This includes several improvements and fixes to the Python Async query builders: 1. The API reference docs show all the methods for each builder 2. The hybrid query builder now has all the same setter methods as the vector search one, so you can now set things like `.distance_type()` on a hybrid query. 3. Re-rankers are now properly hooked up and tested for FTS and vector search. Previously the re-rankers were accidentally bypassed in unit tests, because the builders overrode `.to_arrow()`, but the unit test called `.to_batches()` which was only defined in the base class. Now all builders implement `.to_batches()` and leave `.to_arrow()` to the base class. 4. The `AsyncQueryBase` and `AsyncVectoryQueryBase` setter methods now return `Self`, which provides the appropriate subclass as the type hint return value. Previously, `AsyncQueryBase` had them all hard-coded to `AsyncQuery`, which was unfortunate. (This required bringing in `typing-extensions` for older Python version, but I think it's worth it.)
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include:
-
Production-scale vector search with no servers to manage.
-
Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
-
Support for vector similarity search, full-text search and SQL.
-
Native Python and Javascript/Typescript support.
-
Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
-
GPU support in building vector index(*).
-
Ecosystem integrations with LangChain 🦜️🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
Quick Start
Javascript
npm install @lancedb/lancedb
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
Python
pip install lancedb
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()