Compare commits

...

14 Commits

Author SHA1 Message Date
Lance Release
01dadb0862 Bump version: 0.1.6 → 0.1.7 2023-06-15 23:30:01 +00:00
gsilvestrin
0724d41c4b feat(node): pull node binaries into separate packages (2) (#197)
* Refactors the Node module to load the shared library from a separate
package. When a user does `npm install vectordb`, the correct optional
dependency is automatically downloaded by npm.
* Add scripts and instructions to build Linux and MacOS node artifacts
locally.
* Add instructions for publishing the npm module and crates.

Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-15 16:15:42 -07:00
Rob Meng
cbb56e25ab port remote connection client into lancedb (#194)
* to_df() is now async, added `to_df_blocking` to convenience
* add remote lancedb client to public lancedb
* make lancedb connection class understand url scheme
`lancedb+<connection_type>://<host>:<port>`.
2023-06-15 18:57:52 -04:00
gsilvestrin
78de8f5782 feat(node): add Table.countRows() (#185) 2023-06-15 14:35:54 -07:00
Lance Release
a6544c2a31 Bump version: 0.1.5 → 0.1.6 2023-06-15 16:16:03 +00:00
Leon Yee
39ed70896a [rust] added rust.yml for /rust directory (#193) 2023-06-14 11:46:08 -07:00
gsilvestrin
ae672df1b7 feat(rust): add action to publish release to crates.io (#192) 2023-06-14 11:01:22 -07:00
gsilvestrin
15c3f42387 feat(node): add action to tag node / rust releases (#186) 2023-06-14 11:01:02 -07:00
gsilvestrin
f65d85efcc feat(node): add where method to query builder (#183)
Closes #181
2023-06-14 10:54:43 -07:00
Utkarsh Gautam
6b5c046c3b [Python] Updated to_df implementation in Contextualizer class (#174)
Changes include:
- Contexts of sizes less than window param to be included as well
- Added optional threshold parameter to to_df in Contextualizer 
This should close #165 
- If maintainers are satisfied with the implementation will add more
examples and test cases and update the documentations as well.

---------

Co-authored-by: Nithin PS <47279496+Nithinps021@users.noreply.github.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2023-06-14 09:22:32 -07:00
Lei Xu
d00f4e51d0 Fix node ffi build (#191) 2023-06-13 19:31:29 -07:00
Benjamin Manns
fbc44d4243 Fix small typo in ann_indexes.md (#190) 2023-06-13 17:43:18 -07:00
Lei Xu
b53eee42ce Upgrade to lance 0.4.21 (#187) 2023-06-13 15:39:44 -07:00
Utkarsh Gautam
7e0d6088ca [docs] Fixed langchain example broken link in index.md (#184) 2023-06-13 12:40:39 -07:00
42 changed files with 1211 additions and 92 deletions

12
.bumpversion.cfg Normal file
View File

@@ -0,0 +1,12 @@
[bumpversion]
current_version = 0.1.7
commit = True
message = Bump version: {current_version} → {new_version}
tag = True
tag_name = v{new_version}
[bumpversion:file:node/package.json]
[bumpversion:file:rust/ffi/node/Cargo.toml]
[bumpversion:file:rust/vectordb/Cargo.toml]

29
.github/workflows/cargo-publish.yml vendored Normal file
View File

@@ -0,0 +1,29 @@
name: Cargo Publish
on:
release:
types: [ published ]
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
jobs:
build:
runs-on: ubuntu-22.04
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/checkout@v3
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Publish the package
run: |
cargo publish -p vectordb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}

View File

@@ -0,0 +1,55 @@
name: Create release commit
on:
workflow_dispatch:
inputs:
dry_run:
description: 'Dry run (create the local commit/tags but do not push it)'
required: true
default: "false"
type: choice
options:
- "true"
- "false"
part:
description: 'What kind of release is this?'
required: true
default: 'patch'
type: choice
options:
- patch
- minor
- major
jobs:
bump-version:
runs-on: ubuntu-latest
steps:
- name: Check out main
uses: actions/checkout@v3
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: "3.10"
- name: Bump version, create tag and commit
run: |
pip install bump2version
bumpversion --verbose ${{ inputs.part }}
- name: Push new version and tag
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: main
tags: true

View File

@@ -67,8 +67,12 @@ jobs:
- name: Build
run: |
npm ci
npm run build
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run test
macos:
@@ -94,8 +98,12 @@ jobs:
- name: Build
run: |
npm ci
npm run build
npm run tsc
npm run build
npm run pack-build
npm install --no-save ./dist/vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test

137
.github/workflows/npm-publish.yml vendored Normal file
View File

@@ -0,0 +1,137 @@
name: NPM Publish
on:
release:
types: [ published ]
jobs:
node:
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v3
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
runs-on: macos-12
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-apple-darwin, aarch64-apple-darwin]
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Install rustup target
if: ${{ matrix.target == 'aarch64-apple-darwin' }}
run: rustup target add aarch64-apple-darwin
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.target }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v3
with:
name: darwin-native
path: |
node/dist/vectordb-darwin*.tgz
node-linux:
name: node-linux (${{ matrix.arch}}-unknown-linux-${{ matrix.libc }})
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
libc:
- gnu
# TODO: re-enable musl once we have refactored to pre-built containers
# Right now we have to build node from source which is too expensive.
# - musl
arch:
- x86_64
# Building on aarch64 is too slow for now
# - aarch64
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Change owner to root (for npm)
# The docker container is run as root, so we need the files to be owned by root
# Otherwise npm is a nightmare: https://github.com/npm/cli/issues/3773
run: sudo chown -R root:root .
- name: Set up QEMU
if: ${{ matrix.arch == 'aarch64' }}
uses: docker/setup-qemu-action@v2
with:
platforms: arm64
- name: Build Linux GNU native node modules
if: ${{ matrix.libc == 'gnu' }}
run: |
docker run \
-v $(pwd):/io -w /io \
quay.io/pypa/manylinux2014_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-gnu
- name: Build musl Linux native node modules
if: ${{ matrix.libc == 'musl' }}
run: |
docker run --platform linux/arm64/v8 \
-v $(pwd):/io -w /io \
quay.io/pypa/musllinux_1_1_${{ matrix.arch }} \
bash ci/build_linux_artifacts.sh ${{ matrix.arch }}-unknown-linux-musl
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v3
with:
name: linux-native
path: |
node/dist/vectordb-linux*.tgz
release:
needs: [node, node-macos, node-linux]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v3
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
for filename in */*.tgz; do
npm publish $filename
done

View File

@@ -3,12 +3,12 @@ name: PyPI Publish
on:
release:
types: [ published ]
tags:
- 'python-v*' # Push events that matches the python-make-release action
jobs:
publish:
runs-on: ubuntu-latest
# Only runs on tags that matches the python-make-release action
if: startsWith(github.ref, 'refs/tags/python-v')
defaults:
run:
shell: bash

67
.github/workflows/rust.yml vendored Normal file
View File

@@ -0,0 +1,67 @@
name: Rust
on:
push:
branches:
- main
pull_request:
paths:
- rust/**
- .github/workflows/rust.yml
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
# key, so we set it to make sure it is always consistent.
CARGO_TERM_COLOR: always
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
jobs:
linux:
timeout-minutes: 30
runs-on: ubuntu-22.04
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
macos:
runs-on: macos-12
timeout-minutes: 30
defaults:
run:
shell: bash
working-directory: rust
steps:
- uses: actions/checkout@v3
with:
fetch-depth: 0
lfs: true
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features

2
.gitignore vendored
View File

@@ -4,6 +4,8 @@
**/__pycache__
.DS_Store
.vscode
rust/target
rust/Cargo.lock

36
Cargo.lock generated
View File

@@ -190,6 +190,7 @@ dependencies = [
"arrow-data",
"arrow-schema",
"flatbuffers",
"zstd",
]
[[package]]
@@ -654,6 +655,12 @@ version = "3.12.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9b1ce199063694f33ffb7dd4e0ee620741495c32833cde5aa08f02a0bf96f0c8"
[[package]]
name = "bytemuck"
version = "1.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "17febce684fd15d89027105661fec94afb475cb995fbc59d2865198446ba2eea"
[[package]]
name = "byteorder"
version = "1.4.3"
@@ -1646,9 +1653,9 @@ dependencies = [
[[package]]
name = "lance"
version = "0.4.17"
version = "0.4.21"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "86dda8185bd1ffae7b910c1f68035af23be9b717c52e9cc4de176cd30b47f772"
checksum = "3d6c2e7bcfc71c7167ec70cd06c6d55c644a148f6580218c5a0b66e13ac5b5cc"
dependencies = [
"accelerate-src",
"arrow",
@@ -1657,7 +1664,9 @@ dependencies = [
"arrow-buffer",
"arrow-cast",
"arrow-data",
"arrow-ipc",
"arrow-ord",
"arrow-row",
"arrow-schema",
"arrow-select",
"async-recursion",
@@ -1668,6 +1677,7 @@ dependencies = [
"bytes",
"cblas",
"chrono",
"dashmap",
"datafusion",
"futures",
"lapack",
@@ -1684,6 +1694,7 @@ dependencies = [
"prost-types",
"rand",
"reqwest",
"roaring",
"shellexpand",
"snafu",
"sqlparser-lance",
@@ -2598,6 +2609,12 @@ dependencies = [
"winreg",
]
[[package]]
name = "retain_mut"
version = "0.1.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8c31b5c4033f8fdde8700e4657be2c497e7288f01515be52168c631e2e4d4086"
[[package]]
name = "ring"
version = "0.16.20"
@@ -2613,6 +2630,17 @@ dependencies = [
"winapi",
]
[[package]]
name = "roaring"
version = "0.10.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ef0fb5e826a8bde011ecae6a8539dd333884335c57ff0f003fbe27c25bbe8f71"
dependencies = [
"bytemuck",
"byteorder",
"retain_mut",
]
[[package]]
name = "rustc_version"
version = "0.4.0"
@@ -3358,7 +3386,7 @@ checksum = "accd4ea62f7bb7a82fe23066fb0957d48ef677f6eeb8215f372f52e48bb32426"
[[package]]
name = "vectordb"
version = "0.0.1"
version = "0.1.6"
dependencies = [
"arrow-array",
"arrow-data",
@@ -3373,7 +3401,7 @@ dependencies = [
[[package]]
name = "vectordb-node"
version = "0.1.0"
version = "0.1.6"
dependencies = [
"arrow-array",
"arrow-ipc",

View File

@@ -0,0 +1,91 @@
#!/bin/bash
# Builds the Linux artifacts (node binaries).
# Usage: ./build_linux_artifacts.sh [target]
# Targets supported:
# - x86_64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-gnu:centos
# - aarch64-unknown-linux-musl
# - x86_64-unknown-linux-musl
# TODO: refactor this into a Docker container we can pull
set -e
setup_dependencies() {
echo "Installing system dependencies..."
if [[ $1 == *musl ]]; then
# musllinux
apk add openssl-dev
else
# manylinux2014
yum install -y openssl-devel unzip
fi
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
# Install new enough protobuf (yum-provided is old)
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
}
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
if [[ $1 == *musl ]]; then
# This node version is 15, we need 16 or higher:
# apk add nodejs-current npm
# So instead we install from source (nvm doesn't provide binaries for musl):
nvm install -s --no-progress 17
else
nvm install --no-progress 17 # latest that supports glibc 2.17
fi
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
build_node_binary() {
echo "Building node library for $1..."
pushd node
npm ci
if [[ $1 == *musl ]]; then
# This is needed for cargo to allow build cdylibs with musl
export RUSTFLAGS="-C target-feature=-crt-static"
fi
# Cargo can run out of memory while pulling dependencies, espcially when running
# in QEMU. This is a workaround for that.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# We don't pass in target, since the native target here already matches
# and openblas-src doesn't do well with cross-compilation.
npm run build-release
npm run pack-build
popd
}
TARGET=${1:-x86_64-unknown-linux-gnu}
# Others:
# aarch64-unknown-linux-gnu
# x86_64-unknown-linux-musl
# aarch64-unknown-linux-musl
setup_dependencies $TARGET
install_node $TARGET
install_rust
build_node_binary $TARGET

View File

@@ -0,0 +1,33 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -67,7 +67,7 @@ There are a couple of parameters that can be used to fine-tune the search:
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than idea, try refine_factor=10 to start.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.

View File

@@ -14,7 +14,7 @@ The key features of LanceDB include:
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lanecdb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/en/latest/modules/indexes/vectorstores/examples/lancedb.html), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.

4
node/.npmignore Normal file
View File

@@ -0,0 +1,4 @@
gen_test_data.py
index.node
dist/lancedb*.tgz
vectordb*.tgz

View File

@@ -8,6 +8,10 @@ A JavaScript / Node.js library for [LanceDB](https://github.com/lancedb/lancedb)
npm install vectordb
```
This will download the appropriate native library for your platform. We currently
support x86_64 Linux, aarch64 Linux, Intel MacOS, and ARM (M1/M2) MacOS. We do not
yet support Windows or musl-based Linux (such as Alpine Linux).
## Usage
### Basic Example
@@ -24,17 +28,33 @@ The [examples](./examples) folder contains complete examples.
## Development
The LanceDB javascript is built with npm:
To build everything fresh:
```bash
npm install
npm run tsc
npm run build
```
Then you should be able to run the tests with:
```bash
npm test
```
### Rebuilding Rust library
```bash
npm run build
```
### Rebuilding Typescript
```bash
npm run tsc
```
Run the tests with
```bash
npm test
```
### Fix lints
To run the linter and have it automatically fix all errors

View File

@@ -12,29 +12,26 @@
// See the License for the specific language governing permissions and
// limitations under the License.
const { currentTarget } = require('@neon-rs/load');
let nativeLib;
function getPlatformLibrary() {
if (process.platform === "darwin" && process.arch == "arm64") {
return require('./aarch64-apple-darwin.node');
} else if (process.platform === "darwin" && process.arch == "x64") {
return require('./x86_64-apple-darwin.node');
} else if (process.platform === "linux" && process.arch == "x64") {
return require('./x86_64-unknown-linux-gnu.node');
} else {
throw new Error(`vectordb: unsupported platform ${process.platform}_${process.arch}. Please file a bug report at https://github.com/lancedb/lancedb/issues`)
}
}
try {
nativeLib = require('./index.node')
nativeLib = require(`vectordb-${currentTarget()}`);
} catch (e) {
if (e.code === "MODULE_NOT_FOUND") {
nativeLib = getPlatformLibrary();
} else {
throw new Error('vectordb: failed to load native library. Please file a bug report at https://github.com/lancedb/lancedb/issues');
}
try {
// Might be developing locally, so try that. But don't expose that error
// to the user.
nativeLib = require("./index.node");
} catch {
throw new Error(`vectordb: failed to load native library.
You may need to run \`npm install vectordb-${currentTarget()}\`.
If that does not work, please file a bug report at https://github.com/lancedb/lancedb/issues
Source error: ${e}`);
}
}
module.exports = nativeLib
// Dynamic require for runtime.
module.exports = nativeLib;

41
node/package-lock.json generated
View File

@@ -7,12 +7,22 @@
"": {
"name": "vectordb",
"version": "0.1.5",
"cpu": [
"x64",
"arm64"
],
"license": "Apache-2.0",
"os": [
"darwin",
"linux"
],
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0"
},
"devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
@@ -35,6 +45,12 @@
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*"
},
"optionalDependencies": {
"vectordb-darwin-arm64": "0.1.2",
"vectordb-darwin-x64": "0.1.2",
"vectordb-linux-arm64-gnu": "0.1.2",
"vectordb-linux-x64-gnu": "0.1.2"
}
},
"node_modules/@apache-arrow/ts": {
@@ -202,6 +218,20 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"node_modules/@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true,
"bin": {
"neon": "index.js"
}
},
"node_modules/@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"node_modules/@nodelib/fs.scandir": {
"version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",
@@ -4601,6 +4631,17 @@
"@jridgewell/sourcemap-codec": "^1.4.10"
}
},
"@neon-rs/cli": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/cli/-/cli-0.0.74.tgz",
"integrity": "sha512-9lPmNmjej5iKKOTMPryOMubwkgMRyTWRuaq1yokASvI5mPhr2kzPN7UVjdCOjQvpunNPngR9yAHoirpjiWhUHw==",
"dev": true
},
"@neon-rs/load": {
"version": "0.0.74",
"resolved": "https://registry.npmjs.org/@neon-rs/load/-/load-0.0.74.tgz",
"integrity": "sha512-/cPZD907UNz55yrc/ud4wDgQKtU1TvkD9jeqZWG6J4IMmZkp6zgjkQcKA8UvpkZlcpPHvc8J17sGzLFbP/LUYg=="
},
"@nodelib/fs.scandir": {
"version": "2.1.5",
"resolved": "https://registry.npmjs.org/@nodelib/fs.scandir/-/fs.scandir-2.1.5.tgz",

View File

@@ -1,16 +1,19 @@
{
"name": "vectordb",
"version": "0.1.5",
"version": "0.1.7",
"description": " Serverless, low-latency vector database for AI applications",
"main": "dist/index.js",
"types": "dist/index.d.ts",
"scripts": {
"tsc": "tsc -b",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json-render-diagnostics",
"build": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cargo build --message-format=json",
"build-release": "npm run build -- --release",
"cross-release": "cargo-cp-artifact --artifact cdylib vectordb-node index.node -- cross build --message-format=json --release -p vectordb-node",
"test": "mocha -recursive dist/test",
"lint": "eslint src --ext .js,.ts",
"clean": "rm -rf node_modules *.node dist/"
"clean": "rm -rf node_modules *.node dist/",
"pack-build": "neon pack-build",
"check-npm": "printenv && which node && which npm && npm --version"
},
"repository": {
"type": "git",
@@ -25,6 +28,7 @@
"author": "Lance Devs",
"license": "Apache-2.0",
"devDependencies": {
"@neon-rs/cli": "^0.0.74",
"@types/chai": "^4.3.4",
"@types/mocha": "^10.0.1",
"@types/node": "^18.16.2",
@@ -50,6 +54,29 @@
},
"dependencies": {
"@apache-arrow/ts": "^12.0.0",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^12.0.0"
},
"os": [
"darwin",
"linux"
],
"cpu": [
"x64",
"arm64"
],
"neon": {
"targets": {
"x86_64-apple-darwin": "vectordb-darwin-x64",
"aarch64-apple-darwin": "vectordb-darwin-arm64",
"x86_64-unknown-linux-gnu": "vectordb-linux-x64-gnu",
"aarch64-unknown-linux-gnu": "vectordb-linux-arm64-gnu"
}
},
"optionalDependencies": {
"vectordb-darwin-arm64": "0.1.7",
"vectordb-darwin-x64": "0.1.7",
"vectordb-linux-x64-gnu": "0.1.7",
"vectordb-linux-arm64-gnu": "0.1.7"
}
}

View File

@@ -22,7 +22,7 @@ import { fromRecordsToBuffer } from './arrow'
import type { EmbeddingFunction } from './embedding/embedding_function'
// eslint-disable-next-line @typescript-eslint/no-var-requires
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex } = require('../native.js')
const { databaseNew, databaseTableNames, databaseOpenTable, tableCreate, tableSearch, tableAdd, tableCreateVectorIndex, tableCountRows } = require('../native.js')
export type { EmbeddingFunction }
export { OpenAIEmbeddingFunction } from './embedding/openai'
@@ -178,6 +178,13 @@ export class Table<T = number[]> {
async create_index (indexParams: VectorIndexParams): Promise<any> {
return await this.createIndex(indexParams)
}
/**
* Returns the number of rows in this table.
*/
async countRows (): Promise<number> {
return tableCountRows.call(this._tbl)
}
}
interface IvfPQIndexConfig {
@@ -293,6 +300,8 @@ export class Query<T = number[]> {
return this
}
where = this.filter
/** Return only the specified columns.
*
* @param value Only select the specified columns. If not specified, all columns will be returned.

View File

@@ -64,13 +64,20 @@ describe('LanceDB client', function () {
assert.equal(results[0].id, 1)
})
it('uses a filter', async function () {
it('uses a filter / where clause', async function () {
// eslint-disable-next-line @typescript-eslint/explicit-function-return-type
const assertResults = (results: Array<Record<string, unknown>>) => {
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
}
const uri = await createTestDB()
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.1]).filter('id == 2').execute()
assert.equal(results.length, 1)
assert.equal(results[0].id, 2)
let results = await table.search([0.1, 0.1]).filter('id == 2').execute()
assertResults(results)
results = await table.search([0.1, 0.1]).where('id == 2').execute()
assertResults(results)
})
it('select only a subset of columns', async function () {
@@ -103,9 +110,7 @@ describe('LanceDB client', function () {
const tableName = `vectors_${Math.floor(Math.random() * 100)}`
const table = await con.createTable(tableName, data)
assert.equal(table.name, tableName)
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(await table.countRows(), 2)
})
it('appends records to an existing table ', async function () {
@@ -118,16 +123,14 @@ describe('LanceDB client', function () {
]
const table = await con.createTable('vectors', data)
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(await table.countRows(), 2)
const dataAdd = [
{ id: 3, vector: [2.1, 2.2], price: 10, name: 'c' },
{ id: 4, vector: [3.1, 3.2], price: 50, name: 'd' }
]
await table.add(dataAdd)
const resultsAdd = await table.search([0.1, 0.3]).execute()
assert.equal(resultsAdd.length, 4)
assert.equal(await table.countRows(), 4)
})
it('overwrite all records in a table', async function () {
@@ -135,16 +138,14 @@ describe('LanceDB client', function () {
const con = await lancedb.connect(uri)
const table = await con.openTable('vectors')
const results = await table.search([0.1, 0.3]).execute()
assert.equal(results.length, 2)
assert.equal(await table.countRows(), 2)
const dataOver = [
{ vector: [2.1, 2.2], price: 10, name: 'foo' },
{ vector: [3.1, 3.2], price: 50, name: 'bar' }
]
await table.overwrite(dataOver)
const resultsAdd = await table.search([0.1, 0.3]).execute()
assert.equal(resultsAdd.length, 2)
assert.equal(await table.countRows(), 2)
})
})

View File

@@ -42,34 +42,38 @@ def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
paragraphs, messages, etc.
>>> contextualize(data).window(3).stride(1).text_col('token').to_df()
token document_id
0 The quick brown 1
1 quick brown fox 1
2 brown fox jumped 1
3 fox jumped over 1
4 jumped over the 1
5 over the lazy 1
6 the lazy dog 1
7 lazy dog I 1
8 dog I love 1
>>> contextualize(data).window(7).stride(1).text_col('token').to_df()
token document_id
0 The quick brown 1
1 quick brown fox 1
2 brown fox jumped 1
3 fox jumped over 1
4 jumped over the 1
5 over the lazy 1
6 the lazy dog 1
7 lazy dog I 1
8 dog I love 1
9 I love sandwiches 2
10 love sandwiches 2
>>> contextualize(data).window(7).stride(1).min_window_size(7).text_col('token').to_df()
token document_id
0 The quick brown fox jumped over the 1
1 quick brown fox jumped over the lazy 1
2 brown fox jumped over the lazy dog 1
3 fox jumped over the lazy dog I 1
4 jumped over the lazy dog I love 1
5 over the lazy dog I love sandwiches 1
``stride`` determines how many rows to skip between each window start. This can
be used to reduce the total number of windows generated.
>>> contextualize(data).window(4).stride(2).text_col('token').to_df()
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
6 the lazy dog I 1
token document_id
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
6 the lazy dog I 1
8 dog I love sandwiches 1
10 love sandwiches 2
``groupby`` determines how to group the rows. For example, we would like to have
context windows that don't cross document boundaries. In this case, we can
@@ -80,6 +84,25 @@ def contextualize(raw_df: pd.DataFrame) -> Contextualizer:
0 The quick brown fox 1
2 brown fox jumped over 1
4 jumped over the lazy 1
6 the lazy dog 1
9 I love sandwiches 2
``min_window_size`` determines the minimum size of the context windows that are generated
This can be used to trim the last few context windows which have size less than
``min_window_size``. By default context windows of size 1 are skipped.
>>> contextualize(data).window(6).stride(3).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
6 the lazy dog 1
9 I love sandwiches 2
>>> contextualize(data).window(6).stride(3).min_window_size(4).text_col('token').groupby('document_id').to_df()
token document_id
0 The quick brown fox jumped over 1
3 fox jumped over the lazy dog 1
"""
return Contextualizer(raw_df)
@@ -92,6 +115,7 @@ class Contextualizer:
self._groupby = None
self._stride = None
self._window = None
self._min_window_size = 2
self._raw_df = raw_df
def window(self, window: int) -> Contextualizer:
@@ -139,6 +163,17 @@ class Contextualizer:
self._text_col = text_col
return self
def min_window_size(self, min_window_size: int) -> Contextualizer:
"""Set the (optional) min_window_size size for the context window.
Parameters
----------
min_window_size: int
The min_window_size.
"""
self._min_window_size = min_window_size
return self
def to_df(self) -> pd.DataFrame:
"""Create the context windows and return a DataFrame."""
@@ -159,12 +194,19 @@ class Contextualizer:
def process_group(grp):
# For each group, create the text rolling window
# with values of size >= min_window_size
text = grp[self._text_col].values
contexts = grp.iloc[: -self._window : self._stride, :].copy()
contexts[self._text_col] = [
" ".join(text[start_i : start_i + self._window])
for start_i in range(0, len(grp) - self._window, self._stride)
contexts = grp.iloc[:: self._stride, :].copy()
windows = [
" ".join(text[start_i : min(start_i + self._window, len(grp))])
for start_i in range(0, len(grp), self._stride)
if start_i + self._window <= len(grp)
or len(grp) - start_i >= self._min_window_size
]
# if last few rows dropped
if len(windows) < len(contexts):
contexts = contexts.iloc[: len(windows)]
contexts[self._text_col] = windows
return contexts
if self._groupby is None:

View File

@@ -12,6 +12,7 @@
# limitations under the License.
from __future__ import annotations
import functools
import os
from pathlib import Path
@@ -56,7 +57,16 @@ class LanceDBConnection:
"""
def __init__(self, uri: URI):
is_local = isinstance(uri, Path) or get_uri_scheme(uri) == "file"
if not isinstance(uri, Path):
scheme = get_uri_scheme(uri)
is_local = isinstance(uri, Path) or scheme == "file"
# managed lancedb remote uses schema like lancedb+[http|grpc|...]://
self._is_managed_remote = not is_local and scheme.startswith("lancedb")
if self._is_managed_remote:
if len(scheme.split("+")) != 2:
raise ValueError(
f"Invalid LanceDB URI: {uri}, expected uri to have scheme like lancedb+<flavor>://..."
)
if is_local:
if isinstance(uri, str):
uri = Path(uri)
@@ -64,10 +74,49 @@ class LanceDBConnection:
Path(uri).mkdir(parents=True, exist_ok=True)
self._uri = str(uri)
self._entered = False
@property
def uri(self) -> str:
return self._uri
@functools.cached_property
def is_managed_remote(self) -> bool:
return self._is_managed_remote
@functools.cached_property
def remote_flavor(self) -> str:
if not self.is_managed_remote:
raise ValueError(
"Not a managed remote LanceDB, there should be no server flavor"
)
return get_uri_scheme(self.uri).split("+")[1]
@functools.cached_property
def _client(self) -> "lancedb.remote.LanceDBClient":
if not self.is_managed_remote:
raise ValueError("Not a managed remote LanceDB, there should be no client")
# don't import unless we are really using remote
from lancedb.remote.client import RestfulLanceDBClient
if self.remote_flavor == "http":
return RestfulLanceDBClient(self._uri)
raise ValueError("Unsupported remote flavor: " + self.remote_flavor)
async def close(self):
if self._entered:
raise ValueError("Cannot re-enter the same LanceDBConnection twice")
self._entered = True
await self._client.close()
async def __aenter__(self) -> LanceDBConnection:
return self
async def __aexit__(self, exc_type, exc_value, traceback):
await self.close()
def table_names(self) -> list[str]:
"""Get the names of all tables in the database.

View File

@@ -11,11 +11,12 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from typing import Literal
from typing import Awaitable, Literal
import numpy as np
import pandas as pd
import pyarrow as pa
import asyncio
from .common import VECTOR_COLUMN_NAME
@@ -168,8 +169,28 @@ class LanceQueryBuilder:
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
return self.to_arrow().to_pandas()
def to_arrow(self) -> pa.Table:
"""
Execute the query and return the results as a arrow Table.
In addition to the selected columns, LanceDB also returns a vector
and also the "score" column which is the distance between the query
vector and the returned vector.
"""
if self._table._conn.is_managed_remote:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.get_event_loop()
result = self._table._conn._client.query(
self._table.name, self.to_remote_query()
)
return loop.run_until_complete(result).to_arrow()
ds = self._table.to_lance()
tbl = ds.to_table(
return ds.to_table(
columns=self._columns,
filter=self._where,
nearest={
@@ -181,7 +202,20 @@ class LanceQueryBuilder:
"refine_factor": self._refine_factor,
},
)
return tbl.to_pandas()
def to_remote_query(self) -> "VectorQuery":
# don't import unless we are connecting to remote
from lancedb.remote.client import VectorQuery
return VectorQuery(
vector=self._query.tolist(),
filter=self._where,
k=self._limit,
_metric=self._metric,
columns=self._columns,
nprobes=self._nprobes,
refine_factor=self._refine_factor,
)
class LanceFtsQueryBuilder(LanceQueryBuilder):

View File

@@ -0,0 +1,61 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import List, Optional
import attr
import pandas as pd
import pyarrow as pa
from pydantic import BaseModel
__all__ = ["LanceDBClient", "VectorQuery", "VectorQueryResult"]
class VectorQuery(BaseModel):
# vector to search for
vector: List[float]
# sql filter to refine the query with
filter: Optional[str] = None
# top k results to return
k: int
# # metrics
_metric: str = "L2"
# which columns to return in the results
columns: Optional[List[str]] = None
# optional query parameters for tuning the results,
# e.g. `{"nprobes": "10", "refine_factor": "10"}`
nprobes: int = 10
refine_factor: Optional[int] = None
@attr.define
class VectorQueryResult:
# for now the response is directly seralized into a pandas dataframe
tbl: pa.Table
def to_arrow(self) -> pa.Table:
return self.tbl
class LanceDBClient(abc.ABC):
@abc.abstractmethod
def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
"""Query the LanceDB server for the given table and query."""
pass

View File

@@ -0,0 +1,79 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import aiohttp
import attr
import pyarrow as pa
import urllib.parse
from lancedb.remote import VectorQuery, VectorQueryResult
from lancedb.remote.errors import LanceDBClientError
def _check_not_closed(f):
@functools.wraps(f)
def wrapped(self, *args, **kwargs):
if self.closed:
raise ValueError("Connection is closed")
return f(self, *args, **kwargs)
return wrapped
@attr.define(slots=False)
class RestfulLanceDBClient:
url: str
closed: bool = attr.field(default=False, init=False)
@functools.cached_property
def session(self) -> aiohttp.ClientSession:
parsed = urllib.parse.urlparse(self.url)
scheme = parsed.scheme
if not scheme.startswith("lancedb"):
raise ValueError(
f"Invalid scheme: {scheme}, must be like lancedb+<flavor>://"
)
flavor = scheme.split("+")[1]
url = f"{flavor}://{parsed.hostname}:{parsed.port}"
return aiohttp.ClientSession(url)
async def close(self):
await self.session.close()
self.closed = True
@_check_not_closed
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
async with self.session.post(
f"/table/{table_name}/", json=query.dict(exclude_none=True)
) as resp:
resp: aiohttp.ClientResponse = resp
if 400 <= resp.status < 500:
raise LanceDBClientError(
f"Bad Request: {resp.status}, error: {await resp.text()}"
)
if 500 <= resp.status < 600:
raise LanceDBClientError(
f"Internal Server Error: {resp.status}, error: {await resp.text()}"
)
if resp.status != 200:
raise LanceDBClientError(
f"Unknown Error: {resp.status}, error: {await resp.text()}"
)
resp_body = await resp.read()
with pa.ipc.open_file(pa.BufferReader(resp_body)) as reader:
tbl = reader.read_all()
return VectorQueryResult(tbl)

View File

@@ -0,0 +1,16 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class LanceDBClientError(RuntimeError):
pass

View File

@@ -14,7 +14,6 @@
from __future__ import annotations
import os
import shutil
from functools import cached_property
from typing import List, Union
@@ -27,7 +26,6 @@ from lance.vector import vec_to_table
from .common import DATA, VEC, VECTOR_COLUMN_NAME
from .query import LanceFtsQueryBuilder, LanceQueryBuilder
from .util import get_uri_scheme
def _sanitize_data(data, schema):

View File

@@ -1,7 +1,7 @@
[project]
name = "lancedb"
version = "0.1.8"
dependencies = ["pylance>=0.4.20", "ratelimiter", "retry", "tqdm"]
dependencies = ["pylance>=0.4.20", "ratelimiter", "retry", "tqdm", "aiohttp", "pydantic", "attr"]
description = "lancedb"
authors = [
{ name = "LanceDB Devs", email = "dev@lancedb.com" },
@@ -37,7 +37,7 @@ repository = "https://github.com/lancedb/lancedb"
[project.optional-dependencies]
tests = [
"pytest", "pytest-mock", "doctest"
"pytest", "pytest-mock", "doctest", "pytest-asyncio"
]
dev = [
"ruff", "pre-commit", "black"

View File

@@ -0,0 +1,77 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pandas as pd
import pytest
from lancedb.context import contextualize
@pytest.fixture
def raw_df() -> pd.DataFrame:
return pd.DataFrame(
{
"token": [
"The",
"quick",
"brown",
"fox",
"jumped",
"over",
"the",
"lazy",
"dog",
"I",
"love",
"sandwiches",
],
"document_id": [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2],
}
)
def test_contextualizer(raw_df: pd.DataFrame):
result = (
contextualize(raw_df)
.window(6)
.stride(3)
.text_col("token")
.groupby("document_id")
.to_df()["token"]
.to_list()
)
assert result == [
"The quick brown fox jumped over",
"fox jumped over the lazy dog",
"the lazy dog",
"I love sandwiches",
]
def test_contextualizer_with_threshold(raw_df: pd.DataFrame):
result = (
contextualize(raw_df)
.window(6)
.stride(3)
.text_col("token")
.groupby("document_id")
.min_window_size(4)
.to_df()["token"]
.to_list()
)
assert result == [
"The quick brown fox jumped over",
"fox jumped over the lazy dog",
]

View File

@@ -0,0 +1,28 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from lancedb import LanceDBConnection
import numpy as np
import pytest
# TODO: setup integ test mark and script
@pytest.mark.skip(reason="Need to set up a local server")
def test_against_local_server():
conn = LanceDBConnection("lancedb+http://localhost:10024")
table = conn.open_table("sift1m_ivf1024_pq16")
df = table.search(np.random.rand(128)).to_df()
assert len(df) == 10

View File

@@ -19,10 +19,13 @@ import pyarrow as pa
import pytest
from lancedb.query import LanceQueryBuilder
from lancedb.db import LanceDBConnection
class MockTable:
def __init__(self, tmp_path):
self.uri = tmp_path
self._conn = LanceDBConnection("/tmp/lance/")
def to_lance(self):
return lance.dataset(self.uri)

View File

@@ -0,0 +1,95 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import attr
import numpy as np
import pandas as pd
import pyarrow as pa
import pytest
from aiohttp import web
from lancedb.remote.client import RestfulLanceDBClient, VectorQuery
@attr.define
class MockLanceDBServer:
runner: web.AppRunner = attr.field(init=False)
site: web.TCPSite = attr.field(init=False)
async def query_handler(self, request: web.Request) -> web.Response:
table_name = request.match_info["table_name"]
assert table_name == "test_table"
request_json = await request.json()
# TODO: do some matching
vecs = pd.Series([np.random.rand(128) for x in range(10)], name="vector")
ids = pd.Series(range(10), name="id")
df = pd.DataFrame([vecs, ids]).T
batch = pa.RecordBatch.from_pandas(
df,
schema=pa.schema(
[
pa.field("vector", pa.list_(pa.float32(), 128)),
pa.field("id", pa.int64()),
]
),
)
sink = pa.BufferOutputStream()
with pa.ipc.new_file(sink, batch.schema) as writer:
writer.write_batch(batch)
return web.Response(body=sink.getvalue().to_pybytes())
async def setup(self):
app = web.Application()
app.add_routes([web.post("/table/{table_name}", self.query_handler)])
self.runner = web.AppRunner(app)
await self.runner.setup()
self.site = web.TCPSite(self.runner, "localhost", 8111)
async def start(self):
await self.site.start()
async def stop(self):
await self.runner.cleanup()
@pytest.mark.skip(reason="flaky somehow, fix later")
@pytest.mark.asyncio
async def test_e2e_with_mock_server():
mock_server = MockLanceDBServer()
await mock_server.setup()
await mock_server.start()
try:
client = RestfulLanceDBClient("lancedb+http://localhost:8111")
df = (
await client.query(
"test_table",
VectorQuery(
vector=np.random.rand(128).tolist(),
k=10,
_metric="L2",
columns=["id", "vector"],
),
)
).to_df()
assert "vector" in df.columns
assert "id" in df.columns
finally:
# make sure we don't leak resources
await mock_server.stop()

View File

@@ -0,0 +1,36 @@
# Copyright 2023 LanceDB Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pyarrow as pa
from lancedb.remote.client import VectorQuery, VectorQueryResult
from lancedb.db import LanceDBConnection
class FakeLanceDBClient:
async def close(self):
pass
async def query(self, table_name: str, query: VectorQuery) -> VectorQueryResult:
assert table_name == "test"
t = pa.schema([]).empty_table()
return VectorQueryResult(t)
def test_remote_db():
conn = LanceDBConnection("lancedb+http://client-will-be-injected")
setattr(conn, "_client", FakeLanceDBClient())
table = conn["test"]
table.search([1.0, 2.0]).to_df()

View File

@@ -11,6 +11,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from pathlib import Path
import pandas as pd
@@ -23,6 +24,10 @@ class MockDB:
def __init__(self, uri: Path):
self.uri = uri
@functools.cached_property
def is_managed_remote(self) -> bool:
return False
@pytest.fixture
def db(tmp_path) -> MockDB:

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb-node"
version = "0.1.0"
version = "0.1.7"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
edition = "2018"

View File

@@ -97,6 +97,7 @@ fn get_index_params_builder(
let ivf_params = IvfBuildParams {
num_partitions: np,
max_iters,
centroids: None,
};
index_builder.ivf_params(ivf_params)
});

View File

@@ -264,6 +264,25 @@ fn table_add(mut cx: FunctionContext) -> JsResult<JsPromise> {
Ok(promise)
}
fn table_count_rows(mut cx: FunctionContext) -> JsResult<JsPromise> {
let js_table = cx.this().downcast_or_throw::<JsBox<JsTable>, _>(&mut cx)?;
let rt = runtime(&mut cx)?;
let channel = cx.channel();
let (deferred, promise) = cx.promise();
let table = js_table.table.clone();
rt.block_on(async move {
let num_rows_result = table.lock().unwrap().count_rows().await;
deferred.settle_with(&channel, move |mut cx| {
let num_rows = num_rows_result.or_else(|err| cx.throw_error(err.to_string()))?;
Ok(cx.number(num_rows as f64))
});
});
Ok(promise)
}
#[neon::main]
fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("databaseNew", database_new)?;
@@ -272,6 +291,7 @@ fn main(mut cx: ModuleContext) -> NeonResult<()> {
cx.export_function("tableSearch", table_search)?;
cx.export_function("tableCreate", table_create)?;
cx.export_function("tableAdd", table_add)?;
cx.export_function("tableCountRows", table_count_rows)?;
cx.export_function(
"tableCreateVectorIndex",
index::vector::table_create_vector_index,

View File

@@ -1,6 +1,6 @@
[package]
name = "vectordb"
version = "0.0.1"
version = "0.1.7"
edition = "2021"
description = "Serverless, low-latency vector database for AI applications"
license = "Apache-2.0"
@@ -14,7 +14,7 @@ arrow-data = "37.0"
arrow-schema = "37.0"
object_store = "0.5.6"
snafu = "0.7.4"
lance = "0.4.17"
lance = "0.4.21"
tokio = { version = "1.23", features = ["rt-multi-thread"] }
[dev-dependencies]

View File

@@ -42,7 +42,7 @@ impl Database {
///
/// * A [Database] object.
pub async fn connect(uri: &str) -> Result<Database> {
let object_store = ObjectStore::new(uri).await?;
let (object_store, _) = ObjectStore::from_uri(uri).await?;
if object_store.is_local() {
Self::try_create_dir(uri).context(CreateDirSnafu { path: uri })?;
}
@@ -69,7 +69,7 @@ impl Database {
pub async fn table_names(&self) -> Result<Vec<String>> {
let f = self
.object_store
.read_dir("/")
.read_dir(self.uri.as_str())
.await?
.iter()
.map(|fname| Path::new(fname))

View File

@@ -20,6 +20,8 @@ pub trait VectorIndexBuilder {
fn get_column(&self) -> Option<String>;
fn get_index_name(&self) -> Option<String>;
fn build(&self) -> VectorIndexParams;
fn get_replace(&self) -> bool;
}
pub struct IvfPQIndexBuilder {
@@ -28,6 +30,7 @@ pub struct IvfPQIndexBuilder {
metric_type: Option<MetricType>,
ivf_params: Option<IvfBuildParams>,
pq_params: Option<PQBuildParams>,
replace: bool,
}
impl IvfPQIndexBuilder {
@@ -38,6 +41,7 @@ impl IvfPQIndexBuilder {
metric_type: None,
ivf_params: None,
pq_params: None,
replace: true,
}
}
}
@@ -67,6 +71,11 @@ impl IvfPQIndexBuilder {
self.pq_params = Some(pq_params);
self
}
pub fn replace(&mut self, replace: bool) -> &mut IvfPQIndexBuilder {
self.replace = replace;
self
}
}
impl VectorIndexBuilder for IvfPQIndexBuilder {
@@ -84,6 +93,10 @@ impl VectorIndexBuilder for IvfPQIndexBuilder {
VectorIndexParams::with_ivf_pq_params(pq_params.metric_type, ivf_params, pq_params)
}
fn get_replace(&self) -> bool {
self.replace
}
}
#[cfg(test)]

View File

@@ -177,7 +177,7 @@ mod tests {
#[tokio::test]
async fn test_setters_getters() {
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let ds = Dataset::write(&mut batches, ":memory:", None)
let ds = Dataset::write(&mut batches, "memory://foo", None)
.await
.unwrap();
@@ -206,7 +206,7 @@ mod tests {
#[tokio::test]
async fn test_execute() {
let mut batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let ds = Dataset::write(&mut batches, ":memory:", None)
let ds = Dataset::write(&mut batches, "memory://foo", None)
.await
.unwrap();

View File

@@ -130,6 +130,7 @@ impl Table {
IndexType::Vector,
index_builder.get_index_name(),
&index_builder.build(),
index_builder.get_replace(),
)
.await?;
self.dataset = Arc::new(dataset);
@@ -233,7 +234,7 @@ mod tests {
let uri = tmp_dir.path().to_str().unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());
let schema = batches.schema().clone();
let _ = batches.schema().clone();
Table::create(&uri, "test", batches).await.unwrap();
let batches: Box<dyn RecordBatchReader> = Box::new(make_test_batches());