mirror of
https://github.com/lancedb/lancedb.git
synced 2026-01-06 20:02:58 +00:00
docs: add recommender system example (#1561)
before:  After:  --------- Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com>
This commit is contained in:
12
.github/workflows/docs_test.yml
vendored
12
.github/workflows/docs_test.yml
vendored
@@ -30,9 +30,13 @@ jobs:
|
||||
uses: actions/checkout@v4
|
||||
- name: Print CPU capabilities
|
||||
run: cat /proc/cpuinfo
|
||||
- name: Install protobuf
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
sudo apt install -y libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
@@ -72,9 +76,13 @@ jobs:
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 20
|
||||
- name: Install protobuf
|
||||
run: |
|
||||
sudo apt update
|
||||
sudo apt install -y protobuf-compiler
|
||||
- name: Install dependecies needed for ubuntu
|
||||
run: |
|
||||
sudo apt install -y protobuf-compiler libssl-dev
|
||||
sudo apt install -y libssl-dev
|
||||
rustup update && rustup default
|
||||
- name: Rust cache
|
||||
uses: swatinem/rust-cache@v2
|
||||
|
||||
@@ -150,6 +150,7 @@ nav:
|
||||
- Chatbot: examples/python_examples/chatbot.md
|
||||
- Evaluation: examples/python_examples/evaluations.md
|
||||
- AI Agent: examples/python_examples/aiagent.md
|
||||
- Recommender System: examples/python_examples/recommendersystem.md
|
||||
- Miscellaneous:
|
||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||
@@ -241,6 +242,7 @@ nav:
|
||||
- Chatbot: examples/python_examples/chatbot.md
|
||||
- Evaluation: examples/python_examples/evaluations.md
|
||||
- AI Agent: examples/python_examples/aiagent.md
|
||||
- Recommender System: examples/python_examples/recommendersystem.md
|
||||
- Miscellaneous:
|
||||
- YouTube Transcript Search: notebooks/youtube_transcript_search.ipynb
|
||||
- Documentation QA Bot using LangChain: notebooks/code_qa_bot.ipynb
|
||||
|
||||
@@ -2,11 +2,11 @@
|
||||
**RAG: Revolutionize Information Retrieval with LanceDB 🔓🧐**
|
||||
====================================================================
|
||||
|
||||
Unlock the full potential of Retrieval-Augmented Generation (RAG) with LanceDB, a solution for efficient vector-based information retrieval 📊.
|
||||
Build RAG (Retrieval-Augmented Generation) with LanceDB, a powerful solution for efficient vector-based information retrieval 📊.
|
||||
|
||||
**Experience the Future of Search 🔄**
|
||||
|
||||
RAG integrates large language models (LLMs) with scalable knowledge bases, enabling efficient information retrieval and answer generation 🤖. By applying RAG to industry-specific use cases, developers can optimize query processing 📊, reduce response latency ⏱️, and improve resource utilization 💻. LanceDB provides a robust framework for integrating LLMs with external knowledge sources, facilitating accurate and informative responses 📝.
|
||||
🤖 RAG enables AI to **retrieve** relevant information from external sources and use it to **generate** more accurate and context-specific responses. 💻 LanceDB provides a robust framework for integrating LLMs with external knowledge sources 📝.
|
||||
|
||||
| **RAG** | **Description** | **Links** |
|
||||
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|
||||
|
||||
37
docs/src/examples/python_examples/recommendersystem.md
Normal file
37
docs/src/examples/python_examples/recommendersystem.md
Normal file
@@ -0,0 +1,37 @@
|
||||
**Recommender Systems: Personalized Discovery🍿📺**
|
||||
==============================================================
|
||||
Deliver personalized experiences with Recommender Systems. 🎁
|
||||
|
||||
**Technical Overview📜**
|
||||
|
||||
🔍️ LanceDB's powerful vector database capabilities can efficiently store and query item embeddings. Recommender Systems can utilize it and provide personalized recommendations based on user preferences 🤝 and item features 📊 and therefore enhance the user experience.🗂️
|
||||
|
||||
| **Recommender System** | **Description** | **Links** |
|
||||
| ---------------------- | --------------- | --------- |
|
||||
| **Movie Recommender System🎬** | 🤝 Use **collaborative filtering** to predict user preferences, assuming similar users will like similar movies, and leverage **Singular Value Decomposition** (SVD) from Numpy for precise matrix factorization and accurate recommendations📊 | [][movie_github] <br>[][movie_colab] <br>[][movie_python] |
|
||||
| **🎥 Movie Recommendation with Genres** | 🔍 Creates movie embeddings using Doc2Vec, capturing genre and characteristic nuances, and leverages VectorDB for efficient storage and querying, enabling accurate genre classification and personalized movie recommendations through similarity searches🎥 | [][genre_github] <br>[][genre_colab] <br>[][genre_ghost] |
|
||||
| **🛍️ Product Recommender using Collaborative Filtering and LanceDB** | 📈 Using **Collaborative Filtering** and **LanceDB** to analyze your past purchases, recommends products based on user's past purchases. Demonstrated with the Instacart dataset in our example🛒 | [][product_github] <br>[][product_colab] <br>[][product_python] |
|
||||
| **🔍 Arxiv Search with OpenCLIP and LanceDB** | 💡 Build a semantic search engine for Arxiv papers using LanceDB, and benchmarks its performance against traditional keyword-based search on Nomic's Atlas, to demonstrate the power of semantic search in finding relevant research papers📚 | [][arxiv_github] <br>[][arxiv_colab] <br>[][arxiv_python] |
|
||||
| **Food Recommendation System🍴** | 🍔 Build a food recommendation system with LanceDB, featuring vector-based recommendations, full-text search, hybrid search, and reranking model integration for personalized and accurate food suggestions👌 | [][food_github] <br>[][food_colab] |
|
||||
|
||||
[movie_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender
|
||||
[movie_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.ipynb
|
||||
[movie_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommender/main.py
|
||||
|
||||
|
||||
[genre_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres
|
||||
[genre_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/movie-recommendation-with-genres/movie_recommendation_with_doc2vec_and_lancedb.ipynb
|
||||
[genre_ghost]: https://blog.lancedb.com/movie-recommendation-system-using-lancedb-and-doc2vec/
|
||||
|
||||
[product_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender
|
||||
[product_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.ipynb
|
||||
[product_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/product-recommender/main.py
|
||||
|
||||
|
||||
[arxiv_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender
|
||||
[arxiv_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.ipynb
|
||||
[arxiv_python]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/arxiv-recommender/main.py
|
||||
|
||||
|
||||
[food_github]: https://github.com/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation
|
||||
[food_colab]: https://colab.research.google.com/github/lancedb/vectordb-recipes/blob/main/examples/Food_recommendation/main.ipynb
|
||||
@@ -1,7 +1,7 @@
|
||||
**Vector Search: Unlock Efficient Document Retrieval 🔓👀**
|
||||
====================================================================
|
||||
|
||||
Unlock the power of vector search with LanceDB, a cutting-edge solution for efficient vector-based document retrieval 📊.
|
||||
Vector search with LanceDB, is a solution for efficient and accurate similarity searches in large datasets 📊.
|
||||
|
||||
**Vector Search Capabilities in LanceDB🔝**
|
||||
|
||||
|
||||
Reference in New Issue
Block a user