msu-reevo cc81f3e1a5 fix(python): typing (#2167)
@wjones127 is there a standard way you guys setup your virtualenv? I can
either relist all the dependencies in the pyright precommit section, or
specify a venv, or the user has to be in the virtual environment when
they run git commit. If the venv location was standardized or a python
manager like `uv` was used it would be easier to avoid duplicating the
pyright dependency list.

Per your suggestion, in `pyproject.toml` I added in all the passing
files to the `includes` section.

For ruff I upgraded the version and removed "TCH" which doesn't exist as
an option.

I added a `pyright_report.csv` which contains a list of all files sorted
by pyright errors ascending as a todo list to work on.

I fixed about 30 issues in `table.py` stemming from str's being passed
into methods that required a string within a set of string Literals by
extracting them into `types.py`

Can you verify in the rust bridge that the schema should be a property
and not a method here? If it's a method, then there's another place in
the code where `inner.schema` should be `inner.schema()`
``` python
class RecordBatchStream:
    @property
    def schema(self) -> pa.Schema: ...
```

Also unless the `_lancedb.pyi` file is wrong, then there is no
`__anext__` here for `__inner` when it's not an `AsyncGenerator` and
only `next` is defined:
``` python
    async def __anext__(self) -> pa.RecordBatch:
        return await self._inner.__anext__()
        if isinstance(self._inner, AsyncGenerator):
            batch = await self._inner.__anext__()
        else:
            batch = await self._inner.next()
        if batch is None:
            raise StopAsyncIteration
        return batch
```
in the else statement, `_inner` is a `RecordBatchStream`
```python
class RecordBatchStream:
    @property
    def schema(self) -> pa.Schema: ...
    async def next(self) -> Optional[pa.RecordBatch]: ...
```

---------

Co-authored-by: Will Jones <willjones127@gmail.com>
2025-03-10 09:01:23 -07:00
2024-11-20 10:53:19 -08:00
2025-03-10 09:01:23 -07:00
2025-03-10 09:01:23 -07:00
2025-02-28 07:51:34 -08:00
2025-02-26 21:23:39 +00:00
2025-02-26 20:11:37 +00:00
2025-03-10 09:01:23 -07:00
2023-03-17 18:15:19 -07:00
2025-03-10 09:01:23 -07:00

LanceDB Logo

Developer-friendly, database for multimodal AI

LanceDB lancdb Blog Discord Twitter Gurubase

LanceDB Multimodal Search


LanceDB is an open-source database for vector-search built with persistent storage, which greatly simplifies retrieval, filtering and management of embeddings.

The key features of LanceDB include:

  • Production-scale vector search with no servers to manage.

  • Store, query and filter vectors, metadata and multi-modal data (text, images, videos, point clouds, and more).

  • Support for vector similarity search, full-text search and SQL.

  • Native Python and Javascript/Typescript support.

  • Zero-copy, automatic versioning, manage versions of your data without needing extra infrastructure.

  • GPU support in building vector index(*).

  • Ecosystem integrations with LangChain 🦜🔗, LlamaIndex 🦙, Apache-Arrow, Pandas, Polars, DuckDB and more on the way.

LanceDB's core is written in Rust 🦀 and is built using Lance, an open-source columnar format designed for performant ML workloads.

Quick Start

Javascript

npm install @lancedb/lancedb
import * as lancedb from "@lancedb/lancedb";

const db = await lancedb.connect("data/sample-lancedb");
const table = await db.createTable("vectors", [
	{ id: 1, vector: [0.1, 0.2], item: "foo", price: 10 },
	{ id: 2, vector: [1.1, 1.2], item: "bar", price: 50 },
], {mode: 'overwrite'});


const query = table.vectorSearch([0.1, 0.3]).limit(2);
const results = await query.toArray();

// You can also search for rows by specific criteria without involving a vector search.
const rowsByCriteria = await table.query().where("price >= 10").toArray();

Python

pip install lancedb
import lancedb

uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table("my_table",
                         data=[{"vector": [3.1, 4.1], "item": "foo", "price": 10.0},
                               {"vector": [5.9, 26.5], "item": "bar", "price": 20.0}])
result = table.search([100, 100]).limit(2).to_pandas()

Blogs, Tutorials & Videos

Description
Languages
Rust 42.8%
Python 41.8%
TypeScript 14.3%
Shell 0.6%
Java 0.3%