Compare commits

..

922 Commits

Author SHA1 Message Date
Lance Release
bb809abd4b Bump version: 0.24.3-beta.0 → 0.24.3 2025-08-15 18:02:04 +00:00
Lance Release
c87530f7a3 Bump version: 0.24.2 → 0.24.3-beta.0 2025-08-15 18:02:04 +00:00
Will Jones
1eb1beecd6 ci: remove more mentions of node (#2595)
I promise this time I tested it locally :)
2025-08-15 11:01:02 -07:00
Yuval Lifshitz
ce550e6c45 feat: add missing rust examples (#2583)
all 3 example are running now with:
```
cargo run --example simple
cargo run --example full_text_search
cargo run --example ivf_pq
```

Signed-off-by: Yuval Lifshitz <ylifshit@ibm.com>
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-08-15 10:38:58 -07:00
Will Jones
d3bae1f3a3 ci: drop old node mention (#2594)
This broke release here:
https://github.com/lancedb/lancedb/actions/runs/16993824504/job/48179542912
2025-08-15 09:51:19 -07:00
Will Jones
dcf53c4506 fix: limit and offset support paginating through FTS and vector search results (#2592)
Adds tests to ensure that users can paginate through simple scan, FTS,
and vector search results using `limit` and `offset`.

Tests upstream work: https://github.com/lancedb/lance/pull/4318

Closes #2459
2025-08-15 08:55:12 -07:00
Ryan Green
941eada703 docs: update indexing and compaction docs (#2362)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Clarified and expanded explanations of data management concepts in
LanceDB.
- Added notes on automatic background fragment compaction and
incremental reindexing support in LanceDB Cloud/Enterprise.
- Updated details on disabling interim exhaustive kNN search during
background reindexing.
  - Improved formatting and removed outdated FTS reindexing subsection.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-08-15 12:41:47 -02:30
Weston Pace
ed640a76d9 feat: add take_offsets and take_row_ids (#2584)
These operations have existed in lance for a long while and many users
need to drop down to lance for this capability. This PR adds the API and
implements it using filters (e.g. `_rowid IN (...)`) so that in doesn't
currently add any load to `BaseTable`. I'm not sure that is sustainable
as base table implementations may want to specialize how they handle
this method. However, I figure it is a good starting point.

In addition, unlike Lance, this API does not currently guarantee
anything about the order of the take results. This is necessary for the
fallback filter approach to work (SQL filters cannot guarantee result
order)
2025-08-15 06:48:24 -07:00
Will Jones
296205ef96 feat: upgrade lance to v0.33.0 (#2591)
https://github.com/lancedb/lance/releases/tag/v0.33.0
2025-08-14 12:11:19 -07:00
Weston Pace
16beaaa656 ci: fix broken CI checks (#2585) 2025-08-13 10:05:57 -07:00
Tomoko Uchida
4ff87b1f4a feat: add hybrid search example in Rust (#2579)
Hello!

I'm new to lancedb and interested in the Rust SDK.
I couldn't find a good hybrid search example in Rust, so I created one.

## Usage

```bash
$ cargo run --quiet --example hybrid_search --features=sentence-transformers
Result: Python is a popular programming language.
Result: Mount Everest is the highest mountain in the world.
Result: The first computer programmer was Ada Lovelace.
Result: Coffee is one of the most popular beverages in the world.
Result: Basketball is a sport played with a ball and a hoop.
```
2025-08-12 08:22:19 -07:00
Shawn
0532ef2358 chore(deps): update crunchy to 0.2.4 (#2581)
Hi,

I'm try to build goose (rely on lancedb) for android/termux.
Found out some depsendencies need to update. 

https://github.com/block/goose/pull/3890

0.2.4 update
- nmathewson Fix cross-compilation between windows and non-windows.

https://github.com/shawn111/lancedb/actions/runs/16871317860
windows and linux build passed

https://github.com/shawn111/lancedb/actions/runs/16871859398

Signed-off-by: Shawn Wang <shawn111@gmail.com>
2025-08-11 18:00:00 -07:00
BubbleCal
dcf7334c1f chore: upgrade lance to v0.32.2-beta.1 (#2580)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-08-08 17:00:54 +08:00
Will Jones
8ffe992a6f fix: always uses slashes in table uris (#2575)
Closes #2574
2025-08-05 12:12:57 -07:00
Will Jones
9d683e4f0b feat: infer vector columns when name contains 'vector' or 'embedding' (#2547)
## Summary

- Enhanced vector column detection to use substring matching instead of
exact matching
- Now detects columns with names containing "vector" or "embedding"
(case-insensitive)
- Added integer vector support to Node.js implementation (matching
Python)
- Comprehensive test coverage for both float and integer vector types

## Changes

### Python (`python/python/lancedb/table.py`)
- Updated `_infer_target_schema()` to use substring matching with helper
function `_is_vector_column()`
- Preserved original field names instead of forcing "vector"
- Consolidated duplicate logic for better maintainability

### Node.js (`nodejs/lancedb/arrow.ts`)
- Enhanced type inference with `nameSuggestsVectorColumn()` helper
function
- Added `isAllIntegers()` function with performance optimization (checks
first 10 elements)
- Implemented integer vector support using `Uint8` type (matching
Python)
- Improved type safety by removing `any` usage

### Tests
- **Python**: Added
`test_infer_target_schema_with_vector_embedding_names()` in
`test_util.py`
- **Node.js**: Added comprehensive test case in `arrow.test.ts`
- Both test suites cover various naming patterns and integer/float
vector types

## Examples of newly supported column names:
- `user_vector`, `text_embedding`, `doc_embeddings`
- `my_vector_field`, `embedding_model`
- `VECTOR_COL`, `Vector_Mixed` (case-insensitive)
- Both float and integer arrays are properly converted to fixed-size
lists

## Test plan
- [x] All existing tests pass (backward compatibility maintained)
- [x] New tests pass for both Python and Node.js implementations
- [x] Integer vector detection works correctly in Node.js
- [x] Code passes linting and formatting checks
- [x] Performance optimized for large vector arrays

Fixes #2546

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-04 15:36:49 -07:00
Will Jones
0a1ea1858d chore: remove vectordb package (#2564)
```shell
git rm -r rust/ffi
git rm -r node
git rm ci/build_windows_artifacts.ps1
git rm ci/build_windows_artifacts_nodejs.ps1
git rm ci/build_linux_artifacts.sh
git rm ci/build_macos_artifacts.sh
git rm -r ci/manylinux_node
git rm .github/workflows/node.yml
```
2025-08-04 14:14:33 -07:00
Poornachandra.A.N
7d0127b376 feat(embeddings): add siglip embedding support to lancedb (#2499)
###  Summary

This PR adds **SigLIP** (Sigmoid Loss Image Pretraining) as a new
embedding model in the LanceDB embedding registry. SigLIP improves
image-text alignment performance using sigmoid-based contrastive loss
and offers robust zero-shot generalization.

Fixes #2498 

### What’s Implemented

#### 1. `SigLIP` Embedding Class

* Added `SigLIP` support under `python/lancedb/embeddings/siglip.py`
* Implements:

  * `compute_source_embeddings`
  * `_batch_generate_embeddings`
  * Normalization logic
  * Batch-wise progress logging for image embedding

#### 2. Registry Integration

* Registered `SigLIP` in `embeddings/__init__.py`
* `SigLIP` now usable via `connect(..., embedding="siglip")`

#### 3. Evaluation Benchmark Support

* Added SigLIP to `test_embeddings_slow.py` for side-by-side
benchmarking with OpenCLIP and ImageBind


###  New Test Methods

####  `test_siglip`

* End-to-end test to verify embeddings table creation and vector shape
for SigLIP
![WhatsApp Image 2025-07-10 at 18 00
27_a3368163](https://github.com/user-attachments/assets/e5582ee1-80a3-43d7-a7a1-26ceecce9f4d)


####  `test_siglip_vs_openclip_vs_imagebind_benchmark_full`

* Benchmarks:

  * **Recall\@1 / 5 / 10**
  * **mAP (Mean Average Precision)**
  * **Embedding & Search Latency**
  * Dimensionality reporting
![WhatsApp Image 2025-07-10 at 18 12
13_22c67a84](https://github.com/user-attachments/assets/455bf30f-62b7-4684-a3f3-ad52e2a1ffe5)


###  Notes

* SigLIP outputs 768D embeddings (vs 512D for OpenCLIP)
* Benchmark shows competitive performance despite higher dimensionality
* I'm still new to contributing to open-source and learning as I go.
Please feel free to suggest any improvements — I'm happy to make
changes!
2025-08-04 11:42:39 -07:00
Will Jones
02595dc475 feat: add overall timeout parameter to remote client (#2550)
## Summary
- Adds an overall `timeout` parameter to `TimeoutConfig` that limits the
total time for the entire request
- Can be set via config or `LANCE_CLIENT_TIMEOUT` environment variable
- Exposed in Python and Node.js bindings
- Includes comprehensive tests

## Test plan
- [x] Unit tests for Rust TimeoutConfig
- [x] Integration tests for Python bindings  
- [x] Integration tests for Node.js bindings
- [x] All existing tests pass

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-08-04 10:06:55 -07:00
Reed Loden
f23327af79 fix: use SPDX-compliant license name for nodejs packages (#2558)
Update license field from `Apache 2.0` to be `Apache-2.0` for all
Node.js packages.

This was causing GitHub's Dependency Review license check to fail with:
> The validity of the licenses of the dependencies below could not be
determined. Ensure that they are valid SPDX licenses
2025-08-04 09:54:53 -07:00
Wyatt Alt
c7afa724dd chore: update npm lockfile (#2563) 2025-07-30 18:28:06 -07:00
BubbleCal
c359cec504 chore: upgrade lance to 0.32.1-beta.2 (#2562)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-30 14:31:04 -07:00
Mark McCaskey
fe76496a59 fix: .nprobes method in python bindings, improve error messages (#2556)
`nprobes` with a value greater than 20 fails with the minimum error:

```
self = <lancedb.query.AsyncVectorQuery object at 0x10b749720>, minimum_nprobes = 30

    def minimum_nprobes(self, minimum_nprobes: int) -> Self:
        """Set the minimum number of probes to use.

        See `nprobes` for more details.

        These partitions will be searched on every indexed vector query and will
        increase recall at the expense of latency.
        """
>       self._inner.minimum_nprobes(minimum_nprobes)
E       ValueError: Invalid input, minimum_nprobes must be less than or equal to maximum_nprobes

python/lancedb/query.py:2744: ValueError
```

Putting the max set before the min seems reasonable but it causes this
reasonable case to fail:
```
def test_nprobes_min_max_works_sync(table):
    LanceVectorQueryBuilder(table, [0, 0], "vector").minimum_nprobes(2).maximum_nprobes(4).to_list()
```

with

```
self = <lancedb.query.AsyncVectorQuery object at 0x1203f1c90>, maximum_nprobes = 4

    def maximum_nprobes(self, maximum_nprobes: int) -> Self:
        """Set the maximum number of probes to use.

        See `nprobes` for more details.

        If this value is greater than `minimum_nprobes` then the excess partitions
        will be searched only if we have not found enough results.

        This can be useful when there is a narrow filter to allow these queries to
        spend more time searching and avoid potential false negatives.

        If this value is 0 then no limit will be applied and all partitions could be
        searched if needed to satisfy the limit.
        """
>       self._inner.maximum_nprobes(maximum_nprobes)
E       ValueError: Invalid input, maximum_nprobes must be greater than or equal to minimum_nprobes

python/lancedb/query.py:2761: ValueError
```.

The case I care about is where min == max, but this solution handles it
even if they're not. If both min and max exist, we set both to the
minimum and then set the max. This isn't 100% the same as the minimum
setter checks for 0 on the min and `.nprobes` does not do any sanity
checking at all. But I figured this was the most reasonable and general
solution without touching more of this code.

As part of this I noticed the error messages were a bit ambiguous so I
made them symmetric and clarified them while I was here.
2025-07-30 09:23:25 -07:00
Weston Pace
67ec1fe75c feat: don't repartition for the sake of the metadata eraser (#2559)
The `MetadataEraserExec` is super lightweight and doesn't really justify
partitioning. I had a plan recently that was partitioning just for this
node and that seems wasteful.
2025-07-29 19:26:30 -07:00
Lance Release
70d9b04ba5 Bump version: 0.21.2-beta.2 → 0.21.2 2025-07-25 20:32:41 +00:00
Lance Release
b0d4a79c35 Bump version: 0.21.2-beta.1 → 0.21.2-beta.2 2025-07-25 20:31:50 +00:00
Lance Release
f79295c697 Bump version: 0.24.2-beta.2 → 0.24.2 2025-07-25 20:31:15 +00:00
Lance Release
381fad9b65 Bump version: 0.24.2-beta.1 → 0.24.2-beta.2 2025-07-25 20:31:15 +00:00
Tristan Zajonc
055bf91d3e fix: handle empty list with schema in table creation (#2548)
## Summary
Fixes IndexError when creating tables with empty list data and a
provided schema. Previously, `_into_pyarrow_reader()` would attempt to
access `data[0]` on empty lists, causing an IndexError. Now properly
handles empty lists by using the provided schema.

Also adds regression tests for GitHub issues #1968 and #303 to prevent
future regressions with empty table scenarios.

## Changes
- Fix IndexError in `_into_pyarrow_reader()` for empty list + schema
case
- Add Optional[pa.Schema] parameter to handle empty data gracefully  
- Add `test_create_table_empty_list_with_schema` for the IndexError fix
- Add `test_create_empty_then_add_data` for issue #1968
- Add `test_search_empty_table` for issue #303

## Test plan
- [x] All new regression tests pass
- [x] Existing tests continue to pass
- [x] Code formatted with `make format`
2025-07-25 10:23:43 +08:00
Will Jones
050f0086b8 feat: upgrade Lance to v0.32.0 (#2543)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.32.0

Fixes #2521
2025-07-24 19:22:53 -07:00
Tristan Zajonc
10fa23e0d6 fix(python): expose register function in embeddings module (#2544)
## Summary
Fixes #2541

**Problem**: The `register` function was not accessible via `from
lancedb.embeddings import register` as documented, causing ImportError
for users trying to create custom embedding functions.

**Solution**: Added `register` to the exports in
`python/lancedb/embeddings/__init__.py` to match the documented API and
follow the same pattern as other registry functions (`get_registry`,
`EmbeddingFunctionRegistry`).

**Root Cause**: The function existed in `lancedb.embeddings.registry`
but wasn't exposed through the main embeddings module interface.

## Changes
- Add `register` to imports in
`/python/python/lancedb/embeddings/__init__.py`

## Test Plan
- [x] Verified `from lancedb.embeddings import register` works as
documented
- [x] Confirmed existing embedding tests pass
- [x] Checked that the fix follows existing patterns (same as
`get_registry`)
- [x] Validated linting and formatting passes

## References
Fixes #2541
2025-07-24 15:30:06 -07:00
yihong
43d9fc28b0 fix: can not build on python3.9 for dev (#2477)
This patch fix can not build on python3.9 dev

the reason is that for ibm-watsonx-ai the min version is py3.10

more can check on `pyoven` https://pyoven.org/package/ibm-watsonx-ai/

also fix tiny md lint

---------

Signed-off-by: yihong0618 <zouzou0208@gmail.com>
2025-07-24 12:39:04 -07:00
aniaan
f45f0d0431 fix(python): correct type annotations in EmbeddingFunctionRegistry (#2478)
- Fix register() method's alias parameter type from 'str = None' to
'Optional[str] = None'
- Add return type annotation 'Type[EmbeddingFunction]' to get() method
- Import Type from typing module for proper type hints
2025-07-24 12:31:49 -07:00
Tristan Zajonc
b9e3c36d82 fix: replace broken documentation URLs in error messages (#2533)
Replaces broken 404 URL and unhelpful documentation links in type error
messages with working URL and inline list of supported data types.

**Before**: Points to
https://lancedb.github.io/lance/read_and_write.html (404 error)
**After**: Lists supported types inline and points to
https://lancedb.github.io/lancedb/guides/tables/
2025-07-24 12:30:27 -07:00
Chen Chongchen
3cd7dd3375 fix: to_pydantic typing (#2517)
currently, to_pydantic will always return LanceModel. If type checking
is enabled in my project. I have to use `cast(data,
List[RealModelType])` to solve type error. This PR uses generic to solve
this problem.
2025-07-24 12:30:15 -07:00
Tristan Zajonc
12d4ce4cfe fix: resolve flaky Node.js integration test for mirrored store (#2539)
## Summary
- Fixed flaky Node.js integration test for mirrored store functionality
- Converted callback-based `fs.readdir()` to `fs.promises.readdir()`
with proper async/await
- Used unique temporary directories to prevent test isolation issues
- Updated test expectations to match current IVF-PQ index file structure

## Problem
The mirrored store integration test was experiencing random failures in
CI with errors like:
- `expected 2 to equal 1` at various assertion points
- `done() called multiple times`

## Root Causes Identified
1. **Race conditions**: Mixing callback-based filesystem operations with
async functions created timing issues where assertions ran before
filesystem operations completed
2. **Test isolation**: Multiple tests shared the same temp directory
(`tmpdir()`), causing one test to see files from another
3. **Outdated expectations**: IVF-PQ indexes now create 2 files
(`auxiliary.idx` + `index.idx`) instead of 1, but the test expected only
1

## Solution
- Replace all `fs.readdir()` callbacks with `fs.promises.readdir()` and
`await`
- Use `fs.promises.mkdtemp()` to create unique temporary directories for
each test run
- Update index file count expectations from 1 to 2 files to match
current Lance behavior
- Add descriptive assertion labels for easier debugging

## Analysis
The mirroring implementation in `MirroringObjectStore::put_opts` is
synchronous - it awaits writes to both secondary (local) and primary
(S3) stores before returning. The test failures were due to
callback/async pattern mismatch and test isolation issues, not actual
async mirroring behavior.

## Test plan
- [x] Local tests are running without timing-based failures
- [x] Integration tests with AWS credentials pass in CI

This resolves the flaky failures including 'expected 2 to equal 1'
assertions and 'done() called multiple times' errors seen in CI runs.
2025-07-24 12:07:05 -07:00
Will Jones
3d1f102087 feat: allow Python and Typescript users to create Sessions (#2530)
## Summary
- Exposes `Session` in Python and Typescript so users can set the
`index_cache_size_bytes` and `metadata_cache_size_bytes`
* The `Session` is attached to the `Connection`, and thus shared across
all tables in that connection.
- Adds deprecation warnings for table-level cache configuration


🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-24 12:06:29 -07:00
Tristan Zajonc
81afd8a42f fix: use local random state in FTS test fixtures to prevent flaky failures (#2532)
## Summary
Fixes intermittent CI failures in `test_search_fts[False]` where boolean
FTS queries were returning fewer results than expected due to
non-deterministic test data generation.

## Problem
The test was using global `random` and `np.random` without seeding,
causing the boolean query `MatchQuery("puppy", "text") &
MatchQuery("runs", "text")` to sometimes return only 3 results instead
of the expected 5, leading to `AssertionError: assert 3 == 5`.

## Solution
- Replace global random calls with local `random.Random(42)` and
`np.random.RandomState(42)` objects in test fixtures
- Ensures deterministic test data while maintaining test isolation
- No impact on other tests since random state is scoped to fixtures only

## Test Results
-  `test_search_fts[False]` now passes consistently
-  All other FTS tests continue to pass 
-  No regression in other test suites (verified with `test_basic`)
-  Maintains existing test behavior and coverage
2025-07-24 11:30:02 -07:00
Tristan Zajonc
c2aa03615a fix: correct grammar in LanceDB cloud connection error message (#2537)
## Summary

Fixed a minor grammar error in the error message for missing API key
when connecting to LanceDB cloud.

## Changes

- Changed 'api_key is required to connected LanceDB cloud' to 'api_key
is required to connect to LanceDB cloud'
- Location: `python/python/lancedb/__init__.py:95`

## Test plan

- Error message formatting is correct and grammatical
- No functional changes to existing behavior
2025-07-24 09:56:06 -07:00
Tristan Zajonc
d2c6759e7f fix: use import stubs to prevent MLX doctest collection failures (#2536)
## Summary
- Add `create_import_stub()` helper to `embeddings/utils.py` for
handling optional dependencies
- Fix MLX doctest collection failures by using import stubs in
`gte_mlx_model.py`
- Module now imports successfully for doctest collection even when MLX
is not installed

## Changes
- **New utility function**: `create_import_stub()` creates placeholder
objects that allow class inheritance but raise helpful errors when used
- **Updated MLX model**: Uses import stubs instead of direct imports
that fail immediately
- **Graceful degradation**: Clear error messages when MLX functionality
is accessed without MLX installed

## Test Results
-  `pytest --doctest-modules python/lancedb` now passes (with and
without MLX installed)
-  All existing tests continue to pass
-  MLX functionality works normally when MLX is installed
-  Helpful error messages when MLX functionality is used without MLX
installed

Fixes #2538

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-07-23 16:25:33 -07:00
Weston Pace
94fb9f364a feat: update lance version to 0.32.0-b2 (#2525) 2025-07-23 12:23:10 -07:00
Will Jones
fbff244ed8 chore: add claude md files (#2531)
Gives basic context to Claude about how to do common tasks in the repo.
2025-07-23 12:20:36 -07:00
Xuanwo
7e7466d224 ci: enable trust publishing for rust crates (#2529) 2025-07-23 14:53:52 +08:00
Lance Release
cceaf27d79 Bump version: 0.21.2-beta.0 → 0.21.2-beta.1 2025-07-22 15:41:13 +00:00
Lance Release
7a15337e03 Bump version: 0.24.2-beta.0 → 0.24.2-beta.1 2025-07-22 15:40:17 +00:00
BubbleCal
96c66fd087 feat: support multivector for JS SDK (#2527)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-22 21:19:34 +08:00
Will Jones
0579303602 feat: allow setting custom Session on ListingDatabase (#2526)
## Summary

Add support for providing a custom `Session` when connecting to a
`ListingDatabase`. This allows users to configure object store
registries, caching, and other session-related settings while
maintaining full backward compatibility.

## Usage Example

```rust
use std::sync::Arc;
use lancedb::connect;

let custom_session = Arc::new(lance::session::Session::default());

let db = connect("/path/to/database")
    .session(custom_session)
    .execute()
    .await?;
```

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-21 16:28:39 -07:00
Jack Ye
75edb8756c feat(java): integrate lance-namespace to lancedb Java SDK (#2524) 2025-07-21 14:21:21 -07:00
Will Jones
88283110f4 fix: handle input with missing columns when using embedding functions (#2516)
## Summary

Fixes #2515 by implementing comprehensive support for missing columns in
Arrow table inputs when using embedding functions.

### Problem
Previously, when an Arrow table was passed to `fromDataToBuffer` with
missing columns and a schema containing embedding functions, the system
would fail because `applyEmbeddingsFromMetadata` expected all columns to
be present in the table.

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-07-18 15:54:25 -07:00
Lance Release
b3a637fdeb Bump version: 0.21.1 → 0.21.2-beta.0 2025-07-18 16:03:28 +00:00
Lance Release
ce24457531 Bump version: 0.24.1 → 0.24.2-beta.0 2025-07-18 16:02:37 +00:00
BubbleCal
087fe6343d test: fix random data may break test case (#2514)
this test adds a new vector and then performs vector search with
distance range.
this may fail if the new vector becomes the closest one to the query
vector

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-18 16:15:06 +08:00
Wyatt Alt
ab8cbe62dd fix: excessive object storage handle creation in create_table (#2505)
This fixes two bugs with create_table storage handle reuse. First issue
is, the database object did not previously carry a session that
create_table operations could reuse for create_table operations.

Second issue is, the inheritance logic for create_table and open_table
was causing empty storage options (i.e Some({})) to get sent, instead of
None. Lance handles these differently:

* When None is set, the object store held in the session's storage
registry that was created at "connect" is used. This value stays in the
cache long-term (probably as long as the db reference is held).
* When Some({}) is sent, LanceDB will create a new connection and cache
it for an empty key. However, that cached value will remain valid only
as long as the client holds a reference to the table. After that, the
cache is poisoned and the next create_table with the same key, will
create a new connection. This confounds reuse if e.g python gc's the
table object before another table is created.

My feeling is that the second path, if intentional, is probably meant to
serve cases where tables are overriding settings and the cached
connection is assumed not to be generally applicable. The bug is we were
engaging that mechanism for all tables.
2025-07-17 16:27:23 -07:00
Ayush Chaurasia
f076bb41f4 feat: add support for returning all scores with rerankers (#2509)
Previously `return_score="all"` was supported only for the default
reranker (RRF) and not the model based rerankers.
This adds support for keeping all scores in the base reranker so that
all model based rerankers can use it. Its a slower path than keeping
just the relevance score but can be useful in debugging
2025-07-15 21:03:03 +05:30
BubbleCal
902fb83d54 fix: set_lance_version may miss features when upgrading lance (#2510)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 20:11:10 +08:00
BubbleCal
779118339f chore: upgrade lance to 0.31.2-beta.3 (#2508)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 17:08:11 +08:00
BubbleCal
03b62599d7 feat: support ngram tokenizer (#2507)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-15 16:36:08 +08:00
Benjamin Schmidt
4c999fb651 chore: fix cleanupOlderThan docs (#2504)
Thanks for all your work.

The docstring for `OptimizeOptions ` seems to reference a non-existent
method on `Table`. I believe this is the correct example for
`cleanupOlderThan`.

This also appears in the generated docs, but I assume they live
downstream from this code?
2025-07-15 16:23:10 +08:00
Lance Release
6d23d32ab5 Bump version: 0.21.1-beta.2 → 0.21.1 2025-07-10 21:36:59 +00:00
Lance Release
704cec34e1 Bump version: 0.21.1-beta.1 → 0.21.1-beta.2 2025-07-10 21:36:26 +00:00
Lance Release
a300a238db Bump version: 0.24.1-beta.2 → 0.24.1 2025-07-10 21:36:02 +00:00
Lance Release
a41ff1df0a Bump version: 0.24.1-beta.1 → 0.24.1-beta.2 2025-07-10 21:36:02 +00:00
Weston Pace
77b005d849 feat: update lance to 0.31.1 (#2501)
This is preparation for a stable release
2025-07-10 14:35:29 -07:00
CyrusAttoun
167fccc427 fix: change 'return' to 'raise' for unimplemented remote table function (#2484)
just noticed that we're doing a 'return' instead of a 'raise' while
trying to get remote functionality working for my project. I went ahead
and implemented tests for both of the unimplemented functions (to_pandas
and to_arrow) while I was in there.

---------

Co-authored-by: Cyrus Attoun <jattoun1@gmail.com>
2025-07-09 14:27:08 -07:00
Lance Release
2bffbcefa5 Bump version: 0.21.1-beta.0 → 0.21.1-beta.1 2025-07-09 05:54:20 +00:00
Lance Release
905552f993 Bump version: 0.24.1-beta.0 → 0.24.1-beta.1 2025-07-09 05:53:28 +00:00
BubbleCal
e4898c9313 chore: sync node package-lock (#2491)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-09 12:34:03 +08:00
BubbleCal
cab36d94b2 feat: support to specify num_partitions and num_bits (#2488) 2025-07-09 11:36:09 +08:00
Weston Pace
b64252d4fd chore: don't require exact version of half (#2489)
I can't find any reason for pinning this dependency and the fact that it
is pinned can be kind of annoying to use downstream (e.g. datafusion
currently requires >= 2.6).
2025-07-08 08:36:04 -07:00
Lance Release
6fc006072c Bump version: 0.21.0 → 0.21.1-beta.0 2025-07-07 21:01:30 +00:00
Lance Release
d4bb59b542 Bump version: 0.24.0 → 0.24.1-beta.0 2025-07-07 21:00:38 +00:00
Wyatt Alt
6b2dd6de51 chore: update lance to 31.1-beta.2 (#2487) 2025-07-07 12:53:16 -07:00
BubbleCal
dbccd9e4f1 chore: upgrade lance to 0.31.1-beta.1 (#2486)
this also upgrades:
- datafusion 47.0 -> 48.0
- half 2.5.0 -> 2.6.0

to be consistent with lance

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-07-07 22:16:43 +08:00
Will Jones
b12ebfed4c fix: only monotonically update dataset (#2479)
Make sure we only update the latest version if it's actually newer. This
is important if there are concurrent queries, as they can take different
amounts of time.
2025-07-01 08:29:37 -07:00
Weston Pace
1dadb2aefa feat: upgrade to lance 0.31.0-beta.1 (#2469)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Updated dependencies to newer versions for improved compatibility and
stability.

* **Refactor**
* Improved internal handling of data ranges and stream lifetimes for
enhanced performance and reliability.
* Simplified code style for Python query object conversions without
affecting functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 11:10:53 -07:00
Haoyu Weng
eb9784d7f2 feat(python): batch Ollama embed calls (#2453)
Other embedding integrations such as Cohere and OpenAI already send
requests in batches. We should do that for Ollama too to improve
throughput.

The Ollama [`.embed`
API](63ca747622/ollama/_client.py (L359-L378))
was added in version 0.3.0 (almost a year ago) so I updated the version
requirement in pyproject.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved compatibility with newer versions of the "ollama" package by
requiring version 0.3.0 or higher.
- Enhanced embedding generation to process batches of texts more
efficiently and reliably.
- **Refactor**
	- Improved type consistency and clarity for embedding-related methods.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-30 08:28:14 -07:00
Kilerd Chan
ba755626cc fix: expose parsing error coming from invalid object store uri (#2475)
this PR is to expose the error from `ListingCatalog::open_path` which
unwrap the Result coming from `ObjectStore::from_uri` to avoid panic
2025-06-30 10:33:18 +08:00
Keming
7760799cb8 docs: fix multivector notebook markdown style (#2447)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Improved formatting and clarity in instructional text within the
Multivector on LanceDB notebook.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-27 15:34:01 -07:00
Will Jones
4beb2d2877 fix(python): make sure explain_plan works with FTS queries (#2466)
## Summary

Fixes issue #2465 where FTS explain plans only showed basic `LanceScan`
instead of detailed execution plans with FTS query details, limits, and
offsets.

## Root Cause

The `FTSQuery::explain_plan()` and `analyze_plan()` methods were missing
the `.full_text_search()` call before calling explain/analyze plan,
causing them to operate on the base query without FTS context.

## Changes

- **Fixed** `explain_plan()` and `analyze_plan()` in `src/query.rs` to
call `.full_text_search()`
- **Added comprehensive test coverage** for FTS explain plans with
limits, offsets, and filters
- **Updated existing tests** to expect correct behavior instead of buggy
behavior

## Before/After

**Before (broken):**
```
LanceScan: uri=..., projection=[...], row_id=false, row_addr=false, ordered=true
```

**After (fixed):**
```
ProjectionExec: expr=[id@2 as id, text@3 as text, _score@1 as _score]
  Take: columns="_rowid, _score, (id), (text)"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=2, fetch=4
        MatchQuery: query=test
```

## Test Plan

- [x] All new FTS explain plan tests pass 
- [x] Existing tests continue to pass
- [x] FTS queries now show proper execution plans with MatchQuery,
limits, filters

Closes #2465

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added new test cases to verify explain plan output for full-text
search, vector queries with pagination, and queries with filters.

* **Bug Fixes**
* Improved the accuracy of explain plan and analysis output for
full-text search queries, ensuring the correct query details are
reflected.

* **Refactor**
* Enhanced the formatting and hierarchical structure of execution plans
for hybrid queries, providing clearer and more detailed plan
representations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-06-26 23:35:14 -07:00
Lance Release
a00b8595d1 Bump version: 0.21.0-beta.0 → 0.21.0 2025-06-20 05:47:06 +00:00
Lance Release
9c8314b4fd Bump version: 0.20.1-beta.2 → 0.21.0-beta.0 2025-06-20 05:46:27 +00:00
Lance Release
c625b6f2b2 Bump version: 0.24.0-beta.0 → 0.24.0 2025-06-20 05:46:05 +00:00
Lance Release
bec8fe6547 Bump version: 0.23.1-beta.2 → 0.24.0-beta.0 2025-06-20 05:46:04 +00:00
BubbleCal
dc1150c011 chore: upgrade lance to 0.30.0 (#2451)
lance [release
details](https://github.com/lancedb/lance/releases/tag/v0.30.0)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency specifications to use exact version numbers instead
of referencing a git repository and tag.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-20 11:27:20 +08:00
Will Jones
afaefc6264 ci: fix package lock again (#2449)
We are able to push commits over here:
cb7293e073/.github/workflows/make-release-commit.yml (L88-L95)

So I think it's safe to assume this will work.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workflow configuration to improve authentication and branch
targeting for automated release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-19 08:51:48 -07:00
BubbleCal
cb70ff8cee feat!: switch default FTS to native lance FTS (#2428)
This switches the default FTS to native lance FTS for Python sync table
API, the other APIs have switched to native implementation already

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The default behavior for creating a full-text search index now uses
the new implementation rather than the legacy one.
- **Bug Fixes**
- Improved handling and error messages for phrase queries in full-text
search.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-19 10:38:34 +08:00
BubbleCal
cbb5a841b1 feat: support prefix matching and must_not clause (#2441) 2025-06-19 10:32:32 +08:00
Lance Release
c72f6770fd Bump version: 0.20.1-beta.1 → 0.20.1-beta.2 2025-06-18 23:33:57 +00:00
Lance Release
e5a80a5e86 Bump version: 0.23.1-beta.1 → 0.23.1-beta.2 2025-06-18 23:33:05 +00:00
Will Jones
8d0a7fad1f ci: try again to fix node lockfiles (#2445)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to explicitly check out the main branch
during the publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:45:39 -07:00
LuQQiu
b80d4d0134 chore: update Lance to v0.30.0-beta.1 (#2444)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 14:15:39 -07:00
satya-nutella
9645fe52c2 fix: improve error handling and embedding logic in arrow.ts (#2433)
- Enhanced error messages for schema inference failures to suggest
providing an explicit schema.
- Updated embedding application logic to check for existing destination
columns, allowing for filling embeddings in columns that are all null.
- Added comments for clarity on handling existing columns during
embedding application.

Fixes https://github.com/lancedb/lancedb/issues/2183

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
  - Improved error messages for schema inference to enhance readability.
- Prevented redundant embedding application by skipping columns that
already contain data, avoiding unnecessary errors and computations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-18 12:45:11 -07:00
Lance Release
b77314168d Bump version: 0.20.1-beta.0 → 0.20.1-beta.1 2025-06-17 23:22:50 +00:00
Lance Release
e08d45e090 Bump version: 0.23.1-beta.0 → 0.23.1-beta.1 2025-06-17 23:22:00 +00:00
Will Jones
2e3ddb8382 ci: fix lockfile failure for vectordb node (#2443)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated release workflow to set a specific Git user name and email for
automated commits during the package publishing process.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 15:14:11 -07:00
Wyatt Alt
627ca4c810 chore: update lance to v0.29.1-beta.2 (#2442)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to use a newer version of the Lance
library.
- **New Features**
- Added support for a new query occurrence type labeled "MUST NOT" in
search filters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-17 14:02:13 -07:00
Lance Release
f8dae4ffe9 Bump version: 0.20.0 → 0.20.1-beta.0 2025-06-16 16:30:14 +00:00
Lance Release
9eb6119468 Bump version: 0.23.0 → 0.23.1-beta.0 2025-06-16 16:29:22 +00:00
Weston Pace
59b57e30ed feat: add maximum and minimum nprobes properties (#2430)
This exposes the maximum_nprobes and minimum_nprobes feature that was
added in https://github.com/lancedb/lance/pull/3903

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying minimum and maximum probe counts in
vector search queries, allowing finer control over search behavior.
- Users can now independently set minimum and maximum probes for vector
and hybrid queries via new methods and parameters in Python, Node.js,
and Rust APIs.

- **Bug Fixes**
- Improved parameter validation to ensure correct usage of minimum and
maximum probe values.

- **Tests**
- Expanded test coverage to validate correct handling, serialization,
and error cases for the new probe parameters.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-13 15:18:29 -07:00
BubbleCal
fec8d58f06 feat: support a bunch or FTS features in JS SDK (#2431)
- operator for match query
- slop for phrase query
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for boolean full-text search queries with AND/OR
logic and occurrence conditions.
- Added operator options for match and multi-match queries to control
term combination logic.
- Enabled phrase queries to specify proximity (slop) for flexible phrase
matching.
- Added new enumerations (`Operator`, `Occur`) and the `BooleanQuery`
class for enhanced query expressiveness.

- **Bug Fixes**
- Improved validation and error handling for invalid operator and
occurrence inputs in full-text queries.

- **Tests**
- Expanded test coverage with new cases for boolean queries and
operator-based full-text searches.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-12 17:04:19 +08:00
BubbleCal
84ded9d678 feat: support new FTS features in python SDK (#2411)
- AND operator
- phrase query slop param
- boolean query

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for combining full-text search queries using AND/OR
operators, enabling more flexible query composition.
- Introduced new query types and parameters, including boolean queries,
operator selection, occurrence constraints, and phrase slop for advanced
search scenarios.
- Enhanced asynchronous search to accept rich full-text query objects
directly.

- **Bug Fixes**
- Improved handling and validation of full-text search queries in both
synchronous and asynchronous search operations.

- **Tests**
- Updated and expanded tests to cover new full-text query types and
their usage in search functions.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-06-06 14:33:46 +08:00
Wyatt Alt
65696d9713 chore: update lance in lancedb (#2424)
This updates lance to v0.29.1-beta.1.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies for improved consistency and
reliability. No changes to user-facing functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 19:06:51 -07:00
Will Jones
e2f2ea32e4 ci: fix vectordb release (#2422)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the release workflow to include an additional step for
improved process reliability. No changes to user-facing functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 17:06:02 -07:00
Lance Release
d5f2eca754 Bump version: 0.20.0-beta.3 → 0.20.0 2025-06-04 21:08:31 +00:00
Lance Release
7fa455a8a5 Bump version: 0.20.0-beta.2 → 0.20.0-beta.3 2025-06-04 21:07:59 +00:00
Lance Release
8f42b5874e Bump version: 0.23.0-beta.3 → 0.23.0 2025-06-04 21:07:39 +00:00
Lance Release
274f19f560 Bump version: 0.23.0-beta.2 → 0.23.0-beta.3 2025-06-04 21:07:38 +00:00
Will Jones
fbcbc75b5b feat: upgrade lance to stable version (#2420)
Adds a script to change the lance dependency easily. To make this
change, I just had to run:

```bash
python ci/set_lance_version.py stable
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added a script to automate updating the Lance package version in
project dependencies.
- **Chores**
- Updated workflows to improve lockfile management and automate updates
during releases and publishing.
- Switched Lance dependencies from git-based references to fixed version
numbers for improved stability.
- Enhanced lockfile update script with an option to amend commits and
quieter output.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-04 13:34:30 -07:00
Will Jones
008f389bd0 ci: commit updated Cargo.lock (#2418)
Follow up to #2416

Forgot to do `git add`.
Also need to delete old actions updating package lock.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
  - Removed legacy workflows related to updating package lock files.
- Improved the update lockfiles script to ensure updated lockfiles are
always included in amended commits.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-04 08:40:38 -07:00
Lance Release
91af6518d9 Updating package-lock.json 2025-06-04 07:15:07 +00:00
Lance Release
af6819762c Updating package-lock.json 2025-06-04 07:14:50 +00:00
Lance Release
7acece493d Bump version: 0.20.0-beta.1 → 0.20.0-beta.2 2025-06-04 07:14:39 +00:00
Lance Release
20e017fedc Bump version: 0.23.0-beta.1 → 0.23.0-beta.2 2025-06-04 07:13:44 +00:00
Jack Ye
74e578b3c8 feat: upgrade lance to v0.29.0-beta.2 (#2419)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated various internal dependencies to newer versions for improved
stability and compatibility.
  - Increased the version number for the Python package.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 15:16:26 -07:00
Lance Release
d92d9eb3d2 Updating package-lock.json 2025-06-03 16:28:18 +00:00
Lance Release
b6cdce7bc9 Updating package-lock.json 2025-06-03 16:28:02 +00:00
Lance Release
316b406265 Bump version: 0.20.0-beta.0 → 0.20.0-beta.1 2025-06-03 16:27:53 +00:00
Lance Release
8825c7c1dd Bump version: 0.23.0-beta.0 → 0.23.0-beta.1 2025-06-03 16:26:58 +00:00
David Myriel
81c85ff702 docs: announcement for Documentation (#2410)
Just letting people know where to look starting June 1st. 

Both docsites should be pointing to lancedb.github.io/documentation.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added a notification banner to the documentation site informing users
about a new URL for accessing the latest documentation starting June
1st, 2025. The message includes a clickable link that opens in a new
tab.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-06-03 08:55:02 -07:00
Will Jones
570f2154d5 ci: automatically update Cargo.lock (#2416)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated workflow to ignore changes in the `Cargo.lock` file during
documentation checks, reducing unnecessary workflow failures.
- Enhanced release process by adding automated lockfile updates for
Node.js and Rust components.
- Removed an obsolete package-lock update job from the publishing
workflow to streamline releases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-06-03 07:49:21 -07:00
Lance Release
0525c055fc Updating package-lock.json 2025-05-31 04:29:20 +00:00
Lance Release
38d11291da Updating package-lock.json 2025-05-31 03:48:11 +00:00
Lance Release
258e682574 Updating package-lock.json 2025-05-31 03:47:55 +00:00
Lance Release
d7afa600b8 Bump version: 0.19.2-beta.0 → 0.20.0-beta.0 2025-05-31 03:47:37 +00:00
Lance Release
5c7303ab2e Bump version: 0.22.2-beta.0 → 0.23.0-beta.0 2025-05-31 03:47:13 +00:00
Will Jones
5895ef4039 ci: revert unnecessary version bump (#2415)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Downgraded version numbers for the Node.js, Python, and Rust packages.
No other user-facing changes were made.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 16:51:14 -07:00
Jack Ye
0528cd858a fix: avoid failing list_indices for any unknown index (#2413)
Closes #2412 

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved the reliability of listing indices by logging warnings for
errors and skipping problematic entries, ensuring successful results are
returned.
- Internal indices used for optimization are now excluded from the
visible list of indices.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 14:43:12 -07:00
Jack Ye
6582f43422 feat: upgrade lance to v0.29.0-beta.1 (#2414)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved stability and
compatibility. No user-facing changes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-30 13:47:41 -07:00
BubbleCal
5c7f63388d feat!: upgrade lance to v0.28.0 (#2404)
this introduces some breaking changes in terms of rust API of creating
FTS index, and the default index params changed

Signed-off-by: BubbleCal <bubble-cal@outlook.com>

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Updated default settings for full-text search (FTS) index creation:
stemming, stop word removal, and ASCII folding are now enabled by
default, while token position storage is disabled by default.

- **Refactor**
- Simplified and streamlined the configuration and handling of FTS index
parameters for improved maintainability and consistency across
interfaces.
- Enhanced serialization and request construction for FTS index
parameters to reduce manual handling and improve code clarity.
- Improved test coverage by explicitly enabling positional indexing in
FTS tests to support phrase queries.

- **Chores**
- Upgraded all internal dependencies related to FTS indexing to the
latest version for enhanced compatibility and performance.
- Updated package versions for Node.js, Python, and Rust components to
the latest beta releases.
- Improved CI workflows by adding Rust toolchain setup with formatting
and linting tools.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-29 15:19:24 -07:00
Renato Marroquin
d0bc671cac docs: add example for querying a lance table with SQL (#2389)
Adds example for querying a dataset with SQL

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Added new guides on querying LanceDB tables using SQL with DuckDB and
Apache Datafusion.
- Included detailed instructions for integrating LanceDB with Datafusion
in Python.
- Updated navigation to include Datafusion and SQL querying
documentation.
- Improved formatting in TypeScript and vectordb update examples for
consistency.

- **Tests**
- Added a new test demonstrating SQL querying on Lance tables via
DataFusion integration.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-05-29 06:14:38 -07:00
David Myriel
d37e17593d [doc] Add New Readme Page (#2405)
Added a new readme for better navigation, updated language and more
detail

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Updated the README with a modernized header, improved structure, and
clearer descriptions of features and architecture.
- Expanded and reorganized key features and product offerings for better
clarity.
- Simplified installation instructions and added a table of SDK
interfaces with documentation links.
- Enhanced community and contributor sections with new visuals and links
to social and support channels.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-27 17:45:17 +02:00
Lance Release
cb726d370e Updating package-lock.json 2025-05-23 22:36:54 +00:00
Lance Release
23ee132546 Updating package-lock.json 2025-05-23 21:58:58 +00:00
Lance Release
7fa090d330 Updating package-lock.json 2025-05-23 21:58:43 +00:00
Lance Release
07bc1c5397 Bump version: 0.19.1 → 0.19.2-beta.0 2025-05-23 21:58:31 +00:00
Lance Release
d7a9dbb9fc Bump version: 0.22.1 → 0.22.2-beta.0 2025-05-23 21:58:17 +00:00
Jack Ye
00487afc7d feat: upgrade lance to v0.27.3-beta.2 (#2403)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies for improved compatibility and
stability. No changes to user-facing features.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-23 14:53:13 -07:00
BubbleCal
1902d65aad docs: update the num_partitions recommendation (#2401) 2025-05-23 23:45:37 +08:00
Lance Release
c4fbb65b8e Updating package-lock.json 2025-05-22 07:06:03 +00:00
Lance Release
875ed7ae6f Updating package-lock.json 2025-05-22 05:58:59 +00:00
Lance Release
95a46a57ba Updating package-lock.json 2025-05-22 05:58:43 +00:00
Lance Release
51561e31a0 Bump version: 0.19.1-beta.6 → 0.19.1 2025-05-22 05:58:05 +00:00
Lance Release
7b19120578 Bump version: 0.19.1-beta.5 → 0.19.1-beta.6 2025-05-22 05:58:00 +00:00
Lance Release
745c34a6a9 Bump version: 0.22.1-beta.6 → 0.22.1 2025-05-22 05:57:20 +00:00
Lance Release
db8fa2454d Bump version: 0.22.1-beta.5 → 0.22.1-beta.6 2025-05-22 05:57:20 +00:00
Lei Xu
a67a7b4b42 chore: use stable lance (#2398)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated workspace dependencies to use a stable release version for
improved consistency and reliability. No changes to application features
or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-21 22:34:29 -07:00
Lei Xu
496846e532 chore: bump lance version (#2397)
- Bump lance version and prepare a new release.
- Bump rust toolchain to 1.86, because GHA ubuntu does not have 1.83
`cargo-fmt` anymore
2025-05-21 14:15:55 -07:00
Ayush Chaurasia
dadcfebf8e docs: add logos in genkit docs page (#2391)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added an integration banner image to the beginning of the
Genkitx-LanceDB documentation.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-20 01:40:12 +05:30
Lance Release
67033dbd7f Updating package-lock.json 2025-05-16 00:25:41 +00:00
Lance Release
05a85cfc2a Updating package-lock.json 2025-05-15 23:44:27 +00:00
Lance Release
40c5d3d72b Updating package-lock.json 2025-05-15 23:44:10 +00:00
Lance Release
198f0f80c6 Bump version: 0.19.1-beta.4 → 0.19.1-beta.5 2025-05-15 23:43:32 +00:00
Lance Release
e3f2fd3892 Bump version: 0.22.1-beta.4 → 0.22.1-beta.5 2025-05-15 23:42:46 +00:00
Wyatt Alt
f401ccc599 chore: update lance to 0.27.1-beta.1 (#2388)
This is for fe14671f1

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated internal dependencies to newer versions for improved stability
and performance. No changes to features or functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-15 16:09:01 -07:00
Ayush Chaurasia
81b59139f8 docs: add genkit integration docs (#2383)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Added a comprehensive guide for integrating LanceDB with Genkit,
including installation instructions, setup, indexing, retrieval, and
building a custom RAG pipeline with example code and screenshots.
- Updated the documentation navigation to include the new Genkit
integration, making it accessible from the site menu.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-12 18:18:07 +05:30
ayush chaurasia
1026781ab6 Revert "update"
This reverts commit 9c699b8cd9.
2025-05-11 21:04:59 +05:30
ayush chaurasia
9c699b8cd9 update 2025-05-11 21:01:53 +05:30
Lance Release
34bec59bc3 Updating package-lock.json 2025-05-08 21:34:37 +00:00
Lance Release
a5fbbf0d66 Updating package-lock.json 2025-05-08 20:20:18 +00:00
Lance Release
b42721167b Updating package-lock.json 2025-05-08 20:20:00 +00:00
Lance Release
543dec9ff0 Bump version: 0.19.1-beta.3 → 0.19.1-beta.4 2025-05-08 20:19:17 +00:00
Lance Release
04f962f6b0 Bump version: 0.22.1-beta.3 → 0.22.1-beta.4 2025-05-08 20:18:40 +00:00
LuQQiu
19e896ff69 chore: add default for result structs (#2377)
add default for result structs, when values are not provided, will go
with the default values

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved internal handling of table operation results to support
default values. No changes to user-facing features or functionality.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:09:11 -07:00
Will Jones
272e4103b2 feat: provide timeout parameter for merge_insert (#2378)
Provides the ability to set a timeout for merge insert. The default
underlying timeout is however long the first attempt takes, or if there
are multiple attempts, 30 seconds. This has two use cases:

1. Make the timeout shorter, when you want to fail if it takes too long.
2. Allow taking more time to do retries.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for specifying a timeout when performing merge insert
operations in Python, Node.js, and Rust APIs.
- Introduced a new option to control the maximum allowed execution time
for merge inserts, including retry timeout handling.

- **Documentation**
- Updated and added documentation to describe the new timeout option and
its usage in APIs.

- **Tests**
- Added and updated tests to verify correct timeout behavior during
merge insert operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-08 13:07:05 -07:00
Wyatt Alt
75c257ebb6 fix: return IndexNotExist on remote drop index 404 (#2380)
Prior to this commit, attempting to drop an index that did not exist
would return a TableNotFound error stating that the target table does
not exist -- even when it did exist. Instead, we now return an
IndexNotFound error.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved error handling when attempting to drop a non-existent index,
providing a more accurate error message.
- **Tests**
- Added a test to verify correct error reporting when dropping an index
that does not exist.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:24:05 -07:00
Wyatt Alt
9ee152eb42 fix: support __len__ on remote table (#2379)
This moves the __len__ method from LanceTable and RemoteTable to Table
so that child classes don't need to implement their own. In the process,
it fixes the implementation of RemoteTable's length method, which was
previously missing a return statement.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Centralized the table length functionality in the base table class,
simplifying subclass behavior.
- Removed redundant or non-functional length methods from specific table
classes.

- **Tests**
- Added a new test to verify correct table length reporting for remote
tables.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-07 17:23:39 -07:00
LuQQiu
c9ae1b1737 fix: add restore with tag in python and nodejs API (#2374)
add restore with tag API in python and nodejs API and add tests to guard
them

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- The restore functionality now supports using version tags in addition
to numeric version identifiers, allowing you to revert tables to a state
marked by a tag.
- **Bug Fixes**
  - Restoring with an unknown tag now properly raises an error.
- **Documentation**
- Updated documentation and examples to clarify that restore accepts
both version numbers and tags.
- **Tests**
- Added new tests to verify restore behavior with version tags and error
handling for unknown tags.
  - Added tests for checkout and restore operations involving tags.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-06 16:12:58 -07:00
Lance Release
89dc80c42a Updating package-lock.json 2025-05-06 03:53:49 +00:00
Wyatt Alt
7b020ac799 chore: run cargo update (#2376) 2025-05-05 20:26:42 -07:00
Lance Release
529e774bbb Updating package-lock.json 2025-05-06 02:45:45 +00:00
Lance Release
7c12239305 Updating package-lock.json 2025-05-06 02:45:29 +00:00
Lance Release
d83424d6b4 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-05-06 02:45:06 +00:00
Lance Release
8bf89f887c Bump version: 0.22.1-beta.2 → 0.22.1-beta.3 2025-05-06 02:44:39 +00:00
LuQQiu
b2160b2304 fix: fix backward compatibility with the add API (#2375)
add API originally returns a struct with request_id, add backward
compatibility for that

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of empty server responses for various data
operations to ensure consistent behavior across server versions.
- Added default values to version and numeric fields to prevent errors
when response data is incomplete.

- **Tests**
- Expanded tests to cover multiple server response scenarios, validating
correct version handling in data operations.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 19:26:27 -07:00
Lance Release
1bb82597be Updating package-lock.json 2025-05-06 01:21:13 +00:00
Lance Release
e4eee38b3c Updating package-lock.json 2025-05-06 00:09:39 +00:00
Lance Release
64fc2be503 Updating package-lock.json 2025-05-06 00:09:19 +00:00
Lance Release
dc8054e90d Bump version: 0.19.1-beta.1 → 0.19.1-beta.2 2025-05-06 00:08:55 +00:00
Lance Release
1684940946 Bump version: 0.22.1-beta.1 → 0.22.1-beta.2 2025-05-06 00:08:29 +00:00
LuQQiu
695813463c chore: reduce unneeded API calls for return version for write operations and improve test (#2373)
Reduce the duplicate code for remote write operation testing.
Avoid double call to remote to get version info, just return 0 instead
of suddenly adding extra API calls for end users when they are using old
servers.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added version tracking to table operation results, allowing users to
see the commit version associated with add, update, delete, merge, and
column modification operations.
- **Bug Fixes**
- Improved compatibility with legacy servers by standardizing version
information as zero when the server does not return a version.
- **Documentation**
- Clarified the meaning of the version field in operation results,
especially for cases involving legacy server responses.
- **Tests**
- Enhanced test coverage to verify correct behavior with both legacy and
modern server responses.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 16:47:19 -07:00
LuQQiu
ed594b0f76 feat: return version for all write operations (#2368)
return version info for all write operations (add, update, merge_insert
and column modification operations)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Table modification operations (add, update, delete, merge,
add/alter/drop columns) now return detailed result objects including
version numbers and operation statistics.
- Result objects provide clearer feedback such as rows affected and new
table version after each operation.

- **Documentation**
- Updated documentation to describe new result objects and their fields
for all relevant table operations.
- Added documentation for new result interfaces and updated method
return types in Node.js and Python APIs.

- **Tests**
- Enhanced test coverage to assert correctness of returned versioning
and operation metadata after table modifications.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 14:25:34 -07:00
Will Jones
cee2b5ea42 chore: upgrade pyarrow pin (#2192)
Closes #2191


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated the required version of the pyarrow package to version 16 or
higher.
- Adjusted automated testing workflows to install pyarrow version 16 for
compatibility checks.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-05-05 11:23:13 -07:00
Alex Pilon
f315f9665a feat: implement bindings to return merge stats (#2367)
Based on this comment:
https://github.com/lancedb/lancedb/issues/2228#issuecomment-2730463075
and https://github.com/lancedb/lance/pull/2357

Here is my attempt at implementing bindings for returning merge stats
from a `merge_insert.execute` call for lancedb.

Note: I have almost no idea what I am doing in Rust but tried to follow
existing code patterns and pay attention to compiler hints.
- The change in nodejs binding appeared to be necessary to get
compilation to work, presumably this could actual work properly by
returning some kind of NAPI JS object of the stats data?
- I am unsure of what to do with the remote/table.rs changes -
necessarily for compilation to work; I assume this is related to LanceDB
cloud, but unsure the best way to handle that at this point.

Proof of function:

```python
import pandas as pd
import lancedb


db = lancedb.connect("/tmp/test.db")

test_data = pd.DataFrame(
    {
        "title": ["Hello", "Test Document", "Example", "Data Sample", "Last One"],
        "id": [1, 2, 3, 4, 5],
        "content": [
            "World",
            "This is a test",
            "Another example",
            "More test data",
            "Final entry",
        ],
    }
)

table = db.create_table("documents", data=test_data, exist_ok=True, mode="overwrite")

update_data = pd.DataFrame(
    {
        "title": [
            "Hello, World",
            "Test Document, it's good",
            "Example",
            "Data Sample",
            "Last One",
            "New One",
        ],
        "id": [1, 2, 3, 4, 5, 6],
        "content": [
            "World",
            "This is a test",
            "Another example",
            "More test data",
            "Final entry",
            "New content",
        ],
    }
)

stats = (
    table.merge_insert(on="id")
    .when_matched_update_all()
    .when_not_matched_insert_all()
    .execute(update_data)
)

print(stats)
```

returns

```
{'num_inserted_rows': 1, 'num_updated_rows': 5, 'num_deleted_rows': 0}
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Merge-insert operations now return detailed statistics, including
counts of inserted, updated, and deleted rows.
- **Bug Fixes**
- Tests updated to validate returned merge-insert statistics for
accuracy.
- **Documentation**
- Method documentation improved to reflect new return values and clarify
merge operation results.
- Added documentation for the new `MergeStats` interface detailing
operation statistics.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-01 10:00:20 -07:00
Andrew C. Oliver
5deb26bc8b fix: prevent embedded objects from returning null in all of their fields (#2355)
metadata{filename=xyz} filename would be there structurally, but ALWAYS
null.

I didn't include this as a file but it may be useful for understanding
the problem for people searching on this issue so I'm including it here
as documentation. Before this patch any field that is more than 1 deep
is accepted but returns null values for subfields when queried.

```js
const lancedb = require('@lancedb/lancedb');

// Debug logger
function debug(message, data) {
  console.log(`[TEST] ${message}`, data !== undefined ? data : '');
}

// Log when our unwrapArrowObject is called
const kParent = Symbol.for("parent");
const kRowIndex = Symbol.for("rowIndex");

// Override console.log for our test
const originalConsoleLog = console.log;
console.log = function() {
  // Filter out noisy logs
  if (arguments[0] && typeof arguments[0] === 'string' && arguments[0].includes('[INFO] [LanceDB]')) {
    originalConsoleLog.apply(console, arguments);
  }
  originalConsoleLog.apply(console, arguments);
};

async function main() {
  debug('Starting test...');
  
  // Connect to the database
  debug('Connecting to database...');
  const db = await lancedb.connect('./.lancedb');
  
  // Try to open an existing table, or create a new one if it doesn't exist
  let table;
  try {
    table = await db.openTable('test_nested_fields');
    debug('Opened existing table');
  } catch (e) {
    debug('Creating new table...');
    
    // Create test data with nested metadata structure
    const data = [
      {
        id: 'test1',
        vector: [1, 2, 3],
        metadata: {
          filePath: "/path/to/file1.ts",
          startLine: 10,
          endLine: 20,
          text: "function test() { return true; }"
        }
      },
      {
        id: 'test2',
        vector: [4, 5, 6],
        metadata: {
          filePath: "/path/to/file2.ts",
          startLine: 30,
          endLine: 40,
          text: "function test2() { return false; }"
        }
      }
    ];
    
    debug('Data to be inserted:', JSON.stringify(data, null, 2));
    
    // Create the table
    table = await db.createTable('test_nested_fields', data);
    debug('Table created successfully');
  }
  
  // Query the table and get results
  debug('Querying table...');
  const results = await table.search([1, 2, 3]).limit(10).toArray();
  
  // Log the results
  debug('Number of results:', results.length);
  
  if (results.length > 0) {
    const firstResult = results[0];
    debug('First result properties:', Object.keys(firstResult));
    
    // Check if metadata is accessible and what properties it has
    if (firstResult.metadata) {
      debug('Metadata properties:', Object.keys(firstResult.metadata));
      debug('Metadata filePath:', firstResult.metadata.filePath);
      debug('Metadata startLine:', firstResult.metadata.startLine);
      
      // Destructure to see if that helps
      const { filePath, startLine, endLine, text } = firstResult.metadata;
      debug('Destructured values:', { filePath, startLine, endLine, text });
      
      // Check if it's a proxy object
      debug('Result is proxy?', Object.getPrototypeOf(firstResult) === Object.prototype ? false : true);
      debug('Metadata is proxy?', Object.getPrototypeOf(firstResult.metadata) === Object.prototype ? false : true);
    } else {
      debug('Metadata is not accessible!');
    }
  }
  
  // Close the database
  await db.close();
}

main().catch(e => {
  console.error('Error:', e);
}); 
```

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of nested struct fields to ensure accurate
preservation of values during serialization and deserialization.
- Enhanced robustness when accessing nested object properties, reducing
errors with missing or null values.

- **Tests**
- Added tests to verify correct handling of nested struct fields through
serialization and deserialization.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-05-01 09:38:55 -07:00
Lance Release
3cc670ac38 Updating package-lock.json 2025-04-29 23:21:19 +00:00
Lance Release
4ade3e31e2 Updating package-lock.json 2025-04-29 22:19:46 +00:00
Lance Release
a222d2cd91 Updating package-lock.json 2025-04-29 22:19:30 +00:00
Lance Release
508e621f3d Bump version: 0.19.1-beta.0 → 0.19.1-beta.1 2025-04-29 22:19:14 +00:00
Lance Release
a1a0472f3f Bump version: 0.22.1-beta.0 → 0.22.1-beta.1 2025-04-29 22:18:53 +00:00
Wyatt Alt
3425a6d339 feat: upgrade lance to v0.27.0-beta.2 (#2364)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated dependencies for related components to use the latest version
from a specific repository source. No changes to features or public
functionality.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-29 14:59:56 -07:00
Ryan Green
af54e0ce06 feat: add table stats API (#2363)
* Add a new "table stats" API to expose basic table and fragment
statistics with local and remote table implementations

### Questions
* This is using `calculate_data_stats` to determine total bytes in the
table. This seems like a potentially expensive operation - are there any
concerns about performance for large datasets?

### Notes
* bytes_on_disk seems to be stored at the column level but there does
not seem to be a way to easily calculate total bytes per fragment. This
may need to be added in lance before we can support fragment size
(bytes) statistics.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added a method to retrieve comprehensive table statistics, including
total rows, index counts, storage size, and detailed fragment size
metrics such as minimum, maximum, mean, and percentiles.
- Enabled fetching of table statistics from remote sources through
asynchronous requests.
- Extended table interfaces across Python, Rust, and Node.js to support
synchronous and asynchronous retrieval of table statistics.
- **Tests**
- Introduced tests to verify the accuracy of the new table statistics
feature for both populated and empty tables.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-29 15:19:08 -02:30
Lance Release
089905fe8f Updating package-lock.json 2025-04-28 19:13:36 +00:00
Lance Release
554939e5d2 Updating package-lock.json 2025-04-28 17:20:58 +00:00
Lance Release
7a13814922 Updating package-lock.json 2025-04-28 17:20:42 +00:00
Lance Release
e9f25f6a12 Bump version: 0.19.0 → 0.19.1-beta.0 2025-04-28 17:20:26 +00:00
Lance Release
419a433244 Bump version: 0.22.0 → 0.22.1-beta.0 2025-04-28 17:20:10 +00:00
LuQQiu
a9311c4dc0 feat: add list/create/delete/update/checkout tag API (#2353)
add the tag related API to list existing tags, attach tag to a version,
update the tag version, delete tag, get the version of the tag, and
checkout the version that the tag bounded to.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced table version tagging, allowing users to create, update,
delete, and list human-readable tags for specific table versions.
  - Enabled checking out a table by either version number or tag name.
- Added new interfaces for tag management in both Python and Node.js
APIs, supporting synchronous and asynchronous workflows.

- **Bug Fixes**
  - None.

- **Documentation**
- Updated documentation to describe the new tagging features, including
usage examples.

- **Tests**
- Added comprehensive tests for tag creation, updating, deletion,
listing, and version checkout by tag in both Python and Node.js
environments.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-28 10:04:46 -07:00
LuQQiu
178bcf9c90 fix: hybrid search explain plan analyze plan (#2360)
Fix hybrid search explain plan analyze plan API

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added options to view the execution plan and analyze the runtime
performance of hybrid queries.
- **Refactor**
- Improved internal handling of query setup for better modularity and
maintainability.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-27 18:39:43 -07:00
Lance Release
b9be092cb1 Updating package-lock.json 2025-04-25 22:05:57 +00:00
Lance Release
e8c0c52315 Updating package-lock.json 2025-04-25 21:17:03 +00:00
Lance Release
a60fa0d3b7 Updating package-lock.json 2025-04-25 21:16:48 +00:00
Lance Release
726d629b9b Bump version: 0.19.0-beta.12 → 0.19.0 2025-04-25 21:16:30 +00:00
Lance Release
b493f56dee Bump version: 0.19.0-beta.11 → 0.19.0-beta.12 2025-04-25 21:16:25 +00:00
Lance Release
a8b5ad7e74 Bump version: 0.22.0-beta.12 → 0.22.0 2025-04-25 21:16:07 +00:00
Lance Release
f8f6264883 Bump version: 0.22.0-beta.11 → 0.22.0-beta.12 2025-04-25 21:16:07 +00:00
Will Jones
d8517117f1 feat: upgrade Lance to v0.26.0 (#2359)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.26.0

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated dependency management to use published crate versions for
improved reliability and maintainability.
- Added a temporary workaround for build issues by pinning a specific
version of a dependency.
- **Refactor**
- Improved resource management and concurrency by updating internal
ownership models for object storage components.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-25 13:59:12 -07:00
Lance Release
ab66dd5ed2 Updating package-lock.json 2025-04-25 06:04:06 +00:00
Lance Release
cbb9a7877c Updating package-lock.json 2025-04-25 05:02:47 +00:00
Lance Release
b7fc223535 Updating package-lock.json 2025-04-25 05:02:32 +00:00
Lance Release
1fdaf7a1a4 Bump version: 0.19.0-beta.10 → 0.19.0-beta.11 2025-04-25 05:02:16 +00:00
Lance Release
d11819c90c Bump version: 0.22.0-beta.10 → 0.22.0-beta.11 2025-04-25 05:01:57 +00:00
BubbleCal
9b902272f1 fix: sync hybrid search ignores the distance range params (#2356)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added support for distance range filtering in hybrid vector queries,
allowing users to specify lower and upper bounds for search results.

- **Tests**
- Introduced new tests to validate distance range filtering and
reranking in both synchronous and asynchronous hybrid query scenarios.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-25 13:01:22 +08:00
Will Jones
8c0622fa2c fix: remote limit to avoid "Limit must be non-negative" (#2354)
To workaround this issue: https://github.com/lancedb/lancedb/issues/2211

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of large query parameters to prevent potential
overflow issues when using the "k" parameter in queries.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-24 15:04:06 -07:00
Philip Meier
2191f948c3 fix: add missing pydantic model config compat (#2316)
Fixes #2315.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Refactor**
- Enhanced query processing to maintain smooth functionality across
different dependency versions, ensuring improved stability and
performance.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 14:46:10 -07:00
Will Jones
acc3b03004 ci: fix docs deploy (#2351)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Improved CI workflow for documentation builds by optimizing Rust build
settings and updating the runner environment.
  - Fixed a typo in a workflow step name.
- Streamlined caching steps to reduce redundancy and improve efficiency.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 13:55:34 -07:00
Lance Release
7f091b8c8e Updating package-lock.json 2025-04-22 19:16:43 +00:00
Lance Release
c19bdd9a24 Updating package-lock.json 2025-04-22 18:24:16 +00:00
Lance Release
dad0ff5cd2 Updating package-lock.json 2025-04-22 18:23:59 +00:00
Lance Release
a705621067 Bump version: 0.19.0-beta.9 → 0.19.0-beta.10 2025-04-22 18:23:39 +00:00
Lance Release
39614fdb7d Bump version: 0.22.0-beta.9 → 0.22.0-beta.10 2025-04-22 18:23:17 +00:00
Ryan Green
96d534d4bc feat: add retries to remote client for requests with stream bodies (#2349)
Closes https://github.com/lancedb/lancedb/issues/2307
* Adds retries to remote operations with stream bodies (add,
merge_insert)
* Change default retryable status codes to 409, 429, 500, 502, 503, 504
* Don't retry add or merge_insert operations on 5xx responses

Notes:
* Supporting retries on stream bodies means we have to buffer the body
into memory so it can be cloned on retry. This will impact memory use
patterns for the remote client. This buffering can be disabled by
disabling retries (i.e. setting retries to 0 in RetryConfig)
* It does not seem that retry config can be specified by env vars as the
documentation suggests. I added a follow-up issue
[here](https://github.com/lancedb/lancedb/issues/2350)



<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Enhanced retry support for remote requests with configurable limits
and exponential backoff with jitter.
- Added robust retry logic for streaming data uploads, enabling retries
with buffered data to ensure reliability.

- **Bug Fixes**
- Improved error handling and retry behavior for HTTP status codes 409
and 504.

- **Refactor**
- Centralized and modularized HTTP request sending and retry logic
across remote database and table operations.
  - Streamlined request ID management for improved traceability.
- Simplified error message construction in index waiting functionality.

- **Tests**
  - Added a test verifying merge-insert retries on HTTP 409 responses.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-22 15:40:44 -02:30
Lance Release
5051d30d09 Updating package-lock.json 2025-04-21 23:55:43 +00:00
Lance Release
db853c4041 Updating package-lock.json 2025-04-21 22:50:56 +00:00
Lance Release
76d1d22bdc Updating package-lock.json 2025-04-21 22:50:40 +00:00
Lance Release
d8746c61c6 Bump version: 0.19.0-beta.8 → 0.19.0-beta.9 2025-04-21 22:50:20 +00:00
Lance Release
1a66df2627 Bump version: 0.22.0-beta.8 → 0.22.0-beta.9 2025-04-21 22:49:59 +00:00
Will Jones
44670076c1 fix: move timeout to avoid retries (#2347)
I added a timeout to query execution options in
https://github.com/lancedb/lancedb/pull/2288. However, this was send to
the request timeout, but the retry implementation is unaware of this
timeout. So once the query timed out, a retry would be triggered.
Instead, this PR changes it so the timeout happens outside the retry
loop.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Improved query timeout handling to provide clearer error messages and
more reliable cancellation if a query takes too long to complete.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 14:27:04 -07:00
Will Jones
92f0b16e46 fix(python): make sure pandas is optional (#2346)
Fixes #2344


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Tests**
- Updated tests to use PyArrow Tables instead of pandas DataFrames where
possible, reducing reliance on pandas.
- Tests that require pandas are now automatically skipped if pandas is
not installed.
- **Chores**
- Improved workflow to uninstall both pylance and pandas in a specific
test step.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 13:42:13 -07:00
Eileen Noonan
1620ba3508 docs: make table.update() nodejs guide consistent with API documentation (#2334)
The docs in the Guide here do not match the [API reference]
(https://lancedb.github.io/lancedb/js/classes/Table/#updateopts) for the
nodejs client.

I am writing an Elixir wrapper over the typescript library (Rust
forthcoming!) and confirmed in testing that the API reference is correct
vs the Guide.

Following the Guide docs, the error I got was:

"lance error: Invalid user input: Schema error: No field named bar.
Valid fields are foo. For a query of:

await table.update({foo: "buzz"}, { where: "foo = 'bar'"});
Over a table with a schema of just {foo: Utf8}.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Reformatted a code snippet in the guide to enhance readability by
splitting it into multiple lines for improved clarity.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 08:38:16 -07:00
Ryan Green
3ae90dde80 feat: add new table API to wait for async indexing (#2338)
* Add new wait_for_index() table operation that polls until indices are
created/fully indexed
* Add an optional wait timeout parameter to all create_index operations
* Python and NodeJS interfaces

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Summary by CodeRabbit

- **New Features**
- Added optional waiting for index creation completion with configurable
timeout.
- Introduced methods to poll and wait for indices to be fully built
across sync and async tables.
  - Extended index creation APIs to accept a wait timeout parameter.
- **Bug Fixes**
- Added a new timeout error variant for improved error reporting on
index operations.
- **Tests**
- Added tests covering successful index readiness waiting, timeout
scenarios, and missing index cases.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 08:41:21 -02:30
Magnus
4f07fea6df feat: add ColPali embedding support with MultiVector type (#2170)
This PR adds ColPali support with ColPaliEmbeddings class (tagged
"colpali") using ColQwen2.5 for multi-vector text/image embeddings. Also
added MultiVector Pydantic type to handle the vector lists.

I've added some integration test for the embedding model and some unit
test for the new Pydantic type. Could be a template for other ColPali
variants as well. or until transformers🤗 starts supporting it.


Still `TODO`:

- [ ] Documentation
- [ ] Add an example

_Could also allow Image as query, but didn't work well when testing it._

[ColPali-Engine](https://github.com/illuin-tech/colpali) version:
0.3.9.dev17+g3faee24

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Introduced support for ColPali-based multimodal multi-vector
embeddings for both text and images.
- Added a new embedding class for generating multi-vector embeddings,
configurable for various model and processing options.
- Added a new Pydantic type for multi-vector embeddings, supporting
validation and schema generation for lists of fixed-dimension vectors.

- **Bug Fixes**
- Ensured proper asynchronous index creation in query tests for improved
reliability.

- **Tests**
- Added integration tests for ColPali embeddings, including
text-to-image search and validation of multi-vector fields.
- Added comprehensive tests for the new multi-vector Pydantic type,
covering schema, validation, and default value behavior.

- **Chores**
  - Updated optional dependencies to include the ColPali engine.
  - Added utility to check for availability of flash attention support.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-21 11:47:37 +08:00
Lance Release
3d7d82cf86 Updating package-lock.json 2025-04-17 23:13:37 +00:00
Lance Release
edc4e40a7b Updating package-lock.json 2025-04-17 22:16:36 +00:00
Lance Release
ca3806a02f Updating package-lock.json 2025-04-17 22:16:20 +00:00
Lance Release
35cff12e31 Bump version: 0.19.0-beta.7 → 0.19.0-beta.8 2025-04-17 22:16:02 +00:00
Lance Release
c6c20cb2bd Bump version: 0.22.0-beta.7 → 0.22.0-beta.8 2025-04-17 22:15:46 +00:00
Weston Pace
26080ee4c1 feat: add prewarm_index function (#2342)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added the ability to prewarm (load into memory) table indexes via new
methods in Python, Node.js, and Rust APIs, potentially reducing
cold-start query latency.
- **Bug Fixes**
- Ensured prewarming an index does not interfere with subsequent search
operations.
- **Tests**
- Introduced new test cases to verify full-text search index creation,
prewarming, and search functionalities in both Python and Node.js.
- **Chores**
  - Updated dependencies for improved compatibility and performance.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-04-17 15:14:36 -07:00
Guspan Tanadi
ef3a2b5357 docs: intended path relative links (#2321)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Updated the link in the documentation to correctly reference the
workflow file, ensuring accurate navigation from the current context.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Signed-off-by: Guspan Tanadi <36249910+guspan-tanadi@users.noreply.github.com>
2025-04-16 13:12:09 -07:00
Adam Azzam
c42a201389 docs: remove trailing commas from AWS IAM Policies (#2324)
Before:

<img width="1173" alt="Screenshot 2025-04-08 at 10 58 50 AM"
src="https://github.com/user-attachments/assets/e5c69c45-ab68-488f-9c7f-e12f7ecbfaab"
/>

After:
<img width="1136" alt="Screenshot 2025-04-08 at 10 58 58 AM"
src="https://github.com/user-attachments/assets/108c11ea-09b3-49b5-9a50-b880e72a0270"
/>


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Documentation**
- Updated JSON policy examples in the storage guides to correct
formatting issues and enhance syntax clarity for readers.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-16 13:09:21 -07:00
Lance Release
24e42ccd4d Updating package-lock.json 2025-04-15 05:29:37 +00:00
Lance Release
8a50944061 Updating package-lock.json 2025-04-15 04:11:16 +00:00
Lance Release
40e066bc7c Updating package-lock.json 2025-04-15 04:11:00 +00:00
Lance Release
b3ad105fa0 Bump version: 0.19.0-beta.6 → 0.19.0-beta.7 2025-04-15 04:10:43 +00:00
Lance Release
6e701d3e1b Bump version: 0.22.0-beta.6 → 0.22.0-beta.7 2025-04-15 04:10:26 +00:00
BubbleCal
2248aa9508 fix: bugs for new FTS APIs (#2314)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Enhanced full-text search capabilities with support for phrase
queries, fuzzy matching, boosting, and multi-column matching.
- Search methods now accept full-text query objects directly, improving
query flexibility and precision.
- Python and JavaScript SDKs updated to handle full-text queries
seamlessly, including async search support.

- **Tests**
- Added comprehensive tests covering fuzzy search, phrase search, and
boosted queries to ensure robust full-text search functionality.

- **Documentation**
- Updated query class documentation to reflect new constructor options
and removal of deprecated methods for clarity and simplicity.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-15 11:51:35 +08:00
PhorstenkampFuzzy
a6fa69ab89 fix(python): add pylance as its own optional dependency (#2336)
This change allows to centrally manage the plance depndency without
everybody needing to monitor for compatibility manually.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Introduced an optional dependency that enhances development support.
Users can now benefit from improved static analysis capabilities when
installing the recommended version (0.23.2 or later).

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-14 09:28:16 -07:00
Will Jones
b3a4efd587 fix: revert change default read_consistency_interval=5s (#2327)
This reverts commit a547c523c2 or #2281

The current implementation can cause panics and performance degradation.
I will bring this back with more testing in
https://github.com/lancedb/lancedb/pull/2311

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Documentation**
- Enhanced clarity on read consistency settings with updated
descriptions and default behavior.
- Removed outdated warnings about eventual consistency from the
troubleshooting guide.

- **Refactor**
- Streamlined the handling of the read consistency interval across
integrations, now defaulting to "None" for improved performance.
  - Simplified internal logic to offer a more consistent experience.

- **Tests**
- Updated test expectations to reflect the new default representation
for the read consistency interval.
- Removed redundant tests related to "no consistency" settings for
streamlined testing.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
2025-04-14 08:48:15 -07:00
Lei Xu
4708b60bb1 chore: cargo update on main (#2331)
Fix test failures on main
2025-04-12 09:00:47 -05:00
Lei Xu
080ea2f9a4 chore: fix 1.86 warnings (#2312)
Fix rust 1.86 warnings
2025-04-12 08:29:10 -05:00
Ayush Chaurasia
32fdde23f8 fix: robust handling of empty result when reranking (#2313)
I found some edge cases while running experiments that - depending on
the base reranking libraries, some of them don't handle empty lists
well. This PR manually checks if the result set to be reranked is empty

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Bug Fixes**
- Enhanced search result processing by ensuring that reordering only
occurs when valid, non-empty results are available, thereby preventing
unnecessary operations and potential errors.

- **Tests**
- Added automated tests to verify that empty search result sets are
handled correctly, ensuring consistent behavior across various
rerankers.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-09 16:26:05 +05:30
Lance Release
c44e5c046c Updating package-lock.json 2025-04-08 07:01:33 +00:00
Lance Release
f23aa0a793 Updating package-lock.json 2025-04-08 06:17:03 +00:00
Lance Release
83fc2b1851 Updating package-lock.json 2025-04-08 06:16:48 +00:00
Lance Release
56aa133ee6 Bump version: 0.19.0-beta.5 → 0.19.0-beta.6 2025-04-08 06:16:30 +00:00
Lance Release
27d9e5c596 Bump version: 0.22.0-beta.5 → 0.22.0-beta.6 2025-04-08 06:16:14 +00:00
BubbleCal
ec8271931f feat: support to create FTS index on list of strings (#2317)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated internal library dependencies to the latest beta version for
improved system stability.
- **Tests**
- Added automated tests to validate full-text search functionality on
list-based text fields.
- **Refactor**
- Enhanced the search processing logic to provide robust support for
list-type text data, ensuring more reliable results.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-08 14:12:35 +08:00
Lance Release
6c6966600c Updating package-lock.json 2025-04-04 22:56:57 +00:00
Lance Release
2e170c3c7b Updating package-lock.json 2025-04-04 21:50:28 +00:00
Lance Release
fd92e651d1 Updating package-lock.json 2025-04-04 21:50:12 +00:00
Lance Release
c298482ee1 Bump version: 0.19.0-beta.4 → 0.19.0-beta.5 2025-04-04 21:49:53 +00:00
Lance Release
d59f64b5a3 Bump version: 0.22.0-beta.4 → 0.22.0-beta.5 2025-04-04 21:49:34 +00:00
fzowl
30ed8c4c43 fix: voyageai regression multimodal supercedes text models (#2268)
fix #2160
2025-04-04 14:45:56 -07:00
Will Jones
4a2cdbf299 ci: provide token for deprecate call (#2309)
This should prevent the failures we are seeing in Node release.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chore**
- Enhanced the package deprecation process with improved security
measures, ensuring smoother and more reliable updates during package
deprecation.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 14:44:58 -07:00
Will Jones
657843d9e9 perf: remove redundant checkout latest (#2310)
This bug was introduced in https://github.com/lancedb/lancedb/pull/2281

Likely introduced during a rebase when fixing merge conflicts.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Refactor**
- Updated the refresh process so that reloading now uses the existing
dataset version instead of automatically updating to the latest version.
This change may affect workflows that rely on immediate data updates
during refresh.
  
- **New Features**
- Introduced a new module for tracking I/O statistics in object store
operations, enhancing monitoring capabilities.
- Added a new test module to validate the functionality of the dataset
operations.

- **Bug Fixes**
- Reintroduced the `write_options` method in the `CreateTableBuilder`,
ensuring consistent functionality across different builder variants.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 12:56:02 -07:00
Will Jones
1cd76b8498 feat: add timeout to query execution options (#2288)
Closes #2287


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Added configurable timeout support for query executions. Users can now
specify maximum wait times for queries, enhancing control over
long-running operations across various integrations.
- **Tests**
- Expanded test coverage to validate timeout behavior in both
synchronous and asynchronous query flows, ensuring timely error
responses when query execution exceeds the specified limit.
- Introduced a new test suite to verify query operations when a timeout
is reached, checking for appropriate error handling.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-04 12:34:41 -07:00
Lei Xu
a38f784081 chore: add numpy as dependency (#2308) 2025-04-04 10:33:39 -07:00
Will Jones
647dee4e94 ci: check release builds when we change dependencies (#2299)
The issue we fixed in https://github.com/lancedb/lancedb/pull/2296 was
caused by an upgrade in dependencies. This could have been caught if we
had run these CI jobs when we did the dependency change.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
- Updated our automated pipeline to trigger additional stability checks
when dependency configurations change, ensuring smoother build and
release processes.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-03 16:19:00 -07:00
Lance Release
0844c2dd64 Updating package-lock.json 2025-04-02 21:23:50 +00:00
Lance Release
fd2692295c Updating package-lock.json 2025-04-02 21:23:34 +00:00
Lance Release
d4ea50fba1 Bump version: 0.19.0-beta.3 → 0.19.0-beta.4 2025-04-02 21:23:19 +00:00
Lance Release
0d42297cf8 Bump version: 0.22.0-beta.3 → 0.22.0-beta.4 2025-04-02 21:23:02 +00:00
Weston Pace
a6d4125cbf feat: upgrade lance to 0.25.3b2 (#2304)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Chores**
	- Updated core dependency versions to v0.25.3-beta.2.
	- Enabled additional functionality with a new "dynamodb" feature.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-02 14:22:30 -07:00
Lance Release
5c32a99e61 Updating package-lock.json 2025-04-02 09:28:46 +00:00
Lance Release
cefaa75b24 Updating package-lock.json 2025-04-02 09:28:30 +00:00
Lance Release
bd62c2384f Bump version: 0.19.0-beta.2 → 0.19.0-beta.3 2025-04-02 09:28:14 +00:00
Lance Release
f0bc08c0d7 Bump version: 0.22.0-beta.2 → 0.22.0-beta.3 2025-04-02 09:27:55 +00:00
BubbleCal
e52ac79c69 fix: can't do structured FTS in python (#2300)
missed to support it in `search()` API and there were some pydantic
errors

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **New Features**
- Enhanced full-text search capabilities by incorporating additional
parameters, enabling more flexible query definitions.
- Extended table search functionality to support full-text queries
alongside existing search types.

- **Tests**
- Introduced new tests that validate both structured and conditional
full-text search behaviors.
- Expanded test coverage for various query types, including MatchQuery,
BoostQuery, MultiMatchQuery, and PhraseQuery.

- **Bug Fixes**
- Fixed a logic issue in query processing to ensure correct handling of
full-text search queries.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-04-02 17:27:15 +08:00
Will Jones
f091f57594 ci: fix lancedb musl builds (#2296)
Fixes #2255


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Enhanced the build process to improve performance and reliability
across Linux platforms.
  - Updated environment settings for more accurate compiler integration.
- Activated previously inactive build configurations to support advanced
feature support.
- Added support for the x86_64 architecture on Linux systems utilizing
the musl C library.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-01 14:44:27 -07:00
Lance Release
a997fd4108 Updating package-lock.json 2025-04-01 17:28:57 +00:00
Lance Release
1486514ccc Updating package-lock.json 2025-04-01 17:28:40 +00:00
Lance Release
a505bc3965 Bump version: 0.19.0-beta.1 → 0.19.0-beta.2 2025-04-01 17:28:21 +00:00
Lance Release
c1738250a3 Bump version: 0.22.0-beta.1 → 0.22.0-beta.2 2025-04-01 17:27:57 +00:00
Weston Pace
1ee63984f5 feat: allow FSB to be used for btree indices (#2297)
We recently allowed this for lance but there was a check in lancedb as
well that was preventing it

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **New Features**
- Added support for indexing fixed-size binary data using B-tree
structures for efficient data storage and retrieval.
- **Tests**
- Implemented automated tests to ensure the new binary indexing works
correctly and meets the expected configuration.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-04-01 10:27:22 -07:00
Lance Release
2eb2c8862a Updating package-lock.json 2025-04-01 14:27:26 +00:00
Lance Release
4ea8e178d3 Updating package-lock.json 2025-04-01 14:27:07 +00:00
Lance Release
e4485a630e Bump version: 0.19.0-beta.0 → 0.19.0-beta.1 2025-04-01 14:26:47 +00:00
Lance Release
fb95f9b3bd Bump version: 0.22.0-beta.0 → 0.22.0-beta.1 2025-04-01 14:26:28 +00:00
Weston Pace
625bab3f21 feat: update to lance 0.25.3b1 (#2294)
<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- **Chores**
- Updated dependency versions for improved performance and
compatibility.

- **New Features**
- Added support for structured full-text search with expanded query
types (e.g., match, phrase, boost, multi-match) and flexible input
formats.
- Introduced a new method to check server support for structural
full-text search features.
- Enhanced the query system with new classes and interfaces for handling
various full-text queries.
- Expanded the functionality of existing methods to accept more complex
query structures, including updates to method signatures.

- **Bug Fixes**
  - Improved error handling and reporting for full-text search queries.

- **Refactor**
- Enhanced query processing with streamlined input handling and improved
error reporting, ensuring more robust and consistent search results
across platforms.
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2025-04-01 06:36:42 -07:00
Will Jones
e59f9382a0 ci: deprecate vectordb each release (#2292)
I released each time we published, the new package was no longer
deprecated. This re-deprecated the package after a new publish.
2025-03-31 12:03:04 -07:00
Lance Release
fdee7ba477 Updating package-lock.json 2025-03-30 19:09:17 +00:00
Lance Release
c44fa3abc4 Updating package-lock.json 2025-03-30 18:05:07 +00:00
Lance Release
fc43aac0ed Updating package-lock.json 2025-03-30 18:04:51 +00:00
Lance Release
e67cd0baf9 Bump version: 0.18.3-beta.0 → 0.19.0-beta.0 2025-03-30 18:04:32 +00:00
Lance Release
26dab93f2a Bump version: 0.21.3-beta.0 → 0.22.0-beta.0 2025-03-30 18:04:14 +00:00
LuQQiu
b9bdb8d937 fix: fix remote restore api to always checkout latest version (#2291)
Fix restore to always checkout latest version, following local restore
api implementation

a1d1833a40/rust/lancedb/src/table.rs (L1910)
Otherwise
table.create_table -> version 1
table.add_table -> version 2
table.checkout(1), table.restore() -> the version remains at 1 (should
checkout_latest inside restore method to update version to latest
version and allow write operation)
table.checkout_latest() -> version is 3
can do write operations
2025-03-29 22:46:57 -07:00
LuQQiu
a1d1833a40 feat: add analyze_plan api (#2280)
add analyze plan api to allow executing the queries and see runtime
metrics.
Which help identify the query IO overhead and help identify query
slowness
2025-03-28 14:28:52 -07:00
Will Jones
a547c523c2 feat!: change default read_consistency_interval=5s (#2281)
Previously, when we loaded the next version of the table, we would block
all reads with a write lock. Now, we only do that if
`read_consistency_interval=0`. Otherwise, we load the next version
asynchronously in the background. This should mean that
`read_consistency_interval > 0` won't have a meaningful impact on
latency.

Along with this change, I felt it was safe to change the default
consistency interval to 5 seconds. The current default is `None`, which
means we will **never** check for a new version by default. I think that
default is contrary to most users expectations.
2025-03-28 11:04:31 -07:00
Lance Release
dc8b75feab Updating package-lock.json 2025-03-28 17:15:17 +00:00
Lance Release
c1600cdc06 Updating package-lock.json 2025-03-28 16:04:01 +00:00
Lance Release
f5dee46970 Updating package-lock.json 2025-03-28 16:03:46 +00:00
Lance Release
346cbf8bf7 Bump version: 0.18.2-beta.0 → 0.18.3-beta.0 2025-03-28 16:03:31 +00:00
Lance Release
3c7dfe9f28 Bump version: 0.21.2-beta.0 → 0.21.3-beta.0 2025-03-28 16:03:17 +00:00
Lei Xu
f52d05d3fa feat: add columns using pyarrow schema (#2284) 2025-03-28 08:51:50 -07:00
vinoyang
c321cccc12 chore(java): make rust release to be a switch option (#2277) 2025-03-28 11:26:24 +08:00
LuQQiu
cba14a5743 feat: add restore remote api (#2282) 2025-03-27 16:33:52 -07:00
vinoyang
72057b743d chore(java): introduce spotless plugin (#2278) 2025-03-27 10:38:39 +08:00
LuQQiu
698f329598 feat: add explain plan remote api (#2263)
Add explain plan remote api
2025-03-26 11:22:40 -07:00
BubbleCal
79fa745130 feat: upgrade lance to v0.25.1-beta.3 (#2276)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-26 23:14:27 +08:00
vinoyang
2ad71bdeca fix(java): make test work for jdk8 (#2269) 2025-03-25 10:57:49 -07:00
vinoyang
7c13615096 fix(java): add .gitignore file (#2270) 2025-03-25 10:56:08 -07:00
Wyatt Alt
f882f5b69a fix: update Query pydoc (#2273)
Removes reference of nonexistent method.
2025-03-25 08:50:23 -07:00
Benjamin Clavié
a68311a893 fix: answerdotai rerankers argument passing (#2117)
This fixes an issue for people wishing to use different kinds of
rerankers in lancedb via AnswerDotAI rerankers. Currently, the arguments
are passed sequentially, but they don't match the[Reranker class
implementation](d604a8c47d/rerankers/reranker.py (L179)):
the second argument is expected to be an optional "lang" for default
models, while model_type should be passed explicitly.

The one line changes in this PR fixes it and enables the use of other
methods (eg LLMs-as-rerankers)
2025-03-24 12:31:59 +05:30
Ayush Chaurasia
846a5cea33 fix: handle light and dark mode logo (#2265) 2025-03-22 10:21:05 -07:00
QianZhu
e3dec647b5 docs: replace banner as an image (#2262) 2025-03-21 18:35:35 -07:00
QianZhu
c58104cecc docs: add banner for LanceDB Cloud in public beta (#2261) 2025-03-21 17:54:34 -07:00
QianZhu
b3b5362632 docs: replace Lancedb Cloud link (#2259)
* direct users to cloud.lancedb.com since LanceDB Cloud is in public
beta
* removed the `cast vector dimension` from alter columns as we don't
support it
2025-03-21 17:43:00 -07:00
Will Jones
abe06fee3d feat(python): warn on fork (#2258)
Closes #768
2025-03-21 17:18:10 -07:00
Will Jones
93a82fd371 ci: allow dry run on PR to Python release (#2245)
This just makes it easier to test in the future.
2025-03-21 16:14:32 -07:00
Will Jones
0d379e6ffa ci(node): setup URL so auth token is picked up (#2257)
Should fix failure seen here:
https://github.com/lancedb/lancedb/actions/runs/13999958170/job/39207039825
2025-03-21 16:14:24 -07:00
Lance Release
e1388bdfdd Updating package-lock.json 2025-03-21 20:46:53 +00:00
Lance Release
315a24c2bc Updating package-lock.json 2025-03-21 20:03:43 +00:00
Lance Release
6dd4cf6038 Updating package-lock.json 2025-03-21 20:03:27 +00:00
Lance Release
f97e751b3c Bump version: 0.18.1 → 0.18.2-beta.0 2025-03-21 20:02:59 +00:00
Lance Release
e803a626a1 Bump version: 0.21.1 → 0.21.2-beta.0 2025-03-21 20:02:25 +00:00
Weston Pace
9403254442 feat: add to_query_object method (#2239)
This PR adds a `to_query_object` method to the various query builders
(except not hybrid queries yet). This makes it possible to inspect the
query that is built.

In addition this PR does some normalization between the sync and async
query paths. A few custom defaults were removed in favor of None (with
the default getting set once, in rust).

Also, the synchronous to_batches method will now actually stream results

Also, the remote API now defaults to prefiltering
2025-03-21 13:01:51 -07:00
Will Jones
b2a38ac366 fix: make pylance optional again (#2209)
The two remaining blockers were:

* A method `with_embeddings` that was deprecated a year ago
* A typecheck for `LanceDataset`
2025-03-21 11:26:32 -07:00
BubbleCal
bdb6c09c3b feat: support binary vector and IVF_FLAT in TypeScript (#2221)
resolve #2218

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-21 10:57:08 -07:00
Will Jones
2bfdef2624 ci: refactor node releases (#2223)
This PR fixes build issues associated with `aws-lc-rs`, while
simplifying the build process. Previously, we used custom scripts for
the musl and Windows ARM builds. These were complicated and prone to
breaking. This PR switches to a setup that mirrors
https://github.com/napi-rs/package-template/blob/main/.github/workflows/CI.yml.

* linux glibc and musl builds now use the Docker images provided by the
napi project
* Windows ARM build now just cross compiles from Windows x64, which
turns out to work quite well.
2025-03-21 10:56:29 -07:00
Samuel Colvin
7982d5c082 fix: correct rust install docs (#2253)
I'm pretty sure you mean `cargo add lancedb` here, `cargo install
lancedb` fails right now.
2025-03-21 10:12:53 -07:00
BubbleCal
7ff6ec7fe3 feat: upgrade to lance v0.25.0-beta.5 (#2248)
- adds `loss` into the index stats for vector index
- now `optimize` can retrain the vector index

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-21 10:12:23 -07:00
Ayush Chaurasia
ba1ded933a fix: add better check for empty results in hybrid search (#2252)
fixes: https://github.com/lancedb/lancedb/issues/2249
2025-03-21 13:05:05 +05:30
Will Jones
b595d8a579 fix(nodejs): workaround for apache-arrow null vector issue (#2244)
Fixes #2240
2025-03-20 08:07:10 -07:00
Will Jones
2a1d6d8abf ci: simplify windows builds (#2243)
We soon won't rely on cross compiling from Linux to windows, so can
remove this check. Instead, check that we can cross compile from Windows
between architectures.
2025-03-20 08:06:56 -07:00
Will Jones
440a466a13 ci: remove OpenSSL as dependency in favor of rustls (#2242)
`object_store` already hard codes `rustls` as the TLS implementation, so
we have been shipping a mix of `rustls` and `openssl`. For simplicity of
builds, we should consolidate to one, and that has to be `rustls`.
2025-03-20 08:06:45 -07:00
Ayush Chaurasia
b9afd9c860 docs: add late interaction, multi-vector guide & link example (#2231)
1/2 docs update for this week. Addesses issues from this docs epic -
https://github.com/lancedb/lancedb/issues/1476
2025-03-20 20:29:32 +05:30
Will Jones
a6b6f6a806 ci: drop vectordb support for musl, windows ARM (#2241)
vectordb is deprecated, and these platforms are particularly difficult
to maintain. Removing now to prevent further headaches.

We will keep these platforms supported on `@lancedb/lancedb`.
2025-03-19 12:23:46 -07:00
Ayush Chaurasia
ae1548b507 docs: add cloud & enterprise cta (#2235)
2/2 docs update this week
- Add cloud & enterprise CTA
- remove outdated projects/examples from landing page
2025-03-19 10:55:05 -07:00
Weston Pace
4e03ee82bc refactor: rework catalog/database options (#2213)
The `ConnectRequest` has a set of properties that only make sense for
listing databases / catalogs and a set of properties that only make
sense for remote databases.

This PR reduces all options to a single `HashMap<String, String>`. This
makes it easier to add new database / catalog implementations and makes
it clearer to users which options are applicable in which situations.

I don't believe there are any breaking changes here. The closest thing
is that I placed the `ConnectBuilder` methods `api_key`, `region`, and
`host_override` behind a `remote` feature gate. This is not strictly
needed and I could remove the feature gate but it seemed appropriate.
Since using these methods without the remote feature would have been
meaningless I don't feel this counts as a breaking change.

We could look at removing these methods entirely from the
`ConnectBuilder` (and encouraging users to use `RemoteDatabaseOptions`
instead) but I'm not sure how I feel about that.

Another approach we could take is to move these methods into a
`RemoteConnectBuilderExt` trait (and there could be a similar
`ListingConnectBuilderExt` trait to add methods for the listing database
/ catalog).

For now though my main goal is to simplify `ConnectRequest` as much as
possible (I see this being part of the key public API for database /
catalog integrations, similar to the `BaseTable`, `Catalog`, and
`Database` traits and I'd like it to be simple).
2025-03-18 10:13:59 -07:00
Weston Pace
46a6846d07 refactor: remove dataset reference from base table (#2226) 2025-03-17 06:27:33 -07:00
Will Jones
a207213358 fix: insert structs in non-alphabetical order (#2222)
Closes #2114

Starting in #1965, we no longer pass the table schema into
`pa.Table.from_pylist()`. This means PyArrow is choosing the order of
the struct subfields, and apparently it does them in alphabetical order.
This is fine in theory, since in Lance we support providing fields in
any order. However, before we pass it to Lance, we call
`pa.Table.cast()` to align column types to the table types.
`pa.Table.cast()` is strict about field order, so we need to create a
cast target schema that aligns with the input data. We were doing this
at the top-level fields, but weren't doing this in nested fields. This
PR adds support to do this for nested ones.
2025-03-13 14:46:05 -07:00
BubbleCal
6c321c694a feat: upgrade lance to 0.25.0-beta2 (#2220)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-13 14:12:54 -07:00
Bob Liu
5c00b2904c feat: add get dataset method on NativeTable (#2021)
I want to public the dataset method from native table, then I can use
more lance method like order_by which is not exposed in the lancedb
crate.
2025-03-13 11:15:28 -07:00
Gagan Bhullar
14677d7c18 fix: metric type inconsistency (#2122)
PR fixes #2113

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-03-12 10:28:37 -07:00
Martin Schorfmann
dd22a379b2 fix: use Self return type annotation for abstract query builder (#2127)
Hello LanceDB team,

while developing using `lancedb` as a library I encountered a typing
problem affecting IDE hints and completions during development.

---

## Current Situation

Currently, the abstract base class `lancedb.query:LanceQueryBuilder`
uses method chaining to build up the search parameters, where the
methods have `LanceQueryBuilder` as a return type hint.

This leads to two issues:
1. Implementing subclasses of `LanceQueryBuilder` need to override
methods to modify the return type hint, even when they don't need to
change its implementation, just to ensure adequate IDE hints and
completions.
2. When using method chaining the first method directly inherited from
the abstract `LanceQueryBuilder` causes the inferred type to switch back
to `LanceQueryBuilder`. So even when the type starts from
`lancdb.table:LanceTable.search(query_type="vector", ...)` and therefor
correctly is inferred as `LanceVectorQueryBuilder`, after calling e.g.
`LanceVectorQueryBuilder.limit(...)` it is seen as the abstract
`LanceQueryBuilder` from that point on.

### Example of current situation


![image](https://github.com/user-attachments/assets/09678727-8722-43bd-a8a2-67d9b5fc0db5)

## Proposed changes

I propose to change the return type hints of the corresponding methods
(including classmethod `create()`) in the abstract base class
`LanceQueryBuilder` from `LanceQueryBuilder` to `Self`.
`Self` is already imported in the module:

```py
    if sys.version_info >= (3, 11):
        from typing import Self
    else:
        from typing_extensions import Self
```

### Further possible changes

Additionally, the implementing subclasses could also change the return
type hints to `Self` to potentially allow for further inheritance
easily.
> [!NOTE]
> **However this is not part of this pull request as of writing.**

### Example after proposed changes


![image](https://github.com/user-attachments/assets/a9aea636-e426-477a-86ee-2dad3af2876f)

---

Best regards
Martin
2025-03-12 10:08:25 -07:00
Will Jones
7747c9bcbf feat(node): parse arrow types in alterColumns() (#2208)
Previously, users could only specify new data types in `alterColumns` as
strings:

```ts
await tbl.alterColumns([
  path: "price",
  dataType: "float"
]);
```

But this has some problems:

1. It wasn't clear what were valid types
2. It was impossible to specify nested types, like lists and vector
columns.

This PR changes it to take an Arrow data type, similar to how the Python
API works. This allows casting vector types:

```ts
await tbl.alterColumns([
  {
    path: "vector",
    dataType: new arrow.FixedSizeList(
      2,
      new arrow.Field("item", new arrow.Float16(), false),
    ),
  },
]);
```

Closes #2185
2025-03-12 09:57:36 -07:00
QianZhu
c9d6fc43a6 docs: use bypass_vector_index() instead of use_index=false (#2115) 2025-03-12 09:31:09 -07:00
Martin Schorfmann
581bcfbb88 docs: fix docstring of EmbeddingFunction (#2118)
Hello LanceDB team,

---

I have fixed a discrepancy in the class docstring of
`lancedb.embeddings.base:EmbeddingFunction` and made consistency
alignments to that docstring.

### Changes made

1. The docstring referred to the abstract method
`get_source_embeddings()`.
  This method does not exist in the repository at the current state.
I have changed the mention to refer to the actual abstract method
`compute_source_embeddings()`.
2. Also, I aligned the consistency within the ordered list which is
describing the methods to be implemented by concrete embedding
functions.

---

Thank you for developing this useful library. 👍

Best regards
Martin
2025-03-12 09:30:01 -07:00
vinoyang
3750639b5f feat(rust): add connect_catalog method to support connect catalog via url (#2177) 2025-03-12 05:19:03 -07:00
Lance Release
e744d54460 Updating package-lock.json 2025-03-11 14:00:55 +00:00
Lance Release
9d1ce4b5a5 Updating package-lock.json 2025-03-11 13:15:18 +00:00
Lance Release
729ce5e542 Updating package-lock.json 2025-03-11 13:15:03 +00:00
Lance Release
de6739e7ec Bump version: 0.18.1-beta.0 → 0.18.1 2025-03-11 13:14:49 +00:00
Lance Release
495216efdb Bump version: 0.18.0 → 0.18.1-beta.0 2025-03-11 13:14:44 +00:00
Lance Release
a3b45a4d00 Bump version: 0.21.1-beta.0 → 0.21.1 2025-03-11 13:14:30 +00:00
Lance Release
c316c2f532 Bump version: 0.21.0 → 0.21.1-beta.0 2025-03-11 13:14:29 +00:00
Weston Pace
3966b16b63 fix: restore pylance as mandatory dependency (#2204)
We attempted to make pylance optional in
https://github.com/lancedb/lancedb/pull/2156 but it appears this did not
quite work. Users are unable to use lancedb from a fresh install. This
reverts the optional-ness so we can get back in a working state while we
fix the issue.
2025-03-11 06:13:52 -07:00
Lance Release
5661cc15ac Updating package-lock.json 2025-03-10 23:53:56 +00:00
Lance Release
4e7220400f Updating package-lock.json 2025-03-10 23:13:52 +00:00
Lance Release
ae4928fe77 Updating package-lock.json 2025-03-10 23:13:36 +00:00
Lance Release
e80a405dee Bump version: 0.18.0-beta.1 → 0.18.0 2025-03-10 23:13:18 +00:00
Lance Release
a53e19e386 Bump version: 0.18.0-beta.0 → 0.18.0-beta.1 2025-03-10 23:13:13 +00:00
Lance Release
c0097c5f0a Bump version: 0.21.0-beta.2 → 0.21.0 2025-03-10 23:12:56 +00:00
Lance Release
c199708e64 Bump version: 0.21.0-beta.1 → 0.21.0-beta.2 2025-03-10 23:12:56 +00:00
Weston Pace
4a47150ae7 feat: upgrade to lance 0.24.1 (#2199) 2025-03-10 15:18:37 -07:00
Wyatt Alt
f86b20a564 fix: delete tables from DDB on drop_all_tables (#2194)
Prior to this commit, issuing drop_all_tables on a listing database with
an external manifest store would delete physical tables but leave
references behind in the manifest store. The table drop would succeed,
but subsequent creation of a table with the same name would fail with a
conflict.

With this patch, the external manifest store is updated to account for
the dropped tables so that dropped table names can be reused.
2025-03-10 15:00:53 -07:00
msu-reevo
cc81f3e1a5 fix(python): typing (#2167)
@wjones127 is there a standard way you guys setup your virtualenv? I can
either relist all the dependencies in the pyright precommit section, or
specify a venv, or the user has to be in the virtual environment when
they run git commit. If the venv location was standardized or a python
manager like `uv` was used it would be easier to avoid duplicating the
pyright dependency list.

Per your suggestion, in `pyproject.toml` I added in all the passing
files to the `includes` section.

For ruff I upgraded the version and removed "TCH" which doesn't exist as
an option.

I added a `pyright_report.csv` which contains a list of all files sorted
by pyright errors ascending as a todo list to work on.

I fixed about 30 issues in `table.py` stemming from str's being passed
into methods that required a string within a set of string Literals by
extracting them into `types.py`

Can you verify in the rust bridge that the schema should be a property
and not a method here? If it's a method, then there's another place in
the code where `inner.schema` should be `inner.schema()`
``` python
class RecordBatchStream:
    @property
    def schema(self) -> pa.Schema: ...
```

Also unless the `_lancedb.pyi` file is wrong, then there is no
`__anext__` here for `__inner` when it's not an `AsyncGenerator` and
only `next` is defined:
``` python
    async def __anext__(self) -> pa.RecordBatch:
        return await self._inner.__anext__()
        if isinstance(self._inner, AsyncGenerator):
            batch = await self._inner.__anext__()
        else:
            batch = await self._inner.next()
        if batch is None:
            raise StopAsyncIteration
        return batch
```
in the else statement, `_inner` is a `RecordBatchStream`
```python
class RecordBatchStream:
    @property
    def schema(self) -> pa.Schema: ...
    async def next(self) -> Optional[pa.RecordBatch]: ...
```

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-03-10 09:01:23 -07:00
Weston Pace
bc49c4db82 feat: respect datafusion's batch size when running as a table provider (#2187)
Datafusion makes the batch size available as part of the `SessionState`.
We should use that to set the `max_batch_length` property in the
`QueryExecutionOptions`.
2025-03-07 05:53:36 -08:00
Weston Pace
d2eec46f17 feat: add support for streaming input to create_table (#2175)
This PR makes it possible to create a table using an asynchronous stream
of input data. Currently only a synchronous iterator is supported. There
are a number of follow-ups not yet tackled:

* Support for embedding functions (the embedding functions wrapper needs
to be re-written to be async, should be an easy lift)
* Support for async input into the remote table (the make_ipc_batch
needs to change to accept async input, leaving undone for now because I
think we want to support actual streaming uploads into the remote table
soon)
* Support for async input into the add function (pretty essential, but
it is a fairly distinct code path, so saving for a different PR)
2025-03-06 11:55:00 -08:00
Lance Release
51437bc228 Bump version: 0.21.0-beta.0 → 0.21.0-beta.1 2025-03-06 19:23:06 +00:00
Bert
fa53cfcfd2 feat: support modifying field metadata in lancedb python (#2178) 2025-03-04 16:58:46 -05:00
vinoyang
374fe0ad95 feat(rust): introduce Catalog trait and implement ListingCatalog (#2148)
Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-03-03 20:22:24 -08:00
BubbleCal
35e5b84ba9 chore: upgrade lance to 0.24.0-beta.1 (#2171)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-03-03 12:32:12 +08:00
Lei Xu
7c12d497b0 ci: bump python to 3.12 in GHA (#2169) 2025-03-01 17:24:02 -08:00
ayao227
dfe4ba8dad chore: add reo integration (#2149)
This PR adds reo integration to the lancedb documentation website.
2025-02-28 07:51:34 -08:00
Weston Pace
fa1b9ad5bd fix: don't use with_schema to remove schema metadata (#2162)
It seems that `RecordBatch::with_schema` is unable to remove schema
metadata from a batch. It fails with the error `target schema is not
superset of current schema`.

I'm not sure how the `test_metadata_erased` test is passing. Strangely,
the metadata was not present by the time the batch arrived at the
metadata eraser. I think maybe the schema metadata is only present in
the batch if there is a filter.

I've created a new unit test that makes sure the metadata is erased if
we have a filter also
2025-02-27 10:24:00 -08:00
BubbleCal
8877eb020d feat: record the server version for remote table (#2147)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-27 15:55:59 +08:00
Will Jones
01e4291d21 feat(python): drop hard dependency on pylance (#2156)
Closes #1793
2025-02-26 15:53:45 -08:00
Lance Release
ab3ea76ad1 Updating package-lock.json 2025-02-26 21:23:39 +00:00
Lance Release
728ef8657d Updating package-lock.json 2025-02-26 20:11:37 +00:00
Lance Release
0b13901a16 Updating package-lock.json 2025-02-26 20:11:22 +00:00
Lance Release
84b110e0ef Bump version: 0.17.0 → 0.18.0-beta.0 2025-02-26 20:11:07 +00:00
Lance Release
e1836e54e3 Bump version: 0.20.0 → 0.21.0-beta.0 2025-02-26 20:10:54 +00:00
Weston Pace
4ba5326880 feat: reapply upgrade lance to v0.23.3-beta.1 (#2157)
This reverts commit 2f0c5baea2.

---------

Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-02-26 11:44:11 -08:00
Lance Release
b036a69300 Updating package-lock.json 2025-02-26 19:32:22 +00:00
Will Jones
5b12a47119 feat!: revert query limit to be unbounded for scans (#2151)
In earlier PRs (#1886, #1191) we made the default limit 10 regardless of
the query type. This was confusing for users and in many cases a
breaking change. Users would have queries that used to return all
results, but instead only returned the first 10, causing silent bugs.

Part of the cause was consistency: the Python sync API seems to have
always had a limit of 10, while newer APIs (Python async and Nodejs)
didn't.

This PR sets the default limit only for searches (vector search, FTS),
while letting scans (even with filters) be unbounded. It does this
consistently for all SDKs.

Fixes #1983
Fixes #1852
Fixes #2141
2025-02-26 10:32:14 -08:00
Lance Release
769d483e50 Updating package-lock.json 2025-02-26 18:16:59 +00:00
Lance Release
9ecb11fe5a Updating package-lock.json 2025-02-26 18:16:42 +00:00
Lance Release
22bd8329f3 Bump version: 0.17.0-beta.0 → 0.17.0 2025-02-26 18:16:07 +00:00
Lance Release
a736fad149 Bump version: 0.16.1-beta.3 → 0.17.0-beta.0 2025-02-26 18:16:01 +00:00
Lance Release
072adc41aa Bump version: 0.20.0-beta.0 → 0.20.0 2025-02-26 18:15:23 +00:00
Lance Release
c6f25ef1f0 Bump version: 0.19.1-beta.3 → 0.20.0-beta.0 2025-02-26 18:15:23 +00:00
Weston Pace
2f0c5baea2 Revert "chore: upgrade lance to v0.23.3-beta.1 (#2153)"
This reverts commit a63dd66d41.
2025-02-26 10:14:29 -08:00
BubbleCal
a63dd66d41 chore: upgrade lance to v0.23.3-beta.1 (#2153)
this fixes a bug in SQ, see https://github.com/lancedb/lance/pull/3476
for more details

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2025-02-26 09:52:28 -08:00
Weston Pace
d6b3ccb37b feat: upgrade lance to 0.23.2 (#2152)
This also changes the pylance pin from `==0.23.2` to `~=0.23.2` which
should allow the pylance dependency to float a little. The pylance
dependency is actually not used for much anymore and so it should be
tolerant of patch changes.
2025-02-26 09:02:51 -08:00
Weston Pace
c4f99e82e5 feat: push filters down into DF table provider (#2128) 2025-02-25 14:46:28 -08:00
andrew-pienso
979a2d3d9d docs: fixes is_open docstring on AsyncTable (#2150) 2025-02-25 09:11:25 -08:00
Will Jones
7ac5f74c80 feat!: add variable store to embeddings registry (#2112)
BREAKING CHANGE: embedding function implementations in Node need to now
call `resolveVariables()` in their constructors and should **not**
implement `toJSON()`.

This tries to address the handling of secrets. In Node, they are
currently lost. In Python, they are currently leaked into the table
schema metadata.

This PR introduces an in-memory variable store on the function registry.
It also allows embedding function definitions to label certain config
values as "sensitive", and the preprocessing logic will raise an error
if users try to pass in hard-coded values.

Closes #2110
Closes #521

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2025-02-24 15:52:19 -08:00
Will Jones
ecdee4d2b1 feat(python): add search() method to async API (#2049)
Reviving #1966.

Closes #1938

The `search()` method can apply embeddings for the user. This simplifies
hybrid search, so instead of writing:

```python
vector_query = embeddings.compute_query_embeddings("flower moon")[0]
await (
    async_tbl.query()
    .nearest_to(vector_query)
    .nearest_to_text("flower moon")
    .to_pandas()
)
```

You can write:

```python
await (await async_tbl.search("flower moon", query_type="hybrid")).to_pandas()
```

Unfortunately, we had to do a double-await here because `search()` needs
to be async. This is because it often needs to do IO to retrieve and run
an embedding function.
2025-02-24 14:19:25 -08:00
BubbleCal
f391ed828a fix: remote table doesn't apply the prefilter flag for FTS (#2145) 2025-02-24 21:37:43 +08:00
BubbleCal
a99a450f2b fix: flat FTS panic with prefilter and update lance (#2144)
this is fixed in lance so upgrade lance to 0.23.2-beta1
2025-02-24 14:34:00 +08:00
Lei Xu
6fa1f37506 docs: improve pydantic integration docs (#2136)
Address usage mistakes in
https://github.com/lancedb/lancedb/issues/2135.

* Add example of how to use `LanceModel` and `Vector` decorator
* Add test for pydantic doc
* Fix the example to directly use LanceModel instead of calling
`MyModel.to_arrow_schema()` in the example.
* Add cross-reference link to pydantic doc site
* Configure mkdocs to watch code changes in python directory.
2025-02-21 12:48:37 -08:00
BubbleCal
544382df5e fix: handle batch quires in single request (#2139) 2025-02-21 13:23:39 +08:00
BubbleCal
784f00ef6d chore: update Cargo.lock (#2137) 2025-02-21 12:27:10 +08:00
Lance Release
96d7446f70 Updating package-lock.json 2025-02-20 04:51:26 +00:00
Lance Release
99ea78fb55 Updating package-lock.json 2025-02-20 03:38:44 +00:00
Lance Release
8eef4cdc28 Updating package-lock.json 2025-02-20 03:38:27 +00:00
Lance Release
0f102f02c3 Bump version: 0.16.1-beta.2 → 0.16.1-beta.3 2025-02-20 03:38:01 +00:00
Lance Release
a33a0670f6 Bump version: 0.19.1-beta.2 → 0.19.1-beta.3 2025-02-20 03:37:27 +00:00
BubbleCal
14c9ff46d1 feat: support multivector on remote table (#2045)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-20 11:34:51 +08:00
Lei Xu
1865f7decf fix: support optional nested pydantic model (#2130)
Closes #2129
2025-02-17 20:43:13 -08:00
BubbleCal
a608621476 test: query with dist range and new rows (#2126)
we found a bug that flat KNN plan node's stats is not in right order as
fields in schema, it would cause an error if querying with distance
range and new unindexed rows.

we've fixed this in lance so add this test for verifying it works

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-17 12:57:45 +08:00
BubbleCal
00514999ff feat: upgrade lance to 0.23.1-beta.4 (#2121)
this also upgrades object_store to 0.11.0, snafu to 0.8

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-16 14:53:26 +08:00
Lance Release
b3b597fef6 Updating package-lock.json 2025-02-13 04:40:10 +00:00
Lance Release
bf17144591 Updating package-lock.json 2025-02-13 04:39:54 +00:00
Lance Release
09e110525f Bump version: 0.16.1-beta.1 → 0.16.1-beta.2 2025-02-13 04:39:38 +00:00
Lance Release
40f0dbb64d Bump version: 0.19.1-beta.1 → 0.19.1-beta.2 2025-02-13 04:39:19 +00:00
BubbleCal
3b19e96ae7 fix: panic when field id doesn't equal to field index (#2116)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-02-13 12:38:35 +08:00
Will Jones
78a17ad54c chore: improve dev instructions for Python (#2088)
Closes #2042
2025-02-12 14:08:52 -08:00
Lance Release
a8e6b491e2 Updating package-lock.json 2025-02-11 22:05:54 +00:00
Lance Release
cea541ca46 Updating package-lock.json 2025-02-11 20:56:22 +00:00
Lance Release
873ffc1042 Updating package-lock.json 2025-02-11 20:56:05 +00:00
Lance Release
83273ad997 Bump version: 0.16.1-beta.0 → 0.16.1-beta.1 2025-02-11 20:55:43 +00:00
Lance Release
d18d63c69d Bump version: 0.19.1-beta.0 → 0.19.1-beta.1 2025-02-11 20:55:23 +00:00
LuQQiu
c3e865e8d0 fix: fix index out of bound in load indices (#2108)
panicked at 'index out of bounds: the len is 24 but the index is
25':Lancedb/rust/lancedb/src/index/vector.rs:26\n

load_indices() on the old manifest while use the newer manifest to get
column names could result in index out of bound if some columns are
removed from the new version.
This change reduce the possibility of index out of bound operation but
does not fully remove it.
Better that lance can directly provide column name info so no need extra
calls to get column name but that require modify the public APIs
2025-02-11 12:54:11 -08:00
Weston Pace
a7755cb313 docs: standardize node example prints (#2080)
Minor cleanup to help debug future CI failures
2025-02-11 08:26:29 -08:00
BubbleCal
3490f3456f chore: upgrade lance to 0.23.1-beta.2 (#2109) 2025-02-11 23:57:56 +08:00
Lance Release
0a1d0693e1 Updating package-lock.json 2025-02-07 20:06:22 +00:00
Lance Release
fd330b4b4b Updating package-lock.json 2025-02-07 19:28:01 +00:00
Lance Release
d4e9fc08e0 Updating package-lock.json 2025-02-07 19:27:44 +00:00
Lance Release
3626f2f5e1 Bump version: 0.16.0 → 0.16.1-beta.0 2025-02-07 19:27:26 +00:00
Lance Release
e64712cfa5 Bump version: 0.19.0 → 0.19.1-beta.0 2025-02-07 19:27:07 +00:00
Wyatt Alt
3e3118f85c feat: update lance dependency to 0.23.1-beta.1 (#2102) 2025-02-07 10:56:01 -08:00
Lance Release
592598a333 Updating package-lock.json 2025-02-07 18:50:53 +00:00
Lance Release
5ad21341c9 Updating package-lock.json 2025-02-07 17:34:04 +00:00
Lance Release
6e08caa091 Updating package-lock.json 2025-02-07 17:33:48 +00:00
Lance Release
7e259d8b0f Bump version: 0.16.0-beta.0 → 0.16.0 2025-02-07 17:33:13 +00:00
Lance Release
e84f747464 Bump version: 0.15.1-beta.3 → 0.16.0-beta.0 2025-02-07 17:33:08 +00:00
Lance Release
998cd43fe6 Bump version: 0.19.0-beta.0 → 0.19.0 2025-02-07 17:32:26 +00:00
Lance Release
4bc7eebe61 Bump version: 0.18.1-beta.4 → 0.19.0-beta.0 2025-02-07 17:32:26 +00:00
Will Jones
2e3b34e79b feat(node): support inserting and upserting subschemas (#2100)
Fixes #2095
Closes #1832
2025-02-07 09:30:18 -08:00
Will Jones
e7574698eb feat: upgrade Lance to 0.23.0 (#2101)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.23.0
2025-02-07 07:58:07 -08:00
Will Jones
801a9e5f6f feat(python): streaming larger-than-memory writes (#2094)
Makes our preprocessing pipeline do transforms in streaming fashion, so
users can do larger-then-memory writes.

Closes #2082
2025-02-06 16:37:30 -08:00
Weston Pace
4e5fbe6c99 fix: ensure metadata erased from schema call in table provider (#2099)
This also adds a basic unit test for the table provider
2025-02-06 15:30:20 -08:00
Weston Pace
1a449fa49e refactor: rename drop_db / drop_database to drop_all_tables, expose database from connection (#2098)
If we start supporting external catalogs then "drop database" may be
misleading (and not possible). We should be more clear that this is a
utility method to drop all tables. This is also a nice chance for some
consistency cleanup as it was `drop_db` in rust, `drop_database` in
python, and non-existent in typescript.

This PR also adds a public accessor to get the database trait from a
connection.

BREAKING CHANGE: the `drop_database` / `drop_db` methods are now
deprecated.
2025-02-06 13:22:28 -08:00
Weston Pace
6bf742c759 feat: expose table trait (#2097)
Similar to
c269524b2f
this PR reworks and exposes an internal trait (this time
`TableInternal`) to be a public trait. These two PRs together should
make it possible for others to integrate LanceDB on top of other
catalogs.

This PR also adds a basic `TableProvider` implementation for tables,
although some work still needs to be done here (pushdown not yet
enabled).
2025-02-05 18:13:51 -08:00
Ryan Green
ef3093bc23 feat: drop_index() remote implementation (#2093)
Support drop_index operation in remote table.
2025-02-05 10:06:19 -03:30
Will Jones
16851389ea feat: extra headers parameter in client options (#2091)
Closes #1106

Unfortunately, these need to be set at the connection level. I
investigated whether if we let users provide a callback they could use
`AsyncLocalStorage` to access their context. However, it doesn't seem
like NAPI supports this right now. I filed an issue:
https://github.com/napi-rs/napi-rs/issues/2456
2025-02-04 17:26:45 -08:00
Weston Pace
c269524b2f feat!: refactor ConnectionInternal into a Database trait (#2067)
This opens up the door for more custom database implementations than the
two we have today. The biggest change should be inivisble:
`ConnectionInternal` has been renamed to `Database`, made public, and
refactored

However, there are a few breaking changes. `data_storage_version` and
`enable_v2_manifest_paths` have been moved from options on
`create_table` to options for the database which are now set via
`storage_options`.

Before:
```
db = connect(uri)
tbl = db.create_table("my_table", data, data_storage_version="legacy", enable_v2_manifest_paths=True)
```

After:
```
db = connect(uri, storage_options={
  "new_table_enable_v2_manifest_paths": "true",
  "new_table_data_storage_version": "legacy"
})
tbl = db.create_table("my_table", data)
```

BREAKING CHANGE: the data_storage_version, enable_v2_manifest_paths
options have moved from options to create_table to storage_options.
BREAKING CHANGE: the use_legacy_format option has been removed,
data_storage_version has replaced it for some time now
2025-02-04 14:35:14 -08:00
Lance Release
f6eef14313 Bump version: 0.18.1-beta.3 → 0.18.1-beta.4 2025-02-04 17:25:52 +00:00
Rob Meng
32716adaa3 chore: bump lance version (#2092) 2025-02-04 12:25:05 -05:00
Lance Release
5e98b7f4c0 Updating package-lock.json 2025-02-01 02:27:43 +00:00
Lance Release
3f2589c11f Updating package-lock.json 2025-02-01 01:22:22 +00:00
Lance Release
e3b99694d6 Updating package-lock.json 2025-02-01 01:22:05 +00:00
Lance Release
9d42dc349c Bump version: 0.15.1-beta.2 → 0.15.1-beta.3 2025-02-01 01:21:28 +00:00
Lance Release
482f1ee1d3 Bump version: 0.18.1-beta.2 → 0.18.1-beta.3 2025-02-01 01:20:49 +00:00
Will Jones
2f39274a66 feat: upgrade lance to 0.23.0-beta.4 (#2089)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.23.0-beta.4
2025-01-31 17:20:15 -08:00
Will Jones
2fc174f532 docs: add sync/async tabs to quickstart (#2087)
Closes #2033
2025-01-31 15:43:54 -08:00
Will Jones
dba85f4d6f docs: user guide for merge insert (#2083)
Closes #2062
2025-01-31 10:03:21 -08:00
Jeff Simpson
555fa26147 fix(rust): add embedding_registry on open_table (#2086)
# Description

Fix for: https://github.com/lancedb/lancedb/issues/1581

This is the same implementation as
https://github.com/lancedb/lancedb/pull/1781 but with the addition of a
unit test and rustfmt.
2025-01-31 08:48:02 -08:00
Will Jones
e05c0cd87e ci(node): check docs in CI (#2084)
* Make `npm run docs` fail if there are any warnings. This will catch
items missing from the API reference.
* Add a check in our CI to make sure `npm run dos` runs without warnings
and doesn't generate any new files (indicating it might be out-of-date.
* Hide constructors that aren't user facing.
* Remove unused enum `WriteMode`.

Closes #2068
2025-01-30 16:06:06 -08:00
Lance Release
25c17ebf4e Updating package-lock.json 2025-01-30 18:24:59 +00:00
Lance Release
87b12b57dc Updating package-lock.json 2025-01-30 17:33:15 +00:00
Lance Release
3dc9b71914 Updating package-lock.json 2025-01-30 17:32:59 +00:00
Lance Release
2622f34d1a Bump version: 0.15.1-beta.1 → 0.15.1-beta.2 2025-01-30 17:32:33 +00:00
Will Jones
a677a4b651 ci: fix arm64 windows cross compile build (#2081)
* Adds a CI job to check the cross compiled Windows ARM build.
* Didn't replace the test build because we need native build to run
tests. But for some reason (I forget why) we need cross compiled for
nodejs.
* Pinned crunchy to workaround
https://github.com/eira-fransham/crunchy/issues/13

This is needed to fix failure from
https://github.com/lancedb/lancedb/actions/runs/13020773184/job/36320719331
2025-01-30 09:24:20 -08:00
Weston Pace
e6b4f14c1f docs: clarify upper case characters in column names need to be escaped (#2079) 2025-01-29 09:34:43 -08:00
Will Jones
15f8f4d627 ci: check license headers (#2076)
Based on the same workflow in Lance.
2025-01-29 08:27:07 -08:00
Will Jones
6526d6c3b1 ci(rust): caching improvements (up to 2.8x faster builds) (#2075)
Some Rust jobs (such as
[Rust/linux](https://github.com/lancedb/lancedb/actions/runs/13019232960/job/36315830779))
take almost minutes. This can be a bit of a bottleneck.

* Two fixes to make caches more effective
* Check in `Cargo.lock` so that dependencies don't change much between
runs
      * Added a new CI job to validate we can build without a lockfile
* Altered build commands so they don't have contradictory features and
therefore don't trigger multiple builds

Sadly, I don't think there's much to be done for windows-arm64, as much
of the compile time is because the base image is so bare we need to
install the build tools ourselves.
2025-01-29 08:26:45 -08:00
Lance Release
da4d7e3ca7 Updating package-lock.json 2025-01-28 22:32:20 +00:00
Lance Release
8fbadca9aa Updating package-lock.json 2025-01-28 22:32:05 +00:00
Lance Release
29120219cf Bump version: 0.15.1-beta.0 → 0.15.1-beta.1 2025-01-28 22:31:39 +00:00
Lance Release
a9897d9d85 Bump version: 0.18.1-beta.1 → 0.18.1-beta.2 2025-01-28 22:31:14 +00:00
Will Jones
acda7a4589 feat: upgrade lance to v0.23.0-beta.3 (#2074)
This includes several bugfixes for `merge_insert` and null handling in
vector search.

https://github.com/lancedb/lance/releases/tag/v0.23.0-beta.3
2025-01-28 14:00:06 -08:00
Vaibhav
dac0857745 feat: add distance_type() parameter to python sync query builders and metric() as an alias (#2073)
This PR aims to fix #2047 by doing the following things:
- Add a distance_type parameter to the sync query builders of Python
SDK.
- Make metric an alias to distance_type.
2025-01-28 13:59:53 -08:00
Will Jones
0a9e1eab75 fix(node): createTable() should save embeddings, and mergeInsert should use them (#2065)
* `createTable()` now saves embeddings in the schema metadata.
Previously, it would drop them. (`createEmptyTable()` was already tested
and worked.)
* `mergeInsert()` now uses embeddings.

Fixes #2066
2025-01-28 12:38:50 -08:00
V
d999d72c8d docs: pandas example (#2044)
Fix example for section ## From pandas DataFrame
2025-01-24 11:37:47 -08:00
Lance Release
de4720993e Updating package-lock.json 2025-01-23 23:02:20 +00:00
Lance Release
6c14a307e2 Updating package-lock.json 2025-01-23 23:02:03 +00:00
Lance Release
43747278c8 Bump version: 0.15.0 → 0.15.1-beta.0 2025-01-23 23:01:40 +00:00
Lance Release
e5f42a850e Bump version: 0.18.1-beta.0 → 0.18.1-beta.1 2025-01-23 23:01:13 +00:00
Will Jones
7920ecf66e ci(python): stop using deprecated 2_24 manylinux for arm (#2064)
Based on changes made in Lance:

* https://github.com/lancedb/lance/pull/3409
* https://github.com/lancedb/lance/pull/3411
2025-01-23 15:00:34 -08:00
Will Jones
28e1b70e4b fix(python): preserve original distance and score in hybrid queries (#2061)
Fixes #2031

When we do hybrid search, we normalize the scores. We do this
calculation in-place, because the Rerankers expect the `_distance` and
`_score` columns to be the normalized ones. So I've changed the logic so
that we restore the original distance and scores by matching on row ids.
2025-01-23 13:54:26 -08:00
Will Jones
52b79d2b1e feat: upgrade lance to v0.23.0-beta.2 (#2063)
Fixes https://github.com/lancedb/lancedb/issues/2043
2025-01-23 13:51:30 -08:00
Bert
c05d45150d docs: clarify the arguments for replace_field_metadata (#2053)
When calling `replace_field_metadata` we pass in an iter of tuples
`(u32, HashMap<String, String>)`.

That `u32` needs to be the field id from the lance schema

7f60aa0a87/rust/lance-core/src/datatypes/field.rs (L123)

This can sometimes be different than the index of the field in the arrow
schema (e.g. if fields have been dropped).

This PR adds docs that try to clarify what that argument should be, as
well as corrects the usage in the test (which was improperly passing the
index of the arrow schema).
2025-01-23 08:52:27 -05:00
BubbleCal
48ed3bb544 chore: replace the util to lance's (#2052)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-23 11:04:37 +08:00
Will Jones
bcfc93cc88 fix(python): various fixes for async query builders (#2048)
This includes several improvements and fixes to the Python Async query
builders:

1. The API reference docs show all the methods for each builder
2. The hybrid query builder now has all the same setter methods as the
vector search one, so you can now set things like `.distance_type()` on
a hybrid query.
3. Re-rankers are now properly hooked up and tested for FTS and vector
search. Previously the re-rankers were accidentally bypassed in unit
tests, because the builders overrode `.to_arrow()`, but the unit test
called `.to_batches()` which was only defined in the base class. Now all
builders implement `.to_batches()` and leave `.to_arrow()` to the base
class.
4. The `AsyncQueryBase` and `AsyncVectoryQueryBase` setter methods now
return `Self`, which provides the appropriate subclass as the type hint
return value. Previously, `AsyncQueryBase` had them all hard-coded to
`AsyncQuery`, which was unfortunate. (This required bringing in
`typing-extensions` for older Python version, but I think it's worth
it.)
2025-01-20 16:14:34 -08:00
BubbleCal
214d0debf5 docs: claim LanceDB supports float16/float32/float64 for multivector (#2040) 2025-01-21 07:04:15 +08:00
Will Jones
f059372137 feat: add drop_index() method (#2039)
Closes #1665
2025-01-20 10:08:51 -08:00
Lance Release
3dc1803c07 Bump version: 0.18.0 → 0.18.1-beta.0 2025-01-17 04:37:23 +00:00
BubbleCal
d0501f65f1 fix: linear reranker applies wrong score to combine (#2035)
related to #2014 
this fixes:
- linear reranker may lost some results if the merging consumes all
vector results earlier than fts results
- linear reranker inverts the fts score but only vector distance can be
inverted

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-17 11:33:48 +08:00
Bert
4703cc6894 chore: upgrade lance to v0.22.1-beta.3 (#2038) 2025-01-16 12:42:42 -05:00
BubbleCal
493f9ce467 fix: can't infer the vector column for multivector (#2026)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-16 14:08:04 +08:00
Weston Pace
5c759505b8 feat: upgrade lance 0.22.1b1 (#2029)
Now the version actually exists :)
2025-01-15 07:37:37 -08:00
BubbleCal
bb6a39727e fix: missing distance type for auto index on RemoteTable (#2027)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-15 20:28:55 +08:00
BubbleCal
d57bed90e5 docs: add missing example code (#2025) 2025-01-14 21:17:05 -08:00
BubbleCal
648327e90c docs: show how to pack bits for binary vector (#2020)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-14 09:00:57 -08:00
Lance Release
6c7e81ee57 Updating package-lock.json 2025-01-14 02:14:37 +00:00
Lance Release
905e9d4738 Updating package-lock.json 2025-01-14 01:03:49 +00:00
Lance Release
38642e349c Updating package-lock.json 2025-01-14 01:03:33 +00:00
Lance Release
6879861ea8 Bump version: 0.15.0-beta.1 → 0.15.0 2025-01-14 01:03:04 +00:00
Lance Release
88325e488e Bump version: 0.15.0-beta.0 → 0.15.0-beta.1 2025-01-14 01:02:59 +00:00
Lance Release
995bd9bf37 Bump version: 0.18.0-beta.1 → 0.18.0 2025-01-14 01:02:26 +00:00
Lance Release
36cc06697f Bump version: 0.18.0-beta.0 → 0.18.0-beta.1 2025-01-14 01:02:25 +00:00
Will Jones
35da464591 ci: fix stable check (#2019) 2025-01-13 17:01:54 -08:00
Will Jones
31f9c30ffb chore: fix test of error message (#2018)
Addresses failure on `main`:
https://github.com/lancedb/lancedb/actions/runs/12757756657/job/35558683317
2025-01-13 15:36:46 -08:00
Will Jones
92dcf24b0c feat: upgrade Lance to v0.22.0 (#2017)
Upstream changelog:
https://github.com/lancedb/lance/releases/tag/v0.22.0
2025-01-13 15:06:01 -08:00
Will Jones
6b0adba2d9 chore: add deprecation warning to vectordb (#2003) 2025-01-13 14:53:12 -08:00
BubbleCal
66cbf6b6c5 feat: support multivector type (#2005)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-13 14:10:40 -08:00
Keming
ce9506db71 docs(hnsw): fix markdown list style (#2015) 2025-01-13 08:53:13 -08:00
Prashant Dixit
b66cd943a7 fix: broken voyageai embedding API (#2013)
This PR fixes the broken Embedding API for Voyageai.
2025-01-13 08:52:38 -08:00
Weston Pace
d8d11f48e7 feat: upgrade to lance 0.22.0b1 (#2011) 2025-01-10 12:51:52 -08:00
Lance Release
7ec5df3022 Updating package-lock.json 2025-01-10 19:58:10 +00:00
Lance Release
b17304172c Updating package-lock.json 2025-01-10 19:02:31 +00:00
Lance Release
fbe5408434 Updating package-lock.json 2025-01-10 19:02:15 +00:00
Lance Release
3f3f845c5a Bump version: 0.14.2-beta.0 → 0.15.0-beta.0 2025-01-10 19:01:47 +00:00
Lance Release
fbffe532a8 Bump version: 0.17.2-beta.2 → 0.18.0-beta.0 2025-01-10 19:01:20 +00:00
Josef Gugglberger
55ffc96e56 docs: update storage.md, fix Azure Sync connect example (#2010)
In the sync code example there was also an `await`.


![image](https://github.com/user-attachments/assets/4e1a1bd9-f2fb-4dbe-a9a6-1384ab63edbb)
2025-01-10 09:01:19 -08:00
Mr. Doge
998c5f3f74 ci: add dbghelp.lib to sysroot-aarch64-pc-windows-msvc.sh (#1975) (#2008)
successful runs:
https://github.com/FuPeiJiang/lancedb/actions/runs/12698662005
2025-01-09 14:24:09 -08:00
Will Jones
6eacae18c4 test: fix test failure from merge (#2007) 2025-01-09 11:27:24 -08:00
Bert
d3ea75cc2b feat: expose dataset config (#2004)
Expose methods on NativeTable for updating schema metadata and dataset
config & getting the dataset config via the manifest.
2025-01-08 21:13:18 -05:00
Bert
f4afe456e8 feat!: change default from postfiltering to prefiltering for sync python (#2000)
BREAKING CHANGE: prefiltering is now the default in the synchronous
python SDK

resolves: #1872
2025-01-08 19:13:58 -05:00
Renato Marroquin
ea5c2266b8 feat(python): support .rerank() on non-hybrid queries in Async API (WIP) (#1972)
Fixes https://github.com/lancedb/lancedb/issues/1950

---------

Co-authored-by: Renato Marroquin <renato.marroquin@oracle.com>
2025-01-08 16:42:47 -05:00
Will Jones
c557e77f09 feat(python)!: support inserting and upserting subschemas (#1965)
BREAKING CHANGE: For a field "vector", list of integers will now be
converted to binary (uint8) vectors instead of f32 vectors. Use float
values instead for f32 vectors.

* Adds proper support for inserting and upserting subsets of the full
schema. I thought I had previously implemented this in #1827, but it
turns out I had not tested carefully enough.
* Refactors `_santize_data` and other utility functions to be simpler
and not require `numpy` or `combine_chunks()`.
* Added a new suite of unit tests to validate sanitization utilities.

## Examples

```python
import pandas as pd
import lancedb

db = lancedb.connect("memory://demo")
intial_data = pd.DataFrame({
    "a": [1, 2, 3],
    "b": [4, 5, 6],
    "c": [7, 8, 9]
})
table = db.create_table("demo", intial_data)

# Insert a subschema
new_data = pd.DataFrame({"a": [10, 11]})
table.add(new_data)
table.to_pandas()
```
```
    a    b    c
0   1  4.0  7.0
1   2  5.0  8.0
2   3  6.0  9.0
3  10  NaN  NaN
4  11  NaN  NaN
```


```python
# Upsert a subschema
upsert_data = pd.DataFrame({
    "a": [3, 10, 15],
    "b": [6, 7, 8],
})
table.merge_insert(on="a").when_matched_update_all().when_not_matched_insert_all().execute(upsert_data)
table.to_pandas()
```
```
    a    b    c
0   1  4.0  7.0
1   2  5.0  8.0
2   3  6.0  9.0
3  10  7.0  NaN
4  11  NaN  NaN
5  15  8.0  NaN
```
2025-01-08 10:11:10 -08:00
BubbleCal
3c0a64be8f feat: support distance range in queries (#1999)
this also updates the docs

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-08 11:03:27 +08:00
Will Jones
0e496ed3b5 docs: contributing guide (#1970)
* Adds basic contributing guides.
* Simplifies Python development with a Makefile.
2025-01-07 15:11:16 -08:00
QianZhu
17c9e9afea docs: add async examples to doc (#1941)
- added sync and async tabs for python examples
- moved python code to tests/docs

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-07 15:10:25 -08:00
Wyatt Alt
0b45ef93c0 docs: assorted copyedits (#1998)
This includes a handful of minor edits I made while reading the docs. In
addition to a few spelling fixes,
* standardize on "rerank" over "re-rank" in prose
* terminate sentences with periods or colons as appropriate
* replace some usage of dashes with colons, such as in "Try it yourself
- <link>"

All changes are surface-level. No changes to semantics or structure.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-06 15:04:48 -08:00
Gagan Bhullar
b474f98049 feat(python): flatten in AsyncQuery (#1967)
PR fixes #1949

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-01-06 10:52:03 -08:00
Takahiro Ebato
2c05ffed52 feat(python): add to_polars to AsyncQueryBase (#1986)
Fixes https://github.com/lancedb/lancedb/issues/1952

Added `to_polars` method to `AsyncQueryBase`.
2025-01-06 09:35:28 -08:00
Will Jones
8b31540b21 ci: prevent stable release with preview lance (#1995)
Accidentally referenced a preview release in our stable release of
LanceDB. This adds a CI check to prevent that.
2025-01-06 08:54:14 -08:00
Lance Release
ba844318f8 Updating package-lock.json 2025-01-06 06:26:41 +00:00
Lance Release
f007b76153 Updating package-lock.json 2025-01-06 05:35:28 +00:00
Lance Release
5d8d258f59 Updating package-lock.json 2025-01-06 05:35:13 +00:00
Lance Release
4172140f74 Bump version: 0.14.1 → 0.14.2-beta.0 2025-01-06 05:34:52 +00:00
Lance Release
a27c5cf12b Bump version: 0.17.2-beta.1 → 0.17.2-beta.2 2025-01-06 05:34:27 +00:00
BubbleCal
f4dea72cc5 feat: support vector search with distance thresholds (#1993)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-06 13:23:39 +08:00
Lei Xu
f76c4a5ce1 chore: add pyright static type checking and fix some of the table interface (#1996)
* Enable `pyright` in the project
* Fixed some pyright typing errors in `table.py`
2025-01-04 15:24:58 -08:00
ahaapple
164ce397c2 docs: fix full-text search (Native FTS) TypeScript doc error (#1992)
Fix

```
Cannot find name 'queryType'.ts(2304)
any
```
2025-01-03 13:36:10 -05:00
BubbleCal
445a312667 fix: selecting columns failed on FTS and hybrid search (#1991)
it reports error `AttributeError: 'builtins.FTSQuery' object has no
attribute 'select_columns'`
because we missed `select_columns` method in rust

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2025-01-03 13:08:12 +08:00
Lance Release
92d845fa72 Bump version: 0.17.2-beta.0 → 0.17.2-beta.1 2024-12-31 23:36:18 +00:00
Lei Xu
397813f6a4 chore: bump pylance to 0.21.1b1 (#1989) 2024-12-31 15:34:27 -08:00
Lei Xu
50c30c5d34 chore(python): fix typo of the synchronized checkout API (#1988) 2024-12-30 18:54:31 -08:00
Bert
c9f248b058 feat: add hybrid search to node and rust SDKs (#1940)
Support hybrid search in both rust and node SDKs.

- Adds a new rerankers package to rust LanceDB, with the implementation
of the default RRF reranker
- Adds a new hybrid package to lancedb, with some helper methods related
to hybrid search such as normalizing scores and converting score column
to rank columns
- Adds capability to LanceDB VectorQuery to perform hybrid search if it
has both a nearest vector and full text search parameters.
- Adds wrappers for reranker implementations to nodejs SDK.

Additional rerankers will be added in followup PRs

https://github.com/lancedb/lancedb/issues/1921

---
Notes about how the rust rerankers are wrapped for calling from JS:

I wanted to keep the core reranker logic, and the invocation of the
reranker by the query code, in Rust. This aligns with the philosophy of
the new node SDK where it's just a thin wrapper around Rust. However, I
also wanted to have support for users who want to add custom rerankers
written in Javascript.

When we add a reranker to the query from Javascript, it adds a special
Rust reranker that has a callback to the Javascript code (which could
then turn around and call an underlying Rust reranker implementation if
desired). This adds a bit of complexity, but overall I think it moves us
in the right direction of having the majority of the query logic in the
underlying Rust SDK while keeping the option open to support custom
Javascript Rerankers.
2024-12-30 09:03:41 -05:00
Renato Marroquin
0cb6da6b7e docs: add new indexes to python docs (#1945)
closes issue #1855

Co-authored-by: Renato Marroquin <renato.marroquin@oracle.com>
2024-12-28 15:35:10 -08:00
BubbleCal
aec8332eb5 chore: add dynamic = ["version"] to pass build check (#1977)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-28 10:45:23 -08:00
Lance Release
46061070e6 Updating package-lock.json 2024-12-26 07:40:12 +00:00
Lance Release
dae8334d0b Bump version: 0.17.1 → 0.17.2-beta.0 2024-12-25 08:28:59 +00:00
BubbleCal
8c81968b59 feat: support IVF_FLAT on remote table in rust (#1979)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-25 15:54:17 +08:00
BubbleCal
16cf2990f3 feat: create IVF_FLAT on remote table (#1978)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-25 14:57:07 +08:00
Will Jones
0a0f667bbd chore: fix typos (#1976) 2024-12-24 12:50:54 -08:00
Will Jones
03753fd84b ci(node): remove hardcoded toolchain from typescript release build (#1974)
We upgraded the toolchain in #1960, but didn't realize we hardcoded it
in `npm-publish.yml`. I found if I just removed the hard-coded
toolchain, it selects the correct one.

This didn't fully fix Windows Arm, so I created a follow-up issue here:
https://github.com/lancedb/lancedb/issues/1975
2024-12-24 12:48:41 -08:00
Lance Release
55cceaa309 Updating package-lock.json 2024-12-24 18:39:00 +00:00
Lance Release
c3797eb834 Updating package-lock.json 2024-12-24 18:38:44 +00:00
Lance Release
c0d0f38494 Bump version: 0.14.1-beta.7 → 0.14.1 2024-12-24 18:38:11 +00:00
Lance Release
6a8ab78d0a Bump version: 0.14.1-beta.6 → 0.14.1-beta.7 2024-12-24 18:38:06 +00:00
Lance Release
27404c8623 Bump version: 0.17.1-beta.7 → 0.17.1 2024-12-24 18:37:28 +00:00
Lance Release
f181c7e77f Bump version: 0.17.1-beta.6 → 0.17.1-beta.7 2024-12-24 18:37:27 +00:00
BubbleCal
e70fd4fecc feat: support IVF_FLAT, binary vectors and hamming distance (#1955)
binary vectors and hamming distance can work on only IVF_FLAT, so
introduce them all in this PR.

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-24 10:36:20 -08:00
verma nakul
ac0068b80e feat(python): add ignore_missing to the async drop_table() method (#1953)
- feat(db): add `ignore_missing` to async `drop_table` method

Fixes #1951

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:47 -08:00
Hezi Zisman
ebac960571 feat(python): add bypass_vector_index to sync api (#1947)
Hi lancedb team,

This PR adds the `bypass_vector_index` logic to the sync API, as
described in [Issue
#535](https://github.com/lancedb/lancedb/issues/535). (Closes #535).

Iv'e implemented it only for the regular vector search. If you think it
should also be supported for FTS, Hybrid, or Empty queries and for the
cloud solution, please let me know, and I’ll be happy to extend it.

Since there’s no `CONTRIBUTING.md` or contribution guidelines, I opted
for the simplest implementation to get this started.

Looking forward to your feedback!

Thanks!

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-24 10:33:26 -08:00
Lance Release
59b57055e7 Updating package-lock.json 2024-12-19 19:40:28 +00:00
Lance Release
591c8de8fc Updating package-lock.json 2024-12-19 19:40:13 +00:00
Lance Release
f835ff310f Bump version: 0.14.1-beta.5 → 0.14.1-beta.6 2024-12-19 19:39:41 +00:00
Lance Release
cf8c2edaf4 Bump version: 0.17.1-beta.5 → 0.17.1-beta.6 2024-12-19 19:39:08 +00:00
Will Jones
61a714a459 docs: improve optimization docs (#1957)
* Add `See Also` section to `cleanup_old_files` and `compact_files` so
they know it's linked to `optimize`.
* Fixes link to `compact_files` arguments
* Improves formatting of note.
2024-12-19 10:55:11 -08:00
Will Jones
5ddd84cec0 feat: upgrade lance to 0.21.0-beta.5 (#1961) 2024-12-19 10:54:59 -08:00
Will Jones
27ef0bb0a2 ci(rust): check MSRV and upgrade toolchain (#1960)
* Upgrades our toolchain file to v1.83.0, since many dependencies now
have MSRV of 1.81.0
* Reverts Rust changes from #1946 that were working around this in a
dumb way
* Adding an MSRV check
* Reduce MSRV back to 1.78.0
2024-12-19 08:43:25 -08:00
Will Jones
25402ba6ec chore: update lockfiles (#1946) 2024-12-18 08:43:33 -08:00
Lance Release
37c359ed40 Updating package-lock.json 2024-12-13 22:38:04 +00:00
Lance Release
06cdf00987 Bump version: 0.14.1-beta.4 → 0.14.1-beta.5 2024-12-13 22:37:41 +00:00
Lance Release
144b7f5d54 Bump version: 0.17.1-beta.4 → 0.17.1-beta.5 2024-12-13 22:37:13 +00:00
LuQQiu
edc9b9adec chore: bump Lance version to v0.21.0-beta.4 (#1939) 2024-12-13 14:36:13 -08:00
Will Jones
d11b2a6975 ci: fix python beta release to publish to fury (#1937)
We have been publishing all releases--even preview ones--to PyPI. This
was because of a faulty bash if statement. This PR fixes that
conditional.
2024-12-13 14:19:14 -08:00
Will Jones
980aa70e2d feat(python): async-sync feature parity on Table (#1914)
### Changes to sync API
* Updated `LanceTable` and `LanceDBConnection` reprs
* Add `storage_options`, `data_storage_version`, and
`enable_v2_manifest_paths` to sync create table API.
* Add `storage_options` to `open_table` in sync API.
* Add `list_indices()` and `index_stats()` to sync API
* `create_table()` will now create only 1 version when data is passed.
Previously it would always create two versions: 1 to create an empty
table and 1 to add data to it.

### Changes to async API
* Add `embedding_functions` to async `create_table()` API.
* Added `head()` to async API

### Refactors
* Refactor index parameters into dataclasses so they are easier to use
from Python
* Moved most tests to use an in-memory DB so we don't need to create so
many temp directories

Closes #1792
Closes #1932

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-12-13 12:56:44 -08:00
Lance Release
d83e5a0208 Updating package-lock.json 2024-12-13 05:34:30 +00:00
Lance Release
16a6b9ce8f Bump version: 0.14.1-beta.3 → 0.14.1-beta.4 2024-12-13 05:34:01 +00:00
Lance Release
e3c6213333 Bump version: 0.17.1-beta.3 → 0.17.1-beta.4 2024-12-13 05:33:34 +00:00
Weston Pace
00552439d9 feat: upgrade lance to 0.21.0b3 (#1936) 2024-12-12 21:32:59 -08:00
QianZhu
c0ee370f83 docs: improve schema evolution api examples (#1929) 2024-12-12 10:52:06 -08:00
QianZhu
17e4022045 docs: add faq to cloud doc (#1907)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-12 10:07:03 -08:00
BubbleCal
c3ebac1a92 feat(node): support FTS options in nodejs (#1934)
Closes #1790

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-12 08:19:04 -08:00
Lance Release
10f919a0a9 Updating package-lock.json 2024-12-11 19:18:36 +00:00
Lance Release
8af5476395 Bump version: 0.14.1-beta.2 → 0.14.1-beta.3 2024-12-11 19:18:17 +00:00
Lance Release
bcbbeb7a00 Bump version: 0.17.1-beta.2 → 0.17.1-beta.3 2024-12-11 19:17:54 +00:00
Weston Pace
d6c0f75078 feat: upgrade to lance prerelease 0.21.0b2 (#1933) 2024-12-11 11:17:10 -08:00
Lance Release
e820e356a0 Updating package-lock.json 2024-12-11 17:58:05 +00:00
Lance Release
509286492f Bump version: 0.14.1-beta.1 → 0.14.1-beta.2 2024-12-11 17:57:41 +00:00
Lance Release
f9789ec962 Bump version: 0.17.1-beta.1 → 0.17.1-beta.2 2024-12-11 17:57:18 +00:00
Lei Xu
347515aa51 fix: support list of numpy f16 floats as query vector (#1931)
User reported on Discord, when using
`table.vector_search([np.float16(1.0), np.float16(2.0), ...])`, it
yields `TypeError: 'numpy.float16' object is not iterable`
2024-12-10 16:17:28 -08:00
BubbleCal
3324e7d525 feat: support 4bit PQ (#1916) 2024-12-10 10:36:03 +08:00
Will Jones
ab5316b4fa feat: support offset in remote client (#1923)
Closes https://github.com/lancedb/lancedb/issues/1876
2024-12-09 17:04:18 -08:00
Will Jones
db125013fc docs: better formatting for Node API docs (#1892)
* Sets `"useCodeBlocks": true`
* Adds a post-processing script `nodejs/typedoc_post_process.js` that
puts the parameter description on the same line as the parameter name,
like it is in our Python docs. This makes the text hierarchy clearer in
those sections and also makes the sections shorter.
2024-12-09 17:04:09 -08:00
Will Jones
a43193c99b fix(nodejs): upgrade arrow versions (#1924)
Closes #1626
2024-12-09 15:37:11 -08:00
Lance Release
b70513ca72 Updating package-lock.json 2024-12-09 08:41:09 +00:00
Lance Release
78165801c6 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-12-09 08:40:55 +00:00
Lance Release
6e5927ce6d Bump version: 0.17.1-beta.0 → 0.17.1-beta.1 2024-12-09 08:40:35 +00:00
BubbleCal
6c1f32ac11 fix: index params are ignored by RemoteTable (#1928)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-12-09 16:37:01 +08:00
Lance Release
4fdf084777 Updating package-lock.json 2024-12-09 04:01:51 +00:00
Lance Release
1fad24fcd8 Bump version: 0.14.0 → 0.14.1-beta.0 2024-12-09 04:01:35 +00:00
Lance Release
6ef20b85ca Bump version: 0.17.0 → 0.17.1-beta.0 2024-12-09 04:01:19 +00:00
LuQQiu
35bacdd57e feat: support azure account name storage options in sync db.connect (#1926)
db.connect with azure storage account name is supported in async connect
but not sync connect.
Add this functionality

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-08 20:00:23 -08:00
Will Jones
a5ebe5a6c4 fix: create_scalar_index in cloud (#1922)
Fixes #1920
2024-12-07 19:48:40 -08:00
Will Jones
bf03ad1b4a ci: fix release (#1919)
* Set `private: false` so we can publish new binary packages
* Add missing windows binary reference
2024-12-06 12:51:48 -08:00
Bert
2a9e3e2084 feat(python): support hybrid search in async sdk (#1915)
fixes: https://github.com/lancedb/lancedb/issues/1765

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-06 13:53:15 -05:00
Lance Release
f298f15360 Updating package-lock.json 2024-12-06 17:13:37 +00:00
Lance Release
679b031b99 Bump version: 0.14.0-beta.3 → 0.14.0 2024-12-06 17:13:15 +00:00
Lance Release
f50b5d532b Bump version: 0.14.0-beta.2 → 0.14.0-beta.3 2024-12-06 17:13:10 +00:00
Lance Release
fe655a15f0 Bump version: 0.17.0-beta.4 → 0.17.0 2024-12-06 17:12:43 +00:00
Lance Release
9d0af794d0 Bump version: 0.17.0-beta.3 → 0.17.0-beta.4 2024-12-06 17:12:43 +00:00
Will Jones
048a2d10f8 fix: data type parsing (#1918)
Fixes failing test on main
2024-12-06 08:56:07 -08:00
Lei Xu
c78a9849b4 ci: upgrade version of upload-pages-artifact and deploy-pages (#1917)
For
https://github.blog/changelog/2024-12-05-deprecation-notice-github-pages-actions-to-require-artifacts-actions-v4-on-github-com/
2024-12-06 10:45:24 -05:00
BubbleCal
c663085203 feat: support FTS options on RemoteTable (#1807) 2024-12-06 21:49:03 +08:00
Will Jones
8b628854d5 ci: fix nodejs release jobs (#1912)
* Clean up old commented out jobs
* Fix runner issue that caused these failures:
https://github.com/lancedb/lancedb/actions/runs/12186754094
2024-12-05 14:45:10 -08:00
Will Jones
a8d8c17b2a docs(rust): fix doctests (#1913)
* One doctest was running for > 60 seconds in CI, since it was
(unsuccessfully) trying to connect to LanceDB Cloud.
* Fixed the example for `Query::full_text_query()`, which was incorrect.
2024-12-05 14:44:59 -08:00
Will Jones
3c487e5fc7 perf: re-use table instance during write (#1909)
Previously, whenever `Table.add()` was called, we would write and
re-open the underlying dataset. This was bad for performance, as it
reset the table cache and initiated a lot of IO. It also could be the
source of bugs, since we didn't necessarily pass all the necessary
connection options down when re-opening the table.

Closes #1655
2024-12-05 14:44:50 -08:00
Will Jones
d6219d687c chore: simplify arrow json conversion (#1910)
Taking care of a small TODO
2024-12-05 13:14:43 -08:00
Bert
239f725b32 feat(python)!: async-sync feature parity on Connections (#1905)
Closes #1791
Closes #1764
Closes #1897 (Makes this unnecessary)

BREAKING CHANGE: when using azure connection string `az://...` the call
to connect will fail if the azure storage credentials are not set. this
is breaking from the previous behaviour where the call would fail after
connect, when user invokes methods on the connection.
2024-12-05 14:54:39 -05:00
Will Jones
5f261cf2d8 feat: upgrade to Lance v0.20.0 (#1908)
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0
2024-12-05 10:53:59 -08:00
Will Jones
79eaa52184 feat: schema evolution APIs in all SDKs (#1851)
* Support `add_columns`, `alter_columns`, `drop_columns` in Remote SDK
and async Python
* Add `data_type` parameter to node
* Docs updates
2024-12-04 14:47:50 -08:00
Lei Xu
bd82e1f66d feat(python): add support for Azure OpenAPI SDK (#1906)
Closes #1699
2024-12-04 13:09:38 -08:00
Lance Release
ba34c3bee1 Updating package-lock.json 2024-12-04 01:14:24 +00:00
Lance Release
d4d0873e2b Bump version: 0.14.0-beta.1 → 0.14.0-beta.2 2024-12-04 01:13:55 +00:00
Lance Release
12c7bd18a5 Bump version: 0.17.0-beta.2 → 0.17.0-beta.3 2024-12-04 01:13:18 +00:00
LuQQiu
c6bf6a25d6 feat: add remote db uri path with folder prefix (#1901)
Add remote database folder prefix
support db://bucket/path/to/folder/
2024-12-03 16:51:18 -08:00
Weston Pace
c998a47e17 feat: add a pyarrow dataset adapater for LanceDB tables (#1902)
This currently only works for local tables (remote tables cannot be
queried)
This is also exclusive to the sync interface. However, since the pyarrow
dataset interface is synchronous I am not sure if there is much value in
making an async-wrapping variant.

In addition, I added a `to_batches` method to the base query in the sync
API. This already exists in the async API. In the sync API this PR only
adds support for vector queries and scalar queries and not for hybrid or
FTS queries.
2024-12-03 15:42:54 -08:00
Frank Liu
d8c758513c feat: add multimodal capabilities for Voyage embedder (#1878)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-12-03 10:25:48 -08:00
Will Jones
3795e02ee3 chore: fix ci on main (#1899) 2024-12-02 15:21:18 -08:00
Mr. Doge
c7d424b2f3 ci: aarch64-pc-windows-msvc (#1890)
`npm run pack-build -- -t $TARGET_TRIPLE`
was needed instead of
`npm run pack-build -t $TARGET_TRIPLE`
https://github.com/lancedb/lancedb/pull/1889

some documentation about `*-pc-windows-msvc` cross-compilation (from
alpine):
https://github.com/lancedb/lancedb/pull/1831#issuecomment-2497156918

only `arm64` in `matrix` config is used
since `x86_64` built by `runs-on: windows-2022` is working
2024-12-02 11:17:37 -08:00
Bert
1efb9914ee ci: fix failing python release (#1896)
Fix failing python release for windows:
https://github.com/lancedb/lancedb/actions/runs/12019637086/job/33506642964

Also updates pkginfo to fix twine build as suggested here:
https://github.com/pypi/warehouse/issues/15611
failing release:
https://github.com/lancedb/lancedb/actions/runs/12091344173/job/33719622146
2024-12-02 11:05:29 -08:00
Lance Release
83e26a231e Updating package-lock.json 2024-11-29 22:46:45 +00:00
Lance Release
72a17b2de4 Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-11-29 22:46:20 +00:00
Lance Release
4231925476 Bump version: 0.17.0-beta.1 → 0.17.0-beta.2 2024-11-29 22:45:55 +00:00
Lance Release
84a6693294 Bump version: 0.17.0-beta.0 → 0.17.0-beta.1 2024-11-29 18:16:02 +00:00
Ryan Green
6c2d4c10a4 feat: support remote options for remote lancedb connection (#1895)
* Support subset of storage options as remote options
* Send Azure storage account name via HTTP header
2024-11-29 14:08:13 -03:30
Ryan Green
d914722f79 Revert "feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header."
This reverts commit a6e4034dba.
2024-11-29 11:06:18 -03:30
Ryan Green
a6e4034dba feat: support remote options for remote lancedb connection. Send Azure storage account name via HTTP header. 2024-11-29 11:05:04 -03:30
QianZhu
2616a50502 fix: test errors after setting default limit (#1891) 2024-11-26 16:03:16 -08:00
LuQQiu
7b5e9d824a fix: dynamodb external manifest drop table (#1866)
second pr of https://github.com/lancedb/lancedb/issues/1812
2024-11-26 13:20:48 -08:00
QianZhu
3b173e7cb9 fix: default limit for remote nodejs client (#1886)
https://github.com/lancedb/lancedb/issues/1804
2024-11-26 11:01:25 -08:00
Mr. Doge
d496ab13a0 ci: linux: specify target triple for neon pack-build (vectordb) (#1889)
fixes that all `neon pack-build` packs are named
`vectordb-linux-x64-musl-*.tgz` even when cross-compiling

adds 2nd param:
`TARGET_TRIPLE=${2:-x86_64-unknown-linux-gnu}`
`npm run pack-build -- -t $TARGET_TRIPLE`
2024-11-26 10:57:17 -08:00
Will Jones
69d9beebc7 docs: improve style and introduction to Python API docs (#1885)
I found the signatures difficult to read and the parameter section not
very space efficient.
2024-11-26 09:17:35 -08:00
Bert
d32360b99d feat: support overwrite and exist_ok mode for remote create_table (#1883)
Support passing modes "overwrite" and "exist_ok" when creating a remote
table.
2024-11-26 11:38:36 -05:00
Will Jones
9fa08bfa93 ci: use correct runner for vectordb (#1881)
We already do this for `gnu` builds, we should do this also for `musl`
builds.
2024-11-25 16:17:10 -08:00
LuQQiu
d6d9cb7415 feat: bump lance to 0.20.0b3 (#1882)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.3
2024-11-25 16:15:44 -08:00
Lance Release
990d93f553 Updating package-lock.json 2024-11-25 22:06:39 +00:00
Lance Release
0832cba3c6 Bump version: 0.13.1-beta.0 → 0.14.0-beta.0 2024-11-25 22:06:14 +00:00
Lance Release
38b0d91848 Bump version: 0.16.1-beta.0 → 0.17.0-beta.0 2024-11-25 22:05:49 +00:00
Will Jones
6826039575 fix(python): run remote SDK futures in background thread (#1856)
Users who call the remote SDK from code that uses futures (either
`ThreadPoolExecutor` or `asyncio`) can get odd errors like:

```
Traceback (most recent call last):
  File "/usr/lib/python3.12/asyncio/events.py", line 88, in _run
    self._context.run(self._callback, *self._args)
RuntimeError: cannot enter context: <_contextvars.Context object at 0x7cfe94cdc900> is already entered
```

This PR fixes that by executing all LanceDB futures in a dedicated
thread pool running on a background thread. That way, it doesn't
interact with their threadpool.
2024-11-25 13:12:47 -08:00
QianZhu
3e9321fc40 docs: improve scalar index and filtering (#1874)
improved the docs on build a scalar index and pre-/post-filtering

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-11-25 11:30:57 -08:00
Lei Xu
2ded17452b fix(python)!: handle bad openai embeddings gracefully (#1873)
BREAKING-CHANGE: change Pydantic Vector field to be nullable by default.
Closes #1577
2024-11-23 13:33:52 -08:00
Mr. Doge
dfd9d2ac99 ci: musl missing node/package.json targets (#1870)
I missed targets when manually merging draft PR to updated main
I was copying from:
https://github.com/lancedb/lancedb/pull/1816/files#diff-d6e19f28e97cfeda63a9bd9426f10f1d2454eeed375ee1235e8ba842ceeb46a0

fixes:
error: Rust target x86_64-unknown-linux-musl not found in package.json.
2024-11-22 10:40:59 -08:00
Lance Release
162880140e Updating package-lock.json 2024-11-21 21:53:25 +00:00
Lance Release
99d9ced6d5 Bump version: 0.13.0 → 0.13.1-beta.0 2024-11-21 21:53:01 +00:00
Lance Release
96933d7df8 Bump version: 0.16.0 → 0.16.1-beta.0 2024-11-21 21:52:39 +00:00
Lei Xu
d369233b3d feat: bump lance to 0.20.0b2 (#1865)
Bump lance version.
Upstream change log:
https://github.com/lancedb/lance/releases/tag/v0.20.0-beta.2
2024-11-21 13:16:59 -08:00
QianZhu
43a670ed4b fix: limit docstring change (#1860) 2024-11-21 10:50:50 -08:00
Bert
cb9a00a28d feat: add list_versions to typescript, rust and remote python sdks (#1850)
Will require update to lance dependency to bring in this change which
makes the version serializable
https://github.com/lancedb/lance/pull/3143
2024-11-21 13:35:14 -05:00
Max Epstein
72af977a73 fix(CohereReranker): updated default model_name param to newest v3 (#1862) 2024-11-21 09:02:49 -08:00
Bert
7cecb71df0 feat: support for checkout and checkout_latest in remote sdks (#1863) 2024-11-21 11:28:46 -05:00
QianZhu
285071e5c8 docs: full-text search doc update (#1861)
Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 21:07:30 -08:00
QianZhu
114866fbcf docs: OSS doc improvement (#1859)
OSS doc improvement - HNSW index parameter explanation and others.

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-11-20 17:51:11 -08:00
Frank Liu
5387c0e243 docs: add Voyage models to sidebar (#1858) 2024-11-20 14:20:14 -08:00
Mr. Doge
53d1535de1 ci: musl x64,arm64 (#1853)
untested 4 artifacts at:
https://github.com/FuPeiJiang/lancedb/actions/runs/11926579058
node-native-linux-aarch64-musl 22.6 MB
node-native-linux-x86_64-musl 23.6 MB
nodejs-native-linux-aarch64-musl 26.7 MB
nodejs-native-linux-x86_64-musl 27 MB

this follows the same process as:
https://github.com/lancedb/lancedb/pull/1816#issuecomment-2484816669

Closes #1388
Closes #1107

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-11-20 10:53:19 -08:00
BubbleCal
b2f88f0b29 feat: support to sepcify ef search param (#1844)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-19 23:12:25 +08:00
fzowl
f2e3989831 docs: voyageai embedding in the index (#1813)
The code to support VoyageAI embedding and rerank models was added in
the https://github.com/lancedb/lancedb/pull/1799 PR.
Some of the documentation changes was also made, here adding the
VoyageAI embedding doc link to the index page.

These are my first PRs in lancedb and while i checked the
documentation/code structure, i might missed something important. Please
let me know if any changes required!
2024-11-18 14:34:16 -08:00
Emmanuel Ferdman
83ae52938a docs: update migration reference (#1837)
# PR Summary
PR fixes the `migration.md` reference in `docs/src/guides/tables.md`. On
the way, it also fixes some typos found in that document.

Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2024-11-18 14:33:32 -08:00
Lei Xu
267aa83bf8 feat(python): check vector query is not None (#1847)
Fix the type hints of `nearest_to` method, and raise `ValueError` when
the input is None
2024-11-18 14:15:22 -08:00
Will Jones
cc72050206 chore: update package locks (#1845)
Also ran `npm audit`.
2024-11-18 13:44:06 -08:00
Will Jones
72543c8b9d test(python): test with_row_id in sync query (#1835)
Also remove weird `MockTable` fixture.
2024-11-18 11:32:52 -08:00
Will Jones
97d6210c33 ci: remove invalid references (#1834)
Fix release job
2024-11-18 11:32:44 -08:00
Ho Kim
a3d0c27b0a feat: add support for rustls (#1842)
Hello, this is a simple PR that supports `rustls-tls` feature.

The `reqwest`\`s default TLS `default-tls` is enabled by default, to
dismiss the side-effect.

The user can use `rustls-tls` like this:

```toml
lancedb = { version = "*", default-features = false, features = ["rustls-tls"] }
```
2024-11-18 10:36:20 -08:00
BubbleCal
b23d8abcdd docs: introduce incremental indexing for FTS (#1789)
don't merge it before https://github.com/lancedb/lancedb/pull/1769
merged

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-18 20:21:28 +08:00
Rob Meng
e3ea5cf9b9 chore: bump lance to 0.19.3 (#1839) 2024-11-16 14:57:52 -05:00
Lance Release
4f8b086175 Updating package-lock.json 2024-11-15 20:18:16 +00:00
Lance Release
72330fb759 Bump version: 0.13.0-beta.3 → 0.13.0 2024-11-15 20:17:59 +00:00
Lance Release
e3b2c5f438 Bump version: 0.13.0-beta.2 → 0.13.0-beta.3 2024-11-15 20:17:55 +00:00
Lance Release
66a881b33a Bump version: 0.16.0-beta.2 → 0.16.0 2024-11-15 20:17:34 +00:00
Lance Release
a7515d6ee2 Bump version: 0.16.0-beta.1 → 0.16.0-beta.2 2024-11-15 20:17:34 +00:00
Will Jones
587c0824af feat: flexible null handling and insert subschemas in Python (#1827)
* Test that we can insert subschemas (omit nullable columns) in Python.
* More work is needed to support this in Node. See:
https://github.com/lancedb/lancedb/issues/1832
* Test that we can insert data with nullable schema but no nulls in
non-nullable schema.
* Add `"null"` option for `on_bad_vectors` where we fill with null if
the vector is bad.
* Make null values not considered bad if the field itself is nullable.
2024-11-15 11:33:00 -08:00
Will Jones
b38a4269d0 fix(node): make openai and huggingface optional dependencies (#1809)
BREAKING CHANGE: openai and huggingface now have separate entrypoints.

Closes [#1624](https://github.com/lancedb/lancedb/issues/1624)
2024-11-14 15:04:35 -08:00
Will Jones
119d88b9db ci: disable Windows Arm64 until the release builds work (#1833)
Started to actually fix this, but it was taking too long
https://github.com/lancedb/lancedb/pull/1831
2024-11-14 15:04:23 -08:00
StevenSu
74f660d223 feat: add new feature, add amazon bedrock embedding function (#1788)
Add amazon bedrock embedding function to rust sdk.

1.  Add BedrockEmbeddingModel ( lancedb/src/embeddings/bedrock.rs)
2. Add example lancedb/examples/bedrock.rs
2024-11-14 11:04:59 -08:00
Lance Release
b2b0979b90 Updating package-lock.json 2024-11-14 04:42:38 +00:00
Lance Release
ee2a40b182 Bump version: 0.13.0-beta.1 → 0.13.0-beta.2 2024-11-14 04:42:19 +00:00
Lance Release
4ca0b15354 Bump version: 0.16.0-beta.0 → 0.16.0-beta.1 2024-11-14 04:41:56 +00:00
Rob Meng
d8c217b47d chore: bump lance to 0.19.2 (#1829) 2024-11-13 23:23:02 -05:00
Rob Meng
b724b1a01f feat: support remote empty query (#1828)
Support sending empty query types to remote lancedb. also include offset
and limit, where were previously omitted.
2024-11-13 23:04:52 -05:00
Will Jones
abd75e0ead feat: search multiple query vectors as one query (#1811)
Allows users to pass multiple query vector as part of a single query
plan. This just runs the queries in parallel without any further
optimization. It's mostly a convenience.

Previously, I think this was only handled by the sync Python remote API.
This makes it common across all SDKs.

Closes https://github.com/lancedb/lancedb/issues/1803

```python
>>> import lancedb
>>> import asyncio
>>> 
>>> async def main():
...     db = await lancedb.connect_async("./demo")
...     table = await db.create_table("demo", [{"id": 1, "vector": [1, 2, 3]}, {"id": 2, "vector": [4, 5, 6]}], mode="overwrite")
...     return await table.query().nearest_to([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [4.0, 5.0, 6.0]]).limit(1).to_pandas()
... 
>>> asyncio.run(main())
   query_index  id           vector  _distance
0            2   2  [4.0, 5.0, 6.0]        0.0
1            1   2  [4.0, 5.0, 6.0]        0.0
2            0   1  [1.0, 2.0, 3.0]        0.0
```
2024-11-13 16:05:16 -08:00
Will Jones
0fd8a50bd7 ci(node): run examples in CI (#1796)
This is done as setup for a PR that will fix the OpenAI dependency
issue.

 * [x] FTS examples
 * [x] Setup mock openai
 * [x] Ran `npm audit fix`
 * [x] sentences embeddings test
 * [x] Double check formatting of docs examples
2024-11-13 11:10:56 -08:00
Umut Hope YILDIRIM
9f228feb0e ci: remove cache to fix build issues on windows arm runner (#1820) 2024-11-13 09:27:10 -08:00
Ayush Chaurasia
90e9c52d0a docs: update hybrid search example to latest langchain (#1824)
Co-authored-by: qzhu <qian@lancedb.com>
2024-11-12 20:06:25 -08:00
Will Jones
68974a4e06 ci: add index URL to fix failing docs build (#1823) 2024-11-12 16:54:22 -08:00
Lei Xu
4c9bab0d92 fix: use pandas with pydantic embedding column (#1818)
* Make Pandas `DataFrame` works with embedding function + Subset of
columns
* Make `lancedb.create_table()` work with embedding function
2024-11-11 14:48:56 -08:00
QianZhu
5117aecc38 docs: search param explanation for OSS doc (#1815)
![Screenshot 2024-11-09 at 11 09
14 AM](https://github.com/user-attachments/assets/2aeba016-aeff-4658-85c6-8640285ba0c9)
2024-11-11 11:57:17 -08:00
Umut Hope YILDIRIM
729718cb09 fix: arm64 runner proto already installed bug (#1810)
https://github.com/lancedb/lancedb/actions/runs/11748512661/job/32732745458
2024-11-08 14:49:37 -08:00
Umut Hope YILDIRIM
b1c84e0bda feat: added lancedb and vectordb release ci for win32-arm64-msvc npmjs only (#1805) 2024-11-08 11:40:57 -08:00
fzowl
cbbc07d0f5 feat: voyageai support (#1799)
Adding VoyageAI embedding and rerank support
2024-11-09 00:51:20 +05:30
Kursat Aktas
21021f94ca docs: introducing LanceDB Guru on Gurubase.io (#1797)
Hello team,

I'm the maintainer of [Anteon](https://github.com/getanteon/anteon). We
have created Gurubase.io with the mission of building a centralized,
open-source tool-focused knowledge base. Essentially, each "guru" is
equipped with custom knowledge to answer user questions based on
collected data related to that tool.

I wanted to update you that I've manually added the [LanceDB
Guru](https://gurubase.io/g/lancedb) to Gurubase. LanceDB Guru uses the
data from this repo and data from the
[docs](https://lancedb.github.io/lancedb/) to answer questions by
leveraging the LLM.

In this PR, I showcased the "LanceDB Guru", which highlights that
LanceDB now has an AI assistant available to help users with their
questions. Please let me know your thoughts on this contribution.

Additionally, if you want me to disable LanceDB Guru in Gurubase, just
let me know that's totally fine.

Signed-off-by: Kursat Aktas <kursat.ce@gmail.com>
2024-11-08 10:55:22 -08:00
BubbleCal
0ed77fa990 chore: impl Debug & Clone for Index params (#1808)
we don't really need these trait in lancedb, but all fields in `Index`
implement the 2 traits, so do it for possibility to use `Index`
somewhere

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-09 01:07:43 +08:00
BubbleCal
4372c231cd feat: support optimize indices in sync API (#1769)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-11-08 08:48:07 -08:00
Umut Hope YILDIRIM
fa9ca8f7a6 ci: arm64 windows build support (#1770)
Adds support for 'aarch64-pc-windows-msvc'.
2024-11-06 15:34:23 -08:00
Lance Release
2a35d24ee6 Updating package-lock.json 2024-11-06 17:26:36 +00:00
Lance Release
dd9ce337e2 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-11-06 17:26:17 +00:00
Will Jones
b9921d56cc fix(node): update default log level to warn (#1801)
🤦
2024-11-06 09:13:53 -08:00
Lance Release
0cfd9ed18e Updating package-lock.json 2024-11-05 23:21:50 +00:00
Lance Release
975398c3a8 Bump version: 0.12.0 → 0.13.0-beta.0 2024-11-05 23:21:32 +00:00
Lance Release
08d5f93f34 Bump version: 0.15.0 → 0.16.0-beta.0 2024-11-05 23:21:13 +00:00
Will Jones
91cab3b556 feat(python): transition Python remote sdk to use Rust implementation (#1701)
* Replaces Python implementation of Remote SDK with Rust one.
* Drops dependency on `attrs` and `cachetools`. Makes `requests` an
optional dependency used only for embeddings feature.
* Adds dependency on `nest-asyncio`. This was required to get hybrid
search working.
* Deprecate `request_thread_pool` parameter. We now use the tokio
threadpool.
* Stop caching the `schema` on a remote table. Schema is mutable and
there's no mechanism in place to invalidate the cache.
* Removed the client-side resolution of the vector column. We should
already be resolving this server-side.
2024-11-05 13:44:39 -08:00
Will Jones
c61bfc3af8 chore: update package locks (#1798) 2024-11-05 13:28:59 -08:00
Bert
4e8c7b0adf fix: serialize vectordb client errors as json (#1795) 2024-11-05 14:16:25 -05:00
Weston Pace
26f4a80e10 feat: upgrade to lance 0.19.2-beta.3 (#1794) 2024-11-05 06:43:41 -08:00
Will Jones
3604d20ad3 feat(python,node): support with_row_id in Python and remote (#1784)
Needed to support hybrid search in Remote SDK.
2024-11-04 11:25:45 -08:00
Gagan Bhullar
9708d829a9 fix: explain plan options (#1776)
PR fixes #1768
2024-11-04 10:25:34 -08:00
Will Jones
059c9794b5 fix(rust): fix update, open_table, fts search in remote client (#1785)
* `open_table` uses `POST` not `GET`
* `update` uses `predicate` key not `only_if`
* For FTS search, vector cannot be omitted. It must be passed as empty.
* Added logging of JSON request bodies to debug level logging.
2024-11-04 08:27:55 -08:00
Will Jones
15ed7f75a0 feat(python): support post filter on FTS (#1783) 2024-11-01 10:05:05 -07:00
Will Jones
96181ab421 feat: fast_search in Python and Node (#1623)
Sometimes it is acceptable to users to only search indexed data and skip
and new un-indexed data. For example, if un-indexed data will be shortly
indexed and they don't mind the delay. In these cases, we can save a lot
of CPU time in search, and provide better latency. Users can activate
this on queries using `fast_search()`.
2024-11-01 09:29:09 -07:00
Will Jones
f3fc339ef6 fix(rust): fix delete, update, query in remote SDK (#1782)
Fixes several minor issues with Rust remote SDK:

* Delete uses `predicate` not `filter` as parameter
* Update does not return the row value in remote SDK
* Update takes tuples
* Content type returned by query node is wrong, so we shouldn't validate
it. https://github.com/lancedb/sophon/issues/2742
* Data returned by query endpoint is actually an Arrow IPC file, not IPC
stream.
2024-10-31 15:22:09 -07:00
Will Jones
113cd6995b fix: index_stats works for FTS indices (#1780)
When running `index_stats()` for an FTS index, users would get the
deserialization error:

```
InvalidInput { message: "error deserializing index statistics: unknown variant `Inverted`, expected one of `IvfPq`, `IvfHnswPq`, `IvfHnswSq`, `BTree`, `Bitmap`, `LabelList`, `FTS` at line 1 column 24" }
```
2024-10-30 11:33:49 -07:00
Lance Release
02535bdc88 Updating package-lock.json 2024-10-29 22:16:51 +00:00
Lance Release
facc7d61c0 Bump version: 0.12.0-beta.0 → 0.12.0 2024-10-29 22:16:32 +00:00
Lance Release
f947259f16 Bump version: 0.11.1-beta.1 → 0.12.0-beta.0 2024-10-29 22:16:27 +00:00
Lance Release
e291212ecf Bump version: 0.15.0-beta.0 → 0.15.0 2024-10-29 22:16:05 +00:00
Lance Release
edc6445f6f Bump version: 0.14.1-beta.1 → 0.15.0-beta.0 2024-10-29 22:16:05 +00:00
Will Jones
a324f4ad7a feat(node): enable logging and show full errors (#1775)
This exposes the `LANCEDB_LOG` environment variable in node, so that
users can now turn on logging.

In addition, fixes a bug where only the top-level error from Rust was
being shown. This PR makes sure the full error chain is included in the
error message. In the future, will improve this so the error chain is
set on the [cause](https://nodejs.org/api/errors.html#errorcause)
property of JS errors https://github.com/lancedb/lancedb/issues/1779

Fixes #1774
2024-10-29 15:13:34 -07:00
Weston Pace
55104c5bae feat: allow distance type (metric) to be specified during hybrid search (#1777) 2024-10-29 13:51:18 -07:00
Rithik Kumar
d71df4572e docs: revamp langchain integration page (#1773)
Before - 
<img width="1030" alt="Screenshot 2024-10-28 132932"
src="https://github.com/user-attachments/assets/63f78bfa-949e-473e-ab22-0c692577fa3e">


After - 
<img width="1037" alt="Screenshot 2024-10-28 132727"
src="https://github.com/user-attachments/assets/85a12f6c-74f0-49ba-9f1a-fe77ad125704">
2024-10-29 22:55:50 +05:30
Rithik Kumar
aa269199ad docs: fix archived examples links (#1751) 2024-10-29 22:55:27 +05:30
BubbleCal
32fdcf97db feat!: upgrade lance to 0.19.1 (#1762)
BREAKING CHANGE: default tokenizer no longer does stemming or stop-word
removal. Users should explicitly turn that option on in the future.

- upgrade lance to 0.19.1
- update the FTS docs
- update the FTS API

Upstream change notes:
https://github.com/lancedb/lance/releases/tag/v0.19.1

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-10-29 09:03:52 -07:00
Ryan Green
b9802a0d23 Revert "fix: error during deserialization of "INVERTED" index type"
This reverts commit 2ea5939f85.
2024-10-25 14:46:47 -02:30
Ryan Green
2ea5939f85 fix: error during deserialization of "INVERTED" index type 2024-10-25 14:40:14 -02:30
Lance Release
04e1f1ee4c Updating package-lock.json 2024-10-23 00:34:22 +00:00
Lance Release
bbc588e27d Bump version: 0.11.1-beta.0 → 0.11.1-beta.1 2024-10-23 00:34:01 +00:00
Lance Release
5517e102c3 Bump version: 0.14.1-beta.0 → 0.14.1-beta.1 2024-10-23 00:33:40 +00:00
Will Jones
82197c54e4 perf: eliminate iop in refresh (#1760)
Closes #1741

If we checkout a version, we need to make a `HEAD` request to get the
size of the manifest. The new `checkout_latest()` code path can skip
this IOP. This makes the refresh slightly faster.
2024-10-18 13:40:24 -07:00
Will Jones
48f46d4751 docs(node): update indexStats signature and regenerate docs (#1742)
`indexStats` still referenced UUID even though in
https://github.com/lancedb/lancedb/pull/1702 we changed it to take name
instead.
2024-10-18 10:53:28 -07:00
Lance Release
437316cbbc Updating package-lock.json 2024-10-17 18:59:18 +00:00
Lance Release
d406eab2c8 Bump version: 0.11.0 → 0.11.1-beta.0 2024-10-17 18:59:01 +00:00
Lance Release
1f41101897 Bump version: 0.14.0 → 0.14.1-beta.0 2024-10-17 18:58:45 +00:00
Will Jones
99e4db0d6a feat(rust): allow add_embedding on create_empty_table (#1754)
Fixes https://github.com/lancedb/lancedb/issues/1750
2024-10-17 11:58:15 -07:00
Will Jones
46486d4d22 fix: list_indices can handle fts indexes (#1753)
Fixes #1752
2024-10-16 10:39:40 -07:00
Weston Pace
f43cb8bba1 feat: upgrade lance to 0.18.3 (#1748) 2024-10-16 00:48:31 -07:00
James Wu
38eb05f297 fix(python): remove dependency on retry package (#1749)
## user story

fixes https://github.com/lancedb/lancedb/issues/1480

https://github.com/invl/retry has not had an update in 8 years, one if
its sub-dependencies via requirements.txt
(https://github.com/pytest-dev/py) is no longer maintained and has a
high severity vulnerability (CVE-2022-42969).

retry is only used for a single function in the python codebase for a
deprecated helper function `with_embeddings`, which was created for an
older tutorial (https://github.com/lancedb/lancedb/pull/12) [but is now
deprecated](https://lancedb.github.io/lancedb/embeddings/legacy/).

## changes

i backported a limited range of functionality of the `@retry()`
decorator directly into lancedb so that we no longer have a dependency
to the `retry` package.

## tests

```
/Users/james/src/lancedb/python $ ruff check .
All checks passed!
/Users/james/src/lancedb/python $ pytest python/tests/test_embeddings.py
python/tests/test_embeddings.py .......s....                                                                                                                        [100%]
================================================================ 11 passed, 1 skipped, 2 warnings in 7.08s ================================================================
```
2024-10-15 15:13:57 -07:00
Ryan Green
679a70231e feat: allow fast_search on python remote table (#1747)
Add `fast_search` parameter to query builder and remote table to support
skipping flat search in remote search
2024-10-14 14:39:54 -06:00
Dominik Weckmüller
e7b56b7b2a docs: add permanent link chain icon to headings without impacting SEO (#1746)
I noted that there are no permanent links in the docs. Adapted the
current best solution from
https://github.com/squidfunk/mkdocs-material/discussions/3535. It adds a
GitHub-like chain icon to the left of each heading (right on mobile) and
does not impact SEO unlike the default solution with pilcrow char `¶`
that might show up on google search results.

<img alt="image"
src="https://user-images.githubusercontent.com/182589/153004627-6df3f8e9-c747-4f43-bd62-a8dabaa96c3f.gif">
2024-10-14 11:58:23 -07:00
Olzhas Alexandrov
5ccd0edec2 docs: clarify infrastructure requirements for S3 Express One Zone (#1745) 2024-10-11 14:06:28 -06:00
Will Jones
9c74c435e0 ci: update package lock (#1740) 2024-10-09 15:14:08 -06:00
Lance Release
6de53ce393 Updating package-lock.json 2024-10-09 18:54:29 +00:00
Lance Release
9f42fbba96 Bump version: 0.11.0-beta.2 → 0.11.0 2024-10-09 18:54:09 +00:00
Lance Release
d892f7a622 Bump version: 0.11.0-beta.1 → 0.11.0-beta.2 2024-10-09 18:54:04 +00:00
Lance Release
515ab5f417 Bump version: 0.14.0-beta.1 → 0.14.0 2024-10-09 18:53:35 +00:00
Lance Release
8d0055fe6b Bump version: 0.14.0-beta.0 → 0.14.0-beta.1 2024-10-09 18:53:34 +00:00
Will Jones
5f9d8509b3 feat: upgrade Lance to v0.18.2 (#1737)
Includes changes from v0.18.1 and v0.18.2:

* [v0.18.1 change
log](https://github.com/lancedb/lance/releases/tag/v0.18.1)
* [v0.18.2 change
log](https://github.com/lancedb/lance/releases/tag/v0.18.2)

Closes #1656
Closes #1615
Closes #1661
2024-10-09 11:46:46 -06:00
Will Jones
f3b6a1f55b feat(node): bind remote SDK to rust implementation (#1730)
Closes [#2509](https://github.com/lancedb/sophon/issues/2509)

This is the Node.js analogue of #1700
2024-10-09 11:46:27 -06:00
Will Jones
aff25e3bf9 fix(node): add native packages to bump version (#1738)
We weren't bumping the version, so when users downloaded our package
from npm, they were getting the old binaries.
2024-10-08 23:03:53 -06:00
Will Jones
8509f73221 feat: better errors for remote SDK (#1722)
* Adds nicer errors to remote SDK, that expose useful properties like
`request_id` and `status_code`.
* Makes sure the Python tracebacks print nicely by mapping the `source`
field from a Rust error to the `__cause__` field.
2024-10-08 22:21:13 -06:00
Will Jones
607476788e feat(rust): list_indices in remote SDK (#1726)
Implements `list_indices`.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-10-08 21:45:21 -06:00
Gagan Bhullar
4d458d5829 feat(python): drop support for dictionary in Table.add (#1725)
PR closes #1706
2024-10-08 20:41:08 -06:00
Will Jones
e61ba7f4e2 fix(rust): remote SDK bugs (#1723)
A few bugs uncovered by integration tests:

* We didn't prepend `/v1` to the Table endpoint URLs
* `/create_index` takes `metric_type` not `distance_type`. (This is also
an error in the OpenAPI docs.)
* `/create_index` expects the `metric_type` parameter to always be
lowercase.
* We were writing an IPC file message when we were supposed to send an
IPC stream message.
2024-10-04 08:43:07 -07:00
Prashant Dixit
408bc96a44 fix: broken notebook link fix (#1721) 2024-10-03 16:15:27 +05:30
Rithik Kumar
6ceaf8b06e docs: add langchainjs writing assistant (#1719) 2024-10-03 00:55:00 +05:30
Prashant Dixit
e2ca8daee1 docs: saleforce's sfr rag (#1717)
This PR adds Salesforce's newly released SFR RAG
2024-10-02 21:15:24 +05:30
Will Jones
f305f34d9b feat(python): bind python async remote client to rust client (#1700)
Closes [#1638](https://github.com/lancedb/lancedb/issues/1638)

This just binds the Python Async client to the Rust remote client.
2024-10-01 15:46:59 -07:00
Will Jones
a416925ca1 feat(rust): client configuration for remote client (#1696)
This PR ports over advanced client configuration present in the Python
`RestfulLanceDBClient` to the Rust one. The goal is to have feature
parity so we can replace the implementation.

* [x] Request timeout
* [x] Retries with backoff
* [x] Request id generation
* [x] User agent (with default tied to library version  )
* [x] Table existence cache
* [ ] Deferred: ~Request id customization (should this just pick up OTEL
trace ids?)~

Fixes #1684
2024-10-01 10:22:53 -07:00
Will Jones
2c4b07eb17 feat(python): merge_insert in async Python (#1707)
Fixes #1401
2024-10-01 10:06:52 -07:00
Will Jones
33b402c861 fix: list_indices returns correct index type (#1715)
Fixes https://github.com/lancedb/lancedb/issues/1711

Doesn't address this https://github.com/lancedb/lance/issues/2039

Instead we load the index statistics, which seems to contain the index
type. However, this involves more IO than previously. I'm not sure
whether we care that much. If we do, we can fix that upstream Lance
issue.
2024-10-01 09:16:18 -07:00
Rithik Kumar
7b2cdd2269 docs: revamp Voxel51 v1 (#1714)
Revamp Voxel51

![image](https://github.com/user-attachments/assets/7ac34457-74ec-4654-b1d1-556e3d7357f5)
2024-10-01 11:59:03 +05:30
Akash Saravanan
d6b5054778 feat(python): add support for trust_remote_code in hf embeddings (#1712)
Resovles #1709. Adds `trust_remote_code` as a parameter to the
`TransformersEmbeddingFunction` class with a default of False. Updated
relevant documentation with the same.
2024-10-01 01:06:28 +05:30
Lei Xu
f0e7f5f665 ci: change to use github runner (#1708)
Use github runner
2024-09-27 17:53:05 -07:00
Will Jones
f958f4d2e8 feat: remote index stats (#1702)
BREAKING CHANGE: the return value of `index_stats` method has changed
and all `index_stats` APIs now take index name instead of UUID. Also
several deprecated index statistics methods were removed.

* Removes deprecated methods for individual index statistics
* Aligns public `IndexStatistics` struct with API response from LanceDB
Cloud.
* Implements `index_stats` for remote Rust SDK and Python async API.
2024-09-27 12:10:00 -07:00
Will Jones
c1d9d6f70b feat(rust): remote rename table (#1703)
Adds rename to remote table. Pre-requisite for
https://github.com/lancedb/lancedb/pull/1701
2024-09-27 09:37:54 -07:00
Will Jones
1778219ea9 feat(rust): remote client query and create_index endpoints (#1663)
Support for `query` and `create_index`.

Closes [#2519](https://github.com/lancedb/sophon/issues/2519)
2024-09-27 09:00:22 -07:00
Rob Meng
ee6c18f207 feat: expose underlying dataset uri of the table (#1704) 2024-09-27 10:20:02 -04:00
rjrobben
e606a455df fix(EmbeddingFunction): modify safe_model_dump to explicitly exclude class fields with underscore (#1688)
Resolve issue #1681

---------

Co-authored-by: rjrobben <rjrobben123@gmail.com>
2024-09-25 11:53:49 -07:00
Gagan Bhullar
8f0eb34109 fix: hnsw default partitions (#1667)
PR fixes #1662

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-25 09:16:03 -07:00
Ayush Chaurasia
2f2721e242 feat(python): allow explicit hybrid search query pattern in SaaS (feat parity) (#1698)
-  fixes https://github.com/lancedb/lancedb/issues/1697.
- unifies vector column inference logic for remote and local table to
prevent future disparities.
- Updates docstring in RemoteTable to specify empty queries are not
supported
2024-09-25 21:04:00 +05:30
QianZhu
f00b21c98c fix: metric type for python/node search api (#1689) 2024-09-24 16:10:29 -07:00
Lance Release
962b3afd17 Updating package-lock.json 2024-09-24 16:51:37 +00:00
Lance Release
b72ac073ab Bump version: 0.11.0-beta.0 → 0.11.0-beta.1 2024-09-24 16:51:16 +00:00
Bert
3152ccd13c fix: re-add hostOverride arg to ConnectionOptions (#1694)
Fixes issue where hostOverride was no-longer passed through to
RemoteConnection
2024-09-24 13:29:26 -03:00
Bert
d5021356b4 feat: add fast_search to vectordb (#1693) 2024-09-24 13:28:54 -03:00
Will Jones
e82f63b40a fix(node): pass no const enum (#1690)
Apparently this is a no-no for libraries.
https://ncjamieson.com/dont-export-const-enums/

Fixes [#1664](https://github.com/lancedb/lancedb/issues/1664)
2024-09-24 07:41:42 -07:00
Ayush Chaurasia
f81ce68e41 fix(python): force deduce vector column name if running explicit hybrid query (#1692)
Right now when passing vector and query explicitly for hybrid search ,
vector_column_name is not deduced.
(https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/#hybrid-search-in-lancedb
). Because vector and query can be both none when initialising the
QueryBuilder in this case. This PR forces deduction of query type if it
is set to "hybrid"
2024-09-24 19:02:56 +05:30
Will Jones
f5c25b6fff ci: run clippy on tests (#1659) 2024-09-23 07:33:47 -07:00
Ayush Chaurasia
86978e7588 feat!: enforce all rerankers always return relevance score & deprecate linear combination fixes (#1687)
- Enforce all rerankers always return _relevance_score. This was already
loosely done in tests before but based on user feedback its better to
always have _relevance_score present in all reranked results
- Deprecate LinearCombinationReranker in docs. And also fix a case where
it would not return _relevance_score if one result set was missing
2024-09-23 12:12:02 +05:30
Lei Xu
7c314d61cc chore: add error handling for openai embedding generation (#1680) 2024-09-23 12:10:56 +05:30
Lei Xu
7a8d2f37c4 feat(rust): add with_row_id to rust SDK (#1683) 2024-09-21 21:26:19 -07:00
Rithik Kumar
11072b9edc docs: phidata integration page (#1678)
Added new integration page for phidata :

![image](https://github.com/user-attachments/assets/8cd9b420-f249-4eac-ac13-ae53983822be)
2024-09-21 00:40:47 +05:30
Lei Xu
915d828cee feat!: set embeddings to Null if embedding function return invalid results (#1674) 2024-09-19 23:16:20 -07:00
Lance Release
d9a72adc58 Updating package-lock.json 2024-09-19 17:53:19 +00:00
Lance Release
d6cf2dafc6 Bump version: 0.10.0 → 0.11.0-beta.0 2024-09-19 17:53:00 +00:00
Lance Release
38f0031d0b Bump version: 0.13.0 → 0.14.0-beta.0 2024-09-19 17:52:38 +00:00
LuQQiu
e118c37228 ci: enable java auto release (#1602)
Enable bump java pom.xml versions
Enable auto java release when detect stable github release
2024-09-19 10:51:03 -07:00
LuQQiu
abeaae3d80 feat!: upgrade Lance to 0.18.0 (#1657)
BREAKING CHANGE: default file format changed to Lance v2.0.

Upgrade Lance to 0.18.0

Change notes: https://github.com/lancedb/lance/releases/tag/v0.18.0
2024-09-19 10:50:26 -07:00
Gagan Bhullar
b3c0227065 docs: hnsw documentation (#1640)
PR closes #1627

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-19 10:32:46 -07:00
Will Jones
521e665f57 feat(rust): remote client write data endpoint (#1645)
* Implements:
  * Add
  * Update
  * Delete
  * Merge-Insert

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-09-18 15:02:56 -07:00
Will Jones
ffb28dd4fc feat(rust): remote endpoints for schema, version, count_rows (#1644)
A handful of additional endpoints.
2024-09-16 08:19:25 -07:00
Lei Xu
32af962c0c feat: fix creating empty table and creating table by a list of RecordBatch for remote python sdk (#1650)
Closes #1637
2024-09-14 11:33:34 -07:00
Ayush Chaurasia
18484d0b6c fix: allow pass optional args in colbert reranker (#1649)
Fixes https://github.com/lancedb/lancedb/issues/1641
2024-09-14 11:18:09 -07:00
Lei Xu
c02ee3c80c chore: make remote client a context manager (#1648)
Allow `RemoteLanceDBClient` to be used as context manager
2024-09-13 22:08:48 -07:00
Rithik Kumar
dcd5f51036 docs: add understand embeddings v1 (#1643)
Before getting started with **managing embeddings**. Let's **understand
embeddings** (LanceDB way)

![Screenshot 2024-09-14
012144](https://github.com/user-attachments/assets/7c5435dc-5316-47e9-8d7d-9994ab13b93d)
2024-09-14 02:07:00 +05:30
Sayandip Dutta
9b8472850e fix: unterminated string literal on table update (#1573)
resolves #1429 
(python)

```python
-    return f"'{value}'"
+    return f'"{value}"'
```

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-13 12:32:59 -07:00
Sayandip Dutta
36d05ea641 fix: add appropriate QueryBuilder overloads to LanceTable.search (#1558)
- Add overloads to Table.search, to preserve the return information
of different types of QueryBuilder objects for LanceTable
- Fix fts_column type annotation by including making it `Optional`

resolves #1550

---------

Co-authored-by: sayandip-dutta <sayandip.dutta@nevaehtech.com>
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-13 12:32:30 -07:00
LuQQiu
7ed86cadfb feat(node): let NODE API region default to us-east-1 (#1631)
Fixes #1622 
To sync with python API
2024-09-13 11:48:57 -07:00
Will Jones
1c123b58d8 feat: implement Remote connection for LanceDB Rust (#1639)
* Adding a simple test facility, which allows you to mock a single
endpoint at a time with a closure.
* Implementing all the database-level endpoints

Table-level APIs will be done in a follow up PR.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-09-13 10:53:27 -07:00
BubbleCal
bf7d2d6fb0 docs: update FTS docs for JS SDK (#1634)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-09-13 05:48:29 -07:00
LuQQiu
c7732585bf fix: support pyarrow input types (#1628)
fixes #1625 
Support PyArrow.RecordBatch, pa.dataset.Dataset, pa.dataset.Scanner,
paRecordBatchReader
2024-09-12 10:59:18 -07:00
Prashant Dixit
b3bf6386c3 docs: rag section in guide (#1619)
This PR adds the RAG section in the Guides. It includes all the RAGs
with code snippet and some advanced techniques which improves RAG.
2024-09-11 21:13:55 +05:30
BubbleCal
4b79db72bf docs: improve the docs and API param name (#1629)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-09-11 10:18:29 +08:00
Lance Release
622a2922e2 Updating package-lock.json 2024-09-10 20:12:54 +00:00
Lance Release
c91221d710 Bump version: 0.10.0-beta.2 → 0.10.0 2024-09-10 20:12:41 +00:00
Lance Release
56da5ebd13 Bump version: 0.10.0-beta.1 → 0.10.0-beta.2 2024-09-10 20:12:40 +00:00
Lance Release
64eb43229d Bump version: 0.13.0-beta.2 → 0.13.0 2024-09-10 20:12:35 +00:00
Lance Release
c31c92122f Bump version: 0.13.0-beta.1 → 0.13.0-beta.2 2024-09-10 20:12:35 +00:00
Gagan Bhullar
205fc530cf feat: expose hnsw indices (#1595)
PR closes #1522

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-10 11:08:13 -07:00
BubbleCal
2bde5401eb feat: support to build FTS without positions (#1621) 2024-09-10 22:51:32 +08:00
Antonio Molner Domenech
a405847f9b fix(python): remove unmaintained ratelimiter dependency (#1603)
The `ratelimiter` package hasn't been updated in ages and is no longer
maintained. This PR removes the dependency on `ratelimiter` and replaces
it with a custom rate limiter implementation.

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2024-09-09 12:35:53 -07:00
Gagan Bhullar
bcc19665ce feat(nodejs): expose offset (#1620)
PR closes #1555
2024-09-09 11:54:40 -07:00
Will Jones
2a6586d6fb feat: add flag to enable faster manifest paths (#1612)
The new V2 manifest path scheme makes discovering the latest version of
a table constant time on object stores, regardless of the number of
versions in the table. See benchmarks in the PR here:
https://github.com/lancedb/lance/pull/2798

Closes #1583
2024-09-09 11:34:36 -07:00
James Wu
029b01bbbf feat: enable phrase_query(bool) for hybrid search queries (#1578)
first off, apologies for any folly since i'm new to contributing to
lancedb. this PR is the continuation of [a discord
thread](https://discord.com/channels/1030247538198061086/1030247538667827251/1278844345713299599):

## user story

here's the lance db search query i'd like to run:

```
def search(phrase):
    logger.info(f'Searching for phrase: {phrase}')
    phrase_embedding = get_embedding(phrase)
    df = (table.search((phrase_embedding, phrase), query_type='hybrid')
        .limit(10).to_list())
    logger.info(f'Success search with row count: {len(df)}')

search('howdy (howdy)')
search('howdy(howdy)')
```

the second search fails due to `ValueError: Syntax Error: howdy(howdy)`

i saw on the
[docs](https://lancedb.github.io/lancedb/fts/#phrase-queries-vs-terms-queries)
that i can use `phrase_query()` to [enable a
flag](https://github.com/lancedb/lancedb/blob/main/python/python/lancedb/query.py#L790-L792)
to wrap the query in double quotes (as well as sanitize single quotes)
prior to sending the query to search. this works for [normal
FTS](https://lancedb.github.io/lancedb/fts/), but the command is
unavailable on [hybrid
search](https://lancedb.github.io/lancedb/hybrid_search/hybrid_search/).

## changes

i added `phrase_query()` function to `LanceHybridQueryBuilder` by
propagating the call down to its `self. _fts_query` object. i'm not too
familiar with the codebase and am not sure if this is the best way to
implement the functionality. feel free to riff on this PR or discard


## tests

```
(lancedb) JamesMPB:python james$ pwd
/Users/james/src/lancedb/python
(lancedb) JamesMPB:python james$ pytest python/tests/test_table.py 
python/tests/test_table.py .......................................                                                                   [100%]
====================================================== 39 passed, 1 warning in 2.23s =======================================================
```
2024-09-07 08:58:05 +05:30
Will Jones
cd32944e54 feat: upgrade lance to v0.17.0 (#1608)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.17.0

Highlights:

* You can do "phrase queries" by adding double quotes around phrases
(multiple tokens) in FTS.

Added follow ups in: https://github.com/lancedb/lancedb/issues/1611
2024-09-06 14:10:02 -07:00
Jon X
7eb3b52297 docs: added a blank line between a paragraph and a list block (#1604)
Though the markdown can be rendered well on GitHub (GFM style?), but it
seems that it's required to insert a blank line between a paragraph and
a list block to make it render well with `mkdocs`?

see also the web page:
https://lancedb.github.io/lancedb/concepts/index_hnsw/
2024-09-06 09:38:19 +05:30
BubbleCal
8dcd328dce feat: support to create table from record batch iterator (#1593) 2024-09-06 10:41:38 +08:00
Philip Zeyliger
1d61717d0e docs: fix get_registry() usage (#1601)
Docs used `get_registry.get(...)` whereas what works is
`get_registry().get(...)`. Fixing the two instances I found. I tested
the open clip version by trying it locally in a Jupyter notebook.
2024-09-06 01:48:24 +05:30
Lei Xu
4ee7225e91 ci: public java package (#1485)
Co-authored-by: Lu Qiu <luqiujob@gmail.com>
2024-09-05 11:48:48 -07:00
Rithik Kumar
2bc7dca3ca docs: add changes to Embeddings-> Available models-> overview page (#1596)
adding features and improvements to - Manage Embeddings page

Before:
![Screenshot 2024-09-04
223743](https://github.com/user-attachments/assets/f1e116b5-6ebb-4d59-9d29-b20084998cd0)

After:



![Screenshot 2024-09-05
214214](https://github.com/user-attachments/assets/8c94318e-68af-447e-97e1-8153860a2914)

![Screenshot 2024-09-05
213623](https://github.com/user-attachments/assets/55c82770-6df9-4bab-9c5c-1ea1552138de)

![Screenshot 2024-09-05
215931](https://github.com/user-attachments/assets/9bfac7d4-16a6-454e-801e-50789ff75261)
2024-09-05 22:19:08 +05:30
Gagan Bhullar
b24810a011 feat(python, rust): expose offset in query (#1556)
PR is part of #1555
2024-09-05 08:33:07 -07:00
Jon X
2b8e872be0 docs: removed the unnecessary fence code tag (#1599) 2024-09-05 14:40:38 +05:30
Ayush Chaurasia
03ef1dc081 feat: update default reranker to RRF (#1580)
- Both LinearCombination (the current default) and RRF are pretty fast
compared to model based rerankers. RRF is slightly faster.
- In our tests RRF has also been slightly more accurate.

This PR:
- Makes RRF the default reranker
- Removed duplicate docs for rerankers
2024-09-03 14:00:13 +05:30
Rithik Kumar
fde636ca2e docs: fix links - quick start to embedding (#1591) 2024-09-02 21:55:35 +05:30
Ayush Chaurasia
51966a84f5 docs: add multi-vector reranking, answerdotai and studies section (#1579) 2024-08-31 04:09:14 +05:30
Rithik Kumar
38015ffa7c docs: improve overall language on all example pages (#1582)
Refine and improve the language clarity and quality across all example
pages in the documentation to ensure better understanding and
readability.

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-31 03:48:11 +05:30
Ayush Chaurasia
dc72ece847 feat!: better api for manual hybrid queries (#1575)
Currently, the only documented way of performing hybrid search is by
using embedding API and passing string queries that get automatically
embedded. There are use cases where users might like to pass vectors and
text manually instead.
This ticket contains more information and historical context -
https://github.com/lancedb/lancedb/issues/937

This breaks a undocumented pathway that allowed passing (vector, text)
tuple queries which was intended to be temporary, so this is marked as a
breaking change. For all practical purposes, this should not really
impact most users

### usage
```
results = table.search(query_type="hybrid")
                .vector(vector_query)
                .text(text_query)
                .limit(5)
                .to_pandas()
```
2024-08-30 17:37:58 +05:30
BubbleCal
1521435193 fix: specify column to search for FTS (#1572)
Before this we ignored the `fts_columns` parameter, and for now we
support to search on only one column, it could lead to an error if we
have multiple indexed columns for FTS

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-29 23:43:46 +08:00
Ayush Chaurasia
bfe8fccfab docs: add hnsw docs (#1570) 2024-08-29 15:16:27 +05:30
Rithik Kumar
6f6eb170a9 docs: revamp Python example: Overview page and remove redundant examples and notebooks (#1574)
before:
![Screenshot 2024-08-29
131656](https://github.com/user-attachments/assets/81cb5d70-5dff-4e57-8bbe-3461327aed7d)

After:
![Screenshot 2024-08-29
131715](https://github.com/user-attachments/assets/62109a37-7f66-4fd4-90ed-906a85472117)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-29 13:48:10 +05:30
Rithik Kumar
dd1c16bbaf docs: fix links, convert backslash to forward slash in mkdocs.yml (#1571)
Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-28 16:07:57 +05:30
Gagan Bhullar
a76186ee83 fix(node): read consistency level fix (#1567)
PR fixes #1565
2024-08-27 17:03:42 -07:00
Rithik Kumar
ae85008714 docs: revamp embedding models (#1568)
before:
![Screenshot 2024-08-27
151525](https://github.com/user-attachments/assets/d4f8f2b9-37e6-4a31-b144-01b804019e11)

After:
![Screenshot 2024-08-27
151550](https://github.com/user-attachments/assets/79fe7d27-8f14-4d80-9b41-a1e91f8c708f)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-27 17:14:35 +05:30
Gagan Bhullar
a85f039352 fix(bug): limit fix (#1548)
PR fixes #1151
2024-08-26 14:25:14 -07:00
Bill Chambers
9c25998110 docs: update serverless_lancedb_with_s3_and_lambda.md (#1559) 2024-08-26 14:55:28 +05:30
Ayush Chaurasia
549ca51a8a feat: add answerdotai rerankers support and minor improvements (#1560)
This PR:
- Adds missing license headers
- Integrates with answerdotai Rerankers package
- Updates ColbertReranker to subclass answerdotai package. This is done
to keep backwards compatibility as some users might be used to importing
ColbertReranker directly
- Set `trust_remote_code` to ` True` by default in CrossEncoder and
sentence-transformer based rerankers
2024-08-26 13:25:10 +05:30
Rithik Kumar
632007d0e2 docs: add recommender system example (#1561)
before:
![Screenshot 2024-08-24
230216](https://github.com/user-attachments/assets/cc8a810a-b032-45d7-b086-b2ef0720dc16)

After:
![Screenshot 2024-08-24
230228](https://github.com/user-attachments/assets/eaa1dc31-ac7f-4b81-aa79-b4cf94f0cbd5)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-25 12:30:30 +05:30
Lance Release
02d85a4ea4 Updating package-lock.json 2024-08-23 13:56:54 +00:00
Lance Release
a9d0625e2b Bump version: 0.10.0-beta.0 → 0.10.0-beta.1 2024-08-23 13:56:34 +00:00
Lance Release
89bcc1b2e7 Bump version: 0.13.0-beta.0 → 0.13.0-beta.1 2024-08-23 13:56:30 +00:00
rahuljo
6ad5553eca docs: add dlt-lancedb integration page (#1551)
Co-authored-by: Akela Drissner-Schmid <32450038+akelad@users.noreply.github.com>
2024-08-22 15:18:49 +05:30
Gagan Bhullar
6eb7ccfdee fix: rerank attribute unknown (#1554)
PR fixes #1550
2024-08-22 11:46:36 +05:30
Rithik Kumar
758c82858f docs: add AI agent example (#1553)
before:
![Screenshot 2024-08-21
225014](https://github.com/user-attachments/assets/e5b05586-87c5-4739-a4df-2d6cd0704ba5)

After:
![Screenshot 2024-08-21
225029](https://github.com/user-attachments/assets/504959db-f560-49b2-9492-557e9846a793)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-22 00:54:05 +05:30
Rithik Kumar
0cbc9cd551 docs: add evaluation example (#1552)
before:
![Screenshot 2024-08-21
194228](https://github.com/user-attachments/assets/68d96658-7579-4934-85af-e8c898b64660)

After:
![Screenshot 2024-08-21
195258](https://github.com/user-attachments/assets/81ddb9cd-cb93-47fc-a121-ff82701fd11f)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-21 20:37:04 +05:30
Ayush Chaurasia
7d65dd97cf chore(python): update Colbert architecture and minor improvements (#1547)
- Update ColBertReranker architecture: The current implementation
doesn't use the right arch. This PR uses the implementation in Rerankers
library. Fixes https://github.com/lancedb/lancedb/issues/1546
Benchmark diff (hit rate):
Hybrid - 91 vs 87
reranked vector - 85 vs 80

- Reranking in FTS is basically disabled in main after last week's FTS
updates. I think there's no blocker in supporting that?
- Allow overriding accelerators: Most transformer based Rerankers and
Embedding automatically select device. This PR allows overriding those
settings by passing `device`. Fixes:
https://github.com/lancedb/lancedb/issues/1487

---------

Co-authored-by: BubbleCal <bubble-cal@outlook.com>
2024-08-21 12:26:52 +05:30
Ayush Chaurasia
85bb7e54e4 docs: missing griffe dependency for mkdocs deployment (#1545) 2024-08-19 07:48:23 +05:30
Rithik Kumar
21014cab45 docs: add chatbot example and improve quality of other examples (#1544) 2024-08-17 12:35:33 +05:30
Lei Xu
5857cb4c6e docs: add a section to describe scalar index (#1495) 2024-08-16 18:48:29 -07:00
Rithik Kumar
09ce6c5bb5 docs: add vector search example (#1543) 2024-08-16 21:30:45 +05:30
BubbleCal
0fa50775d6 feat: support to query/index FTS on RemoteTable/AsyncTable (#1537)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-16 12:01:05 +08:00
Gagan Bhullar
20faa4424b feat(python): add delete unverified parameter (#1542)
PR fixes #1527
2024-08-15 09:01:32 -07:00
BubbleCal
b624fc59eb docs: add create_fts_index doc in Python API Reference (#1533)
resolve #1313

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-15 11:35:16 +08:00
Gagan Bhullar
d2caa5e202 feat(nodejs): add delete unverified (#1530)
PR fixes part of #1527
2024-08-14 08:53:53 -07:00
BubbleCal
501817cfac chore: bump the required python version to 3.9 (#1541)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-14 08:44:31 -07:00
Ryan Green
b3daa25f46 feat: allow new scalar index types to be created in remote table (#1538) 2024-08-13 16:05:42 -02:30
Matt Basta
6008a8257b fix: remove native.d.ts from .npmignore (#1531)
This removes the type definitions for a number of important TypeScript
interfaces from `.npmignore` so that the package is not incorrectly
typed `any` in a number of places.

---

Presently the `opts` argument to `lancedb.connect` is typed `any`, even
though it shouldn't be.

<img width="560" alt="image"
src="https://github.com/user-attachments/assets/5c974ce8-5a59-44a1-935d-cbb808f0ea24">

Clicking into the type definitions for the published package, it has the
correct type signature:

<img width="831" alt="image"
src="https://github.com/user-attachments/assets/6e39a519-13ff-4ca8-95ae-85538ac59d5d">

However, `ConnectionOptions` is imported from `native.js` (along with a
number of other imports a bit further down):

<img width="384" alt="image"
src="https://github.com/user-attachments/assets/10c1b055-ae78-4088-922e-2816af64c23c">

This is not otherwise an issue, except that the type definitions for
`native.js` are not included in the published package:

<img width="217" alt="image"
src="https://github.com/user-attachments/assets/f15cd3b6-a8de-4011-9fa2-391858da20ec">

I haven't compiled the Rust code and run the build script, but I
strongly suspect that disincluding the type definitions in `.npmignore`
is ultimately the root cause here.
2024-08-13 10:06:15 -07:00
Lance Release
aaff43d304 Updating package-lock.json 2024-08-12 19:48:18 +00:00
Lance Release
d4c3a8ca87 Bump version: 0.9.0 → 0.10.0-beta.0 2024-08-12 19:48:02 +00:00
Lance Release
ff5bbfdd4c Bump version: 0.12.0 → 0.13.0-beta.0 2024-08-12 19:47:57 +00:00
Lei Xu
694ca30c7c feat(nodejs): add bitmap and label list index types in nodejs (#1532) 2024-08-11 12:06:02 -07:00
Lei Xu
b2317c904d feat: create bitmap and label list scalar index using python async api (#1529)
* Expose `bitmap` and `LabelList` scalar index type via Rust and Async
Python API
* Add documents
2024-08-11 09:16:11 -07:00
BubbleCal
613f3063b9 chore: upgrade lance to 0.16.1 (#1524)
Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 19:18:05 +08:00
BubbleCal
5d2cd7fb2e chore: upgrade object_store to 0.10.2 (#1523)
To use the same version with lance

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-09 12:03:46 +08:00
Ayush Chaurasia
a88e9bb134 docs: add lancedb embedding fcn on cloud docs (#1521) 2024-08-09 07:21:04 +05:30
Gagan Bhullar
9c1adff426 feat(python): add to_list to async api (#1520)
PR fixes #1517
2024-08-08 11:45:20 -07:00
BubbleCal
f9d5fa88a1 feat!: migrate FTS from tantivy to lance-index (#1483)
Lance now supports FTS, so add it into lancedb Python, TypeScript and
Rust SDKs.

For Python, we still use tantivy based FTS by default because the lance
FTS index now misses some features of tantivy.

For Python:
- Support to create lance based FTS index
- Support to specify columns for full text search (only available for
lance based FTS index)

For TypeScript:
- Change the search method so that it can accept both string and vector
- Support full text search

For Rust
- Support full text search

The others:
- Update the FTS doc

BREAKING CHANGE: 
- for Python, this renames the attached score column of FTS from "score"
to "_score", this could be a breaking change for users that rely the
scores

---------

Signed-off-by: BubbleCal <bubble-cal@outlook.com>
2024-08-08 15:33:15 +08:00
Lance Release
4db554eea5 Updating package-lock.json 2024-08-07 20:56:12 +00:00
Lance Release
101066788d Bump version: 0.9.0-beta.0 → 0.9.0 2024-08-07 20:55:53 +00:00
Lance Release
c4135d9d30 Bump version: 0.8.0 → 0.9.0-beta.0 2024-08-07 20:55:52 +00:00
Lance Release
ec39d98571 Bump version: 0.12.0-beta.0 → 0.12.0 2024-08-07 20:55:40 +00:00
Lance Release
0cb37f0e5e Bump version: 0.11.0 → 0.12.0-beta.0 2024-08-07 20:55:39 +00:00
Gagan Bhullar
24e3507ee2 fix(node): export optimize options (#1518)
PR fixes #1514
2024-08-07 13:15:51 -07:00
Lei Xu
2bdf0a02f9 feat!: upgrade lance to 0.16 (#1519) 2024-08-07 13:15:22 -07:00
Gagan Bhullar
32123713fd feat(python): optimize stats repr method (#1510)
PR fixes #1507
2024-08-07 08:47:52 -07:00
Gagan Bhullar
d5a01ffe7b feat(python): index config repr method (#1509)
PR fixes #1506
2024-08-07 08:46:46 -07:00
Ayush Chaurasia
e01045692c feat(python): support embedding functions in remote table (#1405) 2024-08-07 20:22:43 +05:30
Rithik Kumar
a62f661d90 docs: revamp example docs (#1512)
Before: 
![Screenshot 2024-08-07
015834](https://github.com/user-attachments/assets/b817f846-78b3-4d6f-b4a0-dfa3f4d6be87)

After:
![Screenshot 2024-08-07
015852](https://github.com/user-attachments/assets/53370301-8c40-45f8-abe3-32f9d051597e)
![Screenshot 2024-08-07
015934](https://github.com/user-attachments/assets/63cdd038-32bb-4b3e-b9c4-1389d2754014)
![Screenshot 2024-08-07
015941](https://github.com/user-attachments/assets/70388680-9c2b-49ef-ba00-2bb015988214)
![Screenshot 2024-08-07
015949](https://github.com/user-attachments/assets/76335a33-bb6f-473c-896f-447320abcc25)

---------

Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
2024-08-07 03:56:59 +05:30
Ayush Chaurasia
4769d8eb76 feat(python): multi-vector reranking support (#1481)
Currently targeting the following usage:
```
from lancedb.rerankers import CrossEncoderReranker

reranker = CrossEncoderReranker()

query = "hello"

res1 = table.search(query, vector_column_name="vector").limit(3)
res2 = table.search(query, vector_column_name="text_vector").limit(3)
res3 = table.search(query, vector_column_name="meta_vector").limit(3)

reranked = reranker.rerank_multivector(
               [res1, res2, res3],  
              deduplicate=True,
              query=query # some reranker models need query
)
```
- This implements rerank_multivector function in the base reranker so
that all rerankers that implement rerank_vector will automatically have
multivector reranking support
- Special case for RRF reranker that just uses its existing
rerank_hybrid fcn to multi-vector reranking.

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-08-07 01:45:46 +05:30
Ayush Chaurasia
d07d7a5980 chore: update polars version range (#1508) 2024-08-06 23:43:15 +05:30
Robby
8d2ff7b210 feat(python): add watsonx embeddings to registry (#1486)
Related issue: https://github.com/lancedb/lancedb/issues/1412

---------

Co-authored-by: Robby <h0rv@users.noreply.github.com>
2024-08-06 10:58:33 +05:30
Will Jones
61c05b51a0 fix(nodejs): address import issues in lancedb npm module (#1503)
Fixes [#1496](https://github.com/lancedb/lancedb/issues/1496)
2024-08-05 16:30:27 -07:00
Will Jones
7801ab9b8b ci: fix release by upgrading to Node 18 (#1494)
Building with Node 16 produced this error:

```
npm ERR! code ENOENT
npm ERR! syscall chmod
npm ERR! path /io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs
npm ERR! errno -2
npm ERR! enoent ENOENT: no such file or directory, chmod '/io/nodejs/node_modules/apache-arrow-15/bin/arrow2csv.cjs'
npm ERR! enoent This is related to npm not being able to find a file.
npm ERR! enoent 
```

[CI
Failure](https://github.com/lancedb/lancedb/actions/runs/10117131772/job/27981475770).
This looks like it is https://github.com/apache/arrow/issues/43341

Upgrading to Node 18 makes this goes away. Since Node 18 requires glibc
>= 2_28, we had to upgrade the manylinux version we are using. This is
fine since we already state a minimum Node version of 18.

This also upgrades the openssl version we bundle, as well as
consolidates the build files.
2024-08-05 14:08:42 -07:00
Rithik Kumar
d297da5a7e docs: update examples docs (#1488)
Testing Workflow with my first PR.
Before:
![Screenshot 2024-08-01
183326](https://github.com/user-attachments/assets/83d22101-8bbf-4b18-81e4-f740e605727a)

After:
![Screenshot 2024-08-01
183333](https://github.com/user-attachments/assets/a5e4cd2c-c524-4009-81d5-75b2b0361f83)
2024-08-01 18:54:45 +05:30
Ryan Green
6af69b57ad fix: return LanceMergeInsertBuilder in overridden merge_insert method on remote table (#1484) 2024-07-31 12:25:16 -02:30
Cory Grinstead
a062a92f6b docs: custom embedding function for ts (#1479) 2024-07-30 18:19:55 -05:00
Gagan Bhullar
277b753fd8 fix: run java stages in parallel (#1472)
This PR is for issue - https://github.com/lancedb/lancedb/issues/1331
2024-07-27 12:04:32 -07:00
Lance Release
f78b7863f6 Updating package-lock.json 2024-07-26 20:18:55 +00:00
Lance Release
e7d824af2b Bump version: 0.8.0-beta.0 → 0.8.0 2024-07-26 20:18:37 +00:00
Lance Release
02f1ec775f Bump version: 0.7.2 → 0.8.0-beta.0 2024-07-26 20:18:36 +00:00
Lance Release
7b6d3f943b Bump version: 0.11.0-beta.0 → 0.11.0 2024-07-26 20:18:31 +00:00
Lance Release
676876f4d5 Bump version: 0.10.2 → 0.11.0-beta.0 2024-07-26 20:18:30 +00:00
Cory Grinstead
fbfe2444a8 feat(nodejs): huggingface compatible transformers (#1462) 2024-07-26 12:54:15 -07:00
Will Jones
9555efacf9 feat: upgrade lance to 0.15.0 (#1477)
Changelog: https://github.com/lancedb/lance/releases/tag/v0.15.0

* Fixes #1466
* Closes #1475
* Fixes #1446
2024-07-26 09:13:49 -07:00
Ayush Chaurasia
513926960d docs: add rrf docs and update reranking notebook with Jina reranker results (#1474)
- RRF reranker
- Jina Reranker results

---------

Co-authored-by: Weston Pace <weston.pace@gmail.com>
2024-07-25 22:29:46 +05:30
inn-0
cc507ca766 docs: add missing whitespace before markdown table to fix rendering issue (#1471)
### Fix markdown table rendering issue

This PR adds a missing whitespace before a markdown table in the
documentation. This issue causes the table to not render properly in
mkdocs, while it does render properly in GitHub's markdown viewer.

#### Change Details:
- Added a single line of whitespace before the markdown table to ensure
proper rendering in mkdocs.

#### Note:
- I wasn't able to test this fix in the mkdocs environment, but it
should be safe as it only involves adding whitespace which won't break
anything.


---


Cohere supports following input types:

| Input Type               | Description                          |
|-------------------------|---------------------------------------|
| "`search_document`"     | Used for embeddings stored in a vector|
|                         | database for search use-cases.        |
| "`search_query`"        | Used for embeddings of search queries |
|                         | run against a vector DB               |
| "`semantic_similarity`" | Specifies the given text will be used |
|                         | for Semantic Textual Similarity (STS) |
| "`classification`"      | Used for embeddings passed through a  |
|                         | text classifier.                      |
| "`clustering`"          | Used for the embeddings run through a |
|                         | clustering algorithm                  |

Usage Example:
2024-07-24 22:26:28 +05:30
Cory Grinstead
492d0328fe chore: update readme to point to lancedb package (#1470) 2024-07-23 13:46:32 -07:00
Chang She
374c1e7aba fix: infer schema from huggingface dataset (#1444)
Closes #1383

When creating a table from a HuggingFace dataset, infer the arrow schema
directly
2024-07-23 13:12:34 -07:00
Gagan Bhullar
30047a5566 fix: remove source .ts code from published npm package (#1467)
This PR is for issue - https://github.com/lancedb/lancedb/issues/1358
2024-07-23 13:11:54 -07:00
Bert
85ccf9e22b feat!: correct timeout argument lancedb nodejs sdk (#1468)
Correct the timeout argument to `connect` in @lancedb/lancedb node SDK.
`RemoteConnectionOptions` specified two fields `connectionTimeout` and
`readTimeout`, probably to be consistent with the python SDK, but only
`connectionTimeout` was being used and it was passed to axios in such a
way that this covered the enture remote request (connect + read). This
change adds a single parameter `timeout` which makes the args to
`connect` consistent with the legacy vectordb sdk.

BREAKING CHANGE: This is a breaking change b/c users who would have
previously been passing `connectionTimeout` will now be expected to pass
`timeout`.
2024-07-23 14:02:46 -03:00
Ayush Chaurasia
0255221086 feat: add reciprocal rank fusion reranker (#1456)
Implements https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf

Refactors the hybrid search only rerrankers test to avoid repetition.
2024-07-23 21:37:17 +05:30
Lance Release
4ee229490c Updating package-lock.json 2024-07-23 13:49:13 +00:00
Lance Release
93e24f23af Bump version: 0.7.2-beta.0 → 0.7.2 2024-07-23 13:48:58 +00:00
Lance Release
8f141e1e33 Bump version: 0.7.1 → 0.7.2-beta.0 2024-07-23 13:48:58 +00:00
Lance Release
1d5da1d069 Bump version: 0.10.2-beta.0 → 0.10.2 2024-07-23 13:48:48 +00:00
Lance Release
0c0ec1c404 Bump version: 0.10.1 → 0.10.2-beta.0 2024-07-23 13:48:47 +00:00
Weston Pace
d4aad82aec fix: don't use v2 by default on empty table (#1469) 2024-07-23 06:47:49 -07:00
Will Jones
4f601a2d4c fix: handle camelCase column names in select (#1460)
Fixes #1385
2024-07-22 12:53:17 -07:00
Cory Grinstead
391fa26175 feat(rust): huggingface sentence-transformers (#1447)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-22 13:47:57 -05:00
Lei Xu
c9c61eb060 docs: expose merge_insert doc for remote python SDK (#1464)
`merge_insert` API is not shown up on
[`RemoteTable`](https://lancedb.github.io/lancedb/python/saas-python/#lancedb.remote.table.RemoteTable)
today

* Also bump `ruff` version as well
2024-07-22 10:48:16 -07:00
Cory Grinstead
69295548cc docs: minor updates for js migration guides (#1451)
Co-authored-by: Will Jones <willjones127@gmail.com>
2024-07-22 10:26:49 -07:00
Cory Grinstead
2276b114c5 docs: add installation note about yarn (#1459)
I noticed that setting up a simple project with
[Yarn](https://yarnpkg.com/) failed because unlike others [npm, pnpm,
bun], yarn does not automatically resolve peer dependencies, so i added
a quick note about it in the installation guide.
2024-07-19 18:48:24 -05:00
Cory Grinstead
3b88f15774 fix(nodejs): lancedb arrow dependency (#1458)
previously if you tried to install both vectordb and @lancedb/lancedb,
you would get a peer dependency issue due to `vectordb` requiring
`14.0.2` and `@lancedb/lancedb` requiring `15.0.0`. now
`@lancedb/lancedb` should just work with any arrow version 13-17
2024-07-19 11:21:55 -05:00
Ayush Chaurasia
ed7bd45c17 chore: choose appropriate args for concat_table based on pyarrow version & refactor reranker tests (#1455) 2024-07-18 21:04:59 +05:30
Magnus
dc609a337d fix: added support for trust_remote_code (#1454)
Closes #1285 

Added trust_remote_code to the SentenceTransformerEmbeddings class.
Defaults to `False`
2024-07-18 19:37:52 +05:30
Will Jones
d564f6eacb ci: fix vectordb release process (#1450)
* Labelled jobs `vectordb` and `lancedb` so it's clear which package
they are for
* Fix permission issue in aarch64 Linux `vectordb` build that has been
blocking release for two months.
* Added Slack notifications for failure of these publish jobs.
2024-07-17 11:17:33 -07:00
Lance Release
ed5d1fb557 Updating package-lock.json 2024-07-17 14:04:56 +00:00
Lance Release
85046a1156 Bump version: 0.7.1-beta.0 → 0.7.1 2024-07-17 14:04:45 +00:00
Lance Release
b67689e1be Bump version: 0.7.0 → 0.7.1-beta.0 2024-07-17 14:04:45 +00:00
624 changed files with 77371 additions and 30929 deletions

View File

@@ -1,5 +1,5 @@
[tool.bumpversion]
current_version = "0.7.0"
current_version = "0.21.2"
parse = """(?x)
(?P<major>0|[1-9]\\d*)\\.
(?P<minor>0|[1-9]\\d*)\\.
@@ -24,34 +24,51 @@ commit = true
message = "Bump version: {current_version} → {new_version}"
commit_args = ""
[tool.bumpversion.parts.pre_l]
values = ["beta", "final"]
optional_value = "final"
# Java maven files
pre_commit_hooks = [
"""
NEW_VERSION="${BVHOOK_NEW_MAJOR}.${BVHOOK_NEW_MINOR}.${BVHOOK_NEW_PATCH}"
if [ ! -z "$BVHOOK_NEW_PRE_L" ] && [ ! -z "$BVHOOK_NEW_PRE_N" ]; then
NEW_VERSION="${NEW_VERSION}-${BVHOOK_NEW_PRE_L}.${BVHOOK_NEW_PRE_N}"
fi
echo "Constructed new version: $NEW_VERSION"
cd java && mvn versions:set -DnewVersion=$NEW_VERSION && mvn versions:commit
[[tool.bumpversion.files]]
filename = "node/package.json"
search = "\"version\": \"{current_version}\","
replace = "\"version\": \"{new_version}\","
# Check for any modified but unstaged pom.xml files
MODIFIED_POMS=$(git ls-files -m | grep pom.xml)
if [ ! -z "$MODIFIED_POMS" ]; then
echo "The following pom.xml files were modified but not staged. Adding them now:"
echo "$MODIFIED_POMS" | while read -r file; do
git add "$file"
echo "Added: $file"
done
fi
""",
]
[tool.bumpversion.parts.pre_l]
optional_value = "final"
values = ["beta", "final"]
[[tool.bumpversion.files]]
filename = "nodejs/package.json"
search = "\"version\": \"{current_version}\","
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# nodejs binary packages
[[tool.bumpversion.files]]
glob = "nodejs/npm/*/package.json"
search = "\"version\": \"{current_version}\","
replace = "\"version\": \"{new_version}\","
search = "\"version\": \"{current_version}\","
# Cargo files
# ------------
[[tool.bumpversion.files]]
filename = "rust/ffi/node/Cargo.toml"
search = "\nversion = \"{current_version}\""
filename = "rust/lancedb/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""
[[tool.bumpversion.files]]
filename = "rust/lancedb/Cargo.toml"
search = "\nversion = \"{current_version}\""
filename = "nodejs/Cargo.toml"
replace = "\nversion = \"{new_version}\""
search = "\nversion = \"{current_version}\""

View File

@@ -31,6 +31,13 @@ rustflags = [
[target.x86_64-unknown-linux-gnu]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=+avx2,+fma,+f16c"]
[target.x86_64-unknown-linux-musl]
rustflags = ["-C", "target-cpu=haswell", "-C", "target-feature=-crt-static,+avx2,+fma,+f16c"]
[target.aarch64-unknown-linux-musl]
linker = "aarch64-linux-musl-gcc"
rustflags = ["-C", "target-feature=-crt-static"]
[target.aarch64-apple-darwin]
rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm,+dotprod"]
@@ -38,3 +45,7 @@ rustflags = ["-C", "target-cpu=apple-m1", "-C", "target-feature=+neon,+fp16,+fhm
# not found errors on systems that are missing it.
[target.x86_64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]
# Experimental target for Arm64 Windows
[target.aarch64-pc-windows-msvc]
rustflags = ["-Ctarget-feature=+crt-static"]

View File

@@ -36,8 +36,7 @@ runs:
args: ${{ inputs.args }}
before-script-linux: |
set -e
yum install -y openssl-devel \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$(uname -m).zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip
- name: Build Arm Manylinux Wheel
@@ -52,12 +51,7 @@ runs:
args: ${{ inputs.args }}
before-script-linux: |
set -e
apt install -y unzip
if [ $(uname -m) = "x86_64" ]; then
PROTOC_ARCH="x86_64"
else
PROTOC_ARCH="aarch_64"
fi
curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-$PROTOC_ARCH.zip > /tmp/protoc.zip \
yum install -y clang \
&& curl -L https://github.com/protocolbuffers/protobuf/releases/download/v24.4/protoc-24.4-linux-aarch_64.zip > /tmp/protoc.zip \
&& unzip /tmp/protoc.zip -d /usr/local \
&& rm /tmp/protoc.zip

View File

@@ -20,7 +20,7 @@ runs:
uses: PyO3/maturin-action@v1
with:
command: build
# TODO: pass through interpreter
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
interpreter: 3.${{ inputs.python-minor-version }}

View File

@@ -28,7 +28,7 @@ runs:
args: ${{ inputs.args }}
docker-options: "-e PIP_EXTRA_INDEX_URL=https://pypi.fury.io/lancedb/"
working-directory: python
- uses: actions/upload-artifact@v3
- uses: actions/upload-artifact@v4
with:
name: windows-wheels
path: python\target\wheels

View File

@@ -5,8 +5,8 @@ on:
tags-ignore:
# We don't publish pre-releases for Rust. Crates.io is just a source
# distribution, so we don't need to publish pre-releases.
- 'v*-beta*'
- '*-v*' # for example, python-vX.Y.Z
- "v*-beta*"
- "*-v*" # for example, python-vX.Y.Z
env:
# This env var is used by Swatinem/rust-cache@v2 for the cache
@@ -19,6 +19,8 @@ env:
jobs:
build:
runs-on: ubuntu-22.04
permissions:
id-token: write
timeout-minutes: 30
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
@@ -31,6 +33,8 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: rust-lang/crates-io-auth-action@v1
id: auth
- name: Publish the package
run: |
cargo publish -p lancedb --all-features --token ${{ secrets.CARGO_REGISTRY_TOKEN }}
cargo publish -p lancedb --all-features --token ${{ steps.auth.outputs.token }}

View File

@@ -18,53 +18,49 @@ concurrency:
group: "pages"
cancel-in-progress: true
env:
# This reduces the disk space needed for the build
RUSTFLAGS: "-C debuginfo=0"
# according to: https://matklad.github.io/2021/09/04/fast-rust-builds.html
# CI builds are faster with incremental disabled.
CARGO_INCREMENTAL: "0"
jobs:
# Single deploy job since we're just deploying
build:
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
runs-on: buildjet-8vcpu-ubuntu-2204
runs-on: ubuntu-24.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install dependecies needed for ubuntu
- name: Install dependencies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.10"
cache: "pip"
cache-dependency-path: "docs/requirements.txt"
- uses: Swatinem/rust-cache@v2
- name: Build Python
working-directory: python
run: |
python -m pip install -e .
python -m pip install -r ../docs/requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r ../docs/requirements.txt
- name: Set up node
uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install node dependencies
working-directory: node
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build node
working-directory: node
run: |
npm ci
npm run build
npm run tsc
- name: Create markdown files
working-directory: node
run: |
npx typedoc --plugin typedoc-plugin-markdown --out ../docs/src/javascript src/index.ts
- name: Build docs
working-directory: docs
run: |
@@ -72,9 +68,9 @@ jobs:
- name: Setup Pages
uses: actions/configure-pages@v2
- name: Upload artifact
uses: actions/upload-pages-artifact@v1
uses: actions/upload-pages-artifact@v3
with:
path: "docs/site"
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v1
uses: actions/deploy-pages@v4

View File

@@ -24,15 +24,19 @@ env:
jobs:
test-python:
name: Test doc python code
runs-on: "warp-ubuntu-latest-x64-4x"
runs-on: ubuntu-24.04
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Install protobuf
run: |
sudo apt update
sudo apt install -y protobuf-compiler
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
sudo apt install -y libssl-dev
rustup update && rustup default
- name: Set up Python
uses: actions/setup-python@v5
@@ -45,7 +49,7 @@ jobs:
- name: Build Python
working-directory: docs/test
run:
python -m pip install -r requirements.txt
python -m pip install --extra-index-url https://pypi.fury.io/lancedb/ -r requirements.txt
- name: Create test files
run: |
cd docs/test
@@ -54,47 +58,3 @@ jobs:
run: |
cd docs/test/python
for d in *; do cd "$d"; echo "$d".py; python "$d".py; cd ..; done
test-node:
name: Test doc nodejs code
runs-on: "warp-ubuntu-latest-x64-4x"
timeout-minutes: 60
strategy:
fail-fast: false
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Print CPU capabilities
run: cat /proc/cpuinfo
- name: Set up Node
uses: actions/setup-node@v4
with:
node-version: 20
- name: Install dependecies needed for ubuntu
run: |
sudo apt install -y protobuf-compiler libssl-dev
rustup update && rustup default
- name: Rust cache
uses: swatinem/rust-cache@v2
- name: Install node dependencies
run: |
sudo swapoff -a
sudo fallocate -l 8G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
sudo swapon --show
cd node
npm ci
npm run build-release
cd ../docs
npm install
- name: Test
env:
LANCEDB_URI: ${{ secrets.LANCEDB_URI }}
LANCEDB_DEV_API_KEY: ${{ secrets.LANCEDB_DEV_API_KEY }}
run: |
cd docs
npm t

114
.github/workflows/java-publish.yml vendored Normal file
View File

@@ -0,0 +1,114 @@
name: Build and publish Java packages
on:
release:
types: [released]
pull_request:
paths:
- .github/workflows/java-publish.yml
jobs:
macos-arm64:
name: Build on MacOS Arm64
runs-on: macos-14
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
brew install protobuf
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_darwin_aarch64.zip
path: target/release/liblancedb_jni.dylib
retention-days: 1
if-no-files-found: error
linux-arm64:
name: Build on Linux Arm64
runs-on: warp-ubuntu-2204-arm64-8x
timeout-minutes: 45
defaults:
run:
working-directory: ./java/core/lancedb-jni
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "1.81.0"
cache-workspaces: "./java/core/lancedb-jni"
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
rustflags: "-C debuginfo=1"
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Build release
run: |
cargo build --release
- uses: actions/upload-artifact@v4
with:
name: liblancedb_jni_linux_aarch64.zip
path: target/release/liblancedb_jni.so
retention-days: 1
if-no-files-found: error
linux-x86:
runs-on: warp-ubuntu-2204-x64-8x
timeout-minutes: 30
needs: [macos-arm64, linux-arm64]
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
- name: Set up Java 8
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 8
cache: "maven"
server-id: ossrh
server-username: SONATYPE_USER
server-password: SONATYPE_TOKEN
gpg-private-key: ${{ secrets.GPG_PRIVATE_KEY }}
gpg-passphrase: ${{ secrets.GPG_PASSPHRASE }}
- name: Install dependencies
run: |
sudo apt -y -qq update
sudo apt install -y protobuf-compiler libssl-dev pkg-config
- name: Download artifact
uses: actions/download-artifact@v4
- name: Copy native libs
run: |
mkdir -p ./core/target/classes/nativelib/darwin-aarch64 ./core/target/classes/nativelib/linux-aarch64
cp ../liblancedb_jni_darwin_aarch64.zip/liblancedb_jni.dylib ./core/target/classes/nativelib/darwin-aarch64/liblancedb_jni.dylib
cp ../liblancedb_jni_linux_aarch64.zip/liblancedb_jni.so ./core/target/classes/nativelib/linux-aarch64/liblancedb_jni.so
- name: Dry run
if: github.event_name == 'pull_request'
run: |
mvn --batch-mode -DskipTests -Drust.release.build=true package
- name: Set github
run: |
git config --global user.email "LanceDB Github Runner"
git config --global user.name "dev+gha@lancedb.com"
- name: Publish with Java 8
if: github.event_name == 'release'
run: |
echo "use-agent" >> ~/.gnupg/gpg.conf
echo "pinentry-mode loopback" >> ~/.gnupg/gpg.conf
export GPG_TTY=$(tty)
mvn --batch-mode -DskipTests -Drust.release.build=true -DpushChanges=false -Dgpg.passphrase=${{ secrets.GPG_PASSPHRASE }} deploy -P deploy-to-ossrh
env:
SONATYPE_USER: ${{ secrets.SONATYPE_USER }}
SONATYPE_TOKEN: ${{ secrets.SONATYPE_TOKEN }}

View File

@@ -3,6 +3,8 @@ on:
push:
branches:
- main
paths:
- java/**
pull_request:
paths:
- java/**
@@ -21,9 +23,9 @@ env:
CARGO_INCREMENTAL: "0"
CARGO_BUILD_JOBS: "1"
jobs:
linux-build:
linux-build-java-11:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 11 & 17
name: ubuntu-22.04 + Java 11
defaults:
run:
working-directory: ./java
@@ -33,6 +35,9 @@ jobs:
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
@@ -40,13 +45,6 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Install Java 11
uses: actions/setup-java@v4
with:
@@ -61,6 +59,41 @@ jobs:
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 11
run: mvn clean test
linux-build-java-17:
runs-on: ubuntu-22.04
name: ubuntu-22.04 + Java 17
defaults:
run:
working-directory: ./java
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: java/core/lancedb-jni
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt
- name: Run cargo fmt
run: cargo fmt --check
working-directory: ./java/core/lancedb-jni
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install Java 17
uses: actions/setup-java@v4
with:
distribution: temurin
java-version: 17
cache: "maven"
- run: echo "JAVA_17=$JAVA_HOME" >> $GITHUB_ENV
- name: Java Style Check
run: mvn checkstyle:check
# Disable because of issues in lancedb rust core code
# - name: Rust Clippy
# working-directory: java/core/lancedb-jni
# run: cargo clippy --all-targets -- -D warnings
- name: Running tests with Java 17
run: |
export JAVA_TOOL_OPTIONS="$JAVA_TOOL_OPTIONS \

View File

@@ -0,0 +1,31 @@
name: Check license headers
on:
push:
branches:
- main
pull_request:
paths:
- rust/**
- python/**
- nodejs/**
- java/**
- .github/workflows/license-header-check.yml
jobs:
check-licenses:
runs-on: ubuntu-latest
steps:
- name: Check out code
uses: actions/checkout@v4
- name: Install license-header-checker
working-directory: /tmp
run: |
curl -s https://raw.githubusercontent.com/lluissm/license-header-checker/master/install.sh | bash
mv /tmp/bin/license-header-checker /usr/local/bin/
- name: Check license headers (rust)
run: license-header-checker -a -v ./rust/license_header.txt ./ rs && [[ -z `git status -s` ]]
- name: Check license headers (python)
run: license-header-checker -a -v ./python/license_header.txt python py && [[ -z `git status -s` ]]
- name: Check license headers (typescript)
run: license-header-checker -a -v ./nodejs/license_header.txt nodejs ts && [[ -z `git status -s` ]]
- name: Check license headers (java)
run: license-header-checker -a -v ./nodejs/license_header.txt java java && [[ -z `git status -s` ]]

View File

@@ -30,7 +30,7 @@ on:
default: true
type: boolean
other:
description: 'Make a Node/Rust release'
description: 'Make a Node/Rust/Java release'
required: true
default: true
type: boolean
@@ -43,7 +43,7 @@ on:
jobs:
make-release:
# Creates tag and GH release. The GH release will trigger the build and release jobs.
runs-on: ubuntu-latest
runs-on: ubuntu-24.04
permissions:
contents: write
steps:
@@ -57,15 +57,14 @@ jobs:
# trigger any workflows watching for new tags. See:
# https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#triggering-a-workflow-from-a-workflow
token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
- name: Validate Lance dependency is at stable version
if: ${{ inputs.type == 'stable' }}
run: python ci/validate_stable_lance.py
- name: Set git configs for bumpversion
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Set up Python 3.11
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Bump Python version
if: ${{ inputs.python }}
working-directory: python
@@ -85,6 +84,7 @@ jobs:
run: |
pip install bump-my-version PyGithub packaging
bash ci/bump_version.sh ${{ inputs.type }} ${{ inputs.bump-minor }} v $COMMIT_BEFORE_BUMP
bash ci/update_lockfiles.sh --amend
- name: Push new version tag
if: ${{ !inputs.dry_run }}
uses: ad-m/github-push-action@master
@@ -93,7 +93,3 @@ jobs:
github_token: ${{ secrets.LANCEDB_RELEASE_TOKEN }}
branch: ${{ github.ref }}
tags: true
- uses: ./.github/workflows/update_package_lock
if: ${{ !inputs.dry_run && inputs.other }}
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -1,147 +0,0 @@
name: Node
on:
push:
branches:
- main
pull_request:
paths:
- node/**
- rust/ffi/node/**
- .github/workflows/node.yml
- docker-compose.yml
concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Disable full debug symbol generation to speed up CI build and keep memory down
# "1" means line tables only, which is useful for panic tracebacks.
#
# Use native CPU to accelerate tests if possible, especially for f16
# target-cpu=haswell fixes failing ci build
RUSTFLAGS: "-C debuginfo=1 -C target-cpu=haswell -C target-feature=+f16c,+avx2,+fma"
RUST_BACKTRACE: "1"
jobs:
linux:
name: Linux (Node ${{ matrix.node-version }})
timeout-minutes: 30
strategy:
matrix:
node-version: [ "18", "20" ]
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run test
macos:
timeout-minutes: 30
runs-on: "macos-13"
defaults:
run:
shell: bash
working-directory: node
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: brew install protobuf
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: |
npm run test
aws-integtest:
timeout-minutes: 45
runs-on: "ubuntu-22.04"
defaults:
run:
shell: bash
working-directory: node
env:
AWS_ACCESS_KEY_ID: ACCESSKEY
AWS_SECRET_ACCESS_KEY: SECRETKEY
AWS_DEFAULT_REGION: us-west-2
# this one is for s3
AWS_ENDPOINT: http://localhost:4566
# this one is for dynamodb
DYNAMODB_ENDPOINT: http://localhost:4566
ALLOW_HTTP: true
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: actions/setup-node@v3
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
- name: start local stack
run: docker compose -f ../docker-compose.yml up -d --wait
- name: create s3
run: aws s3 mb s3://lancedb-integtest --endpoint $AWS_ENDPOINT
- name: create ddb
run: |
aws dynamodb create-table \
--table-name lancedb-integtest \
--attribute-definitions '[{"AttributeName": "base_uri", "AttributeType": "S"}, {"AttributeName": "version", "AttributeType": "N"}]' \
--key-schema '[{"AttributeName": "base_uri", "KeyType": "HASH"}, {"AttributeName": "version", "KeyType": "RANGE"}]' \
--provisioned-throughput '{"ReadCapacityUnits": 10, "WriteCapacityUnits": 10}' \
--endpoint-url $DYNAMODB_ENDPOINT
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run build
npm run pack-build
npm install --no-save ./dist/lancedb-vectordb-*.tgz
# Remove index.node to test with dependency installed
rm index.node
- name: Test
run: npm run integration-test

View File

@@ -47,12 +47,18 @@ jobs:
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- name: Lint
run: |
cargo fmt --all -- --check
cargo clippy --all --all-features -- -D warnings
npm ci
npm run lint-ci
- name: Lint examples
working-directory: nodejs/examples
run: npm ci && npm run lint-ci
linux:
name: Linux (NodeJS ${{ matrix.node-version }})
timeout-minutes: 30
@@ -73,7 +79,7 @@ jobs:
with:
node-version: ${{ matrix.node-version }}
cache: 'npm'
cache-dependency-path: node/package-lock.json
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
@@ -91,6 +97,30 @@ jobs:
env:
S3_TEST: "1"
run: npm run test
- name: Setup examples
working-directory: nodejs/examples
run: npm ci
- name: Test examples
working-directory: ./
env:
OPENAI_API_KEY: test
OPENAI_BASE_URL: http://0.0.0.0:8000
run: |
python ci/mock_openai.py &
cd nodejs/examples
npm test
- name: Check docs
run: |
# We run this as part of the job because the binary needs to be built
# first to export the types of the native code.
set -e
npm ci
npm run docs
if ! git diff --exit-code -- . ':(exclude)Cargo.lock'; then
echo "Docs need to be updated"
echo "Run 'npm run docs', fix any warnings, and commit the changes."
exit 1
fi
macos:
timeout-minutes: 30
runs-on: "macos-14"
@@ -107,7 +137,7 @@ jobs:
with:
node-version: 20
cache: 'npm'
cache-dependency-path: node/package-lock.json
cache-dependency-path: nodejs/package-lock.json
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |

View File

@@ -1,374 +1,32 @@
name: NPM Publish
env:
MACOSX_DEPLOYMENT_TARGET: '10.13'
CARGO_INCREMENTAL: '0'
permissions:
contents: write
id-token: write
on:
push:
branches:
- main
tags:
- "v*"
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/npm-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
node:
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: node
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/setup-node@v3
with:
node-version: 20
cache: "npm"
cache-dependency-path: node/package-lock.json
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build
run: |
npm ci
npm run tsc
npm pack
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-package
path: |
node/vectordb-*.tgz
node-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build MacOS native node modules
run: bash ci/build_macos_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-darwin-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-darwin*.tgz
nodejs-macos:
strategy:
matrix:
config:
- arch: x86_64-apple-darwin
runner: macos-13
- arch: aarch64-apple-darwin
# xlarge is implicitly arm64.
runner: macos-14
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install system dependencies
run: brew install protobuf
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build MacOS native nodejs modules
run: bash ci/build_macos_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Darwin Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-darwin-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
node-linux:
name: node-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: warp-ubuntu-latest-arm64-4x
steps:
- name: Checkout
uses: actions/checkout@v4
# To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-linux-${{ matrix.config.arch }}
path: |
node/dist/lancedb-vectordb-linux*.tgz
nodejs-linux:
name: nodejs-linux (${{ matrix.config.arch}}-unknown-linux-gnu
runs-on: ${{ matrix.config.runner }}
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
config:
- arch: x86_64
runner: ubuntu-latest
- arch: aarch64
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: buildjet-16vcpu-ubuntu-2204-arm
steps:
- name: Checkout
uses: actions/checkout@v4
# Buildjet aarch64 runners have only 1.5 GB RAM per core, vs 3.5 GB per core for
# x86_64 runners. To avoid OOM errors on ARM, we create a swap file.
- name: Configure aarch64 build
if: ${{ matrix.config.arch == 'aarch64' }}
run: |
free -h
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
echo "/swapfile swap swap defaults 0 0" >> sudo /etc/fstab
# print info
swapon --show
free -h
- name: Build Linux Artifacts
run: |
bash ci/build_linux_artifacts_nodejs.sh ${{ matrix.config.arch }}
- name: Upload Linux Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-linux-${{ matrix.config.arch }}
path: |
nodejs/dist/*.node
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Upload Generic Artifacts
if: ${{ matrix.config.arch == 'x86_64' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
node-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd node
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: node-native-windows
path: |
node/dist/lancedb-vectordb-win32*.tgz
nodejs-windows:
runs-on: windows-2022
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
strategy:
fail-fast: false
matrix:
target: [x86_64-pc-windows-msvc]
steps:
- name: Checkout
uses: actions/checkout@v4
- name: Install Protoc v21.12
working-directory: C:\
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
- name: Install npm dependencies
run: |
cd nodejs
npm ci
- name: Build Windows native node modules
run: .\ci\build_windows_artifacts_nodejs.ps1 ${{ matrix.target }}
- name: Upload Windows Artifacts
uses: actions/upload-artifact@v4
with:
name: nodejs-native-windows
path: |
nodejs/dist/*.node
release:
needs: [node, node-macos, node-linux, node-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
pattern: node-*
- name: Display structure of downloaded files
run: ls -R
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
run: |
# Tag beta as "preview" instead of default "latest". See lancedb
# npm publish step for more info.
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
PUBLISH_ARGS="--tag preview"
fi
mv */*.tgz .
for filename in *.tgz; do
npm publish $PUBLISH_ARGS $filename
done
release-nodejs:
needs: [nodejs-macos, nodejs-linux, nodejs-windows]
runs-on: ubuntu-latest
# Only runs on tags that matches the make-release action
if: startsWith(github.ref, 'refs/tags/v')
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- name: Checkout
uses: actions/checkout@v4
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: nodejs-*
path: nodejs/nodejs-artifacts
merge-multiple: true
- name: Display structure of downloaded files
run: find .
- uses: actions/setup-node@v3
with:
node-version: 20
registry-url: "https://registry.npmjs.org"
- name: Install napi-rs
run: npm install -g @napi-rs/cli
- name: Prepare artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: Display structure of staged files
run: find npm
- name: Publish to NPM
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
# By default, things are published to the latest tag. This is what is
# installed by default if the user does not specify a version. This is
# good for stable releases, but for pre-releases, we want to publish to
# the "preview" tag so they can install with `npm install lancedb@preview`.
# See: https://medium.com/@mbostock/prereleases-and-npm-e778fc5e2420
run: |
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
npm publish --access public --tag preview
else
npm publish --access public
fi
update-package-lock:
needs: [release]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
update-package-lock-nodejs:
needs: [release-nodejs]
runs-on: ubuntu-latest
permissions:
contents: write
steps:
- name: Checkout
uses: actions/checkout@v4
with:
ref: main
persist-credentials: false
fetch-depth: 0
lfs: true
- uses: ./.github/workflows/update_package_lock_nodejs
with:
github_token: ${{ secrets.GITHUB_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/v')
runs-on: ubuntu-latest
permissions:
contents: write
@@ -433,3 +91,277 @@ jobs:
generate_release_notes: false
name: Node/Rust LanceDB v${{ steps.extract_version.outputs.version }}
body: ${{ steps.release_notes.outputs.changelog }}
build-lancedb:
strategy:
fail-fast: false
matrix:
settings:
- target: x86_64-apple-darwin
host: macos-latest
features: ","
pre_build: |-
brew install protobuf
rustup target add x86_64-apple-darwin
- target: aarch64-apple-darwin
host: macos-latest
features: fp16kernels
pre_build: brew install protobuf
- target: x86_64-pc-windows-msvc
host: windows-latest
features: ","
pre_build: |-
choco install --no-progress protoc ninja nasm
tail -n 1000 /c/ProgramData/chocolatey/logs/chocolatey.log
# There is an issue where choco doesn't add nasm to the path
export PATH="$PATH:/c/Program Files/NASM"
nasm -v
- target: aarch64-pc-windows-msvc
host: windows-latest
features: ","
pre_build: |-
choco install --no-progress protoc
rustup target add aarch64-pc-windows-msvc
- target: x86_64-unknown-linux-gnu
host: ubuntu-latest
features: fp16kernels
# https://github.com/napi-rs/napi-rs/blob/main/debian.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian
pre_build: |-
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config
- target: x86_64-unknown-linux-musl
# This one seems to need some extra memory
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: fp16kernels
pre_build: |-
set -e &&
apk add protobuf-dev curl &&
ln -s /usr/lib/gcc/x86_64-alpine-linux-musl/14.2.0/crtbeginS.o /usr/lib/crtbeginS.o &&
ln -s /usr/lib/libgcc_s.so /usr/lib/libgcc.so &&
CC=gcc &&
CXX=g++
- target: aarch64-unknown-linux-gnu
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/debian-aarch64.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-debian-aarch64
features: "fp16kernels"
pre_build: |-
set -e &&
apt-get update &&
apt-get install -y protobuf-compiler pkg-config &&
# https://github.com/aws/aws-lc-rs/issues/737#issuecomment-2725918627
ln -s /usr/aarch64-unknown-linux-gnu/lib/gcc/aarch64-unknown-linux-gnu/4.8.5/crtbeginS.o /usr/aarch64-unknown-linux-gnu/aarch64-unknown-linux-gnu/sysroot/usr/lib/crtbeginS.o &&
ln -s /usr/aarch64-unknown-linux-gnu/lib/gcc /usr/aarch64-unknown-linux-gnu/aarch64-unknown-linux-gnu/sysroot/usr/lib/gcc &&
rustup target add aarch64-unknown-linux-gnu
- target: aarch64-unknown-linux-musl
host: ubuntu-2404-8x-x64
# https://github.com/napi-rs/napi-rs/blob/main/alpine.Dockerfile
docker: ghcr.io/napi-rs/napi-rs/nodejs-rust:lts-alpine
features: ","
pre_build: |-
set -e &&
apk add protobuf-dev &&
rustup target add aarch64-unknown-linux-musl &&
export CC_aarch64_unknown_linux_musl=aarch64-linux-musl-gcc &&
export CXX_aarch64_unknown_linux_musl=aarch64-linux-musl-g++
name: build - ${{ matrix.settings.target }}
runs-on: ${{ matrix.settings.host }}
defaults:
run:
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
if: ${{ !matrix.settings.docker }}
with:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
- name: Install
uses: dtolnay/rust-toolchain@stable
if: ${{ !matrix.settings.docker }}
with:
toolchain: stable
targets: ${{ matrix.settings.target }}
- name: Cache cargo
uses: actions/cache@v4
with:
path: |
~/.cargo/registry/index/
~/.cargo/registry/cache/
~/.cargo/git/db/
.cargo-cache
target/
key: nodejs-${{ matrix.settings.target }}-cargo-${{ matrix.settings.host }}
- name: Setup toolchain
run: ${{ matrix.settings.setup }}
if: ${{ matrix.settings.setup }}
shell: bash
- name: Install dependencies
run: npm ci
- name: Build in docker
uses: addnab/docker-run-action@v3
if: ${{ matrix.settings.docker }}
with:
image: ${{ matrix.settings.docker }}
options: "--user 0:0 -v ${{ github.workspace }}/.cargo-cache/git/db:/usr/local/cargo/git/db \
-v ${{ github.workspace }}/.cargo/registry/cache:/usr/local/cargo/registry/cache \
-v ${{ github.workspace }}/.cargo/registry/index:/usr/local/cargo/registry/index \
-v ${{ github.workspace }}:/build -w /build/nodejs"
run: |
set -e
${{ matrix.settings.pre_build }}
npx napi build --platform --release --no-const-enum \
--features ${{ matrix.settings.features }} \
--target ${{ matrix.settings.target }} \
--dts ../lancedb/native.d.ts \
--js ../lancedb/native.js \
--strip \
dist/
- name: Build
run: |
${{ matrix.settings.pre_build }}
npx napi build --platform --release --no-const-enum \
--features ${{ matrix.settings.features }} \
--target ${{ matrix.settings.target }} \
--dts ../lancedb/native.d.ts \
--js ../lancedb/native.js \
--strip \
$EXTRA_ARGS \
dist/
if: ${{ !matrix.settings.docker }}
shell: bash
- name: Upload artifact
uses: actions/upload-artifact@v4
with:
name: lancedb-${{ matrix.settings.target }}
path: nodejs/dist/*.node
if-no-files-found: error
# The generic files are the same in all distros so we just pick
# one to do the upload.
- name: Make generic artifacts
if: ${{ matrix.settings.target == 'aarch64-apple-darwin' }}
run: npm run tsc
- name: Upload Generic Artifacts
if: ${{ matrix.settings.target == 'aarch64-apple-darwin' }}
uses: actions/upload-artifact@v4
with:
name: nodejs-dist
path: |
nodejs/dist/*
!nodejs/dist/*.node
test-lancedb:
name: "Test: ${{ matrix.settings.target }} - node@${{ matrix.node }}"
needs:
- build-lancedb
strategy:
fail-fast: false
matrix:
settings:
# TODO: Get tests passing on Windows (failing from test tmpdir issue)
# - host: windows-latest
# target: x86_64-pc-windows-msvc
- host: macos-latest
target: aarch64-apple-darwin
- target: x86_64-unknown-linux-gnu
host: ubuntu-latest
- target: aarch64-unknown-linux-gnu
host: buildjet-16vcpu-ubuntu-2204-arm
node:
- '20'
runs-on: ${{ matrix.settings.host }}
defaults:
run:
shell: bash
working-directory: nodejs
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: ${{ matrix.node }}
cache: npm
cache-dependency-path: nodejs/package-lock.json
- name: Install dependencies
run: npm ci
- name: Download artifacts
uses: actions/download-artifact@v4
with:
name: lancedb-${{ matrix.settings.target }}
path: nodejs/dist/
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
# For testing purposes:
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
# run-id: 13982782871
- name: List packages
run: ls -R dist
- name: Move built files
run: cp dist/native.d.ts dist/native.js dist/*.node lancedb/
- name: Test bindings
run: npm test
publish:
name: Publish
runs-on: ubuntu-latest
defaults:
run:
shell: bash
working-directory: nodejs
needs:
- test-lancedb
steps:
- uses: actions/checkout@v4
- name: Setup node
uses: actions/setup-node@v4
with:
node-version: 20
cache: npm
cache-dependency-path: nodejs/package-lock.json
registry-url: "https://registry.npmjs.org"
- name: Install dependencies
run: npm ci
- uses: actions/download-artifact@v4
with:
name: nodejs-dist
path: nodejs/dist
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- uses: actions/download-artifact@v4
name: Download arch-specific binaries
with:
pattern: lancedb-*
path: nodejs/nodejs-artifacts
merge-multiple: true
# For testing purposes:
# run-id: 13982782871
# github-token: ${{ secrets.GITHUB_TOKEN }} # token with actions:read permissions on target repo
- name: Display structure of downloaded files
run: find dist && find nodejs-artifacts
- name: Move artifacts
run: npx napi artifacts -d nodejs-artifacts
- name: List packages
run: find npm
- name: Publish
env:
NODE_AUTH_TOKEN: ${{ secrets.LANCEDB_NPM_REGISTRY_TOKEN }}
DRY_RUN: ${{ !startsWith(github.ref, 'refs/tags/v') }}
run: |
ARGS="--access public"
if [[ $DRY_RUN == "true" ]]; then
ARGS="$ARGS --dry-run"
fi
if [[ $GITHUB_REF =~ refs/tags/v(.*)-beta.* ]]; then
ARGS="$ARGS --tag preview"
fi
npm publish $ARGS

View File

@@ -4,6 +4,11 @@ on:
push:
tags:
- 'python-v*'
pull_request:
# This should trigger a dry run (we skip the final publish step)
paths:
- .github/workflows/pypi-publish.yml
- Cargo.toml # Change in dependency frequently breaks builds
jobs:
linux:
@@ -15,15 +20,21 @@ jobs:
- platform: x86_64
manylinux: "2_17"
extra_args: ""
runner: ubuntu-22.04
- platform: x86_64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-22.04
- platform: aarch64
manylinux: "2_24"
manylinux: "2_17"
extra_args: ""
# We don't build fp16 kernels for aarch64, because it uses
# cross compilation image, which doesn't have a new enough compiler.
runs-on: "ubuntu-22.04"
# For successful fat LTO builds, we need a large runner to avoid OOM errors.
runner: ubuntu-2404-8x-arm64
- platform: aarch64
manylinux: "2_28"
extra_args: "--features fp16kernels"
runner: ubuntu-2404-8x-arm64
runs-on: ${{ matrix.config.runner }}
steps:
- uses: actions/checkout@v4
with:
@@ -40,6 +51,7 @@ jobs:
arm-build: ${{ matrix.config.platform == 'aarch64' }}
manylinux: ${{ matrix.config.manylinux }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -69,6 +81,7 @@ jobs:
python-minor-version: 8
args: "--release --strip --target ${{ matrix.config.target }} --features fp16kernels"
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
@@ -83,17 +96,19 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: 3.8
python-version: 3.12
- uses: ./.github/workflows/build_windows_wheel
with:
python-minor-version: 8
args: "--release --strip"
vcpkg_token: ${{ secrets.VCPKG_GITHUB_PACKAGES }}
- uses: ./.github/workflows/upload_wheel
if: startsWith(github.ref, 'refs/tags/python-v')
with:
pypi_token: ${{ secrets.LANCEDB_PYPI_API_TOKEN }}
fury_token: ${{ secrets.FURY_TOKEN }}
gh-release:
if: startsWith(github.ref, 'refs/tags/python-v')
runs-on: ubuntu-latest
permissions:
contents: write

View File

@@ -13,6 +13,11 @@ concurrency:
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }}
cancel-in-progress: true
env:
# Color output for pytest is off by default.
PYTEST_ADDOPTS: "--color=yes"
FORCE_COLOR: "1"
jobs:
lint:
name: "Lint"
@@ -30,16 +35,17 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- name: Install ruff
run: |
pip install ruff==0.2.2
pip install ruff==0.9.9
- name: Format check
run: ruff format --check .
- name: Lint
run: ruff .
doctest:
name: "Doctest"
run: ruff check .
type-check:
name: "Type Check"
timeout-minutes: 30
runs-on: "ubuntu-22.04"
defaults:
@@ -54,7 +60,36 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- name: Install protobuf compiler
run: |
sudo apt update
sudo apt install -y protobuf-compiler
pip install toml
- name: Install dependencies
run: |
python ../ci/parse_requirements.py pyproject.toml --extras dev,tests,embeddings > requirements.txt
pip install -r requirements.txt
- name: Run pyright
run: pyright
doctest:
name: "Doctest"
timeout-minutes: 30
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
working-directory: python
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.12"
cache: "pip"
- name: Install protobuf
run: |
@@ -75,8 +110,8 @@ jobs:
timeout-minutes: 30
strategy:
matrix:
python-minor-version: ["9", "11"]
runs-on: "ubuntu-22.04"
python-minor-version: ["9", "12"]
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
@@ -101,6 +136,10 @@ jobs:
- uses: ./.github/workflows/run_tests
with:
integration: true
- name: Test without pylance or pandas
run: |
pip uninstall -y pylance pandas
pytest -vv python/tests/test_table.py
# Make sure wheels are not included in the Rust cache
- name: Delete wheels
run: rm -rf target/wheels
@@ -127,7 +166,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
@@ -138,7 +177,7 @@ jobs:
run: rm -rf target/wheels
windows:
name: "Windows: ${{ matrix.config.name }}"
timeout-minutes: 30
timeout-minutes: 60
strategy:
matrix:
config:
@@ -157,7 +196,7 @@ jobs:
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
python-version: "3.12"
- uses: Swatinem/rust-cache@v2
with:
workspaces: python
@@ -168,7 +207,7 @@ jobs:
run: rm -rf target/wheels
pydantic1x:
timeout-minutes: 30
runs-on: "ubuntu-22.04"
runs-on: "ubuntu-24.04"
defaults:
run:
shell: bash
@@ -189,6 +228,7 @@ jobs:
- name: Install lancedb
run: |
pip install "pydantic<2"
pip install pyarrow==16
pip install --extra-index-url https://pypi.fury.io/lancedb/ -e .[tests]
pip install tantivy
- name: Run tests

View File

@@ -24,8 +24,8 @@ runs:
- name: pytest (with integration)
shell: bash
if: ${{ inputs.integration == 'true' }}
run: pytest -m "not slow" -x -v --durations=30 python/python/tests
run: pytest -m "not slow" -vv --durations=30 python/python/tests
- name: pytest (no integration tests)
shell: bash
if: ${{ inputs.integration != 'true' }}
run: pytest -m "not slow and not s3_test" -x -v --durations=30 python/python/tests
run: pytest -m "not slow and not s3_test" -vv --durations=30 python/python/tests

View File

@@ -22,72 +22,116 @@ env:
# "1" means line tables only, which is useful for panic tracebacks.
RUSTFLAGS: "-C debuginfo=1"
RUST_BACKTRACE: "1"
CARGO_INCREMENTAL: 0
jobs:
lint:
timeout-minutes: 30
runs-on: ubuntu-22.04
runs-on: ubuntu-24.04
defaults:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
components: rustfmt, clippy
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --all --all-features -- -D warnings
- name: Run format
run: cargo fmt --all -- --check
- name: Run clippy
run: cargo clippy --workspace --tests --all-features -- -D warnings
build-no-lock:
runs-on: ubuntu-24.04
timeout-minutes: 30
env:
# Need up-to-date compilers for kernels
CC: clang
CXX: clang++
steps:
- uses: actions/checkout@v4
# Building without a lock file often requires the latest Rust version since downstream
# dependencies may have updated their minimum Rust version.
- uses: actions-rust-lang/setup-rust-toolchain@v1
with:
toolchain: "stable"
# Remove cargo.lock to force a fresh build
- name: Remove Cargo.lock
run: rm -f Cargo.lock
- uses: rui314/setup-mold@v1
- uses: Swatinem/rust-cache@v2
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Build all
run: |
cargo build --benches --all-features --tests
linux:
timeout-minutes: 30
runs-on: ubuntu-22.04
# To build all features, we need more disk space than is available
# on the free OSS github runner. This is mostly due to the the
# sentence-transformers feature.
runs-on: ubuntu-2404-4x-x64
defaults:
run:
shell: bash
working-directory: rust
env:
# Need up-to-date compilers for kernels
CC: gcc-12
CXX: g++-12
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
- uses: Swatinem/rust-cache@v2
with:
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install dependencies
run: |
sudo apt update
- name: Install dependencies
run: |
# This shaves 2 minutes off this step in CI. This doesn't seem to be
# necessary in standard runners, but it is in the 4x runners.
sudo rm /var/lib/man-db/auto-update
sudo apt install -y protobuf-compiler libssl-dev
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features
- name: Run tests
run: cargo test --all-features
- name: Run examples
run: cargo run --example simple
- uses: rui314/setup-mold@v1
- name: Make Swap
run: |
sudo fallocate -l 16G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
- name: Start S3 integration test environment
working-directory: .
run: docker compose up --detach --wait
- name: Build
run: cargo build --all-features --tests --locked --examples
- name: Run tests
run: cargo test --all-features --locked
- name: Run examples
run: cargo run --example simple --locked
macos:
timeout-minutes: 30
strategy:
matrix:
mac-runner: [ "macos-13", "macos-14" ]
mac-runner: ["macos-13", "macos-14"]
runs-on: "${{ matrix.mac-runner }}"
defaults:
run:
@@ -96,8 +140,8 @@ jobs:
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
lfs: true
fetch-depth: 0
lfs: true
- name: CPU features
run: sysctl -a | grep cpu
- uses: Swatinem/rust-cache@v2
@@ -105,30 +149,78 @@ jobs:
workspaces: rust
- name: Install dependencies
run: brew install protobuf
- name: Build
run: cargo build --all-features
- name: Run tests
# Run with everything except the integration tests.
run: cargo test --features remote,fp16kernels
run: |
# Don't run the s3 integration tests since docker isn't available
# on this image.
ALL_FEATURES=`cargo metadata --format-version=1 --no-deps \
| jq -r '.packages[] | .features | keys | .[]' \
| grep -v s3-test | sort | uniq | paste -s -d "," -`
cargo test --features $ALL_FEATURES --locked
windows:
runs-on: windows-2022
strategy:
matrix:
target:
- x86_64-pc-windows-msvc
- aarch64-pc-windows-msvc
defaults:
run:
working-directory: rust/lancedb
steps:
- uses: actions/checkout@v4
- uses: Swatinem/rust-cache@v2
with:
workspaces: rust
- name: Install Protoc v21.12
working-directory: C:\
run: choco install --no-progress protoc
- name: Build
run: |
New-Item -Path 'C:\protoc' -ItemType Directory
Set-Location C:\protoc
Invoke-WebRequest https://github.com/protocolbuffers/protobuf/releases/download/v21.12/protoc-21.12-win64.zip -OutFile C:\protoc\protoc.zip
7z x protoc.zip
Add-Content $env:GITHUB_PATH "C:\protoc\bin"
shell: powershell
rustup target add ${{ matrix.target }}
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build --features remote --tests --locked --target ${{ matrix.target }}
- name: Run tests
# Can only run tests when target matches host
if: ${{ matrix.target == 'x86_64-pc-windows-msvc' }}
run: |
$env:VCPKG_ROOT = $env:VCPKG_INSTALLATION_ROOT
cargo build
cargo test
cargo test --features remote --locked
msrv:
# Check the minimum supported Rust version
name: MSRV Check - Rust v${{ matrix.msrv }}
runs-on: ubuntu-24.04
strategy:
matrix:
msrv: ["1.78.0"] # This should match up with rust-version in Cargo.toml
env:
# Need up-to-date compilers for kernels
CC: clang-18
CXX: clang++-18
steps:
- uses: actions/checkout@v4
with:
submodules: true
- name: Install dependencies
run: |
sudo apt update
sudo apt install -y protobuf-compiler libssl-dev
- name: Install ${{ matrix.msrv }}
uses: dtolnay/rust-toolchain@master
with:
toolchain: ${{ matrix.msrv }}
- name: Downgrade dependencies
# These packages have newer requirements for MSRV
run: |
cargo update -p aws-sdk-bedrockruntime --precise 1.64.0
cargo update -p aws-sdk-dynamodb --precise 1.55.0
cargo update -p aws-config --precise 1.5.10
cargo update -p aws-sdk-kms --precise 1.51.0
cargo update -p aws-sdk-s3 --precise 1.65.0
cargo update -p aws-sdk-sso --precise 1.50.0
cargo update -p aws-sdk-ssooidc --precise 1.51.0
cargo update -p aws-sdk-sts --precise 1.51.0
cargo update -p home --precise 0.5.9
- name: cargo +${{ matrix.msrv }} check
run: cargo check --workspace --tests --benches --all-features

View File

@@ -1,33 +0,0 @@
name: update_package_lock
description: "Update node's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./node
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -1,33 +0,0 @@
name: update_package_lock_nodejs
description: "Update nodejs's package.lock"
inputs:
github_token:
required: true
description: "github token for the repo"
runs:
using: "composite"
steps:
- uses: actions/setup-node@v3
with:
node-version: 20
- name: Set git configs
shell: bash
run: |
git config user.name 'Lance Release'
git config user.email 'lance-dev@lancedb.com'
- name: Update package-lock.json file
working-directory: ./nodejs
run: |
npm install
git add package-lock.json
git commit -m "Updating package-lock.json"
shell: bash
- name: Push changes
if: ${{ inputs.dry_run }} == "false"
uses: ad-m/github-push-action@master
with:
github_token: ${{ inputs.github_token }}
branch: main
tags: true

View File

@@ -17,11 +17,12 @@ runs:
run: |
python -m pip install --upgrade pip
pip install twine
python3 -m pip install --upgrade pkginfo
- name: Choose repo
shell: bash
id: choose_repo
run: |
if [ ${{ github.ref }} == "*beta*" ]; then
if [[ ${{ github.ref }} == *beta* ]]; then
echo "repo=fury" >> $GITHUB_OUTPUT
else
echo "repo=pypi" >> $GITHUB_OUTPUT
@@ -32,7 +33,7 @@ runs:
FURY_TOKEN: ${{ inputs.fury_token }}
PYPI_TOKEN: ${{ inputs.pypi_token }}
run: |
if [ ${{ steps.choose_repo.outputs.repo }} == "fury" ]; then
if [[ ${{ steps.choose_repo.outputs.repo }} == fury ]]; then
WHEEL=$(ls target/wheels/lancedb-*.whl 2> /dev/null | head -n 1)
echo "Uploading $WHEEL to Fury"
curl -f -F package=@$WHEEL https://$FURY_TOKEN@push.fury.io/lancedb/

6
.gitignore vendored
View File

@@ -9,7 +9,6 @@ venv
.vscode
.zed
rust/target
rust/Cargo.lock
site
@@ -32,9 +31,6 @@ python/dist
*.node
**/node_modules
**/.DS_Store
node/dist
node/examples/**/package-lock.json
node/examples/**/dist
nodejs/lancedb/native*
dist
@@ -42,5 +38,3 @@ dist
target
**/sccache.log
Cargo.lock

View File

@@ -1,21 +1,27 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v3.2.0
hooks:
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
- id: check-yaml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/astral-sh/ruff-pre-commit
# Ruff version.
rev: v0.2.2
rev: v0.9.9
hooks:
- id: ruff
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*
- id: ruff
# - repo: https://github.com/RobertCraigie/pyright-python
# rev: v1.1.395
# hooks:
# - id: pyright
# args: ["--project", "python"]
# additional_dependencies: [pyarrow-stubs]
- repo: local
hooks:
- id: local-biome-check
name: biome check
entry: npx @biomejs/biome@1.8.3 check --config-path nodejs/biome.json nodejs/
language: system
types: [text]
files: "nodejs/.*"
exclude: nodejs/lancedb/native.d.ts|nodejs/dist/.*|nodejs/examples/.*

22
CLAUDE.md Normal file
View File

@@ -0,0 +1,22 @@
LanceDB is a database designed for retrieval, including vector, full-text, and hybrid search.
It is a wrapper around Lance. There are two backends: local (in-process like SQLite) and
remote (against LanceDB Cloud).
The core of LanceDB is written in Rust. There are bindings in Python, Typescript, and Java.
Project layout:
* `rust/lancedb`: The LanceDB core Rust implementation.
* `python`: The Python bindings, using PyO3.
* `nodejs`: The Typescript bindings, using napi-rs
* `java`: The Java bindings
Common commands:
* Check for compiler errors: `cargo check --features remote --tests --examples`
* Run tests: `cargo test --features remote --tests`
* Run specific test: `cargo test --features remote -p <package_name> --test <test_name>`
* Lint: `cargo clippy --features remote --tests --examples`
* Format: `cargo fmt --all`
Before committing changes, run formatting.

78
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,78 @@
# Contributing to LanceDB
LanceDB is an open-source project and we welcome contributions from the community.
This document outlines the process for contributing to LanceDB.
## Reporting Issues
If you encounter a bug or have a feature request, please open an issue on the
[GitHub issue tracker](https://github.com/lancedb/lancedb).
## Picking an issue
We track issues on the GitHub issue tracker. If you are looking for something to
work on, check the [good first issue](https://github.com/lancedb/lancedb/contribute) label. These issues are typically the best described and have the smallest scope.
If there's an issue you are interested in working on, please leave a comment on the issue. This will help us avoid duplicate work. Additionally, if you have questions about the issue, please ask them in the issue comments. We are happy to provide guidance on how to approach the issue.
## Configuring Git
First, fork the repository on GitHub, then clone your fork:
```bash
git clone https://github.com/<username>/lancedb.git
cd lancedb
```
Then add the main repository as a remote:
```bash
git remote add upstream https://github.com/lancedb/lancedb.git
git fetch upstream
```
## Setting up your development environment
We have development environments for Python, Typescript, and Java. Each environment has its own setup instructions.
* [Python](python/CONTRIBUTING.md)
* [Typescript](nodejs/CONTRIBUTING.md)
<!-- TODO: add Java contributing guide -->
* [Documentation](docs/README.md)
## Best practices for pull requests
For the best chance of having your pull request accepted, please follow these guidelines:
1. Unit test all bug fixes and new features. Your code will not be merged if it
doesn't have tests.
1. If you change the public API, update the documentation in the `docs` directory.
1. Aim to minimize the number of changes in each pull request. Keep to solving
one problem at a time, when possible.
1. Before marking a pull request ready-for-review, do a self review of your code.
Is it clear why you are making the changes? Are the changes easy to understand?
1. Use [conventional commit messages](https://www.conventionalcommits.org/en/) as pull request titles. Examples:
* New feature: `feat: adding foo API`
* Bug fix: `fix: issue with foo API`
* Documentation change: `docs: adding foo API documentation`
1. If your pull request is a work in progress, leave the pull request as a draft.
We will assume the pull request is ready for review when it is opened.
1. When writing tests, test the error cases. Make sure they have understandable
error messages.
## Project structure
The core library is written in Rust. The Python, Typescript, and Java libraries
are wrappers around the Rust library.
* `src/lancedb`: Rust library source code
* `python`: Python package source code
* `nodejs`: Typescript package source code
* `node`: **Deprecated** Typescript package source code
* `java`: Java package source code
* `docs`: Documentation source code
## Release process
For information on the release process, see: [release_process.md](release_process.md)

8896
Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -1,11 +1,5 @@
[workspace]
members = [
"rust/ffi/node",
"rust/lancedb",
"nodejs",
"python",
"java/core/lancedb-jni",
]
members = ["rust/lancedb", "nodejs", "python", "java/core/lancedb-jni"]
# Python package needs to be built by maturin.
exclude = ["python"]
resolver = "2"
@@ -18,34 +12,54 @@ repository = "https://github.com/lancedb/lancedb"
description = "Serverless, low-latency vector database for AI applications"
keywords = ["lancedb", "lance", "database", "vector", "search"]
categories = ["database-implementations"]
rust-version = "1.78.0"
[workspace.dependencies]
lance = { "version" = "=0.14.1", "features" = ["dynamodb"] }
lance-index = { "version" = "=0.14.1" }
lance-linalg = { "version" = "=0.14.1" }
lance-testing = { "version" = "=0.14.1" }
lance-datafusion = { "version" = "=0.14.1" }
lance = { "version" = "=0.33.0", "features" = ["dynamodb"] }
lance-io = "=0.33.0"
lance-index = "=0.33.0"
lance-linalg = "=0.33.0"
lance-table = "=0.33.0"
lance-testing = "=0.33.0"
lance-datafusion = "=0.33.0"
lance-encoding = "=0.33.0"
# Note that this one does not include pyarrow
arrow = { version = "51.0", optional = false }
arrow-array = "51.0"
arrow-data = "51.0"
arrow-ipc = "51.0"
arrow-ord = "51.0"
arrow-schema = "51.0"
arrow-arith = "51.0"
arrow-cast = "51.0"
arrow = { version = "55.1", optional = false }
arrow-array = "55.1"
arrow-data = "55.1"
arrow-ipc = "55.1"
arrow-ord = "55.1"
arrow-schema = "55.1"
arrow-arith = "55.1"
arrow-cast = "55.1"
async-trait = "0"
chrono = "0.4.35"
datafusion-physical-plan = "37.1"
half = { "version" = "=2.4.1", default-features = false, features = [
datafusion = { version = "48.0", default-features = false }
datafusion-catalog = "48.0"
datafusion-common = { version = "48.0", default-features = false }
datafusion-execution = "48.0"
datafusion-expr = "48.0"
datafusion-physical-plan = "48.0"
env_logger = "0.11"
half = { "version" = "2.6.0", default-features = false, features = [
"num-traits",
] }
futures = "0"
log = "0.4"
object_store = "0.9.0"
moka = { version = "0.12", features = ["future"] }
object_store = "0.12.0"
pin-project = "1.0.7"
snafu = "0.7.4"
snafu = "0.8"
url = "2"
num-traits = "0.2"
rand = "0.9"
regex = "1.10"
lazy_static = "1"
semver = "1.0.25"
crunchy = "0.2.4"
# Temporary pins to work around downstream issues
# https://github.com/apache/arrow-rs/commit/2fddf85afcd20110ce783ed5b4cdeb82293da30b
chrono = "=0.4.41"
# https://github.com/RustCrypto/formats/issues/1684
base64ct = "=1.6.0"
# Workaround for: https://github.com/Lokathor/bytemuck/issues/306
bytemuck_derive = ">=1.8.1, <1.9.0"

126
README.md
View File

@@ -1,87 +1,97 @@
<a href="https://cloud.lancedb.com" target="_blank">
<img src="https://github.com/user-attachments/assets/92dad0a2-2a37-4ce1-b783-0d1b4f30a00c" alt="LanceDB Cloud Public Beta" width="100%" style="max-width: 100%;">
</a>
<div align="center">
<p align="center">
<img width="275" alt="LanceDB Logo" src="https://github.com/lancedb/lancedb/assets/5846846/37d7c7ad-c2fd-4f56-9f16-fffb0d17c73a">
[![LanceDB](docs/src/assets/hero-header.png)](https://lancedb.com)
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
**Developer-friendly, database for multimodal AI**
<a href='https://github.com/lancedb/vectordb-recipes/tree/main' target="_blank"><img alt='LanceDB' src='https://img.shields.io/badge/VectorDB_Recipes-100000?style=for-the-badge&logo=LanceDB&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
<a href='https://lancedb.github.io/lancedb/' target="_blank"><img alt='lancdb' src='https://img.shields.io/badge/DOCS-100000?style=for-the-badge&logo=lancdb&logoColor=white&labelColor=645cfb&color=645cfb'/></a>
[![Blog](https://img.shields.io/badge/Blog-12100E?style=for-the-badge&logoColor=white)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/Discord-%235865F2.svg?style=for-the-badge&logo=discord&logoColor=white)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/Twitter-%231DA1F2.svg?style=for-the-badge&logo=Twitter&logoColor=white)](https://twitter.com/lancedb)
<img src="docs/src/assets/lancedb.png" alt="LanceDB" width="50%">
</p>
# **The Multimodal AI Lakehouse**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
[**How to Install** ](#how-to-install) ✦ [**Detailed Documentation**](https://lancedb.github.io/lancedb/) ✦ [**Tutorials and Recipes**](https://github.com/lancedb/vectordb-recipes/tree/main) ✦ [**Contributors**](#contributors)
**The ultimate multimodal data platform for AI/ML applications.**
LanceDB is designed for fast, scalable, and production-ready vector search. It is built on top of the Lance columnar format. You can store, index, and search over petabytes of multimodal data and vectors with ease.
LanceDB is a central location where developers can build, train and analyze their AI workloads.
</p>
</div>
<hr />
<br>
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
## **Demo: Multimodal Search by Keyword, Vector or with SQL**
<img max-width="750px" alt="LanceDB Multimodal Search" src="https://github.com/lancedb/lancedb/assets/917119/09c5afc5-7816-4687-bae4-f2ca194426ec">
The key features of LanceDB include:
## **Star LanceDB to get updates!**
* Production-scale vector search with no servers to manage.
<details>
<summary>⭐ Click here ⭐ to see how fast we're growing!</summary>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
<img width="100%" src="https://api.star-history.com/svg?repos=lancedb/lancedb&theme=dark&type=Date">
</picture>
</details>
* Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
## **Key Features**:
* Support for vector similarity search, full-text search and SQL.
- **Fast Vector Search**: Search billions of vectors in milliseconds with state-of-the-art indexing.
- **Comprehensive Search**: Support for vector similarity search, full-text search and SQL.
- **Multimodal Support**: Store, query and filter vectors, metadata and multimodal data (text, images, videos, point clouds, and more).
- **Advanced Features**: Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure. GPU support in building vector index.
* Native Python and Javascript/Typescript support.
### **Products**:
- **Open Source & Local**: 100% open source, runs locally or in your cloud. No vendor lock-in.
- **Cloud and Enterprise**: Production-scale vector search with no servers to manage. Complete data sovereignty and security.
* Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
### **Ecosystem**:
- **Columnar Storage**: Built on the Lance columnar format for efficient storage and analytics.
- **Seamless Integration**: Python, Node.js, Rust, and REST APIs for easy integration. Native Python and Javascript/Typescript support.
- **Rich Ecosystem**: Integrations with [**LangChain** 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [**LlamaIndex** 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
* GPU support in building vector index(*).
## **How to Install**:
* Ecosystem integrations with [LangChain 🦜️🔗](https://python.langchain.com/docs/integrations/vectorstores/lancedb/), [LlamaIndex 🦙](https://gpt-index.readthedocs.io/en/latest/examples/vector_stores/LanceDBIndexDemo.html), Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
Follow the [Quickstart](https://lancedb.github.io/lancedb/basic/) doc to set up LanceDB locally.
LanceDB's core is written in Rust 🦀 and is built using <a href="https://github.com/lancedb/lance">Lance</a>, an open-source columnar format designed for performant ML workloads.
**API & SDK:** We also support Python, Typescript and Rust SDKs
## Quick Start
| Interface | Documentation |
|-----------|---------------|
| Python SDK | https://lancedb.github.io/lancedb/python/python/ |
| Typescript SDK | https://lancedb.github.io/lancedb/js/globals/ |
| Rust SDK | https://docs.rs/lancedb/latest/lancedb/index.html |
| REST API | https://docs.lancedb.com/api-reference/introduction |
**Javascript**
```shell
npm install vectordb
```
## **Join Us and Contribute**
```javascript
const lancedb = require('vectordb');
const db = await lancedb.connect('data/sample-lancedb');
We welcome contributions from everyone! Whether you're a developer, researcher, or just someone who wants to help out.
const table = await db.createTable({
name: 'vectors',
data: [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 }
]
})
If you have any suggestions or feature requests, please feel free to open an issue on GitHub or discuss it on our [**Discord**](https://discord.gg/G5DcmnZWKB) server.
const query = table.search([0.1, 0.3]).limit(2);
const results = await query.execute();
[**Check out the GitHub Issues**](https://github.com/lancedb/lancedb/issues) if you would like to work on the features that are planned for the future. If you have any suggestions or feature requests, please feel free to open an issue on GitHub.
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.search(undefined).where("price >= 10").execute();
```
## **Contributors**
**Python**
```shell
pip install lancedb
```
<a href="https://github.com/lancedb/lancedb/graphs/contributors">
<img src="https://contrib.rocks/image?repo=lancedb/lancedb" />
</a>
```python
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()
```
## **Stay in Touch With Us**
<div align="center">
## Blogs, Tutorials & Videos
* 📈 <a href="https://blog.lancedb.com/benchmarking-random-access-in-lance/">2000x better performance with Lance over Parquet</a>
* 🤖 <a href="https://github.com/lancedb/lancedb/blob/main/docs/src/notebooks/youtube_transcript_search.ipynb">Build a question and answer bot with LanceDB</a>
</br>
[![Website](https://img.shields.io/badge/-Website-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://lancedb.com/)
[![Blog](https://img.shields.io/badge/Blog-100000?style=for-the-badge&labelColor=645cfb&color=645cfb)](https://blog.lancedb.com/)
[![Discord](https://img.shields.io/badge/-Discord-100000?style=for-the-badge&logo=discord&logoColor=white&labelColor=645cfb&color=645cfb)](https://discord.gg/zMM32dvNtd)
[![Twitter](https://img.shields.io/badge/-Twitter-100000?style=for-the-badge&logo=x&logoColor=white&labelColor=645cfb&color=645cfb)](https://twitter.com/lancedb)
[![LinkedIn](https://img.shields.io/badge/-LinkedIn-100000?style=for-the-badge&logo=linkedin&logoColor=white&labelColor=645cfb&color=645cfb)](https://www.linkedin.com/company/lancedb/)
</div>

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_node
docker build \
-t lancedb-node-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-node-manylinux \
bash ci/manylinux_node/build.sh $ARCH

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
ARCH=${1:-x86_64}
# We pass down the current user so that when we later mount the local files
# into the container, the files are accessible by the current user.
pushd ci/manylinux_nodejs
docker build \
-t lancedb-nodejs-manylinux \
--build-arg="ARCH=$ARCH" \
--build-arg="DOCKER_USER=$(id -u)" \
--progress=plain \
.
popd
# We turn on memory swap to avoid OOM killer
docker run \
-v $(pwd):/io -w /io \
--memory-swap=-1 \
lancedb-nodejs-manylinux \
bash ci/manylinux_nodejs/build.sh $ARCH

View File

@@ -1,34 +0,0 @@
# Builds the macOS artifacts (node binaries).
# Usage: ./ci/build_macos_artifacts.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/ffi/node
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd node
echo "Building node library for $1"
npm run build-release -- --target $1
npm run pack-build -- --target $1
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,34 +0,0 @@
# Builds the macOS artifacts (nodejs binaries).
# Usage: ./ci/build_macos_artifacts_nodejs.sh [target]
# Targets supported: x86_64-apple-darwin aarch64-apple-darwin
set -e
prebuild_rust() {
# Building here for the sake of easier debugging.
pushd rust/lancedb
echo "Building rust library for $1"
export RUST_BACKTRACE=1
cargo build --release --target $1
popd
}
build_node_binaries() {
pushd nodejs
echo "Building nodejs library for $1"
export RUST_TARGET=$1
npm run build-release
popd
}
if [ -n "$1" ]; then
targets=$1
else
targets="x86_64-apple-darwin aarch64-apple-darwin"
fi
echo "Building artifacts for targets: $targets"
for target in $targets
do
prebuild_rust $target
build_node_binaries $target
done

View File

@@ -1,41 +0,0 @@
# Builds the Windows artifacts (node binaries).
# Usage: .\ci\build_windows_artifacts.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/ffi/node"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "node"
Write-Host "Building node library for $target"
npm run build-release -- --target $target
npm run pack-build -- --target $target
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,41 +0,0 @@
# Builds the Windows artifacts (nodejs binaries).
# Usage: .\ci\build_windows_artifacts_nodejs.ps1 [target]
# Targets supported:
# - x86_64-pc-windows-msvc
# - i686-pc-windows-msvc
function Prebuild-Rust {
param (
[string]$target
)
# Building here for the sake of easier debugging.
Push-Location -Path "rust/lancedb"
Write-Host "Building rust library for $target"
$env:RUST_BACKTRACE=1
cargo build --release --target $target
Pop-Location
}
function Build-NodeBinaries {
param (
[string]$target
)
Push-Location -Path "nodejs"
Write-Host "Building nodejs library for $target"
$env:RUST_TARGET=$target
npm run build-release
Pop-Location
}
$targets = $args[0]
if (-not $targets) {
$targets = "x86_64-pc-windows-msvc"
}
Write-Host "Building artifacts for targets: $targets"
foreach ($target in $targets) {
Prebuild-Rust $target
Build-NodeBinaries $target
}

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,19 +0,0 @@
#!/bin/bash
# Builds the node module for manylinux. Invoked by ci/build_linux_artifacts.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd node
npm ci
npm run build-release
npm run pack-build

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

View File

@@ -1,31 +0,0 @@
# Many linux dockerfile with Rust, Node, and Lance dependencies installed.
# This container allows building the node modules native libraries in an
# environment with a very old glibc, so that we are compatible with a wide
# range of linux distributions.
ARG ARCH=x86_64
FROM quay.io/pypa/manylinux2014_${ARCH}
ARG ARCH=x86_64
ARG DOCKER_USER=default_user
# Install static openssl
COPY install_openssl.sh install_openssl.sh
RUN ./install_openssl.sh ${ARCH} > /dev/null
# Protobuf is also installed as root.
COPY install_protobuf.sh install_protobuf.sh
RUN ./install_protobuf.sh ${ARCH}
ENV DOCKER_USER=${DOCKER_USER}
# Create a group and user
RUN echo ${ARCH} && adduser --user-group --create-home --uid ${DOCKER_USER} build_user
# We switch to the user to install Rust and Node, since those like to be
# installed at the user level.
USER ${DOCKER_USER}
COPY prepare_manylinux_node.sh prepare_manylinux_node.sh
RUN cp /prepare_manylinux_node.sh $HOME/ && \
cd $HOME && \
./prepare_manylinux_node.sh ${ARCH}

View File

@@ -1,18 +0,0 @@
#!/bin/bash
# Builds the nodejs module for manylinux. Invoked by ci/build_linux_artifacts_nodejs.sh.
set -e
ARCH=${1:-x86_64}
if [ "$ARCH" = "x86_64" ]; then
export OPENSSL_LIB_DIR=/usr/local/lib64/
else
export OPENSSL_LIB_DIR=/usr/local/lib/
fi
export OPENSSL_STATIC=1
export OPENSSL_INCLUDE_DIR=/usr/local/include/openssl
source $HOME/.bashrc
cd nodejs
npm ci
npm run build-release

View File

@@ -1,26 +0,0 @@
#!/bin/bash
# Builds openssl from source so we can statically link to it
# this is to avoid the error we get with the system installation:
# /usr/bin/ld: <library>: version node not found for symbol SSLeay@@OPENSSL_1.0.1
# /usr/bin/ld: failed to set dynamic section sizes: Bad value
set -e
git clone -b OpenSSL_1_1_1u \
--single-branch \
https://github.com/openssl/openssl.git
pushd openssl
if [[ $1 == x86_64* ]]; then
ARCH=linux-x86_64
else
# gnu target
ARCH=linux-aarch64
fi
./Configure no-shared $ARCH
make
make install

View File

@@ -1,15 +0,0 @@
#!/bin/bash
# Installs protobuf compiler. Should be run as root.
set -e
if [[ $1 == x86_64* ]]; then
ARCH=x86_64
else
# gnu target
ARCH=aarch_64
fi
PB_REL=https://github.com/protocolbuffers/protobuf/releases
PB_VERSION=23.1
curl -LO $PB_REL/download/v$PB_VERSION/protoc-$PB_VERSION-linux-$ARCH.zip
unzip protoc-$PB_VERSION-linux-$ARCH.zip -d /usr/local

View File

@@ -1,21 +0,0 @@
#!/bin/bash
set -e
install_node() {
echo "Installing node..."
curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash
source "$HOME"/.bashrc
nvm install --no-progress 16
}
install_rust() {
echo "Installing rust..."
curl https://sh.rustup.rs -sSf | bash -s -- -y
export PATH="$PATH:/root/.cargo/bin"
}
install_node
install_rust

57
ci/mock_openai.py Normal file
View File

@@ -0,0 +1,57 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright The LanceDB Authors
"""A zero-dependency mock OpenAI embeddings API endpoint for testing purposes."""
import argparse
import json
import http.server
class MockOpenAIRequestHandler(http.server.BaseHTTPRequestHandler):
def do_POST(self):
content_length = int(self.headers["Content-Length"])
post_data = self.rfile.read(content_length)
post_data = json.loads(post_data.decode("utf-8"))
# See: https://platform.openai.com/docs/api-reference/embeddings/create
if isinstance(post_data["input"], str):
num_inputs = 1
else:
num_inputs = len(post_data["input"])
model = post_data.get("model", "text-embedding-ada-002")
data = []
for i in range(num_inputs):
data.append({
"object": "embedding",
"embedding": [0.1] * 1536,
"index": i,
})
response = {
"object": "list",
"data": data,
"model": model,
"usage": {
"prompt_tokens": 0,
"total_tokens": 0,
}
}
self.send_response(200)
self.send_header("Content-type", "application/json")
self.end_headers()
self.wfile.write(json.dumps(response).encode("utf-8"))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Mock OpenAI embeddings API endpoint")
parser.add_argument("--port", type=int, default=8000, help="Port to listen on")
args = parser.parse_args()
port = args.port
print(f"server started on port {port}. Press Ctrl-C to stop.")
print(f"To use, set OPENAI_BASE_URL=http://localhost:{port} in your environment.")
with http.server.HTTPServer(("0.0.0.0", port), MockOpenAIRequestHandler) as server:
server.serve_forever()

41
ci/parse_requirements.py Normal file
View File

@@ -0,0 +1,41 @@
import argparse
import toml
def parse_dependencies(pyproject_path, extras=None):
with open(pyproject_path, "r") as file:
pyproject = toml.load(file)
dependencies = pyproject.get("project", {}).get("dependencies", [])
for dependency in dependencies:
print(dependency)
optional_dependencies = pyproject.get("project", {}).get(
"optional-dependencies", {}
)
if extras:
for extra in extras.split(","):
for dep in optional_dependencies.get(extra, []):
print(dep)
def main():
parser = argparse.ArgumentParser(
description="Generate requirements.txt from pyproject.toml"
)
parser.add_argument("path", type=str, help="Path to pyproject.toml")
parser.add_argument(
"--extras",
type=str,
help="Comma-separated list of extras to include",
default="",
)
args = parser.parse_args()
parse_dependencies(args.path, args.extras)
if __name__ == "__main__":
main()

188
ci/set_lance_version.py Normal file
View File

@@ -0,0 +1,188 @@
import argparse
import sys
import json
def run_command(command: str) -> str:
"""
Run a shell command and return stdout as a string.
If exit code is not 0, raise an exception with the stderr output.
"""
import subprocess
result = subprocess.run(command, shell=True, capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Command failed with error: {result.stderr.strip()}")
return result.stdout.strip()
def get_latest_stable_version() -> str:
version_line = run_command("cargo info lance | grep '^version:'")
version = version_line.split(" ")[1].strip()
return version
def get_latest_preview_version() -> str:
lance_tags = run_command(
"git ls-remote --tags https://github.com/lancedb/lance.git | grep 'refs/tags/v[0-9beta.-]\\+$'"
).splitlines()
lance_tags = (
tag.split("refs/tags/")[1]
for tag in lance_tags
if "refs/tags/" in tag and "beta" in tag
)
from packaging.version import Version
latest = max(
(tag[1:] for tag in lance_tags if tag.startswith("v")), key=lambda t: Version(t)
)
return str(latest)
def extract_features(line: str) -> list:
"""
Extracts the features from a line in Cargo.toml.
Example: 'lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }'
Returns: ['dynamodb']
"""
import re
match = re.search(r'"features"\s*=\s*\[\s*(.*?)\s*\]', line, re.DOTALL)
if match:
features_str = match.group(1)
return [f.strip('"') for f in features_str.split(",") if len(f) > 0]
return []
def update_cargo_toml(line_updater):
"""
Updates the Cargo.toml file by applying the line_updater function to each line.
The line_updater function should take a line as input and return the updated line.
"""
with open("Cargo.toml", "r") as f:
lines = f.readlines()
new_lines = []
lance_line = ""
is_parsing_lance_line = False
for line in lines:
if line.startswith("lance"):
# Update the line using the provided function
if line.strip().endswith("}"):
new_lines.append(line_updater(line))
else:
lance_line = line
is_parsing_lance_line = True
elif is_parsing_lance_line:
lance_line += line
if line.strip().endswith("}"):
new_lines.append(line_updater(lance_line))
lance_line = ""
is_parsing_lance_line = False
else:
print("doesn't end with }:", line)
else:
# Keep the line unchanged
new_lines.append(line)
with open("Cargo.toml", "w") as f:
f.writelines(new_lines)
def set_stable_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"] }
lance-io = "=0.29.0"
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "version" = "={version}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = "={version}"\n'
update_cargo_toml(line_updater)
def set_preview_version(version: str):
"""
Sets lines to
lance = { "version" = "=0.29.0", "features" = ["dynamodb"], tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
lance-io = { version = "=0.29.0", tag = "v0.29.0-beta.2", git="https://github.com/lancedb/lance.git" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
base_version = version.split("-")[0] # Get the base version without beta suffix
if features:
return f'{package_name} = {{ "version" = "={base_version}", "features" = {json.dumps(features)}, "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
else:
return f'{package_name} = {{ "version" = "={base_version}", "tag" = "v{version}", "git" = "https://github.com/lancedb/lance.git" }}\n'
update_cargo_toml(line_updater)
def set_local_version():
"""
Sets lines to
lance = { path = "../lance/rust/lance", features = ["dynamodb"] }
lance-io = { path = "../lance/rust/lance-io" }
...
"""
def line_updater(line: str) -> str:
package_name = line.split("=", maxsplit=1)[0].strip()
features = extract_features(line)
if features:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}", "features" = {json.dumps(features)} }}\n'
else:
return f'{package_name} = {{ "path" = "../lance/rust/{package_name}" }}\n'
update_cargo_toml(line_updater)
parser = argparse.ArgumentParser(description="Set the version of the Lance package.")
parser.add_argument(
"version",
type=str,
help="The version to set for the Lance package. Use 'stable' for the latest stable version, 'preview' for latest preview version, or a specific version number (e.g., '0.1.0'). You can also specify 'local' to use a local path.",
)
args = parser.parse_args()
if args.version == "stable":
latest_stable_version = get_latest_stable_version()
print(
f"Found latest stable version: \033[1mv{latest_stable_version}\033[0m",
file=sys.stderr,
)
set_stable_version(latest_stable_version)
elif args.version == "preview":
latest_preview_version = get_latest_preview_version()
print(
f"Found latest preview version: \033[1mv{latest_preview_version}\033[0m",
file=sys.stderr,
)
set_preview_version(latest_preview_version)
elif args.version == "local":
set_local_version()
else:
# Parse the version number.
version = args.version
# Ignore initial v if present.
if version.startswith("v"):
version = version[1:]
if "beta" in version:
set_preview_version(version)
else:
set_stable_version(version)
print("Updating lockfiles...", file=sys.stderr, end="")
run_command("cargo metadata > /dev/null")
print(" done.", file=sys.stderr)

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
# dbghelp.lib fwpuclnt.lib arm64rt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7a332420d812f7c1d41da865ae5a7c52/windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/19de98ed4a79938d0045d19c047936b3/3e2f7be479e3679d700ce0782e4cc318.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/227f40682a88dc5fa0ccb9cadc9ad30af99ad1f1a75db63407587d079f60d035/Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20arm64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.ARM64.Desktop.vsix
mkdir -p /usr/aarch64-pc-windows-msvc/usr/include
mkdir -p /usr/aarch64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/aarch64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/aarch64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/aarch64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# ARM intrinsics
# original dir: MSVC/
# '__n128x4' redefined in arm_neon.h
# "arm64_neon.h" included from intrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp arm_neon.h intrin.h -t /usr/aarch64-pc-windows-msvc/usr/include)
# .lib
# _Interlocked intrinsics
# must always link with arm64rt.lib
# reason: https://developercommunity.visualstudio.com/t/libucrtlibstreamobj-error-lnk2001-unresolved-exter/1544787#T-ND1599818
# I don't understand the 'correct' fix for this, arm64rt.lib is supposed to be the workaround
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/arm64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib runtimeobject.lib dbghelp.lib fwpuclnt.lib arm64rt.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/arm64' && cp libcmt.lib libvcruntime.lib -t /usr/aarch64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/arm64/libucrt.lib' /usr/aarch64-pc-windows-msvc/usr/lib

View File

@@ -0,0 +1,105 @@
#!/bin/sh
# https://github.com/mstorsjo/msvc-wine/blob/master/vsdownload.py
# https://github.com/mozilla/gecko-dev/blob/6027d1d91f2d3204a3992633b3ef730ff005fc64/build/vs/vs2022-car.yaml
# function dl() {
# curl -O https://download.visualstudio.microsoft.com/download/pr/$1
# }
# [[.h]]
# "id": "Win11SDK_10.0.26100"
# "version": "10.0.26100.7"
# libucrt.lib
# example: <assert.h>
# dir: ucrt/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ee3a5fc6e9fc832af7295b138e93839/universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b1aa09b90fe314aceb090f6ec7626624/16ab2ea2187acffa6435e334796c8c89.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/400609bb0ff5804e36dbe6dcd42a7f01/6ee7bbee8435130a869cf971694fd9e2.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/2ac327317abb865a0e3f56b2faefa918/78fa3c824c2c48bd4a49ab5969adaaf7.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/f034bc0b2680f67dccd4bfeea3d0f932/7afc7b670accd8e3cc94cfffd516f5cb.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/7ed5e12f9d50f80825a8b27838cf4c7f/96076045170fe5db6d5dcf14b6f6688e.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/764edc185a696bda9e07df8891dddbbb/a1e2a83aa8a71c48c742eeaff6e71928.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/66854bedc6dbd5ccb5dd82c8e2412231/b2f03f34ff83ec013b9e45c7cd8e8a73.cab
# example: <windows.h>
# dir: um/
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/b286efac4d83a54fc49190bddef1edc9/windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/e0dc3811d92ab96fcb72bf63d6c08d71/766c0ffd568bbb31bf7fb6793383e24a.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/613503da4b5628768497822826aed39f/8125ee239710f33ea485965f76fae646.cab
# example: <winapifamily.h>
# dir: /shared
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/122979f0348d3a2a36b6aa1a111d5d0c/windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/766e04beecdfccff39e91dd9eb32834a/e89e3dcbb016928c7e426238337d69eb.cab
# "id": "Microsoft.VisualC.14.16.CRT.Headers"
# "version": "14.16.27045"
# example: <vcruntime.h>
# dir: MSVC/
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/87bbe41e09a2f83711e72696f49681429327eb7a4b90618c35667a6ba2e2880e/Microsoft.VisualC.14.16.CRT.Headers.vsix
# [[.lib]]
# advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/944c4153b849a1f7d0c0404a4f1c05ea/windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5306aed3e1a38d1e8bef5934edeb2a9b/05047a45609f311645eebcac2739fc4c.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/13c8a73a0f5a6474040b26d016a26fab/13d68b8a7b6678a368e2d13ff4027521.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/149578fb3b621cdb61ee1813b9b3e791/463ad1b0783ebda908fd6c16a4abfe93.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/5c986c4f393c6b09d5aec3b539e9fb4a/5a22e5cde814b041749fb271547f4dd5.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/bfc3904a0195453419ae4dfea7abd6fb/e10768bb6e9d0ea730280336b697da66.cab
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/637f9f3be880c71f9e3ca07b4d67345c/f9b24c8280986c0683fbceca5326d806.cab
# dbghelp.lib fwpuclnt.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/9f51690d5aa804b1340ce12d1ec80f89/windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
curl -O https://download.visualstudio.microsoft.com/download/pr/32863b8d-a46d-4231-8e84-0888519d20a9/d3a7df4ca3303a698640a29e558a5e5b/58314d0646d7e1a25e97c902166c3155.cab
# libcmt.lib libvcruntime.lib
curl -O https://download.visualstudio.microsoft.com/download/pr/bac0afd7-cc9e-4182-8a83-9898fa20e092/8728f21ae09940f1f4b4ee47b4a596be2509e2a47d2f0c83bbec0ea37d69644b/Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
msiextract universal%20crt%20headers%20libraries%20and%20sources-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20headers%20onecoreuap-x86_en-us.msi
msiextract windows%20sdk%20for%20windows%20store%20apps%20libs-x86_en-us.msi
msiextract windows%20sdk%20desktop%20libs%20x64-x86_en-us.msi
unzip -o Microsoft.VisualC.14.16.CRT.Headers.vsix
unzip -o Microsoft.VisualC.14.16.CRT.x64.Desktop.vsix
mkdir -p /usr/x86_64-pc-windows-msvc/usr/include
mkdir -p /usr/x86_64-pc-windows-msvc/usr/lib
# lowercase folder/file names
echo "$(find . -regex ".*/[^/]*[A-Z][^/]*")" | xargs -I{} sh -c 'mv "$(echo "{}" | sed -E '"'"'s/(.*\/)/\L\1/'"'"')" "$(echo "{}" | tr [A-Z] [a-z])"'
# .h
(cd 'program files/windows kits/10/include/10.0.26100.0' && cp -r ucrt/* um/* shared/* -t /usr/x86_64-pc-windows-msvc/usr/include)
cp -r contents/vc/tools/msvc/14.16.27023/include/* /usr/x86_64-pc-windows-msvc/usr/include
# lowercase #include "" and #include <>
find /usr/x86_64-pc-windows-msvc/usr/include -type f -exec sed -i -E 's/(#include <[^<>]*?[A-Z][^<>]*?>)|(#include "[^"]*?[A-Z][^"]*?")/\L\1\2/' "{}" ';'
# x86 intrinsics
# original dir: MSVC/
# '_mm_movemask_epi8' defined in emmintrin.h
# '__v4sf' defined in xmmintrin.h
# '__v2si' defined in mmintrin.h
# '__m128d' redefined in immintrin.h
# '__m128i' redefined in intrin.h
# '_mm_comlt_epu8' defined in ammintrin.h
(cd /usr/lib/llvm19/lib/clang/19/include && cp emmintrin.h xmmintrin.h mmintrin.h immintrin.h intrin.h ammintrin.h -t /usr/x86_64-pc-windows-msvc/usr/include)
# .lib
(cd 'program files/windows kits/10/lib/10.0.26100.0/um/x64' && cp advapi32.lib bcrypt.lib kernel32.lib ntdll.lib user32.lib uuid.lib ws2_32.lib userenv.lib cfgmgr32.lib dbghelp.lib fwpuclnt.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
(cd 'contents/vc/tools/msvc/14.16.27023/lib/x64' && cp libcmt.lib libvcruntime.lib -t /usr/x86_64-pc-windows-msvc/usr/lib)
cp 'program files/windows kits/10/lib/10.0.26100.0/ucrt/x64/libucrt.lib' /usr/x86_64-pc-windows-msvc/usr/lib

27
ci/update_lockfiles.sh Executable file
View File

@@ -0,0 +1,27 @@
#!/usr/bin/env bash
set -euo pipefail
AMEND=false
for arg in "$@"; do
if [[ "$arg" == "--amend" ]]; then
AMEND=true
fi
done
# This updates the lockfile without building
cargo metadata --quiet > /dev/null
pushd nodejs || exit 1
npm install --package-lock-only --silent
popd
if git diff --quiet --exit-code; then
echo "No lockfile changes to commit; skipping amend."
elif $AMEND; then
git add Cargo.lock nodejs/package-lock.json
git commit --amend --no-edit
else
git add Cargo.lock nodejs/package-lock.json
git commit -m "Update lockfiles"
fi

View File

@@ -0,0 +1,34 @@
import tomllib
found_preview_lance = False
with open("Cargo.toml", "rb") as f:
cargo_data = tomllib.load(f)
for name, dep in cargo_data["workspace"]["dependencies"].items():
if name == "lance" or name.startswith("lance-"):
if isinstance(dep, str):
version = dep
elif isinstance(dep, dict):
# Version doesn't have the beta tag in it, so we instead look
# at the git tag.
version = dep.get('tag', dep.get('version'))
else:
raise ValueError("Unexpected type for dependency: " + str(dep))
if "beta" in version:
found_preview_lance = True
print(f"Dependency '{name}' is a preview version: {version}")
with open("python/pyproject.toml", "rb") as f:
py_proj_data = tomllib.load(f)
for dep in py_proj_data["project"]["dependencies"]:
if dep.startswith("pylance"):
if "b" in dep:
found_preview_lance = True
print(f"Dependency '{dep}' is a preview version")
break # Only one pylance dependency
if found_preview_lance:
raise ValueError("Found preview version of Lance in dependencies")

View File

@@ -2,43 +2,88 @@
LanceDB docs are deployed to https://lancedb.github.io/lancedb/.
Docs is built and deployed automatically by [Github Actions](.github/workflows/docs.yml)
Docs is built and deployed automatically by [Github Actions](../.github/workflows/docs.yml)
whenever a commit is pushed to the `main` branch. So it is possible for the docs to show
unreleased features.
## Building the docs
### Setup
1. Install LanceDB. From LanceDB repo root: `pip install -e python`
2. Install dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
3. Make sure you have node and npm setup
4. Make sure protobuf and libssl are installed
1. Install LanceDB Python. See setup in [Python contributing guide](../python/CONTRIBUTING.md).
Run `make develop` to install the Python package.
2. Install documentation dependencies. From LanceDB repo root: `pip install -r docs/requirements.txt`
### Building node module and create markdown files
### Preview the docs
See [Javascript docs README](./src/javascript/README.md)
### Build docs
From LanceDB repo root:
Run: `PYTHONPATH=. mkdocs build -f docs/mkdocs.yml`
If successful, you should see a `docs/site` directory that you can verify locally.
### Run local server
You can run a local server to test the docs prior to deployment by navigating to the `docs` directory and running the following command:
```bash
```shell
cd docs
mkdocs serve
```
### Run doctest for typescript example
If you want to just generate the HTML files:
```bash
cd lancedb/docs
npm i
npm run build
npm run all
```shell
PYTHONPATH=. mkdocs build -f docs/mkdocs.yml
```
If successful, you should see a `docs/site` directory that you can verify locally.
## Adding examples
To make sure examples are correct, we put examples in test files so they can be
run as part of our test suites.
You can see the tests are at:
* Python: `python/python/tests/docs`
* Typescript: `nodejs/examples/`
### Checking python examples
```shell
cd python
pytest -vv python/tests/docs
```
### Checking typescript examples
The `@lancedb/lancedb` package must be built before running the tests:
```shell
pushd nodejs
npm ci
npm run build
popd
```
Then you can run the examples by going to the `nodejs/examples` directory and
running the tests like a normal npm package:
```shell
pushd nodejs/examples
npm ci
npm test
popd
```
## API documentation
### Python
The Python API documentation is organized based on the file `docs/src/python/python.md`.
We manually add entries there so we can control the organization of the reference page.
**However, this means any new types must be manually added to the file.** No additional
steps are needed to generate the API documentation.
### Typescript
The typescript API documentation is generated from the typescript source code using [typedoc](https://typedoc.org/).
When new APIs are added, you must manually re-run the typedoc command to update the API documentation.
The new files should be checked into the repository.
```shell
pushd nodejs
npm run docs
popd
```

View File

@@ -4,6 +4,9 @@ repo_url: https://github.com/lancedb/lancedb
edit_uri: https://github.com/lancedb/lancedb/tree/main/docs/src
repo_name: lancedb/lancedb
docs_dir: src
watch:
- src
- ../python/python
theme:
name: "material"
@@ -26,6 +29,7 @@ theme:
- content.code.copy
- content.tabs.link
- content.action.edit
- content.tooltips
- toc.follow
- navigation.top
- navigation.tabs
@@ -33,8 +37,10 @@ theme:
- navigation.footer
- navigation.tracking
- navigation.instant
- content.footnote.tooltips
icon:
repo: fontawesome/brands/github
annotation: material/arrow-right-circle
custom_dir: overrides
plugins:
@@ -52,17 +58,27 @@ plugins:
show_signature_annotations: true
show_root_heading: true
members_order: source
docstring_section_style: list
signature_crossrefs: true
separate_signature: true
import:
# for cross references
- https://arrow.apache.org/docs/objects.inv
- https://pandas.pydata.org/docs/objects.inv
- https://lancedb.github.io/lance/objects.inv
- https://docs.pydantic.dev/latest/objects.inv
- mkdocs-jupyter
- render_swagger:
allow_arbitrary_locations : true
allow_arbitrary_locations: true
markdown_extensions:
- admonition
- footnotes
- pymdownx.critic
- pymdownx.caret
- pymdownx.keys
- pymdownx.mark
- pymdownx.tilde
- pymdownx.details
- pymdownx.highlight:
anchor_linenums: true
@@ -76,7 +92,15 @@ markdown_extensions:
- pymdownx.tabbed:
alternate_style: true
- md_in_html
- abbr
- attr_list
- pymdownx.snippets
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- markdown.extensions.toc:
baselevel: 1
permalink: ""
nav:
- Home:
@@ -84,30 +108,54 @@ nav:
- 🏃🏼‍♂️ Quick start: basic.md
- 📚 Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- 🔨 Guides:
- Working with tables: guides/tables.md
- Building an ANN index: ann_indexes.md
- Building a vector index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Voyage AI Rerankers: reranking/voyageai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -115,10 +163,29 @@ nav:
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- 🧬 Managing embeddings:
- Overview: embeddings/index.md
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Voyage AI Embeddings: embeddings/available_embedding_models/text_embedding_functions/voyageai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- 🔌 Integrations:
@@ -126,26 +193,35 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain:
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LangChain 🔗: integrations/langchain.md
- LangChain demo: notebooks/langchain_demo.ipynb
- LangChain JS/TS 🔗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙:
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- LlamaIndex docs: integrations/llamaIndex.md
- LlamaIndex demo: notebooks/llamaIndex_demo.ipynb
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- 🎯 Examples:
- Overview: examples/index.md
- 🐍 Python:
- Overview: examples/examples_python.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Example - Calculate CLIP Embeddings with Roboflow Inference: examples/image_embeddings_roboflow.md
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
@@ -153,46 +229,67 @@ nav:
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- 📓 Studies:
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- 💭 FAQs: faq.md
- 🔍 Troubleshooting: troubleshooting.md
- ⚙️ API reference:
- 🐍 Python: python/python.md
- 👾 JavaScript (vectordb): javascript/modules.md
- 👾 JavaScript (lancedb): javascript/modules.md
- 👾 JavaScript (lancedb): js/globals.md
- 🦀 Rust: https://docs.rs/lancedb/latest/lancedb/
- ☁️ LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
- Quick start: basic.md
- Concepts:
- Vector search: concepts/vector_search.md
- Indexing: concepts/index_ivfpq.md
- Indexing:
- IVFPQ: concepts/index_ivfpq.md
- HNSW: concepts/index_hnsw.md
- Storage: concepts/storage.md
- Data management: concepts/data_management.md
- Guides:
- Working with tables: guides/tables.md
- Working with SQL: guides/sql_querying.md
- Building an ANN index: ann_indexes.md
- Vector Search: search.md
- Full-text search: fts.md
- Full-text search (native): fts.md
- Full-text search (tantivy-based): fts_tantivy.md
- Building a scalar index: guides/scalar_index.md
- Hybrid search:
- Overview: hybrid_search/hybrid_search.md
- Comparing Rerankers: hybrid_search/eval.md
- Airbnb financial data example: notebooks/hybrid_search.ipynb
- Late interaction with MultiVector search:
- Overview: guides/multi-vector.md
- Document search Example: notebooks/Multivector_on_LanceDB.ipynb
- RAG:
- Vanilla RAG: rag/vanilla_rag.md
- Multi-head RAG: rag/multi_head_rag.md
- Corrective RAG: rag/corrective_rag.md
- Agentic RAG: rag/agentic_rag.md
- Graph RAG: rag/graph_rag.md
- Self RAG: rag/self_rag.md
- Adaptive RAG: rag/adaptive_rag.md
- SFR RAG: rag/sfr_rag.md
- Advanced Techniques:
- HyDE: rag/advanced_techniques/hyde.md
- FLARE: rag/advanced_techniques/flare.md
- Reranking:
- Quickstart: reranking/index.md
- Cohere Reranker: reranking/cohere.md
- Linear Combination Reranker: reranking/linear_combination.md
- Reciprocal Rank Fusion Reranker: reranking/rrf.md
- Cross Encoder Reranker: reranking/cross_encoder.md
- ColBERT Reranker: reranking/colbert.md
- Jina Reranker: reranking/jina.md
- OpenAI Reranker: reranking/openai.md
- AnswerDotAi Rerankers: reranking/answerdotai.md
- Building Custom Rerankers: reranking/custom_reranker.md
- Example: notebooks/lancedb_reranking.ipynb
- Filtering: sql.md
- Versioning & Reproducibility: notebooks/reproducibility.ipynb
- Versioning & Reproducibility:
- sync API: notebooks/reproducibility.ipynb
- async API: notebooks/reproducibility_async.ipynb
- Configuring Storage: guides/storage.md
- Migration Guide: migration.md
- Tuning retrieval performance:
@@ -200,10 +297,28 @@ nav:
- Reranking: guides/tuning_retrievers/2_reranking.md
- Embedding fine-tuning: guides/tuning_retrievers/3_embed_tuning.md
- Managing Embeddings:
- Overview: embeddings/index.md
- Understand Embeddings: embeddings/understanding_embeddings.md
- Get Started: embeddings/index.md
- Embedding functions: embeddings/embedding_functions.md
- Available models: embeddings/default_embedding_functions.md
- Available models:
- Overview: embeddings/default_embedding_functions.md
- Text Embedding Functions:
- Sentence Transformers: embeddings/available_embedding_models/text_embedding_functions/sentence_transformers.md
- Huggingface Embedding Models: embeddings/available_embedding_models/text_embedding_functions/huggingface_embedding.md
- Ollama Embeddings: embeddings/available_embedding_models/text_embedding_functions/ollama_embedding.md
- OpenAI Embeddings: embeddings/available_embedding_models/text_embedding_functions/openai_embedding.md
- Instructor Embeddings: embeddings/available_embedding_models/text_embedding_functions/instructor_embedding.md
- Gemini Embeddings: embeddings/available_embedding_models/text_embedding_functions/gemini_embedding.md
- Cohere Embeddings: embeddings/available_embedding_models/text_embedding_functions/cohere_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/text_embedding_functions/jina_embedding.md
- AWS Bedrock Text Embedding Functions: embeddings/available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md
- IBM watsonx.ai Embeddings: embeddings/available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md
- Multimodal Embedding Functions:
- OpenClip embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/openclip_embedding.md
- Imagebind embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md
- Jina Embeddings: embeddings/available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md
- User-defined embedding functions: embeddings/custom_embedding_function.md
- Variables and secrets: embeddings/variables_and_secrets.md
- "Example: Multi-lingual semantic search": notebooks/multi_lingual_example.ipynb
- "Example: MultiModal CLIP Embeddings": notebooks/DisappearingEmbeddingFunction.ipynb
- Integrations:
@@ -211,34 +326,47 @@ nav:
- Pandas and PyArrow: python/pandas_and_pyarrow.md
- Polars: python/polars_arrow.md
- DuckDB: python/duckdb.md
- Datafusion: python/datafusion.md
- LangChain 🦜️🔗↗: integrations/langchain.md
- LangChain.js 🦜️🔗↗: https://js.langchain.com/docs/integrations/vectorstores/lancedb
- LlamaIndex 🦙↗: integrations/llamaIndex.md
- Pydantic: python/pydantic.md
- Voxel51: integrations/voxel51.md
- PromptTools: integrations/prompttools.md
- dlt: integrations/dlt.md
- phidata: integrations/phidata.md
- Genkit: integrations/genkit.md
- Examples:
- examples/index.md
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
- Multimodal search using CLIP: notebooks/multimodal_search.ipynb
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- YouTube Transcript Search (JS): examples/youtube_transcript_bot_with_nodejs.md
- Serverless Chatbot from any website: examples/serverless_website_chatbot.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🐍 Python:
- Overview: examples/examples_python.md
- Build From Scratch: examples/python_examples/build_from_scratch.md
- Multimodal: examples/python_examples/multimodal.md
- Rag: examples/python_examples/rag.md
- Vector Search: examples/python_examples/vector_search.md
- Chatbot: examples/python_examples/chatbot.md
- Evaluation: examples/python_examples/evaluations.md
- AI Agent: examples/python_examples/aiagent.md
- Recommender System: examples/python_examples/recommendersystem.md
- Miscellaneous:
- Serverless QA Bot with S3 and Lambda: examples/serverless_lancedb_with_s3_and_lambda.md
- Serverless QA Bot with Modal: examples/serverless_qa_bot_with_modal_and_langchain.md
- 👾 JavaScript:
- Overview: examples/examples_js.md
- Serverless Website Chatbot: examples/serverless_website_chatbot.md
- YouTube Transcript Search: examples/youtube_transcript_bot_with_nodejs.md
- TransformersJS Embedding Search: examples/transformerjs_embedding_search_nodejs.md
- 🦀 Rust:
- Overview: examples/examples_rust.md
- Studies:
- studies/overview.md
- ↗Improve retrievers with hybrid search and reranking: https://blog.lancedb.com/hybrid-search-and-reranking-report/
- API reference:
- Overview: api_reference.md
- Python: python/python.md
- Javascript (vectordb): javascript/modules.md
- Javascript (lancedb): js/modules.md
- Javascript (lancedb): js/globals.md
- Rust: https://docs.rs/lancedb/latest/lancedb/index.html
- LanceDB Cloud:
- Overview: cloud/index.md
- API reference:
- 🐍 Python: python/saas-python.md
- 👾 JavaScript: javascript/modules.md
- REST API: cloud/rest.md
extra_css:
- styles/global.css
@@ -246,6 +374,7 @@ extra_css:
extra_javascript:
- "extra_js/init_ask_ai_widget.js"
- "extra_js/reo.js"
extra:
analytics:

View File

@@ -38,6 +38,13 @@ components:
required: true
schema:
type: string
index_name:
name: index_name
in: path
description: name of the index
required: true
schema:
type: string
responses:
invalid_request:
description: Invalid request
@@ -164,7 +171,7 @@ paths:
distance_type:
type: string
description: |
The distance metric to use for search. L2, Cosine, Dot and Hamming are supported. Default is L2.
The distance metric to use for search. l2, Cosine, Dot and Hamming are supported. Default is l2.
bypass_vector_index:
type: boolean
description: |
@@ -443,7 +450,7 @@ paths:
type: string
nullable: false
description: |
The metric type to use for the index. L2, Cosine, Dot are supported.
The metric type to use for the index. l2, Cosine, Dot are supported.
index_type:
type: string
responses:
@@ -485,3 +492,22 @@ paths:
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"
/v1/table/{name}/index/{index_name}/drop/:
post:
description: Drop an index from the table
tags:
- Tables
summary: Drop an index from the table
operationId: dropIndex
parameters:
- $ref: "#/components/parameters/table_name"
- $ref: "#/components/parameters/index_name"
responses:
"200":
description: Index successfully dropped
"400":
$ref: "#/components/responses/invalid_request"
"401":
$ref: "#/components/responses/unauthorized"
"404":
$ref: "#/components/responses/not_found"

View File

@@ -0,0 +1,5 @@
{% extends "base.html" %}
{% block announce %}
📚 Starting June 1st, 2025, please use <a href="https://lancedb.github.io/documentation" target="_blank" rel="noopener noreferrer">lancedb.github.io/documentation</a> for the latest docs.
{% endblock %}

21
docs/package-lock.json generated
View File

@@ -19,7 +19,7 @@
},
"../node": {
"name": "vectordb",
"version": "0.4.6",
"version": "0.21.2-beta.0",
"cpu": [
"x64",
"arm64"
@@ -31,9 +31,7 @@
"win32"
],
"dependencies": {
"@apache-arrow/ts": "^14.0.2",
"@neon-rs/load": "^0.0.74",
"apache-arrow": "^14.0.2",
"axios": "^1.4.0"
},
"devDependencies": {
@@ -46,6 +44,7 @@
"@types/temp": "^0.9.1",
"@types/uuid": "^9.0.3",
"@typescript-eslint/eslint-plugin": "^5.59.1",
"apache-arrow-old": "npm:apache-arrow@13.0.0",
"cargo-cp-artifact": "^0.1",
"chai": "^4.3.7",
"chai-as-promised": "^7.1.1",
@@ -62,15 +61,19 @@
"ts-node-dev": "^2.0.0",
"typedoc": "^0.24.7",
"typedoc-plugin-markdown": "^3.15.3",
"typescript": "*",
"typescript": "^5.1.0",
"uuid": "^9.0.0"
},
"optionalDependencies": {
"@lancedb/vectordb-darwin-arm64": "0.4.6",
"@lancedb/vectordb-darwin-x64": "0.4.6",
"@lancedb/vectordb-linux-arm64-gnu": "0.4.6",
"@lancedb/vectordb-linux-x64-gnu": "0.4.6",
"@lancedb/vectordb-win32-x64-msvc": "0.4.6"
"@lancedb/vectordb-darwin-arm64": "0.21.2-beta.0",
"@lancedb/vectordb-darwin-x64": "0.21.2-beta.0",
"@lancedb/vectordb-linux-arm64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-linux-x64-gnu": "0.21.2-beta.0",
"@lancedb/vectordb-win32-x64-msvc": "0.21.2-beta.0"
},
"peerDependencies": {
"@apache-arrow/ts": "^14.0.2",
"apache-arrow": "^14.0.2"
}
},
"../node/node_modules/apache-arrow": {

View File

@@ -1,6 +1,7 @@
mkdocs==1.5.3
mkdocs-jupyter==0.24.1
mkdocs-material==9.5.3
mkdocstrings[python]==0.20.0
mkdocstrings[python]==0.25.2
griffe
mkdocs-render-swagger-plugin
pydantic

View File

@@ -18,25 +18,24 @@ See the [indexing](concepts/index_ivfpq.md) concepts guide for more information
Lance supports `IVF_PQ` index type by default.
=== "Python"
=== "Sync API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
```python
import lancedb
import numpy as np
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index"
```
=== "Async API"
Creating indexes is done via the [create_index](https://lancedb.github.io/lancedb/python/#lancedb.table.LanceTable.create_index) method.
# Create 10,000 sample vectors
data = [{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the index - you need to have enough data in the table for an effective training step
tbl.create_index(num_partitions=256, num_sub_vectors=96)
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb"
--8<-- "python/python/tests/docs/test_guide_index.py:import-numpy"
--8<-- "python/python/tests/docs/test_guide_index.py:import-lancedb-ivfpq"
--8<-- "python/python/tests/docs/test_guide_index.py:create_ann_index_async"
```
=== "TypeScript"
@@ -45,9 +44,9 @@ Lance supports `IVF_PQ` index type by default.
Creating indexes is done via the [lancedb.Table.createIndex](../js/classes/Table.md/#createIndex) method.
```typescript
--8<--- "nodejs/examples/ann_indexes.ts:import"
--8<--- "nodejs/examples/ann_indexes.test.ts:import"
--8<-- "nodejs/examples/ann_indexes.ts:ingest"
--8<-- "nodejs/examples/ann_indexes.test.ts:ingest"
```
=== "vectordb (deprecated)"
@@ -70,7 +69,7 @@ Lance supports `IVF_PQ` index type by default.
The following IVF_PQ paramters can be specified:
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`L2`".
- **distance_type**: The distance metric to use. By default it uses euclidean distance "`l2`".
We also support "cosine" and "dot" distance as well.
- **num_partitions**: The number of partitions in the index. The default is the square root
of the number of rows.
@@ -83,6 +82,7 @@ The following IVF_PQ paramters can be specified:
- **num_sub_vectors**: The number of sub-vectors (M) that will be created during Product Quantization (PQ).
For D dimensional vector, it will be divided into `M` subvectors with dimension `D/M`, each of which is replaced by
a single PQ code. The default is the dimension of the vector divided by 16.
- **num_bits**: The number of bits used to encode each sub-vector. Only 4 and 8 are supported. The higher the number of bits, the higher the accuracy of the index, also the slower search. The default is 8.
!!! note
@@ -126,7 +126,9 @@ You can specify the GPU device to train IVF partitions via
accelerator="mps"
)
```
!!! note
GPU based indexing is not yet supported with our asynchronous client.
Troubleshooting:
If you see `AssertionError: Torch not compiled with CUDA enabled`, you need to [install
@@ -140,23 +142,27 @@ There are a couple of parameters that can be used to fine-tune the search:
- **limit** (default: 10): The amount of results that will be returned
- **nprobes** (default: 20): The number of probes used. A higher number makes search more accurate but also slower.<br/>
Most of the time, setting nprobes to cover 5-10% of the dataset should achieve high recall with low latency.<br/>
e.g., for 1M vectors divided up into 256 partitions, nprobes should be set to ~20-40.<br/>
Note: nprobes is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
Most of the time, setting nprobes to cover 5-15% of the dataset should achieve high recall with low latency.<br/>
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, `nprobes` should be set to ~20-40. This value can be adjusted to achieve the optimal balance between search latency and search quality. <br/>
- **refine_factor** (default: None): Refine the results by reading extra elements and re-ranking them in memory.<br/>
A higher number makes search more accurate but also slower. If you find the recall is less than ideal, try refine_factor=10 to start.<br/>
e.g., for 1M vectors divided into 256 partitions, if you're looking for top 20, then refine_factor=200 reranks the whole partition.<br/>
Note: refine_factor is only applicable if an ANN index is present. If specified on a table without an ANN index, it is ignored.
- _For example_, For a dataset of 1 million vectors divided into 256 partitions, setting the `refine_factor` to 200 will initially retrieve the top 4,000 candidates (top k * refine_factor) from all searched partitions. These candidates are then reranked to determine the final top 20 results.<br/>
!!! note
Both `nprobes` and `refine_factor` are only applicable if an ANN index is present. If specified on a table without an ANN index, those parameters are ignored.
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))) \
.limit(2) \
.nprobes(20) \
.refine_factor(10) \
.to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async"
```
```text
vector item _distance
@@ -169,7 +175,7 @@ There are a couple of parameters that can be used to fine-tune the search:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search1"
--8<-- "nodejs/examples/ann_indexes.test.ts:search1"
```
=== "vectordb (deprecated)"
@@ -193,17 +199,23 @@ The search will return the data requested in addition to the distance of each it
You can further filter the elements returned by a search using a where clause.
=== "Python"
=== "Sync API"
```python
tbl.search(np.random.random((1536))).where("item != 'item 1141'").to_pandas()
```
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_filter"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_filter"
```
=== "TypeScript"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search2"
--8<-- "nodejs/examples/ann_indexes.test.ts:search2"
```
=== "vectordb (deprecated)"
@@ -218,10 +230,16 @@ You can select the columns returned by the query using a select clause.
=== "Python"
```python
tbl.search(np.random.random((1536))).select(["vector"]).to_pandas()
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_with_select"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_guide_index.py:vector_search_async_with_select"
```
```text
vector _distance
@@ -235,7 +253,7 @@ You can select the columns returned by the query using a select clause.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/ann_indexes.ts:search3"
--8<-- "nodejs/examples/ann_indexes.test.ts:search3"
```
=== "vectordb (deprecated)"
@@ -273,9 +291,17 @@ Product quantization can lead to approximately `16 * sizeof(float32) / 1 = 64` t
`num_partitions` is used to decide how many partitions the first level `IVF` index uses.
Higher number of partitions could lead to more efficient I/O during queries and better accuracy, but it takes much more time to train.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 1K-4K rows lead to a good latency / recall.
On `SIFT-1M` dataset, our benchmark shows that keeping each partition 4K-8K rows lead to a good latency / recall.
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. Because
`num_sub_vectors` specifies how many Product Quantization (PQ) short codes to generate on each vector. The number should be a factor of the vector dimension. Because
PQ is a lossy compression of the original vector, a higher `num_sub_vectors` usually results in
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and
more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
less space distortion, and thus yields better accuracy. However, a higher `num_sub_vectors` also causes heavier I/O and more PQ computation, and thus, higher latency. `dimension / num_sub_vectors` should be a multiple of 8 for optimum SIMD efficiency.
!!! note
if `num_sub_vectors` is set to be greater than the vector dimension, you will see errors like `attempt to divide by zero`
### How to choose `m` and `ef_construction` for `IVF_HNSW_*` index?
`m` determines the number of connections a new node establishes with its closest neighbors upon entering the graph. Typically, `m` falls within the range of 5 to 48. Lower `m` values are suitable for low-dimensional data or scenarios where recall is less critical. Conversely, higher `m` values are beneficial for high-dimensional data or when high recall is required. In essence, a larger `m` results in a denser graph with increased connectivity, but at the expense of higher memory consumption.
`ef_construction` balances build speed and accuracy. Higher values increase accuracy but slow down the build process. A typical range is 150 to 300. For good search results, a minimum value of 100 is recommended. In most cases, setting this value above 500 offers no additional benefit. Ensure that `ef_construction` is always set to a value equal to or greater than `ef` in the search phase

View File

@@ -3,6 +3,7 @@ import * as vectordb from "vectordb";
// --8<-- [end:import]
(async () => {
console.log("ann_indexes.ts: start");
// --8<-- [start:ingest]
const db = await vectordb.connect("data/sample-lancedb");
@@ -49,5 +50,5 @@ import * as vectordb from "vectordb";
.execute();
// --8<-- [end:search3]
console.log("Ann indexes: done");
console.log("ann_indexes.ts: done");
})();

View File

@@ -4,5 +4,5 @@ The API reference for the LanceDB client SDKs are available at the following loc
- [Python](python/python.md)
- [JavaScript (legacy vectordb package)](javascript/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/modules.md)
- [JavaScript (newer @lancedb/lancedb package)](js/globals.md)
- [Rust](https://docs.rs/lancedb/latest/lancedb/index.html)

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="117" height="20"><linearGradient id="b" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"/><stop offset="1" stop-opacity=".1"/></linearGradient><clipPath id="a"><rect width="117" height="20" rx="3" fill="#fff"/></clipPath><g clip-path="url(#a)"><path fill="#555" d="M0 0h30v20H0z"/><path fill="#007ec6" d="M30 0h87v20H30z"/><path fill="url(#b)" d="M0 0h117v20H0z"/></g><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="110"><svg x="4px" y="0px" width="22px" height="20px" viewBox="-2 0 28 24" style="background-color: #fff;border-radius: 1px;"><path style="fill:#e8710a;" d="M1.977,16.77c-2.667-2.277-2.605-7.079,0-9.357C2.919,8.057,3.522,9.075,4.49,9.691c-1.152,1.6-1.146,3.201-0.004,4.803C3.522,15.111,2.918,16.126,1.977,16.77z"/><path style="fill:#f9ab00;" d="M12.257,17.114c-1.767-1.633-2.485-3.658-2.118-6.02c0.451-2.91,2.139-4.893,4.946-5.678c2.565-0.718,4.964-0.217,6.878,1.819c-0.884,0.743-1.707,1.547-2.434,2.446C18.488,8.827,17.319,8.435,16,8.856c-2.404,0.767-3.046,3.241-1.494,5.644c-0.241,0.275-0.493,0.541-0.721,0.826C13.295,15.939,12.511,16.3,12.257,17.114z"/><path style="fill:#e8710a;" d="M19.529,9.682c0.727-0.899,1.55-1.703,2.434-2.446c2.703,2.783,2.701,7.031-0.005,9.764c-2.648,2.674-6.936,2.725-9.701,0.115c0.254-0.814,1.038-1.175,1.528-1.788c0.228-0.285,0.48-0.552,0.721-0.826c1.053,0.916,2.254,1.268,3.6,0.83C20.502,14.551,21.151,11.927,19.529,9.682z"/><path style="fill:#f9ab00;" d="M4.49,9.691C3.522,9.075,2.919,8.057,1.977,7.413c2.209-2.398,5.721-2.942,8.476-1.355c0.555,0.32,0.719,0.606,0.285,1.128c-0.157,0.188-0.258,0.422-0.391,0.631c-0.299,0.47-0.509,1.067-0.929,1.371C8.933,9.539,8.523,8.847,8.021,8.746C6.673,8.475,5.509,8.787,4.49,9.691z"/><path style="fill:#f9ab00;" d="M1.977,16.77c0.941-0.644,1.545-1.659,2.509-2.277c1.373,1.152,2.85,1.433,4.45,0.499c0.332-0.194,0.503-0.088,0.673,0.19c0.386,0.635,0.753,1.285,1.181,1.89c0.34,0.48,0.222,0.715-0.253,1.006C7.84,19.73,4.205,19.188,1.977,16.77z"/></svg><text x="245" y="140" transform="scale(.1)" textLength="30"> </text><text x="725" y="150" fill="#010101" fill-opacity=".3" transform="scale(.1)" textLength="770">Open in Colab</text><text x="725" y="140" transform="scale(.1)" textLength="770">Open in Colab</text></g> </svg>

After

Width:  |  Height:  |  Size: 2.3 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="88.25" height="28" role="img" aria-label="GHOST"><title>GHOST</title><g shape-rendering="crispEdges"><rect width="88.25" height="28" fill="#000"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="541.25" y="175" textLength="442.5" fill="#fff" font-weight="bold">GHOST</text></g></svg>

After

Width:  |  Height:  |  Size: 1.2 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="95.5" height="28" role="img" aria-label="GITHUB"><title>GITHUB</title><g shape-rendering="crispEdges"><rect width="95.5" height="28" fill="#121011"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="577.5" y="175" textLength="515" fill="#fff" font-weight="bold">GITHUB</text></g></svg>

After

Width:  |  Height:  |  Size: 1.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.7 MiB

BIN
docs/src/assets/lancedb.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

BIN
docs/src/assets/maxsim.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

View File

@@ -0,0 +1,22 @@
<svg width="147" height="20" viewBox="0 0 147 20" fill="none" xmlns="http://www.w3.org/2000/svg">
<rect x="0.5" y="0.5" width="145.482" height="19" rx="9.5" fill="white" stroke="#EFEFEF"/>
<path d="M14.1863 10.9251V12.7593H16.0205V10.9251H14.1863Z" fill="#FF3270"/>
<path d="M17.8707 10.9251V12.7593H19.7049V10.9251H17.8707Z" fill="#861FFF"/>
<path d="M14.1863 7.24078V9.07496H16.0205V7.24078H14.1863Z" fill="#097EFF"/>
<path fill-rule="evenodd" clip-rule="evenodd" d="M12.903 6.77179C12.903 6.32194 13.2676 5.95728 13.7175 5.95728C14.1703 5.95728 15.2556 5.95728 16.1094 5.95728C16.7538 5.95728 17.2758 6.47963 17.2758 7.12398V9.6698H19.8217C20.4661 9.6698 20.9884 10.1922 20.9884 10.8365C20.9884 11.6337 20.9884 12.4309 20.9884 13.2282C20.9884 13.678 20.6237 14.0427 20.1738 14.0427H17.3039H16.5874H13.7175C13.2676 14.0427 12.903 13.678 12.903 13.2282V9.71653V9.64174V6.77179ZM14.1863 7.24066V9.07485H16.0205V7.24066H14.1863ZM14.1863 12.7593V10.9251H16.0205V12.7593H14.1863ZM17.8708 12.7593V10.9251H19.705V12.7593H17.8708Z" fill="black"/>
<path d="M18.614 8.35468L20.7796 6.18905M20.7796 6.18905V7.66073M20.7796 6.18905L19.2724 6.18905" stroke="black" stroke-width="0.686298" stroke-linecap="round" stroke-linejoin="round"/>
<path d="M31.6082 13.9838C30.8546 13.9838 30.1895 13.802 29.6132 13.4385C29.0368 13.066 28.5846 12.5429 28.2565 11.869C27.9373 11.1862 27.7777 10.3749 27.7777 9.43501C27.7777 8.49511 27.9373 7.69265 28.2565 7.02762C28.5846 6.3626 29.0368 5.85275 29.6132 5.49807C30.1895 5.14339 30.8546 4.96605 31.6082 4.96605C32.3708 4.96605 33.0403 5.14339 33.6166 5.49807C34.193 5.85275 34.6408 6.3626 34.96 7.02762C35.2881 7.69265 35.4521 8.49511 35.4521 9.43501C35.4521 10.3749 35.2881 11.1862 34.96 11.869C34.6408 12.5429 34.193 13.066 33.6166 13.4385C33.0403 13.802 32.3708 13.9838 31.6082 13.9838ZM31.6082 12.6404C32.291 12.6404 32.8363 12.3523 33.2442 11.7759C33.6521 11.1907 33.856 10.4104 33.856 9.43501C33.856 8.45964 33.6521 7.69708 33.2442 7.14733C32.8363 6.58871 32.291 6.3094 31.6082 6.3094C30.9255 6.3094 30.3802 6.58871 29.9723 7.14733C29.5644 7.69708 29.3605 8.45964 29.3605 9.43501C29.3605 10.4104 29.5644 11.1907 29.9723 11.7759C30.3802 12.3523 30.9255 12.6404 31.6082 12.6404Z" fill="#2C3236"/>
<path d="M37.0592 16.4045V7.29363H38.3227L38.4291 7.98526H38.4823C38.7572 7.75472 39.0631 7.55521 39.4 7.38674C39.7459 7.21826 40.0961 7.13403 40.4508 7.13403C41.2665 7.13403 41.8961 7.43551 42.3395 8.03846C42.7917 8.64142 43.0178 9.44831 43.0178 10.4591C43.0178 11.204 42.8848 11.8424 42.6188 12.3744C42.3528 12.8976 42.0069 13.2966 41.5813 13.5715C41.1646 13.8463 40.7124 13.9838 40.2247 13.9838C39.9409 13.9838 39.6572 13.9217 39.3734 13.7976C39.0897 13.6646 38.8148 13.4872 38.5488 13.2656L38.5887 14.3562V16.4045H37.0592ZM39.9055 12.7202C40.3399 12.7202 40.7035 12.5296 40.9961 12.1483C41.2887 11.767 41.435 11.2084 41.435 10.4724C41.435 9.81629 41.3242 9.30644 41.1025 8.94289C40.8808 8.57935 40.5217 8.39757 40.0252 8.39757C39.5641 8.39757 39.0853 8.64142 38.5887 9.1291V12.1749C38.8281 12.37 39.0587 12.5119 39.2803 12.6005C39.502 12.6803 39.7104 12.7202 39.9055 12.7202Z" fill="#2C3236"/>
<path d="M47.3598 13.9838C46.7568 13.9838 46.2115 13.8508 45.7238 13.5848C45.2361 13.3099 44.8504 12.9197 44.5667 12.4143C44.2829 11.9 44.141 11.2838 44.141 10.5656C44.141 9.85619 44.2829 9.24437 44.5667 8.73009C44.8593 8.2158 45.2361 7.82122 45.6972 7.54634C46.1583 7.27147 46.6415 7.13403 47.147 7.13403C47.741 7.13403 48.2376 7.26703 48.6366 7.53304C49.0356 7.79018 49.3371 8.15373 49.541 8.62368C49.745 9.08476 49.847 9.62122 49.847 10.233C49.847 10.5523 49.8248 10.8005 49.7805 10.9779H45.6307C45.7016 11.5542 45.91 12.002 46.2558 12.3212C46.6016 12.6404 47.0361 12.8 47.5593 12.8C47.843 12.8 48.1046 12.7601 48.344 12.6803C48.5923 12.5917 48.8361 12.472 49.0755 12.3212L49.5942 13.2789C49.2839 13.4828 48.9381 13.6513 48.5568 13.7843C48.1755 13.9173 47.7765 13.9838 47.3598 13.9838ZM45.6174 9.94043H48.5169C48.5169 9.43501 48.4061 9.04043 48.1844 8.75669C47.9627 8.46408 47.6302 8.31777 47.1869 8.31777C46.8056 8.31777 46.4642 8.45964 46.1627 8.74339C45.8701 9.01826 45.6883 9.41728 45.6174 9.94043Z" fill="#2C3236"/>
<path d="M51.3078 13.8242V7.29363H52.5714L52.6778 8.17147H52.731C53.0236 7.88772 53.3428 7.64388 53.6886 7.43994C54.0344 7.236 54.429 7.13403 54.8724 7.13403C55.5728 7.13403 56.0827 7.36014 56.4019 7.81235C56.7211 8.26457 56.8807 8.90299 56.8807 9.72762V13.8242H55.3512V9.92713C55.3512 9.38624 55.2714 9.00496 55.1118 8.78329C54.9522 8.56161 54.6906 8.45078 54.327 8.45078C54.0433 8.45078 53.7906 8.52171 53.5689 8.66358C53.3561 8.79659 53.1123 8.99609 52.8374 9.2621V13.8242H51.3078Z" fill="#2C3236"/>
<path d="M61.4131 13.8242V7.29363H62.9426V13.8242H61.4131ZM62.1845 6.14979C61.9096 6.14979 61.6879 6.06999 61.5195 5.91038C61.351 5.75078 61.2668 5.53797 61.2668 5.27196C61.2668 5.01482 61.351 4.80644 61.5195 4.64684C61.6879 4.48723 61.9096 4.40743 62.1845 4.40743C62.4594 4.40743 62.6811 4.48723 62.8495 4.64684C63.018 4.80644 63.1022 5.01482 63.1022 5.27196C63.1022 5.53797 63.018 5.75078 62.8495 5.91038C62.6811 6.06999 62.4594 6.14979 62.1845 6.14979Z" fill="#2C3236"/>
<path d="M64.8941 13.8242V7.29363H66.1576L66.264 8.17147H66.3172C66.6098 7.88772 66.929 7.64388 67.2748 7.43994C67.6207 7.236 68.0152 7.13403 68.4586 7.13403C69.1591 7.13403 69.6689 7.36014 69.9881 7.81235C70.3074 8.26457 70.467 8.90299 70.467 9.72762V13.8242H68.9374V9.92713C68.9374 9.38624 68.8576 9.00496 68.698 8.78329C68.5384 8.56161 68.2768 8.45078 67.9133 8.45078C67.6295 8.45078 67.3768 8.52171 67.1551 8.66358C66.9423 8.79659 66.6985 8.99609 66.4236 9.2621V13.8242H64.8941Z" fill="#2C3236"/>
<path d="M75.1323 13.8242V5.12565H76.6752V8.62368H80.1998V5.12565H81.7427V13.8242H80.1998V9.96703H76.6752V13.8242H75.1323Z" fill="#2C3236"/>
<path d="M83.9517 13.8242V5.12565H89.2054V6.4291H85.4945V8.88969H88.6601V10.1931H85.4945V13.8242H83.9517Z" fill="#2C3236"/>
<path d="M95.9349 13.9838C95.3497 13.9838 94.7822 13.8729 94.2324 13.6513C93.6915 13.4296 93.2127 13.1148 92.796 12.7069L93.7004 11.6562C94.0108 11.9488 94.3654 12.1882 94.7645 12.3744C95.1635 12.5518 95.5625 12.6404 95.9615 12.6404C96.458 12.6404 96.8349 12.5385 97.092 12.3345C97.3492 12.1306 97.4778 11.8601 97.4778 11.5232C97.4778 11.1596 97.3492 10.8981 97.092 10.7385C96.8438 10.5789 96.5245 10.4148 96.1344 10.2463L94.9374 9.72762C94.6536 9.60348 94.3743 9.44388 94.0994 9.2488C93.8334 9.05373 93.6117 8.80546 93.4344 8.50398C93.2659 8.2025 93.1817 7.83895 93.1817 7.41334C93.1817 6.95225 93.3058 6.53994 93.5541 6.17639C93.8113 5.80398 94.1571 5.51137 94.5915 5.29856C95.0349 5.07689 95.5403 4.96605 96.1078 4.96605C96.6132 4.96605 97.1009 5.06802 97.5709 5.27196C98.0408 5.46703 98.4442 5.73304 98.7812 6.06999L97.9965 7.05423C97.7216 6.82368 97.429 6.64191 97.1186 6.5089C96.8172 6.3759 96.4802 6.3094 96.1078 6.3094C95.6999 6.3094 95.3674 6.4025 95.1103 6.58871C94.862 6.76605 94.7379 7.01432 94.7379 7.33353C94.7379 7.55521 94.7999 7.74142 94.9241 7.89215C95.0571 8.03403 95.23 8.15816 95.4428 8.26457C95.6556 8.36211 95.8817 8.45964 96.1211 8.55718L97.3048 9.0493C97.8191 9.27097 98.2403 9.56358 98.5684 9.92713C98.8965 10.2818 99.0605 10.7739 99.0605 11.4035C99.0605 11.8734 98.9364 12.3035 98.6881 12.6936C98.4398 13.0838 98.0807 13.3986 97.6108 13.638C97.1497 13.8685 96.591 13.9838 95.9349 13.9838Z" fill="#2C3236"/>
<path d="M100.509 16.4045V7.29363H101.773L101.879 7.98526H101.932C102.207 7.75472 102.513 7.55521 102.85 7.38674C103.196 7.21826 103.546 7.13403 103.901 7.13403C104.717 7.13403 105.346 7.43551 105.79 8.03846C106.242 8.64142 106.468 9.44831 106.468 10.4591C106.468 11.204 106.335 11.8424 106.069 12.3744C105.803 12.8976 105.457 13.2966 105.031 13.5715C104.615 13.8463 104.162 13.9838 103.675 13.9838C103.391 13.9838 103.107 13.9217 102.824 13.7976C102.54 13.6646 102.265 13.4872 101.999 13.2656L102.039 14.3562V16.4045H100.509ZM103.356 12.7202C103.79 12.7202 104.154 12.5296 104.446 12.1483C104.739 11.767 104.885 11.2084 104.885 10.4724C104.885 9.81629 104.774 9.30644 104.553 8.94289C104.331 8.57935 103.972 8.39757 103.475 8.39757C103.014 8.39757 102.535 8.64142 102.039 9.1291V12.1749C102.278 12.37 102.509 12.5119 102.73 12.6005C102.952 12.6803 103.16 12.7202 103.356 12.7202Z" fill="#2C3236"/>
<path d="M109.444 13.9838C108.876 13.9838 108.411 13.8064 108.047 13.4518C107.692 13.0971 107.515 12.636 107.515 12.0685C107.515 11.368 107.821 10.8271 108.433 10.4458C109.045 10.0557 110.02 9.78969 111.359 9.64782C111.35 9.30201 111.257 9.00496 111.08 8.75669C110.911 8.49954 110.605 8.37097 110.162 8.37097C109.843 8.37097 109.528 8.43304 109.218 8.55718C108.916 8.68132 108.619 8.83206 108.326 9.0094L107.768 7.98526C108.131 7.75472 108.539 7.55521 108.991 7.38674C109.452 7.21826 109.94 7.13403 110.454 7.13403C111.27 7.13403 111.878 7.37787 112.277 7.86555C112.685 8.34437 112.888 9.04043 112.888 9.95373V13.8242H111.625L111.518 13.1059H111.465C111.173 13.3542 110.858 13.5626 110.521 13.7311C110.193 13.8995 109.834 13.9838 109.444 13.9838ZM109.936 12.7867C110.202 12.7867 110.441 12.7247 110.654 12.6005C110.876 12.4675 111.111 12.2902 111.359 12.0685V10.6055C110.472 10.7207 109.856 10.8936 109.51 11.1242C109.164 11.3458 108.991 11.6207 108.991 11.9488C108.991 12.2414 109.08 12.4542 109.257 12.5872C109.435 12.7202 109.661 12.7867 109.936 12.7867Z" fill="#2C3236"/>
<path d="M117.446 13.9838C116.851 13.9838 116.315 13.8508 115.836 13.5848C115.366 13.3099 114.989 12.9197 114.706 12.4143C114.431 11.9 114.293 11.2838 114.293 10.5656C114.293 9.83846 114.444 9.2222 114.746 8.71679C115.047 8.2025 115.446 7.81235 115.943 7.54634C116.448 7.27147 116.989 7.13403 117.565 7.13403C117.982 7.13403 118.346 7.20496 118.656 7.34684C118.966 7.48871 119.241 7.66161 119.48 7.86555L118.736 8.86309C118.567 8.71235 118.394 8.59708 118.217 8.51728C118.04 8.42861 117.849 8.38427 117.645 8.38427C117.122 8.38427 116.692 8.58378 116.355 8.98279C116.027 9.38181 115.863 9.9094 115.863 10.5656C115.863 11.2128 116.022 11.736 116.342 12.135C116.67 12.534 117.091 12.7335 117.605 12.7335C117.862 12.7335 118.102 12.6803 118.323 12.5739C118.554 12.4587 118.762 12.3256 118.948 12.1749L119.574 13.1857C119.272 13.4518 118.935 13.6513 118.563 13.7843C118.19 13.9173 117.818 13.9838 117.446 13.9838Z" fill="#2C3236"/>
<path d="M123.331 13.9838C122.728 13.9838 122.183 13.8508 121.695 13.5848C121.207 13.3099 120.822 12.9197 120.538 12.4143C120.254 11.9 120.112 11.2838 120.112 10.5656C120.112 9.85619 120.254 9.24437 120.538 8.73009C120.83 8.2158 121.207 7.82122 121.668 7.54634C122.13 7.27147 122.613 7.13403 123.118 7.13403C123.712 7.13403 124.209 7.26703 124.608 7.53304C125.007 7.79018 125.308 8.15373 125.512 8.62368C125.716 9.08476 125.818 9.62122 125.818 10.233C125.818 10.5523 125.796 10.8005 125.752 10.9779H121.602C121.673 11.5542 121.881 12.002 122.227 12.3212C122.573 12.6404 123.007 12.8 123.53 12.8C123.814 12.8 124.076 12.7601 124.315 12.6803C124.563 12.5917 124.807 12.472 125.047 12.3212L125.565 13.2789C125.255 13.4828 124.909 13.6513 124.528 13.7843C124.147 13.9173 123.748 13.9838 123.331 13.9838ZM121.589 9.94043H124.488C124.488 9.43501 124.377 9.04043 124.156 8.75669C123.934 8.46408 123.601 8.31777 123.158 8.31777C122.777 8.31777 122.435 8.45964 122.134 8.74339C121.841 9.01826 121.66 9.41728 121.589 9.94043Z" fill="#2C3236"/>
<path d="M129.101 13.9838C128.658 13.9838 128.215 13.8995 127.771 13.7311C127.328 13.5537 126.947 13.3365 126.627 13.0793L127.346 12.0951C127.638 12.3168 127.931 12.4941 128.223 12.6271C128.516 12.7601 128.826 12.8266 129.154 12.8266C129.509 12.8266 129.771 12.7513 129.939 12.6005C130.108 12.4498 130.192 12.2636 130.192 12.0419C130.192 11.8557 130.121 11.705 129.979 11.5897C129.846 11.4656 129.673 11.3591 129.46 11.2705C129.248 11.1729 129.026 11.0798 128.795 10.9912C128.512 10.8848 128.228 10.7562 127.944 10.6055C127.669 10.4458 127.443 10.2463 127.266 10.0069C127.088 9.75866 127 9.45274 127 9.0892C127 8.51284 127.213 8.04289 127.638 7.67935C128.064 7.3158 128.64 7.13403 129.367 7.13403C129.828 7.13403 130.241 7.21383 130.604 7.37344C130.968 7.53304 131.282 7.71482 131.548 7.91876L130.844 8.84979C130.613 8.68132 130.378 8.54831 130.139 8.45078C129.908 8.34437 129.664 8.29117 129.407 8.29117C129.079 8.29117 128.835 8.36211 128.676 8.50398C128.516 8.63698 128.436 8.80545 128.436 9.0094C128.436 9.26654 128.569 9.46161 128.835 9.59462C129.101 9.72762 129.412 9.85619 129.766 9.98033C130.068 10.0867 130.36 10.2197 130.644 10.3793C130.928 10.5301 131.163 10.7296 131.349 10.9779C131.544 11.2261 131.642 11.5542 131.642 11.9621C131.642 12.5207 131.424 12.9995 130.99 13.3986C130.555 13.7887 129.926 13.9838 129.101 13.9838Z" fill="#2C3236"/>
</svg>

After

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -0,0 +1 @@
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="97.5" height="28" role="img" aria-label="PYTHON"><title>PYTHON</title><g shape-rendering="crispEdges"><rect width="97.5" height="28" fill="#3670a0"/></g><g fill="#fff" text-anchor="middle" font-family="Verdana,Geneva,DejaVu Sans,sans-serif" text-rendering="geometricPrecision" font-size="100"><image x="9" y="7" width="14" height="14" xlink:href=""/><text transform="scale(.1)" x="587.5" y="175" textLength="535" fill="#fff" font-weight="bold">PYTHON</text></g></svg>

After

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -35,6 +35,15 @@
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "vectordb (deprecated)"
```shell
@@ -53,6 +62,15 @@
}
})
```
!!! note "Yarn users"
Unlike other package managers, Yarn does not automatically resolve peer dependencies. If you are using Yarn, you will need to manually install 'apache-arrow':
```shell
yarn add apache-arrow
```
=== "Rust"
```shell
@@ -115,21 +133,22 @@ recommend switching to stable releases.
## Connect to a database
=== "Python"
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect"
```
=== "Async API"
!!! note "Asynchronous Python API"
```python
--8<-- "python/python/tests/docs/test_basic.py:imports"
The asynchronous Python API is new and has some slight differences compared
to the synchronous API. Feel free to start using the asynchronous version.
Once all features have migrated we will start to move the synchronous API to
use the same syntax as the asynchronous API. To help with this migration we
have created a [migration guide](migration.md) detailing the differences.
--8<-- "python/python/tests/docs/test_basic.py:set_uri"
--8<-- "python/python/tests/docs/test_basic.py:connect_async"
```
=== "Typescript[^1]"
@@ -139,7 +158,7 @@ recommend switching to stable releases.
import * as lancedb from "@lancedb/lancedb";
import * as arrow from "apache-arrow";
--8<-- "nodejs/examples/basic.ts:connect"
--8<-- "nodejs/examples/basic.test.ts:connect"
```
=== "vectordb (deprecated)"
@@ -173,28 +192,40 @@ table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
If the table already exists, LanceDB will raise an error by default.
If you want to overwrite the table, you can pass in `mode="overwrite"`
to the `create_table` method.
You can also pass in a pandas DataFrame directly:
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_pandas"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async"
```
You can also pass in a pandas DataFrame directly:
```python
--8<-- "python/python/tests/docs/test_basic.py:create_table_async_pandas"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_table"
--8<-- "nodejs/examples/basic.test.ts:create_table"
```
=== "vectordb (deprecated)"
@@ -237,10 +268,16 @@ similar to a `CREATE TABLE` statement in SQL.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_empty_table_async"
```
!!! note "You can define schema in Pydantic"
LanceDB comes with Pydantic support, which allows you to define the schema of your data using Pydantic models. This makes it easy to work with LanceDB tables and data. Learn more about all supported types in [tables guide](./guides/tables.md).
@@ -250,7 +287,7 @@ similar to a `CREATE TABLE` statement in SQL.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_empty_table"
--8<-- "nodejs/examples/basic.test.ts:create_empty_table"
```
=== "vectordb (deprecated)"
@@ -271,16 +308,22 @@ Once created, you can open a table as follows:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:open_table_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:open_table"
--8<-- "nodejs/examples/basic.test.ts:open_table"
```
=== "vectordb (deprecated)"
@@ -300,16 +343,22 @@ If you forget the name of your table, you can always get a listing of all table
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:table_names_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:table_names"
--8<-- "nodejs/examples/basic.test.ts:table_names"
```
=== "vectordb (deprecated)"
@@ -330,16 +379,22 @@ After a table has been created, you can always add more data to it as follows:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:add_data_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:add_data"
--8<-- "nodejs/examples/basic.test.ts:add_data"
```
=== "vectordb (deprecated)"
@@ -360,10 +415,16 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:vector_search_async"
```
This returns a pandas DataFrame with the results.
@@ -371,7 +432,7 @@ Once you've embedded the query, you can find its nearest neighbors as follows:
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:vector_search"
--8<-- "nodejs/examples/basic.test.ts:vector_search"
```
=== "vectordb (deprecated)"
@@ -402,16 +463,22 @@ LanceDB allows you to create an ANN index on a table as follows:
=== "Python"
```py
--8<-- "python/python/tests/docs/test_basic.py:create_index"
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:create_index_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:create_index"
--8<-- "nodejs/examples/basic.test.ts:create_index"
```
=== "vectordb (deprecated)"
@@ -441,17 +508,23 @@ This can delete any number of rows that match the filter.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:delete_rows_async"
```
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:delete_rows"
--8<-- "nodejs/examples/basic.test.ts:delete_rows"
```
=== "vectordb (deprecated)"
@@ -473,7 +546,10 @@ simple or complex as needed. To see what expressions are supported, see the
=== "Python"
Read more: [lancedb.table.Table.delete][]
=== "Sync API"
Read more: [lancedb.table.Table.delete][]
=== "Async API"
Read more: [lancedb.table.AsyncTable.delete][]
=== "Typescript[^1]"
@@ -495,10 +571,16 @@ Use the `drop_table()` method on the database to remove a table.
=== "Python"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table"
```
=== "Async API"
```python
--8<-- "python/python/tests/docs/test_basic.py:drop_table_async"
```
This permanently removes the table and is not recoverable, unlike deleting rows.
By default, if the table does not exist an exception is raised. To suppress this,
@@ -509,7 +591,7 @@ Use the `drop_table()` method on the database to remove a table.
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/basic.ts:drop_table"
--8<-- "nodejs/examples/basic.test.ts:drop_table"
```
=== "vectordb (deprecated)"
@@ -533,18 +615,25 @@ You can use the embedding API when working with embedding models. It automatical
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Sync API"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:imports"
--8<-- "python/python/tests/docs/test_embeddings_optional.py:openai_embeddings"
```
=== "Async API"
Coming soon to the async API.
https://github.com/lancedb/lancedb/issues/1938
=== "Typescript[^1]"
=== "@lancedb/lancedb"
```typescript
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:openai_embeddings"
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
@@ -554,7 +643,7 @@ You can use the embedding API when working with embedding models. It automatical
--8<-- "rust/lancedb/examples/openai.rs:openai_embeddings"
```
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/).
Learn about using the existing integrations and creating custom embedding functions in the [embedding API guide](./embeddings/index.md).
## What's next

View File

@@ -1,6 +1,14 @@
// --8<-- [start:import]
import * as lancedb from "vectordb";
import { Schema, Field, Float32, FixedSizeList, Int32, Float16 } from "apache-arrow";
import {
Schema,
Field,
Float32,
FixedSizeList,
Int32,
Float16,
} from "apache-arrow";
import * as arrow from "apache-arrow";
// --8<-- [end:import]
import * as fs from "fs";
import { Table as ArrowTable, Utf8 } from "apache-arrow";
@@ -20,10 +28,33 @@ const example = async () => {
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
],
{ writeMode: lancedb.WriteMode.Overwrite }
{ writeMode: lancedb.WriteMode.Overwrite },
);
// --8<-- [end:create_table]
{
// --8<-- [start:create_table_with_schema]
const schema = new arrow.Schema([
new arrow.Field(
"vector",
new arrow.FixedSizeList(
2,
new arrow.Field("item", new arrow.Float32(), true),
),
),
new arrow.Field("item", new arrow.Utf8(), true),
new arrow.Field("price", new arrow.Float32(), true),
]);
const data = [
{ vector: [3.1, 4.1], item: "foo", price: 10.0 },
{ vector: [5.9, 26.5], item: "bar", price: 20.0 },
];
const tbl = await db.createTable({
name: "myTableWithSchema",
data,
schema,
});
// --8<-- [end:create_table_with_schema]
}
// --8<-- [start:add]
const newData = Array.from({ length: 500 }, (_, i) => ({
@@ -43,38 +74,39 @@ const example = async () => {
// --8<-- [end:create_index]
// --8<-- [start:create_empty_table]
const schema = new Schema([
new Field("id", new Int32()),
new Field("name", new Utf8()),
const schema = new arrow.Schema([
new arrow.Field("id", new arrow.Int32()),
new arrow.Field("name", new arrow.Utf8()),
]);
const empty_tbl = await db.createTable({ name: "empty_table", schema });
// --8<-- [end:create_empty_table]
// --8<-- [start:create_f16_table]
const dim = 16
const total = 10
const f16_schema = new Schema([
new Field('id', new Int32()),
{
// --8<-- [start:create_f16_table]
const dim = 16;
const total = 10;
const schema = new Schema([
new Field("id", new Int32()),
new Field(
'vector',
new FixedSizeList(dim, new Field('item', new Float16(), true)),
false
)
])
const data = lancedb.makeArrowTable(
"vector",
new FixedSizeList(dim, new Field("item", new Float16(), true)),
false,
),
]);
const data = lancedb.makeArrowTable(
Array.from(Array(total), (_, i) => ({
id: i,
vector: Array.from(Array(dim), Math.random)
vector: Array.from(Array(dim), Math.random),
})),
{ f16_schema }
)
const table = await db.createTable('f16_tbl', data)
// --8<-- [end:create_f16_table]
{ schema },
);
const table = await db.createTable("f16_tbl", data);
// --8<-- [end:create_f16_table]
}
// --8<-- [start:search]
const query = await tbl.search([100, 100]).limit(2).execute();
// --8<-- [end:search]
console.log(query);
// --8<-- [start:delete]
await tbl.delete('item = "fizz"');
@@ -86,8 +118,9 @@ const example = async () => {
};
async function main() {
console.log("basic_legacy.ts: start");
await example();
console.log("Basic example: done");
console.log("basic_legacy.ts: done");
}
main();

View File

@@ -0,0 +1,34 @@
This section provides answers to the most common questions asked about LanceDB Cloud. By following these guidelines, you can ensure a smooth, performant experience with LanceDB Cloud.
### Should I reuse the database connection?
Yes! It is recommended to establish a single database connection and maintain it throughout your interaction with the tables within.
LanceDB uses HTTP connections to communicate with the servers. By re-using the Connection object, you avoid the overhead of repeatedly establishing HTTP connections, significantly improving efficiency.
### Should I re-use the `Table` object?
`table = db.open_table()` should be called once and used for all subsequent table operations. If there are changes to the opened table, `table` always reflect the **latest version** of the data.
### What should I do if I need to search for rows by `id`?
LanceDB Cloud currently does not support an ID or primary key column. You are recommended to add a
user-defined ID column. To significantly improve the query performance with SQL causes, a scalar BITMAP/BTREE index should be created on this column.
### What are the vector indexing types supported by LanceDB Cloud?
We support `IVF_PQ` and `IVF_HNSW_SQ` as the `index_type` which is passed to `create_index`. LanceDB Cloud tunes the indexing parameters automatically to achieve the best tradeoff between query latency and query quality.
### When I add new rows to a table, do I need to manually update the index?
No! LanceDB Cloud triggers an asynchronous background job to index the new vectors.
Even though indexing is asynchronous, your vectors will still be immediately searchable. LanceDB uses brute-force search to search over unindexed rows. This makes you new data is immediately available, but does increase latency temporarily. To disable the brute-force part of search, set the `fast_search` flag in your query to `true`.
### Do I need to reindex the whole dataset if only a small portion of the data is deleted or updated?
No! Similar to adding data to the table, LanceDB Cloud triggers an asynchronous background job to update the existing indices. Therefore, no action is needed from users and there is absolutely no
downtime expected.
### How do I know whether an index has been created?
While index creation in LanceDB Cloud is generally fast, querying immediately after a `create_index` call may result in errors. It's recommended to use `list_indices` to verify index creation before querying.
### Why is my query latency higher than expected?
Multiple factors can impact query latency. To reduce query latency, consider the following:
- Send pre-warm queries: send a few queries to warm up the cache before an actual user query.
- Check network latency: LanceDB Cloud is hosted in AWS `us-east-1` region. It is recommended to run queries from an EC2 instance that is in the same region.
- Create scalar indices: If you are filtering on metadata, it is recommended to create scalar indices on those columns. This will speedup searches with metadata filtering. See [here](../guides/scalar_index.md) for more details on creating a scalar index.

View File

@@ -2,7 +2,7 @@
LanceDB Cloud is a SaaS (software-as-a-service) solution that runs serverless in the cloud, clearly separating storage from compute. It's designed to be highly scalable without breaking the bank. LanceDB Cloud is currently in private beta with general availability coming soon, but you can apply for early access with the private beta release by signing up below.
[Try out LanceDB Cloud](https://noteforms.com/forms/lancedb-mailing-list-cloud-kty1o5?notionforms=1&utm_source=notionforms){ .md-button .md-button--primary }
[Try out LanceDB Cloud (Public Beta)](https://cloud.lancedb.com){ .md-button .md-button--primary }
## Architecture

View File

@@ -13,7 +13,7 @@ The following concepts are important to keep in mind:
- Data is versioned, with each insert operation creating a new version of the dataset and an update to the manifest that tracks versions via metadata
!!! note
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
1. First, each version contains metadata and just the new/updated data in your transaction. So if you have 100 versions, they aren't 100 duplicates of the same data. However, they do have 100x the metadata overhead of a single version, which can result in slower queries.
2. Second, these versions exist to keep LanceDB scalable and consistent. We do not immediately blow away old versions when creating new ones because other clients might be in the middle of querying the old version. It's important to retain older versions for as long as they might be queried.
## What are fragments?
@@ -37,6 +37,10 @@ Depending on the use case and dataset, optimal compaction will have different re
- Its always better to use *batch* inserts rather than adding 1 row at a time (to avoid too small fragments). If single-row inserts are unavoidable, run compaction on a regular basis to merge them into larger fragments.
- Keep the number of fragments under 100, which is suitable for most use cases (for *really* large datasets of >500M rows, more fragments might be needed)
!!! note
LanceDB Cloud/Enterprise supports [auto-compaction](https://docs.lancedb.com/enterprise/architecture/architecture#write-path) which automatically optimizes fragments in the background as data changes.
## Deletion
Although Lance allows you to delete rows from a dataset, it does not actually delete the data immediately. It simply marks the row as deleted in the `DataFile` that represents a fragment. For a given version of the dataset, each fragment can have up to one deletion file (if no rows were ever deleted from that fragment, it will not have a deletion file). This is important to keep in mind because it means that the data is still there, and can be recovered if needed, as long as that version still exists based on your backup policy.
@@ -50,13 +54,9 @@ Reindexing is the process of updating the index to account for new data, keeping
Both LanceDB OSS and Cloud support reindexing, but the process (at least for now) is different for each, depending on the type of index.
When a reindex job is triggered in the background, the entire data is reindexed, but in the interim as new queries come in, LanceDB will combine results from the existing index with exhaustive kNN search on the new data. This is done to ensure that you're still searching on all your data, but it does come at a performance cost. The more data that you add without reindexing, the impact on latency (due to exhaustive search) can be noticeable.
In LanceDB OSS, re-indexing happens synchronously when you call either `create_index` or `optimize` on a table. In LanceDB Cloud, re-indexing happens asynchronously as you add and update data in your table.
### Vector reindex
By default, queries will search new data even if it has yet to be indexed. This is done using brute-force methods, such as kNN for vector search, and combined with the fast index search results. This is done to ensure that you're always searching over all your data, but it does come at a performance cost. Without reindexing, adding more data to a table will make queries slower and more expensive. This behavior can be disabled by setting the [fast_search](https://lancedb.github.io/lancedb/python/python/#lancedb.query.AsyncQuery.fast_search) parameter which will instruct the query to ignore un-indexed data.
* LanceDB Cloud supports incremental reindexing, where a background process will trigger a new index build for you automatically when new data is added to a dataset
* LanceDB Cloud/Enterprise supports [automatic incremental reindexing](https://docs.lancedb.com/core#vector-index) for vector, scalar, and FTS indices, where a background process will trigger a new index build for you automatically when new data is added or modified in a dataset
* LanceDB OSS requires you to manually trigger a reindex operation -- we are working on adding incremental reindexing to LanceDB OSS as well
### FTS reindex
FTS reindexing is supported in both LanceDB OSS and Cloud, but requires that it's manually rebuilt once you have a significant enough amount of new data added that needs to be reindexed. We [updated](https://github.com/lancedb/lancedb/pull/762) Tantivy's default heap size from 128MB to 1GB in LanceDB to make it much faster to reindex, by up to 10x from the default settings.

View File

@@ -0,0 +1,99 @@
# Understanding HNSW index
Approximate Nearest Neighbor (ANN) search is a method for finding data points near a given point in a dataset, though not always the exact nearest one. HNSW is one of the most accurate and fastest Approximate Nearest Neighbour search algorithms, Its beneficial in high-dimensional spaces where finding the same nearest neighbor would be too slow and costly
[Jump to usage](#usage)
There are three main types of ANN search algorithms:
* **Tree-based search algorithms**: Use a tree structure to organize and store data points.
* **Hash-based search algorithms**: Use a specialized geometric hash table to store and manage data points. These algorithms typically focus on theoretical guarantees, and don't usually perform as well as the other approaches in practice.
* **Graph-based search algorithms**: Use a graph structure to store data points, which can be a bit complex.
HNSW is a graph-based algorithm. All graph-based search algorithms rely on the idea of a k-nearest neighbor (or k-approximate nearest neighbor) graph, which we outline below.
HNSW also combines this with the ideas behind a classic 1-dimensional search data structure: the skip list.
## k-Nearest Neighbor Graphs and k-approximate Nearest neighbor Graphs
The k-nearest neighbor graph actually predates its use for ANN search. Its construction is quite simple:
* Each vector in the dataset is given an associated vertex.
* Each vertex has outgoing edges to its k nearest neighbors. That is, the k closest other vertices by Euclidean distance between the two corresponding vectors. This can be thought of as a "friend list" for the vertex.
* For some applications (including nearest-neighbor search), the incoming edges are also added.
Eventually, it was realized that the following greedy search method over such a graph typically results in good approximate nearest neighbors:
* Given a query vector, start at some fixed "entry point" vertex (e.g. the approximate center node).
* Look at that vertex's neighbors. If any of them are closer to the query vector than the current vertex, then move to that vertex.
* Repeat until a local optimum is found.
The above algorithm also generalizes to e.g. top 10 approximate nearest neighbors.
Computing a k-nearest neighbor graph is actually quite slow, taking quadratic time in the dataset size. It was quickly realized that near-identical performance can be achieved using a k-approximate nearest neighbor graph. That is, instead of obtaining the k-nearest neighbors for each vertex, an approximate nearest neighbor search data structure is used to build much faster.
In fact, another data structure is not needed: This can be done "incrementally".
That is, if you start with a k-ANN graph for n-1 vertices, you can extend it to a k-ANN graph for n vertices as well by using the graph to obtain the k-ANN for the new vertex.
One downside of k-NN and k-ANN graphs alone is that one must typically build them with a large value of k to get decent results, resulting in a large index.
## HNSW: Hierarchical Navigable Small Worlds
HNSW builds on k-ANN in two main ways:
* Instead of getting the k-approximate nearest neighbors for a large value of k, it sparsifies the k-ANN graph using a carefully chosen "edge pruning" heuristic, allowing for the number of edges per vertex to be limited to a relatively small constant.
* The "entry point" vertex is chosen dynamically using a recursively constructed data structure on a subset of the data, similarly to a skip list.
This recursive structure can be thought of as separating into layers:
* At the bottom-most layer, an k-ANN graph on the whole dataset is present.
* At the second layer, a k-ANN graph on a fraction of the dataset (e.g. 10%) is present.
* At the Lth layer, a k-ANN graph is present. It is over a (constant) fraction (e.g. 10%) of the vectors/vertices present in the L-1th layer.
Then the greedy search routine operates as follows:
* At the top layer (using an arbitrary vertex as an entry point), use the greedy local search routine on the k-ANN graph to get an approximate nearest neighbor at that layer.
* Using the approximate nearest neighbor found in the previous layer as an entry point, find an approximate nearest neighbor in the next layer with the same method.
* Repeat until the bottom-most layer is reached. Then use the entry point to find multiple nearest neighbors (e.g. top 10).
## Usage
There are three key parameters to set when constructing an HNSW index:
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `m`: The number of neighbors to select for each vector in the HNSW graph.
* `ef_construction`: The number of candidates to evaluate during the construction of the HNSW graph.
We can combine the above concepts to understand how to build and query an HNSW index in LanceDB.
### Construct index
```python
import lancedb
import numpy as np
uri = "/tmp/lancedb"
db = lancedb.connect(uri)
# Create 10,000 sample vectors
data = [
{"vector": row, "item": f"item {i}"}
for i, row in enumerate(np.random.random((10_000, 1536)).astype('float32'))
]
# Add the vectors to a table
tbl = db.create_table("my_vectors", data=data)
# Create and train the HNSW index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(index_type=IVF_HNSW_SQ)
```
### Query the index
```python
# Search using a random 1536-dimensional embedding
tbl.search(np.random.random((1536))) \
.limit(2) \
.to_pandas()
```

View File

@@ -47,7 +47,7 @@ We can combine the above concepts to understand how to build and query an IVF-PQ
There are three key parameters to set when constructing an IVF-PQ index:
* `metric`: Use an `L2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `metric`: Use an `l2` euclidean distance metric. We also support `dot` and `cosine` distance.
* `num_partitions`: The number of partitions in the IVF portion of the index.
* `num_sub_vectors`: The number of sub-vectors that will be created during Product Quantization (PQ).
@@ -56,10 +56,12 @@ In Python, the index can be created as follows:
```python
# Create and train the index for a 1536-dimensional vector
# Make sure you have enough data in the table for an effective training step
tbl.create_index(metric="L2", num_partitions=256, num_sub_vectors=96)
tbl.create_index(metric="l2", num_partitions=256, num_sub_vectors=96)
```
!!! note
`num_partitions`=256 and `num_sub_vectors`=96 does not work for every dataset. Those values needs to be adjusted for your particular dataset.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See the [FAQs](#faq) below for best practices on choosing these parameters.
The `num_partitions` is usually chosen to target a particular number of vectors per partition. `num_sub_vectors` is typically chosen based on the desired recall and the dimensionality of the vector. See [here](../ann_indexes.md/#how-to-choose-num_partitions-and-num_sub_vectors-for-ivf_pq-index) for best practices on choosing these parameters.
### Query the index

View File

@@ -0,0 +1,67 @@
# Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).

View File

@@ -0,0 +1,51 @@
# Jina Embeddings : Multimodal
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```

View File

@@ -0,0 +1,82 @@
# OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry().get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```

View File

@@ -0,0 +1,51 @@
# AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
model = get_registry().get("bedrock-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -0,0 +1,63 @@
# Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
- embed-english-v3.0
- embed-multilingual-v3.0
- embed-english-light-v3.0
- embed-multilingual-light-v3.0
- embed-english-v2.0
- embed-english-light-v2.0
- embed-multilingual-v2.0
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,35 @@
# Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```

View File

@@ -0,0 +1,24 @@
# Huggingface embedding models
We offer support for all Hugging Face models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`. Some Hugging Face models might require custom models defined on the HuggingFace Hub in their own modeling files. You may enable this by setting `trust_remote_code=True`. This option should only be set to True for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,75 @@
# IBM watsonx.ai Embeddings
Generate text embeddings using IBM's watsonx.ai platform.
## Supported Models
You can find a list of supported models at [IBM watsonx.ai Documentation](https://dataplatform.cloud.ibm.com/docs/content/wsj/analyze-data/fm-models-embed.html?context=wx). The currently supported model names are:
- `ibm/slate-125m-english-rtrvr`
- `ibm/slate-30m-english-rtrvr`
- `sentence-transformers/all-minilm-l12-v2`
- `intfloat/multilingual-e5-large`
## Parameters
The following parameters can be passed to the `create` method:
| Parameter | Type | Default Value | Description |
|------------|----------|----------------------------------|-----------------------------------------------------------|
| name | str | "ibm/slate-125m-english-rtrvr" | The model ID of the watsonx.ai model to use |
| api_key | str | None | Optional IBM Cloud API key (or set `WATSONX_API_KEY`) |
| project_id | str | None | Optional watsonx project ID (or set `WATSONX_PROJECT_ID`) |
| url | str | None | Optional custom URL for the watsonx.ai instance |
| params | dict | None | Optional additional parameters for the embedding model |
## Usage Example
First, the watsonx.ai library is an optional dependency, so must be installed seperately:
```
pip install ibm-watsonx-ai
```
Optionally set environment variables (if not passing credentials to `create` directly):
```sh
export WATSONX_API_KEY="YOUR_WATSONX_API_KEY"
export WATSONX_PROJECT_ID="YOUR_WATSONX_PROJECT_ID"
```
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
watsonx_embed = EmbeddingFunctionRegistry
.get_instance()
.get("watsonx")
.create(
name="ibm/slate-125m-english-rtrvr",
# Uncomment and set these if not using environment variables
# api_key="your_api_key_here",
# project_id="your_project_id_here",
# url="your_watsonx_url_here",
# params={...},
)
class TextModel(LanceModel):
text: str = watsonx_embed.SourceField()
vector: Vector(watsonx_embed.ndims()) = watsonx_embed.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"},
]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("watsonx_test", schema=TextModel, mode="overwrite")
tbl.add(data)
rs = tbl.search("hello").limit(1).to_pandas()
print(rs)
```

View File

@@ -0,0 +1,50 @@
# Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```

View File

@@ -0,0 +1,39 @@
# Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -0,0 +1,37 @@
# Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,35 @@
# OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
| `use_azure` | bool | `False` | Set true to use Azure OpenAPI SDK |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```

View File

@@ -0,0 +1,174 @@
# Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
| `trust_remote_code` | `bool` | `False` | Whether to trust and execute remote code from the model's Huggingface repository |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.

View File

@@ -0,0 +1,51 @@
# VoyageAI Embeddings
Voyage AI provides cutting-edge embedding and rerankers.
Using voyageai API requires voyageai package, which can be installed using `pip install voyageai`. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `VOYAGE_API_KEY` environment variable to use the VoyageAI API.
Supported models are:
- voyage-3
- voyage-3-lite
- voyage-finance-2
- voyage-multilingual-2
- voyage-law-2
- voyage-code-2
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|--------|---------|
| `name` | `str` | `None` | The model ID of the model to use. Supported base models for Text Embeddings: voyage-3, voyage-3-lite, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2 |
| `input_type` | `str` | `None` | Type of the input text. Default to None. Other options: query, document. |
| `truncation` | `bool` | `True` | Whether to truncate the input texts to fit within the context length. |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
voyageai = EmbeddingFunctionRegistry
.get_instance()
.get("voyageai")
.create(name="voyage-3")
class TextModel(LanceModel):
text: str = voyageai.SourceField()
vector: Vector(voyageai.ndims()) = voyageai.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
```

View File

@@ -15,198 +15,234 @@ There is another optional layer of abstraction available: `TextEmbeddingFunction
Let's implement `SentenceTransformerEmbeddings` class. All you need to do is implement the `generate_embeddings()` and `ndims` function to handle the input types you expect and register the class in the global `EmbeddingFunctionRegistry`
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
=== "Python"
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
```python
from lancedb.embeddings import register
from lancedb.util import attempt_import_or_raise
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@register("sentence-transformers")
class SentenceTransformerEmbeddings(TextEmbeddingFunction):
name: str = "all-MiniLM-L6-v2"
# set more default instance vars like device, etc.
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
def __init__(self, **kwargs):
super().__init__(**kwargs)
self._ndims = None
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and defaul settings.
def generate_embeddings(self, texts):
return self._embedding_model().encode(list(texts), ...).tolist()
def ndims(self):
if self._ndims is None:
self._ndims = len(self.generate_embeddings("foo")[0])
return self._ndims
@cached(cache={})
def _embedding_model(self):
return sentence_transformers.SentenceTransformer(name)
```
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:imports"
--8<--- "nodejs/examples/custom_embedding_function.test.ts:embedding_impl"
```
This is a stripped down version of our implementation of `SentenceTransformerEmbeddings` that removes certain optimizations and default settings.
!!! danger "Use sensitive keys to prevent leaking secrets"
To prevent leaking secrets, such as API keys, you should add any sensitive
parameters of an embedding function to the output of the
[sensitive_keys()][lancedb.embeddings.base.EmbeddingFunction.sensitive_keys] /
[getSensitiveKeys()](../../js/namespaces/embedding/classes/EmbeddingFunction/#getsensitivekeys)
method. This prevents users from accidentally instantiating the embedding
function with hard-coded secrets.
Now you can use this embedding function to create your table schema and that's it! you can then ingest data and run queries without manually vectorizing the inputs.
```python
from lancedb.pydantic import LanceModel, Vector
=== "Python"
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
```python
from lancedb.pydantic import LanceModel, Vector
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
registry = EmbeddingFunctionRegistry.get_instance()
stransformer = registry.get("sentence-transformers").create()
tbl = db.create_table("table", schema=TextModelSchema)
class TextModelSchema(LanceModel):
vector: Vector(stransformer.ndims) = stransformer.VectorField()
text: str = stransformer.SourceField()
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
tbl = db.create_table("table", schema=TextModelSchema)
NOTE:
tbl.add(pd.DataFrame({"text": ["halo", "world"]}))
result = tbl.search("world").limit(5)
```
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
=== "TypeScript"
```ts
--8<--- "nodejs/examples/custom_embedding_function.test.ts:call_custom_function"
```
!!! note
You can always implement the `EmbeddingFunction` interface directly if you want or need to, `TextEmbeddingFunction` just makes it much simpler and faster for you to do so, by setting up the boiler plat for text-specific use case
## Multi-modal embedding function example
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support. LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
You can also use the `EmbeddingFunction` interface to implement more complex workflows such as multi-modal embedding function support.
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
=== "Python"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
LanceDB implements `OpenClipEmeddingFunction` class that suppports multi-modal seach. Here's the implementation that you can use as a reference to build your own multi-modal embedding functions.
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
```python
@register("open-clip")
class OpenClipEmbeddings(EmbeddingFunction):
name: str = "ViT-B-32"
pretrained: str = "laion2b_s34b_b79k"
device: str = "cpu"
batch_size: int = 64
normalize: bool = True
_model = PrivateAttr()
_preprocess = PrivateAttr()
_tokenizer = PrivateAttr()
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
open_clip = attempt_import_or_raise("open_clip", "open-clip") # EmbeddingFunction util to import external libs and raise if not found
model, _, preprocess = open_clip.create_model_and_transforms(
self.name, pretrained=self.pretrained
)
model.to(self.device)
self._model, self._preprocess = model, preprocess
self._tokenizer = open_clip.get_tokenizer(self.name)
self._ndims = None
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
def ndims(self):
if self._ndims is None:
self._ndims = self.generate_text_embeddings("foo").shape[0]
return self._ndims
def compute_query_embeddings(
self, query: Union[str, "PIL.Image.Image"], *args, **kwargs
) -> List[np.ndarray]:
"""
Compute the embeddings for a given user query
Parameters
----------
query : Union[str, PIL.Image.Image]
The query to embed. A query can be either text or an image.
"""
if isinstance(query, str):
return [self.generate_text_embeddings(query)]
else:
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(query, PIL.Image.Image):
return [self.generate_image_embedding(query)]
else:
raise TypeError("OpenClip supports str or PIL Image as query")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def generate_text_embeddings(self, text: str) -> np.ndarray:
torch = attempt_import_or_raise("torch")
text = self.sanitize_input(text)
text = self._tokenizer(text)
text.to(self.device)
with torch.no_grad():
text_features = self._model.encode_text(text.to(self.device))
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
text_features /= text_features.norm(dim=-1, keepdim=True)
return text_features.cpu().numpy().squeeze()
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
def sanitize_input(self, images: IMAGES) -> Union[List[bytes], np.ndarray]:
"""
Sanitize the input to the embedding function.
"""
if isinstance(images, (str, bytes)):
images = [images]
elif isinstance(images, pa.Array):
images = images.to_pylist()
elif isinstance(images, pa.ChunkedArray):
images = images.combine_chunks().to_pylist()
return images
=== "TypeScript"
def compute_source_embeddings(
self, images: IMAGES, *args, **kwargs
) -> List[np.array]:
"""
Get the embeddings for the given images
"""
images = self.sanitize_input(images)
embeddings = []
for i in range(0, len(images), self.batch_size):
j = min(i + self.batch_size, len(images))
batch = images[i:j]
embeddings.extend(self._parallel_get(batch))
return embeddings
def _parallel_get(self, images: Union[List[str], List[bytes]]) -> List[np.ndarray]:
"""
Issue concurrent requests to retrieve the image data
"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.generate_image_embedding, image)
for image in images
]
return [future.result() for future in futures]
def generate_image_embedding(
self, image: Union[str, bytes, "PIL.Image.Image"]
) -> np.ndarray:
"""
Generate the embedding for a single image
Parameters
----------
image : Union[str, bytes, PIL.Image.Image]
The image to embed. If the image is a str, it is treated as a uri.
If the image is bytes, it is treated as the raw image bytes.
"""
torch = attempt_import_or_raise("torch")
# TODO handle retry and errors for https
image = self._to_pil(image)
image = self._preprocess(image).unsqueeze(0)
with torch.no_grad():
return self._encode_and_normalize_image(image)
def _to_pil(self, image: Union[str, bytes]):
PIL = attempt_import_or_raise("PIL", "pillow")
if isinstance(image, bytes):
return PIL.Image.open(io.BytesIO(image))
if isinstance(image, PIL.Image.Image):
return image
elif isinstance(image, str):
parsed = urlparse.urlparse(image)
# TODO handle drive letter on windows.
if parsed.scheme == "file":
return PIL.Image.open(parsed.path)
elif parsed.scheme == "":
return PIL.Image.open(image if os.name == "nt" else parsed.path)
elif parsed.scheme.startswith("http"):
return PIL.Image.open(io.BytesIO(url_retrieve(image)))
else:
raise NotImplementedError("Only local and http(s) urls are supported")
def _encode_and_normalize_image(self, image_tensor: "torch.Tensor"):
"""
encode a single image tensor and optionally normalize the output
"""
image_features = self._model.encode_image(image_tensor)
if self.normalize:
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.cpu().numpy().squeeze()
```
Coming Soon! See this [issue](https://github.com/lancedb/lancedb/issues/1482) to track the status!

View File

@@ -1,722 +1,86 @@
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models.
# 📚 Available Embedding Models
## Text embedding functions
Contains the text embedding functions registered by default.
There are various embedding functions available out of the box with LanceDB to manage your embeddings implicitly. We're actively working on adding other popular embedding APIs and models. 🚀
* Embedding functions have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with exponential backoff.
* Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
Before jumping on the list of available models, let's understand how to get an embedding model initialized and configured to use in our code:
### Sentence transformers
Allows you to set parameters when registering a `sentence-transformers` object.
!!! info
Sentence transformer embeddings are normalized by default. It is recommended to use normalized embeddings for similarity search.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `all-MiniLM-L6-v2` | The name of the model |
| `device` | `str` | `cpu` | The device to run the model on (can be `cpu` or `gpu`) |
| `normalize` | `bool` | `True` | Whether to normalize the input text before feeding it to the model |
??? "Check out available sentence-transformer models here!"
```markdown
- sentence-transformers/all-MiniLM-L12-v2
- sentence-transformers/paraphrase-mpnet-base-v2
- sentence-transformers/gtr-t5-base
- sentence-transformers/LaBSE
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/bert-base-nli-max-tokens
- sentence-transformers/bert-base-nli-mean-tokens
- sentence-transformers/bert-base-nli-stsb-mean-tokens
- sentence-transformers/bert-base-wikipedia-sections-mean-tokens
- sentence-transformers/bert-large-nli-cls-token
- sentence-transformers/bert-large-nli-max-tokens
- sentence-transformers/bert-large-nli-mean-tokens
- sentence-transformers/bert-large-nli-stsb-mean-tokens
- sentence-transformers/distilbert-base-nli-max-tokens
- sentence-transformers/distilbert-base-nli-mean-tokens
- sentence-transformers/distilbert-base-nli-stsb-mean-tokens
- sentence-transformers/distilroberta-base-msmarco-v1
- sentence-transformers/distilroberta-base-msmarco-v2
- sentence-transformers/nli-bert-base-cls-pooling
- sentence-transformers/nli-bert-base-max-pooling
- sentence-transformers/nli-bert-base
- sentence-transformers/nli-bert-large-cls-pooling
- sentence-transformers/nli-bert-large-max-pooling
- sentence-transformers/nli-bert-large
- sentence-transformers/nli-distilbert-base-max-pooling
- sentence-transformers/nli-distilbert-base
- sentence-transformers/nli-roberta-base
- sentence-transformers/nli-roberta-large
- sentence-transformers/roberta-base-nli-mean-tokens
- sentence-transformers/roberta-base-nli-stsb-mean-tokens
- sentence-transformers/roberta-large-nli-mean-tokens
- sentence-transformers/roberta-large-nli-stsb-mean-tokens
- sentence-transformers/stsb-bert-base
- sentence-transformers/stsb-bert-large
- sentence-transformers/stsb-distilbert-base
- sentence-transformers/stsb-roberta-base
- sentence-transformers/stsb-roberta-large
- sentence-transformers/xlm-r-100langs-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-100langs-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-base-en-ko-nli-ststb
- sentence-transformers/xlm-r-bert-base-nli-mean-tokens
- sentence-transformers/xlm-r-bert-base-nli-stsb-mean-tokens
- sentence-transformers/xlm-r-large-en-ko-nli-ststb
- sentence-transformers/bert-base-nli-cls-token
- sentence-transformers/all-distilroberta-v1
- sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- sentence-transformers/multi-qa-distilbert-cos-v1
- sentence-transformers/multi-qa-distilbert-dot-v1
- sentence-transformers/multi-qa-mpnet-base-cos-v1
- sentence-transformers/multi-qa-mpnet-base-dot-v1
- sentence-transformers/nli-distilroberta-base-v2
- sentence-transformers/all-MiniLM-L6-v1
- sentence-transformers/all-mpnet-base-v1
- sentence-transformers/all-mpnet-base-v2
- sentence-transformers/all-roberta-large-v1
- sentence-transformers/allenai-specter
- sentence-transformers/average_word_embeddings_glove.6B.300d
- sentence-transformers/average_word_embeddings_glove.840B.300d
- sentence-transformers/average_word_embeddings_komninos
- sentence-transformers/average_word_embeddings_levy_dependency
- sentence-transformers/clip-ViT-B-32-multilingual-v1
- sentence-transformers/clip-ViT-B-32
- sentence-transformers/distilbert-base-nli-stsb-quora-ranking
- sentence-transformers/distilbert-multilingual-nli-stsb-quora-ranking
- sentence-transformers/distilroberta-base-paraphrase-v1
- sentence-transformers/distiluse-base-multilingual-cased-v1
- sentence-transformers/distiluse-base-multilingual-cased-v2
- sentence-transformers/distiluse-base-multilingual-cased
- sentence-transformers/facebook-dpr-ctx_encoder-multiset-base
- sentence-transformers/facebook-dpr-ctx_encoder-single-nq-base
- sentence-transformers/facebook-dpr-question_encoder-multiset-base
- sentence-transformers/facebook-dpr-question_encoder-single-nq-base
- sentence-transformers/gtr-t5-large
- sentence-transformers/gtr-t5-xl
- sentence-transformers/gtr-t5-xxl
- sentence-transformers/msmarco-MiniLM-L-12-v3
- sentence-transformers/msmarco-MiniLM-L-6-v3
- sentence-transformers/msmarco-MiniLM-L12-cos-v5
- sentence-transformers/msmarco-MiniLM-L6-cos-v5
- sentence-transformers/msmarco-bert-base-dot-v5
- sentence-transformers/msmarco-bert-co-condensor
- sentence-transformers/msmarco-distilbert-base-dot-prod-v3
- sentence-transformers/msmarco-distilbert-base-tas-b
- sentence-transformers/msmarco-distilbert-base-v2
- sentence-transformers/msmarco-distilbert-base-v3
- sentence-transformers/msmarco-distilbert-base-v4
- sentence-transformers/msmarco-distilbert-cos-v5
- sentence-transformers/msmarco-distilbert-dot-v5
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-lng-aligned
- sentence-transformers/msmarco-distilbert-multilingual-en-de-v2-tmp-trained-scratch
- sentence-transformers/msmarco-distilroberta-base-v2
- sentence-transformers/msmarco-roberta-base-ance-firstp
- sentence-transformers/msmarco-roberta-base-v2
- sentence-transformers/msmarco-roberta-base-v3
- sentence-transformers/multi-qa-MiniLM-L6-cos-v1
- sentence-transformers/nli-mpnet-base-v2
- sentence-transformers/nli-roberta-base-v2
- sentence-transformers/nq-distilbert-base-v1
- sentence-transformers/paraphrase-MiniLM-L12-v2
- sentence-transformers/paraphrase-MiniLM-L3-v2
- sentence-transformers/paraphrase-MiniLM-L6-v2
- sentence-transformers/paraphrase-TinyBERT-L6-v2
- sentence-transformers/paraphrase-albert-base-v2
- sentence-transformers/paraphrase-albert-small-v2
- sentence-transformers/paraphrase-distilroberta-base-v1
- sentence-transformers/paraphrase-distilroberta-base-v2
- sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- sentence-transformers/paraphrase-xlm-r-multilingual-v1
- sentence-transformers/quora-distilbert-base
- sentence-transformers/quora-distilbert-multilingual
- sentence-transformers/sentence-t5-base
- sentence-transformers/sentence-t5-large
- sentence-transformers/sentence-t5-xxl
- sentence-transformers/sentence-t5-xl
- sentence-transformers/stsb-distilroberta-base-v2
- sentence-transformers/stsb-mpnet-base-v2
- sentence-transformers/stsb-roberta-base-v2
- sentence-transformers/stsb-xlm-r-multilingual
- sentence-transformers/xlm-r-distilroberta-base-paraphrase-v1
- sentence-transformers/clip-ViT-L-14
- sentence-transformers/clip-ViT-B-16
- sentence-transformers/use-cmlm-multilingual
- sentence-transformers/all-MiniLM-L12-v1
```
!!! info
You can also load many other model architectures from the library. For example models from sources such as BAAI, nomic, salesforce research, etc.
See this HF hub page for all [supported models](https://huggingface.co/models?library=sentence-transformers).
!!! note "BAAI Embeddings example"
Here is an example that uses BAAI embedding model from the HuggingFace Hub [supported models](https://huggingface.co/models?library=sentence-transformers)
!!! example "Example usage"
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
model = get_registry().get("sentence-transformers").create(name="BAAI/bge-small-en-v1.5", device="cpu")
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
table = db.create_table("words", schema=Words)
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
Visit sentence-transformers [HuggingFace HUB](https://huggingface.co/sentence-transformers) page for more information on the available models.
### Huggingface embedding models
We offer support for all huggingface models (which can be loaded via [transformers](https://huggingface.co/docs/transformers/en/index) library). The default model is `colbert-ir/colbertv2.0` which also has its own special callout - `registry.get("colbert")`
Example usage -
```python
import lancedb
import pandas as pd
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
model = get_registry().get("huggingface").create(name='facebook/bart-base')
class Words(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hi hello sayonara", "goodbye world"]})
table = db.create_table("greets", schema=Words)
table.add(df)
query = "old greeting"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Ollama embeddings
Generate embeddings via the [ollama](https://github.com/ollama/ollama-python) python library. More details:
- [Ollama docs on embeddings](https://github.com/ollama/ollama/blob/main/docs/api.md#generate-embeddings)
- [Ollama blog on embeddings](https://ollama.com/blog/embedding-models)
| Parameter | Type | Default Value | Description |
|------------------------|----------------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| `name` | `str` | `nomic-embed-text` | The name of the model. |
| `host` | `str` | `http://localhost:11434` | The Ollama host to connect to. |
| `options` | `ollama.Options` or `dict` | `None` | Additional model parameters listed in the documentation for the Modelfile such as `temperature`. |
| `keep_alive` | `float` or `str` | `"5m"` | Controls how long the model will stay loaded into memory following the request. |
| `ollama_client_kwargs` | `dict` | `{}` | kwargs that can be past to the `ollama.Client`. |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("ollama").create(name="nomic-embed-text")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### OpenAI embeddings
LanceDB registers the OpenAI embeddings function in the registry by default, as `openai`. Below are the parameters that you can customize when creating the instances:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"text-embedding-ada-002"` | The name of the model. |
| `dim` | `int` | Model default | For OpenAI's newer text-embedding-3 model, we can specify a dimensionality that is smaller than the 1536 size. This feature supports it |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect("/tmp/db")
func = get_registry().get("openai").create(name="text-embedding-ada-002")
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]
print(actual.text)
```
### Instructor Embeddings
[Instructor](https://instructor-embedding.github.io/) is an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g. classification, retrieval, clustering, text evaluation, etc.) and domains (e.g. science, finance, etc.) by simply providing the task instruction, without any finetuning.
If you want to calculate customized embeddings for specific sentences, you can follow the unified template to write instructions.
!!! info
Represent the `domain` `text_type` for `task_objective`:
* `domain` is optional, and it specifies the domain of the text, e.g. science, finance, medicine, etc.
* `text_type` is required, and it specifies the encoding unit, e.g. sentence, document, paragraph, etc.
* `task_objective` is optional, and it specifies the objective of embedding, e.g. retrieve a document, classify the sentence, etc.
More information about the model can be found at the [source URL](https://github.com/xlang-ai/instructor-embedding).
| Argument | Type | Default | Description |
|---|---|---|---|
| `name` | `str` | "hkunlp/instructor-base" | The name of the model to use |
| `batch_size` | `int` | `32` | The batch size to use when generating embeddings |
| `device` | `str` | `"cpu"` | The device to use when generating embeddings |
| `show_progress_bar` | `bool` | `True` | Whether to show a progress bar when generating embeddings |
| `normalize_embeddings` | `bool` | `True` | Whether to normalize the embeddings |
| `quantize` | `bool` | `False` | Whether to quantize the model |
| `source_instruction` | `str` | `"represent the docuement for retreival"` | The instruction for the source column |
| `query_instruction` | `str` | `"represent the document for retreiving the most similar documents"` | The instruction for the query |
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry, InstuctorEmbeddingFunction
instructor = get_registry().get("instructor").create(
source_instruction="represent the docuement for retreival",
query_instruction="represent the document for retreiving the most similar documents"
)
class Schema(LanceModel):
vector: Vector(instructor.ndims()) = instructor.VectorField()
text: str = instructor.SourceField()
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=Schema, mode="overwrite")
texts = [{"text": "Capitalism has been dominant in the Western world since the end of feudalism, but most feel[who?] that..."},
{"text": "The disparate impact theory is especially controversial under the Fair Housing Act because the Act..."},
{"text": "Disparate impact in United States labor law refers to practices in employment, housing, and other areas that.."}]
tbl.add(texts)
```
### Gemini Embeddings
With Google's Gemini, you can represent text (words, sentences, and blocks of text) in a vectorized form, making it easier to compare and contrast embeddings. For example, two texts that share a similar subject matter or sentiment should have similar embeddings, which can be identified through mathematical comparison techniques such as cosine similarity. For more on how and why you should use embeddings, refer to the Embeddings guide.
The Gemini Embedding Model API supports various task types:
| Task Type | Description |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| "`retrieval_query`" | Specifies the given text is a query in a search/retrieval setting. |
| "`retrieval_document`" | Specifies the given text is a document in a search/retrieval setting. Using this task type requires a title but is automatically proided by Embeddings API |
| "`semantic_similarity`" | Specifies the given text will be used for Semantic Textual Similarity (STS). |
| "`classification`" | Specifies that the embeddings will be used for classification. |
| "`clusering`" | Specifies that the embeddings will be used for clustering. |
Usage Example:
```python
import lancedb
import pandas as pd
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
model = get_registry().get("gemini-text").create()
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
### Cohere Embeddings
Using cohere API requires cohere package, which can be installed using `pip install cohere`. Cohere embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification.
You also need to set the `COHERE_API_KEY` environment variable to use the Cohere API.
Supported models are:
```
* embed-english-v3.0
* embed-multilingual-v3.0
* embed-english-light-v3.0
* embed-multilingual-light-v3.0
* embed-english-v2.0
* embed-english-light-v2.0
* embed-multilingual-v2.0
```
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"embed-english-v2.0"` | The model ID of the cohere model to use. Supported base models for Text Embeddings: embed-english-v3.0, embed-multilingual-v3.0, embed-english-light-v3.0, embed-multilingual-light-v3.0, embed-english-v2.0, embed-english-light-v2.0, embed-multilingual-v2.0 |
| `source_input_type` | `str` | `"search_document"` | The type of input data to be used for the source column. |
| `query_input_type` | `str` | `"search_query"` | The type of input data to be used for the query. |
Cohere supports following input types:
| Input Type | Description |
|-------------------------|---------------------------------------|
| "`search_document`" | Used for embeddings stored in a vector|
| | database for search use-cases. |
| "`search_query`" | Used for embeddings of search queries |
| | run against a vector DB |
| "`semantic_similarity`" | Specifies the given text will be used |
| | for Semantic Textual Similarity (STS) |
| "`classification`" | Used for embeddings passed through a |
| | text classifier. |
| "`clustering`" | Used for the embeddings run through a |
| | clustering algorithm |
Usage Example:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
cohere = EmbeddingFunctionRegistry
.get_instance()
.get("cohere")
.create(name="embed-multilingual-v2.0")
class TextModel(LanceModel):
text: str = cohere.SourceField()
vector: Vector(cohere.ndims()) = cohere.VectorField()
data = [ { "text": "hello world" },
{ "text": "goodbye world" }]
db = lancedb.connect("~/.lancedb")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
model = get_registry()
.get("openai")
.create(name="text-embedding-ada-002")
```
### Jina Embeddings
Jina embeddings are used to generate embeddings for text and image data.
You also need to set the `JINA_API_KEY` environment variable to use the Jina API.
You can find a list of supported models under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
Now let's understand the above syntax:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import EmbeddingFunctionRegistry
os.environ['JINA_API_KEY'] = 'jina_*'
jina_embed = EmbeddingFunctionRegistry.get_instance().get("jina").create(name="jina-embeddings-v2-base-en")
class TextModel(LanceModel):
text: str = jina_embed.SourceField()
vector: Vector(jina_embed.ndims()) = jina_embed.VectorField()
data = [{"text": "hello world"},
{"text": "goodbye world"}]
db = lancedb.connect("~/.lancedb-2")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
tbl.add(data)
model = get_registry().get("model_id").create(...params)
```
**This👆 line effectively creates a configured instance of an `embedding function` with `model` of choice that is ready for use.**
### AWS Bedrock Text Embedding Functions
AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function.
You can do so by using `awscli` and also add your session_token:
```shell
aws configure
aws configure set aws_session_token "<your_session_token>"
```
to ensure that the credentials are set up correctly, you can run the following command:
```shell
aws sts get-caller-identity
```
- `get_registry()` : This function call returns an instance of a `EmbeddingFunctionRegistry` object. This registry manages the registration and retrieval of embedding functions.
Supported Embedding modelIDs are:
* `amazon.titan-embed-text-v1`
* `cohere.embed-english-v3`
* `cohere.embed-multilingual-v3`
- `.get("model_id")` : This method call on the registry object and retrieves the **embedding models functions** associated with the `"model_id"` (1) .
{ .annotate }
Supported parameters (to be passed in `create` method) are:
1. Hover over the names in table below to find out the `model_id` of different embedding functions.
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| **name** | str | "amazon.titan-embed-text-v1" | The model ID of the bedrock model to use. Supported base models for Text Embeddings: amazon.titan-embed-text-v1, cohere.embed-english-v3, cohere.embed-multilingual-v3 |
| **region** | str | "us-east-1" | Optional name of the AWS Region in which the service should be called (e.g., "us-east-1"). |
| **profile_name** | str | None | Optional name of the AWS profile to use for calling the Bedrock service. If not specified, the default profile will be used. |
| **assumed_role** | str | None | Optional ARN of an AWS IAM role to assume for calling the Bedrock service. If not specified, the current active credentials will be used. |
| **role_session_name** | str | "lancedb-embeddings" | Optional name of the AWS IAM role session to use for calling the Bedrock service. If not specified, a "lancedb-embeddings" name will be used. |
| **runtime** | bool | True | Optional choice of getting different client to perform operations with the Amazon Bedrock service. |
| **max_retries** | int | 7 | Optional number of retries to perform when a request fails. |
- `.create(...params)` : This method call is on the object returned by the `get` method. It instantiates an embedding model function using the **specified parameters**.
Usage Example:
??? question "What parameters does the `.create(...params)` method accepts?"
**Checkout the documentation of specific embedding models (links in the table below👇) to know what parameters it takes**.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
!!! tip "Moving on"
Now that we know how to get the **desired embedding model** and use it in our code, let's explore the comprehensive **list** of embedding models **supported by LanceDB**, in the tables below.
model = get_registry().get("bedrock-text").create()
## Text Embedding Functions 📝
These functions are registered by default to handle text embeddings.
class TextModel(LanceModel):
text: str = model.SourceField()
vector: Vector(model.ndims()) = model.VectorField()
- 🔄 **Embedding functions** have an inbuilt rate limit handler wrapper for source and query embedding function calls that retry with **exponential backoff**.
df = pd.DataFrame({"text": ["hello world", "goodbye world"]})
db = lancedb.connect("tmp_path")
tbl = db.create_table("test", schema=TextModel, mode="overwrite")
- 🌕 Each `EmbeddingFunction` implementation automatically takes `max_retries` as an argument which has the default value of 7.
tbl.add(df)
rs = tbl.search("hello").limit(1).to_pandas()
```
🌟 **Available Text Embeddings**
## Multi-modal embedding functions
Multi-modal embedding functions allow you to query your table using both images and text.
### OpenClip embeddings
We support CLIP model embeddings using the open source alternative, [open-clip](https://github.com/mlfoundations/open_clip) which supports various customizations. It is registered as `open-clip` and supports the following customizations:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"ViT-B-32"` | The name of the model. |
| `pretrained` | `str` | `"laion2b_s34b_b79k"` | The name of the pretrained model to load. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `batch_size` | `int` | `64` | The number of images to process in a batch. |
| `normalize` | `bool` | `True` | Whether to normalize the input images before feeding them to the model. |
This embedding function supports ingesting images as both bytes and urls. You can query them using both test and other images.
!!! info
LanceDB supports ingesting images directly from accessible links.
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry.get("open-clip").create()
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
Now we can search using text from both the default vector column and the custom vector column
```python
# text search
actual = table.search("man's best friend").limit(1).to_pydantic(Images)[0]
print(actual.label) # prints "dog"
frombytes = (
table.search("man's best friend", vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(frombytes.label)
```
Because we're using a multi-modal embedding function, we can also search using images
```python
# image search
query_image_uri = "http://farm1.staticflickr.com/200/467715466_ed4a31801f_z.jpg"
image_bytes = requests.get(query_image_uri).content
query_image = Image.open(io.BytesIO(image_bytes))
actual = table.search(query_image).limit(1).to_pydantic(Images)[0]
print(actual.label == "dog")
# image search using a custom vector column
other = (
table.search(query_image, vector_column_name="vec_from_bytes")
.limit(1)
.to_pydantic(Images)[0]
)
print(actual.label)
```
### Imagebind embeddings
We have support for [imagebind](https://github.com/facebookresearch/ImageBind) model embeddings. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`.
This function is registered as `imagebind` and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data):
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"imagebind_huge"` | Name of the model. |
| `device` | `str` | `"cpu"` | The device to run the model on. Can be `"cpu"` or `"gpu"`. |
| `normalize` | `bool` | `False` | set to `True` to normalize your inputs before model ingestion. |
Below is an example demonstrating how the API works:
```python
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
db = lancedb.connect(tmp_path)
func = get_registry.get("imagebind").create()
class ImageBindModel(LanceModel):
text: str
image_uri: str = func.SourceField()
audio_path: str
vector: Vector(func.ndims()) = func.VectorField()
# add locally accessible image paths
text_list=["A dog.", "A car", "A bird"]
image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"]
audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"]
# Load data
inputs = [
{"text": a, "audio_path": b, "image_uri": c}
for a, b, c in zip(text_list, audio_paths, image_paths)
]
#create table and add data
table = db.create_table("img_bind", schema=ImageBindModel)
table.add(inputs)
```
Now, we can search using any modality:
#### image search
```python
query_image = "./assets/dog_image2.jpg" #download an image and enter that path here
actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "dog")
```
#### audio search
```python
query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here
actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "car")
```
#### Text search
You can add any input query and fetch the result as follows:
```python
query = "an animal which flies and tweets"
actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0]
print(actual.text == "bird")
```
If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue [on GitHub](https://github.com/lancedb/lancedb/issues).
### Jina Embeddings
Jina embeddings can also be used to embed both text and image data, only some of the models support image data and you can check the list
under [https://jina.ai/embeddings/](https://jina.ai/embeddings/)
Supported parameters (to be passed in `create` method) are:
| Parameter | Type | Default Value | Description |
|---|---|---|---|
| `name` | `str` | `"jina-clip-v1"` | The model ID of the jina model to use |
Usage Example:
```python
import os
import requests
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
import pandas as pd
os.environ['JINA_API_KEY'] = 'jina_*'
db = lancedb.connect("~/.lancedb")
func = get_registry().get("jina").create()
| **Embedding** :material-information-outline:{ title="Hover over the name to find out the model_id" } | **Description** | **Documentation** |
|-----------|-------------|---------------|
| [**Sentence Transformers**](available_embedding_models/text_embedding_functions/sentence_transformers.md "sentence-transformers") | 🧠 **SentenceTransformers** is a Python framework for state-of-the-art sentence, text, and image embeddings. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/sbert_2.png" alt="Sentence Transformers Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/sentence_transformers.md)|
| [**Huggingface Models**](available_embedding_models/text_embedding_functions/huggingface_embedding.md "huggingface") |🤗 We offer support for all **Huggingface** models. The default model is `colbert-ir/colbertv2.0`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/hugging_face.png" alt="Huggingface Icon" width="130" height="35">](available_embedding_models/text_embedding_functions/huggingface_embedding.md) |
| [**Ollama Embeddings**](available_embedding_models/text_embedding_functions/ollama_embedding.md "ollama") | 🔍 Generate embeddings via the **Ollama** python library. Ollama supports embedding models, making it possible to build RAG apps. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/Ollama.png" alt="Ollama Icon" width="110" height="35">](available_embedding_models/text_embedding_functions/ollama_embedding.md)|
| [**OpenAI Embeddings**](available_embedding_models/text_embedding_functions/openai_embedding.md "openai")| 🔑 **OpenAIs** text embeddings measure the relatedness of text strings. **LanceDB** supports state-of-the-art embeddings from OpenAI. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openai.png" alt="OpenAI Icon" width="100" height="35">](available_embedding_models/text_embedding_functions/openai_embedding.md)|
| [**Instructor Embeddings**](available_embedding_models/text_embedding_functions/instructor_embedding.md "instructor") | 📚 **Instructor**: An instruction-finetuned text embedding model that can generate text embeddings tailored to any task and domains by simply providing the task instruction, without any finetuning. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/instructor_embedding.png" alt="Instructor Embedding Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/instructor_embedding.md) |
| [**Gemini Embeddings**](available_embedding_models/text_embedding_functions/gemini_embedding.md "gemini-text") | 🌌 Googles Gemini API generates state-of-the-art embeddings for words, phrases, and sentences. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/gemini.png" alt="Gemini Icon" width="95" height="35">](available_embedding_models/text_embedding_functions/gemini_embedding.md) |
| [**Cohere Embeddings**](available_embedding_models/text_embedding_functions/cohere_embedding.md "cohere") | 💬 This will help you get started with **Cohere** embedding models using LanceDB. Using cohere API requires cohere package. Install it via `pip`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/cohere.png" alt="Cohere Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/cohere_embedding.md) |
| [**Jina Embeddings**](available_embedding_models/text_embedding_functions/jina_embedding.md "jina") | 🔗 World-class embedding models to improve your search and RAG systems. You will need **jina api key**. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="Jina Icon" width="90" height="35">](available_embedding_models/text_embedding_functions/jina_embedding.md) |
| [ **AWS Bedrock Functions**](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md "bedrock-text") | ☁️ AWS Bedrock supports multiple base models for generating text embeddings. You need to setup the AWS credentials to use this embedding function. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/aws_bedrock.png" alt="AWS Bedrock Icon" width="120" height="35">](available_embedding_models/text_embedding_functions/aws_bedrock_embedding.md) |
| [**IBM Watsonx.ai**](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md "watsonx") | 💡 Generate text embeddings using IBM's watsonx.ai platform. **Note**: watsonx.ai library is an optional dependency. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/watsonx.png" alt="Watsonx Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/ibm_watsonx_ai_embedding.md) |
| [**VoyageAI Embeddings**](available_embedding_models/text_embedding_functions/voyageai_embedding.md "voyageai") | 🌕 Voyage AI provides cutting-edge embedding and rerankers. This will help you get started with **VoyageAI** embedding models using LanceDB. Using voyageai API requires voyageai package. Install it via `pip`. | [<img src="https://www.voyageai.com/logo.svg" alt="VoyageAI Icon" width="140" height="35">](available_embedding_models/text_embedding_functions/voyageai_embedding.md) |
class Images(LanceModel):
label: str
image_uri: str = func.SourceField() # image uri as the source
image_bytes: bytes = func.SourceField() # image bytes as the source
vector: Vector(func.ndims()) = func.VectorField() # vector column
vec_from_bytes: Vector(func.ndims()) = func.VectorField() # Another vector column
[st-key]: "sentence-transformers"
[hf-key]: "huggingface"
[ollama-key]: "ollama"
[openai-key]: "openai"
[instructor-key]: "instructor"
[gemini-key]: "gemini-text"
[cohere-key]: "cohere"
[jina-key]: "jina"
[aws-key]: "bedrock-text"
[watsonx-key]: "watsonx"
[voyageai-key]: "voyageai"
table = db.create_table("images", schema=Images)
labels = ["cat", "cat", "dog", "dog", "horse", "horse"]
uris = [
"http://farm1.staticflickr.com/53/167798175_7c7845bbbd_z.jpg",
"http://farm1.staticflickr.com/134/332220238_da527d8140_z.jpg",
"http://farm9.staticflickr.com/8387/8602747737_2e5c2a45d4_z.jpg",
"http://farm5.staticflickr.com/4092/5017326486_1f46057f5f_z.jpg",
"http://farm9.staticflickr.com/8216/8434969557_d37882c42d_z.jpg",
"http://farm6.staticflickr.com/5142/5835678453_4f3a4edb45_z.jpg",
]
# get each uri as bytes
image_bytes = [requests.get(uri).content for uri in uris]
table.add(
pd.DataFrame({"label": labels, "image_uri": uris, "image_bytes": image_bytes})
)
```
## Multi-modal Embedding Functions🖼
Multi-modal embedding functions allow you to query your table using both images and text. 💬🖼️
🌐 **Available Multi-modal Embeddings**
| Embedding :material-information-outline:{ title="Hover over the name to find out the model_id" } | Description | Documentation |
|-----------|-------------|---------------|
| [**OpenClip Embeddings**](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md "open-clip") | 🎨 We support CLIP model embeddings using the open source alternative, **open-clip** which supports various customizations. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/openclip_github.png" alt="openclip Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/openclip_embedding.md) |
| [**Imagebind Embeddings**](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md "imageind") | 🌌 We have support for **imagebind model embeddings**. You can download our version of the packaged model via - `pip install imagebind-packaged==0.1.2`. | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/imagebind_meta.png" alt="imagebind Icon" width="150" height="35">](available_embedding_models/multimodal_embedding_functions/imagebind_embedding.md)|
| [**Jina Multi-modal Embeddings**](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md "jina") | 🔗 **Jina embeddings** can also be used to embed both **text** and **image** data, only some of the models support image data and you can check the detailed documentation. 👉 | [<img src="https://raw.githubusercontent.com/lancedb/assets/main/docs/assets/logos/jina.png" alt="jina Icon" width="90" height="35">](available_embedding_models/multimodal_embedding_functions/jina_multimodal_embedding.md) |
!!! note
If you'd like to request support for additional **embedding functions**, please feel free to open an issue on our LanceDB [GitHub issue page](https://github.com/lancedb/lancedb/issues).

View File

@@ -2,8 +2,8 @@ Representing multi-modal data as vector embeddings is becoming a standard practi
For this purpose, LanceDB introduces an **embedding functions API**, that allow you simply set up once, during the configuration stage of your project. After this, the table remembers it, effectively making the embedding functions *disappear in the background* so you don't have to worry about manually passing callables, and instead, simply focus on the rest of your data engineering pipeline.
!!! Note "LanceDB cloud doesn't support embedding functions yet"
LanceDB Cloud does not support embedding functions yet. You need to generate embeddings before ingesting into the table or querying.
!!! Note "Embedding functions on LanceDB cloud"
When using embedding functions with LanceDB cloud, the embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings.
!!! warning
Using the embedding function registry means that you don't have to explicitly generate the embeddings yourself.
@@ -94,8 +94,8 @@ the embeddings at all:
=== "@lancedb/lancedb"
```ts
--8<-- "nodejs/examples/embedding.ts:imports"
--8<-- "nodejs/examples/embedding.ts:embedding_function"
--8<-- "nodejs/examples/embedding.test.ts:imports"
--8<-- "nodejs/examples/embedding.test.ts:embedding_function"
```
=== "vectordb (deprecated)"
@@ -150,7 +150,7 @@ need to worry about it when you query the table:
.toArray()
```
=== "vectordb (deprecated)
=== "vectordb (deprecated)"
```ts
const results = await table

View File

@@ -51,8 +51,8 @@ LanceDB registers the OpenAI embeddings function in the registry as `openai`. Yo
=== "TypeScript"
```typescript
--8<--- "nodejs/examples/embedding.ts:imports"
--8<--- "nodejs/examples/embedding.ts:openai_embeddings"
--8<--- "nodejs/examples/embedding.test.ts:imports"
--8<--- "nodejs/examples/embedding.test.ts:openai_embeddings"
```
=== "Rust"
@@ -99,34 +99,32 @@ LanceDB registers the Sentence Transformers embeddings function in the registry
Coming Soon!
### Jina Embeddings
LanceDB registers the JinaAI embeddings function in the registry as `jina`. You can pass any supported model name to the `create`. By default it uses `"jina-clip-v1"`.
`jina-clip-v1` can handle both text and images and other models only support `text`.
You need to pass `JINA_API_KEY` in the environment variable or pass it as `api_key` to `create` method.
### Embedding function with LanceDB cloud
Embedding functions are now supported on LanceDB cloud. The embeddings will be generated on the source device and sent to the cloud. This means that the source device must have the necessary resources to generate the embeddings. Here's an example using the OpenAI embedding function:
```python
import os
import lancedb
from lancedb.pydantic import LanceModel, Vector
from lancedb.embeddings import get_registry
os.environ['JINA_API_KEY'] = "jina_*"
os.environ['OPENAI_API_KEY'] = "..."
db = lancedb.connect("/tmp/db")
func = get_registry().get("jina").create(name="jina-clip-v1")
db = lancedb.connect(
uri="db://....",
api_key="sk_...",
region="us-east-1"
)
func = get_registry().get("openai").create()
class Words(LanceModel):
text: str = func.SourceField()
vector: Vector(func.ndims()) = func.VectorField()
table = db.create_table("words", schema=Words, mode="overwrite")
table.add(
[
{"text": "hello world"},
{"text": "goodbye world"}
]
)
table = db.create_table("words", schema=Words)
table.add([
{"text": "hello world"},
{"text": "goodbye world"}
])
query = "greetings"
actual = table.search(query).limit(1).to_pydantic(Words)[0]

View File

@@ -0,0 +1,133 @@
# Understand Embeddings
The term **dimension** is a synonym for the number of elements in a feature vector. Each feature can be thought of as a different axis in a geometric space.
High-dimensional data means there are many features(or attributes) in the data.
!!! example
1. An image is a data point and it might have thousands of dimensions because each pixel could be considered as a feature.
2. Text data, when represented by each word or character, can also lead to high dimensions, especially when considering all possible words in a language.
Embedding captures **meaning and relationships** within data by mapping high-dimensional data into a lower-dimensional space. It captures it by placing inputs that are more **similar in meaning** closer together in the **embedding space**.
## What are Vector Embeddings?
Vector embeddings is a way to convert complex data, like text, images, or audio into numerical coordinates (called vectors) that can be plotted in an n-dimensional space(embedding space).
The closer these data points are related in the real world, the closer their corresponding numerical coordinates (vectors) will be to each other in the embedding space. This proximity in the embedding space reflects their semantic similarities, allowing machines to intuitively understand and process the data in a way that mirrors human perception of relationships and meaning.
In a way, it captures the most important aspects of the data while ignoring the less important ones. As a result, tasks like searching for related content or identifying patterns become more efficient and accurate, as the embeddings make it possible to quantify how **closely related** different **data points** are and **reduce** the **computational complexity**.
??? question "Are vectors and embeddings the same thing?"
When we say “vectors” we mean - **list of numbers** that **represents the data**.
When we say “embeddings” we mean - **list of numbers** that **capture important details and relationships**.
Although the terms are often used interchangeably, “embeddings” highlight how the data is represented with meaning and structure, while “vector” simply refers to the numerical form of that representation.
## Embedding vs Indexing
We already saw that creating **embeddings** on data is a method of creating **vectors** for a **n-dimensional embedding space** that captures the meaning and relationships inherent in the data.
Once we have these **vectors**, indexing comes into play. Indexing is a method of organizing these vector embeddings, that allows us to quickly and efficiently locate and retrieve them from the entire dataset of vector embeddings.
## What types of data/objects can be embedded?
The following are common types of data that can be embedded:
1. **Text**: Text data includes sentences, paragraphs, documents, or any written content.
2. **Images**: Image data encompasses photographs, illustrations, or any visual content.
3. **Audio**: Audio data includes sounds, music, speech, or any auditory content.
4. **Video**: Video data consists of moving images and sound, which can convey complex information.
Large datasets of multi-modal data (text, audio, images, etc.) can be converted into embeddings with the appropriate model.
!!! tip "LanceDB vs Other traditional Vector DBs"
While many vector databases primarily focus on the storage and retrieval of vector embeddings, **LanceDB** uses **Lance file format** (operates on a disk-based architecture), which allows for the storage and management of not just embeddings but also **raw file data (bytes)**. This capability means that users can integrate various types of data, including images and text, alongside their vector embeddings in a unified system.
With the ability to store both vectors and associated file data, LanceDB enhances the querying process. Users can perform semantic searches that not only retrieve similar embeddings but also access related files and metadata, thus streamlining the workflow.
## How does embedding works?
As mentioned, after creating embedding, each data point is represented as a vector in a n-dimensional space (embedding space). The dimensionality of this space can vary depending on the complexity of the data and the specific embedding technique used.
Points that are close to each other in vector space are considered similar (or appear in similar contexts), and points that are far away are considered dissimilar. To quantify this closeness, we use distance as a metric which can be measured in the following way -
1. **Euclidean Distance (l2)**: It calculates the straight-line distance between two points (vectors) in a multidimensional space.
2. **Cosine Similarity**: It measures the cosine of the angle between two vectors, providing a normalized measure of similarity based on their direction.
3. **Dot product**: It is calculated as the sum of the products of their corresponding components. To measure relatedness it considers both the magnitude and direction of the vectors.
## How do you create and store vector embeddings for your data?
1. **Creating embeddings**: Choose an embedding model, it can be a pre-trained model (open-source or commercial) or you can train a custom embedding model for your scenario. Then feed your preprocessed data into the chosen model to obtain embeddings.
??? question "Popular choices for embedding models"
For text data, popular choices are OpenAIs text-embedding models, Google Gemini text-embedding models, Coheres Embed models, and SentenceTransformers, etc.
For image data, popular choices are CLIP (Contrastive LanguageImage Pretraining), Imagebind embeddings by meta (supports audio, video, and image), and Jina multi-modal embeddings, etc.
2. **Storing vector embeddings**: This effectively requires **specialized databases** that can handle the complexity of vector data, as traditional databases often struggle with this task. Vector databases are designed specifically for storing and querying vector embeddings. They optimize for efficient nearest-neighbor searches and provide built-in indexing mechanisms.
!!! tip "Why LanceDB"
LanceDB **automates** the entire process of creating and storing embeddings for your data. LanceDB allows you to define and use **embedding functions**, which can be **pre-trained models** or **custom models**.
This enables you to **generate** embeddings tailored to the nature of your data (e.g., text, images) and **store** both the **original data** and **embeddings** in a **structured schema** thus providing efficient querying capabilities for similarity searches.
Let's quickly [get started](./index.md) and learn how to manage embeddings in LanceDB.
## Bonus: As a developer, what you can create using embeddings?
As a developer, you can create a variety of innovative applications using vector embeddings. Check out the following -
<div class="grid cards" markdown>
- __Chatbots__
---
Develop chatbots that utilize embeddings to retrieve relevant context and generate coherent, contextually aware responses to user queries.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/chatbot.md)
- __Recommendation Systems__
---
Develop systems that recommend content (such as articles, movies, or products) based on the similarity of keywords and descriptions, enhancing user experience.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/recommendersystem.md)
- __Vector Search__
---
Build powerful applications that harness the full potential of semantic search, enabling them to retrieve relevant data quickly and effectively.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/vector_search.md)
- __RAG Applications__
---
Combine the strengths of large language models (LLMs) with retrieval-based approaches to create more useful applications.
[:octicons-arrow-right-24: Check out examples](../examples/python_examples/rag.md)
- __Many more examples__
---
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications.
[:octicons-arrow-right-24: More](../examples/examples_python.md)
</div>

View File

@@ -0,0 +1,53 @@
# Variable and Secrets
Most embedding configuration options are saved in the table's metadata. However,
this isn't always appropriate. For example, API keys should never be stored in the
metadata. Additionally, other configuration options might be best set at runtime,
such as the `device` configuration that controls whether to use GPU or CPU for
inference. If you hardcoded this to GPU, you wouldn't be able to run the code on
a server without one.
To handle these cases, you can set variables on the embedding registry and
reference them in the embedding configuration. These variables will be available
during the runtime of your program, but not saved in the table's metadata. When
the table is loaded from a different process, the variables must be set again.
To set a variable, use the `set_var()` / `setVar()` method on the embedding registry.
To reference a variable, use the syntax `$env:VARIABLE_NAME`. If there is a default
value, you can use the syntax `$env:VARIABLE_NAME:DEFAULT_VALUE`.
## Using variables to set secrets
Sensitive configuration, such as API keys, must either be set as environment
variables or using variables on the embedding registry. If you pass in a hardcoded
value, LanceDB will raise an error. Instead, if you want to set an API key via
configuration, use a variable:
=== "Python"
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_secret"
```
=== "Typescript"
```typescript
--8<-- "nodejs/examples/embedding.test.ts:register_secret"
```
## Using variables to set the device parameter
Many embedding functions that run locally have a `device` parameter that controls
whether to use GPU or CPU for inference. Because not all computers have a GPU,
it's helpful to be able to set the `device` parameter at runtime, rather than
have it hard coded in the embedding configuration. To make it work even if the
variable isn't set, you could provide a default value of `cpu` in the embedding
configuration.
Some embedding libraries even have a method to detect which devices are available,
which could be used to dynamically set the device at runtime. For example, in Python
you can check if a CUDA GPU is available using `torch.cuda.is_available()`.
```python
--8<-- "python/python/tests/docs/test_embeddings_optional.py:register_device"
```

View File

@@ -1,17 +1,22 @@
# Examples: Python
# Overview : Python Examples
To help you get started, we provide some examples, projects and applications that use the LanceDB Python API. You can always find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
To help you get started, we provide some examples, projects, and applications that use the LanceDB Python API. These examples are designed to get you right into the code with minimal introduction, enabling you to move from an idea to a proof of concept in minutes.
| Example | Interactive Envs | Scripts |
|-------- | ---------------- | ------ |
| | | |
| [Youtube transcript search bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/youtube_bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/youtube_bot/main.py)|
| [Langchain: Code Docs QA bot](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Code-Documentation-QA-Bot/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/Code-Documentation-QA-Bot/main.py) |
| [AI Agents: Reducing Hallucination](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/reducing_hallucinations_ai_agents/main.py)|
| [Multimodal CLIP: DiffusionDB](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_clip/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_clip/main.py) |
| [Multimodal CLIP: Youtube videos](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_video_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>| [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_video_search/main.py) |
| [Movie Recommender](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/movie-recommender/main.py) |
| [Audio Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/audio_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/audio_search/main.py) |
| [Multimodal Image + Text Search](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/multimodal_search/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | [![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/examples/multimodal_search/main.py) |
| [Evaluating Prompts with Prompttools](https://github.com/lancedb/vectordb-recipes/tree/main/examples/prompttools-eval-prompts/) | <a href="https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/prompttools-eval-prompts/main.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | |
You can find the latest examples in our [VectorDB Recipes](https://github.com/lancedb/vectordb-recipes) repository.
**Introduction**
Explore applied examples available as Colab notebooks or Python scripts to integrate into your applications. You can also checkout our blog posts related to the particular example for deeper understanding.
| Explore | Description |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [**Build from Scratch with LanceDB** 🛠️🚀](python_examples/build_from_scratch.md) | Start building your **GenAI applications** from the **ground up** using **LanceDB's** efficient vector-based document retrieval capabilities! Get started quickly with a solid foundation. |
| [**Multimodal Search with LanceDB** 🤹‍♂️🔍](python_examples/multimodal.md) | Combine **text** and **image queries** to find the most relevant results using **LanceDBs multimodal** capabilities. Leverage the efficient vector-based similarity search. |
| [**RAG (Retrieval-Augmented Generation) with LanceDB** 🔓🧐](python_examples/rag.md) | Build RAG (Retrieval-Augmented Generation) with **LanceDB** for efficient **vector-based information retrieval** and more accurate responses from AI. |
| [**Vector Search: Efficient Retrieval** 🔓👀](python_examples/vector_search.md) | Use **LanceDB's** vector search capabilities to perform efficient and accurate **similarity searches**, enabling rapid discovery and retrieval of relevant documents in Large datasets. |
| [**Chatbot applications with LanceDB** 🤖](python_examples/chatbot.md) | Create **chatbots** that retrieves relevant context for **coherent and context-aware replies**, enhancing user experience through advanced conversational AI. |
| [**Evaluation: Assessing Text Performance with Precision** 📊💡](python_examples/evaluations.md) | Develop **evaluation** applications that allows you to input reference and candidate texts to **measure** their performance across various metrics. |
| [**AI Agents: Intelligent Collaboration** 🤖](python_examples/aiagent.md) | Enable **AI agents** to communicate and collaborate efficiently through dense vector representations, achieving shared goals seamlessly. |
| [**Recommender Systems: Personalized Discovery** 🍿📺](python_examples/recommendersystem.md) | Deliver **personalized experiences** by efficiently storing and querying item embeddings with **LanceDB's** powerful vector database capabilities. |
| **Miscellaneous Examples🌟** | Find other **unique examples** and **creative solutions** using **LanceDB**, showcasing the flexibility and broad applicability of the platform. |

View File

@@ -8,9 +8,5 @@ LanceDB provides language APIs, allowing you to embed a database in your languag
* 👾 [JavaScript](examples_js.md) examples
* 🦀 Rust examples (coming soon)
## Applications powered by LanceDB
| Project Name | Description | Screenshot |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| [YOLOExplorer](https://github.com/lancedb/yoloexplorer) | Iterate on your YOLO / CV datasets using SQL, Vector semantic search, and more within seconds | ![YOLOExplorer](https://github.com/lancedb/vectordb-recipes/assets/15766192/ae513a29-8f15-4e0b-99a1-ccd8272b6131) |
| [Website Chatbot (Deployable Vercel Template)](https://github.com/lancedb/lancedb-vercel-chatbot) | Create a chatbot from the sitemap of any website/docs of your choice. Built using vectorDB serverless native javascript package. | ![Chatbot](../assets/vercel-template.gif) |
!!! tip "Hosted LanceDB"
If you want S3 cost-efficiency and local performance via a simple serverless API, checkout **LanceDB Cloud**. For private deployments, high performance at extreme scale, or if you have strict security requirements, talk to us about **LanceDB Enterprise**. [Learn more](https://docs.lancedb.com/)

View File

@@ -0,0 +1,27 @@
# AI Agents: Intelligent Collaboration🤖
Think of a platform where AI Agents can seamlessly exchange information, coordinate over tasks, and achieve shared targets with great efficiency💻📈.
## Vector-Based Coordination: The Technical Advantage
Leveraging LanceDB's vector-based capabilities, we can enable **AI agents 🤖** to communicate and collaborate through dense vector representations. AI agents can exchange information, coordinate on a task or work towards a common goal, just by giving queries📝.
| **AI Agents** | **Description** | **Links** |
|:--------------|:----------------|:----------|
| **AI Agents: Reducing Hallucinationt📊** | 🤖💡 **Reduce AI hallucinations** using Critique-Based Contexting! Learn by Simplifying and Automating tedious workflows by going through fitness trainer agent example.💪 | [![Github](../../assets/github.svg)][hullucination_github] <br>[![Open In Collab](../../assets/colab.svg)][hullucination_colab] <br>[![Python](../../assets/python.svg)][hullucination_python] <br>[![Ghost](../../assets/ghost.svg)][hullucination_ghost] |
| **AI Trends Searcher: CrewAI🔍** | 🔍️ Learn about **CrewAI Agents** ! Utilize the features of CrewAI - Role-based Agents, Task Management, and Inter-agent Delegation ! Make AI agents work together to do tricky stuff 😺| [![Github](../../assets/github.svg)][trend_github] <br>[![Open In Collab](../../assets/colab.svg)][trend_colab] <br>[![Ghost](../../assets/ghost.svg)][trend_ghost] |
| **SuperAgent Autogen🤖** | 💻 AI interactions with the Super Agent! Integrating **Autogen**, **LanceDB**, **LangChain**, **LiteLLM**, and **Ollama** to create AI agent that excels in understanding and processing complex queries.🤖 | [![Github](../../assets/github.svg)][superagent_github] <br>[![Open In Collab](../../assets/colab.svg)][superagent_colab] |
[hullucination_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents
[hullucination_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.ipynb
[hullucination_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/reducing_hallucinations_ai_agents/main.py
[hullucination_ghost]: https://blog.lancedb.com/how-to-reduce-hallucinations-from-llm-powered-agents-using-long-term-memory-72f262c3cc1f/
[trend_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI
[trend_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/AI-Trends-with-CrewAI/CrewAI_AI_Trends.ipynb
[trend_ghost]: https://blog.lancedb.com/track-ai-trends-crewai-agents-rag/
[superagent_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen
[superagent_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/SuperAgent_Autogen/main.ipynb

View File

@@ -0,0 +1,13 @@
# **Build from Scratch with LanceDB 🛠️🚀**
Start building your GenAI applications from the ground up using **LanceDB's** efficient vector-based document retrieval capabilities! 📑
**Get Started in Minutes ⏱️**
These examples provide a solid foundation for building your own GenAI applications using LanceDB. Jump from idea to **proof of concept** quickly with applied examples. Get started and see what you can create! 💻
| **Build From Scratch** | **Description** | **Links** |
|:-------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **Build RAG from Scratch🚀💻** | 📝 Create a **Retrieval-Augmented Generation** (RAG) model from scratch using LanceDB. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/RAG-from-Scratch)<br>[![Open In Collab](https://colab.research.google.com/assets/colab-badge.svg)]() |
| **Local RAG from Scratch with Llama3🔥💡** | 🐫 Build a local RAG model using **Llama3** and **LanceDB** for fast and efficient text generation. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Local-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/blob/main/tutorials/Local-RAG-from-Scratch/rag.py) |
| **Multi-Head RAG from Scratch📚💻** | 🤯 Develop a **Multi-Head RAG model** from scratch, enabling generation of text based on multiple documents. | [![GitHub](https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch)<br>[![Python](https://img.shields.io/badge/python-3670A0?style=for-the-badge&logo=python&logoColor=ffdd54)](https://github.com/lancedb/vectordb-recipes/tree/main/tutorials/Multi-Head-RAG-from-Scratch) |

Some files were not shown because too many files have changed in this diff Show More