mirror of
https://github.com/lancedb/lancedb.git
synced 2025-12-23 05:19:58 +00:00
Compare commits
60 Commits
python-v0.
...
python-v0.
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ff5bbfdd4c | ||
|
|
694ca30c7c | ||
|
|
b2317c904d | ||
|
|
613f3063b9 | ||
|
|
5d2cd7fb2e | ||
|
|
a88e9bb134 | ||
|
|
9c1adff426 | ||
|
|
f9d5fa88a1 | ||
|
|
4db554eea5 | ||
|
|
101066788d | ||
|
|
c4135d9d30 | ||
|
|
ec39d98571 | ||
|
|
0cb37f0e5e | ||
|
|
24e3507ee2 | ||
|
|
2bdf0a02f9 | ||
|
|
32123713fd | ||
|
|
d5a01ffe7b | ||
|
|
e01045692c | ||
|
|
a62f661d90 | ||
|
|
4769d8eb76 | ||
|
|
d07d7a5980 | ||
|
|
8d2ff7b210 | ||
|
|
61c05b51a0 | ||
|
|
7801ab9b8b | ||
|
|
d297da5a7e | ||
|
|
6af69b57ad | ||
|
|
a062a92f6b | ||
|
|
277b753fd8 | ||
|
|
f78b7863f6 | ||
|
|
e7d824af2b | ||
|
|
02f1ec775f | ||
|
|
7b6d3f943b | ||
|
|
676876f4d5 | ||
|
|
fbfe2444a8 | ||
|
|
9555efacf9 | ||
|
|
513926960d | ||
|
|
cc507ca766 | ||
|
|
492d0328fe | ||
|
|
374c1e7aba | ||
|
|
30047a5566 | ||
|
|
85ccf9e22b | ||
|
|
0255221086 | ||
|
|
4ee229490c | ||
|
|
93e24f23af | ||
|
|
8f141e1e33 | ||
|
|
1d5da1d069 | ||
|
|
0c0ec1c404 | ||
|
|
d4aad82aec | ||
|
|
4f601a2d4c | ||
|
|
391fa26175 | ||
|
|
c9c61eb060 | ||
|
|
69295548cc | ||
|
|
2276b114c5 | ||
|
|
3b88f15774 | ||
|
|
ed7bd45c17 | ||
|
|
dc609a337d | ||
|
|
d564f6eacb | ||
|
|
ed5d1fb557 | ||
|
|
85046a1156 | ||
|
|
b67689e1be |
@@ -1,5 +1,5 @@
|
|||||||
[tool.bumpversion]
|
[tool.bumpversion]
|
||||||
current_version = "0.7.0"
|
current_version = "0.9.0"
|
||||||
parse = """(?x)
|
parse = """(?x)
|
||||||
(?P<major>0|[1-9]\\d*)\\.
|
(?P<major>0|[1-9]\\d*)\\.
|
||||||
(?P<minor>0|[1-9]\\d*)\\.
|
(?P<minor>0|[1-9]\\d*)\\.
|
||||||
|
|||||||
48
.github/workflows/java.yml
vendored
48
.github/workflows/java.yml
vendored
@@ -3,6 +3,8 @@ on:
|
|||||||
push:
|
push:
|
||||||
branches:
|
branches:
|
||||||
- main
|
- main
|
||||||
|
paths:
|
||||||
|
- java/**
|
||||||
pull_request:
|
pull_request:
|
||||||
paths:
|
paths:
|
||||||
- java/**
|
- java/**
|
||||||
@@ -21,9 +23,42 @@ env:
|
|||||||
CARGO_INCREMENTAL: "0"
|
CARGO_INCREMENTAL: "0"
|
||||||
CARGO_BUILD_JOBS: "1"
|
CARGO_BUILD_JOBS: "1"
|
||||||
jobs:
|
jobs:
|
||||||
linux-build:
|
linux-build-java-11:
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
name: ubuntu-22.04 + Java 11 & 17
|
name: ubuntu-22.04 + Java 11
|
||||||
|
defaults:
|
||||||
|
run:
|
||||||
|
working-directory: ./java
|
||||||
|
steps:
|
||||||
|
- name: Checkout repository
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
- uses: Swatinem/rust-cache@v2
|
||||||
|
with:
|
||||||
|
workspaces: java/core/lancedb-jni
|
||||||
|
- name: Run cargo fmt
|
||||||
|
run: cargo fmt --check
|
||||||
|
working-directory: ./java/core/lancedb-jni
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
sudo apt update
|
||||||
|
sudo apt install -y protobuf-compiler libssl-dev
|
||||||
|
- name: Install Java 11
|
||||||
|
uses: actions/setup-java@v4
|
||||||
|
with:
|
||||||
|
distribution: temurin
|
||||||
|
java-version: 11
|
||||||
|
cache: "maven"
|
||||||
|
- name: Java Style Check
|
||||||
|
run: mvn checkstyle:check
|
||||||
|
# Disable because of issues in lancedb rust core code
|
||||||
|
# - name: Rust Clippy
|
||||||
|
# working-directory: java/core/lancedb-jni
|
||||||
|
# run: cargo clippy --all-targets -- -D warnings
|
||||||
|
- name: Running tests with Java 11
|
||||||
|
run: mvn clean test
|
||||||
|
linux-build-java-17:
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
name: ubuntu-22.04 + Java 17
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
working-directory: ./java
|
working-directory: ./java
|
||||||
@@ -47,20 +82,12 @@ jobs:
|
|||||||
java-version: 17
|
java-version: 17
|
||||||
cache: "maven"
|
cache: "maven"
|
||||||
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
|
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
|
||||||
- name: Install Java 11
|
|
||||||
uses: actions/setup-java@v4
|
|
||||||
with:
|
|
||||||
distribution: temurin
|
|
||||||
java-version: 11
|
|
||||||
cache: "maven"
|
|
||||||
- name: Java Style Check
|
- name: Java Style Check
|
||||||
run: mvn checkstyle:check
|
run: mvn checkstyle:check
|
||||||
# Disable because of issues in lancedb rust core code
|
# Disable because of issues in lancedb rust core code
|
||||||
# - name: Rust Clippy
|
# - name: Rust Clippy
|
||||||
# working-directory: java/core/lancedb-jni
|
# working-directory: java/core/lancedb-jni
|
||||||
# run: cargo clippy --all-targets -- -D warnings
|
# run: cargo clippy --all-targets -- -D warnings
|
||||||
- name: Running tests with Java 11
|
|
||||||
run: mvn clean test
|
|
||||||
- name: Running tests with Java 17
|
- name: Running tests with Java 17
|
||||||
run: |
|
run: |
|
||||||
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
|
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \
|
||||||
@@ -83,3 +110,4 @@ jobs:
|
|||||||
-Djdk.reflect.useDirectMethodHandle=false \
|
-Djdk.reflect.useDirectMethodHandle=false \
|
||||||
-Dio.netty.tryReflectionSetAccessible=true"
|
-Dio.netty.tryReflectionSetAccessible=true"
|
||||||
JAVA_HOME=$JAVA_17 mvn clean test
|
JAVA_HOME=$JAVA_17 mvn clean test
|
||||||
|
|
||||||
|
|||||||
29
.github/workflows/npm-publish.yml
vendored
29
.github/workflows/npm-publish.yml
vendored
@@ -7,6 +7,7 @@ on:
|
|||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
node:
|
node:
|
||||||
|
name: vectordb Typescript
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -39,6 +40,7 @@ jobs:
|
|||||||
node/vectordb-*.tgz
|
node/vectordb-*.tgz
|
||||||
|
|
||||||
node-macos:
|
node-macos:
|
||||||
|
name: vectordb ${{ matrix.config.arch }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
config:
|
config:
|
||||||
@@ -69,6 +71,7 @@ jobs:
|
|||||||
node/dist/lancedb-vectordb-darwin*.tgz
|
node/dist/lancedb-vectordb-darwin*.tgz
|
||||||
|
|
||||||
nodejs-macos:
|
nodejs-macos:
|
||||||
|
name: lancedb ${{ matrix.config.arch }}
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
config:
|
config:
|
||||||
@@ -99,7 +102,7 @@ jobs:
|
|||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
|
|
||||||
node-linux:
|
node-linux:
|
||||||
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: vectordb (${{ matrix.config.arch}}-unknown-linux-gnu)
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -139,7 +142,7 @@ jobs:
|
|||||||
node/dist/lancedb-vectordb-linux*.tgz
|
node/dist/lancedb-vectordb-linux*.tgz
|
||||||
|
|
||||||
nodejs-linux:
|
nodejs-linux:
|
||||||
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
|
name: lancedb (${{ matrix.config.arch}}-unknown-linux-gnu
|
||||||
runs-on: ${{ matrix.config.runner }}
|
runs-on: ${{ matrix.config.runner }}
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -190,6 +193,7 @@ jobs:
|
|||||||
!nodejs/dist/*.node
|
!nodejs/dist/*.node
|
||||||
|
|
||||||
node-windows:
|
node-windows:
|
||||||
|
name: vectordb ${{ matrix.target }}
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -223,6 +227,7 @@ jobs:
|
|||||||
node/dist/lancedb-vectordb-win32*.tgz
|
node/dist/lancedb-vectordb-win32*.tgz
|
||||||
|
|
||||||
nodejs-windows:
|
nodejs-windows:
|
||||||
|
name: lancedb ${{ matrix.target }}
|
||||||
runs-on: windows-2022
|
runs-on: windows-2022
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
if: startsWith(github.ref, 'refs/tags/v')
|
if: startsWith(github.ref, 'refs/tags/v')
|
||||||
@@ -256,6 +261,7 @@ jobs:
|
|||||||
nodejs/dist/*.node
|
nodejs/dist/*.node
|
||||||
|
|
||||||
release:
|
release:
|
||||||
|
name: vectordb NPM Publish
|
||||||
needs: [node, node-macos, node-linux, node-windows]
|
needs: [node, node-macos, node-linux, node-windows]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
@@ -284,8 +290,18 @@ jobs:
|
|||||||
for filename in *.tgz; do
|
for filename in *.tgz; do
|
||||||
npm publish $PUBLISH_ARGS $filename
|
npm publish $PUBLISH_ARGS $filename
|
||||||
done
|
done
|
||||||
|
- name: Notify Slack Action
|
||||||
|
uses: ravsamhq/notify-slack-action@2.3.0
|
||||||
|
if: ${{ always() }}
|
||||||
|
with:
|
||||||
|
status: ${{ job.status }}
|
||||||
|
notify_when: "failure"
|
||||||
|
notification_title: "{workflow} is failing"
|
||||||
|
env:
|
||||||
|
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||||
|
|
||||||
release-nodejs:
|
release-nodejs:
|
||||||
|
name: lancedb NPM Publish
|
||||||
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
|
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
# Only runs on tags that matches the make-release action
|
# Only runs on tags that matches the make-release action
|
||||||
@@ -333,6 +349,15 @@ jobs:
|
|||||||
else
|
else
|
||||||
npm publish --access public
|
npm publish --access public
|
||||||
fi
|
fi
|
||||||
|
- name: Notify Slack Action
|
||||||
|
uses: ravsamhq/notify-slack-action@2.3.0
|
||||||
|
if: ${{ always() }}
|
||||||
|
with:
|
||||||
|
status: ${{ job.status }}
|
||||||
|
notify_when: "failure"
|
||||||
|
notification_title: "{workflow} is failing"
|
||||||
|
env:
|
||||||
|
SLACK_WEBHOOK_URL: ${{ secrets.ACTION_MONITORING_SLACK }}
|
||||||
|
|
||||||
update-package-lock:
|
update-package-lock:
|
||||||
needs: [release]
|
needs: [release]
|
||||||
|
|||||||
4
.github/workflows/python.yml
vendored
4
.github/workflows/python.yml
vendored
@@ -33,11 +33,11 @@ jobs:
|
|||||||
python-version: "3.11"
|
python-version: "3.11"
|
||||||
- name: Install ruff
|
- name: Install ruff
|
||||||
run: |
|
run: |
|
||||||
pip install ruff==0.2.2
|
pip install ruff==0.5.4
|
||||||
- name: Format check
|
- name: Format check
|
||||||
run: ruff format --check .
|
run: ruff format --check .
|
||||||
- name: Lint
|
- name: Lint
|
||||||
run: ruff .
|
run: ruff check .
|
||||||
doctest:
|
doctest:
|
||||||
name: "Doctest"
|
name: "Doctest"
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
|
|||||||
6
.github/workflows/rust.yml
vendored
6
.github/workflows/rust.yml
vendored
@@ -53,7 +53,10 @@ jobs:
|
|||||||
run: cargo clippy --all --all-features -- -D warnings
|
run: cargo clippy --all --all-features -- -D warnings
|
||||||
linux:
|
linux:
|
||||||
timeout-minutes: 30
|
timeout-minutes: 30
|
||||||
runs-on: ubuntu-22.04
|
# To build all features, we need more disk space than is available
|
||||||
|
# on the GitHub-provided runner. This is mostly due to the the
|
||||||
|
# sentence-transformers feature.
|
||||||
|
runs-on: warp-ubuntu-latest-x64-4x
|
||||||
defaults:
|
defaults:
|
||||||
run:
|
run:
|
||||||
shell: bash
|
shell: bash
|
||||||
@@ -131,4 +134,3 @@ jobs:
|
|||||||
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
|
||||||
cargo build
|
cargo build
|
||||||
cargo test
|
cargo test
|
||||||
|
|
||||||
31
Cargo.toml
31
Cargo.toml
@@ -20,29 +20,30 @@ keywords = ["lancedb", "lance", "database", "vector", "search"]
|
|||||||
categories = ["database-implementations"]
|
categories = ["database-implementations"]
|
||||||
|
|
||||||
[workspace.dependencies]
|
[workspace.dependencies]
|
||||||
lance = { "version" = "=0.14.1", "features" = ["dynamodb"] }
|
lance = { "version" = "=0.16.1", "features" = ["dynamodb"] }
|
||||||
lance-index = { "version" = "=0.14.1" }
|
lance-index = { "version" = "=0.16.1" }
|
||||||
lance-linalg = { "version" = "=0.14.1" }
|
lance-linalg = { "version" = "=0.16.1" }
|
||||||
lance-testing = { "version" = "=0.14.1" }
|
lance-testing = { "version" = "=0.16.1" }
|
||||||
lance-datafusion = { "version" = "=0.14.1" }
|
lance-datafusion = { "version" = "=0.16.1" }
|
||||||
|
lance-encoding = { "version" = "=0.16.1" }
|
||||||
# Note that this one does not include pyarrow
|
# Note that this one does not include pyarrow
|
||||||
arrow = { version = "51.0", optional = false }
|
arrow = { version = "52.2", optional = false }
|
||||||
arrow-array = "51.0"
|
arrow-array = "52.2"
|
||||||
arrow-data = "51.0"
|
arrow-data = "52.2"
|
||||||
arrow-ipc = "51.0"
|
arrow-ipc = "52.2"
|
||||||
arrow-ord = "51.0"
|
arrow-ord = "52.2"
|
||||||
arrow-schema = "51.0"
|
arrow-schema = "52.2"
|
||||||
arrow-arith = "51.0"
|
arrow-arith = "52.2"
|
||||||
arrow-cast = "51.0"
|
arrow-cast = "52.2"
|
||||||
async-trait = "0"
|
async-trait = "0"
|
||||||
chrono = "0.4.35"
|
chrono = "0.4.35"
|
||||||
datafusion-physical-plan = "37.1"
|
datafusion-physical-plan = "40.0"
|
||||||
half = { "version" = "=2.4.1", default-features = false, features = [
|
half = { "version" = "=2.4.1", default-features = false, features = [
|
||||||
"num-traits",
|
"num-traits",
|
||||||
] }
|
] }
|
||||||
futures = "0"
|
futures = "0"
|
||||||
log = "0.4"
|
log = "0.4"
|
||||||
object_store = "0.9.0"
|
object_store = "0.10.2"
|
||||||
pin-project = "1.0.7"
|
pin-project = "1.0.7"
|
||||||
snafu = "0.7.4"
|
snafu = "0.7.4"
|
||||||
url = "2"
|
url = "2"
|
||||||
|
|||||||
28
README.md
28
README.md
@@ -7,8 +7,8 @@
|
|||||||
|
|
||||||
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
|
||||||
[](https://blog.lancedb.com/)
|
[](https://blog.lancedb.com/)
|
||||||
[](https://discord.gg/zMM32dvNtd)
|
[](https://discord.gg/zMM32dvNtd)
|
||||||
[](https://twitter.com/lancedb)
|
[](https://twitter.com/lancedb)
|
||||||
|
|
||||||
</p>
|
</p>
|
||||||
@@ -44,26 +44,24 @@ LanceDB's core is written in Rust 🦀 and is built using <a href="https://githu
|
|||||||
|
|
||||||
**Javascript**
|
**Javascript**
|
||||||
```shell
|
```shell
|
||||||
npm install vectordb
|
npm install @lancedb/lancedb
|
||||||
```
|
```
|
||||||
|
|
||||||
```javascript
|
```javascript
|
||||||
const lancedb = require('vectordb');
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
const db = await lancedb.connect('data/sample-lancedb');
|
|
||||||
|
|
||||||
const table = await db.createTable({
|
const db = await lancedb.connect("data/sample-lancedb");
|
||||||
name: 'vectors',
|
const table = await db.createTable("vectors", [
|
||||||
data: [
|
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
||||||
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
|
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
|
||||||
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
|
], {mode: 'overwrite'});
|
||||||
]
|
|
||||||
})
|
|
||||||
|
|
||||||
const query = table.search([0.1, 0.3]).limit(2);
|
|
||||||
const results = await query.execute();
|
const query = table.vectorSearch([0.1, 0.3]).limit(2);
|
||||||
|
const results = await query.toArray();
|
||||||
|
|
||||||
// You can also search for rows by specific criteria without involving a vector search.
|
// You can also search for rows by specific criteria without involving a vector search.
|
||||||
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
|
const rowsByCriteria = await table.query().where("price >= 10").toArray();
|
||||||
```
|
```
|
||||||
|
|
||||||
**Python**
|
**Python**
|
||||||
|
|||||||
@@ -18,4 +18,4 @@ docker run \
|
|||||||
-v $(pwd):/io -w /io \
|
-v $(pwd):/io -w /io \
|
||||||
--memory-swap=-1 \
|
--memory-swap=-1 \
|
||||||
lancedb-node-manylinux \
|
lancedb-node-manylinux \
|
||||||
bash ci/manylinux_node/build.sh $ARCH
|
bash ci/manylinux_node/build_vectordb.sh $ARCH
|
||||||
|
|||||||
@@ -4,9 +4,9 @@ ARCH=${1:-x86_64}
|
|||||||
|
|
||||||
# We pass down the current user so that when we later mount the local files
|
# We pass down the current user so that when we later mount the local files
|
||||||
# into the container, the files are accessible by the current user.
|
# into the container, the files are accessible by the current user.
|
||||||
pushd ci/manylinux_nodejs
|
pushd ci/manylinux_node
|
||||||
docker build \
|
docker build \
|
||||||
-t lancedb-nodejs-manylinux \
|
-t lancedb-node-manylinux-$ARCH \
|
||||||
--build-arg="ARCH=$ARCH" \
|
--build-arg="ARCH=$ARCH" \
|
||||||
--build-arg="DOCKER_USER=$(id -u)" \
|
--build-arg="DOCKER_USER=$(id -u)" \
|
||||||
--progress=plain \
|
--progress=plain \
|
||||||
@@ -17,5 +17,5 @@ popd
|
|||||||
docker run \
|
docker run \
|
||||||
-v $(pwd):/io -w /io \
|
-v $(pwd):/io -w /io \
|
||||||
--memory-swap=-1 \
|
--memory-swap=-1 \
|
||||||
lancedb-nodejs-manylinux \
|
lancedb-node-manylinux-$ARCH \
|
||||||
bash ci/manylinux_nodejs/build.sh $ARCH
|
bash ci/manylinux_node/build_lancedb.sh $ARCH
|
||||||
|
|||||||
@@ -4,7 +4,7 @@
|
|||||||
# range of linux distributions.
|
# range of linux distributions.
|
||||||
ARG ARCH=x86_64
|
ARG ARCH=x86_64
|
||||||
|
|
||||||
FROM quay.io/pypa/manylinux2014_${ARCH}
|
FROM quay.io/pypa/manylinux_2_28_${ARCH}
|
||||||
|
|
||||||
ARG ARCH=x86_64
|
ARG ARCH=x86_64
|
||||||
ARG DOCKER_USER=default_user
|
ARG DOCKER_USER=default_user
|
||||||
@@ -18,8 +18,8 @@ COPY install_protobuf.sh install_protobuf.sh
|
|||||||
RUN ./install_protobuf.sh ${ARCH}
|
RUN ./install_protobuf.sh ${ARCH}
|
||||||
|
|
||||||
ENV DOCKER_USER=${DOCKER_USER}
|
ENV DOCKER_USER=${DOCKER_USER}
|
||||||
# Create a group and user
|
# Create a group and user, but only if it doesn't exist
|
||||||
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
RUN echo ${ARCH} && id -u ${DOCKER_USER} >/dev/null 2>&1 || adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
||||||
|
|
||||||
# We switch to the user to install Rust and Node, since those like to be
|
# We switch to the user to install Rust and Node, since those like to be
|
||||||
# installed at the user level.
|
# installed at the user level.
|
||||||
|
|||||||
0
ci/manylinux_nodejs/build.sh → ci/manylinux_node/build_lancedb.sh
Executable file → Normal file
0
ci/manylinux_nodejs/build.sh → ci/manylinux_node/build_lancedb.sh
Executable file → Normal file
@@ -6,7 +6,7 @@
|
|||||||
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
||||||
set -e
|
set -e
|
||||||
|
|
||||||
git clone -b OpenSSL_1_1_1u \
|
git clone -b OpenSSL_1_1_1v \
|
||||||
--single-branch \
|
--single-branch \
|
||||||
https://github.com/openssl/openssl.git
|
https://github.com/openssl/openssl.git
|
||||||
|
|
||||||
|
|||||||
@@ -8,7 +8,7 @@ install_node() {
|
|||||||
|
|
||||||
source "$HOME"/.bashrc
|
source "$HOME"/.bashrc
|
||||||
|
|
||||||
nvm install --no-progress 16
|
nvm install --no-progress 18
|
||||||
}
|
}
|
||||||
|
|
||||||
install_rust() {
|
install_rust() {
|
||||||
|
|||||||
@@ -1,31 +0,0 @@
|
|||||||
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
|
|
||||||
# This container allows building the node modules native libraries in an
|
|
||||||
# environment with a very old glibc, so that we are compatible with a wide
|
|
||||||
# range of linux distributions.
|
|
||||||
ARG ARCH=x86_64
|
|
||||||
|
|
||||||
FROM quay.io/pypa/manylinux2014_${ARCH}
|
|
||||||
|
|
||||||
ARG ARCH=x86_64
|
|
||||||
ARG DOCKER_USER=default_user
|
|
||||||
|
|
||||||
# Install static openssl
|
|
||||||
COPY install_openssl.sh install_openssl.sh
|
|
||||||
RUN ./install_openssl.sh ${ARCH} > /dev/null
|
|
||||||
|
|
||||||
# Protobuf is also installed as root.
|
|
||||||
COPY install_protobuf.sh install_protobuf.sh
|
|
||||||
RUN ./install_protobuf.sh ${ARCH}
|
|
||||||
|
|
||||||
ENV DOCKER_USER=${DOCKER_USER}
|
|
||||||
# Create a group and user
|
|
||||||
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
|
|
||||||
|
|
||||||
# We switch to the user to install Rust and Node, since those like to be
|
|
||||||
# installed at the user level.
|
|
||||||
USER ${DOCKER_USER}
|
|
||||||
|
|
||||||
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
|
|
||||||
RUN cp /prepare_manylinux_node.sh $HOME/ && \
|
|
||||||
cd $HOME && \
|
|
||||||
./prepare_manylinux_node.sh ${ARCH}
|
|
||||||
@@ -1,26 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# Builds openssl from source so we can statically link to it
|
|
||||||
|
|
||||||
# this is to avoid the error we get with the system installation:
|
|
||||||
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
|
|
||||||
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
|
|
||||||
set -e
|
|
||||||
|
|
||||||
git clone -b OpenSSL_1_1_1u \
|
|
||||||
--single-branch \
|
|
||||||
https://github.com/openssl/openssl.git
|
|
||||||
|
|
||||||
pushd openssl
|
|
||||||
|
|
||||||
if [[ $1 == x86_64* ]]; then
|
|
||||||
ARCH=linux-x86_64
|
|
||||||
else
|
|
||||||
# gnu target
|
|
||||||
ARCH=linux-aarch64
|
|
||||||
fi
|
|
||||||
|
|
||||||
./Configure no-shared $ARCH
|
|
||||||
|
|
||||||
make
|
|
||||||
|
|
||||||
make install
|
|
||||||
@@ -1,15 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
# Installs protobuf compiler. Should be run as root.
|
|
||||||
set -e
|
|
||||||
|
|
||||||
if [[ $1 == x86_64* ]]; then
|
|
||||||
ARCH=x86_64
|
|
||||||
else
|
|
||||||
# gnu target
|
|
||||||
ARCH=aarch_64
|
|
||||||
fi
|
|
||||||
|
|
||||||
PB_REL=https://github.com/protocolbuffers/protobuf/releases
|
|
||||||
PB_VERSION=23.1
|
|
||||||
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
|
|
||||||
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local
|
|
||||||
@@ -1,21 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
set -e
|
|
||||||
|
|
||||||
install_node() {
|
|
||||||
echo "Installing node..."
|
|
||||||
|
|
||||||
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
|
|
||||||
|
|
||||||
source "$HOME"/.bashrc
|
|
||||||
|
|
||||||
nvm install --no-progress 16
|
|
||||||
}
|
|
||||||
|
|
||||||
install_rust() {
|
|
||||||
echo "Installing rust..."
|
|
||||||
curl https://sh.rustup.rs -sSf | bash -s -- -y
|
|
||||||
export PATH="$PATH:/root/.cargo/bin"
|
|
||||||
}
|
|
||||||
|
|
||||||
install_node
|
|
||||||
install_rust
|
|
||||||
@@ -100,6 +100,7 @@ nav:
|
|||||||
- Quickstart: reranking/index.md
|
- Quickstart: reranking/index.md
|
||||||
- Cohere Reranker: reranking/cohere.md
|
- Cohere Reranker: reranking/cohere.md
|
||||||
- Linear Combination Reranker: reranking/linear_combination.md
|
- Linear Combination Reranker: reranking/linear_combination.md
|
||||||
|
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
|
||||||
- Cross Encoder Reranker: reranking/cross_encoder.md
|
- Cross Encoder Reranker: reranking/cross_encoder.md
|
||||||
- ColBERT Reranker: reranking/colbert.md
|
- ColBERT Reranker: reranking/colbert.md
|
||||||
- Jina Reranker: reranking/jina.md
|
- Jina Reranker: reranking/jina.md
|
||||||
@@ -140,12 +141,15 @@ nav:
|
|||||||
- Overview: examples/index.md
|
- Overview: examples/index.md
|
||||||
- 🐍 Python:
|
- 🐍 Python:
|
||||||
- Overview: examples/examples_python.md
|
- Overview: examples/examples_python.md
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- Build From Scratch: examples/python_examples/build_from_scratch.md
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Multimodal: examples/python_examples/multimodal.md
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
- Rag: examples/python_examples/rag.md
|
||||||
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
|
- Miscellaneous:
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
- 👾 JavaScript:
|
- 👾 JavaScript:
|
||||||
- Overview: examples/examples_js.md
|
- Overview: examples/examples_js.md
|
||||||
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||||
@@ -157,7 +161,7 @@ nav:
|
|||||||
- ⚙️ API reference:
|
- ⚙️ API reference:
|
||||||
- 🐍 Python: python/python.md
|
- 🐍 Python: python/python.md
|
||||||
- 👾 JavaScript (vectordb): javascript/modules.md
|
- 👾 JavaScript (vectordb): javascript/modules.md
|
||||||
- 👾 JavaScript (lancedb): javascript/modules.md
|
- 👾 JavaScript (lancedb): js/globals.md
|
||||||
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
|
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
|
||||||
- ☁️ LanceDB Cloud:
|
- ☁️ LanceDB Cloud:
|
||||||
- Overview: cloud/index.md
|
- Overview: cloud/index.md
|
||||||
@@ -185,6 +189,7 @@ nav:
|
|||||||
- Quickstart: reranking/index.md
|
- Quickstart: reranking/index.md
|
||||||
- Cohere Reranker: reranking/cohere.md
|
- Cohere Reranker: reranking/cohere.md
|
||||||
- Linear Combination Reranker: reranking/linear_combination.md
|
- Linear Combination Reranker: reranking/linear_combination.md
|
||||||
|
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
|
||||||
- Cross Encoder Reranker: reranking/cross_encoder.md
|
- Cross Encoder Reranker: reranking/cross_encoder.md
|
||||||
- ColBERT Reranker: reranking/colbert.md
|
- ColBERT Reranker: reranking/colbert.md
|
||||||
- Jina Reranker: reranking/jina.md
|
- Jina Reranker: reranking/jina.md
|
||||||
@@ -219,19 +224,29 @@ nav:
|
|||||||
- PromptTools: integrations/prompttools.md
|
- PromptTools: integrations/prompttools.md
|
||||||
- Examples:
|
- Examples:
|
||||||
- examples/index.md
|
- examples/index.md
|
||||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
- 🐍 Python:
|
||||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
- Overview: examples/examples_python.md
|
||||||
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
- Build From Scratch: examples/python_examples/build_from_scratch.md
|
||||||
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
- Multimodal: examples/python_examples/multimodal.md
|
||||||
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
- Rag: examples/python_examples/rag.md
|
||||||
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
|
- Miscellaneous:
|
||||||
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
|
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||||
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||||
|
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
|
||||||
|
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
|
||||||
|
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
|
||||||
|
- 👾 JavaScript:
|
||||||
|
- Overview: examples/examples_js.md
|
||||||
|
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
|
||||||
|
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
|
||||||
|
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
|
||||||
|
- 🦀 Rust:
|
||||||
|
- Overview: examples/examples_rust.md
|
||||||
- API reference:
|
- API reference:
|
||||||
- Overview: api_reference.md
|
- Overview: api_reference.md
|
||||||
- Python: python/python.md
|
- Python: python/python.md
|
||||||
- Javascript (vectordb): javascript/modules.md
|
- Javascript (vectordb): javascript/modules.md
|
||||||
- Javascript (lancedb): js/modules.md
|
- Javascript (lancedb): js/globals.md
|
||||||
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
|
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
|
||||||
- LanceDB Cloud:
|
- LanceDB Cloud:
|
||||||
- Overview: cloud/index.md
|
- Overview: cloud/index.md
|
||||||
|
|||||||
@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
|
|||||||
|
|
||||||
- [Python](python/python.md)
|
- [Python](python/python.md)
|
||||||
- [JavaScript (legacy vectordb package)](javascript/modules.md)
|
- [JavaScript (legacy vectordb package)](javascript/modules.md)
|
||||||
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
|
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
|
||||||
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)
|
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)
|
||||||
|
|||||||
1
docs/src/assets/colab.svg
Normal file
1
docs/src/assets/colab.svg
Normal file
@@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>
|
||||||
|
After Width: | Height: | Size: 2.3 KiB |
1
docs/src/assets/ghost.svg
Normal file
1
docs/src/assets/ghost.svg
Normal file
@@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>
|
||||||
|
After Width: | Height: | Size: 1.2 KiB |
1
docs/src/assets/github.svg
Normal file
1
docs/src/assets/github.svg
Normal file
@@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>
|
||||||
|
After Width: | Height: | Size: 1.7 KiB |
1
docs/src/assets/python.svg
Normal file
1
docs/src/assets/python.svg
Normal file
@@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>
|
||||||
|
After Width: | Height: | Size: 2.6 KiB |
@@ -35,6 +35,15 @@
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
```
|
```
|
||||||
|
|
||||||
|
!!! note "Yarn users"
|
||||||
|
|
||||||
|
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
|
||||||
|
|
||||||
|
```shell
|
||||||
|
yarn add apache-arrow
|
||||||
|
```
|
||||||
|
|
||||||
=== "vectordb (deprecated)"
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
@@ -53,6 +62,15 @@
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
```
|
```
|
||||||
|
|
||||||
|
!!! note "Yarn users"
|
||||||
|
|
||||||
|
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
|
||||||
|
|
||||||
|
```shell
|
||||||
|
yarn add apache-arrow
|
||||||
|
```
|
||||||
|
|
||||||
=== "Rust"
|
=== "Rust"
|
||||||
|
|
||||||
```shell
|
```shell
|
||||||
|
|||||||
@@ -1,6 +1,14 @@
|
|||||||
// --8<-- [start:import]
|
// --8<-- [start:import]
|
||||||
import * as lancedb from "vectordb";
|
import * as lancedb from "vectordb";
|
||||||
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
|
import {
|
||||||
|
Schema,
|
||||||
|
Field,
|
||||||
|
Float32,
|
||||||
|
FixedSizeList,
|
||||||
|
Int32,
|
||||||
|
Float16,
|
||||||
|
} from "apache-arrow";
|
||||||
|
import * as arrow from "apache-arrow";
|
||||||
// --8<-- [end:import]
|
// --8<-- [end:import]
|
||||||
import * as fs from "fs";
|
import * as fs from "fs";
|
||||||
import { Table as ArrowTable, Utf8 } from "apache-arrow";
|
import { Table as ArrowTable, Utf8 } from "apache-arrow";
|
||||||
@@ -20,10 +28,33 @@ const example = async () => {
|
|||||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||||
],
|
],
|
||||||
{ writeMode: lancedb.WriteMode.Overwrite }
|
{ writeMode: lancedb.WriteMode.Overwrite },
|
||||||
);
|
);
|
||||||
// --8<-- [end:create_table]
|
// --8<-- [end:create_table]
|
||||||
|
{
|
||||||
|
// --8<-- [start:create_table_with_schema]
|
||||||
|
const schema = new arrow.Schema([
|
||||||
|
new arrow.Field(
|
||||||
|
"vector",
|
||||||
|
new arrow.FixedSizeList(
|
||||||
|
2,
|
||||||
|
new arrow.Field("item", new arrow.Float32(), true),
|
||||||
|
),
|
||||||
|
),
|
||||||
|
new arrow.Field("item", new arrow.Utf8(), true),
|
||||||
|
new arrow.Field("price", new arrow.Float32(), true),
|
||||||
|
]);
|
||||||
|
const data = [
|
||||||
|
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
|
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||||
|
];
|
||||||
|
const tbl = await db.createTable({
|
||||||
|
name: "myTableWithSchema",
|
||||||
|
data,
|
||||||
|
schema,
|
||||||
|
});
|
||||||
|
// --8<-- [end:create_table_with_schema]
|
||||||
|
}
|
||||||
|
|
||||||
// --8<-- [start:add]
|
// --8<-- [start:add]
|
||||||
const newData = Array.from({ length: 500 }, (_, i) => ({
|
const newData = Array.from({ length: 500 }, (_, i) => ({
|
||||||
@@ -43,33 +74,35 @@ const example = async () => {
|
|||||||
// --8<-- [end:create_index]
|
// --8<-- [end:create_index]
|
||||||
|
|
||||||
// --8<-- [start:create_empty_table]
|
// --8<-- [start:create_empty_table]
|
||||||
const schema = new Schema([
|
const schema = new arrow.Schema([
|
||||||
new Field("id", new Int32()),
|
new arrow.Field("id", new arrow.Int32()),
|
||||||
new Field("name", new Utf8()),
|
new arrow.Field("name", new arrow.Utf8()),
|
||||||
]);
|
]);
|
||||||
|
|
||||||
const empty_tbl = await db.createTable({ name: "empty_table", schema });
|
const empty_tbl = await db.createTable({ name: "empty_table", schema });
|
||||||
// --8<-- [end:create_empty_table]
|
// --8<-- [end:create_empty_table]
|
||||||
|
{
|
||||||
// --8<-- [start:create_f16_table]
|
// --8<-- [start:create_f16_table]
|
||||||
const dim = 16
|
const dim = 16;
|
||||||
const total = 10
|
const total = 10;
|
||||||
const f16_schema = new Schema([
|
const schema = new Schema([
|
||||||
new Field('id', new Int32()),
|
new Field("id", new Int32()),
|
||||||
new Field(
|
new Field(
|
||||||
'vector',
|
"vector",
|
||||||
new FixedSizeList(dim, new Field('item', new Float16(), true)),
|
new FixedSizeList(dim, new Field("item", new Float16(), true)),
|
||||||
false
|
false,
|
||||||
)
|
),
|
||||||
])
|
]);
|
||||||
const data = lancedb.makeArrowTable(
|
const data = lancedb.makeArrowTable(
|
||||||
Array.from(Array(total), (_, i) => ({
|
Array.from(Array(total), (_, i) => ({
|
||||||
id: i,
|
id: i,
|
||||||
vector: Array.from(Array(dim), Math.random)
|
vector: Array.from(Array(dim), Math.random),
|
||||||
})),
|
})),
|
||||||
{ f16_schema }
|
{ schema },
|
||||||
)
|
);
|
||||||
const table = await db.createTable('f16_tbl', data)
|
const table = await db.createTable("f16_tbl", data);
|
||||||
// --8<-- [end:create_f16_table]
|
// --8<-- [end:create_f16_table]
|
||||||
|
}
|
||||||
|
|
||||||
// --8<-- [start:search]
|
// --8<-- [start:search]
|
||||||
const query = await tbl.search([100, 100]).limit(2).execute();
|
const query = await tbl.search([100, 100]).limit(2).execute();
|
||||||
|
|||||||
@@ -15,198 +15,226 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
|
|||||||
|
|
||||||
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
|
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
|
||||||
|
|
||||||
```python
|
|
||||||
from lancedb.embeddings import register
|
|
||||||
from lancedb.util import attempt_import_or_raise
|
|
||||||
|
|
||||||
@register("sentence-transformers")
|
=== "Python"
|
||||||
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
|
||||||
name: str = "all-MiniLM-L6-v2"
|
|
||||||
# set more default instance vars like device, etc.
|
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
```python
|
||||||
super().__init__(**kwargs)
|
from lancedb.embeddings import register
|
||||||
self._ndims = None
|
from lancedb.util import attempt_import_or_raise
|
||||||
|
|
||||||
def generate_embeddings(self, texts):
|
|
||||||
return self._embedding_model().encode(list(texts), ...).tolist()
|
|
||||||
|
|
||||||
def ndims(self):
|
@register("sentence-transformers")
|
||||||
if self._ndims is None:
|
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
|
||||||
self._ndims = len(self.generate_embeddings("foo")[0])
|
name: str = "all-MiniLM-L6-v2"
|
||||||
return self._ndims
|
# set more default instance vars like device, etc.
|
||||||
|
|
||||||
@cached(cache={})
|
def __init__(self, **kwargs):
|
||||||
def _embedding_model(self):
|
super().__init__(**kwargs)
|
||||||
return sentence_transformers.SentenceTransformer(name)
|
self._ndims = None
|
||||||
```
|
|
||||||
|
|
||||||
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
|
def generate_embeddings(self, texts):
|
||||||
|
return self._embedding_model().encode(list(texts), ...).tolist()
|
||||||
|
|
||||||
|
def ndims(self):
|
||||||
|
if self._ndims is None:
|
||||||
|
self._ndims = len(self.generate_embeddings("foo")[0])
|
||||||
|
return self._ndims
|
||||||
|
|
||||||
|
@cached(cache={})
|
||||||
|
def _embedding_model(self):
|
||||||
|
return sentence_transformers.SentenceTransformer(name)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
--8<--- "nodejs/examples/custom_embedding_function.ts:imports"
|
||||||
|
|
||||||
|
--8<--- "nodejs/examples/custom_embedding_function.ts:embedding_impl"
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
|
||||||
|
|
||||||
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
|
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
|
||||||
|
|
||||||
registry = EmbeddingFunctionRegistry.get_instance()
|
```python
|
||||||
stransformer = registry.get("sentence-transformers").create()
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
|
||||||
class TextModelSchema(LanceModel):
|
registry = EmbeddingFunctionRegistry.get_instance()
|
||||||
vector: Vector(stransformer.ndims) = stransformer.VectorField()
|
stransformer = registry.get("sentence-transformers").create()
|
||||||
text: str = stransformer.SourceField()
|
|
||||||
|
|
||||||
tbl = db.create_table("table", schema=TextModelSchema)
|
class TextModelSchema(LanceModel):
|
||||||
|
vector: Vector(stransformer.ndims) = stransformer.VectorField()
|
||||||
|
text: str = stransformer.SourceField()
|
||||||
|
|
||||||
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
|
tbl = db.create_table("table", schema=TextModelSchema)
|
||||||
result = tbl.search("world").limit(5)
|
|
||||||
```
|
|
||||||
|
|
||||||
NOTE:
|
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
|
||||||
|
result = tbl.search("world").limit(5)
|
||||||
|
```
|
||||||
|
|
||||||
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
--8<--- "nodejs/examples/custom_embedding_function.ts:call_custom_function"
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
|
||||||
|
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
|
||||||
|
|
||||||
## Multi-modal embedding function example
|
## Multi-modal embedding function example
|
||||||
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
|
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
@register("open-clip")
|
|
||||||
class OpenClipEmbeddings(EmbeddingFunction):
|
|
||||||
name: str = "ViT-B-32"
|
|
||||||
pretrained: str = "laion2b_s34b_b79k"
|
|
||||||
device: str = "cpu"
|
|
||||||
batch_size: int = 64
|
|
||||||
normalize: bool = True
|
|
||||||
_model = PrivateAttr()
|
|
||||||
_preprocess = PrivateAttr()
|
|
||||||
_tokenizer = PrivateAttr()
|
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
|
||||||
super().__init__(*args, **kwargs)
|
|
||||||
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
|
||||||
model, _, preprocess = open_clip.create_model_and_transforms(
|
|
||||||
self.name, pretrained=self.pretrained
|
|
||||||
)
|
|
||||||
model.to(self.device)
|
|
||||||
self._model, self._preprocess = model, preprocess
|
|
||||||
self._tokenizer = open_clip.get_tokenizer(self.name)
|
|
||||||
self._ndims = None
|
|
||||||
|
|
||||||
def ndims(self):
|
```python
|
||||||
if self._ndims is None:
|
@register("open-clip")
|
||||||
self._ndims = self.generate_text_embeddings("foo").shape[0]
|
class OpenClipEmbeddings(EmbeddingFunction):
|
||||||
return self._ndims
|
name: str = "ViT-B-32"
|
||||||
|
pretrained: str = "laion2b_s34b_b79k"
|
||||||
|
device: str = "cpu"
|
||||||
|
batch_size: int = 64
|
||||||
|
normalize: bool = True
|
||||||
|
_model = PrivateAttr()
|
||||||
|
_preprocess = PrivateAttr()
|
||||||
|
_tokenizer = PrivateAttr()
|
||||||
|
|
||||||
def compute_query_embeddings(
|
def __init__(self, *args, **kwargs):
|
||||||
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
super().__init__(*args, **kwargs)
|
||||||
) -> List[np.ndarray]:
|
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
|
||||||
"""
|
model, _, preprocess = open_clip.create_model_and_transforms(
|
||||||
Compute the embeddings for a given user query
|
self.name, pretrained=self.pretrained
|
||||||
|
)
|
||||||
|
model.to(self.device)
|
||||||
|
self._model, self._preprocess = model, preprocess
|
||||||
|
self._tokenizer = open_clip.get_tokenizer(self.name)
|
||||||
|
self._ndims = None
|
||||||
|
|
||||||
Parameters
|
def ndims(self):
|
||||||
----------
|
if self._ndims is None:
|
||||||
query : Union[str, PIL.Image.Image]
|
self._ndims = self.generate_text_embeddings("foo").shape[0]
|
||||||
The query to embed. A query can be either text or an image.
|
return self._ndims
|
||||||
"""
|
|
||||||
if isinstance(query, str):
|
def compute_query_embeddings(
|
||||||
return [self.generate_text_embeddings(query)]
|
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
|
||||||
else:
|
) -> List[np.ndarray]:
|
||||||
|
"""
|
||||||
|
Compute the embeddings for a given user query
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
query : Union[str, PIL.Image.Image]
|
||||||
|
The query to embed. A query can be either text or an image.
|
||||||
|
"""
|
||||||
|
if isinstance(query, str):
|
||||||
|
return [self.generate_text_embeddings(query)]
|
||||||
|
else:
|
||||||
|
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||||
|
if isinstance(query, PIL.Image.Image):
|
||||||
|
return [self.generate_image_embedding(query)]
|
||||||
|
else:
|
||||||
|
raise TypeError("OpenClip supports str or PIL Image as query")
|
||||||
|
|
||||||
|
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
||||||
|
torch = attempt_import_or_raise("torch")
|
||||||
|
text = self.sanitize_input(text)
|
||||||
|
text = self._tokenizer(text)
|
||||||
|
text.to(self.device)
|
||||||
|
with torch.no_grad():
|
||||||
|
text_features = self._model.encode_text(text.to(self.device))
|
||||||
|
if self.normalize:
|
||||||
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
||||||
|
return text_features.cpu().numpy().squeeze()
|
||||||
|
|
||||||
|
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
||||||
|
"""
|
||||||
|
Sanitize the input to the embedding function.
|
||||||
|
"""
|
||||||
|
if isinstance(images, (str, bytes)):
|
||||||
|
images = [images]
|
||||||
|
elif isinstance(images, pa.Array):
|
||||||
|
images = images.to_pylist()
|
||||||
|
elif isinstance(images, pa.ChunkedArray):
|
||||||
|
images = images.combine_chunks().to_pylist()
|
||||||
|
return images
|
||||||
|
|
||||||
|
def compute_source_embeddings(
|
||||||
|
self, images: IMAGES, *args, **kwargs
|
||||||
|
) -> List[np.array]:
|
||||||
|
"""
|
||||||
|
Get the embeddings for the given images
|
||||||
|
"""
|
||||||
|
images = self.sanitize_input(images)
|
||||||
|
embeddings = []
|
||||||
|
for i in range(0, len(images), self.batch_size):
|
||||||
|
j = min(i + self.batch_size, len(images))
|
||||||
|
batch = images[i:j]
|
||||||
|
embeddings.extend(self._parallel_get(batch))
|
||||||
|
return embeddings
|
||||||
|
|
||||||
|
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
|
||||||
|
"""
|
||||||
|
Issue concurrent requests to retrieve the image data
|
||||||
|
"""
|
||||||
|
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||||
|
futures = [
|
||||||
|
executor.submit(self.generate_image_embedding, image)
|
||||||
|
for image in images
|
||||||
|
]
|
||||||
|
return [future.result() for future in futures]
|
||||||
|
|
||||||
|
def generate_image_embedding(
|
||||||
|
self, image: Union[str, bytes, "PIL.Image.Image"]
|
||||||
|
) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Generate the embedding for a single image
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
image : Union[str, bytes, PIL.Image.Image]
|
||||||
|
The image to embed. If the image is a str, it is treated as a uri.
|
||||||
|
If the image is bytes, it is treated as the raw image bytes.
|
||||||
|
"""
|
||||||
|
torch = attempt_import_or_raise("torch")
|
||||||
|
# TODO handle retry and errors for https
|
||||||
|
image = self._to_pil(image)
|
||||||
|
image = self._preprocess(image).unsqueeze(0)
|
||||||
|
with torch.no_grad():
|
||||||
|
return self._encode_and_normalize_image(image)
|
||||||
|
|
||||||
|
def _to_pil(self, image: Union[str, bytes]):
|
||||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
PIL = attempt_import_or_raise("PIL", "pillow")
|
||||||
if isinstance(query, PIL.Image.Image):
|
if isinstance(image, bytes):
|
||||||
return [self.generate_image_embedding(query)]
|
return PIL.Image.open(io.BytesIO(image))
|
||||||
else:
|
if isinstance(image, PIL.Image.Image):
|
||||||
raise TypeError("OpenClip supports str or PIL Image as query")
|
return image
|
||||||
|
elif isinstance(image, str):
|
||||||
|
parsed = urlparse.urlparse(image)
|
||||||
|
# TODO handle drive letter on windows.
|
||||||
|
if parsed.scheme == "file":
|
||||||
|
return PIL.Image.open(parsed.path)
|
||||||
|
elif parsed.scheme == "":
|
||||||
|
return PIL.Image.open(image if os.name == "nt" else parsed.path)
|
||||||
|
elif parsed.scheme.startswith("http"):
|
||||||
|
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Only local and http(s) urls are supported")
|
||||||
|
|
||||||
def generate_text_embeddings(self, text: str) -> np.ndarray:
|
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
|
||||||
torch = attempt_import_or_raise("torch")
|
"""
|
||||||
text = self.sanitize_input(text)
|
encode a single image tensor and optionally normalize the output
|
||||||
text = self._tokenizer(text)
|
"""
|
||||||
text.to(self.device)
|
image_features = self._model.encode_image(image_tensor)
|
||||||
with torch.no_grad():
|
|
||||||
text_features = self._model.encode_text(text.to(self.device))
|
|
||||||
if self.normalize:
|
if self.normalize:
|
||||||
text_features /= text_features.norm(dim=-1, keepdim=True)
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||||
return text_features.cpu().numpy().squeeze()
|
return image_features.cpu().numpy().squeeze()
|
||||||
|
```
|
||||||
|
|
||||||
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
|
=== "TypeScript"
|
||||||
"""
|
|
||||||
Sanitize the input to the embedding function.
|
|
||||||
"""
|
|
||||||
if isinstance(images, (str, bytes)):
|
|
||||||
images = [images]
|
|
||||||
elif isinstance(images, pa.Array):
|
|
||||||
images = images.to_pylist()
|
|
||||||
elif isinstance(images, pa.ChunkedArray):
|
|
||||||
images = images.combine_chunks().to_pylist()
|
|
||||||
return images
|
|
||||||
|
|
||||||
def compute_source_embeddings(
|
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!
|
||||||
self, images: IMAGES, *args, **kwargs
|
|
||||||
) -> List[np.array]:
|
|
||||||
"""
|
|
||||||
Get the embeddings for the given images
|
|
||||||
"""
|
|
||||||
images = self.sanitize_input(images)
|
|
||||||
embeddings = []
|
|
||||||
for i in range(0, len(images), self.batch_size):
|
|
||||||
j = min(i + self.batch_size, len(images))
|
|
||||||
batch = images[i:j]
|
|
||||||
embeddings.extend(self._parallel_get(batch))
|
|
||||||
return embeddings
|
|
||||||
|
|
||||||
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
|
|
||||||
"""
|
|
||||||
Issue concurrent requests to retrieve the image data
|
|
||||||
"""
|
|
||||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
|
||||||
futures = [
|
|
||||||
executor.submit(self.generate_image_embedding, image)
|
|
||||||
for image in images
|
|
||||||
]
|
|
||||||
return [future.result() for future in futures]
|
|
||||||
|
|
||||||
def generate_image_embedding(
|
|
||||||
self, image: Union[str, bytes, "PIL.Image.Image"]
|
|
||||||
) -> np.ndarray:
|
|
||||||
"""
|
|
||||||
Generate the embedding for a single image
|
|
||||||
|
|
||||||
Parameters
|
|
||||||
----------
|
|
||||||
image : Union[str, bytes, PIL.Image.Image]
|
|
||||||
The image to embed. If the image is a str, it is treated as a uri.
|
|
||||||
If the image is bytes, it is treated as the raw image bytes.
|
|
||||||
"""
|
|
||||||
torch = attempt_import_or_raise("torch")
|
|
||||||
# TODO handle retry and errors for https
|
|
||||||
image = self._to_pil(image)
|
|
||||||
image = self._preprocess(image).unsqueeze(0)
|
|
||||||
with torch.no_grad():
|
|
||||||
return self._encode_and_normalize_image(image)
|
|
||||||
|
|
||||||
def _to_pil(self, image: Union[str, bytes]):
|
|
||||||
PIL = attempt_import_or_raise("PIL", "pillow")
|
|
||||||
if isinstance(image, bytes):
|
|
||||||
return PIL.Image.open(io.BytesIO(image))
|
|
||||||
if isinstance(image, PIL.Image.Image):
|
|
||||||
return image
|
|
||||||
elif isinstance(image, str):
|
|
||||||
parsed = urlparse.urlparse(image)
|
|
||||||
# TODO handle drive letter on windows.
|
|
||||||
if parsed.scheme == "file":
|
|
||||||
return PIL.Image.open(parsed.path)
|
|
||||||
elif parsed.scheme == "":
|
|
||||||
return PIL.Image.open(image if os.name == "nt" else parsed.path)
|
|
||||||
elif parsed.scheme.startswith("http"):
|
|
||||||
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Only local and http(s) urls are supported")
|
|
||||||
|
|
||||||
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
|
|
||||||
"""
|
|
||||||
encode a single image tensor and optionally normalize the output
|
|
||||||
"""
|
|
||||||
image_features = self._model.encode_image(image_tensor)
|
|
||||||
if self.normalize:
|
|
||||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
||||||
return image_features.cpu().numpy().squeeze()
|
|
||||||
```
|
|
||||||
|
|||||||
@@ -17,6 +17,7 @@ Allows you to set parameters when registering a `sentence-transformers` object.
|
|||||||
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
|
||||||
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
|
||||||
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
|
||||||
|
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
|
||||||
|
|
||||||
|
|
||||||
??? "Check out available sentence-transformer models here!"
|
??? "Check out available sentence-transformer models here!"
|
||||||
@@ -389,6 +390,7 @@ Supported parameters (to be passed in `create` method) are:
|
|||||||
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
|
||||||
|
|
||||||
Cohere supports following input types:
|
Cohere supports following input types:
|
||||||
|
|
||||||
| Input Type | Description |
|
| Input Type | Description |
|
||||||
|-------------------------|---------------------------------------|
|
|-------------------------|---------------------------------------|
|
||||||
| "`search_document`" | Used for embeddings stored in a vector|
|
| "`search_document`" | Used for embeddings stored in a vector|
|
||||||
@@ -516,6 +518,82 @@ tbl.add(df)
|
|||||||
rs = tbl.search("hello").limit(1).to_pandas()
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
```
|
```
|
||||||
|
|
||||||
|
# IBM watsonx.ai Embeddings
|
||||||
|
|
||||||
|
Generate text embeddings using IBM's watsonx.ai platform.
|
||||||
|
|
||||||
|
## Supported Models
|
||||||
|
|
||||||
|
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
|
||||||
|
|
||||||
|
- `ibm/slate-125m-english-rtrvr`
|
||||||
|
- `ibm/slate-30m-english-rtrvr`
|
||||||
|
- `sentence-transformers/all-minilm-l12-v2`
|
||||||
|
- `intfloat/multilingual-e5-large`
|
||||||
|
|
||||||
|
## Parameters
|
||||||
|
|
||||||
|
The following parameters can be passed to the `create` method:
|
||||||
|
|
||||||
|
| Parameter | Type | Default Value | Description |
|
||||||
|
|------------|----------|----------------------------------|-----------------------------------------------------------|
|
||||||
|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
|
||||||
|
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
|
||||||
|
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
|
||||||
|
| url | str | None | Optional custom URL for the watsonx.ai instance |
|
||||||
|
| params | dict | None | Optional additional parameters for the embedding model |
|
||||||
|
|
||||||
|
## Usage Example
|
||||||
|
|
||||||
|
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
|
||||||
|
|
||||||
|
```
|
||||||
|
pip install ibm-watsonx-ai
|
||||||
|
```
|
||||||
|
|
||||||
|
Optionally set environment variables (if not passing credentials to `create` directly):
|
||||||
|
|
||||||
|
```sh
|
||||||
|
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
|
||||||
|
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
|
||||||
|
```
|
||||||
|
|
||||||
|
```python
|
||||||
|
import os
|
||||||
|
import lancedb
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.embeddings import EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
watsonx_embed = EmbeddingFunctionRegistry
|
||||||
|
.get_instance()
|
||||||
|
.get("watsonx")
|
||||||
|
.create(
|
||||||
|
name="ibm/slate-125m-english-rtrvr",
|
||||||
|
# Uncomment and set these if not using environment variables
|
||||||
|
# api_key="your_api_key_here",
|
||||||
|
# project_id="your_project_id_here",
|
||||||
|
# url="your_watsonx_url_here",
|
||||||
|
# params={...},
|
||||||
|
)
|
||||||
|
|
||||||
|
class TextModel(LanceModel):
|
||||||
|
text: str = watsonx_embed.SourceField()
|
||||||
|
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
|
||||||
|
|
||||||
|
data = [
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"},
|
||||||
|
]
|
||||||
|
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
|
||||||
|
|
||||||
|
tbl.add(data)
|
||||||
|
|
||||||
|
rs = tbl.search("hello").limit(1).to_pandas()
|
||||||
|
print(rs)
|
||||||
|
```
|
||||||
|
|
||||||
## Multi-modal embedding functions
|
## Multi-modal embedding functions
|
||||||
Multi-modal embedding functions allow you to query your table using both images and text.
|
Multi-modal embedding functions allow you to query your table using both images and text.
|
||||||
|
|
||||||
@@ -719,4 +797,4 @@ Usage Example:
|
|||||||
table.add(
|
table.add(
|
||||||
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
|
||||||
)
|
)
|
||||||
```
|
```
|
||||||
|
|||||||
@@ -2,8 +2,8 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
|
|||||||
|
|
||||||
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
|
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
|
||||||
|
|
||||||
!!! Note "LanceDB cloud doesn't support embedding functions yet"
|
!!! Note "Embedding functions on LanceDB cloud"
|
||||||
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
|
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
|
||||||
|
|
||||||
!!! warning
|
!!! warning
|
||||||
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
|
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
|
||||||
|
|||||||
@@ -99,28 +99,28 @@ LanceDB registers the Sentence Transformers embeddings function in the registry
|
|||||||
|
|
||||||
Coming Soon!
|
Coming Soon!
|
||||||
|
|
||||||
### Jina Embeddings
|
### Embedding function with LanceDB cloud
|
||||||
|
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
|
||||||
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
|
|
||||||
`jina-clip-v1` can handle both text and images and other models only support `text`.
|
|
||||||
|
|
||||||
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
|
|
||||||
|
|
||||||
```python
|
```python
|
||||||
import os
|
import os
|
||||||
import lancedb
|
import lancedb
|
||||||
from lancedb.pydantic import LanceModel, Vector
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
from lancedb.embeddings import get_registry
|
from lancedb.embeddings import get_registry
|
||||||
os.environ['JINA_API_KEY'] = "jina_*"
|
os.environ['OPENAI_API_KEY'] = "..."
|
||||||
|
|
||||||
db = lancedb.connect("/tmp/db")
|
db = lancedb.connect(
|
||||||
func = get_registry().get("jina").create(name="jina-clip-v1")
|
uri="db://....",
|
||||||
|
api_key="sk_...",
|
||||||
|
region="us-east-1"
|
||||||
|
)
|
||||||
|
func = get_registry().get("openai").create()
|
||||||
|
|
||||||
class Words(LanceModel):
|
class Words(LanceModel):
|
||||||
text: str = func.SourceField()
|
text: str = func.SourceField()
|
||||||
vector: Vector(func.ndims()) = func.VectorField()
|
vector: Vector(func.ndims()) = func.VectorField()
|
||||||
|
|
||||||
table = db.create_table("words", schema=Words, mode="overwrite")
|
table = db.create_table("words", schema=Words)
|
||||||
table.add(
|
table.add(
|
||||||
[
|
[
|
||||||
{"text": "hello world"},
|
{"text": "hello world"},
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
|
|||||||
|
|
||||||
## Applications powered by LanceDB
|
## Applications powered by LanceDB
|
||||||
|
|
||||||
| Project Name | Description | Screenshot |
|
| Project Name | Description |
|
||||||
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|
| --- | --- |
|
||||||
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds |  |
|
| **Ultralytics Explorer 🚀**<br>[](https://docs.ultralytics.com/datasets/explorer/)<br>[](https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/docs/en/datasets/explorer/explorer.ipynb) | - 🔍 **Explore CV Datasets**: Semantic search, SQL queries, vector similarity, natural language.<br>- 🖥️ **GUI & Python API**: Seamless dataset interaction.<br>- ⚡ **Efficient & Scalable**: Leverages LanceDB for large datasets.<br>- 📊 **Detailed Analysis**: Easily analyze data patterns.<br>- 🌐 **Browser GUI Demo**: Create embeddings, search images, run queries. |
|
||||||
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. |  |
|
| **Website Chatbot🤖**<br>[](https://github.com/lancedb/lancedb-vercel-chatbot)<br>[](https://vercel.com/new/clone?repository-url=https%3A%2F%2Fgithub.com%2Flancedb%2Flancedb-vercel-chatbot&env=OPENAI_API_KEY&envDescription=OpenAI%20API%20Key%20for%20chat%20completion.&project-name=lancedb-vercel-chatbot&repository-name=lancedb-vercel-chatbot&demo-title=LanceDB%20Chatbot%20Demo&demo-description=Demo%20website%20chatbot%20with%20LanceDB.&demo-url=https%3A%2F%2Flancedb.vercel.app&demo-image=https%3A%2F%2Fi.imgur.com%2FazVJtvr.png) | - 🌐 **Chatbot from Sitemap/Docs**: Create a chatbot using site or document context.<br>- 🚀 **Embed LanceDB in Next.js**: Lightweight, on-prem storage.<br>- 🧠 **AI-Powered Context Retrieval**: Efficiently access relevant data.<br>- 🔧 **Serverless & Native JS**: Seamless integration with Next.js.<br>- ⚡ **One-Click Deploy on Vercel**: Quick and easy setup.. |
|
||||||
|
|||||||
13
docs/src/examples/python_examples/build_from_scratch.md
Normal file
13
docs/src/examples/python_examples/build_from_scratch.md
Normal file
@@ -0,0 +1,13 @@
|
|||||||
|
# Build from Scratch with LanceDB 🚀
|
||||||
|
|
||||||
|
Start building your GenAI applications from the ground up using LanceDB's efficient vector-based document retrieval capabilities! 📄
|
||||||
|
|
||||||
|
#### Get Started in Minutes ⏱️
|
||||||
|
|
||||||
|
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to proof of concept quickly with applied examples. Get started and see what you can create! 💻
|
||||||
|
|
||||||
|
| **Build From Scratch** | **Description** | **Links** |
|
||||||
|
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
||||||
|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[]() |
|
||||||
|
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
|
||||||
|
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |
|
||||||
28
docs/src/examples/python_examples/multimodal.md
Normal file
28
docs/src/examples/python_examples/multimodal.md
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
# Multimodal Search with LanceDB 🔍💡
|
||||||
|
|
||||||
|
Experience the future of search with LanceDB's multimodal capabilities. Combine text and image queries to find the most relevant results in your corpus and unlock new possibilities! 🔓💡
|
||||||
|
|
||||||
|
#### Explore the Future of Search 🚀
|
||||||
|
|
||||||
|
Unlock the power of multimodal search with LanceDB, enabling efficient vector-based retrieval of text and image data! 📊💻
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
| **Multimodal** | **Description** | **Links** |
|
||||||
|
|:----------------|:-----------------|:-----------|
|
||||||
|
| **Multimodal CLIP: DiffusionDB 🌐💥** | Revolutionize search with Multimodal CLIP and DiffusionDB, combining text and image understanding for a new dimension of discovery! 🔓 | [][Clip_diffusionDB_github] <br>[][Clip_diffusionDB_colab] <br>[][Clip_diffusionDB_python] <br>[][Clip_diffusionDB_ghost] |
|
||||||
|
| **Multimodal CLIP: Youtube Videos 📹👀** | Search Youtube videos using Multimodal CLIP, finding relevant content with ease and accuracy! 🎯 | [][Clip_youtube_github] <br>[][Clip_youtube_colab] <br> [][Clip_youtube_python] <br>[][Clip_youtube_python] |
|
||||||
|
| **Multimodal Image + Text Search 📸🔍** | Discover relevant documents and images with a single query, using LanceDB's multimodal search capabilities to bridge the gap between text and visuals! 🌉 | [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search) <br>[](https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb) <br> [](https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.py)<br> [](https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/) |
|
||||||
|
| **Cambrian-1: Vision-Centric Image Exploration 🔍👀** | Dive into vision-centric exploration of images with Cambrian-1, powered by LanceDB's multimodal search to uncover new insights! 🔎 | [](https://www.kaggle.com/code/prasantdixit/cambrian-1-vision-centric-exploration-of-images/)<br>[]() <br> []() <br> [](https://blog.lancedb.com/cambrian-1-vision-centric-exploration/) |
|
||||||
|
|
||||||
|
|
||||||
|
[Clip_diffusionDB_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb
|
||||||
|
[Clip_diffusionDB_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.ipynb
|
||||||
|
[Clip_diffusionDB_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip_diffusiondb/main.py
|
||||||
|
[Clip_diffusionDB_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
|
||||||
|
|
||||||
|
|
||||||
|
[Clip_youtube_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search
|
||||||
|
[Clip_youtube_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb
|
||||||
|
[Clip_youtube_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.py
|
||||||
|
[Clip_youtube_ghost]: https://blog.lancedb.com/multi-modal-ai-made-easy-with-lancedb-clip-5aaf8801c939/
|
||||||
85
docs/src/examples/python_examples/rag.md
Normal file
85
docs/src/examples/python_examples/rag.md
Normal file
@@ -0,0 +1,85 @@
|
|||||||
|
|
||||||
|
**🔍💡 RAG: Revolutionize Information Retrieval with LanceDB 🔓**
|
||||||
|
====================================================================
|
||||||
|
|
||||||
|
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, the ultimate solution for efficient vector-based information retrieval 📊. Input text queries and retrieve relevant documents with lightning-fast speed ⚡️ and accuracy ✅. Generate comprehensive answers by combining retrieved information, uncovering new insights 🔍 and connections.
|
||||||
|
|
||||||
|
### Experience the Future of Search 🔄
|
||||||
|
|
||||||
|
Experience the future of search with RAG, transforming information retrieval and answer generation. Apply RAG to various industries, streamlining processes 📈, saving time ⏰, and resources 💰. Stay ahead of the curve with innovative technology 🔝, powered by LanceDB. Discover the power of RAG with LanceDB and transform your industry with innovative solutions 💡.
|
||||||
|
|
||||||
|
|
||||||
|
| **RAG** | **Description** | **Links** |
|
||||||
|
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|
||||||
|
| **RAG with Matryoshka Embeddings and LlamaIndex** 🪆🔗 | Utilize **Matryoshka embeddings** and **LlamaIndex** to improve the efficiency and accuracy of your RAG models. 📈✨ | [][matryoshka_github] <br>[][matryoshka_colab] |
|
||||||
|
| **Improve RAG with Re-ranking** 📈🔄 | Enhance your RAG applications by implementing **re-ranking strategies** for more relevant document retrieval. 📚🔍 | [][rag_reranking_github] <br>[][rag_reranking_colab] <br>[][rag_reranking_ghost] |
|
||||||
|
| **Instruct-Multitask** 🧠🎯 | Integrate the **Instruct Embedding Model** with LanceDB to streamline your embedding API, reducing redundant code and overhead. 🌐📊 | [][instruct_multitask_github] <br>[][instruct_multitask_colab] <br>[][instruct_multitask_python] <br>[][instruct_multitask_ghost] |
|
||||||
|
| **Improve RAG with HyDE** 🌌🔍 | Use **Hypothetical Document Embeddings** for efficient, accurate, and unsupervised dense retrieval. 📄🔍 | [][hyde_github] <br>[][hyde_colab]<br>[][hyde_ghost] |
|
||||||
|
| **Improve RAG with LOTR** 🧙♂️📜 | Enhance RAG with **Lord of the Retriever (LOTR)** to address 'Lost in the Middle' challenges, especially in medical data. 🌟📜 | [][lotr_github] <br>[][lotr_colab] <br>[][lotr_ghost] |
|
||||||
|
| **Advanced RAG: Parent Document Retriever** 📑🔗 | Use **Parent Document & Bigger Chunk Retriever** to maintain context and relevance when generating related content. 🎵📄 | [][parent_doc_retriever_github] <br>[][parent_doc_retriever_colab] <br>[][parent_doc_retriever_ghost] |
|
||||||
|
| **Corrective RAG with Langgraph** 🔧📊 | Enhance RAG reliability with **Corrective RAG (CRAG)** by self-reflecting and fact-checking for accurate and trustworthy results. ✅🔍 |[][corrective_rag_github] <br>[][corrective_rag_colab] <br>[][corrective_rag_ghost] |
|
||||||
|
| **Contextual Compression with RAG** 🗜️🧠 | Apply **contextual compression techniques** to condense large documents while retaining essential information. 📄🗜️ | [][compression_rag_github] <br>[][compression_rag_colab] <br>[][compression_rag_ghost] |
|
||||||
|
| **Improve RAG with FLARE** 🔥| Enable users to ask questions directly to academic papers, focusing on ArXiv papers, with Forward-Looking Active REtrieval augmented generation.🚀🌟 | [][flare_github] <br>[][flare_colab] <br>[][flare_ghost] |
|
||||||
|
| **Query Expansion and Reranker** 🔍🔄 | Enhance RAG with query expansion using Large Language Models and advanced **reranking methods** like Cross Encoders, ColBERT v2, and FlashRank for improved document retrieval precision and recall 🔍📈 | [][query_github] <br>[][query_colab] |
|
||||||
|
| **RAG Fusion** ⚡🌐 | Revolutionize search with RAG Fusion, utilizing the **RRF algorithm** to rerank documents based on user queries, and leveraging LanceDB and OPENAI Embeddings for efficient information retrieval ⚡🌐 | [][fusion_github] <br>[][fusion_colab] |
|
||||||
|
| **Agentic RAG** 🤖📚 | Unlock autonomous information retrieval with **Agentic RAG**, a framework of **intelligent agents** that collaborate to synthesize, summarize, and compare data across sources, enabling proactive and informed decision-making 🤖📚 | [][agentic_github] <br>[][agentic_colab] |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
[matryoshka_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex
|
||||||
|
[matryoshka_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/RAG-with_MatryoshkaEmbed-Llamaindex/RAG_with_MatryoshkaEmbedding_and_Llamaindex.ipynb
|
||||||
|
|
||||||
|
[rag_reranking_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking
|
||||||
|
[rag_reranking_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Reranking/main.ipynb
|
||||||
|
[rag_reranking_ghost]: https://blog.lancedb.com/simplest-method-to-improve-rag-pipeline-re-ranking-cf6eaec6d544
|
||||||
|
|
||||||
|
|
||||||
|
[instruct_multitask_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask
|
||||||
|
[instruct_multitask_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.ipynb
|
||||||
|
[instruct_multitask_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/instruct-multitask/main.py
|
||||||
|
[instruct_multitask_ghost]: https://blog.lancedb.com/multitask-embedding-with-lancedb-be18ec397543
|
||||||
|
|
||||||
|
[hyde_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE
|
||||||
|
[hyde_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance-RAG-with-HyDE/main.ipynb
|
||||||
|
[hyde_ghost]: https://blog.lancedb.com/advanced-rag-precise-zero-shot-dense-retrieval-with-hyde-0946c54dfdcb
|
||||||
|
|
||||||
|
[lotr_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR
|
||||||
|
[lotr_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Advance_RAG_LOTR/main.ipynb
|
||||||
|
[lotr_ghost]: https://blog.lancedb.com/better-rag-with-lotr-lord-of-retriever-23c8336b9a35
|
||||||
|
|
||||||
|
[parent_doc_retriever_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever
|
||||||
|
[parent_doc_retriever_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/parent_document_retriever/main.ipynb
|
||||||
|
[parent_doc_retriever_ghost]: https://blog.lancedb.com/modified-rag-parent-document-bigger-chunk-retriever-62b3d1e79bc6
|
||||||
|
|
||||||
|
[corrective_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph
|
||||||
|
[corrective_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Corrective-RAG-with_Langgraph/CRAG_with_Langgraph.ipynb
|
||||||
|
[corrective_rag_ghost]: https://blog.lancedb.com/implementing-corrective-rag-in-the-easiest-way-2/
|
||||||
|
|
||||||
|
[compression_rag_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG
|
||||||
|
[compression_rag_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Contextual-Compression-with-RAG/main.ipynb
|
||||||
|
[compression_rag_ghost]: https://blog.lancedb.com/enhance-rag-integrate-contextual-compression-and-filtering-for-precision-a29d4a810301/
|
||||||
|
|
||||||
|
[flare_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR
|
||||||
|
[flare_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/better-rag-FLAIR/main.ipynb
|
||||||
|
[flare_ghost]: https://blog.lancedb.com/better-rag-with-active-retrieval-augmented-generation-flare-3b66646e2a9f/
|
||||||
|
|
||||||
|
[query_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker
|
||||||
|
[query_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/QueryExpansion&Reranker/main.ipynb
|
||||||
|
|
||||||
|
|
||||||
|
[fusion_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion
|
||||||
|
[fusion_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/RAG_Fusion/main.ipynb
|
||||||
|
|
||||||
|
[agentic_github]: https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG
|
||||||
|
[agentic_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/tutorials/Agentic_RAG/main.ipynb
|
||||||
|
|
||||||
|
|
||||||
183
docs/src/fts.md
183
docs/src/fts.md
@@ -1,9 +1,14 @@
|
|||||||
# Full-text search
|
# Full-text search
|
||||||
|
|
||||||
LanceDB provides support for full-text search via [Tantivy](https://github.com/quickwit-oss/tantivy) (currently Python only), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions. Our goal is to push the FTS integration down to the Rust level in the future, so that it's available for Rust and JavaScript users as well. Follow along at [this Github issue](https://github.com/lancedb/lance/issues/1195)
|
LanceDB provides support for full-text search via Lance (before via [Tantivy](https://github.com/quickwit-oss/tantivy) (Python only)), allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
|
||||||
|
|
||||||
|
Currently, the Lance full text search is missing some features that are in the Tantivy full text search. This includes phrase queries, re-ranking, and customizing the tokenizer. Thus, in Python, Tantivy is still the default way to do full text search and many of the instructions below apply just to Tantivy-based indices.
|
||||||
|
|
||||||
|
|
||||||
## Installation
|
## Installation (Only for Tantivy-based FTS)
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
No need to install the tantivy dependency if using native FTS
|
||||||
|
|
||||||
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
To use full-text search, install the dependency [`tantivy-py`](https://github.com/quickwit-oss/tantivy-py):
|
||||||
|
|
||||||
@@ -14,42 +19,83 @@ pip install tantivy==0.20.1
|
|||||||
|
|
||||||
## Example
|
## Example
|
||||||
|
|
||||||
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search.
|
Consider that we have a LanceDB table named `my_table`, whose string column `text` we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
import lancedb
|
|
||||||
|
|
||||||
uri = "data/sample-lancedb"
|
```python
|
||||||
db = lancedb.connect(uri)
|
import lancedb
|
||||||
|
|
||||||
table = db.create_table(
|
uri = "data/sample-lancedb"
|
||||||
"my_table",
|
db = lancedb.connect(uri)
|
||||||
data=[
|
|
||||||
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
|
||||||
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
|
||||||
],
|
|
||||||
)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Create FTS index on single column
|
table = db.create_table(
|
||||||
|
"my_table",
|
||||||
|
data=[
|
||||||
|
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
|
||||||
|
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
The FTS index must be created before you can search via keywords.
|
# passing `use_tantivy=False` to use lance FTS index
|
||||||
|
# `use_tantivy=True` by default
|
||||||
|
table.create_fts_index("text")
|
||||||
|
table.search("puppy").limit(10).select(["text"]).to_list()
|
||||||
|
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
|
||||||
|
# ...
|
||||||
|
```
|
||||||
|
|
||||||
```python
|
=== "TypeScript"
|
||||||
table.create_fts_index("text")
|
|
||||||
```
|
|
||||||
|
|
||||||
To search an FTS index via keywords, LanceDB's `table.search` accepts a string as input:
|
```typescript
|
||||||
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
|
const uri = "data/sample-lancedb"
|
||||||
|
const db = await lancedb.connect(uri);
|
||||||
|
|
||||||
```python
|
const data = [
|
||||||
table.search("puppy").limit(10).select(["text"]).to_list()
|
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
|
||||||
```
|
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
|
||||||
|
];
|
||||||
|
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
|
||||||
|
await tbl.createIndex("text", {
|
||||||
|
config: lancedb.Index.fts(),
|
||||||
|
});
|
||||||
|
|
||||||
This returns the result as a list of dictionaries as follows.
|
await tbl
|
||||||
|
.search("puppy")
|
||||||
|
.select(["text"])
|
||||||
|
.limit(10)
|
||||||
|
.toArray();
|
||||||
|
```
|
||||||
|
|
||||||
```python
|
=== "Rust"
|
||||||
[{'text': 'Frodo was a happy puppy', 'score': 0.6931471824645996}]
|
|
||||||
```
|
```rust
|
||||||
|
let uri = "data/sample-lancedb";
|
||||||
|
let db = connect(uri).execute().await?;
|
||||||
|
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
|
||||||
|
let tbl = db
|
||||||
|
.create_table("my_table", initial_data)
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
tbl
|
||||||
|
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
|
||||||
|
tbl
|
||||||
|
.query()
|
||||||
|
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
|
||||||
|
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
|
||||||
|
.limit(10)
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
```
|
||||||
|
|
||||||
|
It would search on all indexed columns by default, so it's useful when there are multiple indexed columns.
|
||||||
|
For now, this is supported in tantivy way only.
|
||||||
|
|
||||||
|
Passing `fts_columns="text"` if you want to specify the columns to search, but it's not available for Tantivy-based full text search.
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
LanceDB automatically searches on the existing FTS index if the input to the search is of type `str`. If you provide a vector as input, LanceDB will search the ANN index instead.
|
||||||
@@ -57,20 +103,33 @@ This returns the result as a list of dictionaries as follows.
|
|||||||
## Tokenization
|
## Tokenization
|
||||||
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
By default the text is tokenized by splitting on punctuation and whitespaces and then removing tokens that are longer than 40 chars. For more language specific tokenization then provide the argument tokenizer_name with the 2 letter language code followed by "_stem". So for english it would be "en_stem".
|
||||||
|
|
||||||
```python
|
For now, only the Tantivy-based FTS index supports to specify the tokenizer, so it's only available in Python with `use_tantivy=True`.
|
||||||
table.create_fts_index("text", tokenizer_name="en_stem")
|
|
||||||
```
|
|
||||||
|
|
||||||
The following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
=== "use_tantivy=True"
|
||||||
|
|
||||||
|
```python
|
||||||
|
table.create_fts_index("text", use_tantivy=True, tokenizer_name="en_stem")
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "use_tantivy=False"
|
||||||
|
|
||||||
|
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||||
|
|
||||||
|
the following [languages](https://docs.rs/tantivy/latest/tantivy/tokenizer/enum.Language.html) are currently supported.
|
||||||
|
|
||||||
## Index multiple columns
|
## Index multiple columns
|
||||||
|
|
||||||
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
If you have multiple string columns to index, there's no need to combine them manually -- simply pass them all as a list to `create_fts_index`:
|
||||||
|
|
||||||
```python
|
=== "use_tantivy=True"
|
||||||
table.create_fts_index(["text1", "text2"])
|
|
||||||
```
|
```python
|
||||||
|
table.create_fts_index(["text1", "text2"])
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "use_tantivy=False"
|
||||||
|
|
||||||
|
[**Not supported yet**](https://github.com/lancedb/lance/issues/1195)
|
||||||
|
|
||||||
Note that the search API call does not change - you can search over all indexed columns at once.
|
Note that the search API call does not change - you can search over all indexed columns at once.
|
||||||
|
|
||||||
@@ -80,19 +139,48 @@ Currently the LanceDB full text search feature supports *post-filtering*, meanin
|
|||||||
applied on top of the full text search results. This can be invoked via the familiar
|
applied on top of the full text search results. This can be invoked via the familiar
|
||||||
`where` syntax:
|
`where` syntax:
|
||||||
|
|
||||||
```python
|
=== "Python"
|
||||||
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
|
||||||
```
|
```python
|
||||||
|
table.search("puppy").limit(10).where("meta='foo'").to_list()
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "TypeScript"
|
||||||
|
|
||||||
|
```typescript
|
||||||
|
await tbl
|
||||||
|
.search("apple")
|
||||||
|
.select(["id", "doc"])
|
||||||
|
.limit(10)
|
||||||
|
.where("meta='foo'")
|
||||||
|
.toArray();
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "Rust"
|
||||||
|
|
||||||
|
```rust
|
||||||
|
table
|
||||||
|
.query()
|
||||||
|
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
|
||||||
|
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
|
||||||
|
.limit(10)
|
||||||
|
.only_if("meta='foo'")
|
||||||
|
.execute()
|
||||||
|
.await?;
|
||||||
|
```
|
||||||
|
|
||||||
## Sorting
|
## Sorting
|
||||||
|
|
||||||
|
!!! warning "Warn"
|
||||||
|
Sorting is available for only Tantivy-based FTS
|
||||||
|
|
||||||
You can pre-sort the documents by specifying `ordering_field_names` when
|
You can pre-sort the documents by specifying `ordering_field_names` when
|
||||||
creating the full-text search index. Once pre-sorted, you can then specify
|
creating the full-text search index. Once pre-sorted, you can then specify
|
||||||
`ordering_field_name` while searching to return results sorted by the given
|
`ordering_field_name` while searching to return results sorted by the given
|
||||||
field. For example,
|
field. For example,
|
||||||
|
|
||||||
```
|
```python
|
||||||
table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
table.create_fts_index(["text_field"], use_tantivy=True, ordering_field_names=["sort_by_field"])
|
||||||
|
|
||||||
(table.search("terms", ordering_field_name="sort_by_field")
|
(table.search("terms", ordering_field_name="sort_by_field")
|
||||||
.limit(20)
|
.limit(20)
|
||||||
@@ -105,8 +193,8 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
|||||||
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
error will be raised that looks like `ValueError: The field does not exist: xxx`
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
The fields to sort on must be of typed unsigned integer, or else you will see
|
The fields to sort on must be of typed unsigned integer, or else you will see
|
||||||
an error during indexing that looks like
|
an error during indexing that looks like
|
||||||
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
`TypeError: argument 'value': 'float' object cannot be interpreted as an integer`.
|
||||||
|
|
||||||
!!! note
|
!!! note
|
||||||
@@ -116,6 +204,9 @@ table.create_fts_index(["text_field"], ordering_field_names=["sort_by_field"])
|
|||||||
|
|
||||||
## Phrase queries vs. terms queries
|
## Phrase queries vs. terms queries
|
||||||
|
|
||||||
|
!!! warning "Warn"
|
||||||
|
Phrase queries are available for only Tantivy-based FTS
|
||||||
|
|
||||||
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
For full-text search you can specify either a **phrase** query like `"the old man and the sea"`,
|
||||||
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
or a **terms** search query like `"(Old AND Man) AND Sea"`. For more details on the terms
|
||||||
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
query syntax, see Tantivy's [query parser rules](https://docs.rs/tantivy/latest/tantivy/query/struct.QueryParser.html).
|
||||||
@@ -142,7 +233,7 @@ enforce it in one of two ways:
|
|||||||
|
|
||||||
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
1. Place the double-quoted query inside single quotes. For example, `table.search('"they could have been dogs OR cats"')` is treated as
|
||||||
a phrase query.
|
a phrase query.
|
||||||
2. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
1. Explicitly declare the `phrase_query()` method. This is useful when you have a phrase query that
|
||||||
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
itself contains double quotes. For example, `table.search('the cats OR dogs were not really "pets" at all').phrase_query()`
|
||||||
is treated as a phrase query.
|
is treated as a phrase query.
|
||||||
|
|
||||||
@@ -150,7 +241,7 @@ In general, a query that's declared as a phrase query will be wrapped in double
|
|||||||
double quotes replaced by single quotes.
|
double quotes replaced by single quotes.
|
||||||
|
|
||||||
|
|
||||||
## Configurations
|
## Configurations (Only for Tantivy-based FTS)
|
||||||
|
|
||||||
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
By default, LanceDB configures a 1GB heap size limit for creating the index. You can
|
||||||
reduce this if running on a smaller node, or increase this for faster performance while
|
reduce this if running on a smaller node, or increase this for faster performance while
|
||||||
@@ -164,6 +255,8 @@ table.create_fts_index(["text1", "text2"], writer_heap_size=heap, replace=True)
|
|||||||
|
|
||||||
## Current limitations
|
## Current limitations
|
||||||
|
|
||||||
|
For that Tantivy-based FTS:
|
||||||
|
|
||||||
1. Currently we do not yet support incremental writes.
|
1. Currently we do not yet support incremental writes.
|
||||||
If you add data after FTS index creation, it won't be reflected
|
If you add data after FTS index creation, it won't be reflected
|
||||||
in search results until you do a full reindex.
|
in search results until you do a full reindex.
|
||||||
|
|||||||
@@ -35,6 +35,7 @@ Initialize a LanceDB connection and create a table
|
|||||||
|
|
||||||
```typescript
|
```typescript
|
||||||
const lancedb = require("vectordb");
|
const lancedb = require("vectordb");
|
||||||
|
const arrow = require("apache-arrow");
|
||||||
|
|
||||||
const uri = "data/sample-lancedb";
|
const uri = "data/sample-lancedb";
|
||||||
const db = await lancedb.connect(uri);
|
const db = await lancedb.connect(uri);
|
||||||
@@ -98,7 +99,6 @@ Initialize a LanceDB connection and create a table
|
|||||||
and the table exists, then it simply opens the existing table. The data you
|
and the table exists, then it simply opens the existing table. The data you
|
||||||
passed in will NOT be appended to the table in that case.
|
passed in will NOT be appended to the table in that case.
|
||||||
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
|
--8<-- "nodejs/examples/basic.ts:create_table_exists_ok"
|
||||||
```
|
```
|
||||||
@@ -116,14 +116,32 @@ Initialize a LanceDB connection and create a table
|
|||||||
--8<-- "docs/src/basic_legacy.ts:create_table"
|
--8<-- "docs/src/basic_legacy.ts:create_table"
|
||||||
```
|
```
|
||||||
|
|
||||||
!!! warning
|
This will infer the schema from the provided data. If you want to explicitly provide a schema, you can use apache-arrow to declare a schema
|
||||||
`existsOk` option is not supported in `vectordb`
|
|
||||||
|
|
||||||
Sometimes you want to make sure that you start fresh. If you want to
|
|
||||||
overwrite the table, you can pass in mode: "overwrite" to the createTable function.
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
const table = await con.createTable(tableName, data, { writeMode: WriteMode.Overwrite })
|
--8<-- "docs/src/basic_legacy.ts:create_table_with_schema"
|
||||||
|
```
|
||||||
|
|
||||||
|
!!! warning
|
||||||
|
`existsOk` is not available in `vectordb`
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
If the table already exists, vectordb will raise an error by default.
|
||||||
|
You can use `writeMode: WriteMode.Overwrite` to overwrite the table.
|
||||||
|
But this will delete the existing table and create a new one with the same name.
|
||||||
|
|
||||||
|
|
||||||
|
Sometimes you want to make sure that you start fresh.
|
||||||
|
|
||||||
|
If you want to overwrite the table, you can pass in `writeMode: lancedb.WriteMode.Overwrite` to the createTable function.
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const table = await con.createTable(tableName, data, {
|
||||||
|
writeMode: WriteMode.Overwrite
|
||||||
|
})
|
||||||
```
|
```
|
||||||
|
|
||||||
### From a Pandas DataFrame
|
### From a Pandas DataFrame
|
||||||
|
|||||||
@@ -1,4 +1,6 @@
|
|||||||
@lancedb/lancedb / [Exports](modules.md)
|
**@lancedb/lancedb** • [**Docs**](globals.md)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
# LanceDB JavaScript SDK
|
# LanceDB JavaScript SDK
|
||||||
|
|
||||||
@@ -45,29 +47,20 @@ npm run test
|
|||||||
|
|
||||||
### Running lint / format
|
### Running lint / format
|
||||||
|
|
||||||
LanceDb uses eslint for linting. VSCode does not need any plugins to use eslint. However, it
|
LanceDb uses [biome](https://biomejs.dev/) for linting and formatting. if you are using VSCode you will need to install the official [Biome](https://marketplace.visualstudio.com/items?itemName=biomejs.biome) extension.
|
||||||
may need some additional configuration. Make sure that eslint.experimental.useFlatConfig is
|
To manually lint your code you can run:
|
||||||
set to true. Also, if your vscode root folder is the repo root then you will need to set
|
|
||||||
the eslint.workingDirectories to ["nodejs"]. To manually lint your code you can run:
|
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
npm run lint
|
npm run lint
|
||||||
```
|
```
|
||||||
|
|
||||||
LanceDb uses prettier for formatting. If you are using VSCode you will need to install the
|
to automatically fix all fixable issues:
|
||||||
"Prettier - Code formatter" extension. You should then configure it to be the default formatter
|
|
||||||
for typescript and you should enable format on save. To manually check your code's format you
|
|
||||||
can run:
|
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
npm run chkformat
|
npm run lint-fix
|
||||||
```
|
```
|
||||||
|
|
||||||
If you need to manually format your code you can run:
|
If you do not have your workspace root set to the `nodejs` directory, unfortunately the extension will not work. You can still run the linting and formatting commands manually.
|
||||||
|
|
||||||
```sh
|
|
||||||
npx prettier --write .
|
|
||||||
```
|
|
||||||
|
|
||||||
### Generating docs
|
### Generating docs
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,10 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Connection
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
# Class: Connection
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / Connection
|
||||||
|
|
||||||
|
# Class: `abstract` Connection
|
||||||
|
|
||||||
A LanceDB Connection that allows you to open tables and create new ones.
|
A LanceDB Connection that allows you to open tables and create new ones.
|
||||||
|
|
||||||
@@ -19,62 +23,21 @@ be closed when they are garbage collected.
|
|||||||
Any created tables are independent and will continue to work even if
|
Any created tables are independent and will continue to work even if
|
||||||
the underlying connection has been closed.
|
the underlying connection has been closed.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](Connection.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](Connection.md#inner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [close](Connection.md#close)
|
|
||||||
- [createEmptyTable](Connection.md#createemptytable)
|
|
||||||
- [createTable](Connection.md#createtable)
|
|
||||||
- [display](Connection.md#display)
|
|
||||||
- [dropTable](Connection.md#droptable)
|
|
||||||
- [isOpen](Connection.md#isopen)
|
|
||||||
- [openTable](Connection.md#opentable)
|
|
||||||
- [tableNames](Connection.md#tablenames)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new Connection()
|
||||||
|
|
||||||
• **new Connection**(`inner`): [`Connection`](Connection.md)
|
> **new Connection**(): [`Connection`](Connection.md)
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `inner` | `Connection` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Connection`](Connection.md)
|
[`Connection`](Connection.md)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[connection.ts:72](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L72)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### inner
|
|
||||||
|
|
||||||
• `Readonly` **inner**: `Connection`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[connection.ts:70](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L70)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### close
|
### close()
|
||||||
|
|
||||||
▸ **close**(): `void`
|
> `abstract` **close**(): `void`
|
||||||
|
|
||||||
Close the connection, releasing any underlying resources.
|
Close the connection, releasing any underlying resources.
|
||||||
|
|
||||||
@@ -86,63 +49,78 @@ Any attempt to use the connection after it is closed will result in an error.
|
|||||||
|
|
||||||
`void`
|
`void`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:88](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L88)
|
### createEmptyTable()
|
||||||
|
|
||||||
___
|
> `abstract` **createEmptyTable**(`name`, `schema`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
### createEmptyTable
|
|
||||||
|
|
||||||
▸ **createEmptyTable**(`name`, `schema`, `options?`): `Promise`\<[`Table`](Table.md)\>
|
|
||||||
|
|
||||||
Creates a new empty Table
|
Creates a new empty Table
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **name**: `string`
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
The name of the table.
|
||||||
| `schema` | `Schema`\<`any`\> | The schema of the table |
|
|
||||||
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
|
• **schema**: `SchemaLike`
|
||||||
|
|
||||||
|
The schema of the table
|
||||||
|
|
||||||
|
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<[`Table`](Table.md)\>
|
`Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:151](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L151)
|
### createTable()
|
||||||
|
|
||||||
___
|
#### createTable(options)
|
||||||
|
|
||||||
### createTable
|
> `abstract` **createTable**(`options`): `Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
▸ **createTable**(`name`, `data`, `options?`): `Promise`\<[`Table`](Table.md)\>
|
|
||||||
|
|
||||||
Creates a new Table and initialize it with new data.
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
#### Parameters
|
##### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **options**: `object` & `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table. |
|
|
||||||
| `data` | `Table`\<`any`\> \| `Record`\<`string`, `unknown`\>[] | Non-empty Array of Records to be inserted into the table |
|
|
||||||
| `options?` | `Partial`\<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)\> | - |
|
|
||||||
|
|
||||||
#### Returns
|
The options object.
|
||||||
|
|
||||||
`Promise`\<[`Table`](Table.md)\>
|
##### Returns
|
||||||
|
|
||||||
#### Defined in
|
`Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
[connection.ts:123](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L123)
|
#### createTable(name, data, options)
|
||||||
|
|
||||||
___
|
> `abstract` **createTable**(`name`, `data`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
### display
|
Creates a new Table and initialize it with new data.
|
||||||
|
|
||||||
▸ **display**(): `string`
|
##### Parameters
|
||||||
|
|
||||||
|
• **name**: `string`
|
||||||
|
|
||||||
|
The name of the table.
|
||||||
|
|
||||||
|
• **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||||
|
|
||||||
|
Non-empty Array of Records
|
||||||
|
to be inserted into the table
|
||||||
|
|
||||||
|
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### display()
|
||||||
|
|
||||||
|
> `abstract` **display**(): `string`
|
||||||
|
|
||||||
Return a brief description of the connection
|
Return a brief description of the connection
|
||||||
|
|
||||||
@@ -150,37 +128,29 @@ Return a brief description of the connection
|
|||||||
|
|
||||||
`string`
|
`string`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:93](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L93)
|
### dropTable()
|
||||||
|
|
||||||
___
|
> `abstract` **dropTable**(`name`): `Promise`<`void`>
|
||||||
|
|
||||||
### dropTable
|
|
||||||
|
|
||||||
▸ **dropTable**(`name`): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Drop an existing table.
|
Drop an existing table.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **name**: `string`
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table to drop. |
|
The name of the table to drop.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:173](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L173)
|
### isOpen()
|
||||||
|
|
||||||
___
|
> `abstract` **isOpen**(): `boolean`
|
||||||
|
|
||||||
### isOpen
|
|
||||||
|
|
||||||
▸ **isOpen**(): `boolean`
|
|
||||||
|
|
||||||
Return true if the connection has not been closed
|
Return true if the connection has not been closed
|
||||||
|
|
||||||
@@ -188,37 +158,31 @@ Return true if the connection has not been closed
|
|||||||
|
|
||||||
`boolean`
|
`boolean`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:77](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L77)
|
### openTable()
|
||||||
|
|
||||||
___
|
> `abstract` **openTable**(`name`, `options`?): `Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
### openTable
|
|
||||||
|
|
||||||
▸ **openTable**(`name`): `Promise`\<[`Table`](Table.md)\>
|
|
||||||
|
|
||||||
Open a table in the database.
|
Open a table in the database.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **name**: `string`
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `name` | `string` | The name of the table |
|
The name of the table
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`OpenTableOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<[`Table`](Table.md)\>
|
`Promise`<[`Table`](Table.md)>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:112](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L112)
|
### tableNames()
|
||||||
|
|
||||||
___
|
> `abstract` **tableNames**(`options`?): `Promise`<`string`[]>
|
||||||
|
|
||||||
### tableNames
|
|
||||||
|
|
||||||
▸ **tableNames**(`options?`): `Promise`\<`string`[]\>
|
|
||||||
|
|
||||||
List all the table names in this database.
|
List all the table names in this database.
|
||||||
|
|
||||||
@@ -226,14 +190,11 @@ Tables will be returned in lexicographical order.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **options?**: `Partial`<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)>
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `options?` | `Partial`\<[`TableNamesOptions`](../interfaces/TableNamesOptions.md)\> | options to control the paging / start point |
|
options to control the
|
||||||
|
paging / start point
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`string`[]\>
|
`Promise`<`string`[]>
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[connection.ts:104](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L104)
|
|
||||||
|
|||||||
@@ -1,57 +1,16 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Index
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / Index
|
||||||
|
|
||||||
# Class: Index
|
# Class: Index
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](Index.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](Index.md#inner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [btree](Index.md#btree)
|
|
||||||
- [ivfPq](Index.md#ivfpq)
|
|
||||||
|
|
||||||
## Constructors
|
|
||||||
|
|
||||||
### constructor
|
|
||||||
|
|
||||||
• **new Index**(`inner`): [`Index`](Index.md)
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `inner` | `Index` |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
[`Index`](Index.md)
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[indices.ts:118](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L118)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### inner
|
|
||||||
|
|
||||||
• `Private` `Readonly` **inner**: `Index`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[indices.ts:117](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L117)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### btree
|
### btree()
|
||||||
|
|
||||||
▸ **btree**(): [`Index`](Index.md)
|
> `static` **btree**(): [`Index`](Index.md)
|
||||||
|
|
||||||
Create a btree index
|
Create a btree index
|
||||||
|
|
||||||
@@ -75,15 +34,11 @@ block size may be added in the future.
|
|||||||
|
|
||||||
[`Index`](Index.md)
|
[`Index`](Index.md)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[indices.ts:175](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L175)
|
### ivfPq()
|
||||||
|
|
||||||
___
|
> `static` **ivfPq**(`options`?): [`Index`](Index.md)
|
||||||
|
|
||||||
### ivfPq
|
|
||||||
|
|
||||||
▸ **ivfPq**(`options?`): [`Index`](Index.md)
|
|
||||||
|
|
||||||
Create an IvfPq index
|
Create an IvfPq index
|
||||||
|
|
||||||
@@ -108,14 +63,8 @@ currently is also a memory intensive operation.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **options?**: `Partial`<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)>
|
||||||
| :------ | :------ |
|
|
||||||
| `options?` | `Partial`\<[`IvfPqOptions`](../interfaces/IvfPqOptions.md)\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Index`](Index.md)
|
[`Index`](Index.md)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[indices.ts:144](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L144)
|
|
||||||
|
|||||||
@@ -1,46 +1,32 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / MakeArrowTableOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / MakeArrowTableOptions
|
||||||
|
|
||||||
# Class: MakeArrowTableOptions
|
# Class: MakeArrowTableOptions
|
||||||
|
|
||||||
Options to control the makeArrowTable call.
|
Options to control the makeArrowTable call.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](MakeArrowTableOptions.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [dictionaryEncodeStrings](MakeArrowTableOptions.md#dictionaryencodestrings)
|
|
||||||
- [schema](MakeArrowTableOptions.md#schema)
|
|
||||||
- [vectorColumns](MakeArrowTableOptions.md#vectorcolumns)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new MakeArrowTableOptions()
|
||||||
|
|
||||||
• **new MakeArrowTableOptions**(`values?`): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
> **new MakeArrowTableOptions**(`values`?): [`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **values?**: `Partial`<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)>
|
||||||
| :------ | :------ |
|
|
||||||
| `values?` | `Partial`\<[`MakeArrowTableOptions`](MakeArrowTableOptions.md)\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
[`MakeArrowTableOptions`](MakeArrowTableOptions.md)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[arrow.ts:100](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L100)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### dictionaryEncodeStrings
|
### dictionaryEncodeStrings
|
||||||
|
|
||||||
• **dictionaryEncodeStrings**: `boolean` = `false`
|
> **dictionaryEncodeStrings**: `boolean` = `false`
|
||||||
|
|
||||||
If true then string columns will be encoded with dictionary encoding
|
If true then string columns will be encoded with dictionary encoding
|
||||||
|
|
||||||
@@ -50,26 +36,26 @@ data type for individual columns.
|
|||||||
|
|
||||||
If `schema` is provided then this property is ignored.
|
If `schema` is provided then this property is ignored.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[arrow.ts:98](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L98)
|
### embeddingFunction?
|
||||||
|
|
||||||
___
|
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
|
||||||
|
|
||||||
### schema
|
***
|
||||||
|
|
||||||
• `Optional` **schema**: `Schema`\<`any`\>
|
### embeddings?
|
||||||
|
|
||||||
#### Defined in
|
> `optional` **embeddings**: [`EmbeddingFunction`](../namespaces/embedding/classes/EmbeddingFunction.md)<`unknown`, `FunctionOptions`>
|
||||||
|
|
||||||
[arrow.ts:67](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L67)
|
***
|
||||||
|
|
||||||
___
|
### schema?
|
||||||
|
|
||||||
|
> `optional` **schema**: `SchemaLike`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
### vectorColumns
|
### vectorColumns
|
||||||
|
|
||||||
• **vectorColumns**: `Record`\<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)\>
|
> **vectorColumns**: `Record`<`string`, [`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[arrow.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L85)
|
|
||||||
|
|||||||
@@ -1,48 +1,26 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Query
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / Query
|
||||||
|
|
||||||
# Class: Query
|
# Class: Query
|
||||||
|
|
||||||
A builder for LanceDB queries.
|
A builder for LanceDB queries.
|
||||||
|
|
||||||
## Hierarchy
|
## Extends
|
||||||
|
|
||||||
- [`QueryBase`](QueryBase.md)\<`NativeQuery`, [`Query`](Query.md)\>
|
- [`QueryBase`](QueryBase.md)<`NativeQuery`>
|
||||||
|
|
||||||
↳ **`Query`**
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](Query.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](Query.md#inner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [[asyncIterator]](Query.md#[asynciterator])
|
|
||||||
- [execute](Query.md#execute)
|
|
||||||
- [limit](Query.md#limit)
|
|
||||||
- [nativeExecute](Query.md#nativeexecute)
|
|
||||||
- [nearestTo](Query.md#nearestto)
|
|
||||||
- [select](Query.md#select)
|
|
||||||
- [toArray](Query.md#toarray)
|
|
||||||
- [toArrow](Query.md#toarrow)
|
|
||||||
- [where](Query.md#where)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new Query()
|
||||||
|
|
||||||
• **new Query**(`tbl`): [`Query`](Query.md)
|
> **new Query**(`tbl`): [`Query`](Query.md)
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **tbl**: `Table`
|
||||||
| :------ | :------ |
|
|
||||||
| `tbl` | `Table` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
@@ -50,57 +28,67 @@ A builder for LanceDB queries.
|
|||||||
|
|
||||||
#### Overrides
|
#### Overrides
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
|
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:329](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L329)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### inner
|
### inner
|
||||||
|
|
||||||
• `Protected` **inner**: `Query`
|
> `protected` **inner**: `Query` \| `Promise`<`Query`>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
|
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### [asyncIterator]
|
### \[asyncIterator\]()
|
||||||
|
|
||||||
▸ **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
`AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
|
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
|
### doCall()
|
||||||
|
|
||||||
___
|
> `protected` **doCall**(`fn`): `void`
|
||||||
|
|
||||||
### execute
|
#### Parameters
|
||||||
|
|
||||||
▸ **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
|
• **fn**
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`void`
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### execute()
|
||||||
|
|
||||||
|
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
Execute the query and return the results as an
|
Execute the query and return the results as an
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
- AsyncIterator
|
- AsyncIterator
|
||||||
of
|
of
|
||||||
@@ -114,17 +102,76 @@ single query)
|
|||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
|
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
|
### explainPlan()
|
||||||
|
|
||||||
___
|
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||||
|
|
||||||
### limit
|
Generates an explanation of the query execution plan.
|
||||||
|
|
||||||
▸ **limit**(`limit`): [`Query`](Query.md)
|
#### Parameters
|
||||||
|
|
||||||
|
• **verbose**: `boolean` = `false`
|
||||||
|
|
||||||
|
If true, provides a more detailed explanation. Defaults to false.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`>
|
||||||
|
|
||||||
|
A Promise that resolves to a string containing the query execution plan explanation.
|
||||||
|
|
||||||
|
#### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
import * as lancedb from "@lancedb/lancedb"
|
||||||
|
const db = await lancedb.connect("./.lancedb");
|
||||||
|
const table = await db.createTable("my_table", [
|
||||||
|
{ vector: [1.1, 0.9], id: "1" },
|
||||||
|
]);
|
||||||
|
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### ~~filter()~~
|
||||||
|
|
||||||
|
> **filter**(`predicate`): `this`
|
||||||
|
|
||||||
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **predicate**: `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`this`
|
||||||
|
|
||||||
|
#### Alias
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
#### Deprecated
|
||||||
|
|
||||||
|
Use `where` instead
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### limit()
|
||||||
|
|
||||||
|
> **limit**(`limit`): `this`
|
||||||
|
|
||||||
Set the maximum number of results to return.
|
Set the maximum number of results to return.
|
||||||
|
|
||||||
@@ -133,45 +180,39 @@ called then every valid row from the table will be returned.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **limit**: `number`
|
||||||
| :------ | :------ |
|
|
||||||
| `limit` | `number` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)
|
`this`
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
|
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
|
### nativeExecute()
|
||||||
|
|
||||||
___
|
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||||
|
|
||||||
### nativeExecute
|
#### Parameters
|
||||||
|
|
||||||
▸ **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`RecordBatchIterator`\>
|
`Promise`<`RecordBatchIterator`>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
|
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
|
### nearestTo()
|
||||||
|
|
||||||
___
|
> **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### nearestTo
|
|
||||||
|
|
||||||
▸ **nearestTo**(`vector`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
Find the nearest vectors to the given query vector.
|
Find the nearest vectors to the given query vector.
|
||||||
|
|
||||||
@@ -191,15 +232,13 @@ If there is more than one vector column you must use
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **vector**: `IntoVector`
|
||||||
| :------ | :------ |
|
|
||||||
| `vector` | `unknown` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
|
- [VectorQuery#column](VectorQuery.md#column) to specify which column you would like
|
||||||
to compare with.
|
to compare with.
|
||||||
@@ -223,15 +262,11 @@ Vector searches always have a `limit`. If `limit` has not been called then
|
|||||||
a default `limit` of 10 will be used.
|
a default `limit` of 10 will be used.
|
||||||
- [Query#limit](Query.md#limit)
|
- [Query#limit](Query.md#limit)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:370](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L370)
|
### select()
|
||||||
|
|
||||||
___
|
> **select**(`columns`): `this`
|
||||||
|
|
||||||
### select
|
|
||||||
|
|
||||||
▸ **select**(`columns`): [`Query`](Query.md)
|
|
||||||
|
|
||||||
Return only the specified columns.
|
Return only the specified columns.
|
||||||
|
|
||||||
@@ -255,15 +290,13 @@ input to this method would be:
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||||
| :------ | :------ |
|
|
||||||
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)
|
`this`
|
||||||
|
|
||||||
**`Example`**
|
#### Example
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
new Map([["combined", "a + b"], ["c", "c"]])
|
new Map([["combined", "a + b"], ["c", "c"]])
|
||||||
@@ -278,61 +311,57 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
|||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
|
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
|
### toArray()
|
||||||
|
|
||||||
___
|
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||||
|
|
||||||
### toArray
|
|
||||||
|
|
||||||
▸ **toArray**(): `Promise`\<`unknown`[]\>
|
|
||||||
|
|
||||||
Collect the results as an array of objects.
|
Collect the results as an array of objects.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`unknown`[]\>
|
`Promise`<`any`[]>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
|
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
|
### toArrow()
|
||||||
|
|
||||||
___
|
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
### toArrow
|
|
||||||
|
|
||||||
▸ **toArrow**(): `Promise`\<`Table`\<`any`\>\>
|
|
||||||
|
|
||||||
Collect the results as an Arrow
|
Collect the results as an Arrow
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`Table`\<`any`\>\>
|
`Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
ArrowTable.
|
ArrowTable.
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
|
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
|
### where()
|
||||||
|
|
||||||
___
|
> **where**(`predicate`): `this`
|
||||||
|
|
||||||
### where
|
|
||||||
|
|
||||||
▸ **where**(`predicate`): [`Query`](Query.md)
|
|
||||||
|
|
||||||
A filter statement to be applied to this query.
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
@@ -340,15 +369,13 @@ The filter should be supplied as an SQL query string. For example:
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **predicate**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `predicate` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Query`](Query.md)
|
`this`
|
||||||
|
|
||||||
**`Example`**
|
#### Example
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
x > 10
|
x > 10
|
||||||
@@ -361,8 +388,4 @@ on the filter column(s).
|
|||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
|
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)
|
|
||||||
|
|||||||
@@ -1,117 +1,91 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / QueryBase
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
# Class: QueryBase\<NativeQueryType, QueryType\>
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / QueryBase
|
||||||
|
|
||||||
|
# Class: QueryBase<NativeQueryType>
|
||||||
|
|
||||||
Common methods supported by all query types
|
Common methods supported by all query types
|
||||||
|
|
||||||
## Type parameters
|
## Extended by
|
||||||
|
|
||||||
| Name | Type |
|
- [`Query`](Query.md)
|
||||||
| :------ | :------ |
|
- [`VectorQuery`](VectorQuery.md)
|
||||||
| `NativeQueryType` | extends `NativeQuery` \| `NativeVectorQuery` |
|
|
||||||
| `QueryType` | `QueryType` |
|
|
||||||
|
|
||||||
## Hierarchy
|
## Type Parameters
|
||||||
|
|
||||||
- **`QueryBase`**
|
• **NativeQueryType** *extends* `NativeQuery` \| `NativeVectorQuery`
|
||||||
|
|
||||||
↳ [`Query`](Query.md)
|
|
||||||
|
|
||||||
↳ [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
## Implements
|
## Implements
|
||||||
|
|
||||||
- `AsyncIterable`\<`RecordBatch`\>
|
- `AsyncIterable`<`RecordBatch`>
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](QueryBase.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](QueryBase.md#inner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [[asyncIterator]](QueryBase.md#[asynciterator])
|
|
||||||
- [execute](QueryBase.md#execute)
|
|
||||||
- [limit](QueryBase.md#limit)
|
|
||||||
- [nativeExecute](QueryBase.md#nativeexecute)
|
|
||||||
- [select](QueryBase.md#select)
|
|
||||||
- [toArray](QueryBase.md#toarray)
|
|
||||||
- [toArrow](QueryBase.md#toarrow)
|
|
||||||
- [where](QueryBase.md#where)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new QueryBase()
|
||||||
|
|
||||||
• **new QueryBase**\<`NativeQueryType`, `QueryType`\>(`inner`): [`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
|
> `protected` **new QueryBase**<`NativeQueryType`>(`inner`): [`QueryBase`](QueryBase.md)<`NativeQueryType`>
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `NativeQueryType` | extends `Query` \| `VectorQuery` |
|
|
||||||
| `QueryType` | `QueryType` |
|
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||||
| :------ | :------ |
|
|
||||||
| `inner` | `NativeQueryType` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`QueryBase`](QueryBase.md)\<`NativeQueryType`, `QueryType`\>
|
[`QueryBase`](QueryBase.md)<`NativeQueryType`>
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### inner
|
### inner
|
||||||
|
|
||||||
• `Protected` **inner**: `NativeQueryType`
|
> `protected` **inner**: `NativeQueryType` \| `Promise`<`NativeQueryType`>
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### [asyncIterator]
|
### \[asyncIterator\]()
|
||||||
|
|
||||||
▸ **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
`AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
AsyncIterable.[asyncIterator]
|
`AsyncIterable.[asyncIterator]`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
|
### doCall()
|
||||||
|
|
||||||
___
|
> `protected` **doCall**(`fn`): `void`
|
||||||
|
|
||||||
### execute
|
#### Parameters
|
||||||
|
|
||||||
▸ **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
|
• **fn**
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`void`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### execute()
|
||||||
|
|
||||||
|
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
Execute the query and return the results as an
|
Execute the query and return the results as an
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
- AsyncIterator
|
- AsyncIterator
|
||||||
of
|
of
|
||||||
@@ -123,15 +97,66 @@ This readahead is limited however and backpressure will be applied if this
|
|||||||
stream is consumed slowly (this constrains the maximum memory used by a
|
stream is consumed slowly (this constrains the maximum memory used by a
|
||||||
single query)
|
single query)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
|
### explainPlan()
|
||||||
|
|
||||||
___
|
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||||
|
|
||||||
### limit
|
Generates an explanation of the query execution plan.
|
||||||
|
|
||||||
▸ **limit**(`limit`): `QueryType`
|
#### Parameters
|
||||||
|
|
||||||
|
• **verbose**: `boolean` = `false`
|
||||||
|
|
||||||
|
If true, provides a more detailed explanation. Defaults to false.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`>
|
||||||
|
|
||||||
|
A Promise that resolves to a string containing the query execution plan explanation.
|
||||||
|
|
||||||
|
#### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
import * as lancedb from "@lancedb/lancedb"
|
||||||
|
const db = await lancedb.connect("./.lancedb");
|
||||||
|
const table = await db.createTable("my_table", [
|
||||||
|
{ vector: [1.1, 0.9], id: "1" },
|
||||||
|
]);
|
||||||
|
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||||
|
```
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### ~~filter()~~
|
||||||
|
|
||||||
|
> **filter**(`predicate`): `this`
|
||||||
|
|
||||||
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **predicate**: `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`this`
|
||||||
|
|
||||||
|
#### Alias
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
#### Deprecated
|
||||||
|
|
||||||
|
Use `where` instead
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### limit()
|
||||||
|
|
||||||
|
> **limit**(`limit`): `this`
|
||||||
|
|
||||||
Set the maximum number of results to return.
|
Set the maximum number of results to return.
|
||||||
|
|
||||||
@@ -140,37 +165,31 @@ called then every valid row from the table will be returned.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **limit**: `number`
|
||||||
| :------ | :------ |
|
|
||||||
| `limit` | `number` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`QueryType`
|
`this`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
|
### nativeExecute()
|
||||||
|
|
||||||
___
|
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||||
|
|
||||||
### nativeExecute
|
#### Parameters
|
||||||
|
|
||||||
▸ **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`RecordBatchIterator`\>
|
`Promise`<`RecordBatchIterator`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
|
### select()
|
||||||
|
|
||||||
___
|
> **select**(`columns`): `this`
|
||||||
|
|
||||||
### select
|
|
||||||
|
|
||||||
▸ **select**(`columns`): `QueryType`
|
|
||||||
|
|
||||||
Return only the specified columns.
|
Return only the specified columns.
|
||||||
|
|
||||||
@@ -194,15 +213,13 @@ input to this method would be:
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||||
| :------ | :------ |
|
|
||||||
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`QueryType`
|
`this`
|
||||||
|
|
||||||
**`Example`**
|
#### Example
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
new Map([["combined", "a + b"], ["c", "c"]])
|
new Map([["combined", "a + b"], ["c", "c"]])
|
||||||
@@ -215,51 +232,47 @@ uses `Object.entries` which should preserve the insertion order of the object.
|
|||||||
object insertion order is easy to get wrong and `Map` is more foolproof.
|
object insertion order is easy to get wrong and `Map` is more foolproof.
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
|
### toArray()
|
||||||
|
|
||||||
___
|
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||||
|
|
||||||
### toArray
|
|
||||||
|
|
||||||
▸ **toArray**(): `Promise`\<`unknown`[]\>
|
|
||||||
|
|
||||||
Collect the results as an array of objects.
|
Collect the results as an array of objects.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`unknown`[]\>
|
`Promise`<`any`[]>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
|
### toArrow()
|
||||||
|
|
||||||
___
|
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
### toArrow
|
|
||||||
|
|
||||||
▸ **toArrow**(): `Promise`\<`Table`\<`any`\>\>
|
|
||||||
|
|
||||||
Collect the results as an Arrow
|
Collect the results as an Arrow
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`Table`\<`any`\>\>
|
`Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
ArrowTable.
|
ArrowTable.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
|
### where()
|
||||||
|
|
||||||
___
|
> **where**(`predicate`): `this`
|
||||||
|
|
||||||
### where
|
|
||||||
|
|
||||||
▸ **where**(`predicate`): `QueryType`
|
|
||||||
|
|
||||||
A filter statement to be applied to this query.
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
@@ -267,15 +280,13 @@ The filter should be supplied as an SQL query string. For example:
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **predicate**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `predicate` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`QueryType`
|
`this`
|
||||||
|
|
||||||
**`Example`**
|
#### Example
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
x > 10
|
x > 10
|
||||||
@@ -285,7 +296,3 @@ x > 5 OR y = 'test'
|
|||||||
Filtering performance can often be improved by creating a scalar index
|
Filtering performance can often be improved by creating a scalar index
|
||||||
on the filter column(s).
|
on the filter column(s).
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)
|
|
||||||
|
|||||||
@@ -1,80 +1,39 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / RecordBatchIterator
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / RecordBatchIterator
|
||||||
|
|
||||||
# Class: RecordBatchIterator
|
# Class: RecordBatchIterator
|
||||||
|
|
||||||
## Implements
|
## Implements
|
||||||
|
|
||||||
- `AsyncIterator`\<`RecordBatch`\>
|
- `AsyncIterator`<`RecordBatch`>
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](RecordBatchIterator.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](RecordBatchIterator.md#inner)
|
|
||||||
- [promisedInner](RecordBatchIterator.md#promisedinner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [next](RecordBatchIterator.md#next)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new RecordBatchIterator()
|
||||||
|
|
||||||
• **new RecordBatchIterator**(`promise?`): [`RecordBatchIterator`](RecordBatchIterator.md)
|
> **new RecordBatchIterator**(`promise`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **promise?**: `Promise`<`RecordBatchIterator`>
|
||||||
| :------ | :------ |
|
|
||||||
| `promise?` | `Promise`\<`RecordBatchIterator`\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:27](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L27)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### inner
|
|
||||||
|
|
||||||
• `Private` `Optional` **inner**: `RecordBatchIterator`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:25](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L25)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### promisedInner
|
|
||||||
|
|
||||||
• `Private` `Optional` **promisedInner**: `Promise`\<`RecordBatchIterator`\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L24)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### next
|
### next()
|
||||||
|
|
||||||
▸ **next**(): `Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
|
> **next**(): `Promise`<`IteratorResult`<`RecordBatch`<`any`>, `any`>>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`IteratorResult`\<`RecordBatch`\<`any`\>, `any`\>\>
|
`Promise`<`IteratorResult`<`RecordBatch`<`any`>, `any`>>
|
||||||
|
|
||||||
#### Implementation of
|
#### Implementation of
|
||||||
|
|
||||||
AsyncIterator.next
|
`AsyncIterator.next`
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L33)
|
|
||||||
|
|||||||
@@ -1,6 +1,10 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / Table
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
# Class: Table
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / Table
|
||||||
|
|
||||||
|
# Class: `abstract` Table
|
||||||
|
|
||||||
A Table is a collection of Records in a LanceDB Database.
|
A Table is a collection of Records in a LanceDB Database.
|
||||||
|
|
||||||
@@ -13,196 +17,149 @@ further operations.
|
|||||||
Closing a table is optional. It not closed, it will be closed when it is garbage
|
Closing a table is optional. It not closed, it will be closed when it is garbage
|
||||||
collected.
|
collected.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](Table.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](Table.md#inner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [add](Table.md#add)
|
|
||||||
- [addColumns](Table.md#addcolumns)
|
|
||||||
- [alterColumns](Table.md#altercolumns)
|
|
||||||
- [checkout](Table.md#checkout)
|
|
||||||
- [checkoutLatest](Table.md#checkoutlatest)
|
|
||||||
- [close](Table.md#close)
|
|
||||||
- [countRows](Table.md#countrows)
|
|
||||||
- [createIndex](Table.md#createindex)
|
|
||||||
- [delete](Table.md#delete)
|
|
||||||
- [display](Table.md#display)
|
|
||||||
- [dropColumns](Table.md#dropcolumns)
|
|
||||||
- [isOpen](Table.md#isopen)
|
|
||||||
- [listIndices](Table.md#listindices)
|
|
||||||
- [query](Table.md#query)
|
|
||||||
- [restore](Table.md#restore)
|
|
||||||
- [schema](Table.md#schema)
|
|
||||||
- [update](Table.md#update)
|
|
||||||
- [vectorSearch](Table.md#vectorsearch)
|
|
||||||
- [version](Table.md#version)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new Table()
|
||||||
|
|
||||||
• **new Table**(`inner`): [`Table`](Table.md)
|
> **new Table**(): [`Table`](Table.md)
|
||||||
|
|
||||||
Construct a Table. Internal use only.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `inner` | `Table` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`Table`](Table.md)
|
[`Table`](Table.md)
|
||||||
|
|
||||||
#### Defined in
|
## Accessors
|
||||||
|
|
||||||
[table.ts:69](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L69)
|
### name
|
||||||
|
|
||||||
## Properties
|
> `get` `abstract` **name**(): `string`
|
||||||
|
|
||||||
### inner
|
Returns the name of the table
|
||||||
|
|
||||||
• `Private` `Readonly` **inner**: `Table`
|
#### Returns
|
||||||
|
|
||||||
#### Defined in
|
`string`
|
||||||
|
|
||||||
[table.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L66)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### add
|
### add()
|
||||||
|
|
||||||
▸ **add**(`data`, `options?`): `Promise`\<`void`\>
|
> `abstract` **add**(`data`, `options`?): `Promise`<`void`>
|
||||||
|
|
||||||
Insert records into this Table.
|
Insert records into this Table.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **data**: [`Data`](../type-aliases/Data.md)
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `data` | [`Data`](../modules.md#data) | Records to be inserted into the Table |
|
Records to be inserted into the Table
|
||||||
| `options?` | `Partial`\<[`AddDataOptions`](../interfaces/AddDataOptions.md)\> | - |
|
|
||||||
|
• **options?**: `Partial`<[`AddDataOptions`](../interfaces/AddDataOptions.md)>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:105](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L105)
|
### addColumns()
|
||||||
|
|
||||||
___
|
> `abstract` **addColumns**(`newColumnTransforms`): `Promise`<`void`>
|
||||||
|
|
||||||
### addColumns
|
|
||||||
|
|
||||||
▸ **addColumns**(`newColumnTransforms`): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Add new columns with defined values.
|
Add new columns with defined values.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **newColumnTransforms**: [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[]
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `newColumnTransforms` | [`AddColumnsSql`](../interfaces/AddColumnsSql.md)[] | pairs of column names and the SQL expression to use to calculate the value of the new column. These expressions will be evaluated for each row in the table, and can reference existing columns in the table. |
|
pairs of column names and
|
||||||
|
the SQL expression to use to calculate the value of the new column. These
|
||||||
|
expressions will be evaluated for each row in the table, and can
|
||||||
|
reference existing columns in the table.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:261](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L261)
|
### alterColumns()
|
||||||
|
|
||||||
___
|
> `abstract` **alterColumns**(`columnAlterations`): `Promise`<`void`>
|
||||||
|
|
||||||
### alterColumns
|
|
||||||
|
|
||||||
▸ **alterColumns**(`columnAlterations`): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Alter the name or nullability of columns.
|
Alter the name or nullability of columns.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **columnAlterations**: [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[]
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `columnAlterations` | [`ColumnAlteration`](../interfaces/ColumnAlteration.md)[] | One or more alterations to apply to columns. |
|
One or more alterations to
|
||||||
|
apply to columns.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:270](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L270)
|
### checkout()
|
||||||
|
|
||||||
___
|
> `abstract` **checkout**(`version`): `Promise`<`void`>
|
||||||
|
|
||||||
### checkout
|
Checks out a specific version of the table _This is an in-place operation._
|
||||||
|
|
||||||
▸ **checkout**(`version`): `Promise`\<`void`\>
|
This allows viewing previous versions of the table. If you wish to
|
||||||
|
keep writing to the dataset starting from an old version, then use
|
||||||
|
the `restore` function.
|
||||||
|
|
||||||
Checks out a specific version of the Table
|
Calling this method will set the table into time-travel mode. If you
|
||||||
|
wish to return to standard mode, call `checkoutLatest`.
|
||||||
Any read operation on the table will now access the data at the checked out version.
|
|
||||||
As a consequence, calling this method will disable any read consistency interval
|
|
||||||
that was previously set.
|
|
||||||
|
|
||||||
This is a read-only operation that turns the table into a sort of "view"
|
|
||||||
or "detached head". Other table instances will not be affected. To make the change
|
|
||||||
permanent you can use the `[Self::restore]` method.
|
|
||||||
|
|
||||||
Any operation that modifies the table will fail while the table is in a checked
|
|
||||||
out state.
|
|
||||||
|
|
||||||
To return the table to a normal state use `[Self::checkout_latest]`
|
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **version**: `number`
|
||||||
| :------ | :------ |
|
|
||||||
| `version` | `number` |
|
The version to checkout
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
#### Example
|
||||||
|
|
||||||
[table.ts:317](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L317)
|
```typescript
|
||||||
|
import * as lancedb from "@lancedb/lancedb"
|
||||||
|
const db = await lancedb.connect("./.lancedb");
|
||||||
|
const table = await db.createTable("my_table", [
|
||||||
|
{ vector: [1.1, 0.9], type: "vector" },
|
||||||
|
]);
|
||||||
|
|
||||||
___
|
console.log(await table.version()); // 1
|
||||||
|
console.log(table.display());
|
||||||
|
await table.add([{ vector: [0.5, 0.2], type: "vector" }]);
|
||||||
|
await table.checkout(1);
|
||||||
|
console.log(await table.version()); // 2
|
||||||
|
```
|
||||||
|
|
||||||
### checkoutLatest
|
***
|
||||||
|
|
||||||
▸ **checkoutLatest**(): `Promise`\<`void`\>
|
### checkoutLatest()
|
||||||
|
|
||||||
Ensures the table is pointing at the latest version
|
> `abstract` **checkoutLatest**(): `Promise`<`void`>
|
||||||
|
|
||||||
This can be used to manually update a table when the read_consistency_interval is None
|
Checkout the latest version of the table. _This is an in-place operation._
|
||||||
It can also be used to undo a `[Self::checkout]` operation
|
|
||||||
|
The table will be set back into standard mode, and will track the latest
|
||||||
|
version of the table.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:327](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L327)
|
### close()
|
||||||
|
|
||||||
___
|
> `abstract` **close**(): `void`
|
||||||
|
|
||||||
### close
|
|
||||||
|
|
||||||
▸ **close**(): `void`
|
|
||||||
|
|
||||||
Close the table, releasing any underlying resources.
|
Close the table, releasing any underlying resources.
|
||||||
|
|
||||||
@@ -214,37 +171,27 @@ Any attempt to use the table after it is closed will result in an error.
|
|||||||
|
|
||||||
`void`
|
`void`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:85](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L85)
|
### countRows()
|
||||||
|
|
||||||
___
|
> `abstract` **countRows**(`filter`?): `Promise`<`number`>
|
||||||
|
|
||||||
### countRows
|
|
||||||
|
|
||||||
▸ **countRows**(`filter?`): `Promise`\<`number`\>
|
|
||||||
|
|
||||||
Count the total number of rows in the dataset.
|
Count the total number of rows in the dataset.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **filter?**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `filter?` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`number`\>
|
`Promise`<`number`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:152](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L152)
|
### createIndex()
|
||||||
|
|
||||||
___
|
> `abstract` **createIndex**(`column`, `options`?): `Promise`<`void`>
|
||||||
|
|
||||||
### createIndex
|
|
||||||
|
|
||||||
▸ **createIndex**(`column`, `options?`): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Create an index to speed up queries.
|
Create an index to speed up queries.
|
||||||
|
|
||||||
@@ -255,73 +202,66 @@ vector and non-vector searches)
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **column**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `column` | `string` |
|
• **options?**: `Partial`<[`IndexOptions`](../interfaces/IndexOptions.md)>
|
||||||
| `options?` | `Partial`\<[`IndexOptions`](../interfaces/IndexOptions.md)\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
**`Example`**
|
#### Note
|
||||||
|
|
||||||
|
We currently don't support custom named indexes,
|
||||||
|
The index name will always be `${column}_idx`
|
||||||
|
|
||||||
|
#### Examples
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
// If the column has a vector (fixed size list) data type then
|
// If the column has a vector (fixed size list) data type then
|
||||||
// an IvfPq vector index will be created.
|
// an IvfPq vector index will be created.
|
||||||
const table = await conn.openTable("my_table");
|
const table = await conn.openTable("my_table");
|
||||||
await table.createIndex(["vector"]);
|
await table.createIndex("vector");
|
||||||
```
|
```
|
||||||
|
|
||||||
**`Example`**
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
// For advanced control over vector index creation you can specify
|
// For advanced control over vector index creation you can specify
|
||||||
// the index type and options.
|
// the index type and options.
|
||||||
const table = await conn.openTable("my_table");
|
const table = await conn.openTable("my_table");
|
||||||
await table.createIndex(["vector"], I)
|
await table.createIndex("vector", {
|
||||||
.ivf_pq({ num_partitions: 128, num_sub_vectors: 16 })
|
config: lancedb.Index.ivfPq({
|
||||||
.build();
|
numPartitions: 128,
|
||||||
|
numSubVectors: 16,
|
||||||
|
}),
|
||||||
|
});
|
||||||
```
|
```
|
||||||
|
|
||||||
**`Example`**
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
// Or create a Scalar index
|
// Or create a Scalar index
|
||||||
await table.createIndex("my_float_col").build();
|
await table.createIndex("my_float_col");
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:184](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L184)
|
### delete()
|
||||||
|
|
||||||
___
|
> `abstract` **delete**(`predicate`): `Promise`<`void`>
|
||||||
|
|
||||||
### delete
|
|
||||||
|
|
||||||
▸ **delete**(`predicate`): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Delete the rows that satisfy the predicate.
|
Delete the rows that satisfy the predicate.
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **predicate**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `predicate` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:157](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L157)
|
### display()
|
||||||
|
|
||||||
___
|
> `abstract` **display**(): `string`
|
||||||
|
|
||||||
### display
|
|
||||||
|
|
||||||
▸ **display**(): `string`
|
|
||||||
|
|
||||||
Return a brief description of the table
|
Return a brief description of the table
|
||||||
|
|
||||||
@@ -329,15 +269,11 @@ Return a brief description of the table
|
|||||||
|
|
||||||
`string`
|
`string`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:90](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L90)
|
### dropColumns()
|
||||||
|
|
||||||
___
|
> `abstract` **dropColumns**(`columnNames`): `Promise`<`void`>
|
||||||
|
|
||||||
### dropColumns
|
|
||||||
|
|
||||||
▸ **dropColumns**(`columnNames`): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Drop one or more columns from the dataset
|
Drop one or more columns from the dataset
|
||||||
|
|
||||||
@@ -348,23 +284,41 @@ then call ``cleanup_files`` to remove the old files.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **columnNames**: `string`[]
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `columnNames` | `string`[] | The names of the columns to drop. These can be nested column references (e.g. "a.b.c") or top-level column names (e.g. "a"). |
|
The names of the columns to drop. These can
|
||||||
|
be nested column references (e.g. "a.b.c") or top-level column names
|
||||||
|
(e.g. "a").
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:285](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L285)
|
### indexStats()
|
||||||
|
|
||||||
___
|
> `abstract` **indexStats**(`name`): `Promise`<`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)>
|
||||||
|
|
||||||
### isOpen
|
List all the stats of a specified index
|
||||||
|
|
||||||
▸ **isOpen**(): `boolean`
|
#### Parameters
|
||||||
|
|
||||||
|
• **name**: `string`
|
||||||
|
|
||||||
|
The name of the index.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`undefined` \| [`IndexStatistics`](../interfaces/IndexStatistics.md)>
|
||||||
|
|
||||||
|
The stats of the index. If the index does not exist, it will return undefined
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### isOpen()
|
||||||
|
|
||||||
|
> `abstract` **isOpen**(): `boolean`
|
||||||
|
|
||||||
Return true if the table has not been closed
|
Return true if the table has not been closed
|
||||||
|
|
||||||
@@ -372,31 +326,79 @@ Return true if the table has not been closed
|
|||||||
|
|
||||||
`boolean`
|
`boolean`
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:74](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L74)
|
### listIndices()
|
||||||
|
|
||||||
___
|
> `abstract` **listIndices**(): `Promise`<[`IndexConfig`](../interfaces/IndexConfig.md)[]>
|
||||||
|
|
||||||
### listIndices
|
List all indices that have been created with [Table.createIndex](Table.md#createindex)
|
||||||
|
|
||||||
▸ **listIndices**(): `Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
|
|
||||||
|
|
||||||
List all indices that have been created with Self::create_index
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<[`IndexConfig`](../interfaces/IndexConfig.md)[]\>
|
`Promise`<[`IndexConfig`](../interfaces/IndexConfig.md)[]>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:350](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L350)
|
### mergeInsert()
|
||||||
|
|
||||||
___
|
> `abstract` **mergeInsert**(`on`): `MergeInsertBuilder`
|
||||||
|
|
||||||
### query
|
#### Parameters
|
||||||
|
|
||||||
▸ **query**(): [`Query`](Query.md)
|
• **on**: `string` \| `string`[]
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`MergeInsertBuilder`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### optimize()
|
||||||
|
|
||||||
|
> `abstract` **optimize**(`options`?): `Promise`<`OptimizeStats`>
|
||||||
|
|
||||||
|
Optimize the on-disk data and indices for better performance.
|
||||||
|
|
||||||
|
Modeled after ``VACUUM`` in PostgreSQL.
|
||||||
|
|
||||||
|
Optimization covers three operations:
|
||||||
|
|
||||||
|
- Compaction: Merges small files into larger ones
|
||||||
|
- Prune: Removes old versions of the dataset
|
||||||
|
- Index: Optimizes the indices, adding new data to existing indices
|
||||||
|
|
||||||
|
Experimental API
|
||||||
|
----------------
|
||||||
|
|
||||||
|
The optimization process is undergoing active development and may change.
|
||||||
|
Our goal with these changes is to improve the performance of optimization and
|
||||||
|
reduce the complexity.
|
||||||
|
|
||||||
|
That being said, it is essential today to run optimize if you want the best
|
||||||
|
performance. It should be stable and safe to use in production, but it our
|
||||||
|
hope that the API may be simplified (or not even need to be called) in the
|
||||||
|
future.
|
||||||
|
|
||||||
|
The frequency an application shoudl call optimize is based on the frequency of
|
||||||
|
data modifications. If data is frequently added, deleted, or updated then
|
||||||
|
optimize should be run frequently. A good rule of thumb is to run optimize if
|
||||||
|
you have added or modified 100,000 or more records or run more than 20 data
|
||||||
|
modification operations.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`OptimizeOptions`>
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`OptimizeStats`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### query()
|
||||||
|
|
||||||
|
> `abstract` **query**(): [`Query`](Query.md)
|
||||||
|
|
||||||
Create a [Query](Query.md) Builder.
|
Create a [Query](Query.md) Builder.
|
||||||
|
|
||||||
@@ -406,8 +408,7 @@ returned by this method can be used to control the query using filtering,
|
|||||||
vector similarity, sorting, and more.
|
vector similarity, sorting, and more.
|
||||||
|
|
||||||
Note: By default, all columns are returned. For best performance, you should
|
Note: By default, all columns are returned. For best performance, you should
|
||||||
only fetch the columns you need. See [`Query::select_with_projection`] for
|
only fetch the columns you need.
|
||||||
more details.
|
|
||||||
|
|
||||||
When appropriate, various indices and statistics based pruning will be used to
|
When appropriate, various indices and statistics based pruning will be used to
|
||||||
accelerate the query.
|
accelerate the query.
|
||||||
@@ -418,21 +419,22 @@ accelerate the query.
|
|||||||
|
|
||||||
A builder that can be used to parameterize the query
|
A builder that can be used to parameterize the query
|
||||||
|
|
||||||
**`Example`**
|
#### Examples
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
// SQL-style filtering
|
// SQL-style filtering
|
||||||
//
|
//
|
||||||
// This query will return up to 1000 rows whose value in the `id` column
|
// This query will return up to 1000 rows whose value in the `id` column
|
||||||
// is greater than 5. LanceDb supports a broad set of filtering functions.
|
// is greater than 5. LanceDb supports a broad set of filtering functions.
|
||||||
for await (const batch of table.query()
|
for await (const batch of table
|
||||||
.filter("id > 1").select(["id"]).limit(20)) {
|
.query()
|
||||||
console.log(batch);
|
.where("id > 1")
|
||||||
|
.select(["id"])
|
||||||
|
.limit(20)) {
|
||||||
|
console.log(batch);
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
**`Example`**
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
// Vector Similarity Search
|
// Vector Similarity Search
|
||||||
//
|
//
|
||||||
@@ -440,18 +442,17 @@ for await (const batch of table.query()
|
|||||||
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
|
// closest to the query vector [1.0, 2.0, 3.0]. If an index has been created
|
||||||
// on the "vector" column then this will perform an ANN search.
|
// on the "vector" column then this will perform an ANN search.
|
||||||
//
|
//
|
||||||
// The `refine_factor` and `nprobes` methods are used to control the recall /
|
// The `refineFactor` and `nprobes` methods are used to control the recall /
|
||||||
// latency tradeoff of the search.
|
// latency tradeoff of the search.
|
||||||
for await (const batch of table.query()
|
for await (const batch of table
|
||||||
.nearestTo([1, 2, 3])
|
.query()
|
||||||
.refineFactor(5).nprobe(10)
|
.where("id > 1")
|
||||||
.limit(10)) {
|
.select(["id"])
|
||||||
console.log(batch);
|
.limit(20)) {
|
||||||
|
console.log(batch);
|
||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
**`Example`**
|
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
// Scan the full dataset
|
// Scan the full dataset
|
||||||
//
|
//
|
||||||
@@ -461,15 +462,11 @@ for await (const batch of table.query()) {
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:238](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L238)
|
### restore()
|
||||||
|
|
||||||
___
|
> `abstract` **restore**(): `Promise`<`void`>
|
||||||
|
|
||||||
### restore
|
|
||||||
|
|
||||||
▸ **restore**(): `Promise`\<`void`\>
|
|
||||||
|
|
||||||
Restore the table to the currently checked out version
|
Restore the table to the currently checked out version
|
||||||
|
|
||||||
@@ -484,33 +481,121 @@ out state and the read_consistency_interval, if any, will apply.
|
|||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
`Promise`<`void`>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:343](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L343)
|
### schema()
|
||||||
|
|
||||||
___
|
> `abstract` **schema**(): `Promise`<`Schema`<`any`>>
|
||||||
|
|
||||||
### schema
|
|
||||||
|
|
||||||
▸ **schema**(): `Promise`\<`Schema`\<`any`\>\>
|
|
||||||
|
|
||||||
Get the schema of the table.
|
Get the schema of the table.
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`Schema`\<`any`\>\>
|
`Promise`<`Schema`<`any`>>
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:95](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L95)
|
### search()
|
||||||
|
|
||||||
___
|
#### search(query)
|
||||||
|
|
||||||
### update
|
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
▸ **update**(`updates`, `options?`): `Promise`\<`void`\>
|
Create a search query to find the nearest neighbors
|
||||||
|
of the given query vector
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
• **query**: `string`
|
||||||
|
|
||||||
|
the query. This will be converted to a vector using the table's provided embedding function
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
|
##### Note
|
||||||
|
|
||||||
|
If no embedding functions are defined in the table, this will error when collecting the results.
|
||||||
|
|
||||||
|
#### search(query)
|
||||||
|
|
||||||
|
> `abstract` **search**(`query`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
|
Create a search query to find the nearest neighbors
|
||||||
|
of the given query vector
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
• **query**: `IntoVector`
|
||||||
|
|
||||||
|
the query vector
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### toArrow()
|
||||||
|
|
||||||
|
> `abstract` **toArrow**(): `Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
|
Return the table as an arrow table
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### update()
|
||||||
|
|
||||||
|
#### update(opts)
|
||||||
|
|
||||||
|
> `abstract` **update**(`opts`): `Promise`<`void`>
|
||||||
|
|
||||||
|
Update existing records in the Table
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
• **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`>
|
||||||
|
|
||||||
|
##### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
table.update({where:"x = 2", values:{"vector": [10, 10]}})
|
||||||
|
```
|
||||||
|
|
||||||
|
#### update(opts)
|
||||||
|
|
||||||
|
> `abstract` **update**(`opts`): `Promise`<`void`>
|
||||||
|
|
||||||
|
Update existing records in the Table
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
• **opts**: `object` & `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`Promise`<`void`>
|
||||||
|
|
||||||
|
##### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
table.update({where:"x = 2", valuesSql:{"x": "x + 1"}})
|
||||||
|
```
|
||||||
|
|
||||||
|
#### update(updates, options)
|
||||||
|
|
||||||
|
> `abstract` **update**(`updates`, `options`?): `Promise`<`void`>
|
||||||
|
|
||||||
Update existing records in the Table
|
Update existing records in the Table
|
||||||
|
|
||||||
@@ -527,26 +612,32 @@ you are updating many rows (with different ids) then you will get
|
|||||||
better performance with a single [`merge_insert`] call instead of
|
better performance with a single [`merge_insert`] call instead of
|
||||||
repeatedly calilng this method.
|
repeatedly calilng this method.
|
||||||
|
|
||||||
#### Parameters
|
##### Parameters
|
||||||
|
|
||||||
| Name | Type | Description |
|
• **updates**: `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `updates` | `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> | the columns to update Keys in the map should specify the name of the column to update. Values in the map provide the new value of the column. These can be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions based on the row being updated (e.g. "my_col + 1") |
|
|
||||||
| `options?` | `Partial`\<[`UpdateOptions`](../interfaces/UpdateOptions.md)\> | additional options to control the update behavior |
|
|
||||||
|
|
||||||
#### Returns
|
the
|
||||||
|
columns to update
|
||||||
|
|
||||||
`Promise`\<`void`\>
|
Keys in the map should specify the name of the column to update.
|
||||||
|
Values in the map provide the new value of the column. These can
|
||||||
|
be SQL literal strings (e.g. "7" or "'foo'") or they can be expressions
|
||||||
|
based on the row being updated (e.g. "my_col + 1")
|
||||||
|
|
||||||
#### Defined in
|
• **options?**: `Partial`<[`UpdateOptions`](../interfaces/UpdateOptions.md)>
|
||||||
|
|
||||||
[table.ts:137](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L137)
|
additional options to control
|
||||||
|
the update behavior
|
||||||
|
|
||||||
___
|
##### Returns
|
||||||
|
|
||||||
### vectorSearch
|
`Promise`<`void`>
|
||||||
|
|
||||||
▸ **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
|
***
|
||||||
|
|
||||||
|
### vectorSearch()
|
||||||
|
|
||||||
|
> `abstract` **vectorSearch**(`vector`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
Search the table with a given query vector.
|
Search the table with a given query vector.
|
||||||
|
|
||||||
@@ -556,39 +647,50 @@ by `query`.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **vector**: `IntoVector`
|
||||||
| :------ | :------ |
|
|
||||||
| `vector` | `unknown` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
[Query#nearestTo](Query.md#nearestto) for more details.
|
[Query#nearestTo](Query.md#nearestto) for more details.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[table.ts:249](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L249)
|
### version()
|
||||||
|
|
||||||
___
|
> `abstract` **version**(): `Promise`<`number`>
|
||||||
|
|
||||||
### version
|
|
||||||
|
|
||||||
▸ **version**(): `Promise`\<`number`\>
|
|
||||||
|
|
||||||
Retrieve the version of the table
|
Retrieve the version of the table
|
||||||
|
|
||||||
LanceDb supports versioning. Every operation that modifies the table increases
|
#### Returns
|
||||||
version. As long as a version hasn't been deleted you can `[Self::checkout]` that
|
|
||||||
version to view the data at that point. In addition, you can `[Self::restore]` the
|
`Promise`<`number`>
|
||||||
version to replace the current table with a previous version.
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### parseTableData()
|
||||||
|
|
||||||
|
> `static` **parseTableData**(`data`, `options`?, `streaming`?): `Promise`<`object`>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **data**: `TableLike` \| `Record`<`string`, `unknown`>[]
|
||||||
|
|
||||||
|
• **options?**: `Partial`<[`CreateTableOptions`](../interfaces/CreateTableOptions.md)>
|
||||||
|
|
||||||
|
• **streaming?**: `boolean` = `false`
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`number`\>
|
`Promise`<`object`>
|
||||||
|
|
||||||
#### Defined in
|
##### buf
|
||||||
|
|
||||||
[table.ts:297](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L297)
|
> **buf**: `Buffer`
|
||||||
|
|
||||||
|
##### mode
|
||||||
|
|
||||||
|
> **mode**: `string`
|
||||||
|
|||||||
@@ -1,45 +1,29 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorColumnOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / VectorColumnOptions
|
||||||
|
|
||||||
# Class: VectorColumnOptions
|
# Class: VectorColumnOptions
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](VectorColumnOptions.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [type](VectorColumnOptions.md#type)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new VectorColumnOptions()
|
||||||
|
|
||||||
• **new VectorColumnOptions**(`values?`): [`VectorColumnOptions`](VectorColumnOptions.md)
|
> **new VectorColumnOptions**(`values`?): [`VectorColumnOptions`](VectorColumnOptions.md)
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **values?**: `Partial`<[`VectorColumnOptions`](VectorColumnOptions.md)>
|
||||||
| :------ | :------ |
|
|
||||||
| `values?` | `Partial`\<[`VectorColumnOptions`](VectorColumnOptions.md)\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorColumnOptions`](VectorColumnOptions.md)
|
[`VectorColumnOptions`](VectorColumnOptions.md)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[arrow.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L49)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### type
|
### type
|
||||||
|
|
||||||
• **type**: `Float`\<`Floats`\>
|
> **type**: `Float`<`Floats`>
|
||||||
|
|
||||||
Vector column type.
|
Vector column type.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[arrow.ts:47](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L47)
|
|
||||||
|
|||||||
@@ -1,4 +1,8 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / VectorQuery
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / VectorQuery
|
||||||
|
|
||||||
# Class: VectorQuery
|
# Class: VectorQuery
|
||||||
|
|
||||||
@@ -6,50 +10,19 @@ A builder used to construct a vector search
|
|||||||
|
|
||||||
This builder can be reused to execute the query many times.
|
This builder can be reused to execute the query many times.
|
||||||
|
|
||||||
## Hierarchy
|
## Extends
|
||||||
|
|
||||||
- [`QueryBase`](QueryBase.md)\<`NativeVectorQuery`, [`VectorQuery`](VectorQuery.md)\>
|
- [`QueryBase`](QueryBase.md)<`NativeVectorQuery`>
|
||||||
|
|
||||||
↳ **`VectorQuery`**
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](VectorQuery.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [inner](VectorQuery.md#inner)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [[asyncIterator]](VectorQuery.md#[asynciterator])
|
|
||||||
- [bypassVectorIndex](VectorQuery.md#bypassvectorindex)
|
|
||||||
- [column](VectorQuery.md#column)
|
|
||||||
- [distanceType](VectorQuery.md#distancetype)
|
|
||||||
- [execute](VectorQuery.md#execute)
|
|
||||||
- [limit](VectorQuery.md#limit)
|
|
||||||
- [nativeExecute](VectorQuery.md#nativeexecute)
|
|
||||||
- [nprobes](VectorQuery.md#nprobes)
|
|
||||||
- [postfilter](VectorQuery.md#postfilter)
|
|
||||||
- [refineFactor](VectorQuery.md#refinefactor)
|
|
||||||
- [select](VectorQuery.md#select)
|
|
||||||
- [toArray](VectorQuery.md#toarray)
|
|
||||||
- [toArrow](VectorQuery.md#toarrow)
|
|
||||||
- [where](VectorQuery.md#where)
|
|
||||||
|
|
||||||
## Constructors
|
## Constructors
|
||||||
|
|
||||||
### constructor
|
### new VectorQuery()
|
||||||
|
|
||||||
• **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
|
> **new VectorQuery**(`inner`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||||
| :------ | :------ |
|
|
||||||
| `inner` | `VectorQuery` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
@@ -57,49 +30,37 @@ This builder can be reused to execute the query many times.
|
|||||||
|
|
||||||
#### Overrides
|
#### Overrides
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[constructor](QueryBase.md#constructor)
|
[`QueryBase`](QueryBase.md).[`constructor`](QueryBase.md#constructors)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:189](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L189)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### inner
|
### inner
|
||||||
|
|
||||||
• `Protected` **inner**: `VectorQuery`
|
> `protected` **inner**: `VectorQuery` \| `Promise`<`VectorQuery`>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[inner](QueryBase.md#inner)
|
[`QueryBase`](QueryBase.md).[`inner`](QueryBase.md#inner)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:59](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L59)
|
|
||||||
|
|
||||||
## Methods
|
## Methods
|
||||||
|
|
||||||
### [asyncIterator]
|
### \[asyncIterator\]()
|
||||||
|
|
||||||
▸ **[asyncIterator]**(): `AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
> **\[asyncIterator\]**(): `AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`AsyncIterator`\<`RecordBatch`\<`any`\>, `any`, `undefined`\>
|
`AsyncIterator`<`RecordBatch`<`any`>, `any`, `undefined`>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[[asyncIterator]](QueryBase.md#[asynciterator])
|
[`QueryBase`](QueryBase.md).[`[asyncIterator]`](QueryBase.md#%5Basynciterator%5D)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:154](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L154)
|
### bypassVectorIndex()
|
||||||
|
|
||||||
___
|
> **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### bypassVectorIndex
|
|
||||||
|
|
||||||
▸ **bypassVectorIndex**(): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
If this is called then any vector index is skipped
|
If this is called then any vector index is skipped
|
||||||
|
|
||||||
@@ -113,15 +74,11 @@ calculate your recall to select an appropriate value for nprobes.
|
|||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:321](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L321)
|
### column()
|
||||||
|
|
||||||
___
|
> **column**(`column`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### column
|
|
||||||
|
|
||||||
▸ **column**(`column`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
Set the vector column to query
|
Set the vector column to query
|
||||||
|
|
||||||
@@ -130,30 +87,24 @@ the call to
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **column**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `column` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
[Query#nearestTo](Query.md#nearestto)
|
[Query#nearestTo](Query.md#nearestto)
|
||||||
|
|
||||||
This parameter must be specified if the table has more than one column
|
This parameter must be specified if the table has more than one column
|
||||||
whose data type is a fixed-size-list of floats.
|
whose data type is a fixed-size-list of floats.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:229](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L229)
|
### distanceType()
|
||||||
|
|
||||||
___
|
> **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### distanceType
|
|
||||||
|
|
||||||
▸ **distanceType**(`distanceType`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
Set the distance metric to use
|
Set the distance metric to use
|
||||||
|
|
||||||
@@ -163,15 +114,13 @@ use. See
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
|
||||||
| :------ | :------ |
|
|
||||||
| `distanceType` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
|
[IvfPqOptions.distanceType](../interfaces/IvfPqOptions.md#distancetype) for more details on the different
|
||||||
distance metrics available.
|
distance metrics available.
|
||||||
@@ -182,23 +131,41 @@ invalid.
|
|||||||
|
|
||||||
By default "l2" is used.
|
By default "l2" is used.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:248](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L248)
|
### doCall()
|
||||||
|
|
||||||
___
|
> `protected` **doCall**(`fn`): `void`
|
||||||
|
|
||||||
### execute
|
#### Parameters
|
||||||
|
|
||||||
▸ **execute**(): [`RecordBatchIterator`](RecordBatchIterator.md)
|
• **fn**
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`void`
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`QueryBase`](QueryBase.md).[`doCall`](QueryBase.md#docall)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### execute()
|
||||||
|
|
||||||
|
> `protected` **execute**(`options`?): [`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
Execute the query and return the results as an
|
Execute the query and return the results as an
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`RecordBatchIterator`](RecordBatchIterator.md)
|
[`RecordBatchIterator`](RecordBatchIterator.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
- AsyncIterator
|
- AsyncIterator
|
||||||
of
|
of
|
||||||
@@ -212,17 +179,76 @@ single query)
|
|||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[execute](QueryBase.md#execute)
|
[`QueryBase`](QueryBase.md).[`execute`](QueryBase.md#execute)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:149](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L149)
|
### explainPlan()
|
||||||
|
|
||||||
___
|
> **explainPlan**(`verbose`): `Promise`<`string`>
|
||||||
|
|
||||||
### limit
|
Generates an explanation of the query execution plan.
|
||||||
|
|
||||||
▸ **limit**(`limit`): [`VectorQuery`](VectorQuery.md)
|
#### Parameters
|
||||||
|
|
||||||
|
• **verbose**: `boolean` = `false`
|
||||||
|
|
||||||
|
If true, provides a more detailed explanation. Defaults to false.
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`string`>
|
||||||
|
|
||||||
|
A Promise that resolves to a string containing the query execution plan explanation.
|
||||||
|
|
||||||
|
#### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
import * as lancedb from "@lancedb/lancedb"
|
||||||
|
const db = await lancedb.connect("./.lancedb");
|
||||||
|
const table = await db.createTable("my_table", [
|
||||||
|
{ vector: [1.1, 0.9], id: "1" },
|
||||||
|
]);
|
||||||
|
const plan = await table.query().nearestTo([0.5, 0.2]).explainPlan();
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`QueryBase`](QueryBase.md).[`explainPlan`](QueryBase.md#explainplan)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### ~~filter()~~
|
||||||
|
|
||||||
|
> **filter**(`predicate`): `this`
|
||||||
|
|
||||||
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **predicate**: `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`this`
|
||||||
|
|
||||||
|
#### Alias
|
||||||
|
|
||||||
|
where
|
||||||
|
|
||||||
|
#### Deprecated
|
||||||
|
|
||||||
|
Use `where` instead
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`QueryBase`](QueryBase.md).[`filter`](QueryBase.md#filter)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### limit()
|
||||||
|
|
||||||
|
> **limit**(`limit`): `this`
|
||||||
|
|
||||||
Set the maximum number of results to return.
|
Set the maximum number of results to return.
|
||||||
|
|
||||||
@@ -231,45 +257,39 @@ called then every valid row from the table will be returned.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **limit**: `number`
|
||||||
| :------ | :------ |
|
|
||||||
| `limit` | `number` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
`this`
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[limit](QueryBase.md#limit)
|
[`QueryBase`](QueryBase.md).[`limit`](QueryBase.md#limit)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:129](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L129)
|
### nativeExecute()
|
||||||
|
|
||||||
___
|
> `protected` **nativeExecute**(`options`?): `Promise`<`RecordBatchIterator`>
|
||||||
|
|
||||||
### nativeExecute
|
#### Parameters
|
||||||
|
|
||||||
▸ **nativeExecute**(): `Promise`\<`RecordBatchIterator`\>
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`RecordBatchIterator`\>
|
`Promise`<`RecordBatchIterator`>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[nativeExecute](QueryBase.md#nativeexecute)
|
[`QueryBase`](QueryBase.md).[`nativeExecute`](QueryBase.md#nativeexecute)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:134](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L134)
|
### nprobes()
|
||||||
|
|
||||||
___
|
> **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### nprobes
|
|
||||||
|
|
||||||
▸ **nprobes**(`nprobes`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
Set the number of partitions to search (probe)
|
Set the number of partitions to search (probe)
|
||||||
|
|
||||||
@@ -294,23 +314,17 @@ you the desired recall.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **nprobes**: `number`
|
||||||
| :------ | :------ |
|
|
||||||
| `nprobes` | `number` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:215](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L215)
|
### postfilter()
|
||||||
|
|
||||||
___
|
> **postfilter**(): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### postfilter
|
|
||||||
|
|
||||||
▸ **postfilter**(): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
If this is called then filtering will happen after the vector search instead of
|
If this is called then filtering will happen after the vector search instead of
|
||||||
before.
|
before.
|
||||||
@@ -333,20 +347,16 @@ Post filtering happens during the "refine stage" (described in more detail in
|
|||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
|
[VectorQuery#refineFactor](VectorQuery.md#refinefactor)). This means that setting a higher refine
|
||||||
factor can often help restore some of the results lost by post filtering.
|
factor can often help restore some of the results lost by post filtering.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:307](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L307)
|
### refineFactor()
|
||||||
|
|
||||||
___
|
> **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
### refineFactor
|
|
||||||
|
|
||||||
▸ **refineFactor**(`refineFactor`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
A multiplier to control how many additional rows are taken during the refine step
|
A multiplier to control how many additional rows are taken during the refine step
|
||||||
|
|
||||||
@@ -378,23 +388,17 @@ distance between the query vector and the actual uncompressed vector.
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **refineFactor**: `number`
|
||||||
| :------ | :------ |
|
|
||||||
| `refineFactor` | `number` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
[`VectorQuery`](VectorQuery.md)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:282](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L282)
|
### select()
|
||||||
|
|
||||||
___
|
> **select**(`columns`): `this`
|
||||||
|
|
||||||
### select
|
|
||||||
|
|
||||||
▸ **select**(`columns`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
Return only the specified columns.
|
Return only the specified columns.
|
||||||
|
|
||||||
@@ -418,15 +422,13 @@ input to this method would be:
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **columns**: `string` \| `string`[] \| `Record`<`string`, `string`> \| `Map`<`string`, `string`>
|
||||||
| :------ | :------ |
|
|
||||||
| `columns` | `string`[] \| `Record`\<`string`, `string`\> \| `Map`\<`string`, `string`\> |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
`this`
|
||||||
|
|
||||||
**`Example`**
|
#### Example
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
new Map([["combined", "a + b"], ["c", "c"]])
|
new Map([["combined", "a + b"], ["c", "c"]])
|
||||||
@@ -441,61 +443,57 @@ object insertion order is easy to get wrong and `Map` is more foolproof.
|
|||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[select](QueryBase.md#select)
|
[`QueryBase`](QueryBase.md).[`select`](QueryBase.md#select)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:108](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L108)
|
### toArray()
|
||||||
|
|
||||||
___
|
> **toArray**(`options`?): `Promise`<`any`[]>
|
||||||
|
|
||||||
### toArray
|
|
||||||
|
|
||||||
▸ **toArray**(): `Promise`\<`unknown`[]\>
|
|
||||||
|
|
||||||
Collect the results as an array of objects.
|
Collect the results as an array of objects.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`unknown`[]\>
|
`Promise`<`any`[]>
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[toArray](QueryBase.md#toarray)
|
[`QueryBase`](QueryBase.md).[`toArray`](QueryBase.md#toarray)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:169](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L169)
|
### toArrow()
|
||||||
|
|
||||||
___
|
> **toArrow**(`options`?): `Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
### toArrow
|
|
||||||
|
|
||||||
▸ **toArrow**(): `Promise`\<`Table`\<`any`\>\>
|
|
||||||
|
|
||||||
Collect the results as an Arrow
|
Collect the results as an Arrow
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options?**: `Partial`<`QueryExecutionOptions`>
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
`Promise`\<`Table`\<`any`\>\>
|
`Promise`<`Table`<`any`>>
|
||||||
|
|
||||||
**`See`**
|
#### See
|
||||||
|
|
||||||
ArrowTable.
|
ArrowTable.
|
||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[toArrow](QueryBase.md#toarrow)
|
[`QueryBase`](QueryBase.md).[`toArrow`](QueryBase.md#toarrow)
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[query.ts:160](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L160)
|
### where()
|
||||||
|
|
||||||
___
|
> **where**(`predicate`): `this`
|
||||||
|
|
||||||
### where
|
|
||||||
|
|
||||||
▸ **where**(`predicate`): [`VectorQuery`](VectorQuery.md)
|
|
||||||
|
|
||||||
A filter statement to be applied to this query.
|
A filter statement to be applied to this query.
|
||||||
|
|
||||||
@@ -503,15 +501,13 @@ The filter should be supplied as an SQL query string. For example:
|
|||||||
|
|
||||||
#### Parameters
|
#### Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **predicate**: `string`
|
||||||
| :------ | :------ |
|
|
||||||
| `predicate` | `string` |
|
|
||||||
|
|
||||||
#### Returns
|
#### Returns
|
||||||
|
|
||||||
[`VectorQuery`](VectorQuery.md)
|
`this`
|
||||||
|
|
||||||
**`Example`**
|
#### Example
|
||||||
|
|
||||||
```ts
|
```ts
|
||||||
x > 10
|
x > 10
|
||||||
@@ -524,8 +520,4 @@ on the filter column(s).
|
|||||||
|
|
||||||
#### Inherited from
|
#### Inherited from
|
||||||
|
|
||||||
[QueryBase](QueryBase.md).[where](QueryBase.md#where)
|
[`QueryBase`](QueryBase.md).[`where`](QueryBase.md#where)
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[query.ts:73](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/query.ts#L73)
|
|
||||||
|
|||||||
@@ -1,111 +0,0 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / OpenAIEmbeddingFunction
|
|
||||||
|
|
||||||
# Class: OpenAIEmbeddingFunction
|
|
||||||
|
|
||||||
[embedding](../modules/embedding.md).OpenAIEmbeddingFunction
|
|
||||||
|
|
||||||
An embedding function that automatically creates vector representation for a given column.
|
|
||||||
|
|
||||||
## Implements
|
|
||||||
|
|
||||||
- [`EmbeddingFunction`](../interfaces/embedding.EmbeddingFunction.md)\<`string`\>
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Constructors
|
|
||||||
|
|
||||||
- [constructor](embedding.OpenAIEmbeddingFunction.md#constructor)
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [\_modelName](embedding.OpenAIEmbeddingFunction.md#_modelname)
|
|
||||||
- [\_openai](embedding.OpenAIEmbeddingFunction.md#_openai)
|
|
||||||
- [sourceColumn](embedding.OpenAIEmbeddingFunction.md#sourcecolumn)
|
|
||||||
|
|
||||||
### Methods
|
|
||||||
|
|
||||||
- [embed](embedding.OpenAIEmbeddingFunction.md#embed)
|
|
||||||
|
|
||||||
## Constructors
|
|
||||||
|
|
||||||
### constructor
|
|
||||||
|
|
||||||
• **new OpenAIEmbeddingFunction**(`sourceColumn`, `openAIKey`, `modelName?`): [`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Default value |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `sourceColumn` | `string` | `undefined` |
|
|
||||||
| `openAIKey` | `string` | `undefined` |
|
|
||||||
| `modelName` | `string` | `"text-embedding-ada-002"` |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
[`OpenAIEmbeddingFunction`](embedding.OpenAIEmbeddingFunction.md)
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/openai.ts:22](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L22)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### \_modelName
|
|
||||||
|
|
||||||
• `Private` `Readonly` **\_modelName**: `string`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/openai.ts:20](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L20)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### \_openai
|
|
||||||
|
|
||||||
• `Private` `Readonly` **\_openai**: `OpenAI`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/openai.ts:19](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L19)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### sourceColumn
|
|
||||||
|
|
||||||
• **sourceColumn**: `string`
|
|
||||||
|
|
||||||
The name of the column that will be used as input for the Embedding Function.
|
|
||||||
|
|
||||||
#### Implementation of
|
|
||||||
|
|
||||||
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[sourceColumn](../interfaces/embedding.EmbeddingFunction.md#sourcecolumn)
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/openai.ts:61](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L61)
|
|
||||||
|
|
||||||
## Methods
|
|
||||||
|
|
||||||
### embed
|
|
||||||
|
|
||||||
▸ **embed**(`data`): `Promise`\<`number`[][]\>
|
|
||||||
|
|
||||||
Creates a vector representation for the given values.
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `data` | `string`[] |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`\<`number`[][]\>
|
|
||||||
|
|
||||||
#### Implementation of
|
|
||||||
|
|
||||||
[EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md).[embed](../interfaces/embedding.EmbeddingFunction.md#embed)
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/openai.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/openai.ts#L48)
|
|
||||||
27
docs/src/js/enumerations/WriteMode.md
Normal file
27
docs/src/js/enumerations/WriteMode.md
Normal file
@@ -0,0 +1,27 @@
|
|||||||
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / WriteMode
|
||||||
|
|
||||||
|
# Enumeration: WriteMode
|
||||||
|
|
||||||
|
Write mode for writing a table.
|
||||||
|
|
||||||
|
## Enumeration Members
|
||||||
|
|
||||||
|
### Append
|
||||||
|
|
||||||
|
> **Append**: `"Append"`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### Create
|
||||||
|
|
||||||
|
> **Create**: `"Create"`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### Overwrite
|
||||||
|
|
||||||
|
> **Overwrite**: `"Overwrite"`
|
||||||
@@ -1,43 +0,0 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteMode
|
|
||||||
|
|
||||||
# Enumeration: WriteMode
|
|
||||||
|
|
||||||
Write mode for writing a table.
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Enumeration Members
|
|
||||||
|
|
||||||
- [Append](WriteMode.md#append)
|
|
||||||
- [Create](WriteMode.md#create)
|
|
||||||
- [Overwrite](WriteMode.md#overwrite)
|
|
||||||
|
|
||||||
## Enumeration Members
|
|
||||||
|
|
||||||
### Append
|
|
||||||
|
|
||||||
• **Append** = ``"Append"``
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:69
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### Create
|
|
||||||
|
|
||||||
• **Create** = ``"Create"``
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:68
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### Overwrite
|
|
||||||
|
|
||||||
• **Overwrite** = ``"Overwrite"``
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:70
|
|
||||||
82
docs/src/js/functions/connect.md
Normal file
82
docs/src/js/functions/connect.md
Normal file
@@ -0,0 +1,82 @@
|
|||||||
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / connect
|
||||||
|
|
||||||
|
# Function: connect()
|
||||||
|
|
||||||
|
## connect(uri, opts)
|
||||||
|
|
||||||
|
> **connect**(`uri`, `opts`?): `Promise`<[`Connection`](../classes/Connection.md)>
|
||||||
|
|
||||||
|
Connect to a LanceDB instance at the given URI.
|
||||||
|
|
||||||
|
Accepted formats:
|
||||||
|
|
||||||
|
- `/path/to/database` - local database
|
||||||
|
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||||
|
- `db://host:port` - remote database (LanceDB cloud)
|
||||||
|
|
||||||
|
### Parameters
|
||||||
|
|
||||||
|
• **uri**: `string`
|
||||||
|
|
||||||
|
The uri of the database. If the database uri starts
|
||||||
|
with `db://` then it connects to a remote database.
|
||||||
|
|
||||||
|
• **opts?**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`>
|
||||||
|
|
||||||
|
### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Connection`](../classes/Connection.md)>
|
||||||
|
|
||||||
|
### See
|
||||||
|
|
||||||
|
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
|
||||||
|
|
||||||
|
### Examples
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const conn = await connect("/path/to/database");
|
||||||
|
```
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const conn = await connect(
|
||||||
|
"s3://bucket/path/to/database",
|
||||||
|
{storageOptions: {timeout: "60s"}
|
||||||
|
});
|
||||||
|
```
|
||||||
|
|
||||||
|
## connect(opts)
|
||||||
|
|
||||||
|
> **connect**(`opts`): `Promise`<[`Connection`](../classes/Connection.md)>
|
||||||
|
|
||||||
|
Connect to a LanceDB instance at the given URI.
|
||||||
|
|
||||||
|
Accepted formats:
|
||||||
|
|
||||||
|
- `/path/to/database` - local database
|
||||||
|
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
||||||
|
- `db://host:port` - remote database (LanceDB cloud)
|
||||||
|
|
||||||
|
### Parameters
|
||||||
|
|
||||||
|
• **opts**: `Partial`<[`ConnectionOptions`](../interfaces/ConnectionOptions.md) \| `RemoteConnectionOptions`> & `object`
|
||||||
|
|
||||||
|
### Returns
|
||||||
|
|
||||||
|
`Promise`<[`Connection`](../classes/Connection.md)>
|
||||||
|
|
||||||
|
### See
|
||||||
|
|
||||||
|
[ConnectionOptions](../interfaces/ConnectionOptions.md) for more details on the URI format.
|
||||||
|
|
||||||
|
### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const conn = await connect({
|
||||||
|
uri: "/path/to/database",
|
||||||
|
storageOptions: {timeout: "60s"}
|
||||||
|
});
|
||||||
|
```
|
||||||
@@ -1,103 +1,12 @@
|
|||||||
[@lancedb/lancedb](README.md) / Exports
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
# @lancedb/lancedb
|
***
|
||||||
|
|
||||||
## Table of contents
|
[@lancedb/lancedb](../globals.md) / makeArrowTable
|
||||||
|
|
||||||
### Namespaces
|
# Function: makeArrowTable()
|
||||||
|
|
||||||
- [embedding](modules/embedding.md)
|
> **makeArrowTable**(`data`, `options`?, `metadata`?): `ArrowTable`
|
||||||
|
|
||||||
### Enumerations
|
|
||||||
|
|
||||||
- [WriteMode](enums/WriteMode.md)
|
|
||||||
|
|
||||||
### Classes
|
|
||||||
|
|
||||||
- [Connection](classes/Connection.md)
|
|
||||||
- [Index](classes/Index.md)
|
|
||||||
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
|
|
||||||
- [Query](classes/Query.md)
|
|
||||||
- [QueryBase](classes/QueryBase.md)
|
|
||||||
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
|
||||||
- [Table](classes/Table.md)
|
|
||||||
- [VectorColumnOptions](classes/VectorColumnOptions.md)
|
|
||||||
- [VectorQuery](classes/VectorQuery.md)
|
|
||||||
|
|
||||||
### Interfaces
|
|
||||||
|
|
||||||
- [AddColumnsSql](interfaces/AddColumnsSql.md)
|
|
||||||
- [AddDataOptions](interfaces/AddDataOptions.md)
|
|
||||||
- [ColumnAlteration](interfaces/ColumnAlteration.md)
|
|
||||||
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
|
||||||
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
|
||||||
- [ExecutableQuery](interfaces/ExecutableQuery.md)
|
|
||||||
- [IndexConfig](interfaces/IndexConfig.md)
|
|
||||||
- [IndexOptions](interfaces/IndexOptions.md)
|
|
||||||
- [IvfPqOptions](interfaces/IvfPqOptions.md)
|
|
||||||
- [TableNamesOptions](interfaces/TableNamesOptions.md)
|
|
||||||
- [UpdateOptions](interfaces/UpdateOptions.md)
|
|
||||||
- [WriteOptions](interfaces/WriteOptions.md)
|
|
||||||
|
|
||||||
### Type Aliases
|
|
||||||
|
|
||||||
- [Data](modules.md#data)
|
|
||||||
|
|
||||||
### Functions
|
|
||||||
|
|
||||||
- [connect](modules.md#connect)
|
|
||||||
- [makeArrowTable](modules.md#makearrowtable)
|
|
||||||
|
|
||||||
## Type Aliases
|
|
||||||
|
|
||||||
### Data
|
|
||||||
|
|
||||||
Ƭ **Data**: `Record`\<`string`, `unknown`\>[] \| `ArrowTable`
|
|
||||||
|
|
||||||
Data type accepted by NodeJS SDK
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[arrow.ts:40](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L40)
|
|
||||||
|
|
||||||
## Functions
|
|
||||||
|
|
||||||
### connect
|
|
||||||
|
|
||||||
▸ **connect**(`uri`, `opts?`): `Promise`\<[`Connection`](classes/Connection.md)\>
|
|
||||||
|
|
||||||
Connect to a LanceDB instance at the given URI.
|
|
||||||
|
|
||||||
Accpeted formats:
|
|
||||||
|
|
||||||
- `/path/to/database` - local database
|
|
||||||
- `s3://bucket/path/to/database` or `gs://bucket/path/to/database` - database on cloud storage
|
|
||||||
- `db://host:port` - remote database (LanceDB cloud)
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type | Description |
|
|
||||||
| :------ | :------ | :------ |
|
|
||||||
| `uri` | `string` | The uri of the database. If the database uri starts with `db://` then it connects to a remote database. |
|
|
||||||
| `opts?` | `Partial`\<[`ConnectionOptions`](interfaces/ConnectionOptions.md)\> | - |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
`Promise`\<[`Connection`](classes/Connection.md)\>
|
|
||||||
|
|
||||||
**`See`**
|
|
||||||
|
|
||||||
[ConnectionOptions](interfaces/ConnectionOptions.md) for more details on the URI format.
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[index.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/index.ts#L62)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### makeArrowTable
|
|
||||||
|
|
||||||
▸ **makeArrowTable**(`data`, `options?`): `ArrowTable`
|
|
||||||
|
|
||||||
An enhanced version of the makeTable function from Apache Arrow
|
An enhanced version of the makeTable function from Apache Arrow
|
||||||
that supports nested fields and embeddings columns.
|
that supports nested fields and embeddings columns.
|
||||||
@@ -129,20 +38,20 @@ rules are as follows:
|
|||||||
- Record<String, any> => Struct
|
- Record<String, any> => Struct
|
||||||
- Array<any> => List
|
- Array<any> => List
|
||||||
|
|
||||||
#### Parameters
|
## Parameters
|
||||||
|
|
||||||
| Name | Type |
|
• **data**: `Record`<`string`, `unknown`>[]
|
||||||
| :------ | :------ |
|
|
||||||
| `data` | `Record`\<`string`, `unknown`\>[] |
|
|
||||||
| `options?` | `Partial`\<[`MakeArrowTableOptions`](classes/MakeArrowTableOptions.md)\> |
|
|
||||||
|
|
||||||
#### Returns
|
• **options?**: `Partial`<[`MakeArrowTableOptions`](../classes/MakeArrowTableOptions.md)>
|
||||||
|
|
||||||
|
• **metadata?**: `Map`<`string`, `string`>
|
||||||
|
|
||||||
|
## Returns
|
||||||
|
|
||||||
`ArrowTable`
|
`ArrowTable`
|
||||||
|
|
||||||
**`Example`**
|
## Example
|
||||||
|
|
||||||
```ts
|
|
||||||
import { fromTableToBuffer, makeArrowTable } from "../arrow";
|
import { fromTableToBuffer, makeArrowTable } from "../arrow";
|
||||||
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
|
import { Field, FixedSizeList, Float16, Float32, Int32, Schema } from "apache-arrow";
|
||||||
|
|
||||||
@@ -203,7 +112,3 @@ const table = makeArrowTable([
|
|||||||
}
|
}
|
||||||
assert.deepEqual(table.schema, schema)
|
assert.deepEqual(table.schema, schema)
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[arrow.ts:197](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/arrow.ts#L197)
|
|
||||||
51
docs/src/js/globals.md
Normal file
51
docs/src/js/globals.md
Normal file
@@ -0,0 +1,51 @@
|
|||||||
|
[**@lancedb/lancedb**](README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
# @lancedb/lancedb
|
||||||
|
|
||||||
|
## Namespaces
|
||||||
|
|
||||||
|
- [embedding](namespaces/embedding/README.md)
|
||||||
|
|
||||||
|
## Enumerations
|
||||||
|
|
||||||
|
- [WriteMode](enumerations/WriteMode.md)
|
||||||
|
|
||||||
|
## Classes
|
||||||
|
|
||||||
|
- [Connection](classes/Connection.md)
|
||||||
|
- [Index](classes/Index.md)
|
||||||
|
- [MakeArrowTableOptions](classes/MakeArrowTableOptions.md)
|
||||||
|
- [Query](classes/Query.md)
|
||||||
|
- [QueryBase](classes/QueryBase.md)
|
||||||
|
- [RecordBatchIterator](classes/RecordBatchIterator.md)
|
||||||
|
- [Table](classes/Table.md)
|
||||||
|
- [VectorColumnOptions](classes/VectorColumnOptions.md)
|
||||||
|
- [VectorQuery](classes/VectorQuery.md)
|
||||||
|
|
||||||
|
## Interfaces
|
||||||
|
|
||||||
|
- [AddColumnsSql](interfaces/AddColumnsSql.md)
|
||||||
|
- [AddDataOptions](interfaces/AddDataOptions.md)
|
||||||
|
- [ColumnAlteration](interfaces/ColumnAlteration.md)
|
||||||
|
- [ConnectionOptions](interfaces/ConnectionOptions.md)
|
||||||
|
- [CreateTableOptions](interfaces/CreateTableOptions.md)
|
||||||
|
- [ExecutableQuery](interfaces/ExecutableQuery.md)
|
||||||
|
- [IndexConfig](interfaces/IndexConfig.md)
|
||||||
|
- [IndexMetadata](interfaces/IndexMetadata.md)
|
||||||
|
- [IndexOptions](interfaces/IndexOptions.md)
|
||||||
|
- [IndexStatistics](interfaces/IndexStatistics.md)
|
||||||
|
- [IvfPqOptions](interfaces/IvfPqOptions.md)
|
||||||
|
- [TableNamesOptions](interfaces/TableNamesOptions.md)
|
||||||
|
- [UpdateOptions](interfaces/UpdateOptions.md)
|
||||||
|
- [WriteOptions](interfaces/WriteOptions.md)
|
||||||
|
|
||||||
|
## Type Aliases
|
||||||
|
|
||||||
|
- [Data](type-aliases/Data.md)
|
||||||
|
|
||||||
|
## Functions
|
||||||
|
|
||||||
|
- [connect](functions/connect.md)
|
||||||
|
- [makeArrowTable](functions/makeArrowTable.md)
|
||||||
@@ -1,37 +1,26 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddColumnsSql
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / AddColumnsSql
|
||||||
|
|
||||||
# Interface: AddColumnsSql
|
# Interface: AddColumnsSql
|
||||||
|
|
||||||
A definition of a new column to add to a table.
|
A definition of a new column to add to a table.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [name](AddColumnsSql.md#name)
|
|
||||||
- [valueSql](AddColumnsSql.md#valuesql)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### name
|
### name
|
||||||
|
|
||||||
• **name**: `string`
|
> **name**: `string`
|
||||||
|
|
||||||
The name of the new column.
|
The name of the new column.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
native.d.ts:43
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### valueSql
|
### valueSql
|
||||||
|
|
||||||
• **valueSql**: `string`
|
> **valueSql**: `string`
|
||||||
|
|
||||||
The values to populate the new column with, as a SQL expression.
|
The values to populate the new column with, as a SQL expression.
|
||||||
The expression can reference other columns in the table.
|
The expression can reference other columns in the table.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:48
|
|
||||||
|
|||||||
@@ -1,25 +1,19 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / AddDataOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / AddDataOptions
|
||||||
|
|
||||||
# Interface: AddDataOptions
|
# Interface: AddDataOptions
|
||||||
|
|
||||||
Options for adding data to a table.
|
Options for adding data to a table.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [mode](AddDataOptions.md#mode)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### mode
|
### mode
|
||||||
|
|
||||||
• **mode**: ``"append"`` \| ``"overwrite"``
|
> **mode**: `"append"` \| `"overwrite"`
|
||||||
|
|
||||||
If "append" (the default) then the new data will be added to the table
|
If "append" (the default) then the new data will be added to the table
|
||||||
|
|
||||||
If "overwrite" then the new data will replace the existing data in the table.
|
If "overwrite" then the new data will replace the existing data in the table.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[table.ts:36](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L36)
|
|
||||||
|
|||||||
@@ -1,4 +1,8 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ColumnAlteration
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / ColumnAlteration
|
||||||
|
|
||||||
# Interface: ColumnAlteration
|
# Interface: ColumnAlteration
|
||||||
|
|
||||||
@@ -7,50 +11,30 @@ A definition of a column alteration. The alteration changes the column at
|
|||||||
and to have the data type `data_type`. At least one of `rename` or `nullable`
|
and to have the data type `data_type`. At least one of `rename` or `nullable`
|
||||||
must be provided.
|
must be provided.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [nullable](ColumnAlteration.md#nullable)
|
|
||||||
- [path](ColumnAlteration.md#path)
|
|
||||||
- [rename](ColumnAlteration.md#rename)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### nullable
|
### nullable?
|
||||||
|
|
||||||
• `Optional` **nullable**: `boolean`
|
> `optional` **nullable**: `boolean`
|
||||||
|
|
||||||
Set the new nullability. Note that a nullable column cannot be made non-nullable.
|
Set the new nullability. Note that a nullable column cannot be made non-nullable.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
native.d.ts:38
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### path
|
### path
|
||||||
|
|
||||||
• **path**: `string`
|
> **path**: `string`
|
||||||
|
|
||||||
The path to the column to alter. This is a dot-separated path to the column.
|
The path to the column to alter. This is a dot-separated path to the column.
|
||||||
If it is a top-level column then it is just the name of the column. If it is
|
If it is a top-level column then it is just the name of the column. If it is
|
||||||
a nested column then it is the path to the column, e.g. "a.b.c" for a column
|
a nested column then it is the path to the column, e.g. "a.b.c" for a column
|
||||||
`c` nested inside a column `b` nested inside a column `a`.
|
`c` nested inside a column `b` nested inside a column `a`.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
native.d.ts:31
|
### rename?
|
||||||
|
|
||||||
___
|
> `optional` **rename**: `string`
|
||||||
|
|
||||||
### rename
|
|
||||||
|
|
||||||
• `Optional` **rename**: `string`
|
|
||||||
|
|
||||||
The new name of the column. If not provided then the name will not be changed.
|
The new name of the column. If not provided then the name will not be changed.
|
||||||
This must be distinct from the names of all other columns in the table.
|
This must be distinct from the names of all other columns in the table.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:36
|
|
||||||
|
|||||||
@@ -1,40 +1,16 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ConnectionOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / ConnectionOptions
|
||||||
|
|
||||||
# Interface: ConnectionOptions
|
# Interface: ConnectionOptions
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [apiKey](ConnectionOptions.md#apikey)
|
|
||||||
- [hostOverride](ConnectionOptions.md#hostoverride)
|
|
||||||
- [readConsistencyInterval](ConnectionOptions.md#readconsistencyinterval)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### apiKey
|
### readConsistencyInterval?
|
||||||
|
|
||||||
• `Optional` **apiKey**: `string`
|
> `optional` **readConsistencyInterval**: `number`
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:51
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### hostOverride
|
|
||||||
|
|
||||||
• `Optional` **hostOverride**: `string`
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
native.d.ts:52
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### readConsistencyInterval
|
|
||||||
|
|
||||||
• `Optional` **readConsistencyInterval**: `number`
|
|
||||||
|
|
||||||
(For LanceDB OSS only): The interval, in seconds, at which to check for
|
(For LanceDB OSS only): The interval, in seconds, at which to check for
|
||||||
updates to the table from other processes. If None, then consistency is not
|
updates to the table from other processes. If None, then consistency is not
|
||||||
@@ -46,6 +22,12 @@ has passed since the last check, then the table will be checked for updates.
|
|||||||
Note: this consistency only applies to read operations. Write operations are
|
Note: this consistency only applies to read operations. Write operations are
|
||||||
always consistent.
|
always consistent.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
native.d.ts:64
|
### storageOptions?
|
||||||
|
|
||||||
|
> `optional` **storageOptions**: `Record`<`string`, `string`>
|
||||||
|
|
||||||
|
(For LanceDB OSS only): configuration for object storage.
|
||||||
|
|
||||||
|
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||||
|
|||||||
@@ -1,32 +1,31 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / CreateTableOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / CreateTableOptions
|
||||||
|
|
||||||
# Interface: CreateTableOptions
|
# Interface: CreateTableOptions
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [existOk](CreateTableOptions.md#existok)
|
|
||||||
- [mode](CreateTableOptions.md#mode)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
|
### embeddingFunction?
|
||||||
|
|
||||||
|
> `optional` **embeddingFunction**: [`EmbeddingFunctionConfig`](../namespaces/embedding/interfaces/EmbeddingFunctionConfig.md)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
### existOk
|
### existOk
|
||||||
|
|
||||||
• **existOk**: `boolean`
|
> **existOk**: `boolean`
|
||||||
|
|
||||||
If this is true and the table already exists and the mode is "create"
|
If this is true and the table already exists and the mode is "create"
|
||||||
then no error will be raised.
|
then no error will be raised.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:35](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L35)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### mode
|
### mode
|
||||||
|
|
||||||
• **mode**: ``"overwrite"`` \| ``"create"``
|
> **mode**: `"overwrite"` \| `"create"`
|
||||||
|
|
||||||
The mode to use when creating the table.
|
The mode to use when creating the table.
|
||||||
|
|
||||||
@@ -36,6 +35,31 @@ happen. Any provided data will be ignored.
|
|||||||
|
|
||||||
If this is set to "overwrite" then any existing table will be replaced.
|
If this is set to "overwrite" then any existing table will be replaced.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:30](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L30)
|
### schema?
|
||||||
|
|
||||||
|
> `optional` **schema**: `SchemaLike`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### storageOptions?
|
||||||
|
|
||||||
|
> `optional` **storageOptions**: `Record`<`string`, `string`>
|
||||||
|
|
||||||
|
Configuration for object storage.
|
||||||
|
|
||||||
|
Options already set on the connection will be inherited by the table,
|
||||||
|
but can be overridden here.
|
||||||
|
|
||||||
|
The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### useLegacyFormat?
|
||||||
|
|
||||||
|
> `optional` **useLegacyFormat**: `boolean`
|
||||||
|
|
||||||
|
If true then data files will be written with the legacy format
|
||||||
|
|
||||||
|
The default is true while the new format is in beta
|
||||||
|
|||||||
@@ -1,4 +1,8 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / ExecutableQuery
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / ExecutableQuery
|
||||||
|
|
||||||
# Interface: ExecutableQuery
|
# Interface: ExecutableQuery
|
||||||
|
|
||||||
|
|||||||
@@ -1,39 +1,36 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexConfig
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / IndexConfig
|
||||||
|
|
||||||
# Interface: IndexConfig
|
# Interface: IndexConfig
|
||||||
|
|
||||||
A description of an index currently configured on a column
|
A description of an index currently configured on a column
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [columns](IndexConfig.md#columns)
|
|
||||||
- [indexType](IndexConfig.md#indextype)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### columns
|
### columns
|
||||||
|
|
||||||
• **columns**: `string`[]
|
> **columns**: `string`[]
|
||||||
|
|
||||||
The columns in the index
|
The columns in the index
|
||||||
|
|
||||||
Currently this is always an array of size 1. In the future there may
|
Currently this is always an array of size 1. In the future there may
|
||||||
be more columns to represent composite indices.
|
be more columns to represent composite indices.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
native.d.ts:16
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### indexType
|
### indexType
|
||||||
|
|
||||||
• **indexType**: `string`
|
> **indexType**: `string`
|
||||||
|
|
||||||
The type of the index
|
The type of the index
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
native.d.ts:9
|
### name
|
||||||
|
|
||||||
|
> **name**: `string`
|
||||||
|
|
||||||
|
The name of the index
|
||||||
|
|||||||
19
docs/src/js/interfaces/IndexMetadata.md
Normal file
19
docs/src/js/interfaces/IndexMetadata.md
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / IndexMetadata
|
||||||
|
|
||||||
|
# Interface: IndexMetadata
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### indexType?
|
||||||
|
|
||||||
|
> `optional` **indexType**: `string`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### metricType?
|
||||||
|
|
||||||
|
> `optional` **metricType**: `string`
|
||||||
@@ -1,19 +1,16 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IndexOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / IndexOptions
|
||||||
|
|
||||||
# Interface: IndexOptions
|
# Interface: IndexOptions
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [config](IndexOptions.md#config)
|
|
||||||
- [replace](IndexOptions.md#replace)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### config
|
### config?
|
||||||
|
|
||||||
• `Optional` **config**: [`Index`](../classes/Index.md)
|
> `optional` **config**: [`Index`](../classes/Index.md)
|
||||||
|
|
||||||
Advanced index configuration
|
Advanced index configuration
|
||||||
|
|
||||||
@@ -25,15 +22,11 @@ See the static methods on Index for details on the various index types.
|
|||||||
If this is not supplied then column data type(s) and column statistics
|
If this is not supplied then column data type(s) and column statistics
|
||||||
will be used to determine the most useful kind of index to create.
|
will be used to determine the most useful kind of index to create.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[indices.ts:192](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L192)
|
### replace?
|
||||||
|
|
||||||
___
|
> `optional` **replace**: `boolean`
|
||||||
|
|
||||||
### replace
|
|
||||||
|
|
||||||
• `Optional` **replace**: `boolean`
|
|
||||||
|
|
||||||
Whether to replace the existing index
|
Whether to replace the existing index
|
||||||
|
|
||||||
@@ -42,7 +35,3 @@ and the same name, then an error will be returned. This is true even if
|
|||||||
that index is out of date.
|
that index is out of date.
|
||||||
|
|
||||||
The default is true
|
The default is true
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[indices.ts:202](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L202)
|
|
||||||
|
|||||||
39
docs/src/js/interfaces/IndexStatistics.md
Normal file
39
docs/src/js/interfaces/IndexStatistics.md
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / IndexStatistics
|
||||||
|
|
||||||
|
# Interface: IndexStatistics
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### indexType?
|
||||||
|
|
||||||
|
> `optional` **indexType**: `string`
|
||||||
|
|
||||||
|
The type of the index
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### indices
|
||||||
|
|
||||||
|
> **indices**: [`IndexMetadata`](IndexMetadata.md)[]
|
||||||
|
|
||||||
|
The metadata for each index
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### numIndexedRows
|
||||||
|
|
||||||
|
> **numIndexedRows**: `number`
|
||||||
|
|
||||||
|
The number of rows indexed by the index
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### numUnindexedRows
|
||||||
|
|
||||||
|
> **numUnindexedRows**: `number`
|
||||||
|
|
||||||
|
The number of rows not indexed
|
||||||
@@ -1,24 +1,18 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / IvfPqOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / IvfPqOptions
|
||||||
|
|
||||||
# Interface: IvfPqOptions
|
# Interface: IvfPqOptions
|
||||||
|
|
||||||
Options to create an `IVF_PQ` index
|
Options to create an `IVF_PQ` index
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [distanceType](IvfPqOptions.md#distancetype)
|
|
||||||
- [maxIterations](IvfPqOptions.md#maxiterations)
|
|
||||||
- [numPartitions](IvfPqOptions.md#numpartitions)
|
|
||||||
- [numSubVectors](IvfPqOptions.md#numsubvectors)
|
|
||||||
- [sampleRate](IvfPqOptions.md#samplerate)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### distanceType
|
### distanceType?
|
||||||
|
|
||||||
• `Optional` **distanceType**: ``"l2"`` \| ``"cosine"`` \| ``"dot"``
|
> `optional` **distanceType**: `"l2"` \| `"cosine"` \| `"dot"`
|
||||||
|
|
||||||
Distance type to use to build the index.
|
Distance type to use to build the index.
|
||||||
|
|
||||||
@@ -52,15 +46,11 @@ never be returned from a vector search.
|
|||||||
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
|
distance has a range of (-∞, ∞). If the vectors are normalized (i.e. their
|
||||||
L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
L2 norm is 1), then dot distance is equivalent to the cosine distance.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[indices.ts:83](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L83)
|
### maxIterations?
|
||||||
|
|
||||||
___
|
> `optional` **maxIterations**: `number`
|
||||||
|
|
||||||
### maxIterations
|
|
||||||
|
|
||||||
• `Optional` **maxIterations**: `number`
|
|
||||||
|
|
||||||
Max iteration to train IVF kmeans.
|
Max iteration to train IVF kmeans.
|
||||||
|
|
||||||
@@ -72,15 +62,11 @@ iterations have diminishing returns.
|
|||||||
|
|
||||||
The default value is 50.
|
The default value is 50.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[indices.ts:96](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L96)
|
### numPartitions?
|
||||||
|
|
||||||
___
|
> `optional` **numPartitions**: `number`
|
||||||
|
|
||||||
### numPartitions
|
|
||||||
|
|
||||||
• `Optional` **numPartitions**: `number`
|
|
||||||
|
|
||||||
The number of IVF partitions to create.
|
The number of IVF partitions to create.
|
||||||
|
|
||||||
@@ -92,15 +78,11 @@ If this value is too large then the first part of the search (picking the
|
|||||||
right partition) will be slow. If this value is too small then the second
|
right partition) will be slow. If this value is too small then the second
|
||||||
part of the search (searching within a partition) will be slow.
|
part of the search (searching within a partition) will be slow.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[indices.ts:32](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L32)
|
### numSubVectors?
|
||||||
|
|
||||||
___
|
> `optional` **numSubVectors**: `number`
|
||||||
|
|
||||||
### numSubVectors
|
|
||||||
|
|
||||||
• `Optional` **numSubVectors**: `number`
|
|
||||||
|
|
||||||
Number of sub-vectors of PQ.
|
Number of sub-vectors of PQ.
|
||||||
|
|
||||||
@@ -115,15 +97,11 @@ us to use efficient SIMD instructions.
|
|||||||
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
|
If the dimension is not visible by 8 then we use 1 subvector. This is not ideal and
|
||||||
will likely result in poor performance.
|
will likely result in poor performance.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[indices.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L48)
|
### sampleRate?
|
||||||
|
|
||||||
___
|
> `optional` **sampleRate**: `number`
|
||||||
|
|
||||||
### sampleRate
|
|
||||||
|
|
||||||
• `Optional` **sampleRate**: `number`
|
|
||||||
|
|
||||||
The number of vectors, per partition, to sample when training IVF kmeans.
|
The number of vectors, per partition, to sample when training IVF kmeans.
|
||||||
|
|
||||||
@@ -138,7 +116,3 @@ Increasing this value might improve the quality of the index but in most cases t
|
|||||||
default should be sufficient.
|
default should be sufficient.
|
||||||
|
|
||||||
The default value is 256.
|
The default value is 256.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[indices.ts:113](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/indices.ts#L113)
|
|
||||||
|
|||||||
@@ -1,38 +1,27 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / TableNamesOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / TableNamesOptions
|
||||||
|
|
||||||
# Interface: TableNamesOptions
|
# Interface: TableNamesOptions
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [limit](TableNamesOptions.md#limit)
|
|
||||||
- [startAfter](TableNamesOptions.md#startafter)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### limit
|
### limit?
|
||||||
|
|
||||||
• `Optional` **limit**: `number`
|
> `optional` **limit**: `number`
|
||||||
|
|
||||||
An optional limit to the number of results to return.
|
An optional limit to the number of results to return.
|
||||||
|
|
||||||
#### Defined in
|
***
|
||||||
|
|
||||||
[connection.ts:48](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L48)
|
### startAfter?
|
||||||
|
|
||||||
___
|
> `optional` **startAfter**: `string`
|
||||||
|
|
||||||
### startAfter
|
|
||||||
|
|
||||||
• `Optional` **startAfter**: `string`
|
|
||||||
|
|
||||||
If present, only return names that come lexicographically after the
|
If present, only return names that come lexicographically after the
|
||||||
supplied value.
|
supplied value.
|
||||||
|
|
||||||
This can be combined with limit to implement pagination by setting this to
|
This can be combined with limit to implement pagination by setting this to
|
||||||
the last table name from the previous page.
|
the last table name from the previous page.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[connection.ts:46](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/connection.ts#L46)
|
|
||||||
|
|||||||
@@ -1,18 +1,16 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / UpdateOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / UpdateOptions
|
||||||
|
|
||||||
# Interface: UpdateOptions
|
# Interface: UpdateOptions
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [where](UpdateOptions.md#where)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### where
|
### where
|
||||||
|
|
||||||
• **where**: `string`
|
> **where**: `string`
|
||||||
|
|
||||||
A filter that limits the scope of the update.
|
A filter that limits the scope of the update.
|
||||||
|
|
||||||
@@ -22,7 +20,3 @@ Only rows that satisfy the expression will be updated.
|
|||||||
|
|
||||||
For example, this could be 'my_col == 0' to replace all instances
|
For example, this could be 'my_col == 0' to replace all instances
|
||||||
of 0 in a column with some other default value.
|
of 0 in a column with some other default value.
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[table.ts:50](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/table.ts#L50)
|
|
||||||
|
|||||||
@@ -1,21 +1,17 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / WriteOptions
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / WriteOptions
|
||||||
|
|
||||||
# Interface: WriteOptions
|
# Interface: WriteOptions
|
||||||
|
|
||||||
Write options when creating a Table.
|
Write options when creating a Table.
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [mode](WriteOptions.md#mode)
|
|
||||||
|
|
||||||
## Properties
|
## Properties
|
||||||
|
|
||||||
### mode
|
### mode?
|
||||||
|
|
||||||
• `Optional` **mode**: [`WriteMode`](../enums/WriteMode.md)
|
> `optional` **mode**: [`WriteMode`](../enumerations/WriteMode.md)
|
||||||
|
|
||||||
#### Defined in
|
Write mode for writing to a table.
|
||||||
|
|
||||||
native.d.ts:74
|
|
||||||
|
|||||||
@@ -1,129 +0,0 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / [embedding](../modules/embedding.md) / EmbeddingFunction
|
|
||||||
|
|
||||||
# Interface: EmbeddingFunction\<T\>
|
|
||||||
|
|
||||||
[embedding](../modules/embedding.md).EmbeddingFunction
|
|
||||||
|
|
||||||
An embedding function that automatically creates vector representation for a given column.
|
|
||||||
|
|
||||||
## Type parameters
|
|
||||||
|
|
||||||
| Name |
|
|
||||||
| :------ |
|
|
||||||
| `T` |
|
|
||||||
|
|
||||||
## Implemented by
|
|
||||||
|
|
||||||
- [`OpenAIEmbeddingFunction`](../classes/embedding.OpenAIEmbeddingFunction.md)
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Properties
|
|
||||||
|
|
||||||
- [destColumn](embedding.EmbeddingFunction.md#destcolumn)
|
|
||||||
- [embed](embedding.EmbeddingFunction.md#embed)
|
|
||||||
- [embeddingDataType](embedding.EmbeddingFunction.md#embeddingdatatype)
|
|
||||||
- [embeddingDimension](embedding.EmbeddingFunction.md#embeddingdimension)
|
|
||||||
- [excludeSource](embedding.EmbeddingFunction.md#excludesource)
|
|
||||||
- [sourceColumn](embedding.EmbeddingFunction.md#sourcecolumn)
|
|
||||||
|
|
||||||
## Properties
|
|
||||||
|
|
||||||
### destColumn
|
|
||||||
|
|
||||||
• `Optional` **destColumn**: `string`
|
|
||||||
|
|
||||||
The name of the column that will contain the embedding
|
|
||||||
|
|
||||||
By default this is "vector"
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:49](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L49)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### embed
|
|
||||||
|
|
||||||
• **embed**: (`data`: `T`[]) => `Promise`\<`number`[][]\>
|
|
||||||
|
|
||||||
Creates a vector representation for the given values.
|
|
||||||
|
|
||||||
#### Type declaration
|
|
||||||
|
|
||||||
▸ (`data`): `Promise`\<`number`[][]\>
|
|
||||||
|
|
||||||
Creates a vector representation for the given values.
|
|
||||||
|
|
||||||
##### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `data` | `T`[] |
|
|
||||||
|
|
||||||
##### Returns
|
|
||||||
|
|
||||||
`Promise`\<`number`[][]\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:62](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L62)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### embeddingDataType
|
|
||||||
|
|
||||||
• `Optional` **embeddingDataType**: `Float`\<`Floats`\>
|
|
||||||
|
|
||||||
The data type of the embedding
|
|
||||||
|
|
||||||
The embedding function should return `number`. This will be converted into
|
|
||||||
an Arrow float array. By default this will be Float32 but this property can
|
|
||||||
be used to control the conversion.
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:33](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L33)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### embeddingDimension
|
|
||||||
|
|
||||||
• `Optional` **embeddingDimension**: `number`
|
|
||||||
|
|
||||||
The dimension of the embedding
|
|
||||||
|
|
||||||
This is optional, normally this can be determined by looking at the results of
|
|
||||||
`embed`. If this is not specified, and there is an attempt to apply the embedding
|
|
||||||
to an empty table, then that process will fail.
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:42](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L42)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### excludeSource
|
|
||||||
|
|
||||||
• `Optional` **excludeSource**: `boolean`
|
|
||||||
|
|
||||||
Should the source column be excluded from the resulting table
|
|
||||||
|
|
||||||
By default the source column is included. Set this to true and
|
|
||||||
only the embedding will be stored.
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:57](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L57)
|
|
||||||
|
|
||||||
___
|
|
||||||
|
|
||||||
### sourceColumn
|
|
||||||
|
|
||||||
• **sourceColumn**: `string`
|
|
||||||
|
|
||||||
The name of the column that will be used as input for the Embedding Function.
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:24](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L24)
|
|
||||||
@@ -1,45 +0,0 @@
|
|||||||
[@lancedb/lancedb](../README.md) / [Exports](../modules.md) / embedding
|
|
||||||
|
|
||||||
# Namespace: embedding
|
|
||||||
|
|
||||||
## Table of contents
|
|
||||||
|
|
||||||
### Classes
|
|
||||||
|
|
||||||
- [OpenAIEmbeddingFunction](../classes/embedding.OpenAIEmbeddingFunction.md)
|
|
||||||
|
|
||||||
### Interfaces
|
|
||||||
|
|
||||||
- [EmbeddingFunction](../interfaces/embedding.EmbeddingFunction.md)
|
|
||||||
|
|
||||||
### Functions
|
|
||||||
|
|
||||||
- [isEmbeddingFunction](embedding.md#isembeddingfunction)
|
|
||||||
|
|
||||||
## Functions
|
|
||||||
|
|
||||||
### isEmbeddingFunction
|
|
||||||
|
|
||||||
▸ **isEmbeddingFunction**\<`T`\>(`value`): value is EmbeddingFunction\<T\>
|
|
||||||
|
|
||||||
Test if the input seems to be an embedding function
|
|
||||||
|
|
||||||
#### Type parameters
|
|
||||||
|
|
||||||
| Name |
|
|
||||||
| :------ |
|
|
||||||
| `T` |
|
|
||||||
|
|
||||||
#### Parameters
|
|
||||||
|
|
||||||
| Name | Type |
|
|
||||||
| :------ | :------ |
|
|
||||||
| `value` | `unknown` |
|
|
||||||
|
|
||||||
#### Returns
|
|
||||||
|
|
||||||
value is EmbeddingFunction\<T\>
|
|
||||||
|
|
||||||
#### Defined in
|
|
||||||
|
|
||||||
[embedding/embedding_function.ts:66](https://github.com/lancedb/lancedb/blob/9d178c7/nodejs/lancedb/embedding/embedding_function.ts#L66)
|
|
||||||
29
docs/src/js/namespaces/embedding/README.md
Normal file
29
docs/src/js/namespaces/embedding/README.md
Normal file
@@ -0,0 +1,29 @@
|
|||||||
|
[**@lancedb/lancedb**](../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../globals.md) / embedding
|
||||||
|
|
||||||
|
# embedding
|
||||||
|
|
||||||
|
## Index
|
||||||
|
|
||||||
|
### Classes
|
||||||
|
|
||||||
|
- [EmbeddingFunction](classes/EmbeddingFunction.md)
|
||||||
|
- [EmbeddingFunctionRegistry](classes/EmbeddingFunctionRegistry.md)
|
||||||
|
- [OpenAIEmbeddingFunction](classes/OpenAIEmbeddingFunction.md)
|
||||||
|
|
||||||
|
### Interfaces
|
||||||
|
|
||||||
|
- [EmbeddingFunctionConfig](interfaces/EmbeddingFunctionConfig.md)
|
||||||
|
|
||||||
|
### Type Aliases
|
||||||
|
|
||||||
|
- [OpenAIOptions](type-aliases/OpenAIOptions.md)
|
||||||
|
|
||||||
|
### Functions
|
||||||
|
|
||||||
|
- [LanceSchema](functions/LanceSchema.md)
|
||||||
|
- [getRegistry](functions/getRegistry.md)
|
||||||
|
- [register](functions/register.md)
|
||||||
162
docs/src/js/namespaces/embedding/classes/EmbeddingFunction.md
Normal file
162
docs/src/js/namespaces/embedding/classes/EmbeddingFunction.md
Normal file
@@ -0,0 +1,162 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunction
|
||||||
|
|
||||||
|
# Class: `abstract` EmbeddingFunction<T, M>
|
||||||
|
|
||||||
|
An embedding function that automatically creates vector representation for a given column.
|
||||||
|
|
||||||
|
## Extended by
|
||||||
|
|
||||||
|
- [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||||
|
|
||||||
|
## Type Parameters
|
||||||
|
|
||||||
|
• **T** = `any`
|
||||||
|
|
||||||
|
• **M** *extends* `FunctionOptions` = `FunctionOptions`
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### new EmbeddingFunction()
|
||||||
|
|
||||||
|
> **new EmbeddingFunction**<`T`, `M`>(): [`EmbeddingFunction`](EmbeddingFunction.md)<`T`, `M`>
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md)<`T`, `M`>
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### computeQueryEmbeddings()
|
||||||
|
|
||||||
|
> **computeQueryEmbeddings**(`data`): `Promise`<`number`[] \| `Float32Array` \| `Float64Array`>
|
||||||
|
|
||||||
|
Compute the embeddings for a single query
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **data**: `T`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`[] \| `Float32Array` \| `Float64Array`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### computeSourceEmbeddings()
|
||||||
|
|
||||||
|
> `abstract` **computeSourceEmbeddings**(`data`): `Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||||
|
|
||||||
|
Creates a vector representation for the given values.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **data**: `T`[]
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`[][] \| `Float32Array`[] \| `Float64Array`[]>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### embeddingDataType()
|
||||||
|
|
||||||
|
> `abstract` **embeddingDataType**(): `Float`<`Floats`>
|
||||||
|
|
||||||
|
The datatype of the embeddings
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Float`<`Floats`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### ndims()
|
||||||
|
|
||||||
|
> **ndims**(): `undefined` \| `number`
|
||||||
|
|
||||||
|
The number of dimensions of the embeddings
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`undefined` \| `number`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### sourceField()
|
||||||
|
|
||||||
|
> **sourceField**(`optionsOrDatatype`): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||||
|
|
||||||
|
The options for the field or the datatype
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
#### See
|
||||||
|
|
||||||
|
lancedb.LanceSchema
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### toJSON()
|
||||||
|
|
||||||
|
> `abstract` **toJSON**(): `Partial`<`M`>
|
||||||
|
|
||||||
|
Convert the embedding function to a JSON object
|
||||||
|
It is used to serialize the embedding function to the schema
|
||||||
|
It's important that any object returned by this method contains all the necessary
|
||||||
|
information to recreate the embedding function
|
||||||
|
|
||||||
|
It should return the same object that was passed to the constructor
|
||||||
|
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Partial`<`M`>
|
||||||
|
|
||||||
|
#### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
class MyEmbeddingFunction extends EmbeddingFunction {
|
||||||
|
constructor(options: {model: string, timeout: number}) {
|
||||||
|
super();
|
||||||
|
this.model = options.model;
|
||||||
|
this.timeout = options.timeout;
|
||||||
|
}
|
||||||
|
toJSON() {
|
||||||
|
return {
|
||||||
|
model: this.model,
|
||||||
|
timeout: this.timeout,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### vectorField()
|
||||||
|
|
||||||
|
> **vectorField**(`optionsOrDatatype`?): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
#### See
|
||||||
|
|
||||||
|
lancedb.LanceSchema
|
||||||
@@ -0,0 +1,124 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
# Class: EmbeddingFunctionRegistry
|
||||||
|
|
||||||
|
This is a singleton class used to register embedding functions
|
||||||
|
and fetch them by name. It also handles serializing and deserializing.
|
||||||
|
You can implement your own embedding function by subclassing EmbeddingFunction
|
||||||
|
or TextEmbeddingFunction and registering it with the registry
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### new EmbeddingFunctionRegistry()
|
||||||
|
|
||||||
|
> **new EmbeddingFunctionRegistry**(): [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### functionToMetadata()
|
||||||
|
|
||||||
|
> **functionToMetadata**(`conf`): `Record`<`string`, `any`>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **conf**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Record`<`string`, `any`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### get()
|
||||||
|
|
||||||
|
> **get**<`T`, `Name`>(`name`): `Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`<[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)> : `undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||||
|
|
||||||
|
Fetch an embedding function by name
|
||||||
|
|
||||||
|
#### Type Parameters
|
||||||
|
|
||||||
|
• **T** *extends* [`EmbeddingFunction`](EmbeddingFunction.md)<`unknown`, `FunctionOptions`>
|
||||||
|
|
||||||
|
• **Name** *extends* `string` = `""`
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **name**: `Name` *extends* `"openai"` ? `"openai"` : `string`
|
||||||
|
|
||||||
|
The name of the function
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Name` *extends* `"openai"` ? `EmbeddingFunctionCreate`<[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)> : `undefined` \| `EmbeddingFunctionCreate`<`T`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### getTableMetadata()
|
||||||
|
|
||||||
|
> **getTableMetadata**(`functions`): `Map`<`string`, `string`>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **functions**: [`EmbeddingFunctionConfig`](../interfaces/EmbeddingFunctionConfig.md)[]
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Map`<`string`, `string`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### register()
|
||||||
|
|
||||||
|
> **register**<`T`>(`this`, `alias`?): (`ctor`) => `any`
|
||||||
|
|
||||||
|
Register an embedding function
|
||||||
|
|
||||||
|
#### Type Parameters
|
||||||
|
|
||||||
|
• **T** *extends* `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>> = `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
• **alias?**: `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Function`
|
||||||
|
|
||||||
|
##### Parameters
|
||||||
|
|
||||||
|
• **ctor**: `T`
|
||||||
|
|
||||||
|
##### Returns
|
||||||
|
|
||||||
|
`any`
|
||||||
|
|
||||||
|
#### Throws
|
||||||
|
|
||||||
|
Error if the function is already registered
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### reset()
|
||||||
|
|
||||||
|
> **reset**(`this`): `void`
|
||||||
|
|
||||||
|
reset the registry to the initial state
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **this**: [`EmbeddingFunctionRegistry`](EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`void`
|
||||||
@@ -0,0 +1,196 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIEmbeddingFunction
|
||||||
|
|
||||||
|
# Class: OpenAIEmbeddingFunction
|
||||||
|
|
||||||
|
An embedding function that automatically creates vector representation for a given column.
|
||||||
|
|
||||||
|
## Extends
|
||||||
|
|
||||||
|
- [`EmbeddingFunction`](EmbeddingFunction.md)<`string`, `Partial`<[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)>>
|
||||||
|
|
||||||
|
## Constructors
|
||||||
|
|
||||||
|
### new OpenAIEmbeddingFunction()
|
||||||
|
|
||||||
|
> **new OpenAIEmbeddingFunction**(`options`): [`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **options**: `Partial`<[`OpenAIOptions`](../type-aliases/OpenAIOptions.md)> = `...`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`OpenAIEmbeddingFunction`](OpenAIEmbeddingFunction.md)
|
||||||
|
|
||||||
|
#### Overrides
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`constructor`](EmbeddingFunction.md#constructors)
|
||||||
|
|
||||||
|
## Methods
|
||||||
|
|
||||||
|
### computeQueryEmbeddings()
|
||||||
|
|
||||||
|
> **computeQueryEmbeddings**(`data`): `Promise`<`number`[]>
|
||||||
|
|
||||||
|
Compute the embeddings for a single query
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **data**: `string`
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`[]>
|
||||||
|
|
||||||
|
#### Overrides
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeQueryEmbeddings`](EmbeddingFunction.md#computequeryembeddings)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### computeSourceEmbeddings()
|
||||||
|
|
||||||
|
> **computeSourceEmbeddings**(`data`): `Promise`<`number`[][]>
|
||||||
|
|
||||||
|
Creates a vector representation for the given values.
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **data**: `string`[]
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Promise`<`number`[][]>
|
||||||
|
|
||||||
|
#### Overrides
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`computeSourceEmbeddings`](EmbeddingFunction.md#computesourceembeddings)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### embeddingDataType()
|
||||||
|
|
||||||
|
> **embeddingDataType**(): `Float`<`Floats`>
|
||||||
|
|
||||||
|
The datatype of the embeddings
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`Float`<`Floats`>
|
||||||
|
|
||||||
|
#### Overrides
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`embeddingDataType`](EmbeddingFunction.md#embeddingdatatype)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### ndims()
|
||||||
|
|
||||||
|
> **ndims**(): `number`
|
||||||
|
|
||||||
|
The number of dimensions of the embeddings
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`number`
|
||||||
|
|
||||||
|
#### Overrides
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`ndims`](EmbeddingFunction.md#ndims)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### sourceField()
|
||||||
|
|
||||||
|
> **sourceField**(`optionsOrDatatype`): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
sourceField is used in combination with `LanceSchema` to provide a declarative data model
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **optionsOrDatatype**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||||
|
|
||||||
|
The options for the field or the datatype
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
#### See
|
||||||
|
|
||||||
|
lancedb.LanceSchema
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`sourceField`](EmbeddingFunction.md#sourcefield)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### toJSON()
|
||||||
|
|
||||||
|
> **toJSON**(): `object`
|
||||||
|
|
||||||
|
Convert the embedding function to a JSON object
|
||||||
|
It is used to serialize the embedding function to the schema
|
||||||
|
It's important that any object returned by this method contains all the necessary
|
||||||
|
information to recreate the embedding function
|
||||||
|
|
||||||
|
It should return the same object that was passed to the constructor
|
||||||
|
If it does not, the embedding function will not be able to be recreated, or could be recreated incorrectly
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
`object`
|
||||||
|
|
||||||
|
##### model
|
||||||
|
|
||||||
|
> **model**: `string` & `object` \| `"text-embedding-ada-002"` \| `"text-embedding-3-small"` \| `"text-embedding-3-large"`
|
||||||
|
|
||||||
|
#### Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
class MyEmbeddingFunction extends EmbeddingFunction {
|
||||||
|
constructor(options: {model: string, timeout: number}) {
|
||||||
|
super();
|
||||||
|
this.model = options.model;
|
||||||
|
this.timeout = options.timeout;
|
||||||
|
}
|
||||||
|
toJSON() {
|
||||||
|
return {
|
||||||
|
model: this.model,
|
||||||
|
timeout: this.timeout,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Overrides
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`toJSON`](EmbeddingFunction.md#tojson)
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### vectorField()
|
||||||
|
|
||||||
|
> **vectorField**(`optionsOrDatatype`?): [`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
vectorField is used in combination with `LanceSchema` to provide a declarative data model
|
||||||
|
|
||||||
|
#### Parameters
|
||||||
|
|
||||||
|
• **optionsOrDatatype?**: `DataType`<`Type`, `any`> \| `Partial`<`FieldOptions`<`DataType`<`Type`, `any`>>>
|
||||||
|
|
||||||
|
#### Returns
|
||||||
|
|
||||||
|
[`DataType`<`Type`, `any`>, `Map`<`string`, [`EmbeddingFunction`](EmbeddingFunction.md)<`any`, `FunctionOptions`>>]
|
||||||
|
|
||||||
|
#### See
|
||||||
|
|
||||||
|
lancedb.LanceSchema
|
||||||
|
|
||||||
|
#### Inherited from
|
||||||
|
|
||||||
|
[`EmbeddingFunction`](EmbeddingFunction.md).[`vectorField`](EmbeddingFunction.md#vectorfield)
|
||||||
39
docs/src/js/namespaces/embedding/functions/LanceSchema.md
Normal file
39
docs/src/js/namespaces/embedding/functions/LanceSchema.md
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / LanceSchema
|
||||||
|
|
||||||
|
# Function: LanceSchema()
|
||||||
|
|
||||||
|
> **LanceSchema**(`fields`): `Schema`
|
||||||
|
|
||||||
|
Create a schema with embedding functions.
|
||||||
|
|
||||||
|
## Parameters
|
||||||
|
|
||||||
|
• **fields**: `Record`<`string`, `object` \| [`object`, `Map`<`string`, [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>]>
|
||||||
|
|
||||||
|
## Returns
|
||||||
|
|
||||||
|
`Schema`
|
||||||
|
|
||||||
|
Schema
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
class MyEmbeddingFunction extends EmbeddingFunction {
|
||||||
|
// ...
|
||||||
|
}
|
||||||
|
const func = new MyEmbeddingFunction();
|
||||||
|
const schema = LanceSchema({
|
||||||
|
id: new Int32(),
|
||||||
|
text: func.sourceField(new Utf8()),
|
||||||
|
vector: func.vectorField(),
|
||||||
|
// optional: specify the datatype and/or dimensions
|
||||||
|
vector2: func.vectorField({ datatype: new Float32(), dims: 3}),
|
||||||
|
});
|
||||||
|
|
||||||
|
const table = await db.createTable("my_table", data, { schema });
|
||||||
|
```
|
||||||
23
docs/src/js/namespaces/embedding/functions/getRegistry.md
Normal file
23
docs/src/js/namespaces/embedding/functions/getRegistry.md
Normal file
@@ -0,0 +1,23 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / getRegistry
|
||||||
|
|
||||||
|
# Function: getRegistry()
|
||||||
|
|
||||||
|
> **getRegistry**(): [`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
Utility function to get the global instance of the registry
|
||||||
|
|
||||||
|
## Returns
|
||||||
|
|
||||||
|
[`EmbeddingFunctionRegistry`](../classes/EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
`EmbeddingFunctionRegistry` The global instance of the registry
|
||||||
|
|
||||||
|
## Example
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const registry = getRegistry();
|
||||||
|
const openai = registry.get("openai").create();
|
||||||
25
docs/src/js/namespaces/embedding/functions/register.md
Normal file
25
docs/src/js/namespaces/embedding/functions/register.md
Normal file
@@ -0,0 +1,25 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / register
|
||||||
|
|
||||||
|
# Function: register()
|
||||||
|
|
||||||
|
> **register**(`name`?): (`ctor`) => `any`
|
||||||
|
|
||||||
|
## Parameters
|
||||||
|
|
||||||
|
• **name?**: `string`
|
||||||
|
|
||||||
|
## Returns
|
||||||
|
|
||||||
|
`Function`
|
||||||
|
|
||||||
|
### Parameters
|
||||||
|
|
||||||
|
• **ctor**: `EmbeddingFunctionConstructor`<[`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>>
|
||||||
|
|
||||||
|
### Returns
|
||||||
|
|
||||||
|
`any`
|
||||||
@@ -0,0 +1,25 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / EmbeddingFunctionConfig
|
||||||
|
|
||||||
|
# Interface: EmbeddingFunctionConfig
|
||||||
|
|
||||||
|
## Properties
|
||||||
|
|
||||||
|
### function
|
||||||
|
|
||||||
|
> **function**: [`EmbeddingFunction`](../classes/EmbeddingFunction.md)<`any`, `FunctionOptions`>
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### sourceColumn
|
||||||
|
|
||||||
|
> **sourceColumn**: `string`
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
### vectorColumn?
|
||||||
|
|
||||||
|
> `optional` **vectorColumn**: `string`
|
||||||
@@ -0,0 +1,19 @@
|
|||||||
|
[**@lancedb/lancedb**](../../../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../../../globals.md) / [embedding](../README.md) / OpenAIOptions
|
||||||
|
|
||||||
|
# Type Alias: OpenAIOptions
|
||||||
|
|
||||||
|
> **OpenAIOptions**: `object`
|
||||||
|
|
||||||
|
## Type declaration
|
||||||
|
|
||||||
|
### apiKey
|
||||||
|
|
||||||
|
> **apiKey**: `string`
|
||||||
|
|
||||||
|
### model
|
||||||
|
|
||||||
|
> **model**: `EmbeddingCreateParams`\[`"model"`\]
|
||||||
11
docs/src/js/type-aliases/Data.md
Normal file
11
docs/src/js/type-aliases/Data.md
Normal file
@@ -0,0 +1,11 @@
|
|||||||
|
[**@lancedb/lancedb**](../README.md) • **Docs**
|
||||||
|
|
||||||
|
***
|
||||||
|
|
||||||
|
[@lancedb/lancedb](../globals.md) / Data
|
||||||
|
|
||||||
|
# Type Alias: Data
|
||||||
|
|
||||||
|
> **Data**: `Record`<`string`, `unknown`>[] \| `TableLike`
|
||||||
|
|
||||||
|
Data type accepted by NodeJS SDK
|
||||||
@@ -80,11 +80,28 @@ we plan to support them soon.
|
|||||||
|
|
||||||
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
|
For JS/TS users, we offer a brand new SDK [@lancedb/lancedb](https://www.npmjs.com/package/@lancedb/lancedb)
|
||||||
|
|
||||||
|
We tried to keep the API as similar as possible to the previous version, but there are a few small changes. Here are the most important ones:
|
||||||
|
|
||||||
|
### Creating Tables
|
||||||
|
|
||||||
|
[CreateTableOptions.writeOptions.writeMode](./javascript/interfaces/WriteOptions.md#writemode) has been replaced with [CreateTableOptions.mode](./js/interfaces/CreateTableOptions.md#mode)
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
db.createTable(tableName, data, { writeMode: lancedb.WriteMode.Overwrite });
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
db.createTable(tableName, data, { mode: "overwrite" })
|
||||||
|
```
|
||||||
|
|
||||||
### Changes to Table APIs
|
### Changes to Table APIs
|
||||||
|
|
||||||
Previously `Table.schema` was a property. Now it is an async method.
|
Previously `Table.schema` was a property. Now it is an async method.
|
||||||
|
|
||||||
|
|
||||||
#### Creating Indices
|
#### Creating Indices
|
||||||
|
|
||||||
The `Table.createIndex` method is now used for creating both vector indices
|
The `Table.createIndex` method is now used for creating both vector indices
|
||||||
@@ -92,5 +109,83 @@ and scalar indices. It currently requires a column name to be specified (the
|
|||||||
column to index). Vector index defaults are now smarter and scale better with
|
column to index). Vector index defaults are now smarter and scale better with
|
||||||
the size of the data.
|
the size of the data.
|
||||||
|
|
||||||
To specify index configuration details you will need to specify which kind of
|
=== "vectordb (deprecated)"
|
||||||
index you are using.
|
|
||||||
|
```ts
|
||||||
|
await tbl.createIndex({
|
||||||
|
column: "vector", // default
|
||||||
|
type: "ivf_pq",
|
||||||
|
num_partitions: 2,
|
||||||
|
num_sub_vectors: 2,
|
||||||
|
});
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
await table.createIndex("vector", {
|
||||||
|
config: lancedb.Index.ivfPq({
|
||||||
|
numPartitions: 2,
|
||||||
|
numSubVectors: 2,
|
||||||
|
}),
|
||||||
|
});
|
||||||
|
```
|
||||||
|
|
||||||
|
### Embedding Functions
|
||||||
|
|
||||||
|
The embedding API has been completely reworked, and it now more closely resembles the Python API, including the new [embedding registry](./js/classes/embedding.EmbeddingFunctionRegistry.md)
|
||||||
|
|
||||||
|
=== "vectordb (deprecated)"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
|
||||||
|
const embeddingFunction = new lancedb.OpenAIEmbeddingFunction('text', API_KEY)
|
||||||
|
const data = [
|
||||||
|
{ id: 1, text: 'Black T-Shirt', price: 10 },
|
||||||
|
{ id: 2, text: 'Leather Jacket', price: 50 }
|
||||||
|
]
|
||||||
|
const table = await db.createTable('vectors', data, embeddingFunction)
|
||||||
|
```
|
||||||
|
|
||||||
|
=== "@lancedb/lancedb"
|
||||||
|
|
||||||
|
```ts
|
||||||
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
|
import * as arrow from "apache-arrow";
|
||||||
|
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
||||||
|
|
||||||
|
const func = getRegistry().get("openai").create({apiKey: API_KEY});
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, text: 'Black T-Shirt', price: 10 },
|
||||||
|
{ id: 2, text: 'Leather Jacket', price: 50 }
|
||||||
|
]
|
||||||
|
|
||||||
|
const table = await db.createTable('vectors', data, {
|
||||||
|
embeddingFunction: {
|
||||||
|
sourceColumn: "text",
|
||||||
|
function: func,
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
You can also use a schema driven approach, which parallels the Pydantic integration in our Python SDK:
|
||||||
|
|
||||||
|
```ts
|
||||||
|
const func = getRegistry().get("openai").create({apiKey: API_KEY});
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ id: 1, text: 'Black T-Shirt', price: 10 },
|
||||||
|
{ id: 2, text: 'Leather Jacket', price: 50 }
|
||||||
|
]
|
||||||
|
const schema = LanceSchema({
|
||||||
|
id: new arrow.Int32(),
|
||||||
|
text: func.sourceField(new arrow.Utf8()),
|
||||||
|
price: new arrow.Float64(),
|
||||||
|
vector: func.vectorField()
|
||||||
|
})
|
||||||
|
|
||||||
|
const table = await db.createTable('vectors', data, {schema})
|
||||||
|
|
||||||
|
```
|
||||||
|
|||||||
File diff suppressed because one or more lines are too long
@@ -113,6 +113,10 @@ lists the indices that LanceDb supports.
|
|||||||
|
|
||||||
::: lancedb.index.BTree
|
::: lancedb.index.BTree
|
||||||
|
|
||||||
|
::: lancedb.index.Bitmap
|
||||||
|
|
||||||
|
::: lancedb.index.LabelList
|
||||||
|
|
||||||
::: lancedb.index.IvfPq
|
::: lancedb.index.IvfPq
|
||||||
|
|
||||||
## Querying (Asynchronous)
|
## Querying (Asynchronous)
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
# Python API Reference (SaaS)
|
# Python API Reference (SaaS)
|
||||||
|
|
||||||
This section contains the API reference for the SaaS Python API.
|
This section contains the API reference for the LanceDB Cloud Python API.
|
||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
|
|||||||
53
docs/src/reranking/rrf.md
Normal file
53
docs/src/reranking/rrf.md
Normal file
@@ -0,0 +1,53 @@
|
|||||||
|
# Reciprocal Rank Fusion Reranker
|
||||||
|
|
||||||
|
Reciprocal Rank Fusion (RRF) is an algorithm that evaluates the search scores by leveraging the positions/rank of the documents. The implementation follows this [paper](https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf).
|
||||||
|
|
||||||
|
|
||||||
|
!!! note
|
||||||
|
Supported Query Types: Hybrid
|
||||||
|
|
||||||
|
|
||||||
|
```python
|
||||||
|
import numpy
|
||||||
|
import lancedb
|
||||||
|
from lancedb.embeddings import get_registry
|
||||||
|
from lancedb.pydantic import LanceModel, Vector
|
||||||
|
from lancedb.rerankers import RRFReranker
|
||||||
|
|
||||||
|
embedder = get_registry().get("sentence-transformers").create()
|
||||||
|
db = lancedb.connect("~/.lancedb")
|
||||||
|
|
||||||
|
class Schema(LanceModel):
|
||||||
|
text: str = embedder.SourceField()
|
||||||
|
vector: Vector(embedder.ndims()) = embedder.VectorField()
|
||||||
|
|
||||||
|
data = [
|
||||||
|
{"text": "hello world"},
|
||||||
|
{"text": "goodbye world"}
|
||||||
|
]
|
||||||
|
tbl = db.create_table("test", schema=Schema, mode="overwrite")
|
||||||
|
tbl.add(data)
|
||||||
|
reranker = RRFReranker()
|
||||||
|
|
||||||
|
# Run hybrid search with a reranker
|
||||||
|
tbl.create_fts_index("text", replace=True)
|
||||||
|
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()
|
||||||
|
|
||||||
|
```
|
||||||
|
|
||||||
|
Accepted Arguments
|
||||||
|
----------------
|
||||||
|
| Argument | Type | Default | Description |
|
||||||
|
| --- | --- | --- | --- |
|
||||||
|
| `K` | `int` | `60` | A constant used in the RRF formula (default is 60). Experiments indicate that k = 60 was near-optimal, but that the choice is not critical |
|
||||||
|
| `return_score` | str | `"relevance"` | Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score`. If "all", will return all scores from the vector and FTS search along with the relevance score. |
|
||||||
|
|
||||||
|
|
||||||
|
## Supported Scores for each query type
|
||||||
|
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
|
||||||
|
|
||||||
|
### Hybrid Search
|
||||||
|
|`return_score`| Status | Description |
|
||||||
|
| --- | --- | --- |
|
||||||
|
| `relevance` | ✅ Supported | Returned rows only have the `_relevance_score` column |
|
||||||
|
| `all` | ✅ Supported | Returned rows have vector(`_distance`) and FTS(`score`) along with Hybrid Search score(`_relevance_score`) |
|
||||||
@@ -5,4 +5,5 @@ pylance
|
|||||||
duckdb
|
duckdb
|
||||||
--extra-index-url https://download.pytorch.org/whl/cpu
|
--extra-index-url https://download.pytorch.org/whl/cpu
|
||||||
torch
|
torch
|
||||||
polars
|
polars>=0.19, <=1.3.0
|
||||||
|
|
||||||
|
|||||||
4
node/package-lock.json
generated
4
node/package-lock.json
generated
@@ -1,12 +1,12 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.7.0",
|
"version": "0.9.0",
|
||||||
"lockfileVersion": 3,
|
"lockfileVersion": 3,
|
||||||
"requires": true,
|
"requires": true,
|
||||||
"packages": {
|
"packages": {
|
||||||
"": {
|
"": {
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.7.0",
|
"version": "0.9.0",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
{
|
{
|
||||||
"name": "vectordb",
|
"name": "vectordb",
|
||||||
"version": "0.7.0",
|
"version": "0.9.0",
|
||||||
"description": " Serverless, low-latency vector database for AI applications",
|
"description": " Serverless, low-latency vector database for AI applications",
|
||||||
"main": "dist/index.js",
|
"main": "dist/index.js",
|
||||||
"types": "dist/index.d.ts",
|
"types": "dist/index.d.ts",
|
||||||
|
|||||||
@@ -13,3 +13,13 @@ __test__
|
|||||||
renovate.json
|
renovate.json
|
||||||
.idea
|
.idea
|
||||||
src
|
src
|
||||||
|
lancedb
|
||||||
|
examples
|
||||||
|
nodejs-artifacts
|
||||||
|
Cargo.toml
|
||||||
|
biome.json
|
||||||
|
build.rs
|
||||||
|
jest.config.js
|
||||||
|
native.d.ts
|
||||||
|
tsconfig.json
|
||||||
|
typedoc.json
|
||||||
@@ -20,7 +20,6 @@ napi = { version = "2.16.8", default-features = false, features = [
|
|||||||
"async",
|
"async",
|
||||||
] }
|
] }
|
||||||
napi-derive = "2.16.4"
|
napi-derive = "2.16.4"
|
||||||
|
|
||||||
# Prevent dynamic linking of lzma, which comes from datafusion
|
# Prevent dynamic linking of lzma, which comes from datafusion
|
||||||
lzma-sys = { version = "*", features = ["static"] }
|
lzma-sys = { version = "*", features = ["static"] }
|
||||||
|
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
import { Schema } from "apache-arrow";
|
||||||
// Copyright 2024 Lance Developers.
|
// Copyright 2024 Lance Developers.
|
||||||
//
|
//
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
@@ -12,40 +13,12 @@
|
|||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
|
|
||||||
import {
|
import * as arrow13 from "apache-arrow-13";
|
||||||
Binary,
|
import * as arrow14 from "apache-arrow-14";
|
||||||
Bool,
|
import * as arrow15 from "apache-arrow-15";
|
||||||
DataType,
|
import * as arrow16 from "apache-arrow-16";
|
||||||
Dictionary,
|
import * as arrow17 from "apache-arrow-17";
|
||||||
Field,
|
|
||||||
FixedSizeList,
|
|
||||||
Float,
|
|
||||||
Float16,
|
|
||||||
Float32,
|
|
||||||
Float64,
|
|
||||||
Int32,
|
|
||||||
Int64,
|
|
||||||
List,
|
|
||||||
MetadataVersion,
|
|
||||||
Precision,
|
|
||||||
Schema,
|
|
||||||
Struct,
|
|
||||||
type Table,
|
|
||||||
Type,
|
|
||||||
Utf8,
|
|
||||||
tableFromIPC,
|
|
||||||
} from "apache-arrow";
|
|
||||||
import {
|
|
||||||
Dictionary as OldDictionary,
|
|
||||||
Field as OldField,
|
|
||||||
FixedSizeList as OldFixedSizeList,
|
|
||||||
Float32 as OldFloat32,
|
|
||||||
Int32 as OldInt32,
|
|
||||||
Schema as OldSchema,
|
|
||||||
Struct as OldStruct,
|
|
||||||
TimestampNanosecond as OldTimestampNanosecond,
|
|
||||||
Utf8 as OldUtf8,
|
|
||||||
} from "apache-arrow-old";
|
|
||||||
import {
|
import {
|
||||||
convertToTable,
|
convertToTable,
|
||||||
fromTableToBuffer,
|
fromTableToBuffer,
|
||||||
@@ -72,429 +45,520 @@ function sampleRecords(): Array<Record<string, any>> {
|
|||||||
},
|
},
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||||
|
"Arrow",
|
||||||
|
(
|
||||||
|
arrow:
|
||||||
|
| typeof arrow13
|
||||||
|
| typeof arrow14
|
||||||
|
| typeof arrow15
|
||||||
|
| typeof arrow16
|
||||||
|
| typeof arrow17,
|
||||||
|
) => {
|
||||||
|
type ApacheArrow =
|
||||||
|
| typeof arrow13
|
||||||
|
| typeof arrow14
|
||||||
|
| typeof arrow15
|
||||||
|
| typeof arrow16
|
||||||
|
| typeof arrow17;
|
||||||
|
const {
|
||||||
|
Schema,
|
||||||
|
Field,
|
||||||
|
Binary,
|
||||||
|
Bool,
|
||||||
|
Utf8,
|
||||||
|
Float64,
|
||||||
|
Struct,
|
||||||
|
List,
|
||||||
|
Int32,
|
||||||
|
Int64,
|
||||||
|
Float,
|
||||||
|
Float16,
|
||||||
|
Float32,
|
||||||
|
FixedSizeList,
|
||||||
|
Precision,
|
||||||
|
tableFromIPC,
|
||||||
|
DataType,
|
||||||
|
Dictionary,
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
} = <any>arrow;
|
||||||
|
type Schema = ApacheArrow["Schema"];
|
||||||
|
type Table = ApacheArrow["Table"];
|
||||||
|
|
||||||
// Helper method to verify various ways to create a table
|
// Helper method to verify various ways to create a table
|
||||||
async function checkTableCreation(
|
async function checkTableCreation(
|
||||||
tableCreationMethod: (
|
tableCreationMethod: (
|
||||||
records: Record<string, unknown>[],
|
records: Record<string, unknown>[],
|
||||||
recordsReversed: Record<string, unknown>[],
|
recordsReversed: Record<string, unknown>[],
|
||||||
schema: Schema,
|
schema: Schema,
|
||||||
) => Promise<Table>,
|
) => Promise<Table>,
|
||||||
infersTypes: boolean,
|
infersTypes: boolean,
|
||||||
): Promise<void> {
|
): Promise<void> {
|
||||||
const records = sampleRecords();
|
const records = sampleRecords();
|
||||||
const recordsReversed = [
|
const recordsReversed = [
|
||||||
{
|
{
|
||||||
list: ["anime", "action", "comedy"],
|
list: ["anime", "action", "comedy"],
|
||||||
struct: { x: 0, y: 0 },
|
struct: { x: 0, y: 0 },
|
||||||
string: "hello",
|
string: "hello",
|
||||||
number: 7,
|
number: 7,
|
||||||
boolean: false,
|
boolean: false,
|
||||||
binary: Buffer.alloc(5),
|
binary: Buffer.alloc(5),
|
||||||
},
|
|
||||||
];
|
|
||||||
const schema = new Schema([
|
|
||||||
new Field("binary", new Binary(), false),
|
|
||||||
new Field("boolean", new Bool(), false),
|
|
||||||
new Field("number", new Float64(), false),
|
|
||||||
new Field("string", new Utf8(), false),
|
|
||||||
new Field(
|
|
||||||
"struct",
|
|
||||||
new Struct([
|
|
||||||
new Field("x", new Float64(), false),
|
|
||||||
new Field("y", new Float64(), false),
|
|
||||||
]),
|
|
||||||
),
|
|
||||||
new Field("list", new List(new Field("item", new Utf8(), false)), false),
|
|
||||||
]);
|
|
||||||
|
|
||||||
const table = await tableCreationMethod(records, recordsReversed, schema);
|
|
||||||
schema.fields.forEach((field, idx) => {
|
|
||||||
const actualField = table.schema.fields[idx];
|
|
||||||
// Type inference always assumes nullable=true
|
|
||||||
if (infersTypes) {
|
|
||||||
expect(actualField.nullable).toBe(true);
|
|
||||||
} else {
|
|
||||||
expect(actualField.nullable).toBe(false);
|
|
||||||
}
|
|
||||||
expect(table.getChild(field.name)?.type.toString()).toEqual(
|
|
||||||
field.type.toString(),
|
|
||||||
);
|
|
||||||
expect(table.getChildAt(idx)?.type.toString()).toEqual(
|
|
||||||
field.type.toString(),
|
|
||||||
);
|
|
||||||
});
|
|
||||||
}
|
|
||||||
|
|
||||||
describe("The function makeArrowTable", function () {
|
|
||||||
it("will use data types from a provided schema instead of inference", async function () {
|
|
||||||
const schema = new Schema([
|
|
||||||
new Field("a", new Int32()),
|
|
||||||
new Field("b", new Float32()),
|
|
||||||
new Field("c", new FixedSizeList(3, new Field("item", new Float16()))),
|
|
||||||
new Field("d", new Int64()),
|
|
||||||
]);
|
|
||||||
const table = makeArrowTable(
|
|
||||||
[
|
|
||||||
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
|
|
||||||
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
|
|
||||||
{ a: 7, b: 8, c: [7, 8, 9], d: null },
|
|
||||||
],
|
|
||||||
{ schema },
|
|
||||||
);
|
|
||||||
|
|
||||||
const buf = await fromTableToBuffer(table);
|
|
||||||
expect(buf.byteLength).toBeGreaterThan(0);
|
|
||||||
|
|
||||||
const actual = tableFromIPC(buf);
|
|
||||||
expect(actual.numRows).toBe(3);
|
|
||||||
const actualSchema = actual.schema;
|
|
||||||
expect(actualSchema).toEqual(schema);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will assume the column `vector` is FixedSizeList<Float32> by default", async function () {
|
|
||||||
const schema = new Schema([
|
|
||||||
new Field("a", new Float(Precision.DOUBLE), true),
|
|
||||||
new Field("b", new Float(Precision.DOUBLE), true),
|
|
||||||
new Field(
|
|
||||||
"vector",
|
|
||||||
new FixedSizeList(
|
|
||||||
3,
|
|
||||||
new Field("item", new Float(Precision.SINGLE), true),
|
|
||||||
),
|
|
||||||
true,
|
|
||||||
),
|
|
||||||
]);
|
|
||||||
const table = makeArrowTable([
|
|
||||||
{ a: 1, b: 2, vector: [1, 2, 3] },
|
|
||||||
{ a: 4, b: 5, vector: [4, 5, 6] },
|
|
||||||
{ a: 7, b: 8, vector: [7, 8, 9] },
|
|
||||||
]);
|
|
||||||
|
|
||||||
const buf = await fromTableToBuffer(table);
|
|
||||||
expect(buf.byteLength).toBeGreaterThan(0);
|
|
||||||
|
|
||||||
const actual = tableFromIPC(buf);
|
|
||||||
expect(actual.numRows).toBe(3);
|
|
||||||
const actualSchema = actual.schema;
|
|
||||||
expect(actualSchema).toEqual(schema);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("can support multiple vector columns", async function () {
|
|
||||||
const schema = new Schema([
|
|
||||||
new Field("a", new Float(Precision.DOUBLE), true),
|
|
||||||
new Field("b", new Float(Precision.DOUBLE), true),
|
|
||||||
new Field(
|
|
||||||
"vec1",
|
|
||||||
new FixedSizeList(3, new Field("item", new Float16(), true)),
|
|
||||||
true,
|
|
||||||
),
|
|
||||||
new Field(
|
|
||||||
"vec2",
|
|
||||||
new FixedSizeList(3, new Field("item", new Float16(), true)),
|
|
||||||
true,
|
|
||||||
),
|
|
||||||
]);
|
|
||||||
const table = makeArrowTable(
|
|
||||||
[
|
|
||||||
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
|
||||||
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
|
||||||
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
|
|
||||||
],
|
|
||||||
{
|
|
||||||
vectorColumns: {
|
|
||||||
vec1: { type: new Float16() },
|
|
||||||
vec2: { type: new Float16() },
|
|
||||||
},
|
},
|
||||||
},
|
];
|
||||||
);
|
const schema = new Schema([
|
||||||
|
new Field("binary", new Binary(), false),
|
||||||
const buf = await fromTableToBuffer(table);
|
new Field("boolean", new Bool(), false),
|
||||||
expect(buf.byteLength).toBeGreaterThan(0);
|
new Field("number", new Float64(), false),
|
||||||
|
new Field("string", new Utf8(), false),
|
||||||
const actual = tableFromIPC(buf);
|
new Field(
|
||||||
expect(actual.numRows).toBe(3);
|
"struct",
|
||||||
const actualSchema = actual.schema;
|
new Struct([
|
||||||
expect(actualSchema).toEqual(schema);
|
new Field("x", new Float64(), false),
|
||||||
});
|
new Field("y", new Float64(), false),
|
||||||
|
]),
|
||||||
it("will allow different vector column types", async function () {
|
|
||||||
const table = makeArrowTable([{ fp16: [1], fp32: [1], fp64: [1] }], {
|
|
||||||
vectorColumns: {
|
|
||||||
fp16: { type: new Float16() },
|
|
||||||
fp32: { type: new Float32() },
|
|
||||||
fp64: { type: new Float64() },
|
|
||||||
},
|
|
||||||
});
|
|
||||||
|
|
||||||
expect(table.getChild("fp16")?.type.children[0].type.toString()).toEqual(
|
|
||||||
new Float16().toString(),
|
|
||||||
);
|
|
||||||
expect(table.getChild("fp32")?.type.children[0].type.toString()).toEqual(
|
|
||||||
new Float32().toString(),
|
|
||||||
);
|
|
||||||
expect(table.getChild("fp64")?.type.children[0].type.toString()).toEqual(
|
|
||||||
new Float64().toString(),
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will use dictionary encoded strings if asked", async function () {
|
|
||||||
const table = makeArrowTable([{ str: "hello" }]);
|
|
||||||
expect(DataType.isUtf8(table.getChild("str")?.type)).toBe(true);
|
|
||||||
|
|
||||||
const tableWithDict = makeArrowTable([{ str: "hello" }], {
|
|
||||||
dictionaryEncodeStrings: true,
|
|
||||||
});
|
|
||||||
expect(DataType.isDictionary(tableWithDict.getChild("str")?.type)).toBe(
|
|
||||||
true,
|
|
||||||
);
|
|
||||||
|
|
||||||
const schema = new Schema([
|
|
||||||
new Field("str", new Dictionary(new Utf8(), new Int32())),
|
|
||||||
]);
|
|
||||||
|
|
||||||
const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema });
|
|
||||||
expect(DataType.isDictionary(tableWithDict2.getChild("str")?.type)).toBe(
|
|
||||||
true,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will infer data types correctly", async function () {
|
|
||||||
await checkTableCreation(async (records) => makeArrowTable(records), true);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will allow a schema to be provided", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (records, _, schema) => makeArrowTable(records, { schema }),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will use the field order of any provided schema", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (_, recordsReversed, schema) =>
|
|
||||||
makeArrowTable(recordsReversed, { schema }),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will make an empty table", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (_, __, schema) => makeArrowTable([], { schema }),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
});
|
|
||||||
|
|
||||||
class DummyEmbedding extends EmbeddingFunction<string> {
|
|
||||||
toJSON(): Partial<FunctionOptions> {
|
|
||||||
return {};
|
|
||||||
}
|
|
||||||
|
|
||||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
|
||||||
return data.map(() => [0.0, 0.0]);
|
|
||||||
}
|
|
||||||
|
|
||||||
ndims(): number {
|
|
||||||
return 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
embeddingDataType() {
|
|
||||||
return new Float16();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
|
|
||||||
toJSON(): Partial<FunctionOptions> {
|
|
||||||
return {};
|
|
||||||
}
|
|
||||||
|
|
||||||
embeddingDataType(): Float {
|
|
||||||
return new Float16();
|
|
||||||
}
|
|
||||||
|
|
||||||
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
|
||||||
return data.map(() => [0.0, 0.0]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
|
|
||||||
sourceColumn: "string",
|
|
||||||
function: new DummyEmbedding(),
|
|
||||||
};
|
|
||||||
|
|
||||||
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
|
|
||||||
sourceColumn: "string",
|
|
||||||
function: new DummyEmbeddingWithNoDimension(),
|
|
||||||
};
|
|
||||||
|
|
||||||
describe("convertToTable", function () {
|
|
||||||
it("will infer data types correctly", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (records) => await convertToTable(records),
|
|
||||||
true,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will allow a schema to be provided", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (records, _, schema) =>
|
|
||||||
await convertToTable(records, undefined, { schema }),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will use the field order of any provided schema", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (_, recordsReversed, schema) =>
|
|
||||||
await convertToTable(recordsReversed, undefined, { schema }),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will make an empty table", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (_, __, schema) => await convertToTable([], undefined, { schema }),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will apply embeddings", async function () {
|
|
||||||
const records = sampleRecords();
|
|
||||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
|
||||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
|
||||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
|
||||||
new Float16().toString(),
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will fail if missing the embedding source column", async function () {
|
|
||||||
await expect(
|
|
||||||
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
|
|
||||||
).rejects.toThrow("'string' was not present");
|
|
||||||
});
|
|
||||||
|
|
||||||
it("use embeddingDimension if embedding missing from table", async function () {
|
|
||||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
|
||||||
// Simulate getting an empty Arrow table (minus embedding) from some other source
|
|
||||||
// In other words, we aren't starting with records
|
|
||||||
const table = makeEmptyTable(schema);
|
|
||||||
|
|
||||||
// If the embedding specifies the dimension we are fine
|
|
||||||
await fromTableToBuffer(table, dummyEmbeddingConfig);
|
|
||||||
|
|
||||||
// We can also supply a schema and should be ok
|
|
||||||
const schemaWithEmbedding = new Schema([
|
|
||||||
new Field("string", new Utf8(), false),
|
|
||||||
new Field(
|
|
||||||
"vector",
|
|
||||||
new FixedSizeList(2, new Field("item", new Float16(), false)),
|
|
||||||
false,
|
|
||||||
),
|
|
||||||
]);
|
|
||||||
await fromTableToBuffer(
|
|
||||||
table,
|
|
||||||
dummyEmbeddingConfigWithNoDimension,
|
|
||||||
schemaWithEmbedding,
|
|
||||||
);
|
|
||||||
|
|
||||||
// Otherwise we will get an error
|
|
||||||
await expect(
|
|
||||||
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
|
|
||||||
).rejects.toThrow("does not specify `embeddingDimension`");
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will apply embeddings to an empty table", async function () {
|
|
||||||
const schema = new Schema([
|
|
||||||
new Field("string", new Utf8(), false),
|
|
||||||
new Field(
|
|
||||||
"vector",
|
|
||||||
new FixedSizeList(2, new Field("item", new Float16(), false)),
|
|
||||||
false,
|
|
||||||
),
|
|
||||||
]);
|
|
||||||
const table = await convertToTable([], dummyEmbeddingConfig, { schema });
|
|
||||||
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(true);
|
|
||||||
expect(table.getChild("vector")?.type.children[0].type.toString()).toEqual(
|
|
||||||
new Float16().toString(),
|
|
||||||
);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will complain if embeddings present but schema missing embedding column", async function () {
|
|
||||||
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
|
||||||
await expect(
|
|
||||||
convertToTable([], dummyEmbeddingConfig, { schema }),
|
|
||||||
).rejects.toThrow("column vector was missing");
|
|
||||||
});
|
|
||||||
|
|
||||||
it("will provide a nice error if run twice", async function () {
|
|
||||||
const records = sampleRecords();
|
|
||||||
const table = await convertToTable(records, dummyEmbeddingConfig);
|
|
||||||
|
|
||||||
// fromTableToBuffer will try and apply the embeddings again
|
|
||||||
await expect(
|
|
||||||
fromTableToBuffer(table, dummyEmbeddingConfig),
|
|
||||||
).rejects.toThrow("already existed");
|
|
||||||
});
|
|
||||||
});
|
|
||||||
|
|
||||||
describe("makeEmptyTable", function () {
|
|
||||||
it("will make an empty table", async function () {
|
|
||||||
await checkTableCreation(
|
|
||||||
async (_, __, schema) => makeEmptyTable(schema),
|
|
||||||
false,
|
|
||||||
);
|
|
||||||
});
|
|
||||||
});
|
|
||||||
|
|
||||||
describe("when using two versions of arrow", function () {
|
|
||||||
it("can still import data", async function () {
|
|
||||||
const schema = new OldSchema([
|
|
||||||
new OldField("id", new OldInt32()),
|
|
||||||
new OldField(
|
|
||||||
"vector",
|
|
||||||
new OldFixedSizeList(
|
|
||||||
1024,
|
|
||||||
new OldField("item", new OldFloat32(), true),
|
|
||||||
),
|
),
|
||||||
),
|
new Field(
|
||||||
new OldField(
|
"list",
|
||||||
"struct",
|
new List(new Field("item", new Utf8(), false)),
|
||||||
new OldStruct([
|
false,
|
||||||
new OldField(
|
),
|
||||||
"nested",
|
]);
|
||||||
new OldDictionary(new OldUtf8(), new OldInt32(), 1, true),
|
|
||||||
|
const table = (await tableCreationMethod(
|
||||||
|
records,
|
||||||
|
recordsReversed,
|
||||||
|
schema,
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
)) as any;
|
||||||
|
schema.fields.forEach(
|
||||||
|
(
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
field: { name: any; type: { toString: () => any } },
|
||||||
|
idx: string | number,
|
||||||
|
) => {
|
||||||
|
const actualField = table.schema.fields[idx];
|
||||||
|
// Type inference always assumes nullable=true
|
||||||
|
if (infersTypes) {
|
||||||
|
expect(actualField.nullable).toBe(true);
|
||||||
|
} else {
|
||||||
|
expect(actualField.nullable).toBe(false);
|
||||||
|
}
|
||||||
|
expect(table.getChild(field.name)?.type.toString()).toEqual(
|
||||||
|
field.type.toString(),
|
||||||
|
);
|
||||||
|
expect(table.getChildAt(idx)?.type.toString()).toEqual(
|
||||||
|
field.type.toString(),
|
||||||
|
);
|
||||||
|
},
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
describe("The function makeArrowTable", function () {
|
||||||
|
it("will use data types from a provided schema instead of inference", async function () {
|
||||||
|
const schema = new Schema([
|
||||||
|
new Field("a", new Int32()),
|
||||||
|
new Field("b", new Float32()),
|
||||||
|
new Field(
|
||||||
|
"c",
|
||||||
|
new FixedSizeList(3, new Field("item", new Float16())),
|
||||||
),
|
),
|
||||||
new OldField("ts_with_tz", new OldTimestampNanosecond("some_tz")),
|
new Field("d", new Int64()),
|
||||||
new OldField("ts_no_tz", new OldTimestampNanosecond(null)),
|
]);
|
||||||
]),
|
const table = makeArrowTable(
|
||||||
),
|
[
|
||||||
// biome-ignore lint/suspicious/noExplicitAny: skip
|
{ a: 1, b: 2, c: [1, 2, 3], d: 9 },
|
||||||
]) as any;
|
{ a: 4, b: 5, c: [4, 5, 6], d: 10 },
|
||||||
schema.metadataVersion = MetadataVersion.V5;
|
{ a: 7, b: 8, c: [7, 8, 9], d: null },
|
||||||
const table = makeArrowTable([], { schema });
|
],
|
||||||
|
{ schema },
|
||||||
|
);
|
||||||
|
|
||||||
const buf = await fromTableToBuffer(table);
|
const buf = await fromTableToBuffer(table);
|
||||||
expect(buf.byteLength).toBeGreaterThan(0);
|
expect(buf.byteLength).toBeGreaterThan(0);
|
||||||
const actual = tableFromIPC(buf);
|
|
||||||
const actualSchema = actual.schema;
|
|
||||||
expect(actualSchema.fields.length).toBe(3);
|
|
||||||
|
|
||||||
// Deep equality gets hung up on some very minor unimportant differences
|
const actual = tableFromIPC(buf);
|
||||||
// between arrow version 13 and 15 which isn't really what we're testing for
|
expect(actual.numRows).toBe(3);
|
||||||
// and so we do our own comparison that just checks name/type/nullability
|
const actualSchema = actual.schema;
|
||||||
function compareFields(lhs: Field, rhs: Field) {
|
expect(actualSchema).toEqual(schema);
|
||||||
expect(lhs.name).toEqual(rhs.name);
|
});
|
||||||
expect(lhs.nullable).toEqual(rhs.nullable);
|
|
||||||
expect(lhs.typeId).toEqual(rhs.typeId);
|
it("will assume the column `vector` is FixedSizeList<Float32> by default", async function () {
|
||||||
if ("children" in lhs.type && lhs.type.children !== null) {
|
const schema = new Schema([
|
||||||
const lhsChildren = lhs.type.children as Field[];
|
new Field("a", new Float(Precision.DOUBLE), true),
|
||||||
lhsChildren.forEach((child: Field, idx) => {
|
new Field("b", new Float(Precision.DOUBLE), true),
|
||||||
compareFields(child, rhs.type.children[idx]);
|
new Field(
|
||||||
|
"vector",
|
||||||
|
new FixedSizeList(
|
||||||
|
3,
|
||||||
|
new Field("item", new Float(Precision.SINGLE), true),
|
||||||
|
),
|
||||||
|
true,
|
||||||
|
),
|
||||||
|
]);
|
||||||
|
const table = makeArrowTable([
|
||||||
|
{ a: 1, b: 2, vector: [1, 2, 3] },
|
||||||
|
{ a: 4, b: 5, vector: [4, 5, 6] },
|
||||||
|
{ a: 7, b: 8, vector: [7, 8, 9] },
|
||||||
|
]);
|
||||||
|
|
||||||
|
const buf = await fromTableToBuffer(table);
|
||||||
|
expect(buf.byteLength).toBeGreaterThan(0);
|
||||||
|
|
||||||
|
const actual = tableFromIPC(buf);
|
||||||
|
expect(actual.numRows).toBe(3);
|
||||||
|
const actualSchema = actual.schema;
|
||||||
|
expect(actualSchema).toEqual(schema);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("can support multiple vector columns", async function () {
|
||||||
|
const schema = new Schema([
|
||||||
|
new Field("a", new Float(Precision.DOUBLE), true),
|
||||||
|
new Field("b", new Float(Precision.DOUBLE), true),
|
||||||
|
new Field(
|
||||||
|
"vec1",
|
||||||
|
new FixedSizeList(3, new Field("item", new Float16(), true)),
|
||||||
|
true,
|
||||||
|
),
|
||||||
|
new Field(
|
||||||
|
"vec2",
|
||||||
|
new FixedSizeList(3, new Field("item", new Float16(), true)),
|
||||||
|
true,
|
||||||
|
),
|
||||||
|
]);
|
||||||
|
const table = makeArrowTable(
|
||||||
|
[
|
||||||
|
{ a: 1, b: 2, vec1: [1, 2, 3], vec2: [2, 4, 6] },
|
||||||
|
{ a: 4, b: 5, vec1: [4, 5, 6], vec2: [8, 10, 12] },
|
||||||
|
{ a: 7, b: 8, vec1: [7, 8, 9], vec2: [14, 16, 18] },
|
||||||
|
],
|
||||||
|
{
|
||||||
|
vectorColumns: {
|
||||||
|
vec1: { type: new Float16() },
|
||||||
|
vec2: { type: new Float16() },
|
||||||
|
},
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|
||||||
|
const buf = await fromTableToBuffer(table);
|
||||||
|
expect(buf.byteLength).toBeGreaterThan(0);
|
||||||
|
|
||||||
|
const actual = tableFromIPC(buf);
|
||||||
|
expect(actual.numRows).toBe(3);
|
||||||
|
const actualSchema = actual.schema;
|
||||||
|
expect(actualSchema).toEqual(schema);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will allow different vector column types", async function () {
|
||||||
|
const table = makeArrowTable([{ fp16: [1], fp32: [1], fp64: [1] }], {
|
||||||
|
vectorColumns: {
|
||||||
|
fp16: { type: new Float16() },
|
||||||
|
fp32: { type: new Float32() },
|
||||||
|
fp64: { type: new Float64() },
|
||||||
|
},
|
||||||
});
|
});
|
||||||
|
|
||||||
|
expect(
|
||||||
|
table.getChild("fp16")?.type.children[0].type.toString(),
|
||||||
|
).toEqual(new Float16().toString());
|
||||||
|
expect(
|
||||||
|
table.getChild("fp32")?.type.children[0].type.toString(),
|
||||||
|
).toEqual(new Float32().toString());
|
||||||
|
expect(
|
||||||
|
table.getChild("fp64")?.type.children[0].type.toString(),
|
||||||
|
).toEqual(new Float64().toString());
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will use dictionary encoded strings if asked", async function () {
|
||||||
|
const table = makeArrowTable([{ str: "hello" }]);
|
||||||
|
expect(DataType.isUtf8(table.getChild("str")?.type)).toBe(true);
|
||||||
|
|
||||||
|
const tableWithDict = makeArrowTable([{ str: "hello" }], {
|
||||||
|
dictionaryEncodeStrings: true,
|
||||||
|
});
|
||||||
|
expect(DataType.isDictionary(tableWithDict.getChild("str")?.type)).toBe(
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
|
||||||
|
const schema = new Schema([
|
||||||
|
new Field("str", new Dictionary(new Utf8(), new Int32())),
|
||||||
|
]);
|
||||||
|
|
||||||
|
const tableWithDict2 = makeArrowTable([{ str: "hello" }], { schema });
|
||||||
|
expect(
|
||||||
|
DataType.isDictionary(tableWithDict2.getChild("str")?.type),
|
||||||
|
).toBe(true);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will infer data types correctly", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
async (records) => (<any>makeArrowTable)(records),
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will allow a schema to be provided", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
async (records, _, schema) =>
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
(<any>makeArrowTable)(records, { schema }),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will use the field order of any provided schema", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
async (_, recordsReversed, schema) =>
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
(<any>makeArrowTable)(recordsReversed, { schema }),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will make an empty table", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
async (_, __, schema) => (<any>makeArrowTable)([], { schema }),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
class DummyEmbedding extends EmbeddingFunction<string> {
|
||||||
|
toJSON(): Partial<FunctionOptions> {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
|
||||||
|
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||||
|
return data.map(() => [0.0, 0.0]);
|
||||||
|
}
|
||||||
|
|
||||||
|
ndims(): number {
|
||||||
|
return 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
embeddingDataType() {
|
||||||
|
return new Float16();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
actualSchema.fields.forEach((field, idx) => {
|
|
||||||
compareFields(field, actualSchema.fields[idx]);
|
class DummyEmbeddingWithNoDimension extends EmbeddingFunction<string> {
|
||||||
|
toJSON(): Partial<FunctionOptions> {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
|
||||||
|
embeddingDataType() {
|
||||||
|
return new Float16();
|
||||||
|
}
|
||||||
|
|
||||||
|
async computeSourceEmbeddings(data: string[]): Promise<number[][]> {
|
||||||
|
return data.map(() => [0.0, 0.0]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const dummyEmbeddingConfig: EmbeddingFunctionConfig = {
|
||||||
|
sourceColumn: "string",
|
||||||
|
function: new DummyEmbedding(),
|
||||||
|
};
|
||||||
|
|
||||||
|
const dummyEmbeddingConfigWithNoDimension: EmbeddingFunctionConfig = {
|
||||||
|
sourceColumn: "string",
|
||||||
|
function: new DummyEmbeddingWithNoDimension(),
|
||||||
|
};
|
||||||
|
|
||||||
|
describe("convertToTable", function () {
|
||||||
|
it("will infer data types correctly", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
async (records) => await (<any>convertToTable)(records),
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will allow a schema to be provided", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
async (records, _, schema) =>
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
await (<any>convertToTable)(records, undefined, { schema }),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will use the field order of any provided schema", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
async (_, recordsReversed, schema) =>
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
await (<any>convertToTable)(recordsReversed, undefined, { schema }),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will make an empty table", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
async (_, __, schema) =>
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
await (<any>convertToTable)([], undefined, { schema }),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will apply embeddings", async function () {
|
||||||
|
const records = sampleRecords();
|
||||||
|
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||||
|
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
expect(
|
||||||
|
table.getChild("vector")?.type.children[0].type.toString(),
|
||||||
|
).toEqual(new Float16().toString());
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will fail if missing the embedding source column", async function () {
|
||||||
|
await expect(
|
||||||
|
convertToTable([{ id: 1 }], dummyEmbeddingConfig),
|
||||||
|
).rejects.toThrow("'string' was not present");
|
||||||
|
});
|
||||||
|
|
||||||
|
it("use embeddingDimension if embedding missing from table", async function () {
|
||||||
|
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||||
|
// Simulate getting an empty Arrow table (minus embedding) from some other source
|
||||||
|
// In other words, we aren't starting with records
|
||||||
|
const table = makeEmptyTable(schema);
|
||||||
|
|
||||||
|
// If the embedding specifies the dimension we are fine
|
||||||
|
await fromTableToBuffer(table, dummyEmbeddingConfig);
|
||||||
|
|
||||||
|
// We can also supply a schema and should be ok
|
||||||
|
const schemaWithEmbedding = new Schema([
|
||||||
|
new Field("string", new Utf8(), false),
|
||||||
|
new Field(
|
||||||
|
"vector",
|
||||||
|
new FixedSizeList(2, new Field("item", new Float16(), false)),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
]);
|
||||||
|
await fromTableToBuffer(
|
||||||
|
table,
|
||||||
|
dummyEmbeddingConfigWithNoDimension,
|
||||||
|
schemaWithEmbedding,
|
||||||
|
);
|
||||||
|
|
||||||
|
// Otherwise we will get an error
|
||||||
|
await expect(
|
||||||
|
fromTableToBuffer(table, dummyEmbeddingConfigWithNoDimension),
|
||||||
|
).rejects.toThrow("does not specify `embeddingDimension`");
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will apply embeddings to an empty table", async function () {
|
||||||
|
const schema = new Schema([
|
||||||
|
new Field("string", new Utf8(), false),
|
||||||
|
new Field(
|
||||||
|
"vector",
|
||||||
|
new FixedSizeList(2, new Field("item", new Float16(), false)),
|
||||||
|
false,
|
||||||
|
),
|
||||||
|
]);
|
||||||
|
const table = await convertToTable([], dummyEmbeddingConfig, {
|
||||||
|
schema,
|
||||||
|
});
|
||||||
|
expect(DataType.isFixedSizeList(table.getChild("vector")?.type)).toBe(
|
||||||
|
true,
|
||||||
|
);
|
||||||
|
expect(
|
||||||
|
table.getChild("vector")?.type.children[0].type.toString(),
|
||||||
|
).toEqual(new Float16().toString());
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will complain if embeddings present but schema missing embedding column", async function () {
|
||||||
|
const schema = new Schema([new Field("string", new Utf8(), false)]);
|
||||||
|
await expect(
|
||||||
|
convertToTable([], dummyEmbeddingConfig, { schema }),
|
||||||
|
).rejects.toThrow("column vector was missing");
|
||||||
|
});
|
||||||
|
|
||||||
|
it("will provide a nice error if run twice", async function () {
|
||||||
|
const records = sampleRecords();
|
||||||
|
const table = await convertToTable(records, dummyEmbeddingConfig);
|
||||||
|
|
||||||
|
// fromTableToBuffer will try and apply the embeddings again
|
||||||
|
await expect(
|
||||||
|
fromTableToBuffer(table, dummyEmbeddingConfig),
|
||||||
|
).rejects.toThrow("already existed");
|
||||||
|
});
|
||||||
});
|
});
|
||||||
});
|
|
||||||
});
|
describe("makeEmptyTable", function () {
|
||||||
|
it("will make an empty table", async function () {
|
||||||
|
await checkTableCreation(
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
async (_, __, schema) => (<any>makeEmptyTable)(schema),
|
||||||
|
false,
|
||||||
|
);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
describe("when using two versions of arrow", function () {
|
||||||
|
it("can still import data", async function () {
|
||||||
|
const schema = new arrow13.Schema([
|
||||||
|
new arrow13.Field("id", new arrow13.Int32()),
|
||||||
|
new arrow13.Field(
|
||||||
|
"vector",
|
||||||
|
new arrow13.FixedSizeList(
|
||||||
|
1024,
|
||||||
|
new arrow13.Field("item", new arrow13.Float32(), true),
|
||||||
|
),
|
||||||
|
),
|
||||||
|
new arrow13.Field(
|
||||||
|
"struct",
|
||||||
|
new arrow13.Struct([
|
||||||
|
new arrow13.Field(
|
||||||
|
"nested",
|
||||||
|
new arrow13.Dictionary(
|
||||||
|
new arrow13.Utf8(),
|
||||||
|
new arrow13.Int32(),
|
||||||
|
1,
|
||||||
|
true,
|
||||||
|
),
|
||||||
|
),
|
||||||
|
new arrow13.Field(
|
||||||
|
"ts_with_tz",
|
||||||
|
new arrow13.TimestampNanosecond("some_tz"),
|
||||||
|
),
|
||||||
|
new arrow13.Field(
|
||||||
|
"ts_no_tz",
|
||||||
|
new arrow13.TimestampNanosecond(null),
|
||||||
|
),
|
||||||
|
]),
|
||||||
|
),
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: skip
|
||||||
|
]) as any;
|
||||||
|
schema.metadataVersion = arrow13.MetadataVersion.V5;
|
||||||
|
const table = makeArrowTable([], { schema });
|
||||||
|
|
||||||
|
const buf = await fromTableToBuffer(table);
|
||||||
|
expect(buf.byteLength).toBeGreaterThan(0);
|
||||||
|
const actual = tableFromIPC(buf);
|
||||||
|
const actualSchema = actual.schema;
|
||||||
|
expect(actualSchema.fields.length).toBe(3);
|
||||||
|
|
||||||
|
// Deep equality gets hung up on some very minor unimportant differences
|
||||||
|
// between arrow version 13 and 15 which isn't really what we're testing for
|
||||||
|
// and so we do our own comparison that just checks name/type/nullability
|
||||||
|
function compareFields(lhs: arrow13.Field, rhs: arrow13.Field) {
|
||||||
|
expect(lhs.name).toEqual(rhs.name);
|
||||||
|
expect(lhs.nullable).toEqual(rhs.nullable);
|
||||||
|
expect(lhs.typeId).toEqual(rhs.typeId);
|
||||||
|
if ("children" in lhs.type && lhs.type.children !== null) {
|
||||||
|
const lhsChildren = lhs.type.children as arrow13.Field[];
|
||||||
|
lhsChildren.forEach((child: arrow13.Field, idx) => {
|
||||||
|
compareFields(child, rhs.type.children[idx]);
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
|
actualSchema.fields.forEach((field: any, idx: string | number) => {
|
||||||
|
compareFields(field, actualSchema.fields[idx]);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
});
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
import * as apiArrow from "apache-arrow";
|
||||||
// Copyright 2024 Lance Developers.
|
// Copyright 2024 Lance Developers.
|
||||||
//
|
//
|
||||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
@@ -11,8 +12,11 @@
|
|||||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
// See the License for the specific language governing permissions and
|
// See the License for the specific language governing permissions and
|
||||||
// limitations under the License.
|
// limitations under the License.
|
||||||
import * as arrow from "apache-arrow";
|
import * as arrow13 from "apache-arrow-13";
|
||||||
import * as arrowOld from "apache-arrow-old";
|
import * as arrow14 from "apache-arrow-14";
|
||||||
|
import * as arrow15 from "apache-arrow-15";
|
||||||
|
import * as arrow16 from "apache-arrow-16";
|
||||||
|
import * as arrow17 from "apache-arrow-17";
|
||||||
|
|
||||||
import * as tmp from "tmp";
|
import * as tmp from "tmp";
|
||||||
|
|
||||||
@@ -20,151 +24,154 @@ import { connect } from "../lancedb";
|
|||||||
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
import { EmbeddingFunction, LanceSchema } from "../lancedb/embedding";
|
||||||
import { getRegistry, register } from "../lancedb/embedding/registry";
|
import { getRegistry, register } from "../lancedb/embedding/registry";
|
||||||
|
|
||||||
describe.each([arrow, arrowOld])("LanceSchema", (arrow) => {
|
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||||
test("should preserve input order", async () => {
|
"LanceSchema",
|
||||||
const schema = LanceSchema({
|
(arrow) => {
|
||||||
id: new arrow.Int32(),
|
test("should preserve input order", async () => {
|
||||||
text: new arrow.Utf8(),
|
const schema = LanceSchema({
|
||||||
vector: new arrow.Float32(),
|
id: new arrow.Int32(),
|
||||||
});
|
text: new arrow.Utf8(),
|
||||||
expect(schema.fields.map((x) => x.name)).toEqual(["id", "text", "vector"]);
|
vector: new arrow.Float32(),
|
||||||
});
|
|
||||||
});
|
|
||||||
|
|
||||||
describe("Registry", () => {
|
|
||||||
let tmpDir: tmp.DirResult;
|
|
||||||
beforeEach(() => {
|
|
||||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
|
||||||
});
|
|
||||||
|
|
||||||
afterEach(() => {
|
|
||||||
tmpDir.removeCallback();
|
|
||||||
getRegistry().reset();
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should register a new item to the registry", async () => {
|
|
||||||
@register("mock-embedding")
|
|
||||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
|
||||||
toJSON(): object {
|
|
||||||
return {
|
|
||||||
someText: "hello",
|
|
||||||
};
|
|
||||||
}
|
|
||||||
constructor() {
|
|
||||||
super();
|
|
||||||
}
|
|
||||||
ndims() {
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
embeddingDataType(): arrow.Float {
|
|
||||||
return new arrow.Float32();
|
|
||||||
}
|
|
||||||
async computeSourceEmbeddings(data: string[]) {
|
|
||||||
return data.map(() => [1, 2, 3]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const func = getRegistry()
|
|
||||||
.get<MockEmbeddingFunction>("mock-embedding")!
|
|
||||||
.create();
|
|
||||||
|
|
||||||
const schema = LanceSchema({
|
|
||||||
id: new arrow.Int32(),
|
|
||||||
text: func.sourceField(new arrow.Utf8()),
|
|
||||||
vector: func.vectorField(),
|
|
||||||
});
|
|
||||||
|
|
||||||
const db = await connect(tmpDir.name);
|
|
||||||
const table = await db.createTable(
|
|
||||||
"test",
|
|
||||||
[
|
|
||||||
{ id: 1, text: "hello" },
|
|
||||||
{ id: 2, text: "world" },
|
|
||||||
],
|
|
||||||
{ schema },
|
|
||||||
);
|
|
||||||
const expected = [
|
|
||||||
[1, 2, 3],
|
|
||||||
[1, 2, 3],
|
|
||||||
];
|
|
||||||
const actual = await table.query().toArrow();
|
|
||||||
const vectors = actual
|
|
||||||
.getChild("vector")
|
|
||||||
?.toArray()
|
|
||||||
.map((x: unknown) => {
|
|
||||||
if (x instanceof arrow.Vector) {
|
|
||||||
return [...x];
|
|
||||||
} else {
|
|
||||||
return x;
|
|
||||||
}
|
|
||||||
});
|
});
|
||||||
expect(vectors).toEqual(expected);
|
expect(schema.fields.map((x) => x.name)).toEqual([
|
||||||
});
|
"id",
|
||||||
test("should error if registering with the same name", async () => {
|
"text",
|
||||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
"vector",
|
||||||
toJSON(): object {
|
]);
|
||||||
return {
|
|
||||||
someText: "hello",
|
|
||||||
};
|
|
||||||
}
|
|
||||||
constructor() {
|
|
||||||
super();
|
|
||||||
}
|
|
||||||
ndims() {
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
embeddingDataType(): arrow.Float {
|
|
||||||
return new arrow.Float32();
|
|
||||||
}
|
|
||||||
async computeSourceEmbeddings(data: string[]) {
|
|
||||||
return data.map(() => [1, 2, 3]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
register("mock-embedding")(MockEmbeddingFunction);
|
|
||||||
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
|
|
||||||
'Embedding function with alias "mock-embedding" already exists',
|
|
||||||
);
|
|
||||||
});
|
|
||||||
test("schema should contain correct metadata", async () => {
|
|
||||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
|
||||||
toJSON(): object {
|
|
||||||
return {
|
|
||||||
someText: "hello",
|
|
||||||
};
|
|
||||||
}
|
|
||||||
constructor() {
|
|
||||||
super();
|
|
||||||
}
|
|
||||||
ndims() {
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
embeddingDataType(): arrow.Float {
|
|
||||||
return new arrow.Float32();
|
|
||||||
}
|
|
||||||
async computeSourceEmbeddings(data: string[]) {
|
|
||||||
return data.map(() => [1, 2, 3]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
const func = new MockEmbeddingFunction();
|
|
||||||
|
|
||||||
const schema = LanceSchema({
|
|
||||||
id: new arrow.Int32(),
|
|
||||||
text: func.sourceField(new arrow.Utf8()),
|
|
||||||
vector: func.vectorField(),
|
|
||||||
});
|
});
|
||||||
const expectedMetadata = new Map<string, string>([
|
},
|
||||||
[
|
);
|
||||||
"embedding_functions",
|
|
||||||
JSON.stringify([
|
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||||
{
|
"Registry",
|
||||||
sourceColumn: "text",
|
(arrow) => {
|
||||||
vectorColumn: "vector",
|
let tmpDir: tmp.DirResult;
|
||||||
name: "MockEmbeddingFunction",
|
beforeEach(() => {
|
||||||
model: { someText: "hello" },
|
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||||
},
|
});
|
||||||
]),
|
|
||||||
],
|
afterEach(() => {
|
||||||
]);
|
tmpDir.removeCallback();
|
||||||
expect(schema.metadata).toEqual(expectedMetadata);
|
getRegistry().reset();
|
||||||
});
|
});
|
||||||
});
|
|
||||||
|
it("should register a new item to the registry", async () => {
|
||||||
|
@register("mock-embedding")
|
||||||
|
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||||
|
toJSON(): object {
|
||||||
|
return {
|
||||||
|
someText: "hello",
|
||||||
|
};
|
||||||
|
}
|
||||||
|
constructor() {
|
||||||
|
super();
|
||||||
|
}
|
||||||
|
ndims() {
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
embeddingDataType() {
|
||||||
|
return new arrow.Float32() as apiArrow.Float;
|
||||||
|
}
|
||||||
|
async computeSourceEmbeddings(data: string[]) {
|
||||||
|
return data.map(() => [1, 2, 3]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
const func = getRegistry()
|
||||||
|
.get<MockEmbeddingFunction>("mock-embedding")!
|
||||||
|
.create();
|
||||||
|
|
||||||
|
const schema = LanceSchema({
|
||||||
|
id: new arrow.Int32(),
|
||||||
|
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
|
||||||
|
vector: func.vectorField(),
|
||||||
|
});
|
||||||
|
|
||||||
|
const db = await connect(tmpDir.name);
|
||||||
|
const table = await db.createTable(
|
||||||
|
"test",
|
||||||
|
[
|
||||||
|
{ id: 1, text: "hello" },
|
||||||
|
{ id: 2, text: "world" },
|
||||||
|
],
|
||||||
|
{ schema },
|
||||||
|
);
|
||||||
|
const expected = [
|
||||||
|
[1, 2, 3],
|
||||||
|
[1, 2, 3],
|
||||||
|
];
|
||||||
|
const actual = await table.query().toArrow();
|
||||||
|
const vectors = actual.getChild("vector")!.toArray();
|
||||||
|
expect(JSON.parse(JSON.stringify(vectors))).toEqual(
|
||||||
|
JSON.parse(JSON.stringify(expected)),
|
||||||
|
);
|
||||||
|
});
|
||||||
|
test("should error if registering with the same name", async () => {
|
||||||
|
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||||
|
toJSON(): object {
|
||||||
|
return {
|
||||||
|
someText: "hello",
|
||||||
|
};
|
||||||
|
}
|
||||||
|
constructor() {
|
||||||
|
super();
|
||||||
|
}
|
||||||
|
ndims() {
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
embeddingDataType() {
|
||||||
|
return new arrow.Float32() as apiArrow.Float;
|
||||||
|
}
|
||||||
|
async computeSourceEmbeddings(data: string[]) {
|
||||||
|
return data.map(() => [1, 2, 3]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
register("mock-embedding")(MockEmbeddingFunction);
|
||||||
|
expect(() => register("mock-embedding")(MockEmbeddingFunction)).toThrow(
|
||||||
|
'Embedding function with alias "mock-embedding" already exists',
|
||||||
|
);
|
||||||
|
});
|
||||||
|
test("schema should contain correct metadata", async () => {
|
||||||
|
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||||
|
toJSON(): object {
|
||||||
|
return {
|
||||||
|
someText: "hello",
|
||||||
|
};
|
||||||
|
}
|
||||||
|
constructor() {
|
||||||
|
super();
|
||||||
|
}
|
||||||
|
ndims() {
|
||||||
|
return 3;
|
||||||
|
}
|
||||||
|
embeddingDataType() {
|
||||||
|
return new arrow.Float32() as apiArrow.Float;
|
||||||
|
}
|
||||||
|
async computeSourceEmbeddings(data: string[]) {
|
||||||
|
return data.map(() => [1, 2, 3]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
const func = new MockEmbeddingFunction();
|
||||||
|
|
||||||
|
const schema = LanceSchema({
|
||||||
|
id: new arrow.Int32(),
|
||||||
|
text: func.sourceField(new arrow.Utf8() as apiArrow.DataType),
|
||||||
|
vector: func.vectorField(),
|
||||||
|
});
|
||||||
|
const expectedMetadata = new Map<string, string>([
|
||||||
|
[
|
||||||
|
"embedding_functions",
|
||||||
|
JSON.stringify([
|
||||||
|
{
|
||||||
|
sourceColumn: "text",
|
||||||
|
vectorColumn: "vector",
|
||||||
|
name: "MockEmbeddingFunction",
|
||||||
|
model: { someText: "hello" },
|
||||||
|
},
|
||||||
|
]),
|
||||||
|
],
|
||||||
|
]);
|
||||||
|
expect(schema.metadata).toEqual(expectedMetadata);
|
||||||
|
});
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|||||||
@@ -16,8 +16,11 @@ import * as fs from "fs";
|
|||||||
import * as path from "path";
|
import * as path from "path";
|
||||||
import * as tmp from "tmp";
|
import * as tmp from "tmp";
|
||||||
|
|
||||||
import * as arrow from "apache-arrow";
|
import * as arrow13 from "apache-arrow-13";
|
||||||
import * as arrowOld from "apache-arrow-old";
|
import * as arrow14 from "apache-arrow-14";
|
||||||
|
import * as arrow15 from "apache-arrow-15";
|
||||||
|
import * as arrow16 from "apache-arrow-16";
|
||||||
|
import * as arrow17 from "apache-arrow-17";
|
||||||
|
|
||||||
import { Table, connect } from "../lancedb";
|
import { Table, connect } from "../lancedb";
|
||||||
import {
|
import {
|
||||||
@@ -28,155 +31,168 @@ import {
|
|||||||
Float64,
|
Float64,
|
||||||
Int32,
|
Int32,
|
||||||
Int64,
|
Int64,
|
||||||
|
List,
|
||||||
Schema,
|
Schema,
|
||||||
|
Utf8,
|
||||||
makeArrowTable,
|
makeArrowTable,
|
||||||
} from "../lancedb/arrow";
|
} from "../lancedb/arrow";
|
||||||
import { EmbeddingFunction, LanceSchema, register } from "../lancedb/embedding";
|
import {
|
||||||
|
EmbeddingFunction,
|
||||||
|
LanceSchema,
|
||||||
|
getRegistry,
|
||||||
|
register,
|
||||||
|
} from "../lancedb/embedding";
|
||||||
import { Index } from "../lancedb/indices";
|
import { Index } from "../lancedb/indices";
|
||||||
|
|
||||||
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||||
describe.each([arrow, arrowOld])("Given a table", (arrow: any) => {
|
"Given a table",
|
||||||
let tmpDir: tmp.DirResult;
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
let table: Table;
|
(arrow: any) => {
|
||||||
|
let tmpDir: tmp.DirResult;
|
||||||
|
let table: Table;
|
||||||
|
|
||||||
const schema:
|
const schema:
|
||||||
| import("apache-arrow").Schema
|
| import("apache-arrow-13").Schema
|
||||||
| import("apache-arrow-old").Schema = new arrow.Schema([
|
| import("apache-arrow-14").Schema
|
||||||
new arrow.Field("id", new arrow.Float64(), true),
|
| import("apache-arrow-15").Schema
|
||||||
]);
|
| import("apache-arrow-16").Schema
|
||||||
|
| import("apache-arrow-17").Schema = new arrow.Schema([
|
||||||
|
new arrow.Field("id", new arrow.Float64(), true),
|
||||||
|
]);
|
||||||
|
|
||||||
beforeEach(async () => {
|
beforeEach(async () => {
|
||||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||||
const conn = await connect(tmpDir.name);
|
const conn = await connect(tmpDir.name);
|
||||||
table = await conn.createEmptyTable("some_table", schema);
|
table = await conn.createEmptyTable("some_table", schema);
|
||||||
});
|
|
||||||
afterEach(() => tmpDir.removeCallback());
|
|
||||||
|
|
||||||
it("be displayable", async () => {
|
|
||||||
expect(table.display()).toMatch(
|
|
||||||
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
|
|
||||||
);
|
|
||||||
table.close();
|
|
||||||
expect(table.display()).toBe("ClosedTable(some_table)");
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should let me add data", async () => {
|
|
||||||
await table.add([{ id: 1 }, { id: 2 }]);
|
|
||||||
await table.add([{ id: 1 }]);
|
|
||||||
await expect(table.countRows()).resolves.toBe(3);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should overwrite data if asked", async () => {
|
|
||||||
await table.add([{ id: 1 }, { id: 2 }]);
|
|
||||||
await table.add([{ id: 1 }], { mode: "overwrite" });
|
|
||||||
await expect(table.countRows()).resolves.toBe(1);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should let me close the table", async () => {
|
|
||||||
expect(table.isOpen()).toBe(true);
|
|
||||||
table.close();
|
|
||||||
expect(table.isOpen()).toBe(false);
|
|
||||||
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should let me update values", async () => {
|
|
||||||
await table.add([{ id: 1 }]);
|
|
||||||
expect(await table.countRows("id == 1")).toBe(1);
|
|
||||||
expect(await table.countRows("id == 7")).toBe(0);
|
|
||||||
await table.update({ id: "7" });
|
|
||||||
expect(await table.countRows("id == 1")).toBe(0);
|
|
||||||
expect(await table.countRows("id == 7")).toBe(1);
|
|
||||||
await table.add([{ id: 2 }]);
|
|
||||||
// Test Map as input
|
|
||||||
await table.update(new Map(Object.entries({ id: "10" })), {
|
|
||||||
where: "id % 2 == 0",
|
|
||||||
});
|
});
|
||||||
expect(await table.countRows("id == 2")).toBe(0);
|
afterEach(() => tmpDir.removeCallback());
|
||||||
expect(await table.countRows("id == 7")).toBe(1);
|
|
||||||
expect(await table.countRows("id == 10")).toBe(1);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should let me update values with `values`", async () => {
|
it("be displayable", async () => {
|
||||||
await table.add([{ id: 1 }]);
|
expect(table.display()).toMatch(
|
||||||
expect(await table.countRows("id == 1")).toBe(1);
|
/NativeTable\(some_table, uri=.*, read_consistency_interval=None\)/,
|
||||||
expect(await table.countRows("id == 7")).toBe(0);
|
);
|
||||||
await table.update({ values: { id: 7 } });
|
table.close();
|
||||||
expect(await table.countRows("id == 1")).toBe(0);
|
expect(table.display()).toBe("ClosedTable(some_table)");
|
||||||
expect(await table.countRows("id == 7")).toBe(1);
|
|
||||||
await table.add([{ id: 2 }]);
|
|
||||||
// Test Map as input
|
|
||||||
await table.update({
|
|
||||||
values: {
|
|
||||||
id: "10",
|
|
||||||
},
|
|
||||||
where: "id % 2 == 0",
|
|
||||||
});
|
});
|
||||||
expect(await table.countRows("id == 2")).toBe(0);
|
|
||||||
expect(await table.countRows("id == 7")).toBe(1);
|
|
||||||
expect(await table.countRows("id == 10")).toBe(1);
|
|
||||||
});
|
|
||||||
|
|
||||||
it("should let me update values with `valuesSql`", async () => {
|
it("should let me add data", async () => {
|
||||||
await table.add([{ id: 1 }]);
|
await table.add([{ id: 1 }, { id: 2 }]);
|
||||||
expect(await table.countRows("id == 1")).toBe(1);
|
await table.add([{ id: 1 }]);
|
||||||
expect(await table.countRows("id == 7")).toBe(0);
|
await expect(table.countRows()).resolves.toBe(3);
|
||||||
await table.update({
|
|
||||||
valuesSql: {
|
|
||||||
id: "7",
|
|
||||||
},
|
|
||||||
});
|
});
|
||||||
expect(await table.countRows("id == 1")).toBe(0);
|
|
||||||
expect(await table.countRows("id == 7")).toBe(1);
|
it("should overwrite data if asked", async () => {
|
||||||
await table.add([{ id: 2 }]);
|
await table.add([{ id: 1 }, { id: 2 }]);
|
||||||
// Test Map as input
|
await table.add([{ id: 1 }], { mode: "overwrite" });
|
||||||
await table.update({
|
await expect(table.countRows()).resolves.toBe(1);
|
||||||
valuesSql: {
|
|
||||||
id: "10",
|
|
||||||
},
|
|
||||||
where: "id % 2 == 0",
|
|
||||||
});
|
});
|
||||||
expect(await table.countRows("id == 2")).toBe(0);
|
|
||||||
expect(await table.countRows("id == 7")).toBe(1);
|
|
||||||
expect(await table.countRows("id == 10")).toBe(1);
|
|
||||||
});
|
|
||||||
|
|
||||||
// https://github.com/lancedb/lancedb/issues/1293
|
it("should let me close the table", async () => {
|
||||||
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
|
expect(table.isOpen()).toBe(true);
|
||||||
"can create empty table with non default float type: %s",
|
table.close();
|
||||||
async (floatType) => {
|
expect(table.isOpen()).toBe(false);
|
||||||
const db = await connect(tmpDir.name);
|
expect(table.countRows()).rejects.toThrow("Table some_table is closed");
|
||||||
|
});
|
||||||
|
|
||||||
const data = [
|
it("should let me update values", async () => {
|
||||||
{ text: "hello", vector: Array(512).fill(1.0) },
|
await table.add([{ id: 1 }]);
|
||||||
{ text: "hello world", vector: Array(512).fill(1.0) },
|
expect(await table.countRows("id == 1")).toBe(1);
|
||||||
];
|
expect(await table.countRows("id == 7")).toBe(0);
|
||||||
const f64Schema = new arrow.Schema([
|
await table.update({ id: "7" });
|
||||||
new arrow.Field("text", new arrow.Utf8(), true),
|
expect(await table.countRows("id == 1")).toBe(0);
|
||||||
new arrow.Field(
|
expect(await table.countRows("id == 7")).toBe(1);
|
||||||
"vector",
|
await table.add([{ id: 2 }]);
|
||||||
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
|
// Test Map as input
|
||||||
true,
|
await table.update(new Map(Object.entries({ id: "10" })), {
|
||||||
),
|
where: "id % 2 == 0",
|
||||||
]);
|
|
||||||
|
|
||||||
const f64Table = await db.createEmptyTable("f64", f64Schema, {
|
|
||||||
mode: "overwrite",
|
|
||||||
});
|
});
|
||||||
try {
|
expect(await table.countRows("id == 2")).toBe(0);
|
||||||
await f64Table.add(data);
|
expect(await table.countRows("id == 7")).toBe(1);
|
||||||
const res = await f64Table.query().toArray();
|
expect(await table.countRows("id == 10")).toBe(1);
|
||||||
expect(res.length).toBe(2);
|
});
|
||||||
} catch (e) {
|
|
||||||
expect(e).toBeUndefined();
|
|
||||||
}
|
|
||||||
},
|
|
||||||
);
|
|
||||||
|
|
||||||
it("should return the table as an instance of an arrow table", async () => {
|
it("should let me update values with `values`", async () => {
|
||||||
const arrowTbl = await table.toArrow();
|
await table.add([{ id: 1 }]);
|
||||||
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
expect(await table.countRows("id == 1")).toBe(1);
|
||||||
});
|
expect(await table.countRows("id == 7")).toBe(0);
|
||||||
});
|
await table.update({ values: { id: 7 } });
|
||||||
|
expect(await table.countRows("id == 1")).toBe(0);
|
||||||
|
expect(await table.countRows("id == 7")).toBe(1);
|
||||||
|
await table.add([{ id: 2 }]);
|
||||||
|
// Test Map as input
|
||||||
|
await table.update({
|
||||||
|
values: {
|
||||||
|
id: "10",
|
||||||
|
},
|
||||||
|
where: "id % 2 == 0",
|
||||||
|
});
|
||||||
|
expect(await table.countRows("id == 2")).toBe(0);
|
||||||
|
expect(await table.countRows("id == 7")).toBe(1);
|
||||||
|
expect(await table.countRows("id == 10")).toBe(1);
|
||||||
|
});
|
||||||
|
|
||||||
|
it("should let me update values with `valuesSql`", async () => {
|
||||||
|
await table.add([{ id: 1 }]);
|
||||||
|
expect(await table.countRows("id == 1")).toBe(1);
|
||||||
|
expect(await table.countRows("id == 7")).toBe(0);
|
||||||
|
await table.update({
|
||||||
|
valuesSql: {
|
||||||
|
id: "7",
|
||||||
|
},
|
||||||
|
});
|
||||||
|
expect(await table.countRows("id == 1")).toBe(0);
|
||||||
|
expect(await table.countRows("id == 7")).toBe(1);
|
||||||
|
await table.add([{ id: 2 }]);
|
||||||
|
// Test Map as input
|
||||||
|
await table.update({
|
||||||
|
valuesSql: {
|
||||||
|
id: "10",
|
||||||
|
},
|
||||||
|
where: "id % 2 == 0",
|
||||||
|
});
|
||||||
|
expect(await table.countRows("id == 2")).toBe(0);
|
||||||
|
expect(await table.countRows("id == 7")).toBe(1);
|
||||||
|
expect(await table.countRows("id == 10")).toBe(1);
|
||||||
|
});
|
||||||
|
|
||||||
|
// https://github.com/lancedb/lancedb/issues/1293
|
||||||
|
test.each([new arrow.Float16(), new arrow.Float32(), new arrow.Float64()])(
|
||||||
|
"can create empty table with non default float type: %s",
|
||||||
|
async (floatType) => {
|
||||||
|
const db = await connect(tmpDir.name);
|
||||||
|
|
||||||
|
const data = [
|
||||||
|
{ text: "hello", vector: Array(512).fill(1.0) },
|
||||||
|
{ text: "hello world", vector: Array(512).fill(1.0) },
|
||||||
|
];
|
||||||
|
const f64Schema = new arrow.Schema([
|
||||||
|
new arrow.Field("text", new arrow.Utf8(), true),
|
||||||
|
new arrow.Field(
|
||||||
|
"vector",
|
||||||
|
new arrow.FixedSizeList(512, new arrow.Field("item", floatType)),
|
||||||
|
true,
|
||||||
|
),
|
||||||
|
]);
|
||||||
|
|
||||||
|
const f64Table = await db.createEmptyTable("f64", f64Schema, {
|
||||||
|
mode: "overwrite",
|
||||||
|
});
|
||||||
|
try {
|
||||||
|
await f64Table.add(data);
|
||||||
|
const res = await f64Table.query().toArray();
|
||||||
|
expect(res.length).toBe(2);
|
||||||
|
} catch (e) {
|
||||||
|
expect(e).toBeUndefined();
|
||||||
|
}
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|
||||||
|
it("should return the table as an instance of an arrow table", async () => {
|
||||||
|
const arrowTbl = await table.toArrow();
|
||||||
|
expect(arrowTbl).toBeInstanceOf(ArrowTable);
|
||||||
|
});
|
||||||
|
},
|
||||||
|
);
|
||||||
|
|
||||||
describe("merge insert", () => {
|
describe("merge insert", () => {
|
||||||
let tmpDir: tmp.DirResult;
|
let tmpDir: tmp.DirResult;
|
||||||
@@ -317,6 +333,7 @@ describe("When creating an index", () => {
|
|||||||
const schema = new Schema([
|
const schema = new Schema([
|
||||||
new Field("id", new Int32(), true),
|
new Field("id", new Int32(), true),
|
||||||
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
new Field("vec", new FixedSizeList(32, new Field("item", new Float32()))),
|
||||||
|
new Field("tags", new List(new Field("item", new Utf8(), true))),
|
||||||
]);
|
]);
|
||||||
let tbl: Table;
|
let tbl: Table;
|
||||||
let queryVec: number[];
|
let queryVec: number[];
|
||||||
@@ -332,6 +349,7 @@ describe("When creating an index", () => {
|
|||||||
vec: Array(32)
|
vec: Array(32)
|
||||||
.fill(1)
|
.fill(1)
|
||||||
.map(() => Math.random()),
|
.map(() => Math.random()),
|
||||||
|
tags: ["tag1", "tag2", "tag3"],
|
||||||
})),
|
})),
|
||||||
{
|
{
|
||||||
schema,
|
schema,
|
||||||
@@ -414,6 +432,22 @@ describe("When creating an index", () => {
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
|
test("create a bitmap index", async () => {
|
||||||
|
await tbl.createIndex("id", {
|
||||||
|
config: Index.bitmap(),
|
||||||
|
});
|
||||||
|
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||||
|
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||||
|
});
|
||||||
|
|
||||||
|
test("create a label list index", async () => {
|
||||||
|
await tbl.createIndex("tags", {
|
||||||
|
config: Index.labelList(),
|
||||||
|
});
|
||||||
|
const indexDir = path.join(tmpDir.name, "test.lance", "_indices");
|
||||||
|
expect(fs.readdirSync(indexDir)).toHaveLength(1);
|
||||||
|
});
|
||||||
|
|
||||||
test("should be able to get index stats", async () => {
|
test("should be able to get index stats", async () => {
|
||||||
await tbl.createIndex("id");
|
await tbl.createIndex("id");
|
||||||
|
|
||||||
@@ -694,101 +728,123 @@ describe("when optimizing a dataset", () => {
|
|||||||
});
|
});
|
||||||
});
|
});
|
||||||
|
|
||||||
describe("table.search", () => {
|
describe.each([arrow13, arrow14, arrow15, arrow16, arrow17])(
|
||||||
let tmpDir: tmp.DirResult;
|
"when optimizing a dataset",
|
||||||
beforeEach(() => {
|
// biome-ignore lint/suspicious/noExplicitAny: <explanation>
|
||||||
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
(arrow: any) => {
|
||||||
});
|
let tmpDir: tmp.DirResult;
|
||||||
afterEach(() => tmpDir.removeCallback());
|
beforeEach(() => {
|
||||||
|
getRegistry().reset();
|
||||||
|
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||||
|
});
|
||||||
|
afterEach(() => {
|
||||||
|
tmpDir.removeCallback();
|
||||||
|
});
|
||||||
|
|
||||||
test("can search using a string", async () => {
|
test("can search using a string", async () => {
|
||||||
@register()
|
@register()
|
||||||
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
class MockEmbeddingFunction extends EmbeddingFunction<string> {
|
||||||
toJSON(): object {
|
toJSON(): object {
|
||||||
return {};
|
return {};
|
||||||
}
|
}
|
||||||
ndims() {
|
ndims() {
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
embeddingDataType(): arrow.Float {
|
embeddingDataType() {
|
||||||
return new Float32();
|
return new Float32();
|
||||||
}
|
|
||||||
|
|
||||||
// Hardcoded embeddings for the sake of testing
|
|
||||||
async computeQueryEmbeddings(_data: string) {
|
|
||||||
switch (_data) {
|
|
||||||
case "greetings":
|
|
||||||
return [0.1];
|
|
||||||
case "farewell":
|
|
||||||
return [0.2];
|
|
||||||
default:
|
|
||||||
return null as never;
|
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// Hardcoded embeddings for the sake of testing
|
// Hardcoded embeddings for the sake of testing
|
||||||
async computeSourceEmbeddings(data: string[]) {
|
async computeQueryEmbeddings(_data: string) {
|
||||||
return data.map((s) => {
|
switch (_data) {
|
||||||
switch (s) {
|
case "greetings":
|
||||||
case "hello world":
|
|
||||||
return [0.1];
|
return [0.1];
|
||||||
case "goodbye world":
|
case "farewell":
|
||||||
return [0.2];
|
return [0.2];
|
||||||
default:
|
default:
|
||||||
return null as never;
|
return null as never;
|
||||||
}
|
}
|
||||||
});
|
}
|
||||||
|
|
||||||
|
// Hardcoded embeddings for the sake of testing
|
||||||
|
async computeSourceEmbeddings(data: string[]) {
|
||||||
|
return data.map((s) => {
|
||||||
|
switch (s) {
|
||||||
|
case "hello world":
|
||||||
|
return [0.1];
|
||||||
|
case "goodbye world":
|
||||||
|
return [0.2];
|
||||||
|
default:
|
||||||
|
return null as never;
|
||||||
|
}
|
||||||
|
});
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
const func = new MockEmbeddingFunction();
|
const func = new MockEmbeddingFunction();
|
||||||
const schema = LanceSchema({
|
const schema = LanceSchema({
|
||||||
text: func.sourceField(new arrow.Utf8()),
|
text: func.sourceField(new arrow.Utf8()),
|
||||||
vector: func.vectorField(),
|
vector: func.vectorField(),
|
||||||
|
});
|
||||||
|
const db = await connect(tmpDir.name);
|
||||||
|
const data = [{ text: "hello world" }, { text: "goodbye world" }];
|
||||||
|
const table = await db.createTable("test", data, { schema });
|
||||||
|
|
||||||
|
const results = await table.search("greetings").toArray();
|
||||||
|
expect(results[0].text).toBe(data[0].text);
|
||||||
|
|
||||||
|
const results2 = await table.search("farewell").toArray();
|
||||||
|
expect(results2[0].text).toBe(data[1].text);
|
||||||
});
|
});
|
||||||
const db = await connect(tmpDir.name);
|
|
||||||
const data = [{ text: "hello world" }, { text: "goodbye world" }];
|
|
||||||
const table = await db.createTable("test", data, { schema });
|
|
||||||
|
|
||||||
const results = await table.search("greetings").toArray();
|
test("rejects if no embedding function provided", async () => {
|
||||||
expect(results[0].text).toBe(data[0].text);
|
const db = await connect(tmpDir.name);
|
||||||
|
const data = [
|
||||||
|
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||||
|
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||||
|
];
|
||||||
|
const table = await db.createTable("test", data);
|
||||||
|
|
||||||
const results2 = await table.search("farewell").toArray();
|
expect(table.search("hello", "vector").toArray()).rejects.toThrow(
|
||||||
expect(results2[0].text).toBe(data[1].text);
|
"No embedding functions are defined in the table",
|
||||||
});
|
);
|
||||||
|
});
|
||||||
|
|
||||||
test("rejects if no embedding function provided", async () => {
|
test("full text search if no embedding function provided", async () => {
|
||||||
const db = await connect(tmpDir.name);
|
const db = await connect(tmpDir.name);
|
||||||
const data = [
|
const data = [
|
||||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||||
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||||
];
|
];
|
||||||
const table = await db.createTable("test", data);
|
const table = await db.createTable("test", data);
|
||||||
|
await table.createIndex("text", {
|
||||||
|
config: Index.fts(),
|
||||||
|
});
|
||||||
|
|
||||||
expect(table.search("hello").toArray()).rejects.toThrow(
|
const results = await table.search("hello").toArray();
|
||||||
"No embedding functions are defined in the table",
|
expect(results[0].text).toBe(data[0].text);
|
||||||
);
|
});
|
||||||
});
|
|
||||||
|
|
||||||
test.each([
|
test.each([
|
||||||
[0.4, 0.5, 0.599], // number[]
|
[0.4, 0.5, 0.599], // number[]
|
||||||
Float32Array.of(0.4, 0.5, 0.599), // Float32Array
|
Float32Array.of(0.4, 0.5, 0.599), // Float32Array
|
||||||
Float64Array.of(0.4, 0.5, 0.599), // Float64Array
|
Float64Array.of(0.4, 0.5, 0.599), // Float64Array
|
||||||
])("can search using vectorlike datatypes", async (vectorlike) => {
|
])("can search using vectorlike datatypes", async (vectorlike) => {
|
||||||
const db = await connect(tmpDir.name);
|
const db = await connect(tmpDir.name);
|
||||||
const data = [
|
const data = [
|
||||||
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
{ text: "hello world", vector: [0.1, 0.2, 0.3] },
|
||||||
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
{ text: "goodbye world", vector: [0.4, 0.5, 0.6] },
|
||||||
];
|
];
|
||||||
const table = await db.createTable("test", data);
|
const table = await db.createTable("test", data);
|
||||||
|
|
||||||
// biome-ignore lint/suspicious/noExplicitAny: test
|
// biome-ignore lint/suspicious/noExplicitAny: test
|
||||||
const results: any[] = await table.search(vectorlike).toArray();
|
const results: any[] = await table.search(vectorlike).toArray();
|
||||||
|
|
||||||
expect(results.length).toBe(2);
|
expect(results.length).toBe(2);
|
||||||
expect(results[0].text).toBe(data[1].text);
|
expect(results[0].text).toBe(data[1].text);
|
||||||
});
|
});
|
||||||
});
|
},
|
||||||
|
);
|
||||||
|
|
||||||
describe("when calling explainPlan", () => {
|
describe("when calling explainPlan", () => {
|
||||||
let tmpDir: tmp.DirResult;
|
let tmpDir: tmp.DirResult;
|
||||||
@@ -813,3 +869,25 @@ describe("when calling explainPlan", () => {
|
|||||||
expect(plan).toMatch("KNN");
|
expect(plan).toMatch("KNN");
|
||||||
});
|
});
|
||||||
});
|
});
|
||||||
|
|
||||||
|
describe("column name options", () => {
|
||||||
|
let tmpDir: tmp.DirResult;
|
||||||
|
let table: Table;
|
||||||
|
beforeEach(async () => {
|
||||||
|
tmpDir = tmp.dirSync({ unsafeCleanup: true });
|
||||||
|
const con = await connect(tmpDir.name);
|
||||||
|
table = await con.createTable("vectors", [
|
||||||
|
{ camelCase: 1, vector: [0.1, 0.2] },
|
||||||
|
]);
|
||||||
|
});
|
||||||
|
|
||||||
|
test("can select columns with different names", async () => {
|
||||||
|
const results = await table.query().select(["camelCase"]).toArray();
|
||||||
|
expect(results[0].camelCase).toBe(1);
|
||||||
|
});
|
||||||
|
|
||||||
|
test("can filter on columns with different names", async () => {
|
||||||
|
const results = await table.query().where("`camelCase` = 1").toArray();
|
||||||
|
expect(results[0].camelCase).toBe(1);
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|||||||
@@ -1,7 +1,14 @@
|
|||||||
// --8<-- [start:imports]
|
// --8<-- [start:imports]
|
||||||
import * as lancedb from "@lancedb/lancedb";
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
import * as arrow from "apache-arrow";
|
import * as arrow from "apache-arrow";
|
||||||
import { Field, FixedSizeList, Float16, Int32, Schema } from "apache-arrow";
|
import {
|
||||||
|
Field,
|
||||||
|
FixedSizeList,
|
||||||
|
Float16,
|
||||||
|
Int32,
|
||||||
|
Schema,
|
||||||
|
Utf8,
|
||||||
|
} from "apache-arrow";
|
||||||
|
|
||||||
// --8<-- [end:imports]
|
// --8<-- [end:imports]
|
||||||
|
|
||||||
@@ -11,15 +18,24 @@ const db = await lancedb.connect(uri);
|
|||||||
// --8<-- [end:connect]
|
// --8<-- [end:connect]
|
||||||
{
|
{
|
||||||
// --8<-- [start:create_table]
|
// --8<-- [start:create_table]
|
||||||
|
const tbl = await db.createTable(
|
||||||
|
"myTable",
|
||||||
|
[
|
||||||
|
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
|
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||||
|
],
|
||||||
|
{ mode: "overwrite" },
|
||||||
|
);
|
||||||
|
// --8<-- [end:create_table]
|
||||||
|
|
||||||
const data = [
|
const data = [
|
||||||
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
|
||||||
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
|
||||||
];
|
];
|
||||||
const _tbl = await db.createTable("myTable", data);
|
|
||||||
// --8<-- [end:create_table]
|
|
||||||
{
|
{
|
||||||
// --8<-- [start:create_table_exists_ok]
|
// --8<-- [start:create_table_exists_ok]
|
||||||
const _tbl = await db.createTable("myTable", data, {
|
const tbl = await db.createTable("myTable", data, {
|
||||||
existsOk: true,
|
existsOk: true,
|
||||||
});
|
});
|
||||||
// --8<-- [end:create_table_exists_ok]
|
// --8<-- [end:create_table_exists_ok]
|
||||||
@@ -58,16 +74,13 @@ const db = await lancedb.connect(uri);
|
|||||||
|
|
||||||
{
|
{
|
||||||
// --8<-- [start:create_empty_table]
|
// --8<-- [start:create_empty_table]
|
||||||
|
|
||||||
const schema = new arrow.Schema([
|
const schema = new arrow.Schema([
|
||||||
new arrow.Field(
|
new arrow.Field("id", new arrow.Int32()),
|
||||||
"vector",
|
new arrow.Field("name", new arrow.Utf8()),
|
||||||
new arrow.FixedSizeList(
|
|
||||||
2,
|
|
||||||
new arrow.Field("item", new arrow.Float32(), true),
|
|
||||||
),
|
|
||||||
),
|
|
||||||
]);
|
]);
|
||||||
const _tbl = await db.createEmptyTable("empty_table", schema);
|
|
||||||
|
const empty_tbl = await db.createEmptyTable("empty_table", schema);
|
||||||
// --8<-- [end:create_empty_table]
|
// --8<-- [end:create_empty_table]
|
||||||
}
|
}
|
||||||
{
|
{
|
||||||
|
|||||||
64
nodejs/examples/custom_embedding_function.ts
Normal file
64
nodejs/examples/custom_embedding_function.ts
Normal file
@@ -0,0 +1,64 @@
|
|||||||
|
// --8<-- [start:imports]
|
||||||
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
|
import {
|
||||||
|
LanceSchema,
|
||||||
|
TextEmbeddingFunction,
|
||||||
|
getRegistry,
|
||||||
|
register,
|
||||||
|
} from "@lancedb/lancedb/embedding";
|
||||||
|
import { pipeline } from "@xenova/transformers";
|
||||||
|
// --8<-- [end:imports]
|
||||||
|
|
||||||
|
// --8<-- [start:embedding_impl]
|
||||||
|
@register("sentence-transformers")
|
||||||
|
class SentenceTransformersEmbeddings extends TextEmbeddingFunction {
|
||||||
|
name = "Xenova/all-miniLM-L6-v2";
|
||||||
|
#ndims!: number;
|
||||||
|
extractor: any;
|
||||||
|
|
||||||
|
async init() {
|
||||||
|
this.extractor = await pipeline("feature-extraction", this.name);
|
||||||
|
this.#ndims = await this.generateEmbeddings(["hello"]).then(
|
||||||
|
(e) => e[0].length,
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
ndims() {
|
||||||
|
return this.#ndims;
|
||||||
|
}
|
||||||
|
|
||||||
|
toJSON() {
|
||||||
|
return {
|
||||||
|
name: this.name,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
async generateEmbeddings(texts: string[]) {
|
||||||
|
const output = await this.extractor(texts, {
|
||||||
|
pooling: "mean",
|
||||||
|
normalize: true,
|
||||||
|
});
|
||||||
|
return output.tolist();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// -8<-- [end:embedding_impl]
|
||||||
|
|
||||||
|
// --8<-- [start:call_custom_function]
|
||||||
|
const registry = getRegistry();
|
||||||
|
|
||||||
|
const sentenceTransformer = await registry
|
||||||
|
.get<SentenceTransformersEmbeddings>("sentence-transformers")!
|
||||||
|
.create();
|
||||||
|
|
||||||
|
const schema = LanceSchema({
|
||||||
|
vector: sentenceTransformer.vectorField(),
|
||||||
|
text: sentenceTransformer.sourceField(),
|
||||||
|
});
|
||||||
|
|
||||||
|
const db = await lancedb.connect("/tmp/db");
|
||||||
|
const table = await db.createEmptyTable("table", schema, { mode: "overwrite" });
|
||||||
|
|
||||||
|
await table.add([{ text: "hello" }, { text: "world" }]);
|
||||||
|
|
||||||
|
const results = await table.search("greeting").limit(1).toArray();
|
||||||
|
console.log(results[0].text);
|
||||||
|
// -8<-- [end:call_custom_function]
|
||||||
52
nodejs/examples/full_text_search.ts
Normal file
52
nodejs/examples/full_text_search.ts
Normal file
@@ -0,0 +1,52 @@
|
|||||||
|
// Copyright 2024 Lance Developers.
|
||||||
|
//
|
||||||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
// you may not use this file except in compliance with the License.
|
||||||
|
// You may obtain a copy of the License at
|
||||||
|
//
|
||||||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
//
|
||||||
|
// Unless required by applicable law or agreed to in writing, software
|
||||||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
// See the License for the specific language governing permissions and
|
||||||
|
// limitations under the License.
|
||||||
|
|
||||||
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
|
|
||||||
|
const db = await lancedb.connect("data/sample-lancedb");
|
||||||
|
|
||||||
|
const words = [
|
||||||
|
"apple",
|
||||||
|
"banana",
|
||||||
|
"cherry",
|
||||||
|
"date",
|
||||||
|
"elderberry",
|
||||||
|
"fig",
|
||||||
|
"grape",
|
||||||
|
];
|
||||||
|
|
||||||
|
const data = Array.from({ length: 10_000 }, (_, i) => ({
|
||||||
|
vector: Array(1536).fill(i),
|
||||||
|
id: i,
|
||||||
|
item: `item ${i}`,
|
||||||
|
strId: `${i}`,
|
||||||
|
doc: words[i % words.length],
|
||||||
|
}));
|
||||||
|
|
||||||
|
const tbl = await db.createTable("myVectors", data, { mode: "overwrite" });
|
||||||
|
|
||||||
|
await tbl.createIndex("doc", {
|
||||||
|
config: lancedb.Index.fts(),
|
||||||
|
});
|
||||||
|
|
||||||
|
// --8<-- [start:full_text_search]
|
||||||
|
let result = await tbl
|
||||||
|
.search("apple")
|
||||||
|
.select(["id", "doc"])
|
||||||
|
.limit(10)
|
||||||
|
.toArray();
|
||||||
|
console.log(result);
|
||||||
|
// --8<-- [end:full_text_search]
|
||||||
|
|
||||||
|
console.log("SQL search: done");
|
||||||
793
nodejs/examples/package-lock.json
generated
793
nodejs/examples/package-lock.json
generated
@@ -9,7 +9,12 @@
|
|||||||
"version": "1.0.0",
|
"version": "1.0.0",
|
||||||
"license": "Apache-2.0",
|
"license": "Apache-2.0",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@lancedb/lancedb": "file:../"
|
"@lancedb/lancedb": "file:../",
|
||||||
|
"@xenova/transformers": "^2.17.2",
|
||||||
|
"tsc": "^2.0.4"
|
||||||
|
},
|
||||||
|
"devDependencies": {
|
||||||
|
"typescript": "^5.5.4"
|
||||||
},
|
},
|
||||||
"peerDependencies": {
|
"peerDependencies": {
|
||||||
"typescript": "^5.0.0"
|
"typescript": "^5.0.0"
|
||||||
@@ -17,7 +22,7 @@
|
|||||||
},
|
},
|
||||||
"..": {
|
"..": {
|
||||||
"name": "@lancedb/lancedb",
|
"name": "@lancedb/lancedb",
|
||||||
"version": "0.6.0",
|
"version": "0.8.0",
|
||||||
"cpu": [
|
"cpu": [
|
||||||
"x64",
|
"x64",
|
||||||
"arm64"
|
"arm64"
|
||||||
@@ -29,44 +34,791 @@
|
|||||||
"win32"
|
"win32"
|
||||||
],
|
],
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"apache-arrow": "^15.0.0",
|
|
||||||
"axios": "^1.7.2",
|
"axios": "^1.7.2",
|
||||||
"openai": "^4.29.2",
|
|
||||||
"reflect-metadata": "^0.2.2"
|
"reflect-metadata": "^0.2.2"
|
||||||
},
|
},
|
||||||
"devDependencies": {
|
"devDependencies": {
|
||||||
|
"@aws-sdk/client-dynamodb": "^3.33.0",
|
||||||
"@aws-sdk/client-kms": "^3.33.0",
|
"@aws-sdk/client-kms": "^3.33.0",
|
||||||
"@aws-sdk/client-s3": "^3.33.0",
|
"@aws-sdk/client-s3": "^3.33.0",
|
||||||
"@biomejs/biome": "^1.7.3",
|
"@biomejs/biome": "^1.7.3",
|
||||||
"@jest/globals": "^29.7.0",
|
"@jest/globals": "^29.7.0",
|
||||||
"@napi-rs/cli": "^2.18.0",
|
"@napi-rs/cli": "^2.18.3",
|
||||||
"@types/axios": "^0.14.0",
|
"@types/axios": "^0.14.0",
|
||||||
"@types/jest": "^29.1.2",
|
"@types/jest": "^29.1.2",
|
||||||
"@types/tmp": "^0.2.6",
|
"@types/tmp": "^0.2.6",
|
||||||
"apache-arrow-old": "npm:apache-arrow@13.0.0",
|
"apache-arrow-13": "npm:apache-arrow@13.0.0",
|
||||||
|
"apache-arrow-14": "npm:apache-arrow@14.0.0",
|
||||||
|
"apache-arrow-15": "npm:apache-arrow@15.0.0",
|
||||||
|
"apache-arrow-16": "npm:apache-arrow@16.0.0",
|
||||||
|
"apache-arrow-17": "npm:apache-arrow@17.0.0",
|
||||||
"eslint": "^8.57.0",
|
"eslint": "^8.57.0",
|
||||||
"jest": "^29.7.0",
|
"jest": "^29.7.0",
|
||||||
"shx": "^0.3.4",
|
"shx": "^0.3.4",
|
||||||
"tmp": "^0.2.3",
|
"tmp": "^0.2.3",
|
||||||
"ts-jest": "^29.1.2",
|
"ts-jest": "^29.1.2",
|
||||||
"typedoc": "^0.25.7",
|
"typedoc": "^0.26.4",
|
||||||
"typedoc-plugin-markdown": "^3.17.1",
|
"typedoc-plugin-markdown": "^4.2.1",
|
||||||
"typescript": "^5.3.3",
|
"typescript": "^5.5.4",
|
||||||
"typescript-eslint": "^7.1.0"
|
"typescript-eslint": "^7.1.0"
|
||||||
},
|
},
|
||||||
"engines": {
|
"engines": {
|
||||||
"node": ">= 18"
|
"node": ">= 18"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"@xenova/transformers": ">=2.17 < 3",
|
||||||
|
"openai": "^4.29.2"
|
||||||
|
},
|
||||||
|
"peerDependencies": {
|
||||||
|
"apache-arrow": ">=13.0.0 <=17.0.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@huggingface/jinja": {
|
||||||
|
"version": "0.2.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@huggingface/jinja/-/jinja-0.2.2.tgz",
|
||||||
|
"integrity": "sha512-/KPde26khDUIPkTGU82jdtTW9UAuvUTumCAbFs/7giR0SxsvZC4hru51PBvpijH6BVkHcROcvZM/lpy5h1jRRA==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=18"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"node_modules/@lancedb/lancedb": {
|
"node_modules/@lancedb/lancedb": {
|
||||||
"resolved": "..",
|
"resolved": "..",
|
||||||
"link": true
|
"link": true
|
||||||
},
|
},
|
||||||
|
"node_modules/@protobufjs/aspromise": {
|
||||||
|
"version": "1.1.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/aspromise/-/aspromise-1.1.2.tgz",
|
||||||
|
"integrity": "sha512-j+gKExEuLmKwvz3OgROXtrJ2UG2x8Ch2YZUxahh+s1F2HZ+wAceUNLkvy6zKCPVRkU++ZWQrdxsUeQXmcg4uoQ=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/base64": {
|
||||||
|
"version": "1.1.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/base64/-/base64-1.1.2.tgz",
|
||||||
|
"integrity": "sha512-AZkcAA5vnN/v4PDqKyMR5lx7hZttPDgClv83E//FMNhR2TMcLUhfRUBHCmSl0oi9zMgDDqRUJkSxO3wm85+XLg=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/codegen": {
|
||||||
|
"version": "2.0.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/codegen/-/codegen-2.0.4.tgz",
|
||||||
|
"integrity": "sha512-YyFaikqM5sH0ziFZCN3xDC7zeGaB/d0IUb9CATugHWbd1FRFwWwt4ld4OYMPWu5a3Xe01mGAULCdqhMlPl29Jg=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/eventemitter": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/eventemitter/-/eventemitter-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-j9ednRT81vYJ9OfVuXG6ERSTdEL1xVsNgqpkxMsbIabzSo3goCjDIveeGv5d03om39ML71RdmrGNjG5SReBP/Q=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/fetch": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/fetch/-/fetch-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-lljVXpqXebpsijW71PZaCYeIcE5on1w5DlQy5WH6GLbFryLUrBD4932W/E2BSpfRJWseIL4v/KPgBFxDOIdKpQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"@protobufjs/aspromise": "^1.1.1",
|
||||||
|
"@protobufjs/inquire": "^1.1.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/float": {
|
||||||
|
"version": "1.0.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/float/-/float-1.0.2.tgz",
|
||||||
|
"integrity": "sha512-Ddb+kVXlXst9d+R9PfTIxh1EdNkgoRe5tOX6t01f1lYWOvJnSPDBlG241QLzcyPdoNTsblLUdujGSE4RzrTZGQ=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/inquire": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/inquire/-/inquire-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-kdSefcPdruJiFMVSbn801t4vFK7KB/5gd2fYvrxhuJYg8ILrmn9SKSX2tZdV6V+ksulWqS7aXjBcRXl3wHoD9Q=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/path": {
|
||||||
|
"version": "1.1.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/path/-/path-1.1.2.tgz",
|
||||||
|
"integrity": "sha512-6JOcJ5Tm08dOHAbdR3GrvP+yUUfkjG5ePsHYczMFLq3ZmMkAD98cDgcT2iA1lJ9NVwFd4tH/iSSoe44YWkltEA=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/pool": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/pool/-/pool-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-0kELaGSIDBKvcgS4zkjz1PeddatrjYcmMWOlAuAPwAeccUrPHdUqo/J6LiymHHEiJT5NrF1UVwxY14f+fy4WQw=="
|
||||||
|
},
|
||||||
|
"node_modules/@protobufjs/utf8": {
|
||||||
|
"version": "1.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/@protobufjs/utf8/-/utf8-1.1.0.tgz",
|
||||||
|
"integrity": "sha512-Vvn3zZrhQZkkBE8LSuW3em98c0FwgO4nxzv6OdSxPKJIEKY2bGbHn+mhGIPerzI4twdxaP8/0+06HBpwf345Lw=="
|
||||||
|
},
|
||||||
|
"node_modules/@types/long": {
|
||||||
|
"version": "4.0.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/long/-/long-4.0.2.tgz",
|
||||||
|
"integrity": "sha512-MqTGEo5bj5t157U6fA/BiDynNkn0YknVdh48CMPkTSpFTVmvao5UQmm7uEF6xBEo7qIMAlY/JSleYaE6VOdpaA=="
|
||||||
|
},
|
||||||
|
"node_modules/@types/node": {
|
||||||
|
"version": "20.14.11",
|
||||||
|
"resolved": "https://registry.npmjs.org/@types/node/-/node-20.14.11.tgz",
|
||||||
|
"integrity": "sha512-kprQpL8MMeszbz6ojB5/tU8PLN4kesnN8Gjzw349rDlNgsSzg90lAVj3llK99Dh7JON+t9AuscPPFW6mPbTnSA==",
|
||||||
|
"dependencies": {
|
||||||
|
"undici-types": "~5.26.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/@xenova/transformers": {
|
||||||
|
"version": "2.17.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/@xenova/transformers/-/transformers-2.17.2.tgz",
|
||||||
|
"integrity": "sha512-lZmHqzrVIkSvZdKZEx7IYY51TK0WDrC8eR0c5IMnBsO8di8are1zzw8BlLhyO2TklZKLN5UffNGs1IJwT6oOqQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"@huggingface/jinja": "^0.2.2",
|
||||||
|
"onnxruntime-web": "1.14.0",
|
||||||
|
"sharp": "^0.32.0"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"onnxruntime-node": "1.14.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/b4a": {
|
||||||
|
"version": "1.6.6",
|
||||||
|
"resolved": "https://registry.npmjs.org/b4a/-/b4a-1.6.6.tgz",
|
||||||
|
"integrity": "sha512-5Tk1HLk6b6ctmjIkAcU/Ujv/1WqiDl0F0JdRCR80VsOcUlHcu7pWeWRlOqQLHfDEsVx9YH/aif5AG4ehoCtTmg=="
|
||||||
|
},
|
||||||
|
"node_modules/bare-events": {
|
||||||
|
"version": "2.4.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/bare-events/-/bare-events-2.4.2.tgz",
|
||||||
|
"integrity": "sha512-qMKFd2qG/36aA4GwvKq8MxnPgCQAmBWmSyLWsJcbn8v03wvIPQ/hG1Ms8bPzndZxMDoHpxez5VOS+gC9Yi24/Q==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"node_modules/bare-fs": {
|
||||||
|
"version": "2.3.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/bare-fs/-/bare-fs-2.3.1.tgz",
|
||||||
|
"integrity": "sha512-W/Hfxc/6VehXlsgFtbB5B4xFcsCl+pAh30cYhoFyXErf6oGrwjh8SwiPAdHgpmWonKuYpZgGywN0SXt7dgsADA==",
|
||||||
|
"optional": true,
|
||||||
|
"dependencies": {
|
||||||
|
"bare-events": "^2.0.0",
|
||||||
|
"bare-path": "^2.0.0",
|
||||||
|
"bare-stream": "^2.0.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/bare-os": {
|
||||||
|
"version": "2.4.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/bare-os/-/bare-os-2.4.0.tgz",
|
||||||
|
"integrity": "sha512-v8DTT08AS/G0F9xrhyLtepoo9EJBJ85FRSMbu1pQUlAf6A8T0tEEQGMVObWeqpjhSPXsE0VGlluFBJu2fdoTNg==",
|
||||||
|
"optional": true
|
||||||
|
},
|
||||||
|
"node_modules/bare-path": {
|
||||||
|
"version": "2.1.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/bare-path/-/bare-path-2.1.3.tgz",
|
||||||
|
"integrity": "sha512-lh/eITfU8hrj9Ru5quUp0Io1kJWIk1bTjzo7JH1P5dWmQ2EL4hFUlfI8FonAhSlgIfhn63p84CDY/x+PisgcXA==",
|
||||||
|
"optional": true,
|
||||||
|
"dependencies": {
|
||||||
|
"bare-os": "^2.1.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/bare-stream": {
|
||||||
|
"version": "2.1.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/bare-stream/-/bare-stream-2.1.3.tgz",
|
||||||
|
"integrity": "sha512-tiDAH9H/kP+tvNO5sczyn9ZAA7utrSMobyDchsnyyXBuUe2FSQWbxhtuHB8jwpHYYevVo2UJpcmvvjrbHboUUQ==",
|
||||||
|
"optional": true,
|
||||||
|
"dependencies": {
|
||||||
|
"streamx": "^2.18.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/base64-js": {
|
||||||
|
"version": "1.5.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/base64-js/-/base64-js-1.5.1.tgz",
|
||||||
|
"integrity": "sha512-AKpaYlHn8t4SVbOHCy+b5+KKgvR4vrsD8vbvrbiQJps7fKDTkjkDry6ji0rUJjC0kzbNePLwzxq8iypo41qeWA==",
|
||||||
|
"funding": [
|
||||||
|
{
|
||||||
|
"type": "github",
|
||||||
|
"url": "https://github.com/sponsors/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "patreon",
|
||||||
|
"url": "https://www.patreon.com/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "consulting",
|
||||||
|
"url": "https://feross.org/support"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/bl": {
|
||||||
|
"version": "4.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/bl/-/bl-4.1.0.tgz",
|
||||||
|
"integrity": "sha512-1W07cM9gS6DcLperZfFSj+bWLtaPGSOHWhPiGzXmvVJbRLdG82sH/Kn8EtW1VqWVA54AKf2h5k5BbnIbwF3h6w==",
|
||||||
|
"dependencies": {
|
||||||
|
"buffer": "^5.5.0",
|
||||||
|
"inherits": "^2.0.4",
|
||||||
|
"readable-stream": "^3.4.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/buffer": {
|
||||||
|
"version": "5.7.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/buffer/-/buffer-5.7.1.tgz",
|
||||||
|
"integrity": "sha512-EHcyIPBQ4BSGlvjB16k5KgAJ27CIsHY/2JBmCRReo48y9rQ3MaUzWX3KVlBa4U7MyX02HdVj0K7C3WaB3ju7FQ==",
|
||||||
|
"funding": [
|
||||||
|
{
|
||||||
|
"type": "github",
|
||||||
|
"url": "https://github.com/sponsors/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "patreon",
|
||||||
|
"url": "https://www.patreon.com/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "consulting",
|
||||||
|
"url": "https://feross.org/support"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"dependencies": {
|
||||||
|
"base64-js": "^1.3.1",
|
||||||
|
"ieee754": "^1.1.13"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/chownr": {
|
||||||
|
"version": "1.1.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/chownr/-/chownr-1.1.4.tgz",
|
||||||
|
"integrity": "sha512-jJ0bqzaylmJtVnNgzTeSOs8DPavpbYgEr/b0YL8/2GO3xJEhInFmhKMUnEJQjZumK7KXGFhUy89PrsJWlakBVg=="
|
||||||
|
},
|
||||||
|
"node_modules/color": {
|
||||||
|
"version": "4.2.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/color/-/color-4.2.3.tgz",
|
||||||
|
"integrity": "sha512-1rXeuUUiGGrykh+CeBdu5Ie7OJwinCgQY0bc7GCRxy5xVHy+moaqkpL/jqQq0MtQOeYcrqEz4abc5f0KtU7W4A==",
|
||||||
|
"dependencies": {
|
||||||
|
"color-convert": "^2.0.1",
|
||||||
|
"color-string": "^1.9.0"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=12.5.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/color-convert": {
|
||||||
|
"version": "2.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-2.0.1.tgz",
|
||||||
|
"integrity": "sha512-RRECPsj7iu/xb5oKYcsFHSppFNnsj/52OVTRKb4zP5onXwVF3zVmmToNcOfGC+CRDpfK/U584fMg38ZHCaElKQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"color-name": "~1.1.4"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=7.0.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/color-name": {
|
||||||
|
"version": "1.1.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.4.tgz",
|
||||||
|
"integrity": "sha512-dOy+3AuW3a2wNbZHIuMZpTcgjGuLU/uBL/ubcZF9OXbDo8ff4O8yVp5Bf0efS8uEoYo5q4Fx7dY9OgQGXgAsQA=="
|
||||||
|
},
|
||||||
|
"node_modules/color-string": {
|
||||||
|
"version": "1.9.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/color-string/-/color-string-1.9.1.tgz",
|
||||||
|
"integrity": "sha512-shrVawQFojnZv6xM40anx4CkoDP+fZsw/ZerEMsW/pyzsRbElpsL/DBVW7q3ExxwusdNXI3lXpuhEZkzs8p5Eg==",
|
||||||
|
"dependencies": {
|
||||||
|
"color-name": "^1.0.0",
|
||||||
|
"simple-swizzle": "^0.2.2"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/decompress-response": {
|
||||||
|
"version": "6.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/decompress-response/-/decompress-response-6.0.0.tgz",
|
||||||
|
"integrity": "sha512-aW35yZM6Bb/4oJlZncMH2LCoZtJXTRxES17vE3hoRiowU2kWHaJKFkSBDnDR+cm9J+9QhXmREyIfv0pji9ejCQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"mimic-response": "^3.1.0"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=10"
|
||||||
|
},
|
||||||
|
"funding": {
|
||||||
|
"url": "https://github.com/sponsors/sindresorhus"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/deep-extend": {
|
||||||
|
"version": "0.6.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/deep-extend/-/deep-extend-0.6.0.tgz",
|
||||||
|
"integrity": "sha512-LOHxIOaPYdHlJRtCQfDIVZtfw/ufM8+rVj649RIHzcm/vGwQRXFt6OPqIFWsm2XEMrNIEtWR64sY1LEKD2vAOA==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=4.0.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/detect-libc": {
|
||||||
|
"version": "2.0.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/detect-libc/-/detect-libc-2.0.3.tgz",
|
||||||
|
"integrity": "sha512-bwy0MGW55bG41VqxxypOsdSdGqLwXPI/focwgTYCFMbdUiBAxLg9CFzG08sz2aqzknwiX7Hkl0bQENjg8iLByw==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=8"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/end-of-stream": {
|
||||||
|
"version": "1.4.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/end-of-stream/-/end-of-stream-1.4.4.tgz",
|
||||||
|
"integrity": "sha512-+uw1inIHVPQoaVuHzRyXd21icM+cnt4CzD5rW+NC1wjOUSTOs+Te7FOv7AhN7vS9x/oIyhLP5PR1H+phQAHu5Q==",
|
||||||
|
"dependencies": {
|
||||||
|
"once": "^1.4.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/expand-template": {
|
||||||
|
"version": "2.0.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/expand-template/-/expand-template-2.0.3.tgz",
|
||||||
|
"integrity": "sha512-XYfuKMvj4O35f/pOXLObndIRvyQ+/+6AhODh+OKWj9S9498pHHn/IMszH+gt0fBCRWMNfk1ZSp5x3AifmnI2vg==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/fast-fifo": {
|
||||||
|
"version": "1.3.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/fast-fifo/-/fast-fifo-1.3.2.tgz",
|
||||||
|
"integrity": "sha512-/d9sfos4yxzpwkDkuN7k2SqFKtYNmCTzgfEpz82x34IM9/zc8KGxQoXg1liNC/izpRM/MBdt44Nmx41ZWqk+FQ=="
|
||||||
|
},
|
||||||
|
"node_modules/flatbuffers": {
|
||||||
|
"version": "1.12.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/flatbuffers/-/flatbuffers-1.12.0.tgz",
|
||||||
|
"integrity": "sha512-c7CZADjRcl6j0PlvFy0ZqXQ67qSEZfrVPynmnL+2zPc+NtMvrF8Y0QceMo7QqnSPc7+uWjUIAbvCQ5WIKlMVdQ=="
|
||||||
|
},
|
||||||
|
"node_modules/fs-constants": {
|
||||||
|
"version": "1.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/fs-constants/-/fs-constants-1.0.0.tgz",
|
||||||
|
"integrity": "sha512-y6OAwoSIf7FyjMIv94u+b5rdheZEjzR63GTyZJm5qh4Bi+2YgwLCcI/fPFZkL5PSixOt6ZNKm+w+Hfp/Bciwow=="
|
||||||
|
},
|
||||||
|
"node_modules/github-from-package": {
|
||||||
|
"version": "0.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/github-from-package/-/github-from-package-0.0.0.tgz",
|
||||||
|
"integrity": "sha512-SyHy3T1v2NUXn29OsWdxmK6RwHD+vkj3v8en8AOBZ1wBQ/hCAQ5bAQTD02kW4W9tUp/3Qh6J8r9EvntiyCmOOw=="
|
||||||
|
},
|
||||||
|
"node_modules/guid-typescript": {
|
||||||
|
"version": "1.0.9",
|
||||||
|
"resolved": "https://registry.npmjs.org/guid-typescript/-/guid-typescript-1.0.9.tgz",
|
||||||
|
"integrity": "sha512-Y8T4vYhEfwJOTbouREvG+3XDsjr8E3kIr7uf+JZ0BYloFsttiHU0WfvANVsR7TxNUJa/WpCnw/Ino/p+DeBhBQ=="
|
||||||
|
},
|
||||||
|
"node_modules/ieee754": {
|
||||||
|
"version": "1.2.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/ieee754/-/ieee754-1.2.1.tgz",
|
||||||
|
"integrity": "sha512-dcyqhDvX1C46lXZcVqCpK+FtMRQVdIMN6/Df5js2zouUsqG7I6sFxitIC+7KYK29KdXOLHdu9zL4sFnoVQnqaA==",
|
||||||
|
"funding": [
|
||||||
|
{
|
||||||
|
"type": "github",
|
||||||
|
"url": "https://github.com/sponsors/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "patreon",
|
||||||
|
"url": "https://www.patreon.com/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "consulting",
|
||||||
|
"url": "https://feross.org/support"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/inherits": {
|
||||||
|
"version": "2.0.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/inherits/-/inherits-2.0.4.tgz",
|
||||||
|
"integrity": "sha512-k/vGaX4/Yla3WzyMCvTQOXYeIHvqOKtnqBduzTHpzpQZzAskKMhZ2K+EnBiSM9zGSoIFeMpXKxa4dYeZIQqewQ=="
|
||||||
|
},
|
||||||
|
"node_modules/ini": {
|
||||||
|
"version": "1.3.8",
|
||||||
|
"resolved": "https://registry.npmjs.org/ini/-/ini-1.3.8.tgz",
|
||||||
|
"integrity": "sha512-JV/yugV2uzW5iMRSiZAyDtQd+nxtUnjeLt0acNdw98kKLrvuRVyB80tsREOE7yvGVgalhZ6RNXCmEHkUKBKxew=="
|
||||||
|
},
|
||||||
|
"node_modules/is-arrayish": {
|
||||||
|
"version": "0.3.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/is-arrayish/-/is-arrayish-0.3.2.tgz",
|
||||||
|
"integrity": "sha512-eVRqCvVlZbuw3GrM63ovNSNAeA1K16kaR/LRY/92w0zxQ5/1YzwblUX652i4Xs9RwAGjW9d9y6X88t8OaAJfWQ=="
|
||||||
|
},
|
||||||
|
"node_modules/long": {
|
||||||
|
"version": "4.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/long/-/long-4.0.0.tgz",
|
||||||
|
"integrity": "sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA=="
|
||||||
|
},
|
||||||
|
"node_modules/mimic-response": {
|
||||||
|
"version": "3.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/mimic-response/-/mimic-response-3.1.0.tgz",
|
||||||
|
"integrity": "sha512-z0yWI+4FDrrweS8Zmt4Ej5HdJmky15+L2e6Wgn3+iK5fWzb6T3fhNFq2+MeTRb064c6Wr4N/wv0DzQTjNzHNGQ==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=10"
|
||||||
|
},
|
||||||
|
"funding": {
|
||||||
|
"url": "https://github.com/sponsors/sindresorhus"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/minimist": {
|
||||||
|
"version": "1.2.8",
|
||||||
|
"resolved": "https://registry.npmjs.org/minimist/-/minimist-1.2.8.tgz",
|
||||||
|
"integrity": "sha512-2yyAR8qBkN3YuheJanUpWC5U3bb5osDywNB8RzDVlDwDHbocAJveqqj1u8+SVD7jkWT4yvsHCpWqqWqAxb0zCA==",
|
||||||
|
"funding": {
|
||||||
|
"url": "https://github.com/sponsors/ljharb"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/mkdirp-classic": {
|
||||||
|
"version": "0.5.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/mkdirp-classic/-/mkdirp-classic-0.5.3.tgz",
|
||||||
|
"integrity": "sha512-gKLcREMhtuZRwRAfqP3RFW+TK4JqApVBtOIftVgjuABpAtpxhPGaDcfvbhNvD0B8iD1oUr/txX35NjcaY6Ns/A=="
|
||||||
|
},
|
||||||
|
"node_modules/napi-build-utils": {
|
||||||
|
"version": "1.0.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/napi-build-utils/-/napi-build-utils-1.0.2.tgz",
|
||||||
|
"integrity": "sha512-ONmRUqK7zj7DWX0D9ADe03wbwOBZxNAfF20PlGfCWQcD3+/MakShIHrMqx9YwPTfxDdF1zLeL+RGZiR9kGMLdg=="
|
||||||
|
},
|
||||||
|
"node_modules/node-abi": {
|
||||||
|
"version": "3.65.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/node-abi/-/node-abi-3.65.0.tgz",
|
||||||
|
"integrity": "sha512-ThjYBfoDNr08AWx6hGaRbfPwxKV9kVzAzOzlLKbk2CuqXE2xnCh+cbAGnwM3t8Lq4v9rUB7VfondlkBckcJrVA==",
|
||||||
|
"dependencies": {
|
||||||
|
"semver": "^7.3.5"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/node-addon-api": {
|
||||||
|
"version": "6.1.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/node-addon-api/-/node-addon-api-6.1.0.tgz",
|
||||||
|
"integrity": "sha512-+eawOlIgy680F0kBzPUNFhMZGtJ1YmqM6l4+Crf4IkImjYrO/mqPwRMh352g23uIaQKFItcQ64I7KMaJxHgAVA=="
|
||||||
|
},
|
||||||
|
"node_modules/once": {
|
||||||
|
"version": "1.4.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/once/-/once-1.4.0.tgz",
|
||||||
|
"integrity": "sha512-lNaJgI+2Q5URQBkccEKHTQOPaXdUxnZZElQTZY0MFUAuaEqe1E+Nyvgdz/aIyNi6Z9MzO5dv1H8n58/GELp3+w==",
|
||||||
|
"dependencies": {
|
||||||
|
"wrappy": "1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/onnx-proto": {
|
||||||
|
"version": "4.0.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/onnx-proto/-/onnx-proto-4.0.4.tgz",
|
||||||
|
"integrity": "sha512-aldMOB3HRoo6q/phyB6QRQxSt895HNNw82BNyZ2CMh4bjeKv7g/c+VpAFtJuEMVfYLMbRx61hbuqnKceLeDcDA==",
|
||||||
|
"dependencies": {
|
||||||
|
"protobufjs": "^6.8.8"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/onnxruntime-common": {
|
||||||
|
"version": "1.14.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/onnxruntime-common/-/onnxruntime-common-1.14.0.tgz",
|
||||||
|
"integrity": "sha512-3LJpegM2iMNRX2wUmtYfeX/ytfOzNwAWKSq1HbRrKc9+uqG/FsEA0bbKZl1btQeZaXhC26l44NWpNUeXPII7Ew=="
|
||||||
|
},
|
||||||
|
"node_modules/onnxruntime-node": {
|
||||||
|
"version": "1.14.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/onnxruntime-node/-/onnxruntime-node-1.14.0.tgz",
|
||||||
|
"integrity": "sha512-5ba7TWomIV/9b6NH/1x/8QEeowsb+jBEvFzU6z0T4mNsFwdPqXeFUM7uxC6QeSRkEbWu3qEB0VMjrvzN/0S9+w==",
|
||||||
|
"optional": true,
|
||||||
|
"os": [
|
||||||
|
"win32",
|
||||||
|
"darwin",
|
||||||
|
"linux"
|
||||||
|
],
|
||||||
|
"dependencies": {
|
||||||
|
"onnxruntime-common": "~1.14.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/onnxruntime-web": {
|
||||||
|
"version": "1.14.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/onnxruntime-web/-/onnxruntime-web-1.14.0.tgz",
|
||||||
|
"integrity": "sha512-Kcqf43UMfW8mCydVGcX9OMXI2VN17c0p6XvR7IPSZzBf/6lteBzXHvcEVWDPmCKuGombl997HgLqj91F11DzXw==",
|
||||||
|
"dependencies": {
|
||||||
|
"flatbuffers": "^1.12.0",
|
||||||
|
"guid-typescript": "^1.0.9",
|
||||||
|
"long": "^4.0.0",
|
||||||
|
"onnx-proto": "^4.0.4",
|
||||||
|
"onnxruntime-common": "~1.14.0",
|
||||||
|
"platform": "^1.3.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/platform": {
|
||||||
|
"version": "1.3.6",
|
||||||
|
"resolved": "https://registry.npmjs.org/platform/-/platform-1.3.6.tgz",
|
||||||
|
"integrity": "sha512-fnWVljUchTro6RiCFvCXBbNhJc2NijN7oIQxbwsyL0buWJPG85v81ehlHI9fXrJsMNgTofEoWIQeClKpgxFLrg=="
|
||||||
|
},
|
||||||
|
"node_modules/prebuild-install": {
|
||||||
|
"version": "7.1.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/prebuild-install/-/prebuild-install-7.1.2.tgz",
|
||||||
|
"integrity": "sha512-UnNke3IQb6sgarcZIDU3gbMeTp/9SSU1DAIkil7PrqG1vZlBtY5msYccSKSHDqa3hNg436IXK+SNImReuA1wEQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"detect-libc": "^2.0.0",
|
||||||
|
"expand-template": "^2.0.3",
|
||||||
|
"github-from-package": "0.0.0",
|
||||||
|
"minimist": "^1.2.3",
|
||||||
|
"mkdirp-classic": "^0.5.3",
|
||||||
|
"napi-build-utils": "^1.0.1",
|
||||||
|
"node-abi": "^3.3.0",
|
||||||
|
"pump": "^3.0.0",
|
||||||
|
"rc": "^1.2.7",
|
||||||
|
"simple-get": "^4.0.0",
|
||||||
|
"tar-fs": "^2.0.0",
|
||||||
|
"tunnel-agent": "^0.6.0"
|
||||||
|
},
|
||||||
|
"bin": {
|
||||||
|
"prebuild-install": "bin.js"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/prebuild-install/node_modules/tar-fs": {
|
||||||
|
"version": "2.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-2.1.1.tgz",
|
||||||
|
"integrity": "sha512-V0r2Y9scmbDRLCNex/+hYzvp/zyYjvFbHPNgVTKfQvVrb6guiE/fxP+XblDNR011utopbkex2nM4dHNV6GDsng==",
|
||||||
|
"dependencies": {
|
||||||
|
"chownr": "^1.1.1",
|
||||||
|
"mkdirp-classic": "^0.5.2",
|
||||||
|
"pump": "^3.0.0",
|
||||||
|
"tar-stream": "^2.1.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/prebuild-install/node_modules/tar-stream": {
|
||||||
|
"version": "2.2.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-2.2.0.tgz",
|
||||||
|
"integrity": "sha512-ujeqbceABgwMZxEJnk2HDY2DlnUZ+9oEcb1KzTVfYHio0UE6dG71n60d8D2I4qNvleWrrXpmjpt7vZeF1LnMZQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"bl": "^4.0.3",
|
||||||
|
"end-of-stream": "^1.4.1",
|
||||||
|
"fs-constants": "^1.0.0",
|
||||||
|
"inherits": "^2.0.3",
|
||||||
|
"readable-stream": "^3.1.1"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/protobufjs": {
|
||||||
|
"version": "6.11.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/protobufjs/-/protobufjs-6.11.4.tgz",
|
||||||
|
"integrity": "sha512-5kQWPaJHi1WoCpjTGszzQ32PG2F4+wRY6BmAT4Vfw56Q2FZ4YZzK20xUYQH4YkfehY1e6QSICrJquM6xXZNcrw==",
|
||||||
|
"hasInstallScript": true,
|
||||||
|
"dependencies": {
|
||||||
|
"@protobufjs/aspromise": "^1.1.2",
|
||||||
|
"@protobufjs/base64": "^1.1.2",
|
||||||
|
"@protobufjs/codegen": "^2.0.4",
|
||||||
|
"@protobufjs/eventemitter": "^1.1.0",
|
||||||
|
"@protobufjs/fetch": "^1.1.0",
|
||||||
|
"@protobufjs/float": "^1.0.2",
|
||||||
|
"@protobufjs/inquire": "^1.1.0",
|
||||||
|
"@protobufjs/path": "^1.1.2",
|
||||||
|
"@protobufjs/pool": "^1.1.0",
|
||||||
|
"@protobufjs/utf8": "^1.1.0",
|
||||||
|
"@types/long": "^4.0.1",
|
||||||
|
"@types/node": ">=13.7.0",
|
||||||
|
"long": "^4.0.0"
|
||||||
|
},
|
||||||
|
"bin": {
|
||||||
|
"pbjs": "bin/pbjs",
|
||||||
|
"pbts": "bin/pbts"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/pump": {
|
||||||
|
"version": "3.0.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/pump/-/pump-3.0.0.tgz",
|
||||||
|
"integrity": "sha512-LwZy+p3SFs1Pytd/jYct4wpv49HiYCqd9Rlc5ZVdk0V+8Yzv6jR5Blk3TRmPL1ft69TxP0IMZGJ+WPFU2BFhww==",
|
||||||
|
"dependencies": {
|
||||||
|
"end-of-stream": "^1.1.0",
|
||||||
|
"once": "^1.3.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/queue-tick": {
|
||||||
|
"version": "1.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/queue-tick/-/queue-tick-1.0.1.tgz",
|
||||||
|
"integrity": "sha512-kJt5qhMxoszgU/62PLP1CJytzd2NKetjSRnyuj31fDd3Rlcz3fzlFdFLD1SItunPwyqEOkca6GbV612BWfaBag=="
|
||||||
|
},
|
||||||
|
"node_modules/rc": {
|
||||||
|
"version": "1.2.8",
|
||||||
|
"resolved": "https://registry.npmjs.org/rc/-/rc-1.2.8.tgz",
|
||||||
|
"integrity": "sha512-y3bGgqKj3QBdxLbLkomlohkvsA8gdAiUQlSBJnBhfn+BPxg4bc62d8TcBW15wavDfgexCgccckhcZvywyQYPOw==",
|
||||||
|
"dependencies": {
|
||||||
|
"deep-extend": "^0.6.0",
|
||||||
|
"ini": "~1.3.0",
|
||||||
|
"minimist": "^1.2.0",
|
||||||
|
"strip-json-comments": "~2.0.1"
|
||||||
|
},
|
||||||
|
"bin": {
|
||||||
|
"rc": "cli.js"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/readable-stream": {
|
||||||
|
"version": "3.6.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/readable-stream/-/readable-stream-3.6.2.tgz",
|
||||||
|
"integrity": "sha512-9u/sniCrY3D5WdsERHzHE4G2YCXqoG5FTHUiCC4SIbr6XcLZBY05ya9EKjYek9O5xOAwjGq+1JdGBAS7Q9ScoA==",
|
||||||
|
"dependencies": {
|
||||||
|
"inherits": "^2.0.3",
|
||||||
|
"string_decoder": "^1.1.1",
|
||||||
|
"util-deprecate": "^1.0.1"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">= 6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/safe-buffer": {
|
||||||
|
"version": "5.2.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/safe-buffer/-/safe-buffer-5.2.1.tgz",
|
||||||
|
"integrity": "sha512-rp3So07KcdmmKbGvgaNxQSJr7bGVSVk5S9Eq1F+ppbRo70+YeaDxkw5Dd8NPN+GD6bjnYm2VuPuCXmpuYvmCXQ==",
|
||||||
|
"funding": [
|
||||||
|
{
|
||||||
|
"type": "github",
|
||||||
|
"url": "https://github.com/sponsors/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "patreon",
|
||||||
|
"url": "https://www.patreon.com/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "consulting",
|
||||||
|
"url": "https://feross.org/support"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/semver": {
|
||||||
|
"version": "7.6.3",
|
||||||
|
"resolved": "https://registry.npmjs.org/semver/-/semver-7.6.3.tgz",
|
||||||
|
"integrity": "sha512-oVekP1cKtI+CTDvHWYFUcMtsK/00wmAEfyqKfNdARm8u1wNVhSgaX7A8d4UuIlUI5e84iEwOhs7ZPYRmzU9U6A==",
|
||||||
|
"bin": {
|
||||||
|
"semver": "bin/semver.js"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=10"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/sharp": {
|
||||||
|
"version": "0.32.6",
|
||||||
|
"resolved": "https://registry.npmjs.org/sharp/-/sharp-0.32.6.tgz",
|
||||||
|
"integrity": "sha512-KyLTWwgcR9Oe4d9HwCwNM2l7+J0dUQwn/yf7S0EnTtb0eVS4RxO0eUSvxPtzT4F3SY+C4K6fqdv/DO27sJ/v/w==",
|
||||||
|
"hasInstallScript": true,
|
||||||
|
"dependencies": {
|
||||||
|
"color": "^4.2.3",
|
||||||
|
"detect-libc": "^2.0.2",
|
||||||
|
"node-addon-api": "^6.1.0",
|
||||||
|
"prebuild-install": "^7.1.1",
|
||||||
|
"semver": "^7.5.4",
|
||||||
|
"simple-get": "^4.0.1",
|
||||||
|
"tar-fs": "^3.0.4",
|
||||||
|
"tunnel-agent": "^0.6.0"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": ">=14.15.0"
|
||||||
|
},
|
||||||
|
"funding": {
|
||||||
|
"url": "https://opencollective.com/libvips"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/simple-concat": {
|
||||||
|
"version": "1.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/simple-concat/-/simple-concat-1.0.1.tgz",
|
||||||
|
"integrity": "sha512-cSFtAPtRhljv69IK0hTVZQ+OfE9nePi/rtJmw5UjHeVyVroEqJXP1sFztKUy1qU+xvz3u/sfYJLa947b7nAN2Q==",
|
||||||
|
"funding": [
|
||||||
|
{
|
||||||
|
"type": "github",
|
||||||
|
"url": "https://github.com/sponsors/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "patreon",
|
||||||
|
"url": "https://www.patreon.com/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "consulting",
|
||||||
|
"url": "https://feross.org/support"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"node_modules/simple-get": {
|
||||||
|
"version": "4.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/simple-get/-/simple-get-4.0.1.tgz",
|
||||||
|
"integrity": "sha512-brv7p5WgH0jmQJr1ZDDfKDOSeWWg+OVypG99A/5vYGPqJ6pxiaHLy8nxtFjBA7oMa01ebA9gfh1uMCFqOuXxvA==",
|
||||||
|
"funding": [
|
||||||
|
{
|
||||||
|
"type": "github",
|
||||||
|
"url": "https://github.com/sponsors/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "patreon",
|
||||||
|
"url": "https://www.patreon.com/feross"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"type": "consulting",
|
||||||
|
"url": "https://feross.org/support"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"dependencies": {
|
||||||
|
"decompress-response": "^6.0.0",
|
||||||
|
"once": "^1.3.1",
|
||||||
|
"simple-concat": "^1.0.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/simple-swizzle": {
|
||||||
|
"version": "0.2.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/simple-swizzle/-/simple-swizzle-0.2.2.tgz",
|
||||||
|
"integrity": "sha512-JA//kQgZtbuY83m+xT+tXJkmJncGMTFT+C+g2h2R9uxkYIrE2yy9sgmcLhCnw57/WSD+Eh3J97FPEDFnbXnDUg==",
|
||||||
|
"dependencies": {
|
||||||
|
"is-arrayish": "^0.3.1"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/streamx": {
|
||||||
|
"version": "2.18.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/streamx/-/streamx-2.18.0.tgz",
|
||||||
|
"integrity": "sha512-LLUC1TWdjVdn1weXGcSxyTR3T4+acB6tVGXT95y0nGbca4t4o/ng1wKAGTljm9VicuCVLvRlqFYXYy5GwgM7sQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"fast-fifo": "^1.3.2",
|
||||||
|
"queue-tick": "^1.0.1",
|
||||||
|
"text-decoder": "^1.1.0"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"bare-events": "^2.2.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/string_decoder": {
|
||||||
|
"version": "1.3.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/string_decoder/-/string_decoder-1.3.0.tgz",
|
||||||
|
"integrity": "sha512-hkRX8U1WjJFd8LsDJ2yQ/wWWxaopEsABU1XfkM8A+j0+85JAGppt16cr1Whg6KIbb4okU6Mql6BOj+uup/wKeA==",
|
||||||
|
"dependencies": {
|
||||||
|
"safe-buffer": "~5.2.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/strip-json-comments": {
|
||||||
|
"version": "2.0.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/strip-json-comments/-/strip-json-comments-2.0.1.tgz",
|
||||||
|
"integrity": "sha512-4gB8na07fecVVkOI6Rs4e7T6NOTki5EmL7TUduTs6bu3EdnSycntVJ4re8kgZA+wx9IueI2Y11bfbgwtzuE0KQ==",
|
||||||
|
"engines": {
|
||||||
|
"node": ">=0.10.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/tar-fs": {
|
||||||
|
"version": "3.0.6",
|
||||||
|
"resolved": "https://registry.npmjs.org/tar-fs/-/tar-fs-3.0.6.tgz",
|
||||||
|
"integrity": "sha512-iokBDQQkUyeXhgPYaZxmczGPhnhXZ0CmrqI+MOb/WFGS9DW5wnfrLgtjUJBvz50vQ3qfRwJ62QVoCFu8mPVu5w==",
|
||||||
|
"dependencies": {
|
||||||
|
"pump": "^3.0.0",
|
||||||
|
"tar-stream": "^3.1.5"
|
||||||
|
},
|
||||||
|
"optionalDependencies": {
|
||||||
|
"bare-fs": "^2.1.1",
|
||||||
|
"bare-path": "^2.1.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/tar-stream": {
|
||||||
|
"version": "3.1.7",
|
||||||
|
"resolved": "https://registry.npmjs.org/tar-stream/-/tar-stream-3.1.7.tgz",
|
||||||
|
"integrity": "sha512-qJj60CXt7IU1Ffyc3NJMjh6EkuCFej46zUqJ4J7pqYlThyd9bO0XBTmcOIhSzZJVWfsLks0+nle/j538YAW9RQ==",
|
||||||
|
"dependencies": {
|
||||||
|
"b4a": "^1.6.4",
|
||||||
|
"fast-fifo": "^1.2.0",
|
||||||
|
"streamx": "^2.15.0"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/text-decoder": {
|
||||||
|
"version": "1.1.1",
|
||||||
|
"resolved": "https://registry.npmjs.org/text-decoder/-/text-decoder-1.1.1.tgz",
|
||||||
|
"integrity": "sha512-8zll7REEv4GDD3x4/0pW+ppIxSNs7H1J10IKFZsuOMscumCdM2a+toDGLPA3T+1+fLBql4zbt5z83GEQGGV5VA==",
|
||||||
|
"dependencies": {
|
||||||
|
"b4a": "^1.6.4"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/tsc": {
|
||||||
|
"version": "2.0.4",
|
||||||
|
"resolved": "https://registry.npmjs.org/tsc/-/tsc-2.0.4.tgz",
|
||||||
|
"integrity": "sha512-fzoSieZI5KKJVBYGvwbVZs/J5za84f2lSTLPYf6AGiIf43tZ3GNrI1QzTLcjtyDDP4aLxd46RTZq1nQxe7+k5Q==",
|
||||||
|
"license": "MIT",
|
||||||
|
"bin": {
|
||||||
|
"tsc": "bin/tsc"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"node_modules/tunnel-agent": {
|
||||||
|
"version": "0.6.0",
|
||||||
|
"resolved": "https://registry.npmjs.org/tunnel-agent/-/tunnel-agent-0.6.0.tgz",
|
||||||
|
"integrity": "sha512-McnNiV1l8RYeY8tBgEpuodCC1mLUdbSN+CYBL7kJsJNInOP8UjDDEwdk6Mw60vdLLrr5NHKZhMAOSrR2NZuQ+w==",
|
||||||
|
"dependencies": {
|
||||||
|
"safe-buffer": "^5.0.1"
|
||||||
|
},
|
||||||
|
"engines": {
|
||||||
|
"node": "*"
|
||||||
|
}
|
||||||
|
},
|
||||||
"node_modules/typescript": {
|
"node_modules/typescript": {
|
||||||
"version": "5.5.2",
|
"version": "5.5.4",
|
||||||
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.2.tgz",
|
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.5.4.tgz",
|
||||||
"integrity": "sha512-NcRtPEOsPFFWjobJEtfihkLCZCXZt/os3zf8nTxjVH3RvTSxjrCamJpbExGvYOF+tFHc3pA65qpdwPbzjohhew==",
|
"integrity": "sha512-Mtq29sKDAEYP7aljRgtPOpTvOfbwRWlS6dPRzwjdE+C0R4brX/GUyhHSecbHMFLNBLcJIPt9nl9yG5TZ1weH+Q==",
|
||||||
"peer": true,
|
"dev": true,
|
||||||
|
"license": "Apache-2.0",
|
||||||
"bin": {
|
"bin": {
|
||||||
"tsc": "bin/tsc",
|
"tsc": "bin/tsc",
|
||||||
"tsserver": "bin/tsserver"
|
"tsserver": "bin/tsserver"
|
||||||
@@ -74,6 +826,21 @@
|
|||||||
"engines": {
|
"engines": {
|
||||||
"node": ">=14.17"
|
"node": ">=14.17"
|
||||||
}
|
}
|
||||||
|
},
|
||||||
|
"node_modules/undici-types": {
|
||||||
|
"version": "5.26.5",
|
||||||
|
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
|
||||||
|
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA=="
|
||||||
|
},
|
||||||
|
"node_modules/util-deprecate": {
|
||||||
|
"version": "1.0.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/util-deprecate/-/util-deprecate-1.0.2.tgz",
|
||||||
|
"integrity": "sha512-EPD5q1uXyFxJpCrLnCc1nHnq3gOa6DZBocAIiI2TaSCA7VCJ1UJDMagCzIkXNsUYfD1daK//LTEQ8xiIbrHtcw=="
|
||||||
|
},
|
||||||
|
"node_modules/wrappy": {
|
||||||
|
"version": "1.0.2",
|
||||||
|
"resolved": "https://registry.npmjs.org/wrappy/-/wrappy-1.0.2.tgz",
|
||||||
|
"integrity": "sha512-l4Sp/DRseor9wL6EvV2+TuQn63dMkPjZ/sp9XkghTEbV9KlPS1xUsZ3u7/IQO4wxtcFB4bgpQPRcR3QCvezPcQ=="
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -10,9 +10,19 @@
|
|||||||
"author": "Lance Devs",
|
"author": "Lance Devs",
|
||||||
"license": "Apache-2.0",
|
"license": "Apache-2.0",
|
||||||
"dependencies": {
|
"dependencies": {
|
||||||
"@lancedb/lancedb": "file:../"
|
"@lancedb/lancedb": "file:../",
|
||||||
|
"@xenova/transformers": "^2.17.2"
|
||||||
},
|
},
|
||||||
"peerDependencies": {
|
"devDependencies": {
|
||||||
"typescript": "^5.0.0"
|
"typescript": "^5.5.4"
|
||||||
|
},
|
||||||
|
"compilerOptions": {
|
||||||
|
"target": "ESNext",
|
||||||
|
"module": "ESNext",
|
||||||
|
"moduleResolution": "Node",
|
||||||
|
"strict": true,
|
||||||
|
"esModuleInterop": true,
|
||||||
|
"skipLibCheck": true,
|
||||||
|
"forceConsistentCasingInFileNames": true
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -32,6 +32,7 @@ const _results2 = await tbl
|
|||||||
.distanceType("cosine")
|
.distanceType("cosine")
|
||||||
.limit(10)
|
.limit(10)
|
||||||
.toArray();
|
.toArray();
|
||||||
|
console.log(_results2);
|
||||||
// --8<-- [end:search2]
|
// --8<-- [end:search2]
|
||||||
|
|
||||||
console.log("search: done");
|
console.log("search: done");
|
||||||
|
|||||||
50
nodejs/examples/sentence-transformers.js
Normal file
50
nodejs/examples/sentence-transformers.js
Normal file
@@ -0,0 +1,50 @@
|
|||||||
|
import * as lancedb from "@lancedb/lancedb";
|
||||||
|
|
||||||
|
import { LanceSchema, getRegistry } from "@lancedb/lancedb/embedding";
|
||||||
|
import { Utf8 } from "apache-arrow";
|
||||||
|
|
||||||
|
const db = await lancedb.connect("/tmp/db");
|
||||||
|
const func = await getRegistry().get("huggingface").create();
|
||||||
|
|
||||||
|
const facts = [
|
||||||
|
"Albert Einstein was a theoretical physicist.",
|
||||||
|
"The capital of France is Paris.",
|
||||||
|
"The Great Wall of China is one of the Seven Wonders of the World.",
|
||||||
|
"Python is a popular programming language.",
|
||||||
|
"Mount Everest is the highest mountain in the world.",
|
||||||
|
"Leonardo da Vinci painted the Mona Lisa.",
|
||||||
|
"Shakespeare wrote Hamlet.",
|
||||||
|
"The human body has 206 bones.",
|
||||||
|
"The speed of light is approximately 299,792 kilometers per second.",
|
||||||
|
"Water boils at 100 degrees Celsius.",
|
||||||
|
"The Earth orbits the Sun.",
|
||||||
|
"The Pyramids of Giza are located in Egypt.",
|
||||||
|
"Coffee is one of the most popular beverages in the world.",
|
||||||
|
"Tokyo is the capital city of Japan.",
|
||||||
|
"Photosynthesis is the process by which plants make their food.",
|
||||||
|
"The Pacific Ocean is the largest ocean on Earth.",
|
||||||
|
"Mozart was a prolific composer of classical music.",
|
||||||
|
"The Internet is a global network of computers.",
|
||||||
|
"Basketball is a sport played with a ball and a hoop.",
|
||||||
|
"The first computer virus was created in 1983.",
|
||||||
|
"Artificial neural networks are inspired by the human brain.",
|
||||||
|
"Deep learning is a subset of machine learning.",
|
||||||
|
"IBM's Watson won Jeopardy! in 2011.",
|
||||||
|
"The first computer programmer was Ada Lovelace.",
|
||||||
|
"The first chatbot was ELIZA, created in the 1960s.",
|
||||||
|
].map((text) => ({ text }));
|
||||||
|
|
||||||
|
const factsSchema = LanceSchema({
|
||||||
|
text: func.sourceField(new Utf8()),
|
||||||
|
vector: func.vectorField(),
|
||||||
|
});
|
||||||
|
|
||||||
|
const tbl = await db.createTable("facts", facts, {
|
||||||
|
mode: "overwrite",
|
||||||
|
schema: factsSchema,
|
||||||
|
});
|
||||||
|
|
||||||
|
const query = "How many bones are in the human body?";
|
||||||
|
const actual = await tbl.search(query).limit(1).toArray();
|
||||||
|
|
||||||
|
console.log("Answer: ", actual[0]["text"]);
|
||||||
@@ -108,32 +108,6 @@ export function isArrowTable(value: object): value is TableLike {
|
|||||||
return "schema" in value && "batches" in value;
|
return "schema" in value && "batches" in value;
|
||||||
}
|
}
|
||||||
|
|
||||||
export function isDataType(value: unknown): value is DataType {
|
|
||||||
return (
|
|
||||||
value instanceof DataType ||
|
|
||||||
DataType.isNull(value) ||
|
|
||||||
DataType.isInt(value) ||
|
|
||||||
DataType.isFloat(value) ||
|
|
||||||
DataType.isBinary(value) ||
|
|
||||||
DataType.isLargeBinary(value) ||
|
|
||||||
DataType.isUtf8(value) ||
|
|
||||||
DataType.isLargeUtf8(value) ||
|
|
||||||
DataType.isBool(value) ||
|
|
||||||
DataType.isDecimal(value) ||
|
|
||||||
DataType.isDate(value) ||
|
|
||||||
DataType.isTime(value) ||
|
|
||||||
DataType.isTimestamp(value) ||
|
|
||||||
DataType.isInterval(value) ||
|
|
||||||
DataType.isDuration(value) ||
|
|
||||||
DataType.isList(value) ||
|
|
||||||
DataType.isStruct(value) ||
|
|
||||||
DataType.isUnion(value) ||
|
|
||||||
DataType.isFixedSizeBinary(value) ||
|
|
||||||
DataType.isFixedSizeList(value) ||
|
|
||||||
DataType.isMap(value) ||
|
|
||||||
DataType.isDictionary(value)
|
|
||||||
);
|
|
||||||
}
|
|
||||||
export function isNull(value: unknown): value is Null {
|
export function isNull(value: unknown): value is Null {
|
||||||
return value instanceof Null || DataType.isNull(value);
|
return value instanceof Null || DataType.isNull(value);
|
||||||
}
|
}
|
||||||
@@ -565,7 +539,7 @@ async function applyEmbeddingsFromMetadata(
|
|||||||
schema: Schema,
|
schema: Schema,
|
||||||
): Promise<ArrowTable> {
|
): Promise<ArrowTable> {
|
||||||
const registry = getRegistry();
|
const registry = getRegistry();
|
||||||
const functions = registry.parseFunctions(schema.metadata);
|
const functions = await registry.parseFunctions(schema.metadata);
|
||||||
|
|
||||||
const columns = Object.fromEntries(
|
const columns = Object.fromEntries(
|
||||||
table.schema.fields.map((field) => [
|
table.schema.fields.map((field) => [
|
||||||
@@ -743,7 +717,7 @@ export async function convertToTable(
|
|||||||
/** Creates the Arrow Type for a Vector column with dimension `dim` */
|
/** Creates the Arrow Type for a Vector column with dimension `dim` */
|
||||||
export function newVectorType<T extends Float>(
|
export function newVectorType<T extends Float>(
|
||||||
dim: number,
|
dim: number,
|
||||||
innerType: T,
|
innerType: unknown,
|
||||||
): FixedSizeList<T> {
|
): FixedSizeList<T> {
|
||||||
// in Lance we always default to have the elements nullable, so we need to set it to true
|
// in Lance we always default to have the elements nullable, so we need to set it to true
|
||||||
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
|
// otherwise we often get schema mismatches because the stored data always has schema with nullable elements
|
||||||
|
|||||||
@@ -44,10 +44,20 @@ export interface CreateTableOptions {
|
|||||||
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
* The available options are described at https://lancedb.github.io/lancedb/guides/storage/
|
||||||
*/
|
*/
|
||||||
storageOptions?: Record<string, string>;
|
storageOptions?: Record<string, string>;
|
||||||
|
/**
|
||||||
|
* The version of the data storage format to use.
|
||||||
|
*
|
||||||
|
* The default is `legacy`, which is Lance format v1.
|
||||||
|
* `stable` is the new format, which is Lance format v2.
|
||||||
|
*/
|
||||||
|
dataStorageVersion?: string;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* If true then data files will be written with the legacy format
|
* If true then data files will be written with the legacy format
|
||||||
*
|
*
|
||||||
* The default is true while the new format is in beta
|
* The default is true while the new format is in beta
|
||||||
|
*
|
||||||
|
* Deprecated.
|
||||||
*/
|
*/
|
||||||
useLegacyFormat?: boolean;
|
useLegacyFormat?: boolean;
|
||||||
schema?: SchemaLike;
|
schema?: SchemaLike;
|
||||||
@@ -240,18 +250,26 @@ export class LocalConnection extends Connection {
|
|||||||
): Promise<Table> {
|
): Promise<Table> {
|
||||||
if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) {
|
if (typeof nameOrOptions !== "string" && "name" in nameOrOptions) {
|
||||||
const { name, data, ...options } = nameOrOptions;
|
const { name, data, ...options } = nameOrOptions;
|
||||||
|
|
||||||
return this.createTable(name, data, options);
|
return this.createTable(name, data, options);
|
||||||
}
|
}
|
||||||
if (data === undefined) {
|
if (data === undefined) {
|
||||||
throw new Error("data is required");
|
throw new Error("data is required");
|
||||||
}
|
}
|
||||||
const { buf, mode } = await Table.parseTableData(data, options);
|
const { buf, mode } = await Table.parseTableData(data, options);
|
||||||
|
let dataStorageVersion = "legacy";
|
||||||
|
if (options?.dataStorageVersion !== undefined) {
|
||||||
|
dataStorageVersion = options.dataStorageVersion;
|
||||||
|
} else if (options?.useLegacyFormat !== undefined) {
|
||||||
|
dataStorageVersion = options.useLegacyFormat ? "legacy" : "stable";
|
||||||
|
}
|
||||||
|
|
||||||
const innerTable = await this.inner.createTable(
|
const innerTable = await this.inner.createTable(
|
||||||
nameOrOptions,
|
nameOrOptions,
|
||||||
buf,
|
buf,
|
||||||
mode,
|
mode,
|
||||||
cleanseStorageOptions(options?.storageOptions),
|
cleanseStorageOptions(options?.storageOptions),
|
||||||
options?.useLegacyFormat,
|
dataStorageVersion,
|
||||||
);
|
);
|
||||||
|
|
||||||
return new LocalTable(innerTable);
|
return new LocalTable(innerTable);
|
||||||
@@ -275,6 +293,13 @@ export class LocalConnection extends Connection {
|
|||||||
metadata = registry.getTableMetadata([embeddingFunction]);
|
metadata = registry.getTableMetadata([embeddingFunction]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
let dataStorageVersion = "legacy";
|
||||||
|
if (options?.dataStorageVersion !== undefined) {
|
||||||
|
dataStorageVersion = options.dataStorageVersion;
|
||||||
|
} else if (options?.useLegacyFormat !== undefined) {
|
||||||
|
dataStorageVersion = options.useLegacyFormat ? "legacy" : "stable";
|
||||||
|
}
|
||||||
|
|
||||||
const table = makeEmptyTable(schema, metadata);
|
const table = makeEmptyTable(schema, metadata);
|
||||||
const buf = await fromTableToBuffer(table);
|
const buf = await fromTableToBuffer(table);
|
||||||
const innerTable = await this.inner.createEmptyTable(
|
const innerTable = await this.inner.createEmptyTable(
|
||||||
@@ -282,7 +307,7 @@ export class LocalConnection extends Connection {
|
|||||||
buf,
|
buf,
|
||||||
mode,
|
mode,
|
||||||
cleanseStorageOptions(options?.storageOptions),
|
cleanseStorageOptions(options?.storageOptions),
|
||||||
options?.useLegacyFormat,
|
dataStorageVersion,
|
||||||
);
|
);
|
||||||
return new LocalTable(innerTable);
|
return new LocalTable(innerTable);
|
||||||
}
|
}
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user