates/neon/src/result/mod.rs#L88)
pub trait ResultExt<T> {
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T>;
}
/// Implement ResultExt for the std Result so it can be used any Result type
impl<T, E> ResultExt<T> for std::result::Result<T, E>
where
E: std::fmt::Display,
{
fn or_throw<'a, C: Context<'a>>(self, cx: &mut C) -> NeonResult<T> {
match self {
Ok(value) => Ok(value),
Err(error) => cx.throw_error(error.to_string()),
}
}
}

View File

@@ -22,15 +22,12 @@ use neon::prelude::*;
use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder}; use vectordb::index::vector::{IvfPQIndexBuilder, VectorIndexBuilder};
use crate::error::Error::InvalidIndexType;
use crate::error::ResultExt;
use crate::neon_ext::js_object_ext::JsObjectExt;
use crate::{runtime, JsTable}; use crate::{runtime, JsTable};
pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> { pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?; let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let index_params = cx.argument::<JsObject>(0)?; let index_params = cx.argument::<JsObject>(0)?;
let index_params_builder = get_index_params_builder(&mut cx, index_params).or_throw(&mut cx)?; let index_params_builder = get_index_params_builder(&mut cx, index_params).unwrap();
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
let channel = cx.channel(); let channel = cx.channel();
@@ -57,21 +54,27 @@ pub(crate) fn table_create_vector_index(mut cx: FunctionContext) -> JsResult<JsP
fn get_index_params_builder( fn get_index_params_builder(
cx: &mut FunctionContext, cx: &mut FunctionContext,
obj: Handle<JsObject>, obj: Handle<JsObject>,
) -> crate::error::Result<impl VectorIndexBuilder> { ) -> Result<impl VectorIndexBuilder, String> {
let idx_type = obj.get::<JsString, _, _>(cx, "type")?.value(cx); let idx_type = obj
.get::<JsString, _, _>(cx, "type")
.map_err(|t| t.to_string())?
.value(cx);
match idx_type.as_str() { match idx_type.as_str() {
"ivf_pq" => { "ivf_pq" => {
let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new(); let mut index_builder: IvfPQIndexBuilder = IvfPQIndexBuilder::new();
let mut pq_params = PQBuildParams::default(); let mut pq_params = PQBuildParams::default();
obj.get_opt::<JsString, _, _>(cx, "column")? obj.get_opt::<JsString, _, _>(cx, "column")
.map_err(|t| t.to_string())?
.map(|s| index_builder.column(s.value(cx))); .map(|s| index_builder.column(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "index_name")? obj.get_opt::<JsString, _, _>(cx, "index_name")
.map_err(|t| t.to_string())?
.map(|s| index_builder.index_name(s.value(cx))); .map(|s| index_builder.index_name(s.value(cx)));
obj.get_opt::<JsString, _, _>(cx, "metric_type")? obj.get_opt::<JsString, _, _>(cx, "metric_type")
.map_err(|t| t.to_string())?
.map(|s| MetricType::try_from(s.value(cx).as_str())) .map(|s| MetricType::try_from(s.value(cx).as_str()))
.map(|mt| { .map(|mt| {
let metric_type = mt.unwrap(); let metric_type = mt.unwrap();
@@ -79,8 +82,15 @@ fn get_index_params_builder(
pq_params.metric_type = metric_type; pq_params.metric_type = metric_type;
}); });
let num_partitions = obj.get_opt_usize(cx, "num_partitions")?; let num_partitions = obj
let max_iters = obj.get_opt_usize(cx, "max_iters")?; .get_opt::<JsNumber, _, _>(cx, "num_partitions")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
let max_iters = obj
.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map_err(|t| t.to_string())?
.map(|s| s.value(cx) as usize);
num_partitions.map(|np| { num_partitions.map(|np| {
let max_iters = max_iters.unwrap_or(50); let max_iters = max_iters.unwrap_or(50);
@@ -92,28 +102,32 @@ fn get_index_params_builder(
index_builder.ivf_params(ivf_params) index_builder.ivf_params(ivf_params)
}); });
obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")? obj.get_opt::<JsBoolean, _, _>(cx, "use_opq")
.map_err(|t| t.to_string())?
.map(|s| pq_params.use_opq = s.value(cx)); .map(|s| pq_params.use_opq = s.value(cx));
obj.get_opt_usize(cx, "num_sub_vectors")? obj.get_opt::<JsNumber, _, _>(cx, "num_sub_vectors")
.map(|s| pq_params.num_sub_vectors = s); .map_err(|t| t.to_string())?
.map(|s| pq_params.num_sub_vectors = s.value(cx) as usize);
obj.get_opt_usize(cx, "num_bits")? obj.get_opt::<JsNumber, _, _>(cx, "num_bits")
.map(|s| pq_params.num_bits = s); .map_err(|t| t.to_string())?
.map(|s| pq_params.num_bits = s.value(cx) as usize);
obj.get_opt_usize(cx, "max_iters")? obj.get_opt::<JsNumber, _, _>(cx, "max_iters")
.map(|s| pq_params.max_iters = s); .map_err(|t| t.to_string())?
.map(|s| pq_params.max_iters = s.value(cx) as usize);
obj.get_opt_usize(cx, "max_opq_iters")? obj.get_opt::<JsNumber, _, _>(cx, "max_opq_iters")
.map(|s| pq_params.max_opq_iters = s); .map_err(|t| t.to_string())?
.map(|s| pq_params.max_opq_iters = s.value(cx) as usize);
obj.get_opt::<JsBoolean, _, _>(cx, "replace")? obj.get_opt::<JsBoolean, _, _>(cx, "replace")
.map_err(|t| t.to_string())?
.map(|s| index_builder.replace(s.value(cx))); .map(|s| index_builder.replace(s.value(cx)));
Ok(index_builder) Ok(index_builder)
} }
index_type => Err(InvalidIndexType { t => Err(format!("{} is not a valid index type", t).to_string()),
index_type: index_type.into(),
}),
} }
} }

View File

@@ -18,6 +18,7 @@ use std::ops::Deref;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
use arrow_array::{Float32Array, RecordBatchIterator}; use arrow_array::{Float32Array, RecordBatchIterator};
use arrow_ipc::writer::FileWriter;
use async_trait::async_trait; use async_trait::async_trait;
use futures::{TryFutureExt, TryStreamExt}; use futures::{TryFutureExt, TryStreamExt};
use lance::dataset::{WriteMode, WriteParams}; use lance::dataset::{WriteMode, WriteParams};
@@ -31,17 +32,14 @@ use once_cell::sync::OnceCell;
use tokio::runtime::Runtime; use tokio::runtime::Runtime;
use vectordb::database::Database; use vectordb::database::Database;
use vectordb::error::Error;
use vectordb::table::{ReadParams, Table}; use vectordb::table::{ReadParams, Table};
use crate::arrow::{arrow_buffer_to_record_batch, record_batch_to_buffer}; use crate::arrow::arrow_buffer_to_record_batch;
use crate::error::ResultExt;
use crate::neon_ext::js_object_ext::JsObjectExt;
mod arrow; mod arrow;
mod convert; mod convert;
mod error;
mod index; mod index;
mod neon_ext;
struct JsDatabase { struct JsDatabase {
database: Arc<Database>, database: Arc<Database>,
@@ -56,7 +54,7 @@ struct JsTable {
impl Finalize for JsTable {} impl Finalize for JsTable {}
// TODO: object_store didn't export this type so I copied it. // TODO: object_store didn't export this type so I copied it.
// Make a request to object_store to export this type // Make a requiest to object_store to export this type
#[derive(Debug)] #[derive(Debug)]
pub struct StaticCredentialProvider<T> { pub struct StaticCredentialProvider<T> {
credential: Arc<T>, credential: Arc<T>,
@@ -88,7 +86,7 @@ fn runtime<'a, C: Context<'a>>(cx: &mut C) -> NeonResult<&'static Runtime> {
LOG.get_or_init(|| env_logger::init()); LOG.get_or_init(|| env_logger::init());
RUNTIME.get_or_try_init(|| Runtime::new().or_throw(cx)) RUNTIME.get_or_try_init(|| Runtime::new().or_else(|err| cx.throw_error(err.to_string())))
} }
fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> { fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
@@ -103,7 +101,7 @@ fn database_new(mut cx: FunctionContext) -> JsResult<JsPromise> {
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let db = JsDatabase { let db = JsDatabase {
database: Arc::new(database.or_throw(&mut cx)?), database: Arc::new(database.or_else(|err| cx.throw_error(err.to_string()))?),
}; };
Ok(cx.boxed(db)) Ok(cx.boxed(db))
}); });
@@ -125,7 +123,7 @@ fn database_table_names(mut cx: FunctionContext) -> JsResult<JsPromise> {
let tables_rst = database.table_names().await; let tables_rst = database.table_names().await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let tables = tables_rst.or_throw(&mut cx)?; let tables = tables_rst.or_else(|err| cx.throw_error(err.to_string()))?;
let table_names = convert::vec_str_to_array(&tables, &mut cx); let table_names = convert::vec_str_to_array(&tables, &mut cx);
table_names table_names
}); });
@@ -196,7 +194,9 @@ fn database_open_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
let table_rst = database.open_table_with_params(&table_name, &params).await; let table_rst = database.open_table_with_params(&table_name, &params).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(table_rst.or_throw(&mut cx)?)); let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
Ok(cx.boxed(JsTable { table })) Ok(cx.boxed(JsTable { table }))
}); });
}); });
@@ -217,7 +217,7 @@ fn database_drop_table(mut cx: FunctionContext) -> JsResult<JsPromise> {
rt.spawn(async move { rt.spawn(async move {
let result = database.drop_table(&table_name).await; let result = database.drop_table(&table_name).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
result.or_throw(&mut cx)?; result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.null()) Ok(cx.null())
}); });
}); });
@@ -246,9 +246,12 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.get_opt::<JsString, _, _>(&mut cx, "_filter")? .get_opt::<JsString, _, _>(&mut cx, "_filter")?
.map(|s| s.value(&mut cx)); .map(|s| s.value(&mut cx));
let refine_factor = query_obj let refine_factor = query_obj
.get_opt_u32(&mut cx, "_refineFactor") .get_opt::<JsNumber, _, _>(&mut cx, "_refineFactor")?
.or_throw(&mut cx)?; .map(|s| s.value(&mut cx))
let nprobes = query_obj.get_usize(&mut cx, "_nprobes").or_throw(&mut cx)?; .map(|i| i as u32);
let nprobes = query_obj
.get::<JsNumber, _, _>(&mut cx, "_nprobes")?
.value(&mut cx) as usize;
let metric_type = query_obj let metric_type = query_obj
.get_opt::<JsString, _, _>(&mut cx, "_metricType")? .get_opt::<JsString, _, _>(&mut cx, "_metricType")?
.map(|s| s.value(&mut cx)) .map(|s| s.value(&mut cx))
@@ -275,17 +278,30 @@ fn table_search(mut cx: FunctionContext) -> JsResult<JsPromise> {
.select(select); .select(select);
let record_batch_stream = builder.execute(); let record_batch_stream = builder.execute();
let results = record_batch_stream let results = record_batch_stream
.and_then(|stream| { .and_then(|stream| stream.try_collect::<Vec<_>>().map_err(Error::from))
stream
.try_collect::<Vec<_>>()
.map_err(vectordb::error::Error::from)
})
.await; .await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let results = results.or_throw(&mut cx)?; let results = results.or_else(|err| cx.throw_error(err.to_string()))?;
let buffer = record_batch_to_buffer(results).or_throw(&mut cx)?; let vector: Vec<u8> = Vec::new();
Ok(JsBuffer::external(&mut cx, buffer))
if results.is_empty() {
return cx.buffer(0);
}
let schema = results.get(0).unwrap().schema();
let mut fr = FileWriter::try_new(vector, schema.deref())
.or_else(|err| cx.throw_error(err.to_string()))?;
for batch in results.iter() {
fr.write(batch)
.or_else(|err| cx.throw_error(err.to_string()))?;
}
fr.finish().or_else(|err| cx.throw_error(err.to_string()))?;
let buf = fr
.into_inner()
.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(JsBuffer::external(&mut cx, buf))
}); });
}); });
Ok(promise) Ok(promise)
@@ -297,7 +313,7 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
.downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?; .downcast_or_throw::<JsBox<JsDatabase>, _>(&mut cx)?;
let table_name = cx.argument::<JsString>(0)?.value(&mut cx); let table_name = cx.argument::<JsString>(0)?.value(&mut cx);
let buffer = cx.argument::<JsBuffer>(1)?; let buffer = cx.argument::<JsBuffer>(1)?;
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?; let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let schema = batches[0].schema(); let schema = batches[0].schema();
// Write mode // Write mode
@@ -335,7 +351,9 @@ fn table_create(mut cx: FunctionContext) -> JsResult<JsPromise> {
.await; .await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let table = Arc::new(Mutex::new(table_rst.or_throw(&mut cx)?)); let table = Arc::new(Mutex::new(
table_rst.or_else(|err| cx.throw_error(err.to_string()))?,
));
Ok(cx.boxed(JsTable { table })) Ok(cx.boxed(JsTable { table }))
}); });
}); });
@@ -352,8 +370,7 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?; let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let buffer = cx.argument::<JsBuffer>(0)?; let buffer = cx.argument::<JsBuffer>(0)?;
let write_mode = cx.argument::<JsString>(1)?.value(&mut cx); let write_mode = cx.argument::<JsString>(1)?.value(&mut cx);
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx));
let batches = arrow_buffer_to_record_batch(buffer.as_slice(&mut cx)).or_throw(&mut cx)?;
let schema = batches[0].schema(); let schema = batches[0].schema();
let rt = runtime(&mut cx)?; let rt = runtime(&mut cx)?;
@@ -382,7 +399,7 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
let add_result = table.lock().unwrap().add(batch_reader, Some(params)).await; let add_result = table.lock().unwrap().add(batch_reader, Some(params)).await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let _added = add_result.or_throw(&mut cx)?; let _added = add_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.boolean(true)) Ok(cx.boolean(true))
}); });
}); });
@@ -401,7 +418,7 @@ fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let num_rows_result = table.lock().unwrap().count_rows().await; let num_rows_result = table.lock().unwrap().count_rows().await;
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_throw(&mut cx)?; let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(num_rows as f64)) Ok(cx.number(num_rows as f64))
}); });
}); });
@@ -421,7 +438,7 @@ fn table_delete(mut cx: FunctionContext) -> JsResult<JsPromise> {
let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await }); let delete_result = rt.block_on(async move { table.lock().unwrap().delete(&predicate).await });
deferred.settle_with(&channel, move |mut cx| { deferred.settle_with(&channel, move |mut cx| {
delete_result.or_throw(&mut cx)?; delete_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.undefined()) Ok(cx.undefined())
}); });

View File

@@ -1,15 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pub mod js_object_ext;

View File

@@ -1,82 +0,0 @@
// Copyright 2023 Lance Developers.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::error::{Error, Result};
use neon::prelude::*;
// extends neon's [JsObject] with helper functions to extract properties
pub trait JsObjectExt {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>>;
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize>;
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>>;
}
impl JsObjectExt for JsObject {
fn get_opt_u32(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<u32>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_u32_safe(s.value(cx), key));
val_opt.transpose()
}
fn get_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<usize> {
let val = self.get::<JsNumber, _, _>(cx, key)?.value(cx);
f64_to_usize_safe(val, key)
}
fn get_opt_usize(&self, cx: &mut FunctionContext, key: &str) -> Result<Option<usize>> {
let val_opt = self
.get_opt::<JsNumber, _, _>(cx, key)?
.map(|s| f64_to_usize_safe(s.value(cx), key));
val_opt.transpose()
}
}
fn f64_to_u32_safe(n: f64, key: &str) -> Result<u32> {
use conv::*;
n.approx_as::<u32>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", u32::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}
fn f64_to_usize_safe(n: f64, key: &str) -> Result<usize> {
use conv::*;
n.approx_as::<usize>().map_err(|e| match e {
FloatError::NegOverflow(_) => Error::RangeError {
name: key.into(),
message: "must be > 0".to_string(),
},
FloatError::PosOverflow(_) => Error::RangeError {
name: key.into(),
message: format!("must be < {}", usize::MAX),
},
FloatError::NotANumber(_) => Error::RangeError {
name: key.into(),
message: "not a valid number".to_string(),
},
})
}

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "vectordb" name = "vectordb"
version = "0.1.19" version = "0.1.15"
edition = "2021" edition = "2021"
description = "Serverless, low-latency vector database for AI applications" description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0" license = "Apache-2.0"
@@ -12,7 +12,7 @@ arrow-array = { workspace = true }
arrow-data = { workspace = true } arrow-data = { workspace = true }
arrow-schema = { workspace = true } arrow-schema = { workspace = true }
object_store = { workspace = true } object_store = { workspace = true }
snafu = { workspace = true } snafu = "0.7.4"
half = { workspace = true } half = { workspace = true }
lance = { workspace = true } lance = { workspace = true }
tokio = { version = "1.23", features = ["rt-multi-thread"] } tokio = { version = "1.23", features = ["rt-multi-thread"] }