Currently, the only documented way of performing hybrid search is by using embedding API and passing string queries that get automatically embedded. There are use cases where users might like to pass vectors and text manually instead. This ticket contains more information and historical context - https://github.com/lancedb/lancedb/issues/937 This breaks a undocumented pathway that allowed passing (vector, text) tuple queries which was intended to be temporary, so this is marked as a breaking change. For all practical purposes, this should not really impact most users ### usage ``` results = table.search(query_type="hybrid") .vector(vector_query) .text(text_query) .limit(5) .to_pandas() ```
LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.
The key features of LanceDB include:
-
Production-scale vector search with no servers to manage.
-
Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).
-
Support for vector similarity search, full-text search and SQL.
-
Native Python and Javascript/Typescript support.
-
Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.
-
GPU support in building vector index(*).
-
Ecosystem integrations with LangChain 🦜️🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB and more on the way.
LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.
Quick Start
Javascript
npm install @lancedb/lancedb
import * as lancedb from "@lancedb/lancedb";
const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});
const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();
// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();
Python
pip install lancedb
import lancedb
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
{"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()